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SPIN ANGULAR MOMENTUM TRANSFER

IN MAGNETIC NANOSTRUCTURE

Zhaoyang Yang

Dr. Shufeng Zhang, Dissertation Supervisor

ABSTRACT

Spin angular momentum transfer, or spin transfer, is a short notion of the transfer

of spin angular momentum between the spin polarized current and the magnetization

of ferromagnetic condensates. Spin transfer effect in ferromagnetic nanostructures,

such as Magnetic Tunnel Junctions (MTJ) and Spin Valves, is studied in this disser-

tation. Spin current generates spin transfer torque in ferromagnets, which can induce

magnetization reversal, spin wave emission, as well as self-sustained magnetization

precession in the presence of magnetic field.

The magnetization oscillation in spin valves is referred as the spin transfer os-

cillator (STO). We investigated the magnetization dynamics in STO. We applied a

universal method, Melnikov Integral, to determine three different dynamical phases in

STO, that is, limit cycles, synchronization and chaos. Finite temperature may have

significant effect on STO dynamics. We studied the thermal effect on limit cycles and

chaos.

In MTJ, in addition to spin transfer, energy transfer effect is studied on the

basis of energy conservation. The effect of energy transfer on spin transfer induced

magnetization switching is modeled in terms of an effective magnetic temperature.

xiii



Chapter 1

Introduction

1.1 Spin Angular Momentum Transfer

Spin angular momentum transfer, or spin transfer, is a short notion of the transfer of

spin angular momentum between the spin polarized current and the magnetization

of ferromagnetic condensates. Conduction electrons and magnetization are mutually

dependent due to the exchange coupling between them.

One of the effects of magnetization on conduction electrons leads to the giant

magnetoresistance(GMR) [1, 2]. In ferromagnetic multilayers, when magnetization

configuration of the ferromagnetic layers changes from anti-parallel to parallel, the

resistance drops.

Conversely, conduction electrons can also affect the magnetization. First, the mag-

netization of neighboring ferromagnetic layers, which are separated by a non-magnetic

layer, can be indirectly coupled due to equilibrium conduction electron mediated in-

teraction known as the RKKY interaction; this subject has been extensively studied

in the last decade and we will not focus on this interlayer coupling in this thesis.

What we are interested in is how non-equilibrium conduction electrons affect the

magnetization when an electrical current is turned on. An immediate consequence

of the current is the generation of the Oersted magnetic field which will couple to
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the magnetization through Zeeman interaction. Indeed, almost all present magnetic

devices rely on the current-induced magnetic field to manipulate the states of the

magnetization.

Here, we address an entirely new phenomenon, spin angular momentum transfer.

In a transition ferromagnet, the current is spin-polarized due to spin-split band struc-

ture. When the magnetization varies spatially, the direction of the spin polarization of

the current also varies. Based on the conservation of angular momentum, the change

of spin angular momentum carried by the spin current should be compensated by the

change of the magnetization. Actually, we can view the change of magnetization as

an effect of a spin angular momentum transfer torque; and this torque comes from

the change of the spin current.

To better understand how the magnetization is affected by conduction electrons

via the spin angular momentum transfer torque, we consider a volume across the

interface between the nonmagnetic layer and the ferromagnetic layer in a spin valve

(see the dashed line pillbox in Fig. 1.1). Neglecting spin flipping, we can write down

a continuity equation,
dm
dt

+∇ · Jσ = τ ext, (1.1)

where m is the spin density; Jσ is the spin current density; ∇ is a spatial gradient

operator; and τ ext on the right hand side is the external torque density which might

be caused by external field, damping effect and etc. The second term on the left

hand side, ∇·Jσ can be viewed as a torque. Indeed, this term is defined as the spin

transfer torque (STT),

τ st ≡ ∇ · Jσ. (1.2)

Integrating Eq. (1.2) over the pillbox, we have

Γst = (Jσ
in − Jσ

out) · ex, (1.3)

2



Mp

M

in
J

out
J

Figure 1.1: A trilayer structure constituting of two ferromagnetic layers separated by
a non-magnetic layer. Polarized electron passing through the ferromagnetic layer, its
polarization follows the magnetization orientation. Meanwhile, a spin transfer torque
exerted on the magnetization is induced by the change of spin current, which ensures
the conservation of angular momentum.
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where the current flows in the direction of ex.

Choosing the quantization axis along the magnetization in the ferromagnet, spin-

up and spin-down are two eigenstates. Transverse spin currents are composed of a

combination of these two eigenstates. Since the Fermi wave vectors are different for

spin-up and spin-down in ferromagnets, the phase factors for each state are different.

This induces a decoherence of the precessions of these eigenstates. Thus, transverse

spin current will not persist. On the other hand, longitudinal spin currents are com-

posed of electrons in a pure eigenstate, either spin-up or spin-down. They do not

have the decoherence problem and will persist.

Therefore over the pillbox in Fig. 1.1, longitudinal spin current is continuous

whereas transverse ones are not. The decoherence is fast and the transverse spin

currents are fully absorbed by the ferromagnetic layer within a few nanometers. Thus,

Jσ‖
in · ex = Jσ‖

out · ex (1.4)

Jσ⊥
out · ex = 0. (1.5)

Putting into Eq. (1.3),

Γst = Jσ⊥
in · ex, (1.6)

where Jσ⊥
in is the incident transverse spin current. Γst serves as an input to magne-

tization dynamics, and should be included in the Landau-Lifshitz-Gilbert equation,

dM
dt

= −γM×Heff − αγM× (M×Heff ) + Γst. (1.7)

Here γ is the gyromagnetic ratio; Heff is the effective magnetic field which includes

the external magnetic field, anisotropy and demagnetization field; α is the Gilbert

damping constant.

The first term of Eq. (1.7) accounts for the magnetization dynamics in an effec-

tive magnetic field. It produces a steady Larmor precession. The second term, the

4



Gilbert damping torque will take the magnetization to an orientation so that the

magnetic energy is minimized. The last term, Γst, is shown to have a similar form

as the damping torque (see Eq. (1.8) in next section). Under certain magnetization

configuration and current direction, Γst can drive the magnetization to reverse, or

generate an effect which compensates the damping effect so that steady precessional

states are recovered.

Conventional method to manipulate the magnetization is to apply an external

magnetic field. STT gives an innovational way to control magnetization via current.

STT can induce switchings between two stable states in spin-valves or magnetic tunnel

junctions(MTJ) that constitute memory devices. In magnetic random access memory

(MRAM), STT may be used to write a local nanomagnetic bit without disturbing

its neighboring bits. STT-induced domain wall motion could also have significant

applications in memory devices. STT may enhance the performance of read head in

hard-disks as well. In addition, STT may have great potential applications in on-chip

microwave magnetic field generators.

1.2 Historical Development and Prior Work

GMR effect was discovered only about two decades ago. However, this discovery

boosted the hard disk industry. In 2007, Albert Fert [1] and Peter Grünberg [2]

received Nobel Prize for their original contributions to this discovery.

Spin transfer, the reverse effect of GMR, has a even shorter history. In 1996,

J. C. Slonczewski first derived current driven spin transfer [7]. He predicted two

new phenomena in a magnetic multilayer structure. One is magnetization switching

driven by pulse current, the other is steady precession driven by constant current. In

the same year, L. Berger also predicted that when a dc current traverses an normal-

5



ferromagnetic interface, coherent spin waves can be emitted and a spontaneous mag-

netization precession arises [4].

By assuming ballistic transport and using WKB wave functions, Slonczewski de-

rived that STT takes the following form [7],

Γst = ajM1,2 × (M1 ×M2), (1.8)

where aj is proportional to the current and M1,2 is the magnetization of each ferro-

magnetic layer.

In 1998, Tsoi et al. [1] reported magnetic excitations resulting from injecting high-

density current into a Cu/Co multilayer through point contact made of silver. Such

current driven excitation only takes place in one direction of current. The threshold

current has linearly dependence on applied field.

In 1999, Meyers et al. [6] observed magnetic excitation by passing electronic cur-

rent through a bowl-shaped hole in a Silicon Nitride membrane to a Co/Cu/Co sand-

wich structure. In addition to magnetic excitation, they also observed current-induced

hysteretic magnetic reversal.

During the same phase, STT-induced magnetic excitation has been reported by

Wegrowe et al. in an electroplated Ni wire [7], and by Sun in manganite junctions [8].

The quantitative evidence of STT-induced magnetization reversal was finally ob-

served in 2000, by Katine et al. [9]. They fabricated Co/Cu/Co spin-valve pillars with

about 100 nm in diameter. By using GMR as a probe, they clearly demonstrated the

linear dependence of threshold current density on the applied magnetic field, which

is consistent with STT models.

Since the successful experimental verifications, extensive work have been done to

develop STT model in different aspects, e.g. microscopic calculation [10–12], classical

dynamics derivation [13–20], and etc.
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It is found that magnitude of the switching current depends on the angular

between magnetization [7, 8, 21]. Experiments have verified this angular depen-

dence [22]. Furthermore, STT may comprise not only a Slonczewski term, but also a

significant field-like torque. In 2002, Zhang et al. [23] derived this additional contri-

bution of STT, which is in the direction of

M1 ×M2.

The superposition of the Slonczewski torque and the field-like torque has been shown

experimentally by Tulapurkar et al. in 2005 [24].

Most recently, spin transfer was even extended to antiferromagnets. Wei et al.

proposed a spin transfer across an interface between ferromagnetic and antiferromag-

netic metals [25]. They found that the strength of the exchange bias varies due to spin

transfer effect. They predicted that a spin current generates a torque on magnetic

moments in the antiferromagnet.

1.3 Spin Transfer in Spin-Valve and MTJ

A spin valve consists of one thicker ferromagnetic layer (fixed layer) with a fixed

magnetization and one thinner ferromagnetic layer (free layer) with a free-to-move

magnetization, separated by a non-magnetic layer. When applying a current through

spin valves, the nonequilibrium electrons act as intermedia to transfer angular mo-

mentum between magnetization on the two ferromagnetic layers.

When current passes through a spin valve, spin transfer can induce switching

between two stable magnetic states in the free layer. Applying an external magnetic

field, spin transfer may produce self-sustained magnetization precession.

A Magnetic Tunnel Junction (MTJ) has the similar structure to spin valves, with

the non-magnetic separator replaced by an insulator which forms an energy barrier
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between two ferromagnetic layers. The tunneling electrons experience a voltage bias

between two ferromagnets.

Because of the high magnetoresistance of MTJ, it is preferable to use MTJ instead

of spin valves to as storage element in high-density nonvolatile memory device such

as MRAM.

The experimental confirmations of STT-induced magnetization switching in MTJ

has come later than in spin valves. Recently, groups in Grandis [26–30], Cornell

University [31–33] and Japan [34] have reported magnetization reversal caused by

spin transfer in MTJ using MgO as insulators. By using of MgO as insulators, and

introducing double fixed layer, the critical current of reversal has been significantly

reduced.

Due to the existence of the voltage bias, the underlying physics of spin transfer in

MTJs is much more complicated than in spin valves. One of the complications is the

bias dependence of STT in MTJ. Although Tunneling magnetoresistance (TMR) has

a symmetric bias dependence, STT in MTJ does not. In 2005, Slonczewski predicted

the asymmetric voltage dependence of spin transfer torque in MTJ [35]. In 2006,

Theodonis et al. reported an anomalous bias dependence of the component of STT

that is parallel to the interface [36]. While the torque perpendicular to the interface

exhibits a quadratic bias dependence, the parallel torque exhibits different bias de-

pendence for different magnetization configurations, linear for parallel alignments but

quadratic for antiparallel alignments.

However, in MTJ, there is an important issue accompanying the spin transfer

effect, which is still unsolved: How does the energy transfer between magnets and

tunneling electrons? We will address this problem in Chapter 2.
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1.4 Spin Transfer Oscillator

Another promising application of STT is the spin transfer oscillator (STO). Stable

precessional states can occur when the damping effect is balanced by the STT effect.

These precessional states induced by dc spin current have been demonstrated by

experiments recently [37–39]. The spin transfer induced precession of magnetization

generates ac signal in terms of electrical current and magnetic field. Currently, GHz

[38] signal with narrow linewidth [40] can be generated by nano-scale STOs which

are controlled by applied magnetic field and dc current. STO offers an intriguing

possibility to fabricate on-chip microwave generators.

Once a stable precessional motion occurs under certain dc current and external

field, small perturbations will not change its orbit. This orbit is called a stable limit

cycle. If a magnetization starts from a point not on the limit cycle, it will be attracted

toward the stable limit cycle, and eventually, precess along it.

The stable limit cycles have well defined frequencies. These frequencies can be

observed through the power spectra. For an STO, the measurements of these power

spectra have been reported [37–41]. These frequencies vary with dc currents or ex-

ternal fields.

Due to the nonlinear nature of the underlying equation of motion of STO, syn-

chronization phenomena are expected. Several Experimental observations have been

reported [2, 5, 6, 43, 46], and theoretical studies have been carried out [3, 4, 7, 50–52].

These experiments and theories have been focused on two categories of synchroniza-

tion. The first case is that a single STO is synchronized to an external periodic force

like an ac current. This synchronization occurs when external force has a frequency

that is close to the fundamental frequency of STO. The second case is that two or

more STOs are self phase locking due to the mutual synchronization since these STOs
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have similar fundamental frequencies.

The observation of the first kind of synchronization in STO was reported by

Rippard et al. in 2005 [2]. Later, in 2006, by using a single STO, Sankey et al.

studied the ferromagnetic resonance driven by ac current [43].

In 2005, Kaka et al. and Mancoff et al. independently reported the mutual

synchronization of two coupled STOs that are fabricated by a spin-valve with double

point contacts on the free layer [5, 6]. The coupling between these STOs is mainly

contributed by spin wave interaction [46]. The mutual synchronization of a series of

ten STOs in a circuit has been numerically simulated by Grollier et al. [7]. These

STOs are coupled via microwave current.

STO generates microwave signal but has the drawback of low output power. By

synchronized to a small ac current, output power can be increased and signal noise

can be reduced. Self-phase-locking of coupled STOs generator, can further increase

the output power, which can be enhanced by N2 where N is the number of coupled

STOs [7].

Intrinsic instability in STO has been studied by Li et al. [50]. Their numerical

simulations in single domain showed that in certain ranges of magnetic field and dc

current, chaotic dynamics occurs in STO. By using Melnikov Integral, they analyti-

cally determined chaotic regions. Strict demonstrations of chaos were given by Yang

et al. by calculating Lyapunov Exponents [53].

1.5 Outline of Dissertation

In this dissertation, we investigate the spin/energy transfer in MTJ and the nonlinear

dynamics of magnetization in spin valve nanostructures.

In Chapter 2, we discuss the energy transfer in MTJ. Starting from the current
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model in MTJ, we analyze the contribution of transverse and longitudinal spin cur-

rents to spin transfer and energy transfer, respectively. We give a microscopic calcula-

tion on the energy transfer effect and propose an effective temperature to characterize

this effect.

In Chapter 3, we investigate the magnetization dynamics of STOs. We derive

the analytical solutions of the energy-conserved precessional orbits of magnetization

vector and determine the stable precessional orbits.

In Chapter 4, we study the synchronization in STOs. We extend Melnikov Inte-

gral method to determine the synchronization regions for a single STO at driven ac

currents.

In Chapter 5, we present the study of chaotic dynamics in STOs. We calculate

Lyapunov Exponents to demonstrate the existence of chaos in STO. We investigate

the route to chaos in STO and study its universality among a general class of nonlinear

dynamics.

In Chapter 6, we consider the thermal effect on STO dynamics. By deriving

stochastic differential equation and Fokker-Planck-Equation for magnetic energy, we

confirm the dissipation-fluctuation relation. We study the thermal instability in terms

of the energy deviation distribution and compare it to chaos, the intrinsic instability.

