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ABSTRACT 
The post-accident nuclear reactor primary and containment environments can be 

characterized by high temperatures and pressures, and fission products and nuclear 

aerosols. These aerosols evolve via natural transport processes as well as under the 

influence of engineered safety features.  These aerosols can be hazardous and may pose 

risk to the public if released into the environment. Computations of their evolution, 

movement and distribution involve the study of various processes such as coagulation, 

deposition, condensation, etc., and are influenced by factors such as particle shape, 

charge, radioactivity and spatial inhomogeneity. These many factors make the numerical 

study of nuclear aerosol evolution computationally very complicated. The focus of this 

research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to 

elucidate the role of various phenomena that influence the nuclear aerosol evolution.  

In this research, several aerosol processes such as coagulation, deposition, 

condensation, and source reinforcement are explored for a multi-component, aerosol 

dynamics problem in a spatially homogeneous medium. Among the various sampling 

algorithms explored the Metropolis sampling algorithm was found to be effective and 

fast. Several test problems and test cases are simulated using the DSMC technique. The 

DSMC results obtained are verified against the analytical and sectional results for 

appropriate test problems. Results show that the assumption of a single mean density is 

not appropriate due to the complicated effect of component densities on the aerosol 

processes. The methods developed and the insights gained will also be helpful in future 

research on the challenges associated with the description of fission product and aerosol 

releases. 

 ix



 
 

1. INTRODUCTION 

 

 

1.1 Background 

Nuclear aerosols can originate from severe core damage in light water reactors, 

core disruptive accidents in fast reactors, nuclear accidents during nuclear material 

transport, at waste disposal sites, or explosions [1 - 6]. These nuclear aerosols contain 

several radioactive elements in their composition. Tables 1 and 2 show the radionuclides 

released into the containment as aerosols during accidents in the pressurized water reactor 

(PWR) and boiling water reactor (BWR), respectively [7]. The post-accident reactor 

environment can be characterized to be in a highly non-equilibrium condition with very 

high temperatures and pressures, and nuclear aerosol (particle) formation. These aerosols 

evolve under natural transport processes as well as under the influence of engineered 

safety features. Such aerosols can be hazardous for the equipment inside the reactor, and 

when leaked to the environment, pose potential risks to the public [8 - 12]. Hence, the 

origin, movement and distribution of these aerosols need to be studied and controlled. 

Computations involved with the predictions of the evolution of these aerosols, however, 

is complicated, and our purpose is to use the Direct Simulation Monte Carlo (DSMC) 

technique to elucidate the role of various physical phenomena that influence the aerosol 

evolution, and eventually help develop a production computer program.  
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Table 1: PWR releases into containment.∗ [7] 

 Gap Release Early In-Vessel Ex-Vessel Late In-Vessel 

Duration (Hours) 0.5 1.3 2.0 10.0 

Noble Gases 0.05 0.95 0 0 

Iodine 0.05 0.35 0.29 0.07 

Cesium 0.05 0.25 0.39 0.06 

Tellurium 0 0.15 0.29 0.025 

Strontium 0 0.03 0.12 0 

Barium 0 0.04 0.10 0 

Ruthenium 0 0.008 0.004 0 

Cerium 0 0.01 0.02 0 

Lanthanum 0 0.002 0.015 0 

 

 

 
 

 
 

                                                 
∗ Values shown are fractions of core inventory. 
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Table 2: BWR releases into containment.∗ [7]  

 Gap Release Early In-Vessel Ex-Vessel Late In-Vessel 

Duration (Hours) 1.0 1.5 3.0 10.0 

Noble Gases 0.05 0.95 0 0 

Iodine 0.05 0.22 0.37 0.07 

Cesium 0.05 0.15 0.45 0.03 

Tellurium 0 0.11 0.38 0.01 

Strontium 0 0.03 0.24 0 

Barium 0 0.03 0.21 0 

Ruthenium 0 0.007 0.004 0 

Cerium 0 0.009 0.01 0 

Lanthanum 0 0.002 0.01 0 

 

 

 

 

 
                                                 
∗ Values shown are fractions of core inventory. 
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There had been several computer codes like ABC, AEROSIM, ASTD, 

CONTAIN, HAARM, MELCOR, PARIDESKO, RAFT, SCDAP, TRAP-MELT, 

VICTORIA, and many more that model accident progression in reactor containments [12 

- 19]. These computer codes use various methods such as the finite elements method, the 

moments method, the analytical method, the sectional method, and other numerical 

methods to simulate the aerosol dynamics. Also, these codes work on several 

assumptions that compromise the collisional physics. Figure 1 shows the modules present 

in one such code – CONTAIN [17], emphasizing the three basic phenomenological areas 

and the inter-coupling between the modules. The module on aerosol dynamics called 

MAEROS [13, 17] is based on the sectional method. 

