

HIERARCHICAL SCHEDULING AND UNIFORM ACCESS PROGRAMMING

FRAMEWORKS FOR HETEROGENEOUS CPU-GPU COMPUTING CLUSTERS

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

KITTISAK SAJJAPONGSE

Dr. Michela Becchi, Dissertation Supervisor

JULY 2015

The undersigned, appointed by the dean of the Graduate School, have examined the dissertation

entitled

HIERARCHICAL SCHEDULING AND UNIFORM ACCESS PROGRAMMING

FRAMEWORKS FOR HETEROGENEOUS CPU-GPU COMPUTING CLUSTERS

presented by Kittisak Sajjapongse,

a candidate for the degree of doctor of philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Michela Becchi, Assistant Professor, Department of

Electrical and Computer Engineering

Dr. Guilherme DeSouza, Associate Professor,

Department of Electrical and Computer Engineering

Dr. Tony Han, Associate Professor, Department of

Electrical and Computer Engineering

Dr. Prasad Calyam, Assistant Professor, Department of

Computer Science

ii

ACKNOWLEDGEMENTS

This work is completed with the help and support from those whom I sincerely respect.

Without their support, my efforts could have been far from complete. I am fortunate to have

them along the course of my studies and my future career.

My mentor: I would like to deeply thank my advisor, Michela Becchi, for her support and

mentorship. I am fortunate and grateful to have worked with her during my studies. The

association with Dr. Becchi trained me to think systematically in both professional and personal

aspects. I also appreciate her generosity and flexibility in offering me opportunities to interact

with other scientists and to explore the research community.

My Colleagues & Friends: Thank you to all the current and previous members of the

Networking and Parallel System laboratory, especially Da Li, Ruidong Gu, Huan Troung,

Tejaswi Agarwal, and Xiang Wang for working together through difficult times and for their

friendship. Thank you to my dear friend and collaborator, Vignesh Ravi, for his valuable

discussions and great opportunities. I would also thank to Fadi Muheidat who is very generous

and could always keep me positive.

My family: I would like to express my deepest appreciation and thanks to my parents and

sisters: Adisak, Tommarat, Jurairat, and Naovarat Sajjapongse for their unconditional love and

encouragement. I am very grateful to have a supportive family who puts my education as the first

priority.

My wife: My wife, Sasiwimon Yoo-eam, is a great researcher with whom I can always

share ideas even though we focus on different disciplines. Thank you for your love, support,

staying beside each other, and sharing our lives together.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ...x

ABSTRACT ... xi

Chapter

CHAPTER 1 INTRODUCTION ..1

 1.1 Introduction ...1

 1.2 Motivations ...2

 1.2.1 Software support for GPUs ..3

 1.2.2 Resource Managers ..5

 1.2.3 Programmability ...7

 1.3 Contributions...9

 1.3.1 Runtime Supports for Distributed GPU applications9

 1.3.2 Hierarchical Resource Management ..9

 1.3.3 Programming Framework for Uniform Resource Access10

 1.4 Organization ..10

CHAPTER 2 BACKGROUND AND RELATED WORK12

 2.1 Background ...12

 2.1.1 Graphic Processing Units (GPUs) ..12

 2.1.2 Programming Models for Heterogeneous Clusters14

 2.1.3 Message-Passing Interface (MPI) ..17

 2.1.4 Partitioned Global Address Space (PGAS) ..18

 2.2 Related Work ..21

iv

 2.2.1 Node-level Schedulers and Runtime Support21

 2.2.2 Cluster-level Schedulers and Resource Sharing23

 2.2.3 Programming Models for Heterogeneous Clusters26

CHAPTER 3 NODE-LEVEL RUNTIME ..28

 3.1 Objectives ...28

 3.2 Reference Architecture ...33

 3.3 Scheduling Policies ...35

 3.3.1 Batch Scheduling ..35

 3.3.2 Controlled n-way GPU Sharing ...36

 3.3.3 Preemptive Sharing ..40

 3.4 Use Cases for Preemption ...41

 3.5 System Design ..44

 3.5.1 Overall Design ..45

 3.5.2 Context Queues ..46

 3.5.3 Connection Manager ..46

 3.5.4 Dispatcher ...47

 3.5.5 Virtual GPUs ..49

 3.5.6 Memory Manager ...50

 3.5.7 Fault Tolerance & Checkpoint-Restart ...57

 3.5.8 Inter-node offloading ..58

 3.6 Supporting Preemptive GPU Sharing ...59

 3.6.1 Defining the Preemption Policy ...59

 3.6.2 Implementation ...60

 3.7 Experimental Results ..63

v

 3.7.1 Single-process Application ...63

 3.7.2 Multi-process Application ..74

CHAPTER 4 CLUSTER-LEVEL SCHEDULER ..90

 4.1 Objectives ...90

 4.2 Cluster-level Scheduler ...92

 4.2.1 Scheduler Architecture ...95

 4.2.2 Scheduling API ...97

 4.3 Scheduling Policies ...101

 4.3.1 Co-locating Scheduler ..102

 4.3.2 Latency-reducing Scheduler ...106

 4.4 Experimental Results ..108

 4.4.1 Benchmark Applications ..108

 4.4.2 Experimental Setup ..112

 4.4.3 Analysis of Co-location ..112

 4.4.4 Determining the Weights for the Nodes ...113

 4.4.5 Experiments on Heterogeneous Workloads115

CHAPTER 5 INTER-NODE VIRTUAL MEMORY PROGRAMMING MODEL118

 5.1 Objectives ...118

 5.2 Background and Motivations ..120

 5.2.1 Traditional Programming Models ..120

 5.2.2 Load Balancing ...121

 5.2.3 The IVM Programming Framework ...123

 5.3 IVM Framework Design ...124

 5.3.1 Execution Model ..124

vi

 5.3.2 Memory Model ...125

 5.3.3 System Design ..127

 5.3.4 GPU Support ..130

 5.3.5 IVM Programming Interface ..133

 5.3.6 Integration to Higher-level Scheduler ..136

 5.4 Benchmark Applications and Load Balancing ...137

 5.4.1 Load Balancing Schemes ...137

 5.4.2 Benchmark Applications ..140

 5.5 Experimental Evaluation ...142

 5.5.1 Experimental Setup ..143

 5.5.2 Dynamic Spawning Load Balancing (DS-LB)145

 5.5.3 Online Monitoring Load Balancing (OM-LB)147

 5.5.4 Discussion ..149

CHAPTER 6 CONCLUSION & FUTURE WORK ..150

BIBLIOGRAPHY ..157

VITA164

vii

LIST OF ILLUSTRATIONS

Figure Page

Figure 2-1 – Memory model between CPUs and GPU ...12

Figure 2-2 – GPU architecture under CUDA framework ...13

Figure 3-1 – Two deployment scenarios for our runtime: (a) VM-

based cloud computing service and (b) HPC cluster

resource manager. ...29

Figure 3-2 – Operation of different scheduling mechanisms in

the presence of multi-tasks distributed applications with

synchronizations and intra-application imbalance.

Application A consists of 4 tasks and includes 2 GPU

execution phases, with a global synchronization at the end

of each. Application B and C consist of two tasks and a

single GPU execution phase, also ending with a global

synchronization. Synchronizations are represented through

(red) dashed vertical lines. Ajk represents k
th

 GPU phase of

task j belonging to application A. Idle GPU times are

represented in black. ...38

Figure 3-3 – Operation of different scheduling mechanisms in

the presence of multi-tasks applications with

synchronization and inter-application imbalance.

Application A, B, and C consist of 3 tasks and include 3

GPU execution phases, with a global synchronization at

the end of each. Ajk represents the k
th

 GPU execution phase

of task j belonging to application A. Idle GPU times are

represented in black. ...42

Figure 3-4 – Overall design of the runtime ...46

Figure 3-5 – State diagram showing the transition of

isAllocated/toCopy2Dev/toCopy2Swap flags52

Figure 3-6 – Preemption cycle ..62

Figure 3-7 – Execution time reported with a variable number of

short-running jobs on a node with one GPU. The bare

CUDA runtime is compared with our runtime ...66

viii

Figure 3-8 – Execution time reported with a variable number of

short-running jobs on a node with three GPUs. The bare

CUDA runtime cannot handle more than eight concurrent

jobs. ...67

Figure 3-9 – 36 MM-L jobs (with conflicting memory

requirements) are run on a node with three GPUs. The

fraction of CPU code in the workload is varied. We

indicate the number of swap operations occurred on top of

each bar ...68

Figure 3-10 – 36 jobs (BS-L and MM-L) are run on a node with

three GPUs. The workload composition is varied. We

indicate the number of swap operations that occurred on

top of each bar...69

Figure 3-11 – Unbalanced node with two Tesla C2050s and one

Quadro 2000: effect of load balancing through dynamic

binding. The number of MM-S jobs migrated to fast GPUs

is reported on top of each bar..70

Figure 3-12 – Two-node cluster using TORQUE: effect of GPU

sharing and load balancing via inter-node offloading in the

presence of short-running jobs and in the absence of

conflicting memory requirements. ..72

Figure 3-13 – Two-node cluster using TORQUE: effect of GPU

sharing and load balancing via inter-node offloading in the

presence of long-running jobs and conflicting memory

requirements..73

Figure 3-14 – Preliminary experiments: comparison among five

scheduling and sharing schemes for a 4-job workload

including all-to-all communication primitives. In (5-a),

each job consists of four processes, and the GPU phase

duration parameter of one of these processes is higher

than that of the other three by a factor percentage

imbalance. In (5-b), workload composition j1×[p1]+j2×[p2]

indicates that j1 jobs consist of p1 processes and j2 jobs

consists of p2 processes. ..79

Figure 3-15 Intra-application imbalance--speedup for broadcast

communication pattern ...82

Figure 3-16 Intra-application imbalance--speedup for scatter-

gather communication pattern ..82

ix

Figure 3-17 Intra-application imbalance--speedup for barrier

synchronization pattern ...82

Figure 3-18 Inter-application imbalance-- speedup for broadcast

pattern ...83

Figure 3-19 Inter-application imbalance-- speedup for scatter-

gather pattern ..83

Figure 3-20 - Inter-application imbalance-- speedup for barrier

pattern ...84

Figure 3-21 Overall execution time in cluster settings ..88

Figure 4-1 – Architecture of the cluster-level scheduler ...96

Figure 4-2 – Performance of three benchmark applications

running with 8 processes on different node configurations

(from 1 to 3 nodes). Nodei[j] indicates that j processes are

run on Nodei. ...103

Figure 4-3 – Co-location-based scheduler with relaxed

constraints (1, 2 and 3 nodes/job allowed) ...113

Figure 4-4 – Throughput for different sets of weight assignments115

Figure 4-5 – Overall throughput and QoS for the heterogeneous

workload summarized in Table 4-5. ...117

Figure 5-1 – Overall execution time of MPI-CUDA

implementations of the Himeno and Needleman-Wunsch

benchmarks under different process-to-node assignments.

In all cases, eight processes are run on two heterogeneous

nodes (Host-I and Host-II) ..121

Figure 5-2 – IVM’s Execution and Memory Models ..125

Figure 5-3 – System design and GPU support ..128

Figure 5-4 – Graphical representation of load balancing schemes138

Figure 5-5 – Speedup and load distribution in case of DS-LB144

Figure 5-6 – Execution time of HIMENO with OM-LB ...148

x

LIST OF TABLES

Table Page

Table 2-1 – Examples of MPI communication routines..17

Table 2-2 – Examples of SHMEM communication routines ..20

Table 3-1 – For each routine issued, actions performed by the

node-level scheduler and possible errors returned. A black

in the third column indicates any error generated by the

CUDA runtime (i.e. result ≠ cudaSuccess). VM_entry =

Virtual Memory Entry. ...54

Table 3-2 – Benchmark programs ...64

Table 3-3 - Description and setting of the parameters of our

benchmark generator...75

Table 3-4 – Characteristics of the nodes ...78

Table 4-1 – Scheduling API ..98

Table 4-2 – Summary of benchmark characteristics ...108

Table 4-3 – High-end cluster setup ..111

Table 4-4 – Commodity cluster setup ...111

Table 4-5 – Sequence of jobs submitted (the number of processes

spawned is indicated in square brackets) ..116

Table 5-1 – IVM Programming API ...132

Table 5-2 –Hardware setup ...143

xi

HIERARCHICAL SCHEDULING AND UNIFORM ACCESS PROGRAMMING

FRAMEWORKS FOR HETEROGENEOUS CPU-GPU COMPUTING CLUSTERS

Kittisak Sajjapongse

Dr. Michela Becchi, Dissertation Supervisor

ABSTRACT

The advance of the GPU hardware architecture has made GPUs attractive devices for general-

purpose computing. Modern GPUs are equipped with an increasing number of cores, a flexible

memory hierarchy, and a large memory capacity. While the computational power of modern

GPU devices has allowed their introduction in high-performance computing (HPC) clusters and

the efficient processing of ever larger workloads, existing software components for HPC clusters

still offer basic support for hardware heterogeneity and often cause performance limitations in

the presence of GPU devices. In particular, two kinds of limitations are associated with these

software components: runtime support and programmability. We found that these limitations are

due to the fact that existing software frameworks for heterogeneous clusters treat GPUs as

dedicated coprocessor devices.

In this dissertation, we propose two software frameworks for addressing the performance

and hardware underutilization issues found in heterogeneous CPU-GPU clusters as well as

increasing their programmability. Our frameworks provide a uniform view of compute resources

and treat CPUs and GPUs equally as first-class resources, allowing efficient management of

heterogeneous compute resources. First, we propose a hierarchical scheduling framework

consisting of a node-level runtime and a cluster-level scheduler that provides abstraction of

heterogeneous compute resources at different granularities. This hierarchical framework targets

existing applications and does not require their modification. In the node-level runtime, we

identify and design mechanisms, such as virtual GPUs, GPU virtual memory, dynamic load

xii

balancing and pre-emption, which are necessary to support efficient sharing and load balancing

schemes for GPUs within a compute node. In the cluster-level scheduler, we introduce

mechanisms to abstract compute nodes and perform load balancing in concert with the node-

level runtime. Our hierarchical scheduling framework allows supporting different load balancing

policies and does not require additional inputs (such as profiling information) from users.

Second, we propose a programming framework based on a novel memory and execution model.

Our memory model hides disjoint addressing spaces (corresponding to different CPUs, GPUs

and compute nodes) and provides a view of a single virtual memory space that can be accessed

by all compute resources in a heterogeneous cluster. Our execution model provides uniform

access to compute resources and allows our framework to treat all CPUs and GPUs equally and

to access data in the virtual memory space.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

For decades, high-performance computing (HPC) has played a major role in pushing

research toward answers and new discoveries. Challenging problems in science and

engineering have traditionally been solved by simulation and analysis on high-

performance computing platforms. Nowadays, the scale of the data used to solve many

scientific problems has become significantly larger. As a consequence, the solution of

these problems in a reasonable amount of time necessitates even more the aid of high-

performance computing clusters. In the last decade, Graphic Processing Units (GPUs)

have also been widely used to accelerate scientific and engineering computations. Thanks

to their high computational power and low price-per-performance, these devices have

gained popularity in the research community. The importance of GPUs is also

emphasized by their adoption in the world’s largest supercomputers [3]. However, GPUs

have been originally intended as dedicated accelerators for simple applications and,

therefore, their software stacks was not designed for use in shared computing

environments, such as HPC clusters. The use of these software stacks in shared cluster

environment causes resource underutilization and performance penalty/degradation.

2

In this dissertation, we analyze the inefficiencies due to the limitations of existing

GPU software stacks and propose hierarchical scheduling frameworks to maximize both

overall throughput of HPC clusters and performance of applications. Our frameworks

enable dynamic load balancing by performing coarse- and fine-grained scheduling of

loads to resources. In the first part of our work, we study the limitations of current

software support for GPUs and propose a hierarchical scheduling framework to

dynamically schedule applications to compute resources without requiring modifications

to the applications. In the second part of our work, we address the inefficiencies of

existing programming models for CPU-GPU clusters and propose a programming model

that can be supported by a runtime framework, including the resource sharing and

scheduling mechanisms that we have identified. Our ultimate goal is to enable

applications to exploit fully the hardware capabilities as well as increase programmability

of heterogeneous clusters consisting of CPUs and GPUs.

1.2 Motivations

Over the last decade, many-core devices (such as GPUs) have been widely used to

accelerate a variety of applications [4-6]. In its online catalog [7], Nvidia lists about 200

GPU-accelerated applications from different domains, including computational

chemistry, biology, physics, numerical analytics, weather prediction, computational

finance and data mining. The popularity of GPUs is emphasized by their increased use in

HPC clusters: as of November 2013, four of the top 10 fastest supercomputers in the

world [3] (Tianhe-2, Titan, Piz-Daint and Stampede) are equipped with Nvidia GPUs.

Existing resource management framework for CPU-GPU clusters, such as

TORQUE and SLURM, rely on traditional software stacks like CUDA and OpenCL.

3

These software stacks, however, were designed viewing GPUs as dedicated accelerators,

and lack good support for their use in multitenant environments. The use of existing

frameworks in heterogeneous clusters can lead to performance and hardware

underutilization issues. In the following sections, we discuss these issues in more detail.

1.2.1 Software support for GPUs

Current software stacks for GPU applications, such as CUDA, view GPUs as dedicated

accelerators. Applications relying on these software stacks explicitly acquire GPUs,

manage them and perform computations on them. The accelerator model views CPUs as

hosts and GPUs as devices where the host handles general tasks including managing

GPUs and offloads only major computations to GPU devices. Most GPU applications,

therefore, alternate between CPU and GPU phases. The common structure of GPU

applications is the following. First, data is initialized and pre-processed on CPU. The

CPU then offloads the computation to GPU after the initialization is complete. After the

GPU completes the computation, the CPU gathers the results from the GPU and possibly

performs post-processing on the results. Since the CUDA runtime also requires

applications to explicitly select the GPUs for their computation, the CUDA runtime binds

applications to the selected GPUs. The binding between an application and a GPU is

static that implies that the application data will only reside on the selected GPU and the

computation will be offloaded only to that GPU for the entire lifetime of the application.

This computational model has several issues. First, it is obvious that the

alternation between CPU and GPU phases leads to hardware underutilization because

either CPU or GPU will be utilized in each phase causing the other type of resource to be

idle. A remedy to this issue is to utilize both CPU and GPU for the computation.

4

However, this utilization comes at the cost of a complex implementation since it requires

judicious load balancing between CPUs and GPUs. Second, the explicit GPU

procurement can be problematic in the presence of concurrent applications. In a shared

environment, each application is not aware of the existence of other applications, possibly

leading to resource contention. For example, it is possible that applications may

collectively select the same GPU and thus overload it while leaving other GPUs idle. In a

shared environment, a resource manager is required to distribute applications to GPUs in

a harmonious manner in order to avoid interference between applications. Explicit

procurement of GPUs may not be suitable to shared environments since it limits the

ability to dynamically distribute the application load to the available GPU devices.

Finally, static binding of applications to GPUs may limit the ability to manage GPUs and

to perform load balancing at run-time [1]. In one scenario, as an example, a GPU

application may be mapped to a GPU with low performance capability due to the

temporary unavailability of GPUs with high performance capability. To maximize

performance, this application should be moved to a GPU with higher capability as soon

as it becomes available. However, static binding prevents dynamic migration of

applications among the available GPUs. In another scenario, an application may bind to a

specific GPU and store its data on that GPU. However, if the CPU phase of the

application is significantly long, the application is binding to the GPU without utilizing

the GPU well and also limits the possibility for other applications to use the GPU. This

kind of GPU underutilization is particularly problematic for applications with long CPU

phases or distributed applications that perform communications frequently. This problem

may be avoided by preempting applications [2].

5

1.2.2 Resource Managers

Traditional frameworks were designed to manage homogeneous clusters and can be

inefficient for heterogeneous clusters in term of utilization and performance. Most widely

adopted resource managers and cluster schedulers, such as TORQUE [8] and SLURM

[9], were designed to target homogeneous clusters. With the increasing popularity of

GPUs, they have recently been extended to handle accelerators such as GPUs. Since they

mostly rely on software stacks intended for dedicated setting to provide GPU supports,

these systems lead to suboptimal throughputs and underutilization.

State-of-the-art resource managers accept resource requests (i.e. CPUs/GPUs,

RAM, disk space, network traffics etc.) from users and distribute the load at a coarse-

grain by mapping applications to nodes according to the requests and current system load.

Once an application is assigned to a node, the assignment is static; and the application

will execute on the same set of nodes for its entire lifetime. This design leads to two

issues that can cause inefficiencies in heterogeneous clusters. First, the user will need to

have some knowledge on the configuration of the cluster to make resource requests to the

resource managers [10]. For example, users will need to identify the nodes with GPUs

and determine the number of GPUs available on each of the nodes in order to make

requests. Second, the coarse-grained mapping of applications to nodes and the fine-

grained mapping of applications processes to GPUs are static. Load balancing between

heterogeneous nodes can be difficult with current resource managers since they do not

account for heterogeneity. Under heterogeneous clusters, the amount of load each node

will handle is determined by the performance capability of the node prior to application-

to-node mapping/scheduling [10]. This maneuver can be cumbersome to users since they

6

have to estimate good hardware configurations for their applications in order to make

requests to the resource managers. In addition, load balancing is not possible since these

resource managers do not directly manage GPUs inside nodes.

In addition, state-of-the-art resource managers offer very limited support for

resource sharing, and this support is generally limited to CPU resources. Coarse-grained

space sharing is extensively studied with this type of resource managers [11-13].

Backfilling is one of the mechanisms proposed to reduce application latency and improve

quality-of-service (QOS) for users. Although some coarse-grained space-sharing policies

can be defined within the resource managers, hardware utilization of both CPUs and

GPUs can be poor. To understand how space-sharing can be inefficient in current

systems, consider an application requesting resources leaving free resources in the cluster

that cannot be used to accommodate subsequent requests. For example, suppose we have

a cluster consisting of seven nodes with three GPUs on each of the nodes. Three

applications request three nodes with eight GPUs each. In this case, the resource

managers will allow only two applications to proceed and leave five GPUs and one node

idle. This situation can be inefficient since the third application submitted needs to wait

for the first two applications to complete before being able to proceed. This causes the

latency of the application to increase and the cluster to be underutilized. It is worth noting

that existing resource managers do not allow fine-grained space-sharing or time-sharing

of a single GPU across applications. Currently, only little study has been conducted on

time-sharing resources in clusters. Time-sharing can be a mechanism to improve

hardware utilization and, as a result, the quality of service of applications. In the previous

example, a resource manager with time-sharing enabled will allow the third application to

7

execute concurrently with the other two. For example, the third application can be

assigned to nodes such that six of its tasks time-share a set of GPUs on these nodes. The

application can even be assigned entirely to a single node (the one remaining after

mapping the first two applications) to limit application interference. Time-sharing can,

however, produce negative effects, such as interference between applications or

unexpected performance degradation. A careful study of time-sharing resources in

heterogeneous clusters must be conducted to maximize performance, utilization, and

quality-of-service.

1.2.3 Programmability

Heterogeneous clusters can include CPUs and GPUs with different compute capabilities.

Not only does this complicate resource scheduling, but it also requires significant

development effort since complex architectural details such as disjoint memory spaces

are exposed to programmers. For example, it is necessary for programmers to explicitly

manage copies of data on separate nodes and GPUs. In addition, GPUs are viewed as

discrete accelerators that are explicitly managed by CPUs. As a consequence, CPUs and

GPUs are not accessed in a uniform way. These factors complicate programming of

heterogeneous clusters with GPUs.

The development of distributed GPU applications requires a good knowledge of

parallel programming at different levels, i.e. inter-node, intra-node, and intra-GPU levels.

At the inter-node level, programming models such as MPI and SHMEM are used to

support communications between nodes. Programmers need to determine the best

communication pattern to achieve the lowest communication latency given a particular

system configuration. However, these programming models do not handle alone GPUs.

8

At the intra-node level, programmers need to mange consistency between copies of data

on CPUs and GPUs and judiciously orchestrate the computation. Since each CPU and

GPU device has its own physical memory, the clusters are also characterized by a

distributed memory system. Lastly, the differences in architectural details among

different types of CPUs and GPUs must be carefully taken into account to achieve peak

performance. While programming techniques and optimizations for compiler and runtime

support for homogeneous CPU systems/nodes are mature, application development on

GPUs does still require significant programmer effort. Not only do programmers need to

write massively parallel codes, but they need also to deal with complex memory system

[14].

Hybrid programming models can be used for developing distributed GPU

applications. For example, MPI-CUDA or SHMEM-CUDA can be employed to

distribute load between nodes and allow applications to use GPUs on each node. In the

presence of heterogeneity, judicious load placement is necessary to avoid performance

and underutilization issues. Load balancing can be complex using these hybrid

programming models; programmers must implement load balancing schemes at different

granularities, i.e. inter-node and intra-node. In our previous work, we have developed a

hierarchical load balancing for massive sequence alignments on heterogeneous clusters

with GPUs [15]. At the inter-node level, we have implemented a load balancing scheme

based on the producer-consumer model and used MPI for inter-node communication. At

the intra-node level, we have used multithreading and CUDA streams [14] to manage

computations on multiple CPUs and GPUs with different performance capabilities.

However, the resulting application complexity is not trivial.

9

In summary, existing CPU-GPU clusters lead to issues in terms of

programmability and runtime support. This dissertation addresses both problems.

1.3 Contributions

In this dissertation, we make the following contributions:

1.3.1 Runtime Supports for Distributed GPU applications

We propose a node-level runtime component that provides runtime support for GPU

applications. We identify virtual memory for GPUs and GPU virtualization as essential

mechanisms to abstract physical GPUs from users, provide dynamic load balancing, and

improve application performance and system utilization. Our node-level runtime provides

mechanisms such as dynamic binding of applications and GPU preemption to enable

dynamic load balancing across concurrent applications. These mechanisms efficiently

manage applications even in the presence of CPUs and GPUs with different compute

capabilities. In addition, our node-level runtime supports dynamic load balancing in case

of GPU addition and removal, resilience to hardware failure, and checkpoint-restart

capabilities. Our node-level runtime supports different scheduling policies.

1.3.2 Hierarchical Resource Management

We propose a cluster-level scheduler for heterogeneous systems and integrate it with our

proposed node-level runtime to form a hierarchical scheduling framework. This

hierarchical framework allows better utilization of heterogeneous CPU-GPU clusters by

judiciously distributing the load at different levels. At the coarse-grain, applications are

distributed to different nodes. At the fine-grained, the node-level runtime dynamically

distributes tasks to GPUs. Our cluster-level scheduler is configurable and allows

administrators to easily define custom scheduling policies to meet specific requirements

10

related to cluster setup, applications characteristics, and the users’ needs. This

hierarchical scheduling framework operates on unmodified CPU-GPU binaries and

transparently schedules application and dynamically performs load balancing without the

user intervention. We show the effectiveness of the proposed scheduling framework on a

variety of workloads.

1.3.3 Programming Framework for Uniform Resource Access

We propose a novel programming framework based on the shared memory model to

improve programmability and enable efficient scheduling of application in heterogeneous

clusters with GPUs. Our programming framework reduces complexity in development of

distributed applications by providing uniform view of the memory space and resources

with a heterogeneous cluster. We propose a programming framework called Inter-node

Virtual Memory (IVM) that provides the programmer with a uniform view of compute

resources and memory spaces within a CPU-GPU cluster, and a mechanism to easily

incorporate load balancing within the application. We compare the use of MPI and IVM

on four distributed CUDA applications. While the main goal of IVM is programmer

productivity, the use of the load balancing mechanisms offered by IVM can also lead to

performance gains.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a background on

programming models and runtime systems for heterogeneous clusters. Chapter 3

describes our node-level runtime for GPU applications. Chapter 4 describes the cluster-

level scheduler that we have designed and its integration with our runtime component to

form a hierarchical scheduling framework. In Chapter 5, we then describe a novel

11

programming framework to enable unified programming and facilitate the coding of

applications embedding dynamic load balancing in heterogeneous clusters with GPUs.