An interesting spin transport problem Spin Hall Effect is discussed in the Ap-

pendix. We propose an intrinsic Orbital-Angular-Momentum (OAM) Hall Effect

that accompanies the intrinsic Spin Hall Effect. We present a Boltzmann Equation

calculation of the extrinsic Spin Hall Effect in the presence of spin-orbit couplings.
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Chapter 2

Spin and Energy Transfer in
Magnetic Tunnel Junctions

2.1 Introduction

There has been considerable interest in the phenomenon of spin-polarized current

induced magnetic dynamics in magnetic multilayers and magnetic tunnel junctions

(MTJ). The essential physics is the spin angular momentum transfer [1, 2]: when

the spin polarized current enters a magnetic layer, the component of the spin cur-

rent which is transverse to the direction of the magnetization is absorbed within a

short length scale. While the spin transfer mechanism can be applied to both mag-

netic multilayers and MTJ, there is a key difference between these two systems. For

magnetic multilayers, the spin current is carried by electrons at the Fermi level and

thus the spin transfer does not involve inelastic scattering. In MTJ, however, a fi-

nite voltage bias of the order of a fraction of a volt is applied in order to provide a

sufficient electric current. The tunneling electrons from the Fermi level of the emit-

ting electrode become hot electrons for the collecting electrode. The hot electrons

open additional inelastic tunneling channels which have been identified as one of the

reasons for the reduction of the tunnel magnetoresistance [16]. Similarly, one ex-

pects that the inelastic scattering would also affect the current-driven magnetization
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switching. Indeed, the unusual experimental observation [4–6] on the dependence of

critical currents on bias asymmetry, temperature and current pulse width has not

been explained satisfactorily based on the direct elastic tunneling model.

In this chapter, we intend to describe how the ferromagnetic electrode responds to

the spin polarized tunneling currents at finite voltage bias by taking into account in-

elastic scattering processes. Specifically, the spin current in the non-collinear MTJ has

four spinor matrix elements: the two off-diagonal elements represent the spin current

transverse to the switching ferromagnet and the two diagonal ones are longitudinal

spin currents (up and down). The ferromagnet absorbs the transverse spin current

for any voltage bias, resulting in a spin torque on the ferromagnet. The absorption

of the longitudinal spin current requires a finite voltage because the longitudinal spin

relaxation is through the emission of magnons which costs energy (here we neglect the

direct relaxation to the lattice via spin-orbit coupling). We find the energy transfer

from the tunneling hot electrons to the ferromagnet can be quite substantial for a

typical experimental bias. By calculating the steady-state non-equilibrium magnons

emitted by the longitudinal spin current, we show that the magnetic temperature

increases in the ferromagnet. When we include the spin torque and the enhanced

magnetic temperature at the finite bias, we find much of the experimental observa-

tion can be satisfactorily explained.

2.2 The Model of Spin Dependent Tunneling Cur-
rent

We begin our model calculation by considering an MTJ where the magnetization of

two electrodes is not collinear, depicted in Fig. 2.1. The simplest connection between

spin-dependence of the tunneling current and spin polarization of the electrodes is

the Julliere model [7] where the spinor current, ĵ, is proportional to the product of

17



e
V

b

q

M
L

M
R

Figure 2.1: The energy model for a MTJ. The tunneling electrons have energy higher
than Fermi level of the righ electrode. They experience spin dependent inelastic
scatterings due to electron-magnon interaction. Spin down electrons are scattered to
lower energy level flipping to spin up and emitting magnons h̄ωq.
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two spin-polarization factors of the left and right electrodes, i.e.,

ĵ = 2j0N̂LN̂R (2.1)

where j0 is the spin-independent tunneling current; N̂i (i=R or L) is the spin polariza-

tion matrix which is diagonal for the quantization axis along the local magnetization.

In the representation of the quantization axis along the magnetization of each

electrode, N̂i can be expressed as

N̂i =

(
1+Pi

2
1−Pi

2

)
(2.2)

where Pi is the polarization. By applying the unitary rotation matrix, U ,

U =


 cos θ

2
e−i φ

2 sin θ
2
e−i φ

2

− sin θ
2
ei φ

2 cos θ
2
ei φ

2


 . (2.3)

Plugging Eq. 2.3 into Eq. 2.2, then input the result into Eq. (2.1), we obtain,

ĵ = 2j0U

(
1+PL

2
1−PL

2

)
U †

(
1+PR

2
1−PR

2

)
(2.4)

which represents the tunneling spin current spinor in the representation of the

quantization axis along the magnetization of the right electrode.

It is noted that the present choice of the quantization axis is convenient since we

consider the right electrode as a switching ferromagnet and thus “longitudinal” or

“transverse” is always with respect to the magnetization of the right electrode.

The spinor current density is then

ĵ =

(
j↑ j−
j+ j↓

)
(2.5)

where the two longitudinal components are

j↑ =
j0

2
(1 + PR)(1 + PL cos θ). (2.6)

j↓ =
j0

2
(1− PR)(1− PL cos θ). (2.7)
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And two off-diagonal elements (taking φ = 0) are

j+ = −j0

2
(1 + PR)PL sin θ. (2.8)

j− = −j0

2
(1− PR)PL sin θ. (2.9)

The transverse spin current is thus

~jT ≡ Trσ(σxĵ)

= −j0PLM̂R × (M̂L × M̂R)

≡ τst (2.10)

where M̂i is the unit vector along the direction of the magnetization.

Note that the above transverse current is absorbed within 1-3 nm inside the right

electrode and Eq. (2.10) is identified as the spin torque τst on the right electrode [8].

We immediately realize from Eq. (2.10) that the spin transfer torque is determined

by the spin-polarization of the left electrode (PL) [9] but independent of PR as long

as the right electrode is able to completely absorb the transverse spin current.

2.3 Spin Dependent Inelastic Scattering

We now proceed to discuss the role of longitudinal spin currents, j↑,↓ . While the

total current

j = j↑ + j↓

= j0(1 + PLPRM̂L · M̂R) (2.11)

determines the magnetoresistance, the spin-up and spin-down currents play different

roles in terms of inelastic scattering with the magnetic electrode.

For tunneling electrons whose energies are eVb above the Fermi level of the right

electrode, as shown in Fig. 2.1, the inelastic mean free paths are much shorter for
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spin-down electrons than for spin-up electrons. This is because the spin-down electron

can emit spin waves (magnons) by giving up its energy while the magnon emission for

spin-up electrons is prohibited due to the angular momentum conservation. Spin-up

electrons can only absorb magnons, but the number of magnons at thermal equilib-

rium is small if the temperature is much lower than the Curie temperature. Earlier

calculations [25] and experiments [11] have already showed a dramatic difference in

the inelastic mean free paths for spin up and down electrons. Here we show by our

explicit calculation that the spin-down electrons have the mean free path smaller or

comparable to the typical experimental thickness (about 3nm) for the bias voltage of

interest. Therefore, almost every spin down hot electron emits an magnon and the

non-equilibrium magnons are accumulated in the ferromagnet resulting in substantial

increase of the magnetic temperature, which in turn, will greatly affect the critical

switching current [12–14].

The dominant inelastic magnetic scattering mechanisms of hot electrons are spin

wave (magnon) emissions and Stoner excitations [25]. The latter mechanism involves

excitations of electron-hole pairs in the spin-split bands. For the electron energy less

than 1 eV above the Fermi level, the former mechanism dominant since the Stoner

excitation requires a larger energy. Thus, we estimate the inelastic mean free path

and magnon accumulation by considering the standard electron-magnon interaction

Hamiltonian,

Hsd = −
√

2S

Ns

Jsd

∑

kq

c†~k−~q,↑c~k↓(a
†
~q + a−~q) (2.12)

where Ns is the number of the sites; Jsd is the s-d exchange constant; ck (c†k) is

the annihilation (creation) operator for the conduction electron; Ŝ represents the

local spin, and a†q (aq) is the creation (annihilation) operator for magnons. The

inverse mean free time for spin-down electrons, up to the second order in the coupling
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constant, is thus
1

τ↓
=

V

(2π)3

∫
d3qW~k,~k−~q (2.13)

where

W~k,~k−~q =
4πS

h̄Ns

J2
sd(1 + nq)δ(εk − ε|~k−~q| − h̄ωq), (2.14)

and h̄ωq = 2JF Sa2q2 is the magnon energy with JF and a defined as the ferromagnetic

exchange constant and the lattice constant. nq, which is the magnon distribution,

will increase from zero when T = 0, due to the magnon emission. However, no matter

zero or finite temperature, it has negligible contributions to the mean free path and

resolved energy and we simply drop it.

By approximating the velocity of tunneling electrons by the Fermi velocity vF for

a low voltage bias (eVb ¿ εF ), the mean free path is,

λ↓ = vF τ↓ =
8πJF h̄2

maJ2
sd

(
εF

eVb

)
. (2.15)

A rough estimate from the above equation would produce the mean free path about

0.5nm to 3nm for a bias voltage of 0.5V; this is consistent with the estimation by

using a more detailed calculation [25].

For spin-up electrons, we replace W~k,~k−~q in Eq. (2.13) with

W~k,~k+~q =
4πS

h̄Ns

J2
sdnqδ(εk − ε|~k+~q| + h̄ωq). (2.16)

Then, the mean free path for spin-up should be

λ↑ =
8πJF h̄2

maJ2
sd

(
εF

kBT

)
, (2.17)

as long as kBT ¿ eVb, λ↑ À λ↓.

Therefore, spin-up electron scattering and the magnon absorption induced by it

can be neglected in our calculation.
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2.4 Energy Transfer Through Magnon

Next, we estimate the non-equilibrium magnon energy produced by the decay of

the spin down current. Again, by using the simple electron-magnon Hamiltonian,

Eq. (2.12), the rate of the nonequilibrium magnon energy emitted by the tunnel

electrons is, (
∂E

∂t

)

m

=
N↓V
(2π)3

∫
d3qW~k,~k−~qh̄ωq. (2.18)

where N↓ is the total number of spin down hot electrons per unit area. Since the spin

down electron density, n↓(x) decays exponentially inside the ferromagnet, we have

N↓ =
∫ d

0
dxn↓(x) = (j↓/e)τ↓[1− exp(−d/λ↓)] (2.19)

where j↓ is given by Eq. (2.7) which represents the current density at the interface

between the barrier and ferromagnet. The non-equilibrium magnon energy δE is

thus accumulated in the ferromagnet. If we take into account the magnon energy

relaxation to the lattice via spin-orbit coupling, the net change of the magnon energy

is
dE

dt
=

(
∂E

∂t

)

m

− δE

T1

(2.20)

where T1 is the phenomenological relaxation time which has been experimentally

measured for the transition metals [15]. In the steady-state,

dE/dt = 0.

By explicitly calculating Eqs. (2.18) and (2.20), we arrive at the steady-state non-

equilibrium magnon energy

δE =
1

4
j0Vb(1− e

− d
λ↓ )T1(1− PR)(1− PL cos θ). (2.21)

As expected, the non-equilibrium energy accumulation is proportional to the dissipa-

tive heat power j0Vb. Therefore, our consideration is beyond the linear response for
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which the current induced energy accumulation is linearly proportional to either the

current density or the applied voltage but not the product of the two.

2.5 Effective Temperature

These steady-state non-equilibrium magnons effectively enhanced the temperature of

the magnetization of the electrode. The initial distribution of the emitted magnons

is different from the form of “thermal equilibrium”. However, The characteristic time

of the magnon emission is τ↓ ∼ 10−16s which is much faster than the relaxation time

(picoseconds) of the non-equilibrium magnons to the lattice. Therefore, it is reason-

able to assume that these nonequilibrium magnons will be thermalized before they

relax to the lattice. The microscopic mechanism of the magnon thermalization will

involve a detail magnon-magnon interactions. For our purpose, we do not need to

develop this theory but merely to observe that the characteristic time of the ther-

malization is h̄/kBT , which is much faster than the magnon energy relaxation. As

the magnon is a Boson, the thermalization due to magnon-magnon interaction does

not conserve the number of magnons. Instead, it conserves the total energy if it is

faster than the energy relaxation as we have anticipated here. Thus, we can define

an effective temperature T ∗
0 by equating the non-equilibrium magnon accumulation

to the thermalized magnon energy,

δE =
d

(2π)3

∫
d3q

h̄ωq

exp (h̄ωq/kBT ∗
0 )− 1

=
3ζ(5

2
)d(kBT ∗

0 )
5
2

16(2πJF Sa2)
3
2

, (2.22)

where d is the thickness of free layer and ζ(5
2
) = 1.34149 is the Riemann Zeta function.

By combining Eqs. (2.21) and (2.22), we find

(
T ∗

0

Tc

) 5
2

= c(1− PR)(1− PR cos θ)(1− e−d/λ↓)
j0Vba

3T1

kBTcd
(2.23)
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where

c = [π/(S + 1)]3/2/6ζ(
5

2
)

is a numerical number and we used the mean field theory relation between JF and

the Curie temperature,

kBTc = 8S(S + 1)JF .

We note that the concept of the current induced magnetic temperature has been

previously suggested by S. Urazhdin [16] for spin valve for a completely different

reason.

The calculation of Eq. (2.23) is confined at zero temperature. At finite temper-

atures, there are equilibrium thermal magnons; the non-equilibrium magnon accu-

mulation should also be thermalized with the equilibrium magnon, i.e., the effective

temperature T ∗ is now determined by

δE(T ∗) = δE + Eeq(T ). (2.24)

Then, we immediately see that the effective temperature at finite temperature T

satisfies

T ∗ 5
2 = T

∗ 5
2

0 + T
5
2 . (2.25)

A rough estimation can be readily done for a typical MTJ. If we take the following

parameters, Vb = 1V , j0 = 107A/cm2, PL = PR = 0.5, T1 = 1.25 × 10−12s [15],

S = 1.6, a = 3.5×10−10m (for Co), Jsd = 0.6eV , Tc = 1388K (for Co), εF = 5eV and

d = 2nm. We then find that at T = 0K, Eq. (2.23) gives arise T ∗
0 = 174K for M̂L and

M̂R parallel and T ∗
0 = 270K for antiparallel. At room temperature (T = 300K), the

effective temperatures are T ∗ = 328K and T ∗ = 376K for parallel and antiparallel

states respectively.
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2.6 Energy Effect on Magnetization Switching

We now turn to the application of the spin and energy transfer to the current-driven

magnetization switching by including the spin torque, Eq. (2.10), and the enhanced

temperature, Eq. (2.23) or Eq. (2.25). First, let us examine the current directional

dependence of the spin and energy transfer. In the case of electrons flowing from

the fixed layer to the free layer shown in Fig. 2.1, the spin polarization factor PL in

Eq. (2.10) takes its value at the Fermi level, independent of the bias voltage, and

the temperature enhancement is described by Eq. (2.23) and (2.25). In the oppo-

site voltage polarity when electrons flow from the free layer to the fixed layer, the

polarization factor PL takes the value at eVb above the Fermi energy, and thus the

spin torque is voltage dependent in this voltage polarity; this point has been already

emphysized by Slonczewski [9]. For the longitudinal current, the magnon emission

now occurs at the fixed layer, i.e., the temperature enhancement of the the free layer

only occurs at one-direction of the current. Since the current-induced magnetization

switching depends on the current direction, the above asymmetries in the voltage po-

larity produce a profound effect: the switching from antiparallel (AP) to parallel (P)

alignment of the magnetic layers leads to the enhancement of the temperature while

the reversed switching is not affected by the energy transfer. To quantitatively deter-

mine the critical switching current at finite temperature, we use the model developed

for the thermal assisted magnetization switching [12–14]

Ic = Ic0

(
1− kBT ∗

Eb(H)
ln(tf0)

)
(2.26)

where t is the measuring time or the current-pulse width which can be varied from

nanoseconds to a few seconds, f0 is the attempt frequency (about several GHz),

Eb(H) is the energy barrier which depends on the applied magnetic field, and Ic0

is the critical current at zero effective temperature T ∗. Now, our energy transfer
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mechanism produces two different temperatures. For the switching from the P to AP

states, the temperature is unchanged, T ∗ = T ; while for the switching from AP to

P states, the energy transfer mechanism produces an enhanced temperature given by

Eq. (2.25). These differences have been observed experimentally when one tries to

determine kBT ∗/Eb(H) using the above thermal model [5]. Specifically, since

Eb(H) = E0(1−H/Hc)
3/2

where Hc is the coercivity and thus the energy barrier is a constant for transitions

between AP and P states at H = 0, the observed difference [5] of E0/kBT ∗ must come

from the different effective temperatures.