The motivation behind this work is to develop a production computer program 

which simulates the evolution and dynamics of multi-component aerosols with minimal 

assumptions without compromising the collisional physics. 

The complexity involved with aerosol dynamics increases with the inclusion of 

various properties such as size, shape, charge, radioactivity and spatial inhomogeneity. 

Also, particles in suspension undergo various processes such as condensation, 

coagulation, deposition and evaporation. The set of equations used to describe the aerosol 

behavior mentioned above is non-linear which makes the problem of multi-component 

aerosol dynamics and computations more complicated. 
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Figure 1: Schematic diagram of the CONTAIN code. [17]
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Loyalka [20] proposed the use of the DSMC technique for nuclear aerosols and 

showed that, for the coagulation model involving two component aerosols with the same 

component density, the results agreed well with those obtained from both sectional and 

analytical methods. Rangaraj and Loyalka [21] extended computations to multiple 

component aerosols (with different component densities) undergoing pure Brownian 

coagulation.  They found that the sectional method used in MAEROS [13, 17] could not 

describe such aerosols well. Palaniswaamy and Loyalka [22] further extended the study to 

multi-component aerosols with different component densities and also, included several 

coagulation mechanisms such as Brownian, gravitational and turbulent coagulation 

kernels as well as the source reinforcement process.  

 

1.2 Objective and Organization 

In this research, the study on aerosol dynamics is further explored to include 

multiple components with different component densities and several aerosol processes 

such as coagulation, deposition, condensation, and source reinforcement. Several 

collisional sampling algorithms – the No Time Counter (NTC) method [23], the 

Metropolis sampling [24], direct sampling and modified direct sampling algorithms are 

explored. From the results observed, it is concluded that the Metropolis sampling 

algorithm gives better results and also reduces the computation time significantly. This 

has helped in increasing the initial particle population for the simulation from 1000 to 

more than 100,000 [25]. Currently, with better computer resources (2 GB RAM), a higher 

particle population of 4 million is achieved. 
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Several single component aerosol dynamics test problems were simulated using 

the DSMC technique. The DSMC results are compared against those obtained using the 

analytical method and they agree well with the analytical results. Additionally, multi-

component aerosol dynamics problem with the same component density is simulated 

using both the DSMC technique and the sectional method for several test problems and 

the results compared. One important observation made is that the assumption of a single 

mean density is not appropriate due to the complicated effect of different component 

densities on the aerosol processes [26]. 

The outline of this work is described as follows. Chapter II presents some of the 

recent works and earlier results obtained in this area. It starts with a discussion on the 

aerosol dynamics and the general dynamic equation. It also briefly describes the 

coagulation process and continues with the recent works and results obtained.  

Chapter III describes the collisional sampling algorithms explored, the test 

problems simulated and their results and conclusions. Chapter IV describes the aerosol 

deposition and source reinforcement processes, analytical solutions, test problems, the 

DSMC implementation, and results. Chapter V describes the aerosol condensation 

process, analytical solutions, test problems, the DSMC implementation, and results. 

Chapter VI summarizes the results and also discusses the conclusions obtained from the 

study. 
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2. REVIEW OF THE RECENT WORKS  

 
 
 

2.1 Aerosol Dynamics and the General Dynamic Equation (GDE) 

The aerosol behavior involves several factors such as particle size, composition, 

shape, charge, spatial inhomogeneities, environmental conditions, and thermal hydraulics 

that influence the aerosol evolution process. This complex behavior of aerosols is 

expressed mathematically using general dynamic equations (GDEs). In general, the GDE 

is expressed using the number of aerosol particles per cubic meter,  of a species, 

p (1 ≤ p ≤ N), contained in a volume varying from v

( , , )n v m t

p to vp + dvp, with mass ranging from 

mp to mp + dmp. The aerosol GDE for a well-mixed, spherical, multi-species aerosol is 

given as [11, 27]: 