Finally, we provide future directions for the current research in chapter 6.

12

CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Background

2.1.1 Graphic Processing Units (GPUs)

Graphics Processing Units (GPUs) have been traditionally used to accelerate image/video

processing applications and 3D-games. These platforms have a highly parallel

architecture consisting of a large number of processing cores since they were originally

designed to handle a large number of pixels concurrently. Current software stacks for

GPUs also enable more general purpose computations such as scientific and engineering

applications to utilize these devices.

GPUs are generally used as accelerator devices (or coprocessors). The host CPU

handles general parts of the application, such as book-keeping, pre-/post-processing, and

I/O interface, and offloads compute intensive tasks to the GPUs. Because GPUs have

their own memory space, memory transfers between the host CPU and the GPUs are

Figure 2-1 – Memory model between CPUs and GPU

13

necessary to enable communication between them. Figure 2-1 shows the memory

configuration of a hybrid CPU-GPU node. Both CPUs and GPUs have their own disjoint

physical memory spaces and they can communicate and exchange data by copying

memory content back and forth. Memory transfers are usually performed by a Direct

Memory Access (DMA) engine to allow fast transfer and low CPU overhead. The most

common scenario in a CPU-GPU interaction is the following. First, the host CPU

initializes the datasets and data structures its own memory space (CPU memory). Once

this initialization is complete, these data are transferred to the memory space belonging to

the GPUs (GPU memory). The CPU can then initiate the computation on the GPUs. The

results may finally be transferred from the GPU to the CPU memory for further

processing or report generation.

The Compute Unified Device Architecture (CUDA) [16] and Open Computing

Language (OpenCL) [17] are well known frameworks for creating GPU applications.

Figure 2-2 – GPU architecture under CUDA framework

14

These frameworks define the computation and memory models for GPUs. They consist

of a runtime library and a compiler. It is worth noting that, while CUDA targets only

GPUs, OpenCL also targets other types of accelerators such as FPGA. Since, in this

dissertation, we will consider only GPUs, we will mostly refer to CUDA and use

terminology defined by this framework. Figure 2-2 shows the high-level architectural

details of GPUs under CUDA. A GPU consists of a collection of Streaming Multi-

processors (SMs), which share the same global memory space. The global memory space

was earlier referred to GPU memory wherein data from the CPU memory can be stored.

A group of SMs share an L2-cache which is fully controlled by the hardware. A SM

consists of a collection of scalar cores or SIMD-lanes which share a register file, an L1-

cache, and one or more instruction fetch units. Since the cores share the same instruction

fetch units, they process instruction in lock-step. However, while all cores execute the

same instruction, operands for the instruction at a time step can be different which each

of them operates on different data. The register file and L1-cache are the storage areas

with the lowest access latency. The L1-cache can partially be programmatically

configured as shared memory. Shared memory allows software to manage the content of

the memory whereas L1-cache is managed by the hardware. Programmers can, therefore,

decide what kind of data to be put in the shared memory.

2.1.2 Programming Models for Heterogeneous Clusters

In a heterogeneous cluster, multiple compute nodes cooperate to process distributed

applications submitted by users. A compute cluster usually consists of a head node,

which acts as a frontend interface for submitting applications. A resource manager or

scheduler usually run on the head node and distributes tasks to the other compute nodes.

15

Tasks within a distributed application usually communicate with each other. Therefore,

tasks on different nodes will cooperate and exchange data. Task execution can be broken

into two phases: computation phase and communication phase. Tasks perform

computation independently on CPU or GPU in the computation phase; they communicate

and exchange data in the communication phase. Tasks will alternate between the two

phases for the entire lifetime of the application. Compute nodes in clusters are commonly

connected through either Ethernet networks [18] or Infiniband fabrics [19]. The networks

enable compute nodes to exchange data based on relationships and dependencies between

tasks.

Ethernet is the most common network technology used in both commodity and

high-end clusters. Ethernet offers a reliable stream-based connection for a pair of nodes.

All modern operating systems include socket API as a programming interface to

implement point-to-point communication between nodes through send (send) and receive

(recv) methods. The communication method based on send and recv is called two-sided

communication since it requires the participation of the sending and receiving side. The

correct operation of two-sided communication is guaranteed when information sent from

the sending side is acknowledged by the receiving side. Complex communication

routines that involve more than two nodes can also be implemented using the socket API.

Infiniband fabric is mostly deployed in high-performance computing clusters. The

goal of this network technology is to provide messaging service between nodes without

the intervention of the operating system in order to achieve low-latency communication

and reduce CPU overhead. Under Unix-based operating systems such as Linux, this

allows applications to interface with the network adaptor directly from user-space and

16

bypass the kernel-space. In addition to the two-sided communication, Infiniband also

offers a communication method that allows nodes to directly read from and write to

memory locations of remote nodes. This method is technically known as Remote

Memory Direct Access (RDMA), and it is used to implement remote read/write (rem-rd,

rem-wr) operations. This communication method is also called one-sided communication

because only one party will need to complete the information exchange while the other

end is free to perform other tasks. This communication method allows communication

and computation phases of tasks to execute concurrently in a more efficient manner.

Infiniband fabrics also allow nodes to perform atomic operations (e.g., atomic increments

and compare-and-swap) on a memory location of a node. Programmers can implement

their distributed applications on Infiniband fabric through the Verbs API.

Implementing distributed applications directly on Socket or Verbs is an extremely

difficult and challenging task requiring a large development and debugging effort. Most

distributed applications in science and engineering are written using programming

frameworks based on the Socket or the Verbs API. These frameworks facilitate

communication between tasks and allow programmers to easily implement work-

distribution methods. The most widely used programming models for distributed

applications include the Message-Passing-Interface (MPI) and Partitioned Global

Address Space (PGAS). These programming models employ the two communication

methods mentioned above. In particular, MPI employs two-sided communication while

PGAS mainly employs one-sided communication. These programming models are

described in more detail in the next sections.

17

2.1.3 Message-Passing Interface (MPI)

Message-Passing-Interface (MPI) defines a standard for creating distributed applications

based on the message-passing paradigm. Tasks in a distributed application communicate

by exchanging messages. In many MPI implementations, such as OpenMPI [20],

MPICH2 [21], and MVAPICH2 [22], tasks are distributed to nodes in the form of

processes managed by the local operating system. These processes can run on the same or

different nodes, and each has an identification number called rank. These processes do

MPI routines Descriptions Type

Point-to-point communication

MPI_Send() Sends a message to a specific rank. Blocking

MPI_Recv() Receives a message from a specific rank. Blocking

MPI_Isend()
Sends a message to a specific rank in an unblocking

manner.
Non-blocking

MPI_Irecv()
Receives a message from a specific rank in an unblocking

manner
Non-blocking

MPI_Testall()

Tests for the completion of all previously initiated

communications. This is useful especially for unblocking

routines.

Non-blocking

MPI_Waitall()
Waits for all given communication to complete. This is

useful especially for unblocking routines.
Blocking

Collective communication

MPI_Gather() Gathers together values from a group of processes. Blocking

MPI_Allgather() Gathers data from all tasks and distributes it to all. Blocking

MPI_Scatter() Sends data from one task to all other tasks in a group. Blocking

MPI_Reduce() Reduces values on all processes to a single value. Blocking

MPI_Allreduce()
Combines values from all processes and distributes the

result back to all processes.
Blocking

MPI_Alltoall() Sends data from all to all processes. Blocking

MPI_Barrier() Blocks until all processes have reached this routine. Blocking

MPI_Bcast()
Broadcasts a message from the process with rank “root” to

all other processes of the group.
Blocking

Table 2-1 – Examples of MPI communication routines

18

not share memory address spaces or data structures. Each process has its own memory

space. Therefore, information exchange only occurs by transferring memory content from

one process to another. MPI provides various communication routines implementing

point-to-point, one-to-many, many-to-one, or many-to-many communication. The

routines involving more than two parties are known as collective communication

primitives. MPI collective communication primitives implement two-sided

communication.

Table 2-1 summarizes the MPI calls for exchanging information among

processes. These communication primitives are divided into point-to-point and collective

communication routines. These primitives can either be blocking or non-blocking. A

blocking routine waits until the communication is complete; a non-blocking routine

immediately returns even if the communication is not complete. The non-blocking

routines allow a process to post communication requests to the MPI framework while

performing other computation or communication tasks in parallel. Programmers can test

the completion of non-blocking communication routines by issuing MPI_Testall() or

MPI_Waitall() calls. The blocking nature of some collective communication routines can

be performance bottleneck and cause other performance issues, which will be described

in more detail throughout this dissertation.

2.1.4 Partitioned Global Address Space (PGAS)

Partitioned Global Address Space (PGAS) is a programming model for distributed

applications that provides a shared-memory abstraction to some degree. In PGAS, tasks

are distributed as units called Processing Elements (PEs), which execute in parallel either

on the same or on different nodes. PGAS provides a memory model similar to the Non-

19

Uniform Memory Access architecture (NUMA) wherein the entire memory address space

consists of multiple memory regions that are local to different PEs. Each PE has a local

region that is divided into two sections. The first section of the region is called private

section and can only be accessed by that PE. Examples of variables residing in the private

section include local variables that appear in functions or loops, non-static variables and

variables or memory regions that are dynamically allocated. The other section is called

symmetric region and accesses to it from other PEs are allowed. During execution, PEs

can exchange information using the one-sided communication by writing to and reading

from memory locations in symmetric sections. The symmetric section includes static

variables, global variables, and symmetric heap. The symmetric heap is the central heap

that a PGAS programming framework can use to dynamically allocate variables from a

PE and allows other PEs to access the variables. Variables residing in the symmetric heap

of each PE are called symmetric objects and can be remotely written or read by the other

PEs. All PEs have different copies of a symmetric object; these copies will have the same

data type and size but may contain different contents. There are several well-known

implementations of the PGAS model: Unified-Parallel-C, Co-Array Fortran, and

SHMEM. Unified-Parallel-C and Co-Array Fortran use compiler-techniques and provide

extensions to standard programming languages (C/Fortran). Such frameworks provide a

set of PGAS-enabled compilers, linkers and runtime support for distributed applications.

SHMEM is library-based and allows programmers to create distributed applications using

generic compilers. SHMEM provides more flexibility and portability by allowing

applications to be written in different programming languages. Recently, SHMEM has

gained popularity in the high-performance computing community. This framework was

20

originally designed to take advantage of the RDMA mechanism offered by Infiniband

interconnects. SHMEM implementations are available from various manufacturers such

as SGI, Mellanox and OpenSHMEM. OpenSHMEM is an open source specification of

SHMEM created in a standardization effort. The OpenSHMEM library implements

communication routines as a set of function calls included in the Application-

Programming-Interfaces (APIs). These communication routines are implemented in the

form of remote writes and reads called Put and Get methods respectively.

Many frameworks, such as Unified Parallel C (UPC) [23], Co-Array Fortran [24]

and SHMEM [25], are based on the PGAS programming model. In this dissertation, we

will mainly refer to the SHMEM programming model and OpenSHMEM [26] as a

SHMEM Routines Descriptions

Point-to-point communication

shmem_putmem() Copies data from a contiguous local data object to a data

object on a specified PE.

shmem_getmem() Copies data from a data object on a specified PE to a

contiguous local data object.

Atomic operations

shmem_int_add() Performs an atomic addition operation on a remote data

object of a specified PE.

shmem_int_cswap() Performs an atomic conditional swap on a remote data

object of a specified PE.

shmem_int_inc() Performs an atomic increment operation on a remote data

object of a specified PE.

Collective communications

shmem_barrier() Registers the arrival of a PE at a barrier and suspends PE

execution until other PEs arrive at the barrier and all local

and remote memory updates are completed.

shmem_broadcast32/64() Broadcasts a block of data from one PE to one or more

destination PEs.

Shmem_collect32/64() Concatenates blocks of data from multiple PEs to an array

in every PE.

Table 2-2 – Examples of SHMEM communication routines

21

specific implementation of it. Table 2-2 shows a set of OpenSHMEM communication

routines. Similarly to MPI, communication routines are also divided into point-to-point

and collective routines; and they are based on the one-sided communication paradigm. In

addition, the nature of one-sided communication allows atomic routines on variables

residing in the symmetric address space.

2.2 Related Work

2.2.1 Node-level Schedulers and Runtime Support

A number of previous studies have proposed node-level techniques and mechanisms for

heterogeneous nodes to improve individual performance of applications or aggregated

performance and utilization of CPUs and GPUs in clusters. These proposals can be

divided into two categories according to the types of applications considered. The first

category includes scheduling and virtualization frameworks for single-process GPU

applications, where the second covers more complex, distributed applications.

GViM [27], vCUDA [28], rCUDA [29] and gVirtus [30] are runtime systems to

enable GPU applications in virtualized environments. These frameworks provide GPU

visibility from within virtual machines by using API remoting to submit computation

requests for GPUs from guest OS to host OS. GViM and vCUDA leverage the

multiplexing mechanism provided by the CUDA runtime in order to allow GPU sharing

among different applications. GViM uses a Working Queue per GPU to evenly distribute

the concurrent applications to GPUs. As additional feature, GViM provides a mechanism

to minimize the overhead of memory transfers when GPUs are used within virtualized

environments. In particular, its authors propose using the mmap Unix system call to avoid

data copies between the guest OS and the host OS. Whenever possible, they also propose

22

using page locked memory (along with the cudaMallocHost primitive) in order to avoid

the additional data copy between host OS and GPU memory. Gelado et al., [31] and

Becchi et al., [32] explored GPU abstraction by providing memory-management

frameworks for nodes including CPUs and GPUs. These frameworks abstract the

underlying distributed memory spaces of CPUs and GPUs and provide a uniform view of

the memory space. This eliminates the need for programmers explicitly to transfer

memory content between CPUs and GPUs. As optimization, their frameworks also avoid

some unnecessary memory transfers.

GPU sharing can be used to improve hardware utilization. Guevara et al., [33]

proposed kernel consolidation as a way to share GPUs. They showed that this mechanism

is particularly effective in the presence of kernels with complementary resource

requirements (e.g.: compute intensive and memory intensive kernels). The concept of

kernel consolidation has been reconsidered and explored in the context of GPU

virtualization by Ravi et al., [34].

In term of balancing loads across GPUs, our work differs from GViM [27] and

vCUDA [28]. These node-level schedulers statically assign applications to GPUs, which

can lead to suboptimal performance--especially in the presence of heterogeneity. Our

node-level scheduler provides GPU abstraction and enables dynamic scheduling and

effective GPU sharing mechanisms. In addition, we designed our framework to allow

administrators to implement different load balancing policies in the scheduler. Our GPU

sharing mechanism differs from GViM [27], Guevera et al., [33], and Ravi et al., [34].

These proposals allow applications to share GPU based on the assumption that the

aggregated memory requirements of applications sharing the same GPU does not exceed

23

the memory capacity of the GPU. Our scheduler targets multi-tenant environments even

in the presence of conflicting memory requirements among applications. On one hand,

the memory module we designed has some similarities with the frameworks described by

Gelado et al., [31] and Becchi et al., [32]. On the other hand, it extends these frameworks

and focuses on multi-tenant scenarios. Some optimizations such as zero-copy memory

transfer proposed by GViM [27] are orthogonal to our work and can also be incorporated

in our scheduler.

2.2.2 Cluster-level Schedulers and Resource Sharing

Scheduling and resource sharing for distributed applications have been extensively

studied. A number of previous studies proposed co-location strategies, such as Gang-

Scheduling [35, 36], and Co-Scheduling [37-45], for distributed applications to share

resources under homogeneous environments. Some of these frameworks allow

applications to share resources so as to avoid interference [46, 47]. The primary goal of

these frameworks is to both maximize CPU utilization and performance of individual

applications.

Gang-scheduling is a scheduling scheme that aims to minimize the cost of

communication among tasks belonging to the same application. This scheduling scheme

reduces communication latency by scheduling all tasks to compute resources at the same

time, thus reducing the latency incurred by context-switching. Gang-scheduling allows

time-sharing to concurrent applications by preempting all the tasks of the same

application and yielding compute resources to another application. Feitelson et al., [35]

presented a performance evaluation of gang-scheduling in shared-memory systems. Hori

et al., [36] proposed an implementation of gang-scheduling across nodes in a cluster.

24

Since gang-scheduling makes scheduling decisions across all participating tasks, it

assumes that all tasks communicate at the same time slot. This situation does not hold for

point-to-point communication. In fact, it may incur unnecessary synchronization

overhead in the presence of large number of tasks and has limited scalability.

Several proposals [37, 39, 41, 43, 44] have proposed more scalable and efficient

co-scheduling schemes aimed at reducing inter-process communication. In particular,

Arpaci-Dusseau et al., [39] proposed communication-based co-scheduling. In their

scheme, information such as the response time and the type of communication among the

processes in a parallel application is used to guide scheduling and sharing decisions. Choi

et al., [43] proposed a co-scheduling scheme that blocks processes involved in point-to-

point communication and tries to co-schedule processes that perform collective

communication. Sobalvarro et al., [44] describe spin-block communication in which

communicating tasks spin for a predefined period and then block if the communication is

not completed within such period. However, all the aforementioned studies target only

homogeneous environments including only multi-core CPUs, and do not address

performance and utilization issues faced in heterogeneous environments. Further, no

effort has been made to extend these works to enable scheduling of distributed

applications on clusters with GPUs.

Existing scheduling frameworks such as TORQUE [8] and SLURM [9] are the

most common cluster resource managers used in supercomputing centers, such as Texas

Advanced Computing Center (TACC) [48]. These tools have been recently extended with

the GPU support capabilities. Although these tools do not allow time-sharing of

resources, they use back-filling to allow space-sharing of resources including GPUs [11-

25

13] to improve both the quality-of-service of applications and the cluster utilization.

Recently, a number of studies have proposed scheduling and load balancing schemes for

clusters with GPUs [49-51]. The main goal of these frameworks is to dispatch

applications to nodes and GPUs so as to maximize the aggregated throughput of clusters

and allow their better utilization. More recently, Ravi et al., [51] have considered time-

sharing on clusters with GPUs. Specifically, the proposed scheduling schemes map

applications onto different resources (i.e. CPUs/GPUs) based on user-input and profiling

information of applications. Irwin et al., [52] and Ravi et al., [50] proposed scheduling

schemes based on user’s satisfaction and provider’s profit for CPU-only clusters and

GPU clusters respectively. Li et al., [15] have presented a hierarchical load balancing

scheme for a distributed Needleman-Wunsch algorithm under the presence of

heterogeneity. Although these proposals have presented scheduling schemes at the cluster

level, their ability to schedule concurrent distributed applications in heterogeneous

environments is limited for two reasons. First, these scheduling frameworks assume only

a single independent task per application. Second, the scheduling schemes cannot be

applied across applications. Dependencies and communication among tasks belonging to

concurrent applications complicate the scheduling. The effects of communication are not

investigated in these studies. In addition, these scheduling schemes are based on the

availability of profiling information and input from users. In our work, we consider also

multi-process application and study the effect of inter-process synchronization on

scheduling. Our work does not assume the availability of user inputs.

26

2.2.3 Programming Models for Heterogeneous Clusters

Previous work has proposed extensions to existing frameworks to provide programmers

with a more intuitive view of the memory space. CUDA Unified Virtual Addressing

(UVA) [53] simplifies the view of memory spaces belonging to different GPUs inside a

node. However, different GPU memory spaces are still exposed to programmers. CUDA-

Aware MPI [20, 22] is an extension to the MPI frameworks that reconciles memory

spaces of CPUs and GPUs. Potluri et al., [54] have proposed mechanisms and

optimizations to enable efficient GPU-to-GPU memory transfers for the OpenSHMEM

framework. Although these proposals have presented memory abstractions to hide the

complexity of disjoint memory spaces between CPUs and GPUs, these memory models

cannot be easily integrated with efficient load balancing mechanisms and require

programmers to be aware of separated memory spaces between nodes.

Programming models such as MPI and PGAS mainly target homogeneous

clusters. Although some extensions to support GPUs have been proposed, these

programming models only offer basic support for load balancing between CPUs and

GPUs. Load balancing can be a non-trivial task as these programming models require

programmers explicitly to code and embed load balancing schemes into their

applications. Previous work has proposed load balancing approaches based on work-

stealing and the producer-consumer model [15, 55, 56]. Recently, the MPI-2 standard

[57] has defined Dynamic Process Creation (DPC) as a mechanism to perform dynamic

load balancing. However, the usage of DPC in a MPI framework is not straightforward

and may require significant programming skills. Charm++ [58] provides a more natural

way to perform load balancing. The common load balancing strategy within Charm++ is

27

to over-decompose the workload of applications into Chare objects [59], which can then

be dynamically scheduled onto resources. Because of this over-decomposition, Charm++

may suffer from excessive overhead of scheduling Chare objects. Kurt et al., [60] have

proposed a domain-based programming model which dynamically sizes loads that bind to

resources. The proposed programming model is derived from the analysis of the recurring

patterns of computations found in a set of scientific applications and aims to reduce the

scheduling overhead. Since the proposed programming model is based on the observed

computation patterns of a set of applications, it covers only a limited range of

applications and may not be applicable to other applications, such as dynamic graph

construction. It is worth noting that none of these works attempts to address the issues of

scheduling and load balancing for concurrent applications in shared environments.

In this dissertation, we propose a novel programming model that provides both a

simple memory model and an intuitive programming abstraction to increase the

programmability of CPU-GPU clusters. In particular, our goal is to derive a programming

model that: (i) provides uniform access to resources, (ii) provides simple and intuitive

memory model, and (iii) facilitates embedding load balancing schemes. We will use our

proposed programming model as a substrate to derive high-level programming models

that hide the complexity of heterogeneous clusters and provide flexibility to manage

CPUs and GPUs for concurrent applications.

28

CHAPTER 3

NODE-LEVEL RUNTIME

3.1 Objectives

The overall goal of this work is to provide a runtime component that allows multiple

applications to run concurrently on a heterogeneous cluster whose nodes comprise CPUs

and GPUs. We foresee the use of our runtime system in two scenarios (Figure 3-1): (i) in

combination with VM-based cloud computing services (e.g.: Eucalyptus [61]), and (ii) in

combination with HPC cluster resource managers (e.g.: TORQUE [8]). In both cases a

cluster level scheduler assigns VMs or jobs to heterogeneous compute nodes. Our

runtime component is replicated on each node and schedules library calls originated by

applications on the available GPUs so as to optimize the overall performance. Our

framework must allow integration with cluster-level schedulers intended for both

homogeneous and heterogeneous clusters (the former oblivious of the presence of GPUs).

29

Note that heterogeneous clusters that include GPUs require scheduling at two

granularities: on one hand, jobs must be mapped onto compute nodes (coarse-grained

scheduling); on the other, specific library calls must be mapped onto GPUs (fine-grained

scheduling). Existing cluster-level schedulers perform coarse-grained scheduling;

whereas our runtime performs fine-grained scheduling. The two schedulers may interact

in two ways. First, the cluster-level scheduler may be completely oblivious of the GPUs

installed on each node. In case of overloaded GPUs, the node-level runtime may offload

the computation to other nodes. To this end, the runtime system must include a node-to-

node communication mechanism enabling inter-node code and data transfer.

Alternatively the node-level runtime may expose some information to the cluster-level

scheduler (e.g.: number of GPUs, load level, etc.), so as to guide the cluster-level

(a)

(b)

Figure 3-1 – Two deployment scenarios for our runtime: (a) VM-based cloud

computing service and (b) HPC cluster resource manager.

30

scheduling decisions. While the first form of interaction may lead to suboptimal

scheduling decisions, it allows a straightforward integration with existing cluster resource

managers and VM-based cloud computing services targeting homogeneous clusters.

Here, we recall the most significant limitations of previous work as follows. Until

recently, GPUs could not be accessed from applications executing within VMs. Several

projects –GViM [27], vCUDA [28], rCUDA [29] and gVirtuS [30]-- have addressed this

issue for applications using the CUDA Runtime API to access GPUs. The general

approach is to use API remoting to bridge two different OS spaces: the guest-OS where

the applications run and the host- OS where the GPUs reside. In particular, API remoting

is implemented by introducing an interposed front-end library in the guest-OS space and

a back-end daemon in the host-OS. The frontend library, which overrides the CUDA

Runtime API, intercepts CUDA calls and redirects them to the back-end through a socket

interface. In turn, the back-end issues those calls to the CUDA runtime. Note that this

mechanism provides GPU visibility from within VMs, but does not add any form of

abstraction. In fact, applications still use CUDA Runtime primitives to direct their calls

to specific GPUs residing on the host where the VMs are deployed. Moreover, the bare

use of the scheduling mechanisms offered by the CUDA Runtime may not be optimal

when multiple or multi-threaded applications are mapped onto a single GPU. In this

work, we aim to design a runtime that provides abstraction and sharing of GPUs while

allowing isolation of concurrent applications. In addition, the runtime must be flexible in

terms of scheduling policies and allow dynamic binding of applications to GPUs. Finally,

the runtime must support dynamic upgrade and downgrade of GPUs and be resilient to

GPU failures. To overcome these limits, we aim at providing the following mechanisms.

31

 Abstraction--GPUs installed in the cluster need to be abstracted (or hidden) from the

user's direct access. GPU programming APIs generally require the application

programmer explicitly to select the target GPU (for example, using the CUDA

runtime cudaSetDevice primitive). This situation gives the application control of

the number of GPU devices to use. Our design masks the explicit procurement of

GPUs, thus allowing a transparent mapping of applications onto GPUs. As a side

effect, applications can be efficiently mapped onto a number of devices different from

that for which they have been originally programmed. Note that this abstraction is

coherent with the traditional parallel programming model for general purpose

processors. When a user writes a multithreaded program, for example, he targets a

generic multi-core processor. At runtime, the operating system distributes processing

threads onto the available cores.

 GPU Sharing–As mentioned above, applications targeting heterogeneous nodes

alternate general-purpose CPU code with library calls redirected and executed on

GPUs. In the presence of multi-tenancy, assigning each application a dedicated GPU

device for the entire lifetime of the application may not be optimal in that it may lead

to resource underutilization. GPU sharing is an obvious way to improve resource

utilization. However, sharing must be done judiciously; excessive sharing may lead to

high overhead and be counterproductive.

 Isolation – In the presence of resource sharing, concurrent applications must run in

complete isolation from one another. In other words, each application must have the

illusion of running on a dedicated device. State-of-the-art runtime support for GPUs

32

provides partial isolation of different process contexts. In particular, each process is

assigned its own process space on the GPU; however, GPU sharing is possible only

as long as the cumulative memory requirements of different applications do not

exceed the physical capacity of the GPU. Our work aims to handle such memory

issues seamlessly, allowing GPU sharing irrespective of the overall memory

requirements of the applications. In other words, we want to extend the concept of

virtual memory to GPUs.

 Configurable Scheduling–The quality of a scheduling policy depends on the objective

function and assumptions about the workload. A simple first-come-first-served

scheduling algorithm can be adequate in the absence of profiling information. A

credit-based scheduling algorithm may be more suitable to settings that include

fairness in the objective function. Further, a scheduling algorithm that prioritizes

short running applications can be preferable if profiling information is available. Yet

another scheduling policy may be adopted in the presence of expected quality of

service requirements (e.g.,: execution deadlines). Our goal is to provide a runtime

system that can easily accommodate different scheduling algorithms.