Another interesting consequence of the energy transfer is the critical current asym-

metry between IAP→P
c and IP→AP

c . The spin torque asymmetry arises due to voltage-

dependence of the polarization factor PL as pointed out by Slonczewski [9]. Other

spin-flip mechanisms may also contribute to the asymmetry [17]. Our energy transfer

produces a finite effective temperature even at zero temperature for the transition

from AP to P states. Thus, the low temperature measurement of the critical current

is not directly proportional to the intrinsic spin torque since the effective temperature

is not small for a high voltage bias.

Finally we comment on the experimental extrapolation of the intrinsic spin torque

by varying temperature. The common procedure relies on the linear relation between

the critical current and the temperature. However, we point out that the linear

relation should significantly fail at low temperatures. In Fig. 2.2, we show the relation

between the critical current and the actual temperature of the device. The difference

of critical currents is much larger at low temperature than at room temperature.
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Chapter 3

Magnetization Oscillations in Spin
Valves

The transfer of spin angular momentum from spin current to ferromagnet provides

an efficient means to manipulate the magnetization in the magnet. While Gilbert

damping dissipates the energy, spin transfer torque can be either a source or a sink of

energy. In the case that spin transfer torque does positive work, there is a competi-

tion between damping and spin transfer torque. When spin transfer torque overcomes

damping, magnetization may be switched; if they ends up with a tie, stable preces-

sional motion will occur.

3.1 Experiments

Current driven magnetization switching is a key concept of the spin torque mag-

netic random access memory. It has motivated extensive work in this field. On the

other hand, due to the promising future applications in telecommunication industry,

nanometer scaled magnetization oscillators have also received extensive attentions.

In 1998, Tsoi et al. [1] reported their measurement of resistance variation due to

current-induced zero-wave-number spin waves. They injected a high density current

into Co/Cu multilayers through a sharpened Ag tip point contact. The magnetization
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excitation occurred only at one direction of current flow. See Fig. 1 in Ref. [1].

In 1999, Myers et al. [2] reported similar observations in Co/Cu sandwich struc-

ture. They produced a bowl-shaped hole in an insulating silicon nitride membrane,

and applied electronic current through it. They observed peaks in differential resis-

tance measurements when current flow is positive, but no peak when current flows in

the negative direction. See Fig. 2 in Ref. [2].

These observations provided strong evidence for current driven magnetization ex-

citation. The spin transfer torque induced magnetization oscillation is believed to be

the reason of the measured variations of resistance. As we can see in the expression of

spin transfer torque, spin transfer torque works against the damping in one direction

of current flow, but helps damping when the current is in the opposite direction. The

experimental observations and theoretical analysis are consistent.

The magnetization oscillation in spin valves (or MTJs) is governed by nonlinear

Landau-Lifshitz-Gilbert equation. Therefore, nonlinear phenomena, such as synchro-

nization and chaos, are expected.

The first direct measurement of synchronization (phase locking) was reported by

Rippard et al. in 2005 [2]. Their spin transfer oscillators is synchronized to a small

amplitude ac current. The synchronization band width is around several hundred

megahertz.

One year later, Kaka et al. [4] and Mancoff et al. [5] reported, independently,

mutual synchronization phenomenon of two magnetization oscillations in spin valves.

That is, two oscillators synchronized to each other. The benefit from binding two or

more oscillators are, as they reported, in two folds. First, the linewidth of the signal

decreases, i.e. noise is reduced; second, the output power are increased.

The direct current driven magnetization oscillations provides an amazing oppor-

tunity to produce signal generators on a nano-scale magnetic device. The drawback

32



of such nano-scale oscillators, low output power (less than 1nW), can be overcome by

a series of such oscillators [7]. The self phase locking of these oscillators increases the

output power and reduces the signal linewidth by approximately N2 times, where N

is the number of oscillators.

3.2 Model

Magnetization dynamics is governed by Landau-Lifshitz-Gilbert Equation. In spin

valves or MTJ, the absorption of transverse spin current provides the spin transfer

torque. Therefore, there is an additional term, given by Slonczewski in 1996 [7],

presented in Landau-Lifshitz-Gilbert Equation.

3.2.1 Spin Valve

We consider a spin valve consisted of a pinned ferromagnetic layer, a non-magnetic

layer and a free ferromagnetic layer, shown in Fig. 3.1. The pinned layer is much

thicker than the free layer, and the orientation of its magnetization is fixed by an

attached antiferromagnetic layer. The thickness of the free layer is usually no more

than a few nanometers. Its magnetization is free to rotate. The primary focus of this

dissertation mostly is on the dynamics of the magnetization in the free layer.

As shown in Fig. 3.1, we define the orientation of the magnetization in the pinned

layer as the ex, and the direction that normal to the free layer as ez. The magneti-

zation in the free layer, M, subjected into a magnetic field, is free to precess around

the field. When an appropriate electrical current is applied in ez or −ez, M can be

switched between ex and −ex or precess in stable orbits.
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Figure 3.1: Spin Valve Model. Two ferromagnetic layers are separated by a non-
magnetic layer. One of the ferromagnetic layer (fixed layer) is attached by an anti-
ferromagnetic layer that fixes the orientation of the magnetization of the ferromag-
netic layer through strong exchange coupling. The magnetization orientation of the
other ferromagnetic layer (free layer) is free to change.
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3.2.2 Landau-Lifshitz-Gilbert Equation

The equation of motion of M is the Landau-Lifshitz-Gilbert Equation (LLG Equa-

tion),
dM
dt

= −γM×Heff +
α

Ms

M× dM
dt

, (3.1)

where Ms is the saturation magnetization; γ is the gyromagnetic ratio; Heff is the

effective field that consists of the external field, anisotropy field, exchange field and

demagnetization field; the α is the Gilbert damping coefficient. The first term of the

right hand side of Eq. (3.1) provides an energy conserved torque, while the second term

is the Gilbert damping torque. The Gilbert damping torque drives the magneztization

vector to an energy minimized orientation.

The LLG equation is indeed equivalent to Landau-Lifshitz Equation (LL Equa-

tion),
dM
dt

= − γ

1 + α2
M×Heff − αγ

(1 + α2)Ms

M× (M×Heff ). (3.2)

When a magnetization vector is subjected to an applied magnetic field, its dynamics is

determined by the LLG (or LL) equation. The final orientation of the magnetization

points at the direction at which the magnetic energy is locally minimized. This is the

result of the Gilbert damping.

Once an electric current is turned on, the spin transfer torque will contribute

to magnetization dynamics as well. As discussed in the introduction, spin transfer

torque is written as following by J. C. Slonczewski,

ΓSTT =
γaJ

4πMs

M× (M× ep), (3.3)

where ep is the orientation of the magnetization in pin layer. Notice that, current

density aJ has a unit of magnetic field. For simplicity, we neglect the dependence of

aJ on the angle between magnetization in different layers.
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As long as the temperature is far lower than Curie temperature, the magnitude of

the magnetization is fixed at Ms. For the ease of theoretical analysis and numerical

simulations, one can normalize M by Ms and aJ , Heff by 4πMs, i.e.

m =
M
Ms

(3.4)

β =
aJ

4πMs

(3.5)

heff =
Heff

4πMs

. (3.6)

One can further make the transformation, γt → t. Thus the normalized Equation of

Motion is,
dm
dt

= −m× heff + αm× dm
dt

+ βm× (m× ep). (3.7)

Notice that Eq. (3.7) guarantees the following condition

|m| = m2
x + m2

y + m2
z = 1, (3.8)

the Eq. (3.7) is indeed a set of two dimensional coupled ordinary differential equations

when both external magnetic field and β are time independent. The phase space may

only contain saddle points, fixed points and limit cycles (to be discussed in later

sections).

Before preceding to the detailed study of the dynamics, we specify all the relevant

parameters we have chosen. First, we choose the magnetic field lying in the free

layer plane. Although practically, the magnetic field is usually applied out of plane

to achieve better observations, there is no fundamental difference if it is applied

in the plane. However, choosing an in-plane magnetic field, specifically, along the

same direction as the magnetization orientation of the pinned layer, will reduce the

complexity of our theoretical calculation. Next, we set the anisotropy field equal to

zero, in which way the external field will automatically larger than anisotropy field,

which is required for self-sustained oscillation. Third, the demagnetization field is
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equal to 4πMz which is in the ez direction and vertical to the free layer. Therefore,

after normalization, the effective field can be expressed as,

heff = heex −mzez (3.9)

3.3 Neutral Precessional Motions

The right hand side of Eq. (3.7) contains three torque terms. The simplest dynamics

can be achieved by setting α = 0 and β = 0, i.e., assuming no damping effect and no

current applied.

3.3.1 Energy Conservation

As magnetization precesses, the energy may also change over time. Its time derivative

can be derived by calculating the inner product of the effective magnetic field heff

and Eq. (3.7), then take its negative value,

dE

dt
= −heff · dm

dt

= −α |m× heff |2 + aj(m× heff ) · (m× ep). (3.10)

Notice that because heff · (m × heff ) = 0, the first term in Eq. (3.7) does not

change the energy. If we set α = 0 and β = 0, i.e. under the assumption that both

damping and spin transfer torque are zero,

dE

dt
= 0.

The energy is conserved in this system.

For an effective magnetic field given by Eq. (3.9), the magnetic energy density

E = −hemx +
1

2
m2

z (3.11)
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is a constant. This is another constraint on the magnetization vector in addition

to Eq. (3.8). An energy conserved magnetization trajectory is determined by the

interception of these two constraints.

3.3.2 Analytical Solution

We now derive the analytical solutions of the energy conserved magnetization dynam-

ics. The procedure is similar to what Bertotti et al. did in their paper published in

Physica B in 2004 [8]. For a given energy, E, the trajectory is the solution of the two

combined equations, Eq. (3.8) and Eq. (3.11).

Replacing m2
z in Eq. (3.11) by

mz = 1−m2
x −m2

y, (3.12)

we get the trajectory equation for a given energy E,

(mx + he)
2 + m2

y = R2 (3.13)

where

R =
√

h2
e − 2E + 1.

This is nothing but a circle centered at (0, − he) with radius R in mx −my plane.

However, according to Eq. (3.8), m2
x + m2

y ≤ 1, since m2
z ≥ 0. Thus, the trajectory

is the portion of the circle given by Eq. (3.13) inside the circle m2
x + m2

y = 1. These

trajectories are plotted in Fig. 3.2.

When R < 1−he, i.e. E > he, the projection of the dynamics on the mx−my plane

is a complete circle (see Fig. 3.2). While, if R > 1− he, i.e. E < he, the trajectory is

an open circle in mx−my plane (see Fig. 3.2). For the former situation, the long run

average of magnetization in the normal direction (mz) is not zero. This is an out-

of-plane trajectory. For the latter situation, the long run average of magnetization
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8400(Oe).
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in the normal direction (mz) is zero. Therefore it is called the in-plane motion.

The separatrix is a special trajectory that separates the out-of-plane and in-plane

trajectories in this case. The thicker solid orbit in Fig. 3.2 represents the separatrix.

It appears when R = 1− he or say, E = he. The saparatrix touches the outer bound

m2
x+m2

y = 1 (the dotted orbit in Fig. 3.2) at the energy saddle point (mx = −1, my =

0).

Once the 2D trajectory in the mx −my plane is determined, the variable mz can

be reconstructed by considering Eq. (3.12). Thus, we can plot the 3D version of the

energy conserved trajectories, shown in Fig. 3.3. The 3D version is also referred as

an energy sphere. Every point on the energy sphere represents a fixed energy.

Notice that for a given energy that E > he, there are two degenerate out-of-plane

orbits separated by the plane mz = 0; however, for an energy E < he, there is only

one in-plane orbit.

To obtain a solution for the energy conserved trajectory in terms of time, we first

apply the following transformation according to Eq. (3.13),

mx = −he + R sin θ (3.14)

my = R cos θ (3.15)

mz = ±
√

2(E − h2
e) + 2heR sin θ. (3.16)

Then, we need to consider the corresponding Equation of Motion, which is just

Eq. (3.7) with α = 0 and aj = 0,

dm
dt

= −m× heff (3.17)

dmx

dt
= −mymz. (3.18)

Replace mx, my and mz by Eq. (3.14-3.16), we get a differential equation for the
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variable θ,

R cos θ
dθ

dt
= ±R cos θ

√
2(E − h2

e) + 2heR sin θ

dθ

dt
= ±

√
2(E − h2

e) + 2heR sin θ

= ±
√

a + b sin θ (3.19)

where a = 2(E − h2
e) and b = 2heR.

Directly integrate Eq. (3.19), for E > he, a > b,

− 2√
a + b

F (α, k) = ±(t + t0); (3.20)

for E > he, 0 < |a| < b,

−
√

2

b
F (β,

1

k
) = ±(t + t0). (3.21)

Here, F is the elliptic integral of the 1st kind [9] and the parameters are

α = arcsin

√
1− sin θ

2

β = arcsin

√
b(1− sin θ)

a + b

k = arcsin

√
2b

a + b

Notice that, the α and β here are not corresponding to damping and current density.

Damping and current density are assumed to be zero here.

For Eq. (3.20),

sn(F (α, k)) = ±sn[

√
a + b

2
(t + t0)] (3.22)

sin α = ±sn[Ω1(t + t0)]

(3.23)

where

Ω1 =

√
a + b

2
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and sn(·) is the Jacobian elliptic function [9]. Therefore,

sin θ = 1− 2sn2[Ω1(t + t0)]. (3.24)

For Eq. (3.21),

sn(F (β,
1

k
)) = ±sn[

√
b

2
(t + t0)] (3.25)

sin α = ±sn[Ω2(t + t0)],

(3.26)

where

Ω2 =

√
b

2
.

Thus,

sin θ = 1− a + b

b
sn2[Ω2(t + t0)]. (3.27)

Putting back Eqs. (3.24) and (3.27) back into Eqs. (3.14-3.16), one will get the

analytical solutions of the energy conserved trajectory. For OOP orbit,

mx = −he + R{1− 2sn2[Ω1(t + t0)]} (3.28)

my = ±R
√

1− {1− 2sn2[Ω1(t + t0)]}2 (3.29)

mz = ±
√

2(E − h2
e) + 2heR{1− 2sn2[Ω1(t + t0)]}. (3.30)

And for IP orbit,

mx = −he + R(1− a + b

b
sn2[Ω2(t + t0)]) (3.31)

my = ±R

√
1− {1− a + b

b
sn2[Ω2(t + t0)]}2 (3.32)

mz = ±
√

2(E − h2
e) + 2heR{1− a + b

b
sn2[Ω2(t + t0)]}. (3.33)

These solutions are not the real trajectories for magnetization dynamics, because

we have made the assumption that the damping and spin torque are zero, which does
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not hold in reality. However, Melnikov Integral which can be used for determining

the stable precessional orbit is based on these simplest unperturbed trajectories.

Another concern on these energy conserved trajectories is its response on per-

turbation. One can find these trajectories are not stable, any perturbation can kick

a trajectory with certain energy to another trajectory with different energy. These

precessional motions are neutral.

3.4 Stable Precessional Motions

Unlike the neutral motions, magnetization precession could be stable under the effect

of appropriate damping and spin transfer torque. This is an example of so called

stable limit cycles.

3.4.1 Limit Cycles

We’ve discussed the neutral precessional motion under the assumption that there

is no damping and spin transfer torques. However, the damping is just like the

friction force, which always exists. With the presence of damping effect, no neutral

precessional motion will persist. If the damping is the only thing that changes the

energy, the magnetization will eventually reach static equilibrium when the magnetic

energy is minimized. When external forces such as an electric current is applied, they

may exercise the magnetic energy, hence the magnetization will be driven toward a

new direction or enter a different dynamic regime. The first dynamics beyond a fixed

direction or a neutral precessional motion we will look at is the stable limit cycle.