              

( ) ( ) ( ) ( ) ( )

( ) ( ) (

( ) (

1

0 0 0 0

1

, , , , , , , , , ,

1                     , , , , , | ,
2

                                           

                 

N

p
p p

N

p p p p p p
p

n t R t n t I t n t
t v

d d d d n t n t K u q w s

v u w m q s

n

δ δ

=

∞ ∞ ∞ ∞

=

∂ ∂

)

)

⎡ ⎤+ + ⎣ ⎦∂ ∂

=

× − − − −

−

∑

∫ ∫ ∫ ∫

∏

v m v m v m v m v m

u w q s u q w s

v( ) ( ) ( ) ( )
0 0

, , , | , , , , ,t d d K u q v m n t S t
∞ ∞

+∫ ∫m u q u q v m

               (2-1) 

where   
1 1

     and     
N N

p p
p p

q q s s
= =

= =∑ ∑
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In Eq. (2-1),  is the removal rate via deposition mechanisms like 

diffusion, settling, thermophoresis, sprays, etc. (s

( , ,R v m )t

–1), ( ), ,pI tv m  is the condensation rate 

(m3 s–1), and ( )

( )t

, | ,K u q w s  is the coagulation kernel for particles of total volumes (u), and 

masses (q), coalescing with particles of total volumes (w), and masses (s) (m3 s–1). The 

delta functions in Eq. (2-1) help to ensure conservation of volume and mass in a collision 

[11, 28, 29].  refers the source reinforcement term (m, ,S v m –3 s–1). It needs to be 

mentioned here that a spatially homogeneous medium is being considered in this study. 

For further details on Eq. (2-1), the reader is referred to the work of Williams and 

Loyalka [11].  

As can be seen from equation (2-1), the GDE for aerosols is an integro-

differential equation and hence, becomes very complicated to solve because of the 

dynamic behavior of the aerosols. There have been a number of techniques such as 

analytical method, numerical method, finite element method, method of moments, 

sectional method, etc., proposed to solve the GDE and study the aerosol dynamics 

problem. A review on these techniques can be found in Williams and Loyalka [11].  

In 1976, Bird [30] proposed the DSMC technique for rarefied gas dynamics in 

which the molecular motion was simulated through a splitting technique. Loyalka [20] 

proposed the use of the DSMC technique for the study of nuclear aerosols. He simulated 

a two-component, same component density problem. A brief description of the problem, 

recent works and their results are presented in the following sections. 
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2.2 Two Component, Same Component Density Problem 

For this problem, a computer program was developed to explore the coagulation 

of multi-component particles in spatially homogeneous systems. The program was run for 

a two component test problem which is expressed in a non-dimensional form as:  

           

1 2

    0

0

1 2
1 2 1 2 1 1 2 2

0 0

1 2 1 2 1 2
0 0

1
2

 ( , , ) ( , , ) ( , , )

                                         ( , , )  ( , , )

v v

K

K

n v v t du du n u u t n v u v u t
t

n v v t du du n u u t
∞ ∞

− −

−

∂
∂

= ∫ ∫

∫ ∫
      (2-2) 

subject to the initial condition: 
 

0 1 2
0 1 2

10 20 10 20

( , ) exp
N v v

n v v
v v v v

⎧ ⎫⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

         (2-3) 

 
where N0 is the number of initial particles, K0 is constant and v10 and v20 are the average 

initial volumes of the particles. Using a transform technique, 

     
1/ 2

0 1 2 1 2
1 2 02

10 20 10 2010 20

( , , ) exp 2
(1 )(1 )

N v v v v
n v v t I

v v v vv v
τ
ττ

⎧ ⎫⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪ ⎪ ⎪= − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎢ ++ ⎪ ⎪⎝ ⎠ ⎣ ⎦
⎥

⎪ ⎪⎩ ⎭ ⎩ ⎭
    (2-4) 

 
where τ = K0 N0 t / 2 and I0 (x) is a modified Bessel function. The sectional distributions, 

useful for comparisons later, are computed from: 

             (2-5) 

( )
1 2 1 2 1 2

0 0

( )
, 1 2 1 2 1

0 0

( ) ( , ) ( , , ),  

( ) ( , ) ( , , )

l
l

l
l k k

n t dv dv v v n v v t

Q t dv dv v v v n v v t

ε

ε

∞ ∞

∞ ∞

=

=

∫ ∫

∫ ∫ 2

 
where k = 1,2, and ε(l)(v1,v2) = 1 for v(l-1) ≤ v1 + v2 < v(l); and 0 otherwise. 