 Dynamic Binding–In existing runtime systems (including the CUDA runtime) the

mapping of GPU kernels to GPU devices is static, or programmer-defined. A

dynamic application-to-GPU binding may be preferable in several scenarios. First, let

us consider the situation of a node having GPU devices with different compute

capabilities. Existing work in the context of heterogeneous multi-core systems [62]

has shown that performance can be optimized by maximizing the overall processor

33

utilization while favoring the use of more powerful cores. The application of this

concept to nodes equipped with different GPUs suggests that the system throughput

can be maximized by dynamically migrating application threads from less to more

powerful GPUs as they become idle. Second, dynamic binding can help when GPUs

are shared by applications cumulatively exceeding the memory capacity. In fact,

dynamically migrating application threads to different devices may minimize waiting

times. Finally, resuming application threads on different devices allows load

balancing when GPUs are added or removed from the system (dynamic upgrade and

downgrade) and is beneficial in case of GPU failures (by preventing a whole

application restart).

 Checkpoint-Restart Capability–Along with dynamic binding, our runtime provides a

checkpoint-restart mechanism that allows efficiently redirecting an application thread

to a different GPU. A checkpoint can be explicitly specified by the user, or

automatically triggered by the runtime. For example, the runtime may monitor the

execution time of particular library calls (e.g. kernel functions) on a GPU. An

automatic checkpoint may be advisable after long-running kernel calls to decrease the

restart penalty in case of GPU failures. Note that this kind of checkpoint is inserted

dynamically at runtime.

From an application perspective, we target two categories of applications: single-

process GPU applications and multi-process GPU applications (distributed applications).

3.2 Reference Architecture

34

The overall reference architecture is represented in Figure 3-1. The underlying hardware

platform consists of a cluster of heterogeneous nodes. Each node has one or more multi-

core processors and a number of GPUs. The operating system performs scheduling and

resource management on the general-purpose processors. Access to the GPUs is mediated

by the CUDA driver and runtime library API. Our runtime performs scheduling and

resource management on the available GPUs. Each GPU has a device memory. Among

others, the CUDA runtime library contains functions to: (i) target a specific device

(cudaSetDevice), (ii) allocate and de-allocate device memory (e.g.,

cudaMalloc/Free), (iii) perform data transfers between the general purpose

processor and the GPU devices (e.g., cudaMemcpy), (iv) transfer code onto the GPUs

(the internal functions (cudaRegisterFunction/FatBinary), and (v) trigger the

execution of user-written kernels (cudaConfigureCall and cudaLaunch).

In addition, the CUDA runtime offers some CPU multithreading support. For

example, CUDA 3.2 associates a CUDA context to each application thread. Several

contexts can coexist on the GPU. Each of them has a dedicated virtual address space,

contains references to textures, modules and other entities, and is used for error handling.

CUDA contexts allow different application threads to time-share the GPU processing

cores and space-share the GPU memory. In CUDA 4.0, the use of CUDA contexts is

slightly modified to allow data sharing and concurrent kernel execution across threads

belonging to the same application. As mentioned in Section 1, with both versions of the

CUDA runtime, the number of parallel CUDA contexts that can be supported at runtime

is limited by the device memory capacity.

35

As shown in Figure 3-1, our runtime component interacts with a cluster-level

scheduler that operates at the node level and must be installed on all the nodes of the

cluster. The cluster-level scheduler maps jobs onto compute nodes. During execution, the

GPU library calls issued by applications are intercepted by our frontend library and

redirected to our runtime daemon on the node where the job has been scheduled. Since

our runtime is a stand-alone process, a mechanism for inter-process communication

between the job and our runtime demon is needed. In our prototype, we use the socket-

based communication framework provided as part of the open-source project gVirtuS

[30, 63]. This framework relies on afunix sockets in a non-virtualized environment and

on proprietary VM-sockets in a virtualized one.

In the presence of nodes with different hardware setups, simple cluster-level

scheduling policies may lead to queuing on nodes containing a lower number of GPUs

(or assigned a higher number of jobs targeting GPU). To tackle this problem, we allow

nodes to offload GPU library calls to other nodes in the cluster. For this purpose, we

introduce inter-node communication between our runtime components. Note that this

mechanism operates at the granularity of GPU library calls and does not affect the portion

of the job running on CPU.

3.3 Scheduling Policies

3.3.1 Batch Scheduling

36

Most of the cluster schedulers in use today, such as the open-source TORQUE and

SLURM, perform batch scheduling. Specifically, they allocate to each application as

many GPUs as requested and do so for the whole application lifetime. Further, by directly

relying on the CUDA runtime, they do not provide GPU sharing mechanisms.

This form of batch scheduling has two major limitations. First, when the number

of processes requesting GPUs is larger than the number of available GPU devices, batch

schedulers fail to allocate the requested resources and to execute the application. Not only

does this deficiency represent a lack of scheduling flexibility, but it also exposes to the

user the configuration of the underlying architecture. Second, this scheme leads to

resource underutilization in the presence of long CPU execution phases and load-

imbalance, thus reducing the throughput of the whole cluster. This situation is illustrated

in Figure 3-2(a), which depicts the batch scheduling of three applications (A, B, and C) on

four GPUs. Application A consists of four processes, each going through two GPU

phases; applications B and C consist of two processes, each including a single GPU

phase. All applications present a global synchronization at the end of each GPU phase. In

the figure, Ajk represents the kth GPU phase of process j belonging to application A; black

blocks represent idle GPU times. As can be seen, processes A1, A2 and A4 must wait for

process A3 to complete the first phase before proceeding to the next one. As a result,

GPU0, GPU1 and GPU3 remain idle for part of the execution. Similar considerations apply

in the next execution phases. Such a problem is common to batch schedulers that do not

allow applications to time-share GPUs.

3.3.2 Controlled n-way GPU Sharing

37

Our runtime system allows multiple processes to time-share GPUs even in the presence

of conflicting memory requirements. Controlled GPU sharing among n processes (n-way

GPU sharing) is enabled by associating to each physical GPU a predefined number n of

virtual GPUs (vGPUs). Processes are mapped to virtual GPUs, and vGPUs time-share the

underlying physical GPU. Thus, processes mapped onto vGPUs associated to the same

physical GPU will time-share the GPU device and execute concurrently. Processes are

mapped to vGPUs in a round-robin fashion, prioritizing idle GPU devices. We have

shown that this mechanism is particularly beneficial in case of single-process applications

that alternate between CPU and GPU execution phases. Specifically, GPU time-sharing

allows hiding CPU execution phases behind GPU execution phases of co-scheduled

applications.

38

The proposed mechanism has an important limitation: the associated scheduling

scheme focuses on single-process applications and does not consider synchronization

issues related to multi-process applications. In the runtime system described in [1], once

scheduled for execution, a process is mapped to a vGPU for its whole life-time, unless a

more powerful GPU becomes available or a memory swap request occurs. As a

consequence, in order for a multi-process application to proceed with its execution, its

processes must all be scheduled onto vGPUs at the same time. This procedure may cause

performance problems in highly utilized systems. Although the framework is capable of

Figure 3-2 – Operation of different scheduling mechanisms in the presence of

multi-tasks distributed applications with synchronizations and intra-application

imbalance. Application A consists of 4 tasks and includes 2 GPU execution

phases, with a global synchronization at the end of each. Application B and C

consist of two tasks and a single GPU execution phase, also ending with a global

synchronization. Synchronizations are represented through (red) dashed

vertical lines. Ajk represents k
th

 GPU phase of task j belonging to application A.

Idle GPU times are represented in black.

39

migrating processes to different GPUs, such migration occurs only in the presence of

conflicting memory requirements or when some GPUs become idle but does not take into

account performance considerations related to multi-process applications.

In Figure 3-2(b) we show how the runtime system proposed in [1] would schedule

the applications A, B and C described above, assuming two-way sharing (that is, two

vGPUs per physical GPU). Note that the processes are mapped to vGPUs in a round-

robin fashion, prioritizing idle GPUs. Assuming that the processes are initially queued as

[A1, A2, A3, A4, B1, B2, C1, C2], processes A1 and B1 will share GPU0; processes A2

and B2 will share GPU1; processes A3 and C1 will share GPU2, and processes A4 and C2

will share GPU3. As can be seen, sharing allows hiding idle time of one process behind

the GPU phase of a co-scheduled process. For example, B1, B2 and C2 can, in this case,

start executing while A1, A2 and A4 wait for A3 to reach the first synchronization point

syncA1. However, some GPU underutilization still takes place, especially when processes

belonging to the same application exhibit significant imbalance in their execution time.

The interested reader can verify that a better schedule would have resulted from co-

locating processes A2 and C1, processes A3 and C2 and processes A4 and B2. However,

the proposed runtime does not have the capability of automatically making such a

scheduling decision.

We conclude with two observations. First, despite its limitations, controlled GPU

sharing has allowed a better schedule than batch scheduling. Second, one could think of

increasing the scheduling flexibility by allowing more processes to share the same GPU

(by increasing the number of vGPUs). However, as described in [1], this is not always the

optimal choice, since increasing the number of processes mapped to the same physical

40

GPU increases the probability of memory conflicts (thus causing swapping overheads). In

addition, scheduling inefficiencies would arise in any event when increasing the number

of processes per application.

3.3.3 Preemptive Sharing

We introduce the concept of preemptive GPU sharing as a mechanism to further improve

the performance by reducing the idle time of the GPU devices. The basic idea is the

following: processes that underutilize the GPU should be preempted from use to allow

other processes to execute. Processes waiting at a synchronization point are good

candidates from preemption. Once the synchronization has been performed, preempted

processes can be rescheduled for execution on the same or on a different GPU.

In Figure 3-2(c) we show how preemptive GPU sharing would schedule the

applications A, B and C discussed above on four GPUs. This time, we assume that no n-

way GPU sharing takes place. Pending processes are scheduled for execution as soon as a

GPU becomes idle. As can be seen in this case, the scheduler preempts processes A1, A2

and A4 while waiting for A3 to reach the synchronization point syncA1 and lets B2, C2 and B1

execution on GPU0, GPU1 and GPU3, respectively. When the short-running B1 completes

the execution of its GPU phase B11, it is also preempted, and GPU3 is assigned to C1. The

idle times of all GPUs are minimized. From this example, we can see that preemption

allows effective hiding of the idle time of one application behind the execution time of

other applications. This scheme provides performance benefits not only over batch

scheduling, but also over controlled n-way GPU sharing.

41

3.4 Use Cases for Preemption

At least three scenarios exist that make preemptive GPU sharing preferable to both batch

scheduling and controlled n-way sharing (from now on, we will omit “controlled” for

simplicity).

All these scenarios use cases that involve multi-processes (or multi-threaded)

applications with synchronization.

SCENARIO 1: When processes belonging to the same application exhibit significant

imbalance in their execution time and GPU utilization: this is a form of intra-

application imbalance.

SCENARIO 2: When the workload composition is such as to prevent all processes belonging

to the same application to be scheduled on the available GPUs at the same time:

this is a form of inter-application imbalance.

SCENARIO 3: When an application has more processes than physical GPUs (in case of batch

scheduling) or than virtual GPUs (in case of n-way sharing).

42

Scenario 1 (intra-application imbalance) is exemplified in Figure 3-2 and has been

already described. Scenario 2 (inter-application imbalance) is represented in Figure 3-3.

In this example, we assume again to have three applications A, B and C and four GPUs

(GPU0-GPU3). The applications consist of three processes, each executing three GPU

phases; again, there is a global synchronization at the end of each GPU phase. This time,

however, each application is internally balanced, i.e, processes belonging to the same

application have the same execution time in each execution phase. We assume that, at

Figure 3-3 – Operation of different scheduling mechanisms in the presence of multi-tasks

applications with synchronization and inter-application imbalance. Application A, B, and C

consist of 3 tasks and include 3 GPU execution phases, with a global synchronization at the end

of each. Ajk represents the k
th

 GPU execution phase of task j belonging to application A. Idle

GPU times are represented in black.

43

each synchronization point, some CPU code executes. The inter-application imbalance is

due to the fact that each application has three processes but the system has four GPUs.

As can be seen in Figure 3-3(a), inter-application imbalance causes GPU

underutilization when batch scheduling is performed. In fact, while A runs on GPU0-

GPU2, GPU3 stays idle. This is because both B and C require three GPUs, and are,

therefore, queued until such GPU resources become available. This situation occurs again

later when scheduling application C (GPU2 stays idle until B completes execution and

frees two more GPUs).

A better schedule is achieved by two-way sharing, as shown in Figure 3-3(b). For

illustration, we also show the virtual GPUs associated to each physical device. In this

case, some waiting times are hidden by allowing two processes to share a GPU (for

example, GPU0 is initially shared by A1 and B2, GPU1 is initially shared by A2 and B3, and

so on.). Further, GPU sharing allows hiding the CPU execution of one process behind the

GPU execution of a co-located process. For example, B2 can run on GPU0 while A1

performs CPU computation (which includes synchronization code), and vice-versa.

However, the presence of synchronization within the three applications still leads to GPU

idle times, which ultimately affects the performance.

An even better schedule is achieved by using preemptive GPU sharing, as shown

in Figure 3-3(c). In this case, the GPU idle time is minimized by preempting processes

that are inactive waiting at synchronization points and by remapping them to GPUs after

the synchronization has been performed. Further, an optimal schedule is achieved by

combining two and one-way sharing and preemption, as shown in Figure 3-3(d). This

solution benefits from the advantages of both schemes: on one hand, CPU execution

44

phases of one process (including data communication and synchronization) are hidden

behind the GPU execution phases of a co-located process; and on the other hand, the use

of preemption allows minimizing the GPU idle times. We observe that further increasing

the level of GPU sharing (by associating to each physical device a larger number of

vGPUs) would not bring additional benefits. In fact, the increased probability of

conflicting memory requirements among co-located processes and the added overhead

would have detrimental effects on the performance.

Scenario 3 can be explained as follows. As detailed above, batch scheduling

allocates to each application as many GPUs as requested by its processes and does not

allow GPU sharing. Thus, if one application consists of more processes than the physical

GPUs available in the system, such application will not be serviced. Controlled n-way

sharing reduces this problem by allowing multiple processes to share a physical GPU and

by reassigning a GPU as soon as it becomes idle. However, once scheduled, a process

will be mapped onto a GPU for its whole execution time. This works well in the absence

of synchronization within the applications. However, let us assume to perform n-way

sharing of k GPU devices, and to have an application that presents global

synchronizations and p processes, with p > nk. In this case, the execution will reach a

deadlock situation such that processes 1 to nk will be idle waiting on the global

synchronization, while processes nk+1 to p will be waiting for a free GPU. GPU

preemption allows avoiding this problem.

3.5 System Design

45

In this section, we describe the design of our proposed runtime. Our prototype

implementation targets NVIDIA GPUs programmed through the CUDA runtime API.

3.5.1 Overall Design

The overall design of our runtime is illustrated in Figure 3-4. The basic components are:

connection manager, dispatcher, virtual-GPUs (vGPUs), and memory manager. As

mentioned before, when applications execute on the CPU, library calls directed to the

CUDA runtime are intercepted by a frontend library and redirected to our runtime. We

say that each application establishes a connection with the runtime and uses the

connection to issue a sequence of CUDA calls and receive their return code. Multiple

applications establish concurrent connections. The connection manager accepts and

enqueues incoming connections. The dispatcher dequeues pending connections and

schedules their calls on the available GPUs. If the devices on the node are overloaded, the

dispatcher may offload some connections to other nodes using an inter-node

communication mechanism. To allow controlled GPU sharing, each GPU has an

associated set of virtual-GPUs. The dispatcher schedules applications onto GPUs by

binding their connections to the corresponding virtual-GPUs. Applications bound to

virtual-GPU vGPUik share GPUi. Finally, the memory manager provides a virtual

memory abstraction to applications. Dispatcher and virtual-GPUs interact with the

memory manager to enable: (i) GPU sharing in the presence of concurrent applications

with conflicting memory requirements, (ii) load balancing in case of GPU with different

capabilities, GPU addition and removal, (iii) GPU fault tolerance, and (iv) checkpoint-

restart capabilities.

46

3.5.2 Context Queues

The runtime system uses four context queues. (i) The assigned context queue contains a

list of contexts that have been already scheduled on a GPU resource. (ii) The ready

context queue stores contexts that have pending CUDA calls and are ready to be

scheduled on a GPU resource. (iii) The waiting context queue stores contexts that have

been preempted and unassigned from a GPU resource. (iv) The failed context queue

contains contexts that have reported some CUDA error and need recovery actions.

3.5.3 Connection Manager

When used natively, the CUDA runtime spawns a CUDA context on the GPU for each

application process. Different application processes can be directed to different GPUs by

using the cudaSetDevice primitive. One of the goals of our runtime is to preserve the

CUDA semantics. To this end, our frontend library opens a separate connection for each

Figure 3-4 – Overall design of the runtime

47

application thread. CUDA calls belonging to different connections can, therefore, be

served independently either on the same or on distinct GPUs. The connection manager

enqueues connections generated by concurrent application processes in a pending

connections list.

3.5.4 Dispatcher

The primary function of the dispatcher is to schedule CUDA calls issued by application

threads onto GPUs. The dispatcher can be configured to use different scheduling

algorithms: first-come, first-served, shortest-job-first, credit-based scheduling, etc. Some

scheduling algorithms (e.g., shortest-job-first) require the dispatcher to make scheduling

decisions based on the kernels executed by the applications, their parameters, and their

execution configuration. Higher resource utilization and better performance can be

achieved by supporting dynamic binding of applications to GPUs: the dispatcher must be

able to modify the application-to-GPU mapping between kernel calls and to unbind

applications from GPUs during their CPU-phases. These scheduling actions must be

hidden from the users.

To enable informed scheduling decisions, the dispatcher must be able to delay

application-to-GPU binding until the first kernel launch is invoked. Unfortunately, the

very first CUDA calls issued by a CUDA application are not kernel launches, but

synchronous internal routines used to register the GPU machine code

(_cudaRegisterFatBinary), kernel functions (_cudaRegisterFunction),

variables and textures (_cudaRegisterVar, _cudaRegisterSharedVar,

_cudaRegisterShared and _cudaRegisterTexture) to the CUDA runtime.

48

Moreover, kernel launches are never the first non-internal CUDA calls issued by

application threads; at the very least, they must be preceded by memory allocations and

data transfers. Before kernel launches can be invoked by the client, all of these previous

calls must be serviced.

Two observations help us overcome this problem. First, registration functions are

always issued to the runtime prior to CUDA contexts’ creation on the GPU. Therefore,

these internal calls can be safely issued by the dispatcher well before the corresponding

applications are bound to virtual-GPUs. The same holds for device management

functions, some of which are ignored by our runtime (e.g. cudaSetDevice) or

overridden (e.g., cudaGetDeviceCount will return the number of virtual, not

physical, GPUs). Second, it is possible to delay GPU memory operations until the related

data are accessed within kernel calls;the runtime responds to memory allocation requests

by returning virtual addresses, and these virtual pointers are mapped to real device

pointers at a later stage.

In summary, the dispatcher dequeues application threads from the list of pending

connections, and handles them as follows. First, it issues registration functions to the

CUDA runtime. Second, it services device management functions (and typically

overrides them so as to hide the hardware setup of the node from the users). Third, it

handles memory operations with the aid of the memory manager. In particular, the

dispatcher does not issue memory operations directly to the CUDA runtime, but instead

operates entirely in terms of virtual addresses generated by the memory manager. Fourth,

if there are any free virtual-GPUs, the dispatcher schedules application threads to virtual-

49

GPUs (and enqueues them in the list of assigned contexts). If all virtual-GPUs are busy,

application threads are enqueued in the list of waiting contexts for later scheduling. In

addition, any failure during the execution of an application thread will cause it to be

enqueued in a list of failed contexts, which is used by the dispatcher for recovery.

To prevent the dispatcher from being a bottleneck, its implementation is

multithreaded; each dispatcher thread processes a different connection. All queues used

within the runtime (pending connections; waiting, assigned and failed contexts) are

accessed using mutexes.

3.5.5 Virtual GPUs

In order to allow time-sharing of GPUs, we spawn a configurable number of virtual-

GPUs for each GPU installed on the system. A virtual-GPU is essentially a worker thread

that issues calls originated from within application threads to the CUDA runtime. Virtual-

GPUs are statically bound to physical GPUs through a cudaSetDevice invoked at

system startup. Each virtual-GPU can service one application thread at a time. A virtual-

GPU is idle when no application thread is bound to it and is active otherwise. Note that,

since our runtime maps application threads onto virtual-GPUs and the CUDA runtime

spawns a CUDA context for each virtual-GPU, this infrastructure preserves the semantics

of the CUDA runtime. We experimentally observed (see Section 3.7) that the CUDA

runtime cannot handle an arbitrary number of concurrent threads. Therefore, limiting the

number of virtual-GPUs prevents our framework from overloading the CUDA runtime,

and allows proper operation even in the presence of a large number of CUDA

applications.

50

3.5.6 Memory Manager

The goal of the memory manager is to provide a virtual memory abstraction for GPUs.

Two ideas are at the basis of the design. First, applications will not see device addresses

returned by the CUDA runtime, but they will see virtual addresses generated by the

runtime. Second, data resides in the host memory and is moved to the device only on

demand. In this way, the host memory represents a lower level in the memory hierarchy:

when some data must be moved to the device memory but the device memory capacity is

exceeded, the memory manager swaps data from the device memory to the host memory.

We allow memory swapping in two situations: (i) within a single application, and (ii) in

the presence of multi-tenancy. The latter scenario is characterized by the presence of

concurrent applications, each of whose memory footprints in isolation would fit within

the device memory but whose aggregate memory requirements exceed the GPU memory

capacity. In addition, the swap functionality allows an application to migrate from a less

capable to a more capable GPU when the latter becomes available.

Host-to-device data transfers deferral must be done judiciously. Data transfers

preceding the first kernel call cannot overlap with GPU computation and can, thus, be

deferred without incurring performance losses. After the first kernel call, application-to-

GPU binding is known; and our runtime can be configured to either defer or not defer

data transfers. Not deferring allows computation-communication overlapping at the

expenses of an increased swap overhead; deferring has the opposite effect.

The memory manager has two components: a page table
1
, and a swap area. The

page table stores the address translation, and the swap area contains not yet allocated or

51

swapped-out GPU data. The main data structures used in the memory manager are the

following.

/* PAGE TABLE*/

typedef struct {

 void * virtual_ptr;

 void * swap_ptr;

 void * device_ptr;

 size_t size;

 bool isAllocated;

 bool toCopy2Dev;

 bool toCopy2Swap;

 entry_t type;

 void * param

 nesting_t nested;

} PageTableEntry

std::map<Context *, list<PageTableEntry *> *> PageTable;

/* CAPACITY AND UTILIZATION of AVAILABLE GPUs */

int numGPUs;

uint64_t * CapacityList;

uint64_t * MemAvaiList;

std::map<Context *, size_t> MemUsage;

52

Each page table entry (PTE), which is created upon a memory allocation

operation, contains three pointers: the virtual pointer that is returned to the application

(virtual_ptr), the pointer of the data in the swap area (swap_ptr), and, if the data

are resident on the device, the device pointer (device_ptr). In addition, each entry has

a size, a type, and possible additional parameters (params and nested). Finally, the

flags isAllocated, toCopy2Dev, and toCopy2Host are used to guide device

memory allocations, de-allocations and data transfers, as well as indicate whether the

PTE has been allocated on device, whether the actual data reside only on the host, and

whether the actual data reside only on device, respectively. The state transitions of the

three flags depending on the call invoked by the application are illustrated in Figure 3-5.

In particular, malloc represents any allocation operation (cudaMalloc,

cudaMallocArray, etc.), whereas copyDH and copyHD represent any device-host and

host-device data transfer function (cudaMemcpy, cudaMemcpy2D, etc.), respectively.

Figure 3-5 – State diagram showing the transition of

isAllocated/toCopy2Dev/toCopy2Swap flags

53

Figure 3-5 assumes data transfer deferral and that all data referenced in a kernel launch

can be modified by the kernel execution; a more fine-grained handling is possible if the

information about read-only and read-write parameters is available. The attributes type

and params allow distinguishing different kinds of memory allocations and data

transfers associated with the entry. The nested attribute indicates whether the virtual

address points to a nested data structure, or whether it is a member of it. Nested data

structures must be declared to the runtime using a specific runtime API call, and are

associated additional attributes describing their structure. These attributes are used by the

memory manager in order to ensure consistency between virtual and device pointers

within nested structures.

Each application thread (or context) has an associated list of PTEs; the page table

contains all the PTEs for all the active and pending contexts in the node. In addition, the

memory manager keeps track of the capacity and the memory availability of each GPU

(CapacityList and MemAvailList) and of the memory usage of each context

(MemUsage). This information is used to determine whether binding an application

thread to a GPU can potentially lead to exceeding its memory capacity.

54

Routine

issued

Action performed by the node-level

scheduler

Error returned by the

node-level scheduler

Malloc Create VM_entry A virtual address cannot

be assigned.

Allocate memory region in swap area Memory region cannot be

allocated.

CopyHD Check valid VM_entry No valid VM_entry

Move data to memory region Swap-data size mismatch

CopyDH Check valid VM_entry No valid VM_entry

If (VM_entry.toCopy2Swap)

 cudaMemcpyDH

-

Free Check valid VM_entry No valid VM_entry

De-allocate memory region in swap area Cannot de-allocate

memory region

If (VM_entry.isAllocated)

 cudaFree

-

Launch Check valid VM_entry No valid VM_entry

If (!VM_entry.isAllocated)

 cudaMalloc

-

If (VM_entry.toCopy2Dev)

 cudaMemcpyHD

-

cudaLaunch -

Swap Check valid VM_entry No valid VM_entry

If (VM_entry.toCopy2Swap)

 cudaMemcpyDH

-

If (VM_entry.isAllocated)

 cudaFree

-

Table 3-1 – For each routine issued, actions performed by the node-level

scheduler and possible errors returned. A black in the third column indicates any

error generated by the CUDA runtime (i.e. result ≠ cudaSuccess). VM_entry =

Virtual Memory Entry.

55

Table 3-1 shows the actions performed by the runtime for each memory-related

call invoked by the application. For simplicity, we show the data transfer deferral

configuration. Note that, in this case, malloc and copyHD (data copy from host to

device) do not trigger any CUDA runtime actions. Swap is an internal function that is

triggered by the runtime when some data must be swapped from device to host memory

to make room for data on the GPU. Like malloc; swap operates on a single page table

entry. Two scenarios are possible: intra-application swap and inter-application swap.

Independent of the kind, the swap operation can be triggered by the runtime while trying

to allocate device memory to execute a kernel launch. Memory operations on nested

structures will be extended also to their PTE members.

Intra-application swap–Consider the following sequence of calls coming from

the same application app, where matmul is a matrix multiplication kernel for square

matrices.

1. malloc(&A_d, size);

2. malloc(&B_d, size);

3. malloc(&C_d, size);

4. copyHD(A_d, A_h, size);

5. matmul(A_d, A_d, B_d); //B_d = A_d * A_d

6. matmul(B_d, B_d, C_d); //C_d = B_d * B_d

7. copyDH(B_h, B_d, size);

8. copyDH(c_h, C_d, size);

If the above application is run on the bare CUDA runtime and the data sizes are

such that only two matrices fit the device memory, the execution will fail on the third

instruction (that is, when trying to allocate the third matrix). On the other hand, when our

56

runtime is used, no memory allocation is performed until the first kernel launch

(instruction 5). Previous instructions update only page table and swap memory.

Instruction 5 will cause the allocation of matrices A_d and B_d, and the data transfer of

A_h to A_d, and will execute properly. During execution of instruction 6, the runtime will

detect the need for freeing device memory. Before trying to swap and unbind other

applications from the GPU, the runtime will analyze the page table of app and detect that

data A_d, not required by instruction 6, can be swapped to host. This situation will allow

the application to complete with no error. In summary, intra-application swap enables

the execution of applications that would fail on the CUDA runtime even if run in

isolation. In other words, the maximum memory footprint of the “larger” kernel (rather

than the overall memory footprint of the application) will determine whether the

application can correctly run on the device.