A limit cycle is a trajectory that all neighboring trajectories approach it when

t → ±∞. For the case that the neighboring trajectories approach to the limit cycle

when t → +∞, it is called an attractive or stable limit cycle. If the limit cycle is

approached as t → −∞, it is a non-attractive or unstable limit cycle. Here, we are
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only interested in the stable limit cycle and from now on we will ignore the word

“stable” in most of situations. Fig. 3.4 and Fig. 3.5 show some examples of limit

cycles in the spin valve systems.

At the first sight, the limit cycles look similar to the neutral precessional motions.

However, they are different. Neutral motions are determined by its initial energy

and once there is a perturbation of the energy, the trajectory is altered. While, limit

cycles are usually not sensitive to the initial condition and won’t be affected by small

perturbations. Similar to neutral precessional motion, limit cycles do have a fixed

period. As shown in the power spectra of the Fig. 3.4 and Fig. 3.5, well-defined

frequency peaks exist.

3.4.2 Transition to Limit Cycles

How can a limit cycle be generated in the spin valve system? For a system that no

external force exists, the magnetization stays at a fixed orientation where the energy

is minimized. Now, we exert an external force, for example, we turn on an electric

current. The current induced spin transfer torque has the similar form to the damping.

If the current is applied in an appropriate direction, it may generate a torque against

the damping. Increasing the current, after a critical point, the spin transfer torque

is large enough to exercise the magnetization from its original fixed point and a

balance between the damping and the spin transfer torque can be achieved. Once

this balance is achieved, limit cycles appear. This transition from a fixed point to

limit cycles which are actually periodic orbits is called a Hopf bifurcation. Fig. 3.6

shows a diagram of Hopf bifurcation in the spin valve system.
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3.4.3 Determining a Limit Cycle

The analytical solutions of neutral precessional motions have been given (see previous

sections). How about limit cycles? Serpico et al. [8] developed a method to determine

the limit cycles in spin valves by applying Melnikov Integral method.

Eq. (3.7) can be expressed as the following perturbation form,

dm
dt

= f(m) + εg(m) (3.34)

where ε is a perturbation parameter and

f(m) = −m× heff ,

εg(m) = αm× dm
dt

+ βm× (m× ep).

The unperturbed dynamics has been derived in the previous section. To study the

dynamics in the presence of perturbation, one can construct the Melnikov integral

along those unperturbed trajectories Ω,

M(E) =
∫

Ω
mΩ(t) · (f× g)dt (3.35)

where E is the energy of the unperturbed trajectories. Plugging into f and g, one

obtains,

εM(E) =
∫

Ω

[
−α |m× heff |2 + β(m× heff ) · (m× ep)

]
dt (3.36)

Notice that the integrand is just time derivative of the magnetic energy density, there-

fore Melnikov Integral εM(E) is understood as the work done by the damping and

the spin transfer torque when magnetization precesses along the energy conservative

orbit for exact one period.

A nonzero Melnikov Integral indicates the magnetic motion trends to deviate from

the unperturbed orbit. While, if we integrate exact one period and find the Melnikov
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integral is zero, the magnetic motion will not deviate at least at the point we start

and stop our integral. Hence, we expect a complete trajectory with the same period

as the unperturbed orbit even under perturbation.

This tentative argument can be confirmed by solid mathematical theorems (See

the theorem 3 in Page 411 in Ref. [11]). When Melnikov Integral has simple zeros,

that is, Melnikov Integral itself equals zero and its derivative to E is not zero, there

exists limit cycles. If the derivative is positive, stable limit cycles exist. In spin valves,

the stable limit cycle is the so called self sustained magnetization precessional motion.

Melnikov Integral for the system we are discussing is derived here by reproducing

the similar approach Serpico et al. did in Ref. [8]. We first break down Eq. (3.36)

into two terms,

εM(E) = −αMα + βMβ (3.37)

where

Mα =
∫

Ω
|m× heff |2 dt (3.38)

and

Mβ =
∫

Ω
(m× heff ) · (m× ep)dt. (3.39)

Mα, Mβ are expressed as,

Mα = h2
eIa + Ib + 2heIc (3.40)

Mβ = heIa + Ic (3.41)

where

Ia =
∫

Ω
(1−m2

x)dt (3.42)

Ib =
∫

Ω
m2

z(1−m2
z)dt (3.43)

Ic =
∫

Ω
(mxm

2
z)dt (3.44)
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Now, we can plug the exact solutions of mx, my and mz (Eq. (3.28-3.33)) into above

equations to evaluate Melnikov Integral. However, to avoid the complex forms of

expansions of the Jacobian Elliptic functions in the exact result, we can plug in

Eq. (3.14-3.16) and consider the following approximations for OOP orbits,

∫

Ω
sin θdt = 0 (3.45)

∫

Ω
sin2 θdt =

1

2
. (3.46)

Also notice that for small he, we neglect the terms containing h2
e. Therefore,

Ia =
1

2
(1 + 2E)TΩ (3.47)

Ib = E(1− 2E)TΩ (3.48)

Ic = he(1− 2E)TΩ, (3.49)

where TΩ is the period of the orbit. For OOP orbits, it can be derived as,

TΩ =
∫

Ω
dt (3.50)

=
∫

Ω

1√
a + b sin θ

dθ (3.51)

=
4K(k)√

a + b
. (3.52)

where K(k) is the complete Elliptic function of the first kind.

Replace Ia, Ib and Ic in Eq. (3.40) and Eq. (3.41) by Eq. (3.47-3.49),

Mα = 2E(1− 2E)TΩ (3.53)

Mβ = he(
3

2
− 3E)TΩ. (3.54)

One condition for the existence of stable limit cycle is

εM(E) = 0,
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thus,

αMα = βMβ (3.55)

α[2E(1− 2E)]TΩ = βhe(
3

2
− 3E)TΩ. (3.56)

Therefore, the solution is,

E =
3β

4α
he.

That is to say, Melnikov Integral along the orbit of energy 3β
4α

he may have simple

zero, and limit cycle can establish. Other conditions fixed, the orbit is determined

by the DC current. The energy of the orbit is approximately proportional to the DC

current.
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Chapter 4

Synchronization in Spin Transfer
Oscillators

Synchronization describes a fixed phase relation between the response and driven

dynamics. The relation can be simply equality or in general, a rational multiple

relation. It is a key feature of nonlinear dynamics. Due to the nonlinearity of Landau-

Lifishitz-Gilbert equation, the magnetization oscillations also have this property.

4.1 Introduction

4.1.1 Synchronization

Synchronization is understood as an “adjustment of rhythms of oscillating objects

due to their weak interaction” [1]. The rhythm is usually characterized as period

of frequency. Thus, quantitatively, synchronization leads to frequency locking of

different oscillating objects.

As early as in the seventeenth century, Huygens found the oscillations of two

pendulum clocks that were hanging on a common support coincided with the pendula

moving in opposite directions. This is probably the first study of synchronization.

In Huygens’ system, two pendulum clocks synchronized; this is recognized as

mutual synchronization. However, the oscillating objects are not necessarily to be
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the same type. As long as they have interactions, synchronization can take place.

For example, an oscillating object can be synchronized to a periodic external force.

4.1.2 Synchronization in Spin Valves

In the last chapter, we have looked into the magnetization dynamics. Governed by

Landau-Lifshitz-Gilbert equation, in the presence of spin transfer torque, magnetiza-

tion vector can have a self-sustained oscillation. Applying a periodic external force

such as an ac current, the spin transfer torque will have an ac component. Affected

by the oscillating spin transfer torque, magnetization oscillation may be synchronized

to the its frequency which is equal to the frequency of the ac current.

Experimental Observation of the external force driven synchronization in spin

valve system was first reported by Rippard et.al. in 2005 [2]. The theoretical study

was carried out via phase dynamics [3, 4]. We will show an alternative approach later

in this chapter to study the synchronization.

Mutual synchronization in spin valves was observed by two unrelated experimental

groups independently [5, 6]. Numerical simulations were done to study a series of spin

valve oscillators [7]. In these studies, two or more spin valve oscillators have interac-

tions to each other. Unlike the external force synchronization, this synchronization

is due to the mutual effect; oscillator A impacts oscillator B, and at the same time,

oscillator B impacts oscillator A as well. In the previous case, ac current, which can

be regarded as an oscillator, impacts the magnetization oscillators. However, on the

contrary, the ac current will not be affected by magnetization oscillation, so that it is

a one-way effect. We will focus on the ac current driven synchronization phenomena

in this dissertation.
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4.2 Numerical Simulations

To numerically simulate the synchronization to ac current in spin valve systems, we

first establish a limit cycle. Starting from an arbitrary point other than stable point

or saddle point on the sphere |m| = 1, choosing an appropriate set of parameters,

applying regular ODE algorithm, the limit cycle is usually achieved after several

nanoseconds.

Once this self sustained magnetization oscillation becomes stable, we determine

its natural frequency by measuring the inverse of the average of time intervals be-

tween succussive minima of mx. Then, we turn on an ac current, which induces an

ac component of spin transfer torque. The frequency is chosen to be close to the

measured natural frequency; the amplitude is small, usually less then one-tenth of

the dc component of the spin transfer torque.

When the limit cycle is not close to the separatrix, one can find the magnetization

oscillation will adjust its phase automatically so that its frequency tends to be the

same as the frequency of ac current. Compared to this synchronization phenomenon,

when no ac current is turned on, the frequency of limit cycle varies almost linearly

with the dc current. In the presence of the ac current, the frequency of magnetization

oscillation is a strongly nonlinear function of dc current. In a certain range of dc

current, the frequency is fixed and equal to the frequency of the ac current. The

experimental observations of synchronization are usually presented in this way, e.g.,

Fig. 1(b) in Ref. [2]. In the next section, we will use Melnikov Integral method to

determine the synchronization region.

In the Fig. 4.1, we show the synchronization region in two different representations.

The topper panel describes the relation between response frequency and a parameter

of the magnetic system, the dc current; the lower panel presents the difference between
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the response frequency and the natural frequency of the oscillator (beating frequency)

as a function of the difference between the frequency of ac current and the natural

frequency (detune frequency).

There are two assumptions here. First, the amplitude of ac current is relatively

small. Second, limit cycles are not close enough to separatrix. If the real condition is

deviated from these assumptions, either with a large ac current amplitude, or with a

trajectory close to separatrix, chaos may occur. Discussion on chaotic dynamics will

be deferred to next chapter.

At zero temperature, simulations suggest that when synchronization occurs, the

oscillation has a well defined frequency, which is identical to the frequency of the

external ac current. In the power spectrum (see Fig. 4.2), the frequency peak shift

from the natural frequency to the frequency of the ac current. From the time domain

illustration, Fig. 4.3, one can see that the phase shift between ac current and the

magnetization is automatically adjusted to be fixed.

Simulation also suggests that the larger the amplitude of ac current is, the wider

the synchronization region. The relation of synchronization region width and ac

current amplitude is numerically determined (See Fig. 4.4). An analytically proof is

provided in the next section.

The synchronization occurs as well when ac current has a frequency close to the

subharmonic frequency of the magnetization oscillation. When the external frequency

is close to m
n
times of the natural frequency, the magnetization oscillation is synchro-

nized to n
m

of the external frequency, see Fig. 4.5. This issue will be also discussed in

the next section.
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Figure 4.1: Synchronization Region. The topper panel shows that varying dc current,
the frequency of the oscillation is locked in the synchronization region. The lower
panel shows that within synchronization region, the frequency of oscillation is identical
to the frequency of the ac current. Here, detune frequency is defined as the frequency
difference between ac current and natural frequency; beating frequency is defined
as the frequency difference between ac current and the oscillator. The parameters
are: Hext = 200(Oe); aac = 20(Oe); topper panel: ωac = 30GHz; lower panel:
adc = 400(Oe)
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between ac current and the magnetization, they will be eventually locked in their
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Figure 4.4: With the increase of the amplitude of ac current, the synchronization
region will be wider. The region width is proportional to the amplitude of the ac
current.
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4.3 Melnikov Integral Method

The regular theoretical approach to these nonlinear dynamics could be phase dynam-

ics [3, 4]. Here, we seek an alternative approach. We extend the Melnikov Integral

method used for determining limit cycles (see previous chapter or Ref. [8]) to the

synchronization phenomena.

4.3.1 Synchronization to Fundamental Frequency

In the last chapter, we discussed how to apply Melnikov Integral to determine limit

cycles in spin valve oscillators. When Melnikov Integral itself is zero and its derivative

to the orbit energy is negative (simple zero), there exists a limit cycle. That is to say,

the simple zero of Melnikov Integral indicates a complete trajectory. For limit cycles,

both external field and electrical current are fixed. Now, we include an ac current

with a small amplitude. Since its amplitude is small, we can regard the ac current as

an additional perturbation to the Melnikov Integral.

Just like what we did in determining the limit cycle, we calculate the work done

by the damping and the spin transfer torque along an energy conserved trajectory

loop, which has a frequency of Ω0. If the damping and time-invariant component of

spin transfer torque give a simple zero in Melnikov Integral, we claim a limit cycle. In

addition, the time-dependent component of spin transfer torque, whose frequency is

set to Ω0, gives an extra amount in Melnikov Integral. If it is zero, the trajectory still

completes after its originally period, i.e., its frequency is Ω0. However, in general, this

extra contribution to Melnikov Integral could be non-zero. Therefore, the trajectory

is not complete, and the energy has a positive or negative shift after the loop integral.

We argue that, this shift can be compensated by change in the fixed component of

spin transfer torque, that is, the change of the dc current.
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As long as the ac current perturbation to the Melnikov Integral can be offset by

changes in dc current contribution, the trajectory is complete after the same period as

the energy conserved orbit. The trajectory therefore still has a frequency of Ω0, which

is the same as that of the ac current, i.e. the spin valve oscillator is synchronized

to the ac current. Thus we can now theoretically predict the range of dc current, in

which the trajectory precesses at a fixed frequency.

As we just mentioned above, we assume the frequency of the ac current identical to

that of the energy conserved precessional orbit, along which we conduct the Melnikov

Integral, i.e. ω = Ω0 = 2π
TΩ

. We express the Melnikov Integral in this case as following,

M = −αMα + βMβ + βacMac (4.1)

where Mα and Mβ are the same as those in the last chapter; βac is the normalized

amplitude of ac current; and

Mac =
∫ TΩ

0
cos(ωt + φ0)[(m× heff ) · (m× êp)]dt.

Notice that there is an arbitrary phase φ0 in the ac current βac cos(ωt+φ0). If we

choose this phase appropriately, the third term in Eq. (4.1) can be just zero. In this

case, ac current has no effect on the Melnikov Integral. The trajectory has the same

frequency as that of the integral orbit, which is Ω0. If the phase is chosen so that the

third term in Eq. (4.1) is not zero, one can change the dc current correspondingly to

bring the value of Eq. (4.1) back to zero. Thus the frequency of trajectory is still Ω0.

One can it reversely. Based on an established stable limit cycle, which has a

simple zero Melnikov Integral, if the dc current is changed, in the absence of ac

current, the net change of Melnikov Integral leads to a change its energy stage, and

the frequency of the trajectory is changed. On the other hand, in the presence of ac

current, the trajectory will adjust its phase by itself so that the change in Melnikov

65



Integral generated by the change of dc current is balanced by the contribution of the

ac current, that is, the amount of the third term in Eq. (4.1).

Therefore, there exits a range of dc current, within which ac current can adjust

its phase to bring the Melnikov Integral back to zero. This range is nothing but the

synchronization region. Thus, to determine the synchronization region, we just need

to calculate the largest adjustment the ac current can make to Melnikov Integral.