 

All the programming was carried out in a single framework and the analytical and 

direct simulation results obtained were compared as shown in figs. 2 and 3. 
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For illustration, 15 sections were defined by the geometric distribution as: 

(0) (1)
10 20

( ) ( 1) (15) (14)

0,             ( ) / 8;            

 2 ,    2,..14;             10l l

v v v v

v v l v v−

= = +

= = =
 

where . 0 0 10 2010000,  1.0,  1.0  1.5andN K v v= = = =

The darker portions in the component mass distributions in figs. 2 and 3 specify 

the mass for component 1, while the lighter portions indicate the mass of component 2. 

Component mass and number of particles are plotted against the various sections (bins). 
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Figure 2: Initial particle number and component mass distributions.  

(Top row: Analytical method. Bottom row: DSMC technique). 

 

 

Figure 3: Particle number and component mass distributions after 9,000 collisions.  

(Top row: Analytical method. Bottom row: DSMC technique). 
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2.3 Two Component, Different Component Density Problem 

Rangaraj and Loyalka [21] extended the work to multiple component aerosols 

undergoing pure Brownian coagulation. They also benchmarked the DSMC technique 

with the sectional technique as described in the MAEROS user manual [13].  

For a two component aerosol problem, Rangaraj and Loyalka [21] considered the 

following initial condition expressed using the component mass as: 

0 1 2
0 1 2

10 20 10 20

( , ) exp
N m m

n m m
m m m m

⎧ ⎫⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

         (2-6) 

 
where N0 is the number of initial particles ( = 1000) and m10 and m20 are the component 

masses (taken as 1.0 and 1.5 respectively). The test conditions considered were: 

 
Test Condition 1: ρ1 = 1000 kg m−3; ρ2 = 1000 kg m−3. 

Test Condition 2: ρ1 = 1000 kg m−3; ρ2 = 10,000 kg m−3. 

 
The results obtained using the DSMC approach was compared against those of the 

sectional approach and the sectional results (fig. 4) matched well with the DSMC results 

(fig. 5) for a two-component model with constant densities – test condition 1. However, 

the sectional method does not account for different component densities; hence, only the 

DSMC results were obtained for a two-component, different component density problem 

– test condition 2, and are shown in fig. 6.  

 
Here too, the darker portions in the component mass distributions in figs. 4 - 6 

specify the mass of component 1, while the lighter portions indicate the mass of 

component 2. 
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Figure 4: Particle number distribution (left) and component mass distribution (right) for 

test condition 1 (ρ1 = 1000 kg m−3; ρ2 = 1000 kg m−3), using sectional method. 

 
Figure 5: Particle number distribution (left) and component mass distribution (right) for 

test condition 1 (ρ1 = 1000 kg m−3; ρ2 = 1000 kg m−3), using the DSMC technique. 

 

 
Figure 6: Particle number distribution (left) and component mass distribution (right) for 

test condition 2 (ρ1 = 1000 kg m−3; ρ2 = 10,000 kg m−3), using the DSMC technique. 
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2.4 Aerosol Coagulation  

Coagulation is a term used to describe the process of collision of two particles 

resulting in adhesion (or fusion) to produce a larger particle. Collision between two 

particles occurs due to several factors – Brownian motion of particles, gravitational and 

turbulent effects on particles, acoustic effects and so on. Here we consider models for 

Brownian, gravitational and turbulent coagulation kernels, where Brownian coagulation 

accounts for coagulation due to the free random motion of the particles in a medium; 

gravitational kernel accounts for two particles coming in contact with each other due to 

the gravitational effects; and turbulent kernel accounts for the collision of two particles 

due to the turbulence effect in the fluid motion [31 - 33].  In this work, the expressions 

used for the three coagulation kernels are as specified in the MAEROS user manual [13] 

although several improved expressions of the kernels are now available. The following 

three equations are used in this work [11, 27]. 