Inter-application swap – This kind of swap may take place when concurrent

applications mapped onto the same device have conflicting memory requirements. In

particular, if device memory cannot be allocated and intra-application swap is not

possible, the memory manager will be queried for applications running on the same GPU

and using the amount of memory required. If such an application exists, it will be asked

to swap. The application may or may not accept the request: for instance, an application

running in a CPU phase with no pending requests may swap, but an application in the

middle of a kernel call may not. If no application honors the swap request, the calling

application will unbind from the virtual-GPU and retry later. Otherwise, all the page table

entries belonging to the application that accepts the request will be swapped, and such

application will be temporarily unbound from the GPU. There may be situations where

57

multiple applications must swap for the required memory to be freed. To reduce

complexity and avoid inefficiencies, we do not trigger the swap in these situations. Note

that inter-application swap implies coordination among virtual-GPUs and, as a

consequence, has a higher overhead than intra-application swap. To avoid dead-locks,

synchronization is required while accessing the page table. Finally, note that enabling

swaps only during CPU phases allows GPU intensive applications to make full use of the

GPU.

To determine whether a memory allocation can be serviced, the runtime will first

use the memory utilization data in the memory manager (CapacityList,

MemAvailList, and MemUsage). However, because of possible memory

fragmentation on GPU, the runtime may need to use the return code of the GPU memory

allocation function to ensure that the request can be honored. Moreover, there may be

cases where only some GPUs have the required memory capacity.

Finally, we point out two additional benefits of our design. First, bad memory

operations (for instance, data transfers beyond the boundary of an allocated area) can be

detected by the memory manager without overloading the CUDA runtime with calls that

would fail. Second, multiple data copy operations within the same allocated area (i.e., the

same page table entry) will trigger a single, bulk memory transfer to the device memory.

3.5.7 Fault Tolerance & Checkpoint-Restart

The memory manager provides an implicit checkpoint capability that allows load

balancing if more powerful GPU become idle, if GPUs are dynamically added and

removed from the system, and recovery in case of GPU failures. For each application

58

thread, the page table and the swap memory contain the state of the device memory. In

addition, an internal data structure (called Context) contains other state information, such

as a link to the connection object, the information about the last device call performed,

and, if the application thread fails, the error code. With this state information, dynamic

binding allows redirecting contexts to different GPUs and resuming their operation. The

dispatcher will monitor the availability of the devices and schedule contexts from the

failed contexts list (in case of GPU failure or removal) and unbind and reschedule

applications from the assigned contexts list in case of GPU addition. Our mechanism can

be combined with BLCR [64] in order to enable these mechanisms also after a full restart

of a node. Finally, our runtime has an internal checkpointing primitive that can be

dynamically triggered after long running kernels, to allow fast recovery in case of

failures.

3.5.8 Inter-node offloading

If the GPUs installed on a node are overloaded, our runtime can offload some application

threads to other nodes. Note that this mechanism allows transferring only the CUDA calls

originating within an application and not its CPU phases. In particular, the runtime

redirects application threads in the list of pending connections to other nodes using a TCP

socket interface. A measure of the load on the system is provided by the size of the list of

pending connections. We allow the dispatcher to process pending connections only if the

number of pending contexts is below a given threshold.

59

3.6 Supporting Preemptive GPU Sharing

3.6.1 Defining the Preemption Policy

We want to introduce a preemption mechanism that allows efficient GPU sharing for

multi-process applications. To this end, we must define a preemption policy to be used:

we must determine when preemption must be triggered. Since we are designing a light-

weight operating system, we start by considering common OS preemption mechanisms.

In operating systems, preemption is commonly implemented using the concept of time-

quantum. Each process executes for a period of time, usually in the order of hundreds of

micro-seconds. When the time-quantum expires, the process that currently occupies the

processor is switched off from the processor, and its state and registers are saved in its

process-control-block.

This approach, however, would be inefficient for our application. The motivations

can be summarized as follows. First, GPU preemption can incur substantial overhead: a

context-switch for GPU involves data transfers between host and device and the replay of

all initializations routines (e.g., _cudaRegisterFatBinary,

_cudaRegisterFunction, etc.) to the CUDA runtime. Thus, to avoid inefficiencies,

the preemption rate should be kept low. Second, GPU preemption should be performed

between kernel calls and not in the middle of a kernel’s execution. Since different kernels

may have different execution times, using a time quantum approach may be problematic.

Instead, we consider the following two preemption policies.

1. Maximum idle time-driven preemption–In this approach, assigned contexts

are monitored for their inactivity period. If a context does not utilize the GPU for a

60

predefined period (the maximum idle time), then it will be preempted. The idea behind

this policy is that processes waiting at synchronization points will stop issuing CUDA

calls and, therefore, their associated contexts will become idle. During this inactivity

period, the GPU can be yielded to other ready contexts. The main advantage of this

policy is its relatively simple implementation; the disadvantages are the need for

mechanisms to measure the inactivity period and to tune the maximum idle time

parameter.

2. Synchronization call-driven preemption–In this approach, contexts are

preempted when they invoke synchronization routines, such as MPI collective calls. The

main advantage of this approach is that GPU is yielded immediately upon reaching a

synchronization point and not after an idle time. The main disadvantages of this policy

are two. First, it requires our runtime to intercept and handle not just CUDA calls, but

also MPI calls (and possibly other multi-threading synchronization routines). Second,

unless complex bookkeeping of the communicating processes is performed, this policy

may lead to unnecessary preemptions (for example, preemption may occur also when the

last process involved in the synchronization reaches the synchronization point).

We implemented both approaches, but achieved better results with the first one. In

fact, the second approach was penalized by the overhead due to unnecessary preemptions.

In the remainder of the paper, we will only present results obtained with the first

approach.

3.6.2 Implementation

When a user submits a multi-process application to the system, the runtime receives a

connection from each process and creates a context for each of them. The contexts are

61

initially put into the ready queue by the connection manager, where they wait for the

dispatcher to perform scheduling operations. When a context from a multi-process

application scheduled onto a vGPU reaches a global synchronization point, it may exhibit

inactivity periods in two situations. First, it may need to wait for other slower contexts to

also reach the synchronization point even if they are all concurrently scheduled onto

vGPUs. Second, some of the other contexts in the same application may still be

unassigned. In the latter case, there are not enough vGPUs to accommodate all the

contexts. We describe the changes made to the system to support preemption and address

these situations.

We implemented in our runtime system the preemption cycle represented in

Figure 3-6. In particular, virtual GPUs are extended to actively monitor the inactivity

period of their assigned context. To reduce the overhead, we activate this monitoring

routine only when the ready context queue is not empty. In other words, preemption is

inactivated when there are no pending contexts waiting for a GPU resource. If monitoring

is enabled, and a context’s inactivity period exceeds the maximum idle time; then, the

corresponding vGPU will preempt such context.

Upon preemption, the following actions are performed. First, the vGPU stops

executing the context (that is, it stops issuing its calls to the CUDA runtime). Second, the

vGPU saves the state of the context, by transferring all data residing on the GPU back to

the virtual memory space of the context on CPU. Third, the vGPU moves the context to

the waiting queue. The context will now be periodically monitored by the queue monitor

to check whether it has completed synchronization and is ready to be moved back to the

ready queue. The queue monitor accomplished this action by observing whether the

62

context has more CUDA tasks issued through the frontend library. If the waiting queue

contains several contexts, the queue monitor observes them in a round-robin fashion and

moves the context with more CUDA tasks back to the ready queue. The dispatchers can

then re-schedule the context to the same or to a different vGPU.

We further clarify this mechanism with an example, as illustrated in Figure 3-6.

Suppose that we have a multi-process and a single-process application. The multi-process

application consists of three contexts: Context11, Context12 and Context13. The single-

process application consists of a single context: Context21. Initially, the dispatcher fetches

Context11 and Context12 from the ready queue (step 1) and then schedules the two contexts

to the vGPUs (step 2). These two contexts execute until they reach a global

synchronization point. At this point, Context11 and Context12 become idle waiting for

Context13, which is in turn waiting in the ready queue. After the maximum idle time

period elapses, the vGPUs determine that preemption is necessary because the ready

queue is not empty (it contains Context13 and Context21). The vGPUs, therefore, preempt

Context11 and Context12 and move them to the waiting queue (step 3). At this point, the

Figure 3-6 – Preemption cycle

63

dispatcher can schedule Context13 and Context21 onto the two vGPUs. As Context13 and

Context21 progress, Context11 and Context12 are monitored for readiness by the queue

monitor (step 4). After all contexts belonging to the multi-process application

synchronize, their processes will start issuing CUDA calls. Eventually, Context11 and

Context12 are moved by the queue monitor back to the ready queue (step 5). The

preemption cycle repeats until the pending queue becomes empty or until the multi-

process application terminates.

3.7 Experimental Results

The experiments are divided into two parts. The first group of experiments (section

3.7.1), focus on single-process applications, while the second group (section 3.7.2)

focuses on multi-process applications.

3.7.1 Single-process Application

3.7.1.1 Hardware Setup

The system used in our node-level experiments includes eight Intel Xeon E5620

processors running at 2.40 GHz and is equipped with 48 GB of main memory and three

NVIDIA Fermi GPUs (two Tesla C2050s and one Tesla C1060). Each Tesla C2050 has

14 streaming multiprocessors (SMs) with 32 cores per SM, each running at 1.15 GHz,

and three GB of device memory. The Tesla C1060 has 30 SMs with eight cores per SM,

and four GB of device memory. In one experiment, we replaced the Tesla C1060 with the

less powerful NVIDIA Quadro 2000 GPU, equipped with four 48-core SMs and one GB

of device memory. In our cluster-level experiments, we used an additional node with the

same CPU configuration but equipped with a single Tesla C1060 GPU card.

3.7.1.2 Benchmark

64

The benchmark applications used in our experiments are listed in Table 3-2. These

applications, obtained from Rodinia Benchmark Suite [65] and NVIDIA’s CUDA SDK,

cover several application domains, and differ in their memory occupancy, their GPU

intensity and their interleaving of computation between CPU and GPU. We divide the

workload into two categories: short-running and long-running applications. When using

a Tesla C2050 GPU, the former report a running time between three and five seconds

Program Description Kerne

l calls

Short-running applications

Back Propagation (BP) Training of 20 neural networks with 64K nodes

per input layer

40

Breadth-First Search

(BFS)

Traversal of graph with 1M nodes 24

HotSpot (HS) Thermal simulation of 1M grids 1

Needleman-Wunsch

(NW)

DNA sequence alignment of 2K potential pairs

of sequences

256

Scalar Product (SP) Scalar product of vector pair (512 vector pairs

of 1M elements)

1

Matrix Transpose (MT) Transpose (384x384) matrix 816

Parallel Reduction (PR) Parallel reduction of 4M elements 801

Scan (SC) Parallel prefix sum of 260K elements 3,300

Black Scholes – small

(BS-S)

Processing of 4M financial options 256

Vector Addition (VA) 100M-element vector addition 1

Long-running applications

Small Matrix

Multiplication (MM-S)

200 matrix multiplication of 2Kx2K square

matrices and variable CPU phases

200

Large Matrix

Multiplication (MM-L)

10 matrix multiplications of 10Kx10K square

matrices and variable CPU phases

10

Black Scholes – large

(BS-L)

Processing of 40M financial options 256

Table 3-2 – Benchmark programs

65

each, and the latter between 30 and 90 seconds (depending on the CPU phase injected–

see Section 3.7.1.3). In the third column of Table 3-2, we report the number of kernel

calls performed by each application. All short-running applications and BS-L are GPU

intensive and have memory requirements well below the capacity of the GPUs in use.

MM-S and MM-L are injected CPU phases of different length; MM-L has high memory

requirements.

3.7.1.3 Node-level Experiments

Overhead Evaluation–First, we measured the overhead of our framework with respect

to the CUDA runtime. We allowed our runtime to use only one physical GPU and varied

the number of virtual GPUs (vGPUs). The execution time of the bare CUDA runtime

gives a lower bound that allows us to quantify the overhead associated with our

framework. The data in Figure 3-7 were obtained by randomly drawing jobs from the

pool of short-running applications in Table 3-2 and averaging the results over ten runs.

To ensure apple-to-apple comparison, we run each of the randomly drawn combination of

jobs on all 5 reported configurations (bare CUDA runtime and our runtime using 1, 2, 4

and 8 vGPUs).

66

Since our experiments showed that the CUDA runtime cannot handle more than

eight concurrent CUDA contexts, we limited the number of jobs to eight. As can be seen

in Figure 3-7, the total execution time of our runtime approaches the lower limit (CUDA

runtime) as we increase the number of vGPUs. Increasing the number of vGPUs means

increasing the sharing of the physical GPU, thus amortizing the overhead of the

framework (which, in the worst case, accounts for about 10% of the execution time).

Note that the percentage overhead would decrease on long-running applications.

Benefits of GPU Sharing – In our second set of experiments, we evaluated the

effect of GPU sharing in the presence of more (three) physical GPUs. We used the same

workload as in previous experiment and again varied the number of vGPUs per device.

We recall that the number of vGPUs represents the number of jobs that can time-share a

GPU.

As mentioned in the previous section, we found that the CUDA runtime does not

currently support more than eight concurrent jobs stably. Therefore, we do not report

Figure 3-7 – Execution time reported with a variable number of short-running

jobs on a node with one GPU. The bare CUDA runtime is compared with our

runtime

67

results using the bare CUDA runtime beyond eight jobs. Figure 3-8 shows that, when

using four vGPUs per device, our runtime reports some performance gain compared to

the bare CUDA runtime. In fact, the overhead of our framework is compensated by its

ability to load balance jobs on different physical GPUs. When running higher number of

concurrent jobs, our results confirm our previous finding that increasing the amount of

GPU sharing positively impacts the performances. However, we do not observe

significant performance improvements when more than four vGPUs are employed. We

believe that four vGPUs per device provide a good compromise between resource sharing

and runtime overhead, and we use this setting in the rest of our experiments.

Conflicting Memory Needs: Effect of Swapping–The effect of swapping can be

evaluated by using memory-hungry applications. To this end, we considered large matrix

multiplication (MM-L). This benchmark program performs ten square matrix

multiplications on randomly generated matrices. We set the data set size so to have

conflicting memory requirements when more than two jobs are mapped onto the same

Figure 3-8 – Execution time reported with a variable number of short-running

jobs on a node with three GPUs. The bare CUDA runtime cannot handle more

than eight concurrent jobs.

68

GPU. In addition, we injected in the matrix multiplication benchmark CPU phases of

various size. CPU phases are interleaved with kernel calls and simulate different levels of

post-processing on the product of the matrix multiplication.

The effect of swapping is evaluated by running 36 MM-L jobs concurrently. In

order to compare the swapping and no-swapping cases, we conducted experiments with

one vGPU (no swapping required) and four vGPUs (swapping required). We recall that,

in the one vGPU case, jobs run sequentially on a physical GPU; and, therefore, there is

no memory contention. In the experiment, the fraction of CPU work is varied while

maintaining the level of GPU work. Figure 3-9 shows that the total execution time grows

linearly with the fraction of CPU work in the case of serialized execution (1 vGPU). In

the case of GPU sharing (4 vGPUs), the overall execution time is kept constant even if

the amount of work in each job increases. In fact, swapping can effectively reduce the

total execution time by hiding the CPU-driven latency. In the chart, the number on the

top of each bar indicates the swap operations occurred during execution. This experiment

Figure 3-9 – 36 MM-L jobs (with conflicting memory requirements) are run on a

node with three GPUs. The fraction of CPU code in the workload is varied. We

indicate the number of swap operations occurred on top of each bar

69

demonstrates that our swapping mechanism can effectively resolve resource conflicts

among the concurrently running applications. In addition, despite its overhead, this

mechanism provides performance improvement to applications with a considerable

fraction of CPU work.

We next investigated the performance of our runtime when combining

applications with different amount of CPU work. In particular, we mixed BS-L with MM-

L at different ratios (Figure 3-10). BS-L is a GPU-intensive application with short CPU

phases, whereas MM-L was set to have a fraction of CPU work equal to 1. The memory

requirements of BS-L are below those of MM-L. Again, we ran 36 jobs concurrently. The

results of these experiments are shown in Figure 3-10. Again, the number on the top of

each bar indicates the number of swap operations that occurred during execution. As one

might expect, the performance gain from GPU sharing increases as MM-L becomes

dominant. Because BS-L is a GPU intensive application and swapping adds additional

Figure 3-10 – 36 jobs (BS-L and MM-L) are run on a node with three GPUs. The

workload composition is varied. We indicate the number of swap operations that

occurred on top of each bar.

70

overhead; this results in a longer execution time for four vGPUs at a 75/25 mix of BS-L

and MM-L.

Benefit of Dynamic Load Balancing–In Figure 3-11, we show the results of

experiments performed on an unbalanced node that contains two fast and one slow GPUs:

two Tesla C2050s and one Quadro 2000, respectively. In one setting, our runtime

performs load balancing as follows. The dispatcher keeps track of fast GPUs becoming

idle; and, in the absence of pending jobs, it migrates running jobs from slow to fast

GPUs.

The experiments are conducted on MM-S jobs with varying CPU fraction and

using four vGPUs per device. The number of jobs migrated is reported on top of each bar.

As can be seen, despite the overhead due to job migration, load balancing through

dynamic binding of jobs to GPUs is an effective way to improve the performances of an

unbalanced system. This holds especially in the presence of small batches of jobs and of

Figure 3-11 – Unbalanced node with two Tesla C2050s and one Quadro 2000:

effect of load balancing through dynamic binding. The number of MM-S jobs

migrated to fast GPUs is reported on top of each bar.

71

applications alternating CPU and GPU phases. As the number of concurrent jobs

increases, the system performs load balancing by scheduling on fast GPUs pending jobs

rather than by migrating jobs already running on slow devices.

3.7.1.4 Cluster-level Experiments

We have integrated our runtime with TORQUE, a cluster-level scheduler that can be used

to run GPU jobs on heterogeneous clusters. In this section, we show experiments

performed on a cluster of three nodes. The jobs are submitted at a head node and

executed on two compute nodes. The hardware configuration of the compute nodes is

described in Section 3.7.1.1. Having a three and a single-GPU compute node, our cluster

is unbalanced.

When TORQUE is used on a cluster equipped with GPUs, it relies on the CUDA

runtime to execute GPU calls. Since the CUDA runtime does not provide adequate

support to concurrency, TORQUE does not allow any form of GPU sharing across jobs.

Therefore, when configured to use compute nodes equipped with GPUs, TORQUE

serializes the execution of concurrent jobs by enqueuing them on the head node and

submitting them to the compute nodes only when a GPU becomes available. By coupling

TORQUE with our runtime system, we are able to provide GPU sharing to concurrent

jobs.

When coupling TORQUE with our runtime, we conducted experiments with three

settings. In all cases, to force TORQUE to submit to the compute nodes more jobs than

available GPUs, we hid from TORQUE the presence of GPUs and handled it only within

our runtime. In the first setting, our runtime was configured to use only one vGPU per

device, and, therefore, to serialize the execution of concurrent jobs. In the second setting,

72

we allowed GPU sharing by using four vGPUs per device. In the third setting, we

additionally enabled load balancing across compute nodes by allowing inter-node

communication and offloading. We also performed experiments using TORQUE natively

on the bare CUDA runtime. However, the results reported using this configuration are far

worse than those reported using TORQUE in combination with our runtime. Therefore,

we show the use of our runtime with one vGPU per device as an example of no GPU

sharing.

In Figure 3-12 – Two-node cluster using TORQUE: effect of GPU sharing and

load balancing via inter-node offloading in the presence of short-running jobs and in the

absence of conflicting memory requirements.,, we show experiments conducted using a

variable number of short-running jobs drawn from the applications in Table 3-2. In this

set of experiments, jobs do not exhibit conflicting memory requirements. Again, we

average the results reported over ten runs. As can be seen, GPU sharing allows up to a

Figure 3-12 – Two-node cluster using TORQUE: effect of GPU sharing and load

balancing via inter-node offloading in the presence of short-running jobs and in

the absence of conflicting memory requirements.

73

28% performance improvement over serialized execution. However, TORQUE, which

relies on our runtime and is unaware of the number and location of the GPUs in the

cluster, divides the workload equally between the two nodes. Thus, the node with only

one GPU is overloaded compared to the other node with three GPUs. When, in addition

to GPU sharing, we allow load balancing through our inter-node offloading technique,

the overall throughput is further improved by up to 18%.

Finally, we want to show the benefits of our runtime system in a cluster in the

presence of jobs with conflicting memory requirements. To this end, we run 16, 32 and

48 BS-L and MM-L jobs (25/75 distribution). We recall that these two applications have

long runtimes. The results of this experiment are shown in Figure 3-13. Again, serialized

execution allows avoiding memory conflicts. From the figure, it is clear that allowing

jobs to share GPUs increases the throughput significantly (up to 50%) despite the

overhead due to the need for swap operations. Moreover, in the presence of load

Figure 3-13 – Two-node cluster using TORQUE: effect of GPU sharing and load

balancing via inter-node offloading in the presence of long-running jobs and

conflicting memory requirements.

74

imbalances, the execution is further accelerated by allowing the overloaded node to

offload the excess jobs remotely.

3.7.2 Multi-process Application

The goal of our experiments is to evaluate our proposed preemptive GPU sharing scheme

and compare it with batch scheduling and with controlled n-way GPU sharing using a

collection of benchmark programs with various characteristics. In particular, we want to

evaluate how the number of processes per application, the duration of the CPU and GPU

computation within the application, the communication pattern, and the degree of intra-

and inter-application imbalance affect the performance of the considered scheduling and

sharing schemes.

3.7.2.1 Benchmark Description

Since there is no established benchmark suite for applications that combine MPI and

CUDA library calls, we decided to write a benchmark generator for such programs. Our

benchmark generator is a C++ tool that automatically generates MPI-CUDA applications

according to user-specified parameters.

75

To define the basic structure of the applications to be generated, we analyzed the

structure of the NAS Parallel Benchmarks1, which include a variety of MPI applications.

We observed that several such applications are iterative. Every iteration consists of one or

more execution phases; in turn, each execution phase contains some communication and

some computation code. We decided to generalize this computation pattern by allowing

offloading some computation to the GPU. Specifically, in our model, every execution

phase consists of some communication, some CPU and some GPU computation (which,

in turns, includes data transfers between host and device and some GPU kernel

invocations).

The parameters that drive the generation of the benchmark applications are listed

in Table 3-3. In the table, all parameters (but the first) refer to a single MPI process. As

1 http://www.nas.nasa.gov/publications/npb.html

Parameters Description Settings in the experiments

Preliminary Node-level Cluster-level

Number of

processes

Number of MPI processes 4 4 4, 6, 8

Communication

type

MPI communication type All-to-all Broadcast,

Scatter-Gather,

Barrier synchron.

Scatter-Gather

Number of

iterations

Number of iterations executed

by each MPI process

200 200 (0.3 sec/kernel),

20 (3.0 sec/kernel)

200

Number of

execution phases

Number of phases per iteration 1 1 1

GPU phase

duration

Duration of per-phase GPU

computation

0.5 sec 0.3 sec - 3.0 sec 0.3 sec

CPU phase

duration

Duration of per-phase CPU

computation

0 0%, 50%, 100% the

GPU phase duration

0

Size of GPU

transfers

Size of memory transfers

between CPU and GPU

100KB 100KB 100KB

Size of MPI

transfers

Size of data transferred by each

communication primitive

400KB 400KB (broadcast,

gather-scatter)

0KB otherwise

100KB * # of

processes

Table 3-3 - Description and setting of the parameters of our benchmark generator

76

can be seen, the generated applications mainly differ in their communication patterns,

their CPU and GPU computation intensity, their interleaving of computation between

CPU and GPU, and their duration. CPU and GPU computation are currently implemented

using a number of vector additions of various sizes. To realize the specified CPU and

GPU durations, we dynamically modify the number of vector additions executed (we

have profiled the CPU and GPU execution time of vector additions of predefined sizes).

Table 3-3 also specifies the parameter settings used in the experiments presented

in this work. The duration of the execution phases and the size of the MPI data transfers

were chosen according to profile information collected in the analysis of the NAS

Parallel Benchmarks. We assumed that, in each execution phase, the computation can

take place either completely on GPU, or partially on CPU (to this purpose, we varied the

CPU phase duration as shown in the table). In our preliminary experiments, we used the

all-to-all communication pattern. However, in most of our experiments we focused on

three communication patterns: broadcast, scatter-gather communication and barrier

synchronization, which are characteristics of applications such as distributed matrix

multiplication and N-body simulation.

3.7.2.2 Experimental Setup & Evaluation Metric

Hardware setup–The experiments described in Section 0 and 3.7.2.4 were performed on

a single node; the ones presented in Section 3.7.2.5 were performed on a two-node

cluster. The hardware setup of our cluster is summarized in Table 3-4. Single-node

experiments were conducted on Node1.

Software setup–All experiments described in this Section were performed using

the runtime system. Batch scheduling is implemented by setting the number of virtual

77

GPUs per physical GPU to 1. As far as the implementation of MPI is concerned, we use

MPICH2 (http://www.mpich.org).

Maximum Idle Time Setting–Our proposed preemptive GPU sharing scheme

requires setting the maximum idle time parameter, which indicates how long a GPU

should remain idle before the runtime system performs a preemption operation. Setting

this parameter involves evaluating a trade-off between runtime overhead and GPU

underutilization. If the maximum idle time is set to a large value, preemption will be

rarely invoked--leading to minimal runtime overhead but possibly to GPU

underutilization. Conversely, if this parameter’s value is too low, preemption operations

may be triggered too frequently, causing the runtime overhead to outweigh the benefits

from an increased GPU utilization. To set this parameter, we have measured the runtime

overhead due to preemption and involved with binding a process to a virtual GPU. We

have found that setting the maximum idle time to 0.01 seconds allows a good trade-off

between runtime overhead and GPU underutilization, and we have used this setting in all

experiments presented in this section.

Evaluation Metric–In all our experiments, we have measured the overall

execution time for running a variable number of MPI jobs on a single node or on a two-

node cluster. In the charts presented in Section 3.7.2.4, we show the speedup (in terms of

overall execution time) reported by n-way and preemptive GPU sharing over simple

batch scheduling.

78

Node Attributes Values

Node1

CPU cores 8

CPU cores
Intel Xeon® E5620, 2.4 GHz

12 MB cache

Main memory 48 GB

Operating System CentOS 5

CUDA version 3.2

GPUs 4

GPUs

Nvidia GeForce GTX 480

15 SM x 32 cores

1 GB Global memory

Node2

CPU cores 12

CPU cores
Intel Xeon ® E5-2620, 2.00GHz

15 MB cache

Main memory 64 GB

Operating System CentOS 6

CUDA version 3.2

GPUs 3

GPUs

Nvidia Tesla C2070

14 SM x 32 cores

~6 GB Global memory

Nvidia Tesla C2075

14 SM x 32 cores

~6 GB Global memory

Nvidia Tesla C2050

14 SM x 32 cores

~3 GB Global memory

Table 3-4 – Characteristics of the nodes

79

3.7.2.3 Preliminary Experiments

Before exploring different computation and communication patterns, we compared the

considered scheduling and GPU sharing schemes using a 4-job workload that employs

the MPI_Alltoall communication primitive (see column 3 in Table 3-3). We recall

that this set of experiments was performed on the 4-GPU Node1 machine. We considered

150

170

190

210

230

250

270

290

10 20 30 40 50

O
ve

ra
ll

ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Percentage imbalance

Batch scheduling

2-way sharing

4-way sharing

Preemptive sharing

Preemptive 2-way sharing

 (a) – Intra-application imbalance

150

170

190

210

230

250

270

290

3x[4] + 1x[3] 2x[4] + 2x[3] 1x[4] + 3x[3] 4x[3]

O
ve

ra
ll

ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Workload composition

Batch scheduling

2-way sharing

4-way sharing

Preemptive sharing

Preemptive 2-way sharing

(b) – Inter-application imbalance

Figure 3-14 – Preliminary experiments: comparison among five scheduling and

sharing schemes for a 4-job workload including all-to-all communication

primitives. In (5-a), each job consists of four processes, and the GPU phase

duration parameter of one of these processes is higher than that of the other three

by a factor percentage imbalance. In (5-b), workload composition j1×[p1]+j2×[p2]

indicates that j1 jobs consist of p1 processes and j2 jobs consists of p2 processes.