Following this procedure, we break the dc current torque into two terms β =

β0 + δβ, where β0 makes −αMα + β0Mβ simple zero as we have discussed in limit

cycles case. Thus, Eq. (4.1) reduces to,

M = δβMβ + βacMac. (4.2)

Using the notations

M1 =
∫ T

0
cos ωt[(m×Heff ) · (m× êp)]dt,

and

M2 =
∫ T

0
sin ωt[(m×Heff ) · (m× êp)]dt,

for simple zero of Melnikov Integral,

δβMβ + βac cos φ0M1 − βac sin φ0M2 = 0. (4.3)

Because φ0 is an arbitary phase, the above equation has infinite many solutions.

Setting

cos ψ0 =
M1√

M2
1 + M2

2

sin ψ0 =
M2√

M2
1 + M2

2

, (4.4)

we have

|cos(ωt0 + ψ0)| =
∣∣∣∣∣∣

δβMβ

βac

√
M2

1 + M2
2

∣∣∣∣∣∣
≤ 1.
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Thus, as long as

−
∣∣∣∣∣∣
βac

√
M2

1 + M2
2

Mβ

∣∣∣∣∣∣
≤ δβ ≤

∣∣∣∣∣∣
βac

√
M2

1 + M2
2

Mβ

∣∣∣∣∣∣
, (4.5)

there exist simple zero of Melnikov Integral. In other words, when

β0 −
∣∣∣∣∣∣
βac

√
M2

1 + M2
2

Mβ

∣∣∣∣∣∣
≤ β ≤ β0 +

∣∣∣∣∣∣
βac

√
M2

1 + M2
2

Mβ

∣∣∣∣∣∣
, (4.6)

adjusting φ0 appropriately, the magnetization trajectory will complete one period as

ac current completes exact one period. Therefore, the frequency of the spin valve

oscillator is identical to ω, the frequency of the ac current.

The above range is the synchronization range for dc current. Fig. 4.6 compares

numerical simulation of synchronization and the synchronization range determined

by Melnikov Integral.

Taking a closer look at Mac, U(t) = (m×Heff ) · (m× êp) is a periodic function

with period TΩ, where m = m(t) is a precessional orbit. Choosing the arbitrary φ0

appropriately, U(t) has the form of

∞∑

n=0

an cos(nωt)

Therefore, M2 = 0, and

M1 = a1

∞∑

n=0

∫ TΩ

0
cos(ωt) cos(nωt)dt

= a1

∫ T

0
cos2(ωt)dt =

1

2
a1T =

πa1

ω
.

Putting them into Eq. (4.5) or (4.3), a simpler requirement for δβ

−πβac

ω

∣∣∣∣∣
a1

Mβ

∣∣∣∣∣ < δβ <
πβac

ω

∣∣∣∣∣
a1

Mβ

∣∣∣∣∣ . (4.7)

From this relation, it is clear that the width of synchronization band are proportional

to amplitude of ac current and inversely proportional to frequency of ac current. The
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former relation has already been revealed by Eq. (4.5) and shown in Fig. 4.4. The

latter relation can be verified by numerical simulation of the synchronization phase

diagram (see Fig. 4.7), which will be shown in next chapter.

We have considered the synchronization of spin valve oscillators to a simplest

external periodic force, ac current. In coupled spin valve oscillators, each oscillator

drives an oscillating signal, which can be treated as periodic external force for other

oscillators. Another complication is that this effect is a mutual effect, that is one

oscillator generates signals but meanwhile it receives signals from other oscillators.

We may view the case we discussed in this section as a one-way effect and those

mutual synchronization as two-way effect.

4.3.2 Synchronization to Subharmonic Frequency

As mentioned previously, it is not necessary that ac frequency ω is close to the natural

frequency of spin valve oscillators Ω0. Whenever ω
Ω0

is rational, one may have an

opportunity to observe synchronization phenomena. Suppose nω is close to mΩ0

where both m and n are positive integers, the response oscillator may oscillate exact

n periods when the driven force oscillates m periods. Thus, one observes

nTSTO = mTac

or

mΩSTO = nωac

where the TSTO and ΩSTO are the period and frequency of the spin transfer oscillator

in response of the driven ac current; the Tac and ωac are the period and frequency

of the ac current. The phase diagram of these general synchronization is shown in

Fig. 4.7.
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The synchronization region for this general case can also be determined by con-

structing Melnikov Integral. Again, one can start from a established stable limit cycle

with a frequency of Ω0, which has a simple zero Melnikov Integral. Turning on a small

amplitude ac current with a frequency of m
n
Ω0, we modify M1 and M2 as,

M1 =
∫ nT0

0
cos(

m

n
ωt)[(m× heff ) · (m× êp)]dt

and

M2 =
∫ nT0

0
sin(

m

n
ωt)[(m×Heff ) · (m× êp)]dt.

Then, calculate the maximum deviation of Melnikov Integral made by changes of

dc current that can be compensated by ac current due to the phase shift. Thus, the

synchronization region is determined in a range of dc current.

Notice that, in the expressions of M1 and M2, there is another thing different from

previous subsection. When construct Melnikov Integral, one need to integral over nT0

instead of T0, the natural period of the spin valve oscillators. Suppose mΩ0 = nω,

considering T0 = 2π
Ω0

and Tac = 2π
ω
, one easily gets mTac = nT0. That is to say,

once synchronization happens, the time interval of n periods of spin valve oscillators

matches the time interval of m periods of ac current.

Fig. 4.8 shows several synchronization bands determined by Melnikov Integral

which are consistent with the direct simulation result shown in Fig. 4.7. Within each

synchronization band, spin valve oscillators are synchronized to a different fraction of

the driven frequencies.

We noticed that all of the synchronization bands overlap in a vertical stripe.

Within this stripe, at a certain set of parameters, since the synchronization bands

overlap, a spin valve oscillator may be "synchronized" to infinitely many different

fractions of the driven frequency. That is, the spin valve oscillator actually can not

determine a fixed frequency. This corresponds to chaos. We will discuss chaos in spin
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transfer oscillators in the next chapter.
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Chapter 5

Chaos in Spin Transfer Oscillators

Chaos is essentially an intrinsically unstable trajectory. We are unable to predict the

future state of a chaotic system. Much attention has been paid to chaos through out

mathematics, physics and engineering societies. There are a couple physics systems

such as the Josephson junction that may behave chaotically. The spin transfer induced

magnetization oscillation can also be chaotic. In this chapter, we investigate chaos in

spin valve oscillators.

5.1 Motivation

Among many well-studied non-linear oscillators driven by external forces, only a hand-

ful oscillators have technological applications [1, 2]. The recently discovered current-

driven magnetization oscillators with tunable microwave frequencies in spin valves

are very desirable for magnetic storage devices and for telecommunications. Up until

now, theoretical and experimental studies of the oscillator have been carried out only

for the simplest cases where the dynamics of the oscillator is either in a self-sustained

steady-state precessional motion (limit cycle) [3–8] or in synchronization with other

oscillator(s) [9–13]. Since the equation that governs the oscillator is highly non-linear,

it would be fundamentally interesting to map out the full dynamics for experimen-
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tally relevant parameters. In particular, a thorough study of chaotic dynamics will

elucidate how the current-driven oscillator responds to an external perturbation.

5.2 Nonlinear Equation of Motion

Nonlinear differential equations usually have irregular behaviors like synchronization

and chaos. Nonlinearities are the crucial points to generate these behaviors. The

Landau-Lifshitz-Gilbert Equation

dm
dt

= m× heff + αm× dm
dt

+ ajm× (m× ep), (5.1)

which governs the magnetization dynamics in spin transfer oscillators, is also a set

of nonlinear differential equations. It’s natural to expect spin transfer oscillators

have those nonlinear behaviors. It is true, but only when time-dependent external

forces are applied to the system. The reason why we need external forces is that

LLG equation is essentially a 2D differential equation set when both external field

and spin torque driven by current are not time-dependent. The magnetization are

oscillating in the 3D space, however, since the temperature is usually far from Curie

temperature, the magnitude of the magnetization is fixed. This constrain reduces the

system to 2D.

It is believed that in a 2D nonlinear system, there is no possibility that chaos

can exist. Therefore, to study chaos in spin valve oscillators, we have to turn on ac

currents or ac fields. Both ac currents and ac fields generate an explicit time variable

in Eq. (5.1). Thus, the system is extended to 3D, and chaos becomes possible.

5.3 Existence of Chaos

In what circumstance chaos can take place in spin valve oscillators? After showing

the numerical examples of chaos in spin valve oscillation, we use Melnikov Integral
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to predict the region that chaos could happen, and Lyapunov Exponents to reveal

where chaos really is.

5.3.1 Numerical Evidence

Based on a regular dynamics such as a limit cycle, chaos can be generated by changing

the system parameters. Since introducing ac current makes it possible to observe

interesting nonlinear features, a straightforward means to generate chaos is increasing

the ac current amplitude. When the amplitude is comparable to dc current, it can

no longer be treated as a perturbation and synchronization phenomena is replaced

by chaotic dynamics. Fig. 5.1 shows chaos driven by large amplitude ac current for a

spin valve oscillator.

One usually observes chaos by increasing parameters of a regular nonlinear dy-

namics. Large ac current driven chaos is just a particular case. Indeed, the ac current

pass through the device will not be so high. The device will probably be burnt before

chaos can be seen by increasing the ac amplitude because the frequency of ac current

is about gigahertz. In the last chapter, we mentioned that in a vertical stripe, the spin

valve oscillation does not have a fixed frequency. This may indicate the existence of

chaos. As we will show later, chaos appears in a certain region of dc current (within

the vertical stripe) with a fixed amplitude ac current.

That is, one can adjust the dc current instead of the ac current to generate chaotic

dynamics in spin valve oscillators. Fig. 5.2 shows chaos in this case. By sweeping

dc current from low to high (or from high to low), one can find spin valve oscillation

behaves regularly (synchronization) then chaotic then back to regularly. Notice that

in this case, ac current amplitude is very small.
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Figure 5.1: Chaos driven by large ac spin transfer torque. (a) 3D trajectory; (b)
Power Spectrum of mz; (c) Trajectory of mx in time domain; (d) Trajectory of mz in
time domain; (e) Trajectory of my-mz plane.
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5.3.2 Melnikov Integral

Melnikov Integral provides an approach to determine the synchronization region. We

have discussed it for spin valve oscillators in the previous chapter. Now, we apply

this technique to determine the chaos region. This time the integral is taken along

separatrix. Separatrix is a special orbit that passes the saddle point. On the separa-

trix, the trajectory has the same energy as saddle point energy; On the energy sphere,

separatrix separates out-of-plane and in-plane energy orbits. One crucial property for

separatrix is that its period is infinite. Similar to the determining the synchronization,

if we can get simple zeros after integrating along the separatrix, we may “synchronize”

to separatrix. Therefore the trajectory should also have an infinite period.

Melnikov theorem says, simple zeros of Melnikov Integral along separatrx indicates

existence of homoclinic orbit; around homoclinic orbit, chaos exists.

To take the integral along the separatrix, we need to know the equation of it. For

the spin valve oscillator model that we investigated in the last chapter, the separatrix

is derived as following.

Calculating separatrices connected to a saddle point (mx = −1,my = 0,mz = 0),

one can obtain a pair of homoclinic orbits in the parameter range of hk < he < hk +1

(Homoclinic orbit theorem [14]),

mx = M0 − 1 (5.2)

my = ±
√

M0[2(hk + 1− he)− (hk + 1)M0] (5.3)

mz = ±
√

M0[2(he − hk) + hkM0] (5.4)

where

M0 =
4C1e

−τ

(e−τ − C2)2 − 4C1C3

(5.5)

τ =
√

C1(t1 + t0), t1 = 4πMsγt (5.6)
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C1 = 4(he − hk)(hk + 1− he), (5.7)

C2 = 2[hk(hk + 1− he)− (he − hk)(hk + 1)], (5.8)

C3 = −hk(hk + 1) (5.9)

in which t0 is a real parameter. It is found that the pair of homoclinic orbits are

asymptotic to the saddle point when t → ±∞.

Now, we construct Melnikov Integral along this trajectory.

G = E0 +
hk − he

2
(m2

x + m2
y + m2

z) (5.10)

The Melnikov integral is given by

U = −αU1 + β1U2 + β2 cos(
ωt0

4πMsγ
)U3 + β2 sin(

ωt0
4πMsγ

)U4 (5.11)

where

U1 =
∫ +∞

−∞
∇G · [m× (m×Heff )]dτ

U2 =
∫ +∞

−∞
∇G · [m× (m× ex)]dτ

U3 = −
∫ +∞

−∞
cos

ωτ

4πMsγ
√

C1

∇G · [m× (m× ex)]dτ

U4 = −
∫ +∞

−∞
sin

ωτ

4πMsγ
√

C1

∇G · [m× (m× ex)]dτ

are evaluated along the homoclinic orbits Eq. (3).

In general, the simple zero of the Melnikov integral implies the existence of a

homoclinic orbit. Around the homoclinic orbit, chaos is often generated (Chaos the-

orem [14, 15]).

Setting U = 0, one obtains that

cos(
ωt0

4πMsγ
− ψ) =

αU1 − β1U2

β2

√
U2

3 + U2
4

(5.12)
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where

cos ψ =
U3√

U2
3 + U2

4

, sin ψ =
U4√

U2
3 + U2

4

(5.13)

thus as long as

|αU1 − β1U2| ≤ |β2|
√

U2
3 + U2

4 (5.14)

U has zeros. Direct calculation shows that the zeros of U lie in the vertical band

region in Fig. 1. The existence of a pair of transversal homoclinic orbits follows from

standard arguments [15] for parameters near the zeros of U . Then the existence of

chaos can be rigorously proved in a neighborhood of the pair of homoclinic orbits via

a shadowing lemma [14, 15].

We can see that, there is an undetermined initial phase in the Melnikov Integral

approach. This phase make it impossible to get exact solutions for simple zeros. We

can only predict a region, in which, chaos can exist, see Fig. 5.3 To precisely determine

where is chaos in the phase diagram, we need the help of Lyapunov exponents.

5.3.3 Lyapunov Exponents

The unpredictability of chaos is due to the sensitivity to initial conditions. Two

trajectories of a system that initially close will diverge exponentially. Lyapunov ex-

ponents provides a measurement of this stability. It can be expressed as the following

mathematical form,

λi = lim
t→∞

1

t
ln
‖δmi

t‖
‖δmi

0‖
(5.15)

where λi is the ith Lyapunov exponent and ‖δmi
t‖ is the separation between the

trajectories of the ith orthogonal axis at time t. One may choose the initial points in

a small sphere. With the evolution of the dynamics, the sphere becomes an ellipsoid.

The ith axis corresponds to the ith axis of the ellipsoid. See Ref. [16, 17] for more

general explanation. When λi > 0, the distance between two arbitrarily close points
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will increase exponentially along the i-axis at a large t [17].

For a bounded dynamic system, any positive Lyapunov exponent indicates chaos.

We use this property of chaos to map out the chaotic phase in phase diagram. Insert a

figure containing the boundary of chaos, chaos point indicated by positive Lyapunov

exponent.

Lyapunov exponents are numerically computed for spin valve oscillators and Fig. 5.4(a)

shows an example of the Lyapunov spectra, where the largest exponent is shown in

red solid line and the other two are in dashed and dotted lines. When aj is smaller

than the critical value 230.03(Oe), all three Lyapunov exponents are non-positive

and thus the dynamics are non-chaotic, see Fig. 5.4(b). When aj becomes larger than

230.03(Oe), the largest Lyapunov exponents become positive, and thus chaos appears
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Figure 5.5: Chaotic dynamics phase of the spin valve oscillator indicated by dark
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[Fig. 5.4(c)].

By varying the parameters of the dc current and the external field, we have mapped

out the parameters that give arise at least one positive Lyapunov exponent, shown

as the dark area in Fig. 5.5.

5.4 Route to Chaos

5.4.1 Poincaré Map

Complex chaotic systems usually embed simpler maps. The analysis of chaos can

much simplified by extracting maps from its original continuous dynamics.