 

2 2 2 2

2 ( )( )

8 ( )

2 (i j i j

Brownian
i j i i j j

d d D Di j i j

d d g g V V d di j i j

D D d d
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π γ γ
=

+ +

+ +
+

+ + + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠)

                   (2-7) 

2( )
4 i jT Tgravitational V Vi i j jd dβ
π

ε γ γ= + −                      (2-8) 

21/ 2 3/ 2 2 2
  6 2

5/ 2

0.00162    ( ) ( )
120 

g T p i i i p j j jT
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C d C d
d d d dβ

ρ ε ρ ρπ ε γ γ γ γ
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where: 

3
ikTC

Di di iπ ηχ
=  

 15



1  [1.37 0.4 exp  ( 1.1/ )]C Kn Kni i= + + − i  

2 /Kn di iλ=  

3 2 2 3/ 21
[( ) ( ) ]

3i i i i i
i i

ig d d
D

= + − +l l
l

d−  

8 8                   i
i i

i i

kTV
V m
d
π π

= =l  

2   

18  iT

g d Cpi iV
i

ρ

η χ
=

i  

2

2

2

2

     
( )

     
( )

;

;

di
d di j

d j
d di j

d di j

d di j

ε

ε

=
+

=
+

<

>

 

 

The subscripts, i and j, denote the ith and jth particle with mass represented by m 

(kg). Kn refers to the Knudsen number, λ is the mean free path (m), d is the particle 

diameter (m), T is the absolute temperature (K), k is the Boltzmann constant (J K−1), η is 

the gas viscosity (kg m−1 s−1), γ is the collision shape factor, χ is the dynamic shape 

factor, V is the particle speed (m s−1), D is the particle diffusion coefficient (m2 s−1), ℓ is 

the apparent mean free path of the particle (m), and gi or gj is the distance between the 

real surface of the ith or jth particle and the spherical surface enclosing the actual particle 

as assumed by Fuchs [27, 29]. C is the Cunningham correction factor for each particle. ε 

is the collision coefficient, ρ  is the mass density of the particle (kg m−3), g is the 

gravitational constant (m s−2), VT is the terminal or settling velocity of the particle (m s−1), 

gρ  is the gas density (kg m−3), Tε  is the turbulent energy dissipation rate (m2 s−3), and υ 

is the kinematic viscosity (m2 s−1). The total coagulation kernel is calculated using 

equation (2-10) as the sum of the three coagulation kernels discussed above. 
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               (2-10) Browniantotal gravitational turbulenceβ β β β= + +

As should be obvious, the three effects act synergistically and the additive assumption is 

an approximation.  

 For better statistics, it would be appropriate to consider larger numbers of 

particles (~1010 or more). Due to the limitations of present-day computational power, the 

maximum number of particles that can be modeled is about 106. Hence, in order to get 

better statistics, a scaling factor (or weight factor) of 106 has been used in the coagulation 

kernel (that is, the coagulation coefficient is multiplied by the scaling factor) in both the 

DSMC and the sectional techniques for all the simulations. 

  

2.4.1 Test Problems and Results 

For the simulation, a sample seven component problem as described in the 

MAEROS user manual [13] was considered. Here, n particles were simulated each with 

the particle diameters within the range of 0.01 and 20 microns, and for display purposes, 

the 20 sections (bins) were used which are logarithmically spaced in particle diameter.  

The sections and their associated particle diameter ranges used in the simulations 

are listed in Table 3.  It should be noted that this work does not require the use of such 

sections. Indeed, the simulations are not based upon the use of sections at all. But these 

sections have been used only for convenience in the presentation of results and their 

comparison with the corresponding sectional results.  

The DSMC simulation used the seven components listed in Table 4 with their 

densities specified under the standard temperature and pressure (STP) conditions. The 
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various values used for the simulation parameters are listed in Table 5. All the values are 

considered at the STP conditions. 

The initial particle number distribution and the distribution after 200 seconds (for 

1,000 particles considered initially) are shown in figs. 7 and 8 along with their 

corresponding component mass distributions. The various shades in the component mass 

distribution are used to identify components 1 through 7. Since, direct sampling 

algorithm had computational overheads, the Metropolis sampling algorithm was used 

which increased the initial particle population from 1,000 to 100,000. The initial 

distribution and the final distribution after 200 seconds, obtained while using the 

Metropolis algorithm for collision sampling (using 100,000 particles initially), are shown 

in figs. 9 and 10 for both particle number and component masses. From these results, it 

was concluded that the Metropolis algorithm is appropriate to use in place of direct 

sampling algorithm. Extensive details on these results are given in Palaniswaamy and 

Loyalka [22]. 
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Table 3: Sections and associate particle diameter ranges. 