80

the first two situations described in Section 3.4: intra- and inter-application imbalance. In

both cases, we compared batch scheduling, two- and four-way sharing, preemptive

sharing, and the combination of preemption and two-way sharing (preemptive two-way

sharing). The results are shown in Figure 3-14.

Figure 3-14(a) covers the intra-application imbalance case. In this set of

experiments, every job consists of four processes. Intra-application imbalance is due to

the fact that one process is slower than the other three. Specifically, its GPU phase

duration parameter (0.5 sec) is set to be higher than that of the other three processes by a

factor percentage imbalance. This factor is varied along the x-axis of Figure 3-14(a) from

10% to 50%, thus leading to an increasing amount of intra-application imbalance.

Figure 3-14(b) covers the inter-application imbalance situation. In this case, all

the processes within each job have the same CPU and GPU execution time. However, the

workload composition is now heterogeneous: the number of processes is not uniform

across the jobs. In particular, workload composition j1×[p1]+j2×[p2] indicates that j1 jobs

consist of p1 processes, and j2 jobs consists of p2 processes. Note that all configurations

contain jobs consisting of three processes. Since the node has four GPUs, these jobs

cause imbalance. In particular, the number of jobs with three processes is varied along the

x-axis, leading to an increasing amount of inter-application imbalance.

From these preliminary experiments, we can make the following observations.

First, batch scheduling fails to capture both intra- and inter-application imbalance and to

correct their negative effects on the performance. In fact, when using batch scheduling,

the overall execution time stays constant across all the experiments and depends on the

slowest job. Second, in case of intra-application imbalance, n-way sharing leads to

81

performance improvements over batch scheduling; and this gain increases with the

imbalance. In fact, GPU sharing allows the idle time of one process to be hidden behind

the GPU execution of co-located processes. In case of inter-application imbalances, n-

way sharing is beneficial only when the workload is highly imbalanced and when 4

processes are allowed to share the same GPU device. Third, by increasing the GPU

utilization, preemptive GPU sharing greatly outperforms the other schemes in both the

intra- and the inter-application imbalance scenarios. Again, the performance gain

increases with the degree of imbalance. Finally, best performance can be achieved by

combining 2-way sharing and preemption (preemptive 2-way sharing case). This trend

has been observed in all experiments performed. For readability, in the remainder of this

section we will consider only batch scheduling, 4-way sharing and preemptive 2-way

sharing, and report the speedup of these two sharing schemes over batch scheduling.

82

1

1.5

2

2.5

3

3.5

10 20 30 40 50 10 20 30 40 50

Sp
ee

d
u

p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

1

1.5

2

2.5

3

3.5

10 20 30 40 50 10 20 30 40 50

Sp
e

e
d

u
p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) Worst case (b) Best case

Figure 3-16 Intra-application imbalance--speedup for scatter-gather communication pattern

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

10 20 30 40 50 10 20 30 40 50

Sp
e

ed
u

p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

10 20 30 40 50 10 20 30 40 50

Sp
ee

d
u

p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) Worst case (b) Best case

Figure 3-15 Intra-application imbalance--speedup for broadcast communication pattern

1

1.5

2

2.5

3

3.5

10 20 30 40 50 10 20 30 40 50

Sp
e

e
d

u
p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

1

1.5

2

2.5

3

3.5

10 20 30 40 50 10 20 30 40 50

Sp
e

e
d

u
p

Percentage imbalance

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) Worst case (b) Best case

Figure 3-17 Intra-application imbalance--speedup for barrier synchronization pattern

83

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
Sp

e
e

d
u

p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) 0% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5

Sp
e

e
d

u
p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(b) 50% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5

Sp
e

e
d

u
p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(c) 100% CPU phase

Figure 3-18 Inter-application imbalance--

speedup for broadcast pattern

1

1.5

2

2.5

3

3.5

4

4.5

Sp
e

e
d

u
p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) 0% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5

Sp
ee

d
u

p
Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(b) 50% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5

Sp
ee

d
u

p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(c) 100% CPU phase

Figure 3-19 Inter-application imbalance--

speedup for scatter-gather pattern

84

1

1.5

2

2.5

3

3.5

4

4.5

Sp
e

e
d

u
p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(a) 0% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5
Sp

e
e

d
u

p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(b) 50% CPU phase

1

1.5

2

2.5

3

3.5

4

4.5

Sp
e

e
d

u
p

Workload composition

4-way sharing

Preemptive 2-way sharing

0.3 sec/kernel 3.0 sec/kernel

(c) 100% CPU phase

Figure 3-20 - Inter-application imbalance--

speedup for barrier pattern

85

3.7.2.4 Node-level Experiments

In this section, we show a set of node-level experiments meant to evaluate the proposed

scheduling and sharing schemes on workloads characterized by a variety of computation

and communication patterns. The parameter settings of the workload generator used for

this group of experiments are shown in the fourth column of Table 3-3. As can be seen,

the exploration space can be described as follows: First, we consider three collecting

communication patterns, broadcast, scatter-gather and barrier synchronization. Second,

we use shorter and longer GPU phases (namely, 0.3 and three sec, respectively). Third,

we add an increasing amount of CPU computation to each execution phase: specifically,

we consider three settings: one with no CPU computation, one where the CPU

computation is half as long as the GPU computation, and one where the two have the

same duration (CPU phase duration parameter set to 0%, 50% and 100%, respectively).

We want every process to use the GPU for approximately 60 seconds in all experiments.

To this end, we vary the number of iterations (20 or 200) depending on the GPU phase

duration used. Note that this will affect the synchronization rate (since each iteration

contains a communication/synchronization primitive). As in our preliminary experiments,

we want to evaluate the speedup of the sharing schemes over batch scheduling in two

situations: intra- and inter-application imbalance. In all cases, we use a workload

consisting of four jobs.

Intra-application imbalance--In this first set of experiments, all jobs consist of

four processes with no CPU computation (except for inter-process communication). The

default kernel time is set either to 0.3 or to three seconds to allow two synchronization

86

rates. To introduce intra-application imbalance, we decrease the GPU phase duration of

some processes in each job by 10 to 50 percent of the default kernel time. We consider

two workload configurations, that we call best case and worst case. In the former, three

out of four processes per application are made faster. In the latter, only one process per

application is faster than the other three.

The results reported on workloads using the broadcast, the gather-scatter and the

barrier communication patterns are shown in Figure 3-15, Figure 3-16 and Figure 3-17,

respectively. As can be seen, preemption achieves better performance in almost every

case. In a few cases (e.g., broadcast communication pattern & low imbalance

percentage), the preemption overhead can have a dominant effect and deteriorate the

performance. A speedup of 1.7X, 2.9X and 2.9X over the batch scheduling can be

observed in the broadcast, scatter-gather and barrier communication cases, respectively.

Batch scheduling and four-way sharing fail to capture the effect of heterogeneity,

especially in worst case configurations. We also note that the speedup observed with

broadcast communication is relatively small compared to that achieved with the other

communication patterns. Processes that perform broadcast communication exhibit fewer

inactivity periods than processes using other patterns. This is because the broadcast

operation does not require every process to enter the communication routine at the same

time in order to proceed. Different processes can progress independently, even under the

imbalance. The overhead of the communication can, therefore, be adequately hidden even

by the four-way sharing mechanism.

Inter-application imbalance–In this second set of experiments, there is no

execution imbalance within each job. However, inter-application imbalance is introduced

87

by allowing different jobs in the workload to include a different number of processes. As

in our preliminary experiments, we use mixes of jobs with four and three processes each,

and vary the number of jobs consisting of three processes.

The results reported on workloads that use the broadcast, the gather-scatter and

the barrier communication patterns are shown in Figure 3-18, Figure 3-19 and Figure

3-20, respectively. The workload composition along the x-axis of these charts can be read

as in the preliminary experiments. We make the following observations: First,

preemption can again effectively improve the performance by minimizing the GPU

underutilization. This mechanism achieves up to a 3.5X and a 2.1X speedup over batch

scheduling and four-way sharing, respectively. Second, when using the broadcast pattern,

performance improvements can be observed in most of the configurations. As we have

learned from the previous experiments, the broadcast pattern rarely blocks processes

when performing communication. Therefore, four-way sharing is sufficient to hide the

communication latency. In addition, the preemption overhead can be unjustified in case

of balanced workload compositions (e.g. 4x[4]). We further observe that, as we increase

the percentage of the CPU phase, the speedup of preemption over four-way sharing

decreases slightly. In fact, four-way sharing can overlap the GPU and CPU phases of

different applications without incurring preemption overhead.

88

3.7.2.5 Cluster-level Experiments

In this section, we show the results of experiments conducted on the two-node

heterogeneous cluster of Table 3-4. The jobs, whose characteristics are summarized in the

fifth column of Table 3-3, use the scatter-gather communication pattern, do not include

CPU computation (except for MPI communication), and do not present intra-application

imbalance. We conducted three sets of experiments using 4, 6 and 8 processes per job,

respectively. In all experiments, the workload consists of eight jobs.

Figure 3-21 reports the execution time using batch scheduling, four-way sharing,

and preemptive two-way sharing. The dataset in case of batch scheduling and eight

processes per job is missing because our cluster has a total of 7 GPUs; and, as explained

in Section 3.4 (scenario 3), batch scheduling cannot support applications requesting more

GPUs than physically available in the system. As can be seen, four-way sharing and

preemptive GPU sharing lead to a 25-30% and a 40-45% performance improvement over

batch scheduling, respectively. In addition, both sharing mechanisms allow the execution

0

100

200

300

400

500

600

700

800

900

batch scheduling 4-way sharing Preemptive 2-way sharing

O
ve

ra
ll

ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Scheduling scheme

4 processes/app 6 processes/app 8 processes/app

Figure 3-21 Overall execution time in cluster settings

89

of jobs with more processes than available GPUs. As explained in Section 3.4, four-way

sharing would not be able to support jobs with more than 7*4=28 processes. Preemption-

based scheduling is the only mechanism able to support applications with any number of

processes, even in the presence of synchronization.

90

CHAPTER 4

CLUSTER-LEVEL SCHEDULER

4.1 Objectives

We recall from the introduction that because of the widespread use of GPUs, popular

cluster resource managers, such as TORQUE [8] and SLURM [9], have been recently

extended with GPU support capabilities. These systems typically treat GPUs as dedicated

resources (assigned to one application at a time) and rely on the GPU software stack (i.e.,

the CUDA driver and runtime) for the scheduling of GPU-accelerated kernels. These

traditional cluster resource managers suffer from the following limitations.

First, they do not handle heterogeneity well. Nowadays clusters present

heterogeneity at different granularities. First, a single node may comprise multiple GPUs

with different compute capabilities and memory capacities. Second, different nodes may

be equipped with different numbers and types of GPUs. Hence, jobs can experience both

intra- and inter-node heterogeneity. In these environments, statically assigning jobs to

GPUs in a dedicated fashion may lead to sub-optimal mapping of work-to-resources, thus

limiting performance. In addition, in our previous work [2] we have shown that, in the

presence of distributed applications, heterogeneity may cause imbalances among

processes, which in turn lead to resource underutilization and sub-optimal performance.

91

Second, traditional schedulers treat GPUs as dedicated resources, rather than

sharing them among users and applications. On the other hand, GPU sharing has proven

to be an effective mechanism to increase both resource utilization and overall

performance [1, 2, 34]. The potential of GPU sharing is also motivated by the increasing

compute power of recent devices (the number of GPU cores, for example, has increased

by a 6x factor from the Fermi to the Kepler architecture), while many GPU-accelerated

applications have been optimized on less sophisticated devices. While previous work on

GPU sharing has focused on node-level considerations, the integration of these results

with cluster-level issues has received only limited attention.

Third, traditional schedulers provide limited GPU virtualization and expose

information about the underlying cluster architecture to users. In many cases, users must

decide the runtime configuration of their application depending on the available

computing resources. In shared environments, however, the load of the cluster affects the

optimal configuration. Some cluster resource managers require detailed profiling

information to perform good scheduling decisions. In general, it is preferable for cluster

resource managers to obtain profiling information dynamically and operate with limited

user intervention.

Finally, traditional schedulers often do not provide easy ways to configure their

scheduling policies. It is well known that the optimal scheduling policy depends on the

performance objectives, the cluster’s hardware and software configuration and the

applications’ characteristics. Administrators should be able to define custom scheduling

policies that satisfy the users’ needs and take the cluster configuration and the workload

profile into consideration. Providing administrators with easy-to-user customization

92

facilities without requiring them to fully understand the architecture of the cluster-level

scheduler is especially important in heterogeneous environments.

In this work, we make the following contributions.

 We design a new cluster-level scheduler and integrate it with our previously proposed

node-level GPU virtualization runtime. This hierarchical framework allows better

utilization of heterogeneous CPU-GPU clusters.

 Our proposed scheduling framework is configurable and allows administrators to

easily define custom scheduling policies, so to meet specific requirements dependent

on the cluster setup, the applications, and the user objectives.

 We use our scheduling API to define two application- and heterogeneity-aware

scheduling policies: co-location- and latency-reduction based scheduling. We show

that these schemes outperform batch scheduling on different applications and cluster

configurations.

4.2 Cluster-level Scheduler

Our overall goal is to provide an efficient scheduling framework for CPU-GPU clusters.

These heterogeneous environments require scheduling at two granularities: on one hand,

jobs must be mapped onto compute nodes (coarse-grained scheduling); on the other,

specific library calls must be mapped onto GPUs (fine-grained scheduling). In order to

allow scalability, we design a hierarchical system, consisting of a cluster-level scheduler

and multiple node-level runtime components installed on each compute node. The

cluster-level scheduler is responsible for coarse-grained mapping of processes onto

compute nodes, whereas the node-level components perform fine-grained scheduling of

93

GPU work onto the available devices. In our previous work [1, 2, 34] we have proposed a

node-level runtime component that supports different GPU sharing and scheduling

mechanisms. The main features and architectural characteristics of this node-level

component are summarized in CHAPTER 3. In this section and the next, we discuss the

features, architecture and interfaces of our newly designed cluster-level scheduler.

Our cluster-level scheduler is designed to closely interact with the node-level

runtime component in order to schedule single- and multi-process GPU applications on

heterogeneous clusters. The main goals of the cluster-level scheduler are: (i) to perform

cluster-level scheduling decisions, (ii) to coordinate with the node-level runtime

components, and (iii) to allow administrators to define customized scheduling policies.

User-defined scheduling policies can have different optimization goals, such as

improving the system throughput, the power consumption, or other Quality of Service

metrics. In Section 4.3, we present two sample scheduling policies.

Our cluster-level scheduler employs a centralized model: a head-node accepts

jobs from users and performs cluster-level scheduling decisions in a centralized fashion.

The head-node, then, schedules jobs and processes onto different compute-nodes. A

similar model is adopted by existing cluster resource managers such as TORQUE and

SLURM. Differently from these systems, however, our scheduler is designed to explicitly

target heterogeneous CPU-GPU clusters and to provide administrators with the ability to

easily define and customize the scheduling policies. In order to better utilize the resources

of heterogeneous clusters and allow scalability, our overall system performs scheduling

in a hierarchical fashion and clearly separates cluster- and node-level scheduling

responsibilities, which involve processes-to-nodes and GPU work-to-device mapping

94

decisions, respectively. An interface between the cluster- and node-level components

allows the cluster-level scheduler to query node-level information such as the number of

CPUs and GPUs available on the node, and its level of load (for example, the number of

pending jobs). However, fine-grained control information (such as the load of specific

GPUs) is not exposed to the cluster-level scheduler, but is used only for node-level

decisions. This decoupled design allows scalability and easier reconfiguration and load

balancing in case of dynamic changes in the cluster setup (e.g. upgrade and downgrade of

nodes and GPU devices). Administrators can use the scheduling API described below to

define their custom cluster-level scheduling policies, which are loaded in the scheduler as

software modules. The scheduling API provides also routines to configure the GPU

sharing and scheduling scheme used at the node-level. The cluster-level scheduling

policies described in this paper rely on round-robin scheduling with preemptive sharing

[2] to be performed at the node-level (however, they could also be configured to use

different node-level policies).

The cluster-level scheduler running on the head-node services requests from users

and responds to notifications from the runtime components running on the compute

nodes. Users can submit to the head-node requests such as job execution, job status

query, node status query, or job priority change. Notifications received from node-level

runtime components include job-completion, performance-related information, node

status, and attributes changes. Such information is also delivered to the administrator-

defined scheduling library. The scheduling library can ignore these notifications or take

appropriate actions based on the policy programmed by the administrator. For example, if

the scheduling library observes that sharing GPUs on a node is degrading performance of

95

a job, it can immediately suspend a co-located job and reschedule it onto a different node.

Thus, the feedback information from the node-level to the cluster-level scheduler allows

cooperation between these two components.

4.2.1 Scheduler Architecture

Figure 4-1 shows the overall architecture of our cluster-level scheduler. The lower layer

of the framework implements the communication mechanisms required by the cluster-

level scheduler to interact with the users and the node-level runtime components installed

on the compute nodes. This interaction can take place using a variety of communication

channels: currently we provide socket communication for inter- and intra-node

communication, and shared memory communication for intra-node communication; in

the future, we plan to add an Infiniband communication module. The implementation of

the different communication channels is abstracted by a communication abstraction layer,

which provides a uniform view of the communication channels to the modules in the

upper layers. On top of the communication layer, the architecture includes some

scheduling-specific and some general purpose components. Specifically, the common

modules provide protocols for data exchange between components, routines for low-level

data structure manipulation, and other helper functions. The scheduling components

include a scheduling API, (user-defined) shared libraries implementing the scheduling

policies, and data structures storing job- and cluster -related information. The scheduling

API is divided in two parts: routines that allow users to query information (such as the

status of jobs and nodes), and routines exposed to the administrator to program the

scheduling libraries.

96

As mentioned above, one of our design goals is to make our cluster-level

scheduler easily configurable, and provide the users with an easy mechanism to define

custom scheduling policies. The scheduling API, by providing routines to access and

manipulate job- and node-specific information and local data structures (such as job

queues), allows administrators to easily define new scheduling policies (or modify

existing ones) without the need to know the implementation details of the cluster-level

scheduler and node-level runtime components. User-defined scheduling policies are

implemented as dynamic-linked libraries (or shared objects). Administrators can switch

among policies by editing the configuration file of the scheduler to use the desired

library. We provide two reference scheduling policies, which we describe in Section 4.3.

It is worth comparing our system with existing cluster resource managers, such as

TORQUE. When using TORQUE, administrators can switch among policies by replacing

Socket
Comm.

Communication Abstraction Layer

Other
Comm.

Shared-Memory
Comm.

Common
Modules

Job Info.
Queues
Profiles

Mapping

Cluster Info.
GPU count

GPU capacities
Utilization

APIs Library (Manipulation)

User-defined Scheduling
Library (.so)

Node-level
Runtime

Node-level
Runtime

User
Request

User
Request

Compute Nodes Job Submission,
Status Query etc.

APIs Library (Information Access)

Figure 4-1 – Architecture of the cluster-level scheduler

97

scheduling components like pbs_sched2 or Maui3 with their own scheduling modules. In

this sense, our scheduling libraries are comparable to pbs_sched and Maui. However,

constructing such scheduling components is not a trivial task and requires a good

understanding of TORQUE’s architecture. In particular, TORQUE consists of different

components that run as daemons, interact through sockets, and do not share data

structures. Differently from TORQUE, we aim to abstract the architecture of the

scheduler and provide easy access to its data structures. In addition, TORQUE was not

originally designed to handle GPU-jobs: TORQUE’s design focuses on CPU resources

and regards each GPU as an additional resource which is dedicated to a job and cannot be

shared. Our proposed system allows GPU sharing and can be customized without great

effort.

4.2.2 Scheduling API

Table 4-1 lists the main primitives of the scheduling API that must be used by

administrators to create custom scheduling libraries. In particular, the scheduling

interface provides two mechanisms: API and callback functions.

2 http://linux.die.net/man/8/pbs_sched

3 http://docs.adaptivecomputing.com/maui

98

API Functions Description

General

mccsSetCallBack() Registers callback function for a given event.

mccsReport() Prints message to stderr, stdout or log file.

mccsClean() Releases all resources allocated to the scheduling library.

Node-level Runtime Management

mccsGetNodeList() Retrieves the list of compute nodes

mccsGetNode() Retrieves a node data object based on name or attributes.

mccsPingNode() Sends ping signal to a node to determine its availability.

mccsQueryNodeInfo() Retrieves node configuration information such as: # of

CPUs/GPUs, memory capacity.

mccsCreateNode() Creates a data object used to represent a node.

mccsAddNode() Adds a node data object to the list of compute nodes.

mccsCreateAccelerator() Creates a data object used to represent an accelerator (such as

a GPU).

mccsAddAccelerator() Binds an accelerator data object to a node data object.

mccsSetNodeSchedulingP() Sets the node-level scheduling policy

mccsSetNodeSharingP() Sets the node-level GPU sharing policy

mccsSetNodeVGPUConf() Sets the virtual GPU configuration at a node

mccsQueryNodeQueues() Queries the size of the job queues at a node

mccsConfigureNodes() Prepares all nodes that will participate in the computation of

a job.

Job and Queue Management

mccsAddJob() Add a job to a job queue. The job queue can be either the

unassigned-job-queue or the assigned-job-queue, which store

the new and running jobs, respectively.

mccsRemoveJob() Retrieves and removes a job from a queue.

mccsRetrieveJob() Retrieves a job from a queue (without removing it).

mccsSetProfilingPeriod() Sets the time period for a node to report back profiling

information on jobs.

mccsAddNodeToJob() Assigns a given number of processes belonging to a specified

job to a node

mccsRemoveAllNodesFrom

Job()

Remove all nodes that were previously assigned to a job

mccsSetDeviceLimit() Sets resource limit in term of #of GPUs. Setting the limit to

zero is equivalent to suspending the job on the node. This can

be called to dynamically set the resource limit for a job while

running.

mccsStartJob() Starts a job on the specified nodes.

mccsDiscardJob() Discards a job data object and releases the resources assigned

to it.

Table 4-1 – Scheduling API

99

API Functions: The API functions (see Table 4-1) allow performing a variety of

tasks, such us querying the status and capacity of the nodes, allocating nodes to jobs,

starting the execution of jobs, gathering profiling information, and others. In the current

implementation, the API functions fall into three categories: General API, Node-Level

Runtime Management API, and Job & Queue Management API. General API functions

allow the scheduling library to perform house-keeping tasks such as registering callback

functions, printing log messages, and releasing resources. The Node-level Management

API functions control the interaction with the node-level runtime components. In

particular, this API includes node-level query and management functions, and allows

administrators to configure the GPU sharing and scheduling policies used at the node-

level, as well as other aspects of the node-level runtime (e.g., virtual GPUs – see Section

IV). Finally, the Job & Queue Management API functions implement tasks required for

scheduling purposes, such as assigning jobs to queues and nodes, limiting the resources

available to specific jobs, collecting profiling information on running jobs, and

scheduling jobs to execute on specific nodes. Note that using these API functions to

access data structures within the cluster-level scheduler (such as job queues and node

lists) avoids race conditions and improper data accesses.

100

1: Scheduler_Main() {

2: //Register callback functions

3: mccsSetCallback(Termination, Term_CB());

4: mccsSetCallback(NewJobArrival, NewJob_CB());

5: mccsSetCallback(JobComplete, JobComp_CB());

6:

7: //Retrieve list of compute nodes

8: NodeList nodeList;

9: mccsGetNodeList(&nodeList);

10:

11: while (SchedulerActive) {

12: if (UnassignedJobQueue.empty)

13: wait for signal

14: //Fetch a job from unassigned-job queue

15: Job job;

16: mccsRemoveJob(&job, UnassignedJobQueue);

17: //Perform round-robin node assignment

18: do {

19: Node node;

20: foreach node in the nodeList

21: mccsAddNodeToJob(job, node, 1);

22: } while (remainingProcesses(job) > 0);

23: mccsAddJob(job, AssignedJobQueue);

24: //Configure nodes and start the job

25: mccsConfigureNodes(job);

26: mccsStartJob(job);

27:

28:

} }

29: //Callback functions

30: Term_CB(void *arg) { SchedulerActive = false }[1, 2]

31:

32: NewJob_CB(void *arg) {

33:

34:

 Enqueue the job in UnassignedJobQueue

 and send a notification signal }

35:

36: JobComp_CB(void *arg) {

37: Notify user about job completion }

Listing 4-1 – Simplified implementation of a round-robin scheduling library

101

Callback Events and Functions: The scheduler can interact with the scheduling library

by notifying the occurrence of events. These events can be originated both at the cluster-

and at the node-level, and include: job submissions, job priority change requests from

users, job completion notifications from compute nodes, profile information receipt from

compute nodes, and termination requests. User-defined callback functions allow the

scheduling library to react to these events. These callback functions must be registered

and associated to events by invoking the mcssSetCallback primitive.

Listing 4-1 illustrates the use of the described API on a round-robin scheduling

library. The library first registers the required callback functions (lines 2-5), that are

implemented at lines 29-37. Then, it retrieves the list of nodes available for scheduling

(lines 7-9). The core of the scheduling process is implemented at lines 11-27. Jobs to be

scheduled are extracted from the UnassignedJobsQueue (line 12) and moved to the

AssignedJobQueue (line 23) after consideration. The mccsAddNodeToJob function

assigns jobs to nodes one process at a time (3rd parameter of the function call) in a

round-robin fashion (lines 19-21). The mccsConfigureNodes and mccsStartJob functions

(lines 25-26) trigger the execution of the scheduled processes on the identified nodes.

4.3 Scheduling Policies

In this section we present two scheduling policies for heterogeneous CPU-GPU clusters,

namely: co-location-based and latency-reduction-based scheduling. The former aims to

maximize the overall throughput by minimizing the communication latency and enabling

GPU sharing among processes; the latter seeks to reduce the application latency observed

by users. These two policies are implemented in separate scheduling libraries using the

API described above.

102

4.3.1 Co-locating Scheduler

Modern high-performance computing clusters tend to be equipped with multiple GPUs

per node. In the presence of multi-core nodes with multiple GPUs, communication costs

can be reduced by scheduling multiple processes from the same application onto the same

node. Especially in the presence of communication-intensive applications, co-locating

application processes on a node can significantly increase the performance by reducing

the communication costs (since intra-node communication is significantly faster than

inter-node communication). By allocating one GPU to each process requiring it,

traditional cluster resource managers such as TORQUE can co-locate only as many

processes as GPUs available on a node. By leveraging the GPU sharing mechanisms

provided by our node-level runtime (see Section IV), our cluster-level scheduler can

overcome this limitation, and co-locate a larger number of processes from the same

application. Although GPU sharing may degrade the performance of individual

processes, it has the potential for increasing the node utilization and the overall

performance, and decreasing the jobs queuing time.