For a continuous dynamical system that evolves in time space and has the dimen-

sion larger than two, one can construct a two-dimensional Poincaré map. Usually,
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a section of surface is selected so that the trajectory crosses the section successively

after some time intervals. Thus, the continuous time dynamics becomes a discrete

time map. The time series ti is defined as the time when the trajectory intersects

the selected section, where i is non-negative integer. The intersection coordinates are

measured and assigned to the corresponding time ti, expressed as xi = x(ti). Now,

one obtains a discrete map because the following value of xi, xi+1 is determined by

xi, or say, xi+1 = F(xi).

To investigate the route to chaos in spin valve systems, we applied the Poincaré

map. In spin valve oscillators, it is difficult to choose a simple Poincaré section

because a simple section can hardly intersect both out-of-plane and in-plane orbits
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simultaneously. To avoid this difficulty, we measure the trajectory points every time

a local minimum of mx is reached. Therefore, at the infinite time sequence ...ti, ti+1,

ti+2, ... when local minimum of mx is reached, the magnetization vector is measured

and assigned to that time point. Thus, we obtain a sequence of mi is recorded and a

map function mi + 1 = F(mi) is constructed.

5.4.2 Periodic Doubling Bifurcation

By either increasing the ac current amplitude or sweeping dc current from non-chaotic

region to chaotic region, the trajectory of spin valve oscillators experiences a process

called periodic doubling bifurcation.

Unlike the Hopf bifurcation we mentioned in the route to limit cycles, a limit

cycle is already established in this case. As we move close to chaos by changing the

parameter, the complete limit cycle will not come back to its original point after one

period. Instead, the trajectory has to wait for another period to be completed. The

trajectory is now called period two orbit. And the change from a one-period limit

cycle to a period two orbit is referred as a period doubling bifurcation.

Moving closer to chaos, after another period doubling bifurcation, the trajectory

will not be completed until four original periods. Then it’s called period four orbit.

Continuously changing the parameter, a sequence of period doubling bifurcations are

observed. Correspondingly, period 2n orbit, where n is non-negative integers appears.

When n approaches ∞, the trajectory becomes chaos.

Period 2n orbits with increasing n are shown Fig. 5.7 to Fig. 5.9, which represent

the route of period doubling bifurcation to chaos for spin valve oscillators.
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5.4.3 Bifurcation Cascade

A better way to investigate period doubling bifurcation is via Poincaré map. Use the

approach we mentioned previously to study the Poincaré map in spin valve oscillators.

We obtain the Bifurcation Cascade shown in Fig. 5.10.

In Fig. 5.10, we clearly see that, in synchronization region, the map point is one

fixed point, although it will move due to the change of parameter; After a critical

parameter, two fixed points appears in the cascade diagram, and this fork structure

represents a period doubling bifurcation. Another bifurcation gives four fixed points

recorded on the diagram. One finds the period doubling bifurcations take place faster

and faster, as the system is getting closer and closer to chaos. Eventually, there are

infinitely many points recorded. That corresponds to chaos. The rescaling ratios of

the fork size appear universal among different systems. Feigenbaum demonstrated
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i ai ai − ai+1 δi

1 257.2500 -1.9300 4.289
2 255.3200 -0.4500 4.356
3 254.8700 -0.1033 4.472
4 254.7667 -0.0231 4.529
5 254.7436 -0.0051 4.636
6 254.7385 -0.0011
7 254.7374

Table 5.1: Feigenbaum ratio measurement. The second column is derived from
Fig. 5.10; ai is a critical value at the ith bifurcation point.

this universality. And the two ratios regarding the fork size and critical parameters

are referred as Feigenbaum numbers. [19]

5.4.4 Feigenbaum Numbers

There are two Feigenbaum Numbers. The first Feigenbaum number is defined as

δi =
ai − ai+1

ai+1 − ai+2

(5.16)

where ai is the value of the parameter at the ith bifurcation point.

The Feigenbaum ratio is approaching to a universal number within the dynamical

systems that have the same order of nonlinearity. For a system with a nonlinearity

of two, the number is 4.6692... To see if spin valve oscillators belong to the same

universal quadratic class, we evaluate the Feigenbaum ratio shown in the Table 5.4.4.

There is a second Feigenbaum ratio that denotes the rescaling ratio of the bi-

furcation forks. For example, from first two bifurcation in Fig. 5.10, we measured

|α| = |∆Mx1/∆Mx2| = 2.68. Analytically, |α| = 2.5029 . . . [19], for a quadratic

non-linear system [20].

We find that the measured ratios agree with the universal Feigenbaum numbers

exceedingly well. This indicates that our system indeed belongs to a quadratic non-

linear class. In another word, the nonlinearity of spin valve system is two.
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5.4.5 Chaos windows and Sharkovskii Ordering

We noticed that in the Lyapunov spectra, in the chaos region, there are some small

parameter intervals where Lyapunov Exponents drop equal or below zero. These

intervals are chaos windows. One can also find them on the bifurcation cascade

diagram.

In Fig. 5.10, we see periodic seven and periodic five chaos window. Within these

chaos windows, the system is not a chaotic system since they don’t have a nonzero

Lyapunov Exponent. Instead, their trajectories are period five or period seven regular

orbits, i.e., trajectories will be complete after five or seven loops.

These chaos windows provide another demonstration of the existence of chaos

by the Sharkovskii ordering theorem [21]. According to this theorem, the system will

experience period one orbit (regular limit cycle), period two orbit ... period 2n orbit ...

chaos...period seven orbit, period six orbit, period five orbit and period three orbit.

If one of these periodic orbit is observed those kinds of orbit before the observed

one have already taken place. For example, if one observes period eight orbit, he

can conclude the system has experienced period one to period four orbit. Now, we

observed period five orbit, all the orbit before that in the Sharkovskii sequence have

appeared. Therefore, chaos must have occurred before we saw period five orbit.

5.5 Power Spectra of Chaos

A highly interesting feature is the two distinct magnetization trajectories during the

transition to chaos. In the first case, the bifurcation occurs only at the out-of-plane

orbits shown in Fig. 5.11. Although the bifurcation on this single orbit also leads

to chaos because the largest calculated Lyapunov exponent is positive, the power

spectrum displays a well defined peak. The peak position corresponds to the inverse
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of the average time for the magnetization to complete one loop (since the loop never

closes, we define a one-loop when the trajectory returns to the point nearest to the

starting point of the loop). Thus, the presence of the narrow peak indicates a quasi-

periodic motion of the magnetization in chaotic dynamics. It would be erroneous if

one automatically assumes the dynamics is synchronization when the experimental

power spectrum is highly peaked. Synchronization refers to the phase-locking between

the external and natural frequencies but the positive Lyapunov exponent excludes the

possibility of the phase-locking. The second chaotic motion involves both out-of-plane

and in-plane orbits, as seen in Fig. 5.12. In this case, the power spectra display typical

noise, i.e., broadly distributed spectra. The magnetization jumps between out-of-

plane and in-plane orbits are completely random; it is an intrinsic stochastic process

driven by a deterministic external perturbation. This stochastic jumping leads to a

much stronger noise in the power spectra. On the other hand, it is necessary that

trajectories are within the vicinity of the separatrix of two different orbits so that the

stochastic magnetization jump can take place under small perturbations. Since the

separatrix has an infinite period, the trajectory close to it must have a nearly zero

frequency as seen in left panel of Fig. 5.12.

5.6 Fluctuation

The synchronization-like chaotic power spectra imply that quasi-periodicity can be

observed in chaos if the trajectory is not near the separatrix. It is the stochastic

jump of the trajectory in the vicinity of the separatrix that reduces the periodicity.

The reduction of the periodicity due to stochastic jumps could also occur when the

thermal fluctuations exist because the thermal fluctuations are stochastic, known as

a Wiener process. In general, there exists a bifurcation gap [22] where the thermal
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Figure 5.11: Synchronization-like chaos. Chaos that involves only one branch of orbits

fluctuations limit the observation of 2n orbits in the bifurcation diagram to a finite

number n < n0. The stronger the fluctuations are, the smaller n0 is. Consequently,

the thermal fluctuations make the Lyapunov spectra smoother in Fig. 2 and chaos

windows invisible in Fig. 3. We emphasize that although the thermal fluctuations

lead to noise in the power spectra and the possible random jumps between two orbits,

it is not associated with the bifurcation and thus there are no universal Feigenbaum

numbers. Experimentally, one can distinguish chaotic dynamics generated by the

deterministic perturbation (ac current) and by the thermal fluctuations. For example,

when the parameter, e.g. dc current in our study, is varied, the current driven power

spectrum should evolve from non-chaotic dynamics to chaos and back to non-chaos.
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Chapter 6

Effect of Finite Temperature

The magnetization dynamics discussed in previous chapters are subject to the zero

temperature restriction. However, the real device works at room temperature. Even

though in experimental labs, low temperature is accessible, we can not overlook the

fact that the electrical current will increase the temperature of the device. Finite

Temperature introduces instability of magnetization [1]. Thermal effect agitates the

magnetization switching [2–5]. On the other hand, the thermal effect explains the

large variation of linewidths in spin transfer oscillators. [6].

In this chapter, we investigate the thermal effect of magnetization, especially for

the cases when self-sustained oscillations have been established under zero tempera-

ture. We will also consider the thermal effect on chaotic dynamics in spin transfer

oscillators.

6.1 Stochastic Process in
Magnetization Dynamics

Following the treatment of Brown [7], the thermal effect on magnetization dynamics

is interpreted by a three dimensional isotropic random field h(t) that has the following
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properties. First, the process h(t) is stationary. Second, its statistical average is zero,

< hi(t) >= 0, (6.1)

where i represents x, y or z direction. Third, the correlation function can be written

as,

< hi(t)hj(t + τ) >= µδijδ(τ). (6.2)

Because h(t) is stationary, µ is a constant. According to these assumptions, the

distribution of hi(t) is N(0, σ2) at time t. Therefore, a three dimensional Wiener

process can be constructed

σdW(t) = h(t)dt (6.3)

where σ2 = µ.

Now, thermal agitated Landau-Lifshitz-Gilbert equation can be expressed as

dM
dt

= −γM× (Heff + h(t))− α

Ms

M× dM
dt

+
γaJ

4πMs

M× (M× ep) (6.4)

It can be converted into,

dM = Ṁdetdt + σγM× dW (6.5)

where

Ṁdet = −γM×Heff +
α

Ms

M× dM
dt

+
γaJ

4πMs

M× (M× ep) (6.6)

which is just the determinative Landau-Lifshitz-Gilbert equation.

6.2 Stochastic Process of Energy

From the stochastic differential equation of magnetization, Eq. (6.5), we derive the

stochastic differential equation for the free energy density of the magnetization by

considering

dE = −Heff · dM (6.7)
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Plug Eq. (6.5) into the above equation, one gets

dE = −αγ

Ms

|M×Heff |2dt

+
γaJ

4πMs

(M×Heff ) · (M× ep)dt

+γσ(M×Heff ) · dW (6.8)

Notice that Stratonovich calculus instead of Ito calculus is used here, so that chain

rules hold.

Since each component of dW can be written as

dWi = εi

√
dt,

where εi is normally distributed with mean 0 and variance 1, the last term in Eq. (6.8)

becomes,

γσ
∑

i=x,y,z

(M×Heff )iεi

√
dt

which is indeed a summation of three independent normal distributions. The result

distribution has the mean equal to the sum of means of the three distributions and

the variance equal to sum of variances of the three distributions. The variance of

∑

i=x,y,z

(M×Heff )iεi

is

∑

i=x,y,z

(M×Heff )
2
i

= |M×Heff |2. (6.9)

Therefore,

γσ(M×Heff ) · dW

= γσ|M×Heff |dW (6.10)
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where dW = ε
√

dt is simply a one-dimensional Wiener Process. Combining the drift

term in Eq. (6.8), the stochastic differential equation of the energy of magnetization

is,

dE = −αγ

Ms

|M×Heff |2dt+
γaJ

4πMs

(M×Heff ) ·(M×ep)dt+γσ|M×Heff |dW (6.11)

The first two terms are simply the determinative drift term of the energy, which we

use to calculate Melnikov Integral in previous chapters. The last term accounts for

the thermal effect.

Now, instead of dealing with a three-dimensional stochastic process on magneti-

zation dynamics, we have obtained a simpler one-dimensional stochastic process on

the magnetic energy.

6.3 Fokker-Planck-Equation

From Eq. (6.8), one can see that the drift vector and the diffusion tensor are simply,

−αγ

Ms

|M×Heff |2 +
γaJ

4πMs

(M×Heff ) · (M× ep),

and

γ2σ2|M×Heff |2,

respectively.

Thus, we derived the Fokker-Planck-Equation as following,

∂P (E, t)

∂t
=

∂

∂E
{[αγ

Ms

|M×Heff |2 − γaJ

4πMs

(M×Heff ) · (M× ep)]P (E, t)}
1

2

∂2

∂E2
[σ2γ2|M×Heff |2P (E, t)] (6.12)

The function P (E, t) represents the probability that at time t, magnetic energy is E.

For stationary state,
∂P (E, t)

∂t
= 0.
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Setting aJ = 0, i.e. current is zero, one has the following relationship of P (E, t),

∂

∂E
[
αγ

Ms

|M×Heff |2P (E, t)] = −1

2

∂2

∂E2
[σ2γ2|M×Heff |2P (E, t)] (6.13)

Testing the trial solution,

P = A0e
−V (E−E0)

kBT ,

where V is the volume, we get

αγ

Ms

(
V

kBT
) =

1

2
σ2γ2(

V

kBT
)2.

Therefore,

σ2 =
2αkBT

γMsV
. (6.14)

This result is so called dissipation-fluctuation relation in literatures.

6.4 Thermal Noise in Spin Transfer Oscillators

As we discussed in previous chapter, Melnikov Integral which is essentially the net

work done by damping torque and spin transfer torque after one period of magneti-

zation oscillation, is zero for the self-sustained oscillation. However, we have assumed

the temperature is zero. When temperature is higher than zero, the net work done

by both torques after one period of oscillation may be non-zero.

The thermal effect induces stochastic processes for magnetization and its energy,

as we can see in Eq. (6.5) and Eq. (6.11). These stochastic processes make the

Melnikov Integral deviating from zero. The first two terms in Eq. (6.11) are drift

terms, and the integral of them for one period of oscillation gives the usual Melnikov

Integral, which is zero for self-sustained oscillations. But the integral of the third

term is not determinative. Its result is a random variable and indicates a non-zero

net work done by damping and spin transfer torque.
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In another word, after one period of oscillation, the energy may not come back

to it original level. Instead, the energy after one period will constitute a distribution

which is centered at the energy one period earlier, and has a certain variance. To

determine this variance, we need integral the variance of dE.

The variance of Eq. (6.11) is

γσ|M×Heff |2,

so that the variance of the energy deviation after one period is,

V ar(∆Eth) =
∫

Ω
γ2σ2|M×Heff |2dt (6.15)

Plugging Eq. (6.14),

V ar(∆Eth) =
2kBTαγ

MsV

∫

Ω
|M×Heff |2dt. (6.16)

Notice that the integral in the above equation is nothing but the work done by

damping torque in one period of oscillation. Thus, the variance of the energy deviation

is determined by the temperature, which is obviously, and the work done by damping.

For self-sustained oscillations, the work done by damping torque is the same as the

work done by the spin transfer torque. That is to say, the variance of the energy

deviation distribution can be understood as a function of spin transfer torque instead

of the damping torque.

The existence of the energy deviation can also be interpreted as the thermal effect

kicking the trajectory to another orbit which has different energy. Trajectories that

have different energies have different frequency. Since thermal effect induces a distri-

bution of energy deviation, the frequency of the trajectory will also has a distribution.

This is shown as a broadening of the frequency peak in the power spectrum.

For trajectories that are close to separatrix, the thermal effect may kick the tra-

jectory to separatrix, or from one branch of orbit (OOP/IP) to the other (IP/OOP).
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In terms of the energy, the closer the center of the energy distribution is to the energy

of separatrix, the higher the probability of the trajectory precess around separatrix.