To provide an idea of the effect of process co-location, we run three applications,

each with 8 processes, on a 3-node cluster. We tested several process-to-node mappings

(using from 1 to 3 nodes per experiments). Each node contains 2-4 GPUs: the details

about the applications and the cluster setup are provided in Section 4.4. The applications

were run separately from one another. Figure 4-2 shows the execution time with different

mapping strategies. The number of processes mapped onto each node is indicated in

square brackets. MM and NW are communication intensive, whereas ADFA is a compute

intensive application. As can be seen, the communication-intensive applications fail to

103

scale to multiple nodes. On the other hand, being compute intensive, ADFA performance

scales when the application is assigned multiple nodes (and, as a consequence, more

GPUs). For configurations using the same number of nodes, the performance depends on

the process-to-node assignment, since the nodes differ both in the number and the

compute capability of the GPUs (see Table 4-3 for details). In general, more powerful

nodes are expected to handle more processes. To summarize, the optimal scheduling

policy depends both on the nature of the application (communication vs. compute

intensive) and on the compute capability of the nodes.

We make our co-location-based scheduling policy both application- and

heterogeneity-aware. The communication vs. computation characteristic of the

application can be provided either by static or by dynamic profiling (in the latter case,

profiling data are collected at runtime on a few iterations of the application). In our

experiments, we assume that this profiling information is available a priori, and does not

Figure 4-2 – Performance of three benchmark applications running with 8

processes on different node configurations (from 1 to 3 nodes). Nodei[j] indicates

that j processes are run on Nodei.

104

need to be measured at runtime. In order to handle heterogeneity, we assign different

weights to the compute nodes according to their compute capability (e.g., the overall

number of available GPUs or GPU cores) and sort the nodes based on these scores.

During scheduling, we prioritize more powerful nodes.

Listing 4-2 shows a simplified pseudo-code of the co-location-based scheduling

library, where co-location decisions depend on the application name, and co-located

processes of an application are all scheduled onto a single node. In our implementation,

we allow a less strict notion of co-location, whereby the number of nodes assigned to an

application is bounded, but not necessarily equal to 1 (see Section 4.4).

105

1: Scheduler_Main() {

2: //Initialization

3: Setup node weights and sort nodes

4: mccsSetCallback(…);

5:

6: while(SchedulerActive) {

7: if (UnassignedJobQueue.empty)

8: wait for signal

9: Node node; Job job;

10:

11: //Retrieve a job from unassigned job queue

12: mccsRemoveJob(&job, UnassignedJobQueue);

13:

14: //Determine whether to co-locate all

15: bool colocate = (job.name = “ADFA”)? F:T;

16:

17: int totalGpu = 0;

18: if (colocate) {

19: Node selected;

20: //Find the node with maximum score

21: foreach node in nodeList {

22: int nAvailGpu = NodeWeight(node) –

23: NumAssignedProcesses(node);

24: if (nAvailGpu > totalGpu){

25: selected=node; totalGpu=nAvailGpu;

26: } }

27: //If GPUs are available, assign job

28: if (totalGpu > 0)

29: mccsAddNodeToJob(job, selected,

30: job.numProcesses);

31: } else {

32: //Find available GPUs on all nodes

33: foreach node in nodeList {

34: int nAvailGpu = NodeWeight(node) -

35: NumAssignedProcesses(node);

36: totalGpu += nAvailGpu;

37: if (nAvailGpu <= 0) continue;

38: mccsAddNodeToJob(job,node, nAvailGpu);

39: }

40: //let remaining processes share GPUs

41: if (remainingProcess(job) > 0) {

42: Assign processes to nodes round-robin

43: } }

44: //if cannot allocate resources for the

45: //job, cancel the previous assignment.

46: if (totalGpu == 0) {

47: mccsRemoveAllNodesFromJob(job);

48: mccsAddJob(job, UnassignedQueue)

49: } else {

50: mccsAddNode(job, AssignedQueue);

51: }} }

Listing 4-2 – Simplified implementation of the co-location-based scheduling

library

106

4.3.2 Latency-reducing Scheduler

The described co-location-based scheduling policy, by leveraging GPU sharing, improves

the overall throughput of the cluster at the cost of increased execution time of individual

applications. As can be observed in Figure 4-2, the considered applications have different

running times: specifically, MM and NW are short-running jobs, while ADFA is long-

running. In the experiment in Figure 4-2, these applications are run in isolation. However,

when different jobs compete for resources, long-running jobs can severely lower the

performance observed by short-running jobs. Specifically, treating short- and long-

running jobs the same way may create unfairness in resource utilization and unacceptable

Quality-of-Service to the users submitting short-running applications. Here, we define

Quality-of-Service as the ratio between the execution time on a shared environment and

the execution time on a dedicated cluster. Based on this definition, users submitting

short-running applications expect their jobs to complete in a short time.

We extend the co-locating scheduler to also reduce the overall latency observed

by the users, and we refer to the new policy as latency-reducing scheduler. We assume

the presence of profiling information that allows distinguishing between short- and long-

running jobs depending on the nature of the application and the size of the input dataset.

The latency-reducing scheduler prioritizes short-running jobs in two ways: (i) by

appropriately sorting the queue of pending jobs, and (ii) by temporarily suspending long-

running jobs when all GPUs are occupied and short-running jobs need to be scheduled.

Listing 4-3 shows the modifications performed to the co-locating scheduler to

implement latency-reduction. In particular, the modified portion of the code starts at line

107

44. The newly added lines, which prioritize short-running jobs and suspend long-running

ones when all GPUs are occupied, are shaded in grey. Note that fairness could be

improved also by limiting the resources assigned to long running jobs (rather than

completely suspending them). This can be achieved by modifying the second parameter

of the mccsSetDeviceLimit call at line 55. Finally, note that the temporary suspension (or

reassignment to fewer GPUs) of long-running jobs is made possible by the preemption

mechanism implemented within our node-level runtime component (see Section 4.4).

44: //if cannot allocate resources for the

45: //job, cancel the previous assignment,

46: if (totalGpu == 0) {

47: mccsRemoveAllNodesFromJob(job);

48:

49:

 //prioritize short-running jobs

 if (job.short_running) {

50: mccsAddJobToHead(job,UnassignedQueue);

51:

52: //Search long-running job to suspend

53: foreach job in AssignedQueue {

54: if (job.long_running)

55:

56:

57:

 mccsSetDeviceLimit(job, 0);

 }

 // hold long-running jobs

58: } else

59: mccsAddJobToTail(job,UnassignedQueue);

60: } else {

61: mccsAddNode(job, AssignedQueue);

62: }} }

Listing 4-3 – Extensions to the co-location-based scheduling library to implement

the latency-reduction policy

108

 MM NW ADFA

Number of Processes Configurable Configurable Configurable

Communication Type
MPI_Scatter,

MPI_Gather,

MPI_Scatter,

MPI_Gather
MPI_Gather,

Sensitivity
Communication

sensitive

Communication

sensitive

Computation

sensitive

Size of MPI Transfer per

iteration
800 MB 100-200 MB 8 MB

Number of iterations 2-8 15-30 1-2

Table 4-2 – Summary of benchmark characteristics

4.4 Experimental Results

4.4.1 Benchmark Applications

We designed a hybrid MPI-CUDA benchmark that consists of three applications: Matrix

Multiplication (MM), Needleman-Wunsch (NW), and the ADFA compression algorithm

[66]. Our benchmark applications use MPI to distribute work among nodes and CUDA to

offload computation to GPUs. These applications alternate inter-node communication and

CPU-GPU computation phases (including data transfers between CPU and GPU). They

mainly use scatter and gather as communication primitives. Below, we provide more

detail on the three applications. Table 4-2 shows a summary of their main characteristics.

In all cases, the duration of the GPU computation phases depends on the input dataset.

Matrix Multiplication (MM): Matrix multiplication is an iterative application

that multiplies N × I pairs of matrices using P processes over I iterations. At the

beginning of each iteration, N matrices are equally distributed among the P available

109

processes using the MPI_Scatter primitive. Each process is executed on a single GPU.

For every iteration, each process transfers N/P pairs of matrices from CPU to GPU,

performs the matrix multiplications on GPU and copies the product matrices from GPU

to CPU. At the end of each iteration, the computed matrices are transferred to the root

process using the MPI_Gather primitive, which also provides an implicit barrier

synchronization among processes. The size of the matrices can be configured by the user.

In our experiments, we run MM with 48-196 pairs of matrices, each of size 1,600 x

1,600. This results in about 800 MB of MPI data communication per iteration. The

overall execution time is dominated by this inter-process communication, making the

MM application communication sensitive. We run a number of iterations varying from 2

to 8 depending on the experiment.

Needleman-Wunsch (NW): This application performs the all-to-all pairwise

alignments of large datasets of biological sequences using the Needleman Wunsch

algorithm [67, 68]. We use MPI to distribute the input sequences to all available

processes and CUDA to compute each alignment matrix. Like matrix multiplication,

Needleman-Wunsch is iterative and computes N × I pairwise comparisons of sequences

of length L over I iterations. At the beginning of each iteration, N sequence pairs are

equally distributed among P available processes using the MPI_Scatter primitive. For

every iteration, each process transfers N/P pairs of sequences from CPU to GPU,

performs sequence alignment on the GPU, and copies the alignment matrices from GPU

to CPU. At the end of each iteration, the alignment matrices are transferred to the root

process using the MPI_Gather primitive. The length of the sequences and number of

110

iterations can be configured by the user. In our experiments, we use sequences varying

from 500-1,000 bases in length, and a number of sequences varying from 2,400 to 7,200.

This results in about 100-300 MB of MPI data communication per iteration. Similar to

matrix multiplication, the inter-process communication dominates the computation time

making NW communication sensitive.

Amortized time−bandwidth DFAs (ADFA): ADFA is a technique to compress

Deterministic Finite Automata that accept large sets of regular expressions [66]. In our

hybrid MPI-CUDA ADFA implementation, we maintain a work queue containing N

input DFA files. At each iteration, P DFAs are removed from the work queue and each of

them is assigned to a different MPI process for ADFA compression. At the end of each

iteration, an MPI_Gather primitive transfers the result of ADFA compression into a

single array to the root process. The application terminates once all DFAs from the work

queue have been processed. There is an implicit work imbalance since the execution time

of each process varies depending on the type of GPU on which it is executed. Some

processes might lie idle at the gather stage until other processes reach that stage. The

inter-process communication is limited: differently from MM and NW, ADFA is

compute intensive. In our experiments, we use DFAs with 30,000 states and a number of

such inputs varying from 8 to 16.

111

Node Attributes Values

Node1 Type 8-core Intel Xeon E5 @ 2.4 GHz, 12 MB Cache

Memory 48 GB

GPUs 4

GPUs

Nvidia GeForce GTX 480 (Fermi)

15 SMs x 32 cores

1 GB Global Memory

Node2 Type 12-core Intel Xeon E5 @ 2.00 GHz, 15 MB Cache

Memory 64 GB

GPUs 3

GPUs

Nvidia Tesla K40c (Kepler)

15 SMs x 192 cores @ 876 MHz

12 GB Global Memory @ 3004 MHz

Nvidia Tesla C2075 (Fermi)

14 SMs x 32 cores @ 1147 MHz

5.6 GB Global Memory @ 1566 MHz

Nvidia Tesla C2070 (Fermi)

14 SMs x 32 cores @ 1147 MHz

5.6 GB Global Memory @ 1494 MHz

Node3 Type 12-core Intel Xeon E5 @ 2.10 GHz, 15 MB Cache

Memory 64 GB

GPUs 2

GPUs

Nvidia Tesla K20c (Kepler)

13 SMs x 192 cores @ 706 MHz

5 GB Global Memory @ 2600 MHz

Tesla C2050 (Fermi)

14 SMs x 32 cores @ 1147 MHz

2.8 GB Global Memory @ 1500 MHz

Table 4-3 – High-end cluster setup

Attributes Type-I Type-II

CPU

Type Intel Core 2 Quad Q9400 @

2.66 GHz

Quad-core Intel ® Xeon E5 @ 2.80

GHz

Memory 4 GB 4 GB

GPU

Model Nvidia Quadro 2000 Nvidia Geforce GTX 460

SMs / # cores 4/192 @ 1.2 GHz 7/336 @ 1.4 GHz

Memory 1 GB @ 1.3 GHz 1 GB @ 1.8 GHz

nodes 5 3

 Table 4-4 – Commodity cluster setup

112

4.4.2 Experimental Setup

We conducted experiments on two clusters: a commodity cluster consisting of eight

workstations, each equipped with a quad-core CPU and a low-end Fermi GPU, and a

high-end cluster comprising three HPC servers, each equipped with a hyper-threaded 8-

or 12-core CPU and 2-to-4 Nvidia GPUs. Table 4-4 andTable 4-3 detail the setup of these

clusters. As can be seen, the two clusters are heterogeneous both in terms of CPUs and

GPUs. The nodes in the clusters are interconnected through Gigabit Ethernet. The

operating system used is Ubuntu 12.04 on the commodity cluster, and CentOS 5/6 on the

high-end cluster. CUDA 5.5 is installed on all machines.

4.4.3 Analysis of Co-location

Figure 4-2 motivates the advantages of co-locating processes belonging to the same job

on nodes equipped with multiple GPUs. We now study the effect of co-location on both

high-end and commodity clusters. In particular, we measured overall throughput of

different co-location-based policies as normalized overall execution time. In Figure 4-3,

we show results reported by bounding the number of nodes used by each job to 1, 2 and

3. Each job spawns 4-to-8 processes. The results are normalized with the 1-node co-

location policy. Note that, in 1- and 2-node co-location, nodes are selected in round-robin

fashion based on GPU availability.

The results show that, independent of the number of GPUs installed on each node,

it is always better to co-locate the processes of communication-sensitive applications

(MM and NW) on a single node. On the other hand, the performance of the compute

intensive ADFA application is not significantly affected by the degree of co-location,

113

especially on the commodity cluster. However, we observed that the communication cost

of ADFA dominates the computation cost in the high-end cluster whereat ADFA turns to

be communication-intensive application. In all cases, GPU sharing helps the performance

by increasing the GPU utilization.

4.4.4 Determining the Weights for the Nodes

The different compute capabilities of the GPUs within each cluster create performance

heterogeneity. As explained in Section 4.3, our scheduling policies use weights

(a) High-end cluster

(b) Commodity cluster

Figure 4-3 – Co-location-based scheduler with relaxed constraints (1, 2 and 3

nodes/job allowed)

114

associated to each node to capture this heterogeneity. We perform an experiment (Figure

4-4) to determine the best weight assignment for the nodes in the considered clusters. We

will then use the determined weight assignment in the remaining experiments. This

experiment is run on 6 instances of each application, each running 4-8 processes.

In the first weight assignment, WG1, the weights associated to the nodes

corresponds to the number of GPUs on them. On the high-end cluster, for example, WG1

= ([Node1:Node2:Node3] = [4:3:2]). We expect this scoring scheme to be sub-optimal

since most of the time faster GPUs will be underutilized. We then perform experiments

where we adjust the weights depending on the compute capabilities of the GPUs. The

second set of weights WG2, ([Node1:Node2:Node3] = [4:8:4] on the high-end cluster), is

based on the number of streaming multiprocessor and cores of the GPUs installed on each

node. This set of weights yields to better results on all applications except NW. The third

set of weights WG3 ([Node1:Node2:Node3] = [8:4:4] on the high-end cluster), which

considers both the number of GPUs and their cores, yields to better results on all

applications. The performance degradation for NW comes from the mismatch

assignments of jobs to nodes resulting in slower nodes (Node2 and Node3) handling more

work.

115

4.4.5 Experiments on Heterogeneous Workloads

We now want to evaluate the performance of our scheduling schemes on mixed

workloads. In particular, we run two sets of applications: 6 jobs on the high-end and 8

jobs on commodity cluster. The sequence of the job submission is shown in Table 4-5.

As a baseline, we construct a batch-scheduling library that emulates the behavior of

TORQUE: it assigns the processes of each job to GPUs in a round-robin fashion, without

performing GPU sharing at the node level.

(a) High-end cluster

(b) Commodity cluster

Figure 4-4 – Throughput for different sets of weight assignments

116

Figure 4-5 shows the results reported on high-end and commodity clusters,

respectively. The two charts report the normalized throughput for the whole workload, as

well as the average Quality-of-Service (measured in terms of application execution time)

experienced by long- and short-running jobs. Throughput results are normalized to the

throughput of the batch scheduler whereas Quality-of-Service results are normalized to

one when the applications run in dedicated environment. Recall that, according to the

QoS definition in Section 4.3.2 the optimal QoS value is 1 (which indicates no

performance degradation with respect to a dedicated environment). The results show that,

when compared to batch scheduling, co-location- and latency-reduction-based scheduling

improve the overall throughput by a factor 1.5x and 1.2x, respectively, on the high-end

cluster, and by a factor 2.5x and 2.45x, respectively, on the commodity cluster. This is

because that batch scheduler fails to consider the heterogeneity present in the clusters,

distributes the work uniformly to all the GPUs, and underutilizes some of the devices. In

addition, the batch scheduler is unfair: it provides good QoS to long-running jobs while

penalizing short-running ones. By allowing GPU sharing between long- and short-

running jobs and thus letting short-running jobs move ahead, the co-location-based

scheduler improves the average QoS of short-running jobs, thus providing more fairness.

High-end
ADFA

[8]

MM

[4]

NW

[4]

MM

[4]

NW

[4]

MM

[4]

Commodity
ADFA

[8]

MM

[4]

NW

[4]

MM

[4]

NW

[4]

ADFA

[8]

NW

[4]

NW

[4]

Table 4-5 – Sequence of jobs submitted (the number of processes spawned is

indicated in square brackets)

117

The latency-reduction-based scheduler further improves fairness by reducing the

difference in average QoS experienced by long- and short-running applications.

(a) High-end cluster

(b) Commodity cluster

Figure 4-5 – Overall throughput and QoS for the heterogeneous workload

summarized in Table 4-5.

118

CHAPTER 5

INTER-NODE VIRTUAL MEMORY PROGRAMMING

MODEL

5.1 Objectives

As we have explained in the introduction, the programming of CPU-GPU cluster

involves several issues.

First, hybrid high-performance computing clusters may present hardware

heterogeneity at different granularities: besides consisting of nodes comprising both

CPUs and GPUs, they can include nodes with different hardware configurations and

GPUs with different compute capabilities even on a single node. The above programming

models offer static mechanisms for mapping work to compute elements and require

substantial effort from the programmer to implement adaptive scheduling mechanisms

within the application. This limits the performance portability of GPU-accelerated

applications distributed across clusters with different hardware configurations.

Second, the above programming models do not provide easy-to-use dynamic load

balancing mechanisms. While load balancing schemes can be embedded in the

application, they come at the cost of significant code complexity. In addition, inter-

application load balancing requires the use of cluster resource managers such as

TORQUE and SLURM. Unfortunately, these scheduling frameworks offer only basic

119

support for heterogeneity. In order to provide load balancing in heterogeneous settings,

these tools require the integration with recently proposed GPU virtualization frameworks

[1, 27, 30, 34, 69-71]; however, these frameworks are still at a prototype phase.

Finally, the above programming models expose disjoint memory addressing

spaces to programmers. Since CPUs and GPUs have their own memory spaces,

programmers usually need to explicitly manage data objects in different memory spaces.

In addition, MPI assumes a private memory space on each process. Furthermore, these

programming models do not support the concept of shared objects: data objects belong

entirely to a task (or process) in a distributed application and cannot be shared among

tasks. Not only does this assumption complicate programmability, but it can also lead to

inefficiencies in terms of memory utilization. For example, multiple tasks executing on

the same GPU will need to duplicate even read-only data objects.

In this work, we aim to overcome these limitations. To this end, we propose Inter-

node Virtual Memory (IVM) - a programming framework for distributed applications that

provides a shared memory abstraction across compute resources and offers support for

dynamic load balancing within applications. Our framework presents the following

distinctive features. First, it reconciles memory spaces and provides the view of a single

virtual memory space across nodes and compute resources. Second, it provides a unified

view of compute resources and treats CPUs and GPUs similarly. Third, it supports one-

sided communication primitives, which simplify the design of memory consistency

policies. Fourth, it supports dynamic process creation (DPC), a mechanism to facilitate

dynamic load balancing. Finally, our framework is designed for integration with cluster-

level scheduling systems that allow inter-application scheduling and load balancing.

120

We summarize our contributions as follows:

 We propose IVM - a novel programming framework which consists of a shared

memory-based programming model and a runtime system. IVM increases the

programmability of heterogeneous distributed applications and offers easy-to-use

support for dynamic load balancing.

 We propose two self-tuning load balancing schemes based on our programming

model and demonstrate their use.

 We evaluate our framework on four distributed applications with different

characteristics. Besides increasing programmability, our framework improves the

performance up to 1.74x over using MPI over OpenMPI.

5.2 Background and Motivations

5.2.1 Traditional Programming Models

Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) are the

two most popular programming models for distributed applications. In this work, we use

OpenMPI [72] and OpenSHMEM [73] as reference programming frameworks based on

the MPI and PGAS standards, respectively. The execution of distributed applications

under these frameworks is broken into multiple parallel processes, which alternate

computation and communication phases. The main difference between MPI and PGAS

lies in the type of communication primitives provided to allow information exchange.

Specifically, MPI employs a two-sided communication paradigm: processes exchange

information through primitives such as send and receive, which require intervention from

both sending and receiving parties. PGAS adopts one-sided communication primitives

121

Figure 5-1 – Overall execution time of MPI-CUDA implementations of the

Himeno and Needleman-Wunsch benchmarks under different process-to-node

assignments. In all cases, eight processes are run on two heterogeneous nodes

(Host-I and Host-II)

such as put and get. These primitives allow a process to write and read information from

the address space of a target process without its intervention.

5.2.2 Load Balancing

Distributed applications running on heterogeneous clusters may experience two kinds of

load imbalance: intra- and inter-application imbalance. The former may occur within an

application when its processes experience performance heterogeneity or when the amount

of work handled by different processes is not uniform. The latter is due to interference

among concurrent applications competing for shared compute resources [70]. In both

cases, load imbalance can cause resource underutilization and degraded application

performance. In this work, we focus on addressing intra-application load imbalance.

On heterogeneous clusters, intra-application imbalance is more likely to occur in

the presence of applications with frequent synchronization and inter-process

communication. When synchronization or communication is required, processes

executing on more powerful resources will need to wait for processes executing on less

122

powerful ones. This load imbalance caused by performance heterogeneity arises from

static assignment of tasks (or processes) to compute resources. In general, load balancing

can be achieved either by dynamically assigning workloads to compute resources, or by

statically assigning different amounts of work according to the performance of the

compute resources.

MPI and PGAS do not provide a straightforward mechanism to dynamically

assign workload to compute resources. The programmer must explicitly embed load

balancing schemes within the application, which often comes at the cost of increased

code complexity [74]. Alternatively, load balancing can be achieved by running basic

MPI and PGAS applications on top of scheduling and virtualization frameworks for

heterogeneous clusters. Recently, a mechanism to dynamically spawn processes has been

introduced in the MPI-2 standard [75], thus providing a natural way to embed load

balancing in the application. However, the use of this feature requires non-trivial coding

effort: because parent and child processes belong to different MPI groups, the user is left

with the burden of using MPI intra- and inter-communicators for inter-process

communication. In addition to increasing the code complexity, the instantiation and

handling of inter-communicators can add execution overhead to the application.

Statically assigning different amounts of work to distinct compute resources

requires collecting profiling information on the underlying hardware. Figure 5-1 shows

the overall execution time of an MPI-CUDA version of the Himeno and Needleman-

Wunsch applications on two nodes with different GPU configurations (as detailed in

Table 5-2). In all cases, the applications are configured to use eight processes. As can be

seen, not only does the execution time depend on the mapping of the workload onto the

123

nodes, but the best assignment is also program-dependent: the optimal number of

processes assigned to nodes Host-I/Host-II is 5/3 for Himeno and 3/5 for Needleman-

Wunsch. Collecting profiling information can be an expensive operation, and must either

be embedded in the application/scheduling framework (online profiling), or be repeated

on each available hardware configuration (offline profiling). The lack of profiling

information on some hardware configurations may cause performance portability issues.

5.2.3 The IVM Programming Framework

The overall goal of IVM is to provide a framework that simplifies the programming and

the effective deployment of distributed applications on CPU-GPU clusters. To this end,

our framework aims to provide a uniform view of computing resources and memory, and

a simple mechanism to embed load balancing within the application. In addition, to allow

inter-application load balancing, our framework must enable seamless integration with

cluster-level schedulers (such as TORQUE and SLURM) and with GPU virtualization

frameworks [1, 27, 30, 34, 69, 70, 74] for distributed CPU-GPU applications. IVM

consists of a programming API and a runtime system.

IVM provides the programmer with a unified view of a shared virtual memory

space across all available compute resources, and an API to access CPUs and GPUs

uniformly. The uniform view of compute and memory resources is also crucial for

supporting dynamic intra-application load balancing. Specifically, IVM supports dynamic

process creation, which can be used to easily embed load balancing within the

application. The dynamic spawning of processes allows runtime redistribution of the

load. The shared virtual memory space simplifies communication, synchronization and

124

sharing of data objects between parent and child processes, and can reduce the overall

memory footprint of the application.

5.3 IVM Framework Design

In this section, we describe our IVM framework in more detail. We start by discussing

IVM’s execution and memory models. Next, we present our system design, including

IVM’s software components. Finally, we illustrate IVM’s programming interface.

5.3.1 Execution Model

We recall that the main goal of the IVM framework is to increase the programmability of

applications running on distributed memory systems that include CPUs and GPUs. This

is done by providing a uniform view of various memory spaces and compute resources.

Specifically, IVM adopts a shared memory model with relaxed memory consistency; the

programmer sees a single virtual memory space across all compute resources – CPUs and

GPUs. Since all compute resources have access to data objects allocated in this virtual

memory space, the programmer can access CPUs and GPUs in a unified way; in the IVM

programming interface, all compute resources are represented by device instances.

Under the IVM framework, an application consists of multiple Processing

Elements (PEs). In essence, a PE is a process that is bound to a specific compute

resource. Figure 5-2 shows the physical view of a compute cluster consisting of

heterogeneous nodes and including different physical memory spaces (to the bottom), and

its abstract view (to the top). As can be seen, IVM provides the view of a virtual memory

space containing shared data objects and accessed by all PEs.

125

Figure 5-2 – IVM’s Execution and Memory Models

Similarly to MPI, a distributed IVM-application is started by executing its

binaries. Upon instantiation the IVM framework will create a single root-PE, which is the

ancestor of all PEs belonging to the application. The root-PE can create its immediate

child-PEs and distribute the work to them. It is possible for the child-PEs to further

spawn additional PEs. In general, the framework allows a PE to spawn one or more PEs,

which can bind to the same or different devices. The IVM framework also provides a

mechanism to synchronize PEs. This mechanism consists of wait and signal primitives

and is similar to POSIX-threads’ conditional variables. For example, a PE can wait for its

children by invoking the wait primitive and specifying the set of PEs to wait on; the

child-PEs can then invoke the signal primitive to notify the waiting PE to continue.

Programmers can also implement their own synchronization mechanisms using IVM’s

shared memory.

5.3.2 Memory Model

Figure 5-2 shows shared data objects accessed by PEs through the virtual memory space.

A data object can be allocated by one and only one PE. Other PEs can gain access to the

126

data object through a mapping operation. Upon allocation, each data object is associated

with an identifier that can be used by the IVM framework to reference that object.

Different PEs can access a data object by providing its identifier to the IVM runtime

through the programming interface. Note that data objects allocated in the virtual space

do not belong to any specific PEs. All PEs will have the illusion that the data objects

were floating singletons residing in the virtual space.

On the top part of Figure 5-2 the virtual memory space contains two data objects

which can be accessed by the PEs. However, the framework needs to manage the

physical data corresponding to each virtual data object. The IVM framework manages the

data objects by transparently allocating memory for them on different physical spaces. As

can be seen in the bottom part of Figure 5-2, there may be multiple physical copies of

each (virtual) data object, and those may reside on different devices If a data object is

accessed by multiple GPUs, each of these GPU will require a copy of the data object in

its physical memory. Physical copies of data objects can be of two kinds: master-copy

and mirror-copy. A master-copy is the copy of the data object that is initially allocated by

the instantiating PE, whereas a mirror-copy is a copy that is created upon a mapping

operation. Mirror-copies are created only if the allocating PE and the mapping PE are

bound to different devices or physical memory spaces. If all PEs are associated to the

same device, only the master-copy will be allocated. These physical copies are not

exposed to the programmer, who sees only the data objects residing in the virtual space.

The IVM framework synchronizes the master- and mirror-copies of data objects

through the put and get primitives. When a PE invokes a put/get operation on a data

object, the entire or part of the master- and mirror-copies of the data object are

127

synchronized. The put/get primitives will have no effect for PEs that share the same

physical copy. Beside simple put/get primitives, gather and scatter operations allow for a

master-copy to synchronize with different mirror-copies and for a master-copy to

distribute contents to different mirror-copies, respectively.

On a node, the framework allocates master- and mirror-copies within Linux’s

shared memory. Therefore, data consistency among PEs sharing the same copy is strict.

This eliminates the need for duplicating data objects for PEs working on the same device

or physical memory space and may reduce the memory footprint of the application. The

allocation method on GPUs is different and will be described in 5.3.4.

5.3.3 System Design

The IVM framework consists of two main components: the runtime library and the

runtime daemon. The IVM runtime library implements the programming API functions

described in Section 0 and listed in Table 5-1. The runtime daemon runs on each compute

node and serves API requests issued by applications. These requests include: PE

registration/deregistration, memory allocation/de-allocation, memory put/get, PE creation

and destruction.

128

(a) System design (b) GPU support

Figure 5-3 – System design and GPU support

Figure 5-3(a) shows the overall design of the IVM framework. As can be seen, a

single instance of the runtime daemon runs on each compute node and serves requests

from the PEs physically residing on that node. Daemons running on different compute

nodes communicate through inter-node communication channels which support Ethernet

networks and Infiniband fabrics. Programmers can specifically choose preferred physical

links to be used for data objects synchronization purposes. For simplicity, we implement

inter-node communication using a master/slave model whereby a single root-daemon

services requests issued by slave-daemons. This simple design adopted in our initial

implementation avoids coherency problems on internal data structures residing on each

daemon; further optimizations will be applied in the future.

As mentioned above, a user starts an IVM application by executing the

application’s binaries. Once the operating system has created a process for the

application, the process will register itself to the daemon running on the local node. The

process and local daemon will be considered the root-PE and root-daemon for the

129

application. The root-PE can request memory allocation, memory mapping, PE-creation,

and PE-destruction. Communication between PEs and their associated daemon are

performed through Linux Inter-Process-Communication (IPC) mechanisms. PEs sends

requests to the daemon by invoking the API functions described in Section 0. If the

servicing daemon is a slave-daemon, it will determine from the type of request whether it

can be serviced locally without the assistance of the root-daemon. If the request needs

assistance from the root-daemon, the slave-daemon will forward the request to it and wait

for a response. Examples of requests that cannot be serviced locally by the slave-daemon

include: PE registration, PE synchronization, setting global attributes, and memory

allocation. Other memory operations, such as memory mapping, physical copy

synchronization, and PE creation can be accomplished without the assistance of the root-

daemon. The local daemon notifies the PEs upon completion of their requests.

When the root-daemon receives allocation requests, it allocates the master-copy

of the data object using Linux shared memory, and it returns the object’s reference to the

requesting PE. At this point, the object is immediately available to all PEs that reside on

the same physical node. However, the object is not allocated on other compute nodes

until one of the remote PEs issues a mapping request for the object. Once the first

memory-map request for a data object is received by a remote daemon, this daemon

allocates a mirror-copy of the data object, synchronizes the content of the mirror-copy

with the master-copy, and returns the reference of the mirror-copy to the requesting PE.

Subsequent mapping requests of the same data object will not incur memory allocation or

synchronization. Further synchronization between data copies requires the use of put and

get API primitives.

130

5.3.4 GPU Support

In the IVM framework, PEs are allowed to share physical data objects (master-/mirror-

copies). However, commonly used GPU software stacks (e.g., CUDA and OpenCL

runtimes) offer limited support for sharing GPU memory across processes. In particular,

the CUDA runtime associates a different memory address space to each process that uses

a GPU. Therefore, a naïve design would allocate on GPU multiple data copies of each

shared data objects – one per PE. This solution would be inefficient in terms of memory

usage, especially when the data objects are read-only. In addition, it would lead to

multiple and unnecessary GPU memory allocations and CPU-GPU data transfers. To

address this issue, we include in our IVM framework one additional component: the IVM

GPU-daemon. This daemon, shown in Figure 5-3(b), follows the design of the GPU

virtualization runtime system proposed in our previous work [1]. Specifically, the IVM

GPU-daemon consists of a frontend library and a backend daemon. The frontend library

intercepts CUDA calls and redirects them to the backend daemon, which decides which

requests should be issued to the CUDA runtime to be executed on GPU. In case of IVM,

CUDA calls are generated only by the IVM daemon. In fact, applications have a uniform

interface to CPUs and GPUs, and access their memories only through IVM API

primitives.

As shown in Figure 5-3(b), the IVM runtime includes two memory paths: one for

PEs associated to CPUs, and the other for PEs associated to GPUs. The PEs executing on

CPU perform memory allocation and mapping through the sole IVM daemon. The

memory-related operations originating from PEs executing on the GPU go first through

the IVM daemon and then through the IVM GPU daemon. When a PE performs a

131

memory operation, the IVM daemon determines the compute resource used by the PE. If

the resource is a GPU, then the IVM daemon generates the required CUDA calls to

complete the operations. These CUDA calls are intercepted by the frontend library and

redirect to the backend daemon of the GPU-daemon. By controlling all memory

operations issued to GPUs, the GPU-daemon can avoid multiple physical copies of data

objects shared by PEs mapped to the same GPU. This can be done by keeping track of the

identifiers of the data objects allocated on each GPU, and selectively ignoring any

subsequent cudaMalloc associated to the same data object. In summary, this design

bypasses the restrictions of the CUDA runtime and allows multiple PEs using the same

GPUs to truly share data objects.

132

API Functions Description

Initialization & Finalization

ivmEnter() Registers a PE - This function should be the first IVM call.

ivmExit() Unregisters a PE - This function should be the last IVM call.

Device Management

ivmCreateDev() Creates a device instance to represent a CPU/GPU.

ivmDestroyDev() Releases resources allocated for a device instance.

Processing Element Management

ivmCreatePEs() Spawns one or more PEs on a specified device.

ivmKillPEs() Terminates one or more PEs on a specified device.

ivmGetMyId() Retrieves identification number of the calling PE.

ivmGetMyGroupId() Retrieves group identification number of the calling PE.

ivmGetMyDevType() Retrieves type of the device to which the calling PE is

bound.

ivmSetMaxPesId() Sets the maximum identification number of PEs that can be

spawned. Subsequent calls to ivmCreatePes() after the

maximum identification number is reached have no effect.

ivmWait() Waits for a specified PE.

ivmSignal() Signals the waiting PE to continue.

Memory Management

ivmMalloc() Allocates memory in the virtual memory space.

ivmFree() Releases memory in the virtual memory space.

ivmMap() Maps to a memory object in the virtual memory space.

ivmMapSubset() Maps a specific region of a memory object.

ivmUnmap() Un-maps from a memory object in the virtual memory space.

ivmSyncPut() Writes content from the specified reference in a mirror-copy

to the specified reference in the master-copy.

ivmSyncGet() Reads content from the specified reference in the master-

copy to the specified reference in a mirror-copy.

ivmSyncPutGroup() Writes content from a list of references in the master-copy to

a list of references in mirror-copies (Scatter/Broadcast).

ivmSyncGetGroup() Reads content from a list of references in mirror-copies to a

list of references in the master-copy (Gather).

Table 5-1 – IVM Programming API

133

5.3.5 IVM Programming Interface

The IVM API, shown in Table 5-1, consists of four categories of primitives: Initialization

& Finalization, Device Management, PE Management and Memory Management.

The ivmEnter and ivmExit primitives belonging to the first category allow the

programmer to register and deregister PEs with the IVM daemon, and their use is similar

to that of MPI’s MPI_Init and MPI_Finalize. These functions do not cause inter-PE

communication or synchronization. PEs belonging to an application can invoke these

functions asynchronously even after Dynamic Process Creation.

The device management primitives are used to create and destroy instances of

devices – either CPUs or GPUs – and allow uniform access to them.

The PE management primitives allow the dynamic creation and release of PEs.

Upon creation, each PE is associated to a specific device and assigned an identification

number and a group identification number by the IVM runtime. The group identifier is

meant for use by scheduling frameworks implemented on top of the IVM layer. The

ivmWait and ivmSignal primitives facilitate synchronization among PEs and offer a

mechanism similar to POSIX threads’ conditional variables.

The memory management functions allow creating data objects within the shared

virtual memory space and managing the consistency between copies of these objects

residing on different physical memory spaces. Each data object is created by a PE

through the ivmMalloc primitive and can be accessed by other PEs by invoking the

ivmMap and ivmMapSubset memory mapping functions. The former allows a PE to

access an object in its entirety whereas the latter allows a PE to access only a contiguous

portion of an object and is intended to reduce data transfers between compute nodes and

134

devices. We recall that each PE is spawned on a specific device; the IVM runtime uses

the association between PEs and devices to determine the physical memory where the

master-copy of each data object should reside. The put and get primitives allow managing

the content of the data objects. Specifically, ivmSyncGet and ivmSyncGetGroup read and

gather data from mirror-copies of a data object to its master-copy, while ivmSyncPut and

ivmSyncPutGroup write and scatter data from the master-copy to mirror-copies. All

GPU-related memory operations generate corresponding CUDA function calls to the

GPU-daemon. References to objects returned by the memory-related primitives can be

used directly in GPU kernel calls. Because the IVM framework supports a one-sided

communication paradigm, peer-to-peer communication must be explicitly coded by the

programmer inside the application by properly using the provided put and get primitives

on shared data objects.

135

Listing 5-1 illustrates the use of the IVM API to implement vector addition. The

code assumes that the application is initially invoked using a single process (the root-PE)

and dynamically spawns two additional processes: one on CPU and one on GPU. The

application invokes ivmEnter and ivmExit to register and unregister PEs (lines 6 and 29,

respectively). Similar to MPI processes, after registration the PEs retrieve the

identification numbers associated to them by the IVM runtime (line 7). Before starting

the computation, the root-PE allocates the required arrays using ivmMalloc (lines 10-12).

These arrays are visible to all compute nodes and devices (CPUs and GPUs), and their

1: #define VECSIZE 5000

2: int id, gid;

3: int * vecA, * vecB, * vecC;

4: int vec_size = VECSIZE * sizeof(int);

5: int main(int argc, char ** argv) {

6: ivmEnter();

7: ivmGetMyId(&id); ivmGetMyGroupId(&gid);

8: if (id == 0) {

9: ivm_device d[2]; ivm_pe pe[2];

10: ivmMalloc(“VECA”, &vecA, vec_size);

11: ivmMalloc(“VECB”, &vecB, vec_size);

12: ivmMalloc(“VECC”, &vecC, vec_size);

13: InitializeVectors();

14: ivmCreateDev(host_0, IVM_CPU, &d[0]);

15: ivmCreateDev(host_1, IVM_GPU_1, &d[1]);

16: ivmCreatePEs(d[0], 1, &pe[0]);

17: ivmCreatePEs(d[1], 1, &pe[1]);

18: ivmWait(pe[0]);

19: ivmWait(pe[1]);

20: } else {

21: int start_pos = (id - 1) * 2500;

22: int end_pos = start_pos + 2500;

23: ivmMap(“VECA”, &vecA, 2500);

24: ivmMap(“VECB”, &vecB, 2500);

25: ivmMap(“VECC”, &vecC, 2500);

26: vectorAdd(start_pos, end_pos);

27: ivmSyncPut(&vecC[start_pos], vec_size);

28: ivmSignal();

29: } ivmExit(); }

Listing 5-1 – Example of use of IVM API: vector addition

136

identifiers VECA, VECB and VECC can be used by the other PEs to get access to them.

At lines 14-15 the root-PE creates instances of devices to represent the CPU and GPU on

which the computation will be performed (IVM_CPU and IVM_GPU_1, respectively). It

then offloads the computation to the child-PEs (lines 16-17) and waits for them to

complete (lines 18-19). The execution of the child-PEs also starts from line 5. Each child-

PE uses its identification number (obtained at line 7) to identify the portion of the arrays

on which it needs to operate (lines 21-22). The mapping operations at lines 23-25 allow

accessing the vectors allocated by the root-PE; if the child-PE does not execute on the

same compute node or device as the root-PE, the mapping operations cause the automatic

creation of a mirror-copy of the arrays. Note that this uniform interface frees the

programmer from the need to account for the physical location of the variables and the

nature of the devices performing the computation. After the computation (line 26), the

child-PEs write the results back to the master-copy via ivmSyncPut (line 27) and notify

the root-PE to continue (line 28). The code assumes the availability of two versions of the

vectorAdd function at line 26: one for CPU and one for GPU. The IVM runtime uses the

PE-to-device association to automatically invoke the proper implementation.

5.3.6 Integration to Higher-level Scheduler

The IVM system and its API are designed to separate the programming of

applications from their scheduling. Resource management frameworks providing inter-

application scheduling and more advanced resource virtualization can be implemented on

top the IVM layer. We are in the process of designing an inter-application scheduling

layer – called Dynamic Global Address Space (DGAS) – on top of the IVM framework.

The design of DGAS framework will be described in chapter 6.

137

1 int main(int argc, char ** argv) { 1 int main(int argc, char ** argv) {

2 ivmEnter(); 2 ivmEnter();

3 Get my ID and my group ID 3 Get my ID and my group ID

4 int *sync; 4 double *time; bool *done;

5 if (id == 0) { /* Root-PE */ 5 if (id == 0) { /* Root-PE */

6 ivmMalloc(&sync, …); 6 ivmMalloc(&time, …);

7 Create data objects 7 ivmMalloc(done, …); *done = 0;

8 Create devices 8 Create data objects

9 for (i=0;i<ITERATIONS;i++) { 9 Create devices

10 Set all slots of sync to 0 10 Create one PE on each device

11 ivmSetMaxPesId(MAX_PEs * (i+1)); 11 for (i=0;i<ITERATIONS;i++) {

12 Create one PE on each device 12 Wait all PEs to fill time

13 Wait until all slots of sync are 1 13 foreach (time[j])

14 } 14 if(time[j]/min(time) < threshold)

15 } else { /* Child-PEs */ 15 Create PE on device[j]

16 ivmMap(&sync, …); 16 }

17 Map data objects 17 *done=1; ivmSyncPutGroup(done, …);

18 int work_id = GetWork(my_id); 18 } else { /* Child-PEs */

19 Perform computation 19 ivmMap(&time, …);

20 if (unassigned work items exist){ 20 ivmMap(&done, …);

21 ivmCreateDev(&d,THIS_HOST,THIS_DEV); 21 Map data objects

22 ivmCreatePEs(d, 1); 22 int work_id = GetWork(my_id);

23 } 23 do {

24 ivmSyncPut(my results); 24 if (# of total PEs has changed)

25 sync[my_id-1] = 1; 25 work_id = GetWork(my_id);

26 ivmSyncPut(&sync[my_id-1], ...); 26 Perform and time computation

27 } 27 time[my_id-1] = reported duration;

28 ivmExit(); 28 ivmSyncPut(my results);

 29 ivmSyncPut(&time[my_id-1], …);

 30 } while(*done == 0);

 31 } ivmExit(); }

(a) Dynamic Spawning (DS-LB) (b) Online Monitoring (OM-LB)

Listing 5-2 – Pseudo-code for load balancing schemes

5.4 Benchmark Applications and Load Balancing

In this section we describe our proposed load balancing schemes and four benchmark

applications that we have implemented with the IVM framework.

5.4.1 Load Balancing Schemes

The IVM framework allows programmers to create PEs dynamically and PEs to

communicate in an intuitive manner. In this section, we propose two load balancing

schemes based on the DPC mechanism and show how they can be easily implemented

using IVM API.

138

Dynamic Spawning Load Balancing (DS-LB) – As mentioned in Section 5.2.2,

the static assignment of work to compute resources can cause load imbalance in the

presence of performance heterogeneity. The DS-LB scheme enables work to be

dynamically assigned to resources. Figure 5-4(a) presents a graphical representation of

DS-LB. At a high level, this mechanism works as follows. The overall computation is

broken into “work-portions”, each executed by a PE. Each device will run a single PE at

a time. When a PE finishes executing the work portion assigned to it, it spawns another

PE on the same device. Because PEs associated to faster devices will spawn more PEs,

more powerful devices will be assigned more work. The size of the work-portions affects

the performance of this scheme. A small number of large work-portions will limit the

degree of load balancing. Conversely, a large number of small work-portions will create

more load balancing opportunities.

(a) Dynamic Spawning (DS-LB) (b) Online Monitoring (OM-LB)

Figure 5-4 – Graphical representation of load balancing schemes

139

Listing 5-2(a) shows the pseudo-code for DS-LB. IVM API calls are bolded.

Lines 6-13 are executed by the root-PE, while lines 16-26 are executed by the child-PEs

(either spawned by the root-PE or by other child-PEs). Variable sync allows

synchronization between root- and child-PEs. This variable, allocated and initialized by

the root-PE (lines 6 and 10), contains a flag for each child-PE. The computation is broken

in iterations (line 9), and up to MAX_PEs are spawned in each iteration (this limit is set

at line 11). In each iteration, the root-PE first spawns a child-PE on each device (line 12)

and then waits for all PEs to complete (line 13). The child-PEs use their identification

number to retrieve the work-portions that they must execute, and then perform the

computation (lines 18-19). Upon completion, if more work is still pending, each child-PE

spawns a new PE on the same device where it resides (lines 20-23). Finally, every child-

PE synchronizes its result with the master-copy (line 24), notifies the root-PE through the

sync variable (lines 25-26), and terminates (line 28).

Online Monitoring Load Balancing (OM-LB) – At the high level, the OM-LB

scheme mitigates the effect of load imbalance by monitoring the performance of different

resources and dynamically assigning more work to more powerful devices. OM-LB limits

the overhead of DPC by spawning fewer PEs and is suitable for applications with small

running times. Figure 5-4(b) shows the graphical representation of the OM-LB scheme.

The root-PE first distributes the work-portions equally to all resources as indicated by the

solid arrows. During execution, the root-PE observes the performances of all PEs and

spawns more PEs on the resources that can handle more work-portions, as indicated by

pitted arrows. Once more PEs are created, all the PEs will involve in the procedure of re-

dividing the work-portions to allow the new PEs to participate in the computation.

140

Differently from DS-LB, in this case all spawned PEs remain active for the entire

computation, and each device can be time-shared by the executing PEs.

Listing 5-2(b) shows the pseudo-code of OM-LB. Lines 6-17 are executed by the

root-PE, while lines 19-30 are executed by the child-PEs. The root-PE first allocates

memory for variables time and done along with required data objects (lines 6-8). Variable

time is an array used for synchronization purposes and holds the computation times

reported back by the child-PEs. Variable done is used to notify the child-PEs when the

entire computation is completed. The root-PE then creates devices, spawns PEs on all

devices and waits for all PEs to report the time (lines 9-10 and 12). Once all PEs have

reported time, it determines the performance differences of all PEs and spawns more PEs

on the resources which cause performance differences larger than a threshold (line 13-

16). The child-PEs map to data objects including variables time and done and perform

work division (lines 19-22). Child-PEs that have already worked in previous iterations

determine whether the number of total PEs is changed and re-divide the work-portions as

necessary (line 24-25). Finally, all the PEs write back the results and report back the time

(line 27-29) The PEs will terminate when the root-PE indicates that the entire

computation is completed through the done variable (lines 17 and 30).

5.4.2 Benchmark Applications

N-body simulation (NBODY) – NBODY is a simulation of a dynamical system of

particles. The computation is performed in time-steps. In each time-step, attributes of all

particles, i.e. position and velocity, are updated.

Our IVM implementation of NBODY uses the DS-LB scheme. At each time-step,

the calculations of particle attributes are divided into a number of work-portions, each

141

containing a subset of particles. The child-PEs retrieve work-portions based on their

identifiers and spawn child-PEs dynamically until the overall computation completes.

The MPI-CUDA is very similar to the IVM version except that subset of particles are

statically assigned to processes.

Dense Matrix Multiplication (DMM) – DMM computes multiplication of two

square matrices.

Our IVM implementation of DMM uses the DS-LB scheme. We divide the result

matrix into MxM work-portions along both dimensions. The root-PE initializes the

matrices and spawns the child-PEs; the child-PEs can then spawn more PEs as necessary.

Because DMM involves large data transfers, we use ivmMapSubset for the child-PEs to

map only the required parts of the multiplicand and multiplier matrices. This allows

breaking a single large transfer into multiple smaller transfers, overlapping computations

and data transfers, and avoiding broadcasting the whole matrices to all PEs. The tiles that

have already been mapped can be reused by other child-PEs on the same physical node.

Our MPI-CUDA implementation is similar to the IVM version except that processes are

statically assigned portions of the result matrix column-wise and progress down the

matrix.

Needleman-Wunsch (NW) – NW is a dynamic programming algorithm widely

used in bioinformatics for comparing biological sequences. More detail can be found in

our previous work [74].

Our IVM implementation of NW uses DS-LB. The root-PE and the child-PEs

perform allocation and mapping of the entire dataset, respectively. Sequence-pairs are

142

divided into multiple work-portions which can be dynamically retrieved by the child-PEs.

In the MPI-CUDA version, the sequence-pairs are distributed to processes equally.

Himeno (HIMENO) – HIMENO is a well-known benchmark application which

implements a computational kernel found in the simulation of incompressible fluids. This

kernel performs stencil computations on a 3-D grid of pressure values. We divide the

computation in work-portions along the Z-axis of the grid. The MPI-CUDA version

assigns to all processes the same amount of work along the Z-axis.

Because the kernel spends a small amount of time in the computation, we use

OM-LB to minimize the overhead of DPC. We enable point-to-point communication for

exchanging XY-planes by allocating a shared buffer. The sending PEs write into the

corresponding slots of the buffer and synchronize the contents with the master-copy.

Then, the contents in the master-copy are distributed to mirror-copies to allow the

receiving PEs to access the corresponding slots. As the computation proceeds through

iterations, the OM-LB scheme keeps performance records of all PEs and spawns more

PEs on faster resources as necessary.

5.5 Experimental Evaluation

In this section we evaluate the performance and effectiveness of the two proposed load

balancing schemes using the benchmark applications described in Section 5.4.2. Our

experiments cover two aspects: (i) the comparison between the IVM and MPI-CUDA

implementations of the applications described above; and (ii) the analysis of the effect of

different parameter settings on load distribution.

143

5.5.1 Experimental Setup

We conducted our experiments on a three-node cluster that includes nine Nvidia GPUs.

Table 5-2 shows the hardware configuration of the compute nodes. As can be seen, the

nodes differ in both the number of GPUs (from two to four) and their compute capability

(e.g. number of cores, memory-speed and core-speed). This hardware heterogeneity can

cause load imbalance within the application. The three nodes are interconnected through

an Infiniband fabric, and they are each equipped with a Mellanox DDR HCA. CentOS

5.1, OpenMPI 1.8.1 and CUDA 6.5 are installed on every node.

Node Attr. Values

Host-I

Type 12-core Intel Xeon E5@2.00GHz, 15MB Cache, 64GB

GPUs

1x Nvidia Tesla K40c (Kepler)

 15 SMs x 192 cores @ 876 MHz

 12 GB Global Memory @ 3004 MHz

1x Nvidia Tesla C2075 (Fermi)

 14 SMs x 32 cores @ 1147 MHz

 5.6 GB Global Memory @ 1566 MHz

1x Nvidia Tesla C2070 (Fermi)

 14 SMs x 32 cores @ 1147 MHz

 5.6 GB Global Memory @ 1494 MHz

Host-II

Type 8-core Intel Xeon E5@2.4 GHz, 12 MB Cache, 48GB

GPUs

4x Nvidia GeForce GTX 480 (Fermi)

 15 SMs x 32 cores @ 1401 MHz

 1 GB Global Memory @ 1848 MHz

Host-III

Type 12-core Intel Xeon E5@2.10GHz, 15MB Cache, 64GB

GPUs

1x Nvidia Tesla K20c (Kepler)

 13 SMs x 192 cores @ 706 MHz

 5 GB Global Memory @ 2600 MHz

1x Tesla C2050 (Fermi)

 14 SMs x 32 cores @ 1147 MHz

 2.8 GB Global Memory @ 1500 MHz

Table 5-2 –Hardware setup

144

NBODY DMM NW

(a) Speedup over baseline MPI-CUDA. The numbers on the first bars indicate the execution time of the baseline MPI-CUDA code.

NBODY DMM NW

(b) Percentage load distribution across hosts

Figure 5-5 – Speedup and load distribution in case of DS-LB

145

5.5.2 Dynamic Spawning Load Balancing (DS-LB)

Performance Comparison – Figure 5-5(a) shows a performance comparison between

the IVM and the MPI-CUDA versions of the three considered applications. The datasets

used in these experiments have the following sizes: 1.2 million particles for NBODY,

matrices of size 18,200×18,200 for DMM, and 4.8 thousand sequence pairs for NW. For

both the IVM and the MPI-CUDA implementations, we vary the number of PEs (or

processes) from 9 (the number of GPUs in the cluster) to 64. In case of MPI-CUDA, the

processes are statically assigned to GPUs in a round-robin fashion. For IVM, we use the

DS-LB scheme. Specifically, we divide the computation into a number of work-portions

equal to the maximum number of PEs that we want to spawn over the execution of the

application. Each PE will handle a work-portion. Initially the root-PE spawns 9 PEs (one

per GPU); child-PEs are then spawned dynamically as needed until the number of PEs

equals that of work-portions. Because the MPI-CUDA applications report the best

performance when running with as many processes as GPUs, we take as baseline the

performance of the 9-process configuration of the MPI-CUDA versions of the code.

Figure 5-5(a) shows the speedup/slowdown of IVM and MPI-CUDA over the

baseline as the number of PEs (processes) varies from 9 to 64. When the number of PEs

equals that of GPUs, IVM does not perform any load balancing. As can be seen, in this

situation the IVM implementation of NBODY and DMM achieves the same performance

as the baseline, while NW achieves slightly lower performance. The baseline execution

time of NW (30.3 seconds) is significantly lower than that of NBODY and DMM (greater

than 700 seconds): the slight performance penalty of the IVM version of NBODY is due

146

to the initialization overhead of the IVM runtime. As shown, while improving

programmability by offering homogeneous access to compute resources and shared

virtual memory, the IVM framework shows performance comparable to OpenMPI even

in the absence of load balancing.

When the number of PEs exceeds that of GPUs, the GPUs are oversubscribed.

MPI-CUDA statically assigns the same amount of work to all GPUs. IVM performs load

balancing by allowing PEs that terminate earlier to spawn more PEs and assign them

work. As the number of PEs increases, the size of the work-portions decreases, leading to

finer-grained load distributions and thus higher degrees of load balancing. However,

excessively increasing the number of PEs leads to high DPC overhead and consequent

performance degradation. As shown in Figure 5-5(a), the use of more PEs than GPUs

degrades performance for MPI-CUDA and improves performance for IVM. Thanks to the

increased level of load balancing, the speedup of IVM over MPI-CUDA increases with

the number of PEs, and reaches an optimal point at 49, 49, and 36 PEs for NBODY,

DMM and NW, respectively. This corresponds to a speedup of 1.50, 1.74 and 1.50,

respectively Due to the DPC overhead, a further increase in the number of PEs degrades

performance. We also note that the use of the ivmMapSubset primitive in the DMM

implementation allows caching and reusing read-only matrices. We observed that this

mechanism reduces the inter-node communication of DMM by 33% to 65% as the

number of PEs increases from 4×4 to 8×8.