Since the separatrix has a zero frequency, the noise will be enhanced in the power

spectrum around zero frequency. It is the thermal effect that generate the broaden

distribution of energy, which further enhance the noise in power spectra.

6.5 Thermal Effect on Chaos

When ac current is turned on, at the neighborhood of the separatrix, chaos may

appear. Chaos also induces noise in power spectra. However, the mechanisms are

different from thermal noise. The underlying equation for chaos and thermal effect

are different. One is a determinative process, the other is a stochastic one.

Chaos induced noise only appears when trajectories are near the separatrix; it is

not necessary for thermal noise. However, since thermal effect generates a distribution

of energies or say a distribution of trajectories, a trajectory that is initially out of

chaotic region may be kicked into this region. In other words, the thermal effect blurs

the boundary of chaotic region.

In the previous chapter, our numerical results have shown that a well defined

frequency peak may persist in the power spectrum of chaos. In the presence of finite

temperature, this peak is suppressed.

At zero temperature, “Synchronization-like” chaos only appears within a small

region of DC current. A change around 1 Oe of dc current suppresses the peak in

the power spectrum of chaos. This is because trajectories get closer to separatrix,

and jump between OOP branch and IP branch. From the Melnikov Integral, we can

calculate how much energy change will be driven by the 1 Oe dc current change. We

use ∆Edc to represent this energy change. On the other hand, the thermal effect
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will generate an energy deviation distribution. If the distribution is wide enough

compared to ∆Edc, the peak in chaos will disappear. Thus, we may calculate the

ratio
∆Edc√

V ar(∆Eth)

and compare it to 1. If ∆Edc√
V ar(∆Eth)

À 1, the thermal effect will not affect the

“synchronization-like” chaos significantly; if ∆Edc√
V ar(∆Eth)

¿ 1, the thermal effect will

generate large enough energy deviation and kill the phenomena of “synchronization-

like” chaos.

Because of the simple zero of limit cycle, the integral in Eq. (6.16), which is the

work done by damping torque, can be replaced by the integral that represents the

work done by spin transfer torque,

V ar(∆Eth) =
2kBTaJγ

V
M2

s Mβ (6.17)

where Mβ is defined by Eq. (3.41). And

∆Edc = γ∆aJM2
s Mβ (6.18)

Therefore
∆Edc√

V ar(∆Eth)
= ∆aJMs

√
γV Mβ

2kBTaJ

(6.19)

For small Hext, using the approximated result Eq. (3.54),

∆Edc√
V ar(∆Eth)

= ∆aJMs

√√√√γV he(
3
2
− 3E)TΩ

2kBTaJ

(6.20)

where TΩ is known as the period of the limit cycle which is expressed by Eq. (3.52).

Since chaotic trajectory is close to separatrix, their energy E has to be close to −he,

the energy of the saddle point. Thus,

∆Edc√
V ar(∆Eth)

= ∆aJMs(1− he)

√
3γV heTΩ

4kBTaJ

(6.21)
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Consider the following parameters,

Ms = 800 Oe

he =
200 Oe

4πMs

aJ = 262.5 Oe

∆aJ = 1.5 Oe.

The period of the limit cycle TΩ is of the order of 10−10s. So that

∆Edc√
V ar(∆Eth)

∼
√

V

T
× 109 (6.22)

For V = 104nm3, at room temperature,

∆Edc√
V ar(∆Eth)

∼ 10−4.

To make the ratio close to 1, one has to drop the temperature to as low as 10−5K,

which is not possible in any experimental condition. Therefore, the power spectrum of

chaos in real experiments will always show wide spread noise without “synchronization-

like” peak.
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Chapter 7

Summary

In this dissertation, we presented the studies on different phenomena related to spin

angular momentum transfer effect.

The first phenomenon is the energy transfer effect associated with spin transfer

effect in Magnetic Tunnel Junctions. Starting from Jüllier model of tunneling cur-

rent, we derived the formula of transverse and longitudinal spin currents, which are

contributed to spin transfer effect and energy transfer effect, respectively. Based on

sd exchange model, we investigated the microscopic mechanism of energy transfer

in MTJ induced by spin dependent inelastic scattering of the longitudinal spin cur-

rent. We used an effective temperature to characterize the energy transfer effect and

applied this model to thermal assisted magnetization switching effect.

We then studied the magnetization dynamics in spin valve systems. We showed

the derivation of the analytic solutions of an artificial neutral precession of magne-

tization. We calculate the Melnikov Integral to present the establishment of stable

self-sustained precession.

We extended the Melnikov Integral method to determine the synchronization phe-

nomena in spin valves when a small ac current is turned on. We found this method

can effectively predict the synchronization region even in more general cases.

Melnikov Integral method can also used to determine chaotic region in the phase
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diagram of the magnetization dynamics of spin valve. However, since there exists an

arbitrary phase term in the simple zero solution of Melnikov Integral, we can’t exactly

predict at which condition chaos will appear. To overcome this problem, we apply

Lyapunov exponents calculations. Since the positive Lyapunov exponent indicates

chaos, we map out the detail phase diagram within the chaos region.

To understand the route to chaos, we implemented Poincaré Map. Period doubling

bifurcation was captured and two universal Feigenbaum constants was demonstrated

by measuring the change of scaling of bifurcation cascade. In the cascade diagram,

regular attractors such period-five, period-seven trajectories were seen in chaotic re-

gion. These are called chaos windows.

We analyzed the power spectrum of chaos based on numerical simulation of the

magnetization dynamics. Numerical simulation suggests there are two types of power

spectrum for chaos. One has broadened noise without frequency peak, the other

shows a “synchronization-like” frequency peak.

However, considering the finite temperature effect, the thermal noise will be large

enough to smooth out the peaks in chaotic power spectrum. The estimation of thermal

effect is based on the Melnikov Integral calculation of energy change between two

types of chaos and the calculation of energy deviation distribution due to temperature

effects.

In the appendix, we present another interesting topic that attracted much atten-

tion in the past years, the spin Hall effect. We will discuss a general formula for

transport coefficients. Then we apply it to spin Hall effect for a Rashba Hamiltonin

and distinguish the extrinsic spin Hall current and intrinsic spin Hall current. On the

other hand we calculate the transport coefficient for Orbit-Angular-Momentum using

the same formula. We argue that the intrinsic spin Hall current is always compensated

by an equal-magnitude but negative intrinsic Orbit-Angular-Momentum current. We
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then investigate the extrinsic spin Hall effect in the presence of Rashba spin-orbit

coupling bands by using Boltzmann Equation. It is found that the extrinsic spin

Hall current is depressed by the spin-orbit coupling bands unless there exist magnetic

scattering.
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Appendix A

Spin Hall Effect

A.1 Intrinsic Spin Hall Effect

Recently, there are emerging theoretical interests on the spin Hall effect in a spin-orbit

coupled system [1–14]. The spin Hall effect refers to a non-zero spin current in the

direction transverse to the direction of the applied electric field. Earlier studies had

been focused on an extrinsic effect [15, 16], namely, when conduction electrons scatter

off an impurity with the spin-orbit interaction, the electrons tend to deflect to the

left (right) more than to the right (left) for a given spin orientation of the electrons.

Thus the impurity is the prerequisite in the extrinsic spin Hall effect. Recently, the

spin Hall effect has been extended to semiconductor heterostructures where the spin-

orbit coupled bands are important. It has been shown that the spin current exists in

the absence of impurities, termed as the intrinsic or dissipationless spin Hall effect

(ISHE) in order to distinguish the impurity-driven extrinsic spin Hall effect (ESHE)

mentioned above. In general, the magnitude of ISHE is two to three orders larger

than that of ESHE; this immediately generates an explosive interest in theoretical

research on the ISHE since the spin current is regarded as one of the key variables in

spintronics application.

However, the spin current generated via ISHE is fundamentally different from
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conventional spin-polarized transport in many ways. First, the spin current is carried

by the entire spin-orbit coupled Fermi sea, not just electrons or holes at the Fermi

level [1, 4]. Second, ISHE exists even for an equilibrium system (without external

electric fields) [5] and ISHE is closely related to the dielectric response function that

characterizes the electronic deformation [6]. Most recently, it is proposed that the

intrinsic spin Hall effect exists even in insulators [17]. The above unconventional

properties cast serious doubts on experimental relevance of the intrinsic spin current.

It has been already alerted by Rashba [5, 6] that the ISHE may not be a transport

phenomenon. Due to the ill-defined nature of the spin current in the spin-orbit coupled

Hamiltonian, theories utilizing different approaches produce contradicting results:

some predicted a zero spin Hall current in the presence of an arbitrary weak disorder

and some claimed a universal spin conductivity at weak disorder. In this letter, we do

not try to resolve the above theoretical debate, instead we reveal the spurious nature

of the intrinsic spin Hall effect and discuss its experimental consequences. We first

define generalized intrinsic and extrinsic transport coefficients from the semiclassical

transport equation. We show that the intrinsic spin current is always accompanied

by an equal but opposite orbital-angular-momentum (OAM) current for a spin orbit

coupled system. Thus, the intrinsic magnetization current which is the sum of the

spin current and the orbital angular momentum current is identically zero. Next, we

construct the equation of motion for the spin density in the presence of the intrinsic

and extrinsic mechanisms. We find that the intrinsic spin current is exactly canceled

by a spin torque and thus the spin accumulation at the edge of the sample is solely

determined by the extrinsic spin current. The above results make us conclude that the

intrinsic spin current has no experimental consequences in terms of the spin transport

measurement for an arbitrary strength of the intrinsic Hall conductivity. Therefore,

the intrinsic spin current is a pure theoretical object, at least, in the limit of the
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semiclassical picture of the spin transport. Finally, we brief comment on the most

recent experimental results [18].

Let us consider a spin-dependent Hamiltonian

H = − h̄2

2m
∇2 + V (r, σ) + eEx + Vi(r, σ) (A.1)

where the second term represents a periodic spin-orbit potential, the third term is

the interaction with a DC electric field E in the x-direction, and the last term is the

impurity potential that may or may not depend on spin. Now let us consider how an

arbitrary dynamic variable Ĝ responds to the electric field. A standard semiclassical

version of the linear response function J (r) is

J (r) =
∑

kλ

Gkλf(εkλ, r) (A.2)

where Ĝ can be any dynamic variable such as the current density, the spin current

density, the magnetic moment, etc., Gkλ =
∫

drΨ+
kλ(r)ĜΨkλ(r) ≡< Ψkλ|Ĝ|Ψkλ >

is the expectation value for the eigenstate Ψkλ(r) (Bloch states) determined by the

first three terms in Eq. (1), λ = ±1 represents the index of the spin sub-band, and

f(εkλ, r) is the distribution function that depends on the detail of the scattering

potential Vi(r, σ), the last term of Eq. (1). The dependence of J (r) on the electric

field enters in two places: the wavefunctions and the distribution function. We may

expand them up to the first order in the electric field. The wavefunction is written

as,

Ψkλ(r) = Ψ
(0)
kλ(r) + Ψ

(1)
kλ(r) (A.3)

where Ψ
(0)
kλ(r) is the unperturbed electronic structure determined by the first two

terms in Eq. (1), and

Ψ
(1)
kλ(r) =

∑

k′λ′ 6=kλ

< Ψ
(0)
k′λ′|eEx|Ψ(0)

kλ >

εkλ − εk′λ′
Ψ

(0)
k′λ′(r), (A.4)
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is the first order perturbation to the third term in Eq. (1). Similarly, we write the

distribution function in terms of the equilibrium and non-equilibrium parts,

f(εkλ, r) = f 0(εkλ) +

(
− ∂f 0

∂εkλ

)
g(kλ, r) (A.5)

where f 0 is the equilibrium distribution function and the non-equilibrium function

g(kλ, r) is proportional to the electric field. By placing Eqs. (3) and (5) into Eq. (2)

and keeping only the first order term in the electric field, we have J (r) ≡ Jint +Jext

where

Jint = 2Re
∑

kλ

< Ψ
(0)
kλ |Ĝ|Ψ(1)

kλ > f 0(εkλ) (A.6)

is defined as the intrinsic linear response and Re stands for the real part, and

Jext =
∑

kλ

< Ψ
(0)
kλ |Ĝ|Ψ(0)

kλ >

(
− ∂f 0

∂εkλ

)
g(kλ, r) (A.7)

is called the extrinsic linear response. The above distinction between intrinsic and

extrinsic contributions to the transport properties has been already introduced by a

number of groups, in particular, by Jungwirth et al. [19] in their study of the anom-

alous Hall effect in itinerant ferromagnets. Equation (6) shows that the intrinsic

linear response coefficient is not related to the transport phenomenon since Jint is

determined by the equilibrium distribution function and the local electronic struc-

ture. Thus, there are no transport length scales such as the mean free path or spin

diffusion length in Jint. The extrinsic linear response, Jext, is a true transport quan-

tity because it is directly proportional to the non-equilibrium distribution function

that is determined by various scattering mechanisms. At low temperature, the factor

of ∂f 0/∂εkλ limits the transport states to the Fermi level. Comparing Eq. (6) and

Eq. (7), we realize that the intrinsic effect is simple and easy to calculate while the ex-

trinsic effect is much more complicated. As long as we know the Bloch states Ψ
(0)
kλ , the

intrinsic transport coefficient can be straight-forwardly evaluated since f 0 is known.
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The extrinsic transport coefficient not only depends on the Bloch states, but also on

the non-equilibrium distribution function that is usually the center of the relevant

physics. Here, however, we should concentrate on the easy problem: calculation of

the intrinsic transport from Eq. (6) by using a model Hamiltonian.

We choose a Rashba Hamiltonian to illustrate the physics of the intrinsic transport

properties. A similar calculation can also be performed for a Luttinger Hamiltonian

[20]. For the Rashba Hamiltonian, the second term of Eq. (1) is V (r, σ) = (α/h̄)σ·(p×
ẑ) where p is the momentum in xy plane, σ is the Pauli matrix and α is the coupling

constant. Before we calculate the spin and the OAM Hall currents from Eq. (6), we

list the wavefunction and the dispersion relation of the Rashba Hamiltonian so that

one can easily follow our derivation at each step

Ψ
(0)
kλ(r) =

eik·r
√

2A

(
1

−iλ(kx + iky)k
−1

)
(A.8)

where A is the area of the 2-dimensional electron gas, and

εkλ =
h̄2k2

2m
+ λαk (A.9)

where k = |k| =
√

k2
x + k2

y. By placing above two equations into (4), we have [5]

Ψ
(1)
kλ(r) = −λeEky

4αk3
Ψ

(0)
k−λ(r). (A.10)

In obtaining the above result, we have used < Ψ
(0)
k′λ′|x|Ψ(0)

kλ >= −λλ′
2

δkk′
ky

k2 .

We now proceed to calculate the spin Hall current by taking the operator Ĝ =

(1/2)[szvy + vysz] where sz = (h̄/2)σz is the z-component of the spin operator and

vy is the y-component of the velocity. By placing the above definition along with

Eqs. (8) and (10), and by taking the distribution function a step function at zero

temperature, we obtain the intrinsic spin Hall current from Eq. (6),

J spin
int =

e

8π
E; (A.11)
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where we have assumed that the Fermi energy is larger than the spin-orbit coupling

energy so that both spin sub-bands cross the Fermi level. Equation (11) represents

the universal spin conductivity (e/8π) obtained by many groups [1, 4].

Our central question is: what is the physical meaning of this spin current derived

from the equilibrium distribution function? To see clearly what this spin current

represents, we recall that the spin is not a conserved quantity in a spin-orbit coupled

system. If one is interested in the magnetization current or the total angular momen-

tum current, one should also include the OAM Hall current. The OAM Hall current

can be similarly calculated by introducing an operator for the OAM Hall current

Ĝ =
1

2
[(r× p)zvy + vy(r× p)z] (A.12)

where (r × p)z = xpy − ypx is z-component of the OAM. The same straightforward

evaluation of Eq. (6) leads to

Jorbit
int = − e

8π
E. (A.13)

Thus the OAM current is exactly equal and opposite to the spin current. This result

is not surprising at all: the total angular momentum (z-component), spin plus orbital,

is conserved for the Rashba Hamiltonian and thus we can choose the Bloch states that

are simultaneous eigenstates of the total angular momentum and the Hamiltonian.