Effects on Load Distribution – Figure 5-5(b) shows the percentage load

distribution across the compute nodes for the IVM experiments of Figure 5-5(a).

Specifically, the bars indicate the percentage of the load assigned to each host during

147

execution. As can be seen, the load distribution across nodes varies across applications.

The majority of the load is assigned to Host-I in case of NBODY, and to Host-II in case

of DMM and NW. The presence of heterogeneity among GPUs causes applications with

different characteristics (i.e. compute- vs. memory-bound) to spawn PEs at different

rates, thus affecting the load distribution. These results show that the DS-LB scheme

provides applications with the ability to self-adapt to the available compute resources and

thus achieve performance portability. Finally, we observe that the load distribution

fluctuates when the number of PEs is low and becomes steady when this number

increases. This is due to the finer-granularity work distribution occurring for larger

numbers of PEs. In all cases, the application performance starts to gradually improve

when the load distribution becomes steady. For NBODY, for example, this happens when

the number of PEs is greater than 25; a similar effect can be observed on DMM and NW.

5.5.3 Online Monitoring Load Balancing (OM-LB)

The IVM implementation of HIMENO uses the OM-LB scheme. Figure 5-6(a) shows the

execution time of the MPI-CUDA and IVM versions of HIMENO for different dataset

sizes. Specifically, we fixed the size of the XY-plane to 513×513 and varied the size

along the Z-dimension from 1,024 to 4,096. The numbers above the bars indicate the PEs

spawned on the nodes (Host-I:Host-II:Host-III). Recall that the OM-LB scheme monitors

the execution of all PEs and periodically spawns more PEs on faster compute resources

and redistributes the work among the PEs mapped to these resources. In all experiments,

the root-PE initially spawns 9 PEs (one per GPU), leading to a 3:4:2 (Host-I,Host-

II:Host-III) load distribution. The threshold described in Section IV.A was set to 2 in all

experiments. Because this scheme does not directly control the total number of PEs, in all

148

(a) Execution time for different grid sizes (b) Standard deviation of PE

execution time

Figure 5-6 – Execution time of HIMENO with OM-LB

cases we compare the performance of IVM with the baseline MPI-CUDA code running

with 9 processes (one per GPU). As reported in Figure 5-6(a), the speedup of IVM over

the baseline ranges from 1.00x to 1.34x as the grid size along the Z-dimension varies

from 1,024 to 4,096. The speedup is lower for small datasets, where the overhead of

dynamic process creation, workload redistribution and inter-node communication weighs

more on the execution time. The load distribution becomes more balanced during the

application’s execution. OM-LB spawns more PEs on Host-I and Host-III, which are

equipped with more powerful GPUs.

We expect the PEs to take the same amount of time once the load distribution

reaches a steady state. Powerful GPUs are expected to be time-shared by more PEs. We

confirm this intuition by measuring the standard deviation of the execution time of the

PEs, as reported in Figure 5-6(b). As can be seen, this metric is high during the first few

iterations of the application and decreases during its execution, as the OM-LB scheme

increasingly submits PEs to the powerful GPUs on Host-I and Host-III.

149

5.5.4 Discussion

A limiting factor for the performance of the IVM runtime is the dynamic process creation

overhead, which can reduce the positive effect of load balancing. To see how this

overhead affects the application performance, we performed a set of experiments on

applications that use the DS-LB scheme. In these experiments, we scaled down the size

of the input datasets as follows: 300 thousand particles for NBODY, matrices of size

2,275×2,275 for DMM, and 1.2 thousand sequence pairs for NW. In all cases, we used an

optimal number of PEs. The speedups of IVM over the baseline MPI-CUDA (with 9

processes) are 0.78, 0.34, and 0.55 for NBODY, DMM, and NW respectively. In all

cases, the DPC overhead dominates the computation time and each DPC operation is

estimated to take 0.11 to 0.2 seconds depending on the application (the overhead also

includes users’ code for initializing PEs). This DPC overhead can especially penalize

applications with short running times (less than 30 seconds). However, these short

running applications do not motivate the use of a large number of high-performance

computing nodes.

In the future, we plan to evaluate our framework on larger settings and optimize it

for scalability to large clusters. While applications that require deployment in these

environments are typically long running and therefore less affected by the DPC overhead,

a scalable implementation of our framework requires the optimization of the

communication layer, which affects the overhead for shared virtual memory handling and

dynamic process creation. The implementation of our framework on-top of MPI and the

reuse of communication libraries such as GASNet [76] require significant design and

engineering work, as our shared virtual memory design diverges from existing models.

150

CHAPTER 6

CONCLUSION & FUTURE WORK

GPUs have become the primary computing resource for a large number of scientific and

engineering applications and are increasingly part of HPC clusters. However, the current

GPU software stacks including CUDA and OpenCL view GPU devices as dedicated

accelerators causing performance and underutilization issues in heterogeneous clusters.

Since the existing cluster resource managers rely directly on these software stacks and, as

such, they inherit their view of GPUs and their limitations. The resource managers,

therefore, offer limited and basic support for GPUs.

In this chapter, we first describe a detailed analysis of the limitation of the

existing cluster management and programming frameworks for CPU-GPU clusters. Then,

we describe how we leveraged the lessons learned from this study to propose a

hierarchical scheduling framework and a programming framework that overcome such

limitations. The remainder of this chapter first describes the lessons learned from the

analysis and, then, describes our contributions.

Lessons Learned

Resource Abstraction–Resources in a heterogeneous cluster are structured hierarchically.

In particular, a heterogeneous cluster includes multiple compute nodes wherein each node

consists of multi-core CPUs and a number of GPUs, possibly with different performance

151

capabilities. The management of resources can, therefore, be performed at a coarse- and

fine-grain level. Because of the lack of resource abstraction, existing resource managers

and software stacks cause inefficiencies in the distribution of the load to resources in the

following ways:

 At a fine-grain, the current software stacks including CUDA and OpenCL view GPU

as dedicated accelerator and require users to select and manage explicitly GPUs for

their computations. Since the users have full control on the GPUs, it is not possible

for the system dynamically to perform scheduling and load balancing across GPU

devices. Hence, users may experience performance degradation due to interference

between applications.

 To assign load to compute nodes at a coarse-grain, users need to retain knowledge on

the underlying configuration and be aware of the current load condition of the cluster.

Such information is necessary to make a request to the resource manager in order to

allow the application to execute with minimal performance penalty. Submitting a

non-optimal resource request can cause the user and the service provider to suffer

from low Quality-of-Service and resource underutilization, respectively. In addition,

since the resource managers rely directly on CUDA and OpenCL, their ability to

perform scheduling and load balancing is limited.

Fine-grained Sharing of GPUs – Due to the nature of single- and multi-process

GPU applications, the coarse-grain space sharing mechanism provided by existing

resource managers, which maps only a single process to a GPU, is not adequate to

improve GPU utilization in heterogeneous clusters.

152

Not only does the alternation between phases of applications underutilize compute

resources, but the presence of multi-threaded and multi-process applications that include

communication and synchronization also leads to underutilization in the presence of

intra- and inter-application imbalance. These aspects are not considered by the existing

resource managers and GPU software stacks. Without fine-grained resource sharing, an

application running on a set of dedicated resources (including CPUs and GPUs) will

certainly underutilize both CPUs and GPUs because of these aspects.

Fine-grained sharing, such as time-sharing of a GPU, allows multiple processes to

share the GPU at a finer-grain, which allows the followings to be achieved: (i) better

GPUs utilization, (ii) increased overall throughput, and (iii) improved Quality-of-Service

in some cases. However, time-sharing is limited with CUDA and OpenCL and is not

allowed by the existing resource managers. Although, time-sharing can be used to

address the inefficiencies, it needs to be performed judiciously to avoid the negative

effects on application performance.

Scheduling & Load Balancing – The presence of heterogeneity in a cluster

causes performance bottleneck for both single- and multi-process applications and GPU

underutilization. At the coarse- and fine-grain, a good load balancing is necessary to

appropriately distribute load to nodes and GPUs, respectively. The evaluation of

effectiveness of scheduling and load balancing policies depends on the requirements

posed by the users and the service provider, and these requirements may change over

time. Different scheduling algorithms can be employed in the policies to optimize

specific performance metrics. Flexibility is the key to accommodating the changing needs

of the users and the service providers. Specifically, the effective resource schedulers

153

should provide the ability for administrators to apply specific scheduling schemes, both at

the coarse- and fine-grain, which are particularly optimized for the cluster. In addition,

these scheduling policies should not rely on the input or profiling information from the

users since the information provided by the users may be inaccurate, leading to inefficient

load placement.

Programmability – Distributed GPU applications running in heterogeneous

clusters mainly rely on traditionally programming models, such as MPI and SHMEM,

which do not handle heterogeneity well and expose a complex view of memory spaces.

Because of these complexities, programmers cannot focus on the main algorithms of the

applications and have to spend significant effort on house-keeping tasks such as

distributing load to heterogeneous resources and addressing issues of disjoint memory

spaces. The execution and memory models for distributed applications need to be

revisited to achieve a programming model that facilitates load balancing and provides an

intuitive memory model.

Contributions

At a high-level, the limitations of existing resource management, scheduling, and

programming frameworks are linked to the view of GPU as dedicated accelerators, which

implies the following: First, there is no resource virtualization. Second, resource sharing

is very limited. And, finally, GPU memory is viewed as dedicated GPU resource. These

are the factors that cause inefficiencies and issues mentioned above. To address the issues

of heterogeneous clusters, we view GPUs as primary computing resources by proposing

the following frameworks: (1) a hierarchical scheduling framework for CPU-GPU

154

clusters to address the performance and underutilization issues both at the coarse- and

fine-grained level, and (2) a programming framework (IVM - Inter-node Virtual

Memory) for CPU-GPU clusters that target the programmability/usability issues. The

former can be used both with unmodified GPU binaries or in part as scheduling

framework for the programming framework.

 To resolve issues at the fine-grained level (i.e. load distribution of GPU

resources), we have proposed a runtime system that provides abstraction and

sharing of GPUs while allowing isolation of concurrent applications. Two

fundamental features of our runtime are: (i) dynamic application-to-GPU

binding and (ii) virtual memory for GPUs. In particular, dynamic binding

maximizes device utilization and improves performances in the presence of

concurrent applications with multiple GPU phases and of GPUs with different

compute capabilities. Besides dynamic binding, the virtual memory

abstraction enables the following features: (i) load balancing in case of GPU

addition and removal, (ii) resilience to GPU failures, and (iii) checkpoint-

restart capabilities.

 Next, we have proposed GPU preemption as a mechanism to address the

inefficiencies of scheduling multi-threaded and multi-process applications that

include synchronization. We have implemented GPU preemption in our node-

level runtime system to schedule efficiently multi-process applications on

CPU-GPU nodes and clusters.

155

 To resolve coarse-grained scheduling problems (i.e. assignment of application

processes on compute nodes and CPU resources) we have proposed a

hierarchical scheduling framework for heterogeneous CPU-GPU clusters. Our

system includes a scheduling API that allows administrators to define custom

cluster-level scheduling policies and to configure the sharing and scheduling

schemes used at the node level. We have proposed two cluster-level

scheduling schemes that leverage GPU sharing at the node-level (co-location

and latency-reduction-based scheduling).

 To increase programmability of CPU-GPU clusters, we have proposed Inter-

node Virtual Memory (IVM): a parallel programming model for distributed

applications, which offers a uniform view of compute resources, and a

simplified shared memory abstraction. We also described the design of a

runtime framework that supports IVM. IVM, which is meant to increase

programmability and reduce the complexity of application codes, offers

Dynamic Process Creation (DPC) as a mechanism to facilitate dynamic load

balancing within applications. We designed two self-tuning load balancing

schemes based on DPC and tested them on four benchmark applications.

Future Work

Our hierarchical scheduling framework provides a supporting platform to manage

heterogeneous workloads and resources efficiently. As we mentioned, different

scheduling and load balancing policies can be deployed in our framework. To better

accommodate needs and requirements from users and service providers, some aspects

156

need to be explored to derive scheduling policies for our hierarchical scheduling

platform. For example, analysis of codes at run-time can aid the scheduler in making

scheduling decisions. Since performance of a GPU application varies across GPU

devices, the code analysis can assist the scheduler to select the suitable device for the

application. In addition, the characteristic of application can be estimated by the code

analysis. This allows the scheduler to estimate the amount of resource used on each GPU

(e.g. register, shared-memory, and global-memory) and may allow co-location of

applications on a GPU so as to avoid interference with another applications. Several

aspects such as overall power consumption, data locality, and communication patterns

have effects on application performance and hardware utilization. These aspects can be

further considered to yield scheduling policies at both the coarse- and fine-grain.

Since the design of our IVM programming framework is based on our hierarchical

scheduling framework, our primary goal is to use the programming framework as a

substrate for constructing high-level programming model. We plan to derive a

programming model based on IVM that will further increase the programmability of

heterogeneous clusters and will provide the flexibility to manage resources for concurrent

applications. In addition, it is possible to use the IVM programming framework in a

computation at a larger scale, such as a grid computation. In a grid computation,

heterogeneity is commonly presented among clusters and data transfers between clusters

have to be minimized. We plan to extend our framework to investigate data placement on

clusters to minimize communication and to distribute judiciously the load among clusters.

157

BIBLIOGRAPHY

1) Becchi, M., et al., A virtual memory based runtime to support multi-tenancy in

clusters with GPUs, in Proceedings of the 21st international symposium on High-

Performance Parallel and Distributed Computing. 2012, ACM: Delft, The

Netherlands. p. 97-108.

2) Sajjapongse, K., X. Wang, and M. Becchi, A preemption-based runtime to efficiently

schedule multi-process applications on heterogeneous clusters with GPUs, in

Proceedings of the 22nd international symposium on High-performance parallel

and distributed computing. 2013, ACM: New York, New York, USA. p. 179-190.

3) Top 500 Supercomputing Sites. Available from: http://www.top500.org/.

4) Danalis, A., et al., The Scalable Heterogeneous Computing (SHOC) benchmark

suite, in Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units. 2010, ACM: Pittsburgh, Pennsylvania, USA. p. 63-

74.

5) Owens, J.D., et al., GPU Computing. Proceedings of the IEEE, 2008. 96(5): p. 879-

899.

6) Shuai, C., et al. Rodinia: A benchmark suite for heterogeneous computing. in

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium

on. 2009.

7) GPU Accelerated Applications (Nvidia Catalog). Available from:

http://www.nvidia.com/docs/IO/123576/nv-applications-catalog-lowres.pdf.

8) Torque Resource Manager. Available from:

http://www.adaptivecomputing.com/products/open-source/torque/.

9) SLURM: A Highly Scalable Resource Manager. Available from:

https://computing.llnl.gov/linux/slurm/.

10) Sajjapongse, K., T. Agarwal, and M. Becchi, A Flexible Scheduling Framework for

Heterogeneous CPU-GPU Clusters, in Proceedings of the 21st Annual

International Conference on High Performance Computing. 2014: Goa, India.

11) Juan, W. and G. Wenming. The Application of Backfilling in Cluster Systems. in

Communications and Mobile Computing, 2009. CMC '09. WRI International

Conference on. 2009.

http://www.top500.org/
http://www.nvidia.com/docs/IO/123576/nv-applications-catalog-lowres.pdf
http://www.adaptivecomputing.com/products/open-source/torque/
https://computing.llnl.gov/linux/slurm/

158

12) Lawson, B.G., E. Smirni, and D. Puiu. Self-adapting backfilling scheduling for

parallel systems. in Parallel Processing, 2002. Proceedings. International

Conference on. 2002.

13) Zotkin, D. and P.J. Keleher. Job-length estimation and performance in backfilling

schedulers. in High Performance Distributed Computing, 1999. Proceedings. The

Eighth International Symposium on. 1999.

14) CUDA C Programming Guide. 2015, NVIDIA Corporation. p. 240.

15) Da, L., et al. A distributed CPU-GPU framework for pairwise alignments on large-

scale sequence datasets. in Application-Specific Systems, Architectures and

Processors (ASAP), 2013 IEEE 24th International Conference on. 2013.

16) Compute Unified Device Architecture (CUDA). Available from:

https://developer.nvidia.com/cuda-zone.

17) The open standard for parallel programming of heterogeneous systems. Available

from: https://www.khronos.org/opencl/.

18) IEEE 802.3 Ethernet Working Group. Available from: http://www.ieee802.org/3/.

19) OpenFabrics Alliance. Available from: https://www.openfabrics.org/.

20) Open MPI: Open Source High Performance Computing. Available from:

http://www.open-mpi.org/.

21) MPICH: High-Performance Portable MPI. Available from: https://www.mpich.org/.

22) MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. Available from:

http://mvapich.cse.ohio-state.edu/.

23) Unified Parallel C. Available from: https://upc-lang.org/.

24) Coarray Fortran. Available from:

http://en.wikipedia.org/wiki/Coarray_Fortran#References.

25) Feind, K., Shared Memory Access (SHMEM) Routines, in Proceedings of the 1995

Cray User Group. 1995. p. 303 - 308.

26) OpenSHMEM. Available from: http://www.openshmem.org/.

27) Gupta, V., et al., GViM: GPU-accelerated virtual machines, in Proceedings of the

3rd ACM Workshop on System-level Virtualization for High Performance

Computing. 2009, ACM: Nuremburg, Germany. p. 17-24.

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
http://www.ieee802.org/3/
https://www.openfabrics.org/
http://www.open-mpi.org/
https://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
https://upc-lang.org/
http://en.wikipedia.org/wiki/Coarray_Fortran#References
http://www.openshmem.org/

159

28) Lin, S., C. Hao, and S. Jianhua. vCUDA: GPU accelerated high performance

computing in virtual machines. in Parallel & Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on. 2009.

29) Duato, J., et al. rCUDA: Reducing the number of GPU-based accelerators in high

performance clusters. in High Performance Computing and Simulation (HPCS),

2010 International Conference on. 2010.

30) Giunta, G., et al., A GPGPU transparent virtualization component for high

performance computing clouds, in Proceedings of the 16th international Euro-

Par conference on Parallel processing: Part I. 2010, Springer-Verlag: Ischia,

Italy. p. 379-391.

31) Gelado, I., et al., An asymmetric distributed shared memory model for heterogeneous

parallel systems, in Proceedings of the fifteenth edition of ASPLOS on

Architectural support for programming languages and operating systems. 2010,

ACM: Pittsburgh, Pennsylvania, USA. p. 347-358.

32) Becchi, M., et al., Data-aware scheduling of legacy kernels on heterogeneous

platforms with distributed memory, in Proceedings of the twenty-second annual

ACM symposium on Parallelism in algorithms and architectures. 2010, ACM:

Thira, Santorini, Greece. p. 82-91.

33) Guevara, M., et al., Enabling Task Parallelism in the CUDA Scheduler, in

Programming Models and Emerging Architectures Workshop (Parallel

Architectures and Compilation Techniques Conference). 2009.

34) Ravi, V.T., et al., Supporting GPU sharing in cloud environments with a transparent

runtime consolidation framework, in Proceedings of the 20th international

symposium on High performance distributed computing. 2011, ACM: San Jose,

California, USA. p. 217-228.

35) Feitelson, D.G., L. Rudolph, and U. Schwiegelshohn, Parallel job scheduling

— a status report, in Proceedings of the 10th international conference on

Job Scheduling Strategies for Parallel Processing. 2005, Springer-Verlag: New

York, NY. p. 1-16.

36) Hori, A., H. Tezuka, and Y. Ishikawa, Highly efficient gang scheduling

implementation, in Proceedings of the 1998 ACM/IEEE conference on

Supercomputing. 1998, IEEE Computer Society: San Jose, CA. p. 1-14.

37) Agarwal, S., et al. Co-ordinated coscheduling in time-sharing clusters through a

generic framework. in Cluster Computing, 2003. Proceedings. 2003 IEEE

International Conference on. 2003.

160

38) Anglano, C., A Performance Comparison of Coscheduling Strategies for

Workstation Clusters. Cluster Computing, 2001. 4(2): p. 121-131.

39) Arpaci-Dusseau, A.C., Implicit coscheduling: coordinated scheduling with implicit

information in distributed systems. ACM Trans. Comput. Syst., 2001. 19(3): p.

283-331.

40) Choi, G.S., et al., Performance Comparison of Coscheduling Algorithms for Non-

Dedicated Clusters Through a Generic Framework. Int. J. High Perform.

Comput. Appl., 2007. 21(1): p. 91-105.

41) Dusseau, A.C., R.H. Arpaci, and D.E. Culler, Effective distributed scheduling of

parallel workloads, in Proceedings of the 1996 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems. 1996, ACM:

Philadelphia, Pennsylvania, USA. p. 25-36.

42) Feitelson, D.G. and L. Rudolph, Coscheduling based on runtime identification of

activity working sets. Int. J. Parallel Program., 1995. 23(2): p. 135-160.

43) Gyu Sang, C., et al. Coscheduling in Clusters: Is It a Viable Alternative? in

Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference. 2004.

44) Sobalvarro, P., et al., Dynamic Coscheduling on Workstation Clusters, in

Proceedings of the Workshop on Job Scheduling Strategies for Parallel

Processing. 1998, Springer-Verlag. p. 231-256.

45) Yoo, A. and M. Jette, An Efficient and Scalable Coscheduling Technique for Large

Symmetric Multiprocessor Clusters, in Job Scheduling Strategies for Parallel

Processing, D. Feitelson and L. Rudolph, Editors. 2001, Springer Berlin

Heidelberg. p. 21-40.

46) Mars, J., et al., Bubble-Up: increasing utilization in modern warehouse scale

computers via sensible co-locations, in Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture. 2011, ACM: Porto

Alegre, Brazil. p. 248-259.

47) Mars, J., et al., Contention aware execution: online contention detection and

response, in Proceedings of the 8th annual IEEE/ACM international symposium

on Code generation and optimization. 2010, ACM: Toronto, Ontario, Canada. p.

257-265.

48) Texas Advanced Computing Center. Available from: https://www.tacc.utexas.edu/.

49) Phull, R., et al., Interference-driven resource management for GPU-based

heterogeneous clusters, in Proceedings of the 21st international symposium on

https://www.tacc.utexas.edu/

161

High-Performance Parallel and Distributed Computing. 2012, ACM: Delft, The

Netherlands. p. 109-120.

50) Ravi, V.T., et al., ValuePack: value-based scheduling framework for CPU-GPU

clusters, in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. 2012, IEEE Computer Society

Press: Salt Lake City, Utah. p. 1-12.

51) Ravi, V.T., et al., Scheduling Concurrent Applications on a Cluster of CPU-GPU

Nodes, in Proceedings of the 2012 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (ccgrid 2012). 2012, IEEE Computer

Society. p. 140-147.

52) Irwin, D.E., L.E. Grit, and J.S. Chase, Balancing Risk and Reward in a Market-

Based Task Service, in Proceedings of the 13th IEEE International Symposium on

High Performance Distributed Computing. 2004, IEEE Computer Society. p. 160-

169.

53) Unified Memory in CUDA 6. Available from:

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/.

54) Potluri, S., et al. Extending OpenSHMEM for GPU Computing. in Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on.

2013.

55) Dinan, J., et al. Dynamic Load Balancing of Unbalanced Computations Using

Message Passing. in Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International. 2007.

56) Olivier, S., et al., UTS: An Unbalanced Tree Search Benchmark, in Languages and

Compilers for Parallel Computing, G. Almási, C. Caşcaval, and P. Wu, Editors.

2007, Springer Berlin Heidelberg. p. 235-250.

57) MPI-2 Extensions to the Message-Passing Interface. Available from:

http://www.mpi-forum.org.

58) Kale, L.V. and S. Krishnan, Charm++: Parallel Programming with Message-Driven

Objects, in Parallel Programming using C++, G.V. Wilson and P. Lu, Editors.

1996, MIT Press. p. 175-213.

59) Acun, B., et al., Parallel programming with migratable objects: charm++ in

practice, in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 2014, IEEE Press: New Orleans,

Louisana. p. 647-658.

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://www.mpi-forum.org/

162

60) Kurt, M.C. and G. Agrawal, DISC: a domain-interaction based programming model

with support for heterogeneous execution, in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis.

2014, IEEE Press: New Orleans, Louisana. p. 869-880.

61) HP Helion Eucalyptus. Available from: https://www.eucalyptus.com/.

62) Becchi, M. and P. Crowley, Dynamic thread assignment on heterogeneous

multiprocessor architectures, in Proceedings of the 3rd conference on Computing

frontiers. 2006, ACM: Ischia, Italy. p. 29-40.

63) gVirtuS. Available from: http://osl.uniparthenope.it/projects/gvirtus.

64) BLCR. Available from: http://crd.lbl.gov/departments/computer-

science/CLaSS/research/BLCR/.

65) Rodinia:Accelerating Compute-Intensive Applications with Accelerators. Available

from: https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page.

66) Becchi, M. and P. Crowley, A-DFA: A Time- and Space-Efficient DFA Compression

Algorithm for Fast Regular Expression Evaluation. ACM Trans. Archit. Code

Optim., 2013. 10(1): p. 1-26.

67) Needleman, S.B. and C.D. Wunsch, A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 1970. 48(3): p. 443-453.

68) Needleman, S.B. and C.D. Wunsch, A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 1970. 48(3): p. 443-453.

69) Duato, J., et al., Enabling CUDA acceleration within virtual machines using

rCUDA, in Proceedings of the 2011 18th International Conference on High

Performance Computing. 2011, IEEE Computer Society. p. 1-10.

70) Sajjapongse, K., T. Agarwal, and M. Becchi, A Flexible Scheduling Framework for

Heterogeneous CPU-GPU Clusters, in Proceedings of the 21st IEEE

International Conference on High Performance Computing. 2014, IEEE: Goa,

India.

71) Sengupta, D., et al., Scheduling multi-tenant cloud workloads on accelerator-based

systems, in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 2014, IEEE Press: New Orleans,

Louisana. p. 513-524.

https://www.eucalyptus.com/
http://osl.uniparthenope.it/projects/gvirtus
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page

163

72) Gabriel, E., et al., Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation, in Recent Advances in Parallel Virtual Machine and Message

Passing Interface, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Editors. 2004,

Springer Berlin Heidelberg. p. 97-104.

73) Curtis, T., et al., OpenSHMEM Specification 1.1 Final. 2014.

74) Li, D., et al., A Distributed CPU-GPU Framework for Pairwise Alignments on

Large-Scale Sequence Datasets, in Proceedings of the 24th IEEE International

Conference on Application-specific Systems, Architectures and Processors

(ASAP). 2013: Ashburn, VA.

75) MPI-2: Extensions to the Message-Passing Interface. 2003; Available from:

http://www.mpi-forum.org/.

76) Bonachea, D., GASNet Specification, v1.1, in U.C. Berkeley Tech Report

(UCB/CSD-02-1207). 2002.

http://www.mpi-forum.org/

164

VITA

Kittisak Sajjapongse obtained his Bachelor of Engineering from the Department

of Electrical engineering, Faculty of Engineering, Mahidol University in 2005. After

graduation, he worked as a Design Engineer and a Research and Development Engineer

for 3 years. He then attended graduate school to receive his Master of Science in

Computer Engineering at the Department of Electrical and Computer Engineering,

University of Missouri – Columbia, from January 2008 to May 2010 under Dr. Tina

Smilkstein’s guidance. He continued his Doctoral of Philosophy in Electrical and

Computer Engineering at the same department commencing in May 2010 and graduated

in August 2015 under Dr. Michela Becchi’s guidance.