In fact, one can directly show that the total angular momentum current vanishes if

we use [sz + Lz, H] = 0 to the Rashba Hamiltonian.

Having discussed that the intrinsic spin current is always accompanied with the

OAM current in a bulk spin-orbit coupled material, our next question is whether the

intrinsic spin current can produce a spin accumulation at the edge of the sample? To

answer this question, we recall the basic idea of the spin accumulation for the ex-

trinsic spin current. When an extrinsic spin current spatially varies, non-equilibrium

spins will be accumulated so that the spin-diffusion is balanced by the spin-drift cur-
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rent. Equivalently, the spin accumulation results in the chemical potential splitting

between two spin sub-bands and a voltage can be measured experimentally when the

sample is attached to a ferromagnetic lead [16]. Mathematically, the non-equilibrium

spin-dependent chemical potential or spin accumulation is the average of the non-

equilibrium distribution function [21]. For the intrinsic spin Hall current, the distri-

bution is an equilibrium distribution and one would expect that the concept of the

spin-dependent chemical potential breaks down. Indeed, we show next that the the

intrinsic spin Hall current does not lead to spin accumulations at the sample edge

and across an interface.

To calculate the spin accumulation or the position-dependent spin density S(r, t)

at the edge of the sample or across an interface, one relies on the semiclassical equation

of motion that can be generally written as

∂S(r, t)

∂t
+ ∇ · [Jint + Jext] = τ + τ ext +

(
∂S

∂t

)

colli

(A.14)

where Jint and Jext are the intrinsic and extrinsic spin current densities, τ and τ ext are

the intrinsic and extrinsic spin torques due to non-commutivity of the Hamiltonian

with the spin operator, i.e., the spin torque is calculated by replacing Ĝ by [s, H]/ih̄

in Eqs. (6) and (7), and the last term in Eq. (14) is a collision term that is to relax

the nonequilibrium distribution function to an equilibrium one. To explicitly obtain

the spin accumulation S(r, t) in a closed form, it is necessary to use a wave-package

description so that the position-dependence can be readily included. Culcer et al. [2]

have already formulated that the spin torque can be written as two terms. In our

notation, we find the expression for the intrinsic spin torque is τ = τ 0 + τ 1 where

τ 0 =
∑

kλ

< kλ| 1
ih̄

[s, H]|kλ > f 0(kλ, r) (A.15)
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and

τ 1 = −∇ ·∑
kλ

< kλ| 1
ih̄

[s, H]r|kλ > f 0(kλ, r) (A.16)

where the symmetrization of the product of [s, H] and r is implied. We emphasize that

τ 1 comes from the position-dependence of the center of the wave-packet. By using the

fact that the wavefunction is an eigenstate of the Hamiltonian, H|kλ >= Ekλ|kλ >,

we immediately see that the expectation value of [s, H] is zero, i.e., τ 0 = 0. To

calculate τ 1, we use the commuting relation [H, r] = −ih̄v + iα(ez × σ), where

v is the velocity operator. After a straight-forward algebra simplification, we have

found [22]

τ = ∇ ·∑
kλ

< kλ|vs + sv

2
|kλ > f 0(kλ, r) ≡ ∇ · Jint. (A.17)

Therefore, the intrinsic spin torque exactly equals the divergence of the intrinsic spin

current. The equation of motion, Eq. (14), now becomes

∂S(r, t)

∂t
+ ∇ · Jext = τ ext +

(
∂S

∂t

)

colli

. (A.18)

We conclude that the intrinsic spin current does not enter into the play in the equation

of motion. The spin accumulation S(r, t) is solely determined by the extrinsic part of

the current density jext, the spin torque τ ext, and the spin relaxation in the collision

term.

We now return to our central issue on the problem, namely, whether the intrin-

sic spin Hall conductivity can be measured via conventional meanings of the spin

transport. Since the spin current is not directly measurable, two schemes are usually

employed: one is the realization of measuring the electric field induced by the mag-

netization current [24] and the other is the spin accumulation at the sample of the

edge or across an interface [23]. We should discuss them separately below.

If there is a net magnetization current in a bulk material, a circular electric field

outside the sample will be induced. This phenomenon is analogous to the magnetic

119



field induced by a charge current, known as Biot-Savart law or Ampere’s law. For

example, it was proposed that a spin current generated via spin waves propagation

through a nanowire can be detected by an induced electric field just outside the

nanowire [24, 25]. However, the above proposal is applied to the case where the OAM

current is absent. In the present case, the OAM current is exactly opposite to the

spin current so that the net magnetization current is zero. Therefore, we conclude

that there is no electric field associated with the intrinsic spin current.

The more efficient method to detect the spin current is by measuring the spin

accumulation due to spatial variation of the spin current, e.g., the Johnson-Silsbee’s

experiment [23]. Based on the equation of motion given by Eq. (18), the divergent

of the extrinsic but not intrinsic spin currents can lead to a buildup of spin accu-

mulation. To determine the spin accumulation, one usually makes a relaxation-time

approximation so that the collision term in Eq. (18) is modeled by −S/τsf . Since

the intrinsic spin current does not contribute to the equation of motion for the spin

accumulation, the measurement based on the detection of the spin accumulation will

produce a null contribution from the spin Hall effect, no matter how large the intrinsic

spin current is.

Two experimental groups have recently observed the spin Hall effect by detecting

spin accumulation at the edges of the samples [18]. Kato et al. argued that the

effect is extrinsic based on their experimental results that the spin accumulation is

independent of the strain direction, while Wunderlich et al claimed that their observed

effect is intrinsic based on the assumption that the impurity scattering is weaker than

the spin-orbit coupling in their samples (clean limit). We point our here that the

clean limit in the experiment does not imply the spin accumulation from the intrinsic

origin. Instead, our analysis has shown that no matter how large is the intrinsic spin

current, the observed effect has to be an extrinsic origin because the spin accumulation
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is independent of the intrinsic spin current.

We finally draw a picture on why the intrinsic spin Hall fails to produce experimen-

tal consequences. Consider a contact between a Rashba material and a non-magnetic

material with no spin-orbit coupling. The spin current, as well as the orbital angu-

lar momentum current, would exist in the the Rashba material. However, the spin

current drops to zero across the interface of the non-magnetic material, i.e., the spin

current is not continuous; this is because the spin torque produces a mechanism to

transfer the spin current to the orbital angular momentum current or vice versus. As

a result, when the spin orbit coupling vanishes at the non-spin-orbit coupled material,

both the spin and orbital angular momentum currents drop to zero. The loss of the

spin current exactly equals to the gain of the OAM current so that the total angular

momentum current or magnetization current is continuous across the interface of the

layers; they are both zero. For the same reason, the edge of the sample never develops

spin accumulation because the usual boundary condition of zero spin current at the

surface is no more valid, instead, the total angular momentum current is zero at the

surface for the intrinsic spin Hall effect.

In conclusion, we have constructed a general framework for calculating intrin-

sic linear response coefficients. We have shown that the intrinsic spin Hall effect is

accompanied by the intrinsic orbital-angular-momentum Hall effect so that the mag-

netization current is zero in a spin-orbit coupled system. The intrinsic spin Hall effect

is not a useful source of spin currents because the intrinsic spin current does not enter

into the equation of motion for the spin transport. Most of the proposed experimental

detections of the intrinsic spin Hall effect are the artifact of the boundary conditions

that are not valid for the intrinsic spin Hall current.
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A.2 Extrinsic SHE in Rashba bands

Now, we consider the extrinsic spin Hall effect in the presense of Rashba spin-orbit

coupling. The extrinsic spin Hall current is the result of spin orbit interaction be-

tween electron and impurities. Skew scattering and side jump effect are the most

important two contributions. We prove in the following, that the skew scattering

will be suppressed in the presense of Rashba spin-orbit coupling unless a spin-flipping

scattering is considered.

The Hamiltonian of a two dimensional electron gas system is

~H = ~HK + ~HR = ~HK + ~σ · ~BR

where ~BR = α(ẑ × ~p) can be understood as an effective magnetic field.

We write down non-equilibium distribution function as

f̂ = g + ~σ · ~h

Then homogeneous Boltzmann Eq. with skew scattering term can be written as,

e ~E ·~v∂f0

∂ε̂
=

∫
W s

kk′
[
f̂(~k′)− f̂(~k)

]
d~k′ +

∫
W a

kk′~σ ·
(
~k × ~k′

) [
f̂(~k′) + f̂(~k)

]
d~k′ (A.19)

We set 1
τ

=
∫

W s
kk′d

~k′; 1
τso

=
∫

W a
kk′d

~k′. If W
s(a)
kk′ weakly depends on k and k′, in 2DEG

and electric field on x direction, above Eq. becomes

eExvxδ̂(ε̂− εf ) = − f̂ − f̄

τ
− m(~k × ~Jz)z

h̄τso

− σz
m(~k × ~J)z

h̄τso

(A.20)

where ~Jzis the spin current in longitudinal or Hall direction. This Eq. give us full

information on extrinsic spin Hall Effect (ESHE), as long as there is no spin orbit

coupling, i.e. α = 0. If we turn on spin orbit coupling, a torque term
i[Ĥ,f̂]

h̄
=

2α
h̄

~σ · ( ~BR × ~h) should appear in Eq. (A.19),

eExkx
∂f0

∂ε̂
+

2α

h̄
~σ · ( ~BR × ~h) = − f̂ − f̄

τ
− m(~k × ~Jz)z

h̄τso

− σz
m(~k × ~J)z

h̄τso
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However, this equation is not correct. If we trace σy times the above equation,

eExσyvxδ(ε̂− εf ) + 2αkyhz = −hy − h̄y

τ

then integrate over k, first term of left hand side(LHS) is zero, and second term

of LHS of above Eq. gives spin Hall current Jz
y , but right hand side(RHS) comes

out to be ZERO. Therefore, when we turn on the spin orbit coupling, no matter

how small α is, the spin Hall current suddenly becomes zero. This does not make

sense. The problem is that when we turn on spin orbit coupling, it will induce an in

plane effective magnetic field, which makes out of plane polarization of the transport

particles rotating away from their original directions. In the scattering process, this

rotation still exists, which leads a spin flip relaxation time τsf (∝ α−1). So there should

be a spin flip scattering term induced by spin orbit coupling on RHS of Boltzmann

Eq.

The spin flip scattering term can be written as

−
(
f̄ − I

2
Trf̄

)

τsf

= −~σ · ~̄h
τsf

and we assume h̄y 6= 0. Now the nonzero torque term is balanced by this term. Note

that spin flip exists for many cases. Here we only consider the contribution from the

spin orbit coupling band.

Before we continue to solve this problem, we make the following assumptions,

which can be proved self-consistently: 1, ḡ = 0; 2, hx = hz = 0; 3, Hall current

Jy = 0; 4, longitudinal spin current Jz
x = 0. Thus, Boltzmann Eq. becomes

evxExδ̂(ε̂− εf ) + 2α [(σxkx + σyky) hz − σz (kxhx + kyhy)]

= −g + ~σ · ~h− σyh̄y

τ
− σyh̄y

τsf

− mkxJ
z
y

h̄τso

+
σzmkyJx

h̄τso

. (A.21)

First, tracing Eq.(A.21), we have

Tr
[
evxExδ̂(ε̂− εf )

]
= −g

τ
− mkxJ

z
y

h̄τso
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g = −
{

Tr
[
evxδ̂(ε̂− εf )

]
+

mτkxσ
z
y

h̄τso

}
Ex. (A.22)

where σz
y is the spin Hall conductivity. Integration of Eq.(A.22) gives zero, so that

assumption 1 is proved. Charge current is the integration of kxg over ~k, which is

proportional to Exand affected by spin Hall Effect. However, charge Hall current

Jy ∝
∫

kygd~k = 0, this is consistent with our assumption.

Second, tracing σx times Eq.(A.21), we get 2αkxhz = −hx

τ
. So that

hx = −2ατkxhz (A.23)

Strictly, the driven term eExσxvxδ(ε̂− εf ) should be included in Eq. (A.23). Foutu-

nately, integration of the driven term itself or kx(ky) times itself is exactly zero, so

that this term is irrelevant to the following derivation. We neglect it for simplicity.

Then, tracing σy times Eq.(A.21), neglecting the driven term for the same reason,

we obtain

2αkyhz = −hy − h̄y

τ
− h̄y

τsf

,

hence,

hy = −2ατkyhz +
τsf − τ

τsf

h̄y. (A.24)

Finally, we trace σztimes Eq.(A.21). It comes out to be

−2α(kxhx + kyhy) = −hz

τ
+

kyJx

τso

. (A.25)

Plug Eqs. (A.23,A.24) into Eq. (A.25),

4α2τ(k2
x + k2

y)hz − 2αky
τsf − τ

τsf

h̄y = −hz

τ
+

σxxkyEx

τso

(4α2τ 2k2 + 1)hz − 2αky
τ

τsf

(τsf − τ)h̄y =
τ

τso

σxxkyEx

hz =

τ
τso

σxxkyEx + 2αky
τ

τsf
(τsf − τ)h̄y

4α2τ 2k2 + 1
(A.26)
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Plug Eq. (A.26) into Eq. (A.24),

hy = −
2α τ2

τso
σxxk

2
yEx + 4α2k2

yτ
2 τsf−τ

τsf
h̄y

4α2τ 2k2 + 1
+

τsf − τ

τsf

h̄y

= −2α τ2

τso
σxxk

2
yEx

4α2τ 2k2 + 1
+

τsf − τ

τsf

(
4α2k2

xτ
2 + 1

4α2τ 2k2 + 1
)h̄y

Sum over k,

h̄y = −α τ2

τso
σxxk

2
F Ex

4α2τ 2k2
F + 1

+

(
τsf − τ

τsf

)
2α2k2

F τ 2 + 1

4α2τ 2k2
F + 1

h̄y

(
τsf−τ

τsf

)
(2α2k2

F τ 2 + 1)− (4α2τ 2k2
F + 1)

4α2τ 2k2
F + 1

h̄y =
α τ2

τso
σxxk

2
F Ex

4α2τ 2k2
F + 1

h̄y =
α τ2

τso
σxxk

2
F Ex(

τsf−τ

τsf

)
(2α2k2

F τ 2 + 1)− (4α2τ 2k2
F + 1)

= − α
ττsf

τso
σxxk

2
F Ex

2α2k2
F τ(τsf + τ) + 1

(A.27)

Put Eq. (A.27) back into Eq. (A.26),

hz =
τ

τso
σxxkyEx

4α2τ 2k2 + 1
−

2α2k2
F τ 2

(
τsf−τ

τso

)
σxxkyEx

(4α2τ 2k2 + 1) [2α2k2
F τ(τsf + τ) + 1]

=
τ

τso
σxxkyEx

2α2k2
F τ(τsf + τ) + 1

(A.28)

Sum over k, we find the assumption h̄z = 0 is satisfied. And since hz ∝ ky, h̄x, J
z
x ∝

∫
kxkyd~k = 0, which are consitent with the assumptions.

According to the general definition, the spin Hall current is

Jz
y =

∑

~k

Tr(σzvyf̂)
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=
∑

~k

Tr

[
h̄

2
σz

(
h̄ky

m
− α

h̄
σx

)
(g + ~σ · ~h)

]

=
∑

~k

h̄2kyhz

2m

=
h̄2

4m
τ

τso
k2

F Jx

2α2k2
F τ(τsf + τ) + 1

Since τsf ∝ α−1, when α = 0, i.e., no spin orbit coupling, it goes back to previous

theory. Increasing α, spin Hall current will decrease. In strong coupling limit, the

induced in-plane effective magnetic field suppresses the out-of-plane polarization.

Therefore, in the presence of Rashba spin-orbit coupling, skew scattering does

not contribute to extrinsic spin Hall current unless spin flipping scattering exists.

Jz
y = h̄2Jx

8mα2τso(τsf+τ)
→ 0.
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