Particle Diameter Range Particle Diameter Range Sections 

(Bins) 
Min Max 

Sections 

(Bins) 
Min Max 

1 1 × 10−8 1.46235 × 10−8 11 4.47214 × 10−7 6.53983 × 10−7

2 1.46235 × 10−8 2.13847 × 10−8 12 6.53983 × 10−7 9.56352 × 10−7

3 2.13847 × 10−8 3.12719 × 10−8 13 9.56352 × 10−7 1.39852 × 10−6

4 3.12719 × 10−8 4.57305 × 10−8 14 1.39852 × 10−6 2.04513 × 10−6

5 4.57305 × 10−8 6.6874 × 10−8 15 2.04513 × 10−6 2.9907 × 10−6

6 6.6874 × 10−8 9.77933 × 10−8 16 2.9907 × 10−6 4.37345 × 10−6

7 9.77933 × 10−8 1.43008 × 10−7 17 4.37345 × 10−6 6.39551 × 10−6

8 1.43008 × 10−7 2.09128 × 10−7 18 6.39551 × 10−6 9.35248 × 10−6

9 2.09128 × 10−7 3.05818 × 10−7 19 9.35248 × 10−6 0.0000136766 

10 3.05818 × 10−7 4.47214 × 10−7 20 0.0000136766 0.00002 
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Table 4: Components and their densities at STP.*

Component Symbol Density (kg m-3) 

Lead Pb 11,340 

Lead Sulphide PbS 7,600 

Lead Oxide PbO 9,350 

Uranium Oxide UO2 10,970 

Uranium tri-oxide UO3 7,300 

Sodium Oxide NaO2 2,200 

Di-sodium Oxide Na2O 2,270 

* Source: Information on the elements in the periodic table - 

available at www.webelements.com 

 
Table 5: Simulation parameters and their corresponding values. [13] 

Parameter Symbol Value Units 

Temperature T 300 K 

Mean free path of air λ 0.0660 μm 

Air viscosity η 1.81 × 10-5 kg m-1 s-1

Dynamic shape factor χ 1 Dimensionless 

Agglomeration shape factor γ 1 Dimensionless 

Gravitational constant g 9.81 m s-2

Turbulent energy dissipation rate εT 1 m2 s-3

Density of air ρg 1.29 kg m-3

Kinematic viscosity of air υ 1.4031 m2 s-1
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Figure 7: Particle number distribution (left) and component mass distribution (right) for a 

seven component, complete coagulation kernel – Initial distribution. 

 
Figure 8: DSMC particle number distribution (left) and component mass distribution (right) for 

a seven component, complete coagulation kernel – Distribution after 500 collisions. 

 
Figure 9: Particle number distribution (left) and component mass distribution (right) for a 

seven component, complete coagulation kernel – Initial distribution. 

 
Figure 10: DSMC particle number distribution (left) and component mass distribution (right) 

for a seven component, complete coagulation kernel – Distribution after 80,000 collisions. 
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3. COLLISION SAMPLING ALGORITHMS 

 

 

Collision sampling plays an important role in the simulation of aerosol 

coagulation. Also, the conventional way of sampling particles for collision – the Direct 

sampling algorithm, is time and space inefficient. Hence, it becomes necessary to explore 

other efficient ways of sampling particles for collision. There are actually several 

collision sampling algorithms in use. In this chapter, four collision sampling algorithms – 

Direct sampling, the Metropolis sampling [24], the No Time Counter (NTC) method [23] 

and modified direct sampling algorithms are explored. Since only the Metropolis 

algorithm was explored in the previous work, and since, other sampling algorithms were 

not studied, we researched on the efficiencies of four different sampling algorithms. All 

the four sampling algorithms are described in this chapter and the several test problems 

simulated are presented along with their results and discussions.  

 

3.1 Direct Sampling Algorithm 

The direct sampling algorithm uses an N × N collisional matrix (N being the total 

number of particles in the entire population), which gives the probabilities of coagulation 

occurring between the particles in the population (all combinations considered). This 

matrix has to be calculated and updated frequently after every collision, which is 

computationally challenging owing to the limited resources available.  
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The criterion for sampling a pair of particles selected at random for collision is 

based on an acceptance rejection technique which can be explained as follows. Let u and 

v be the particles selected at random for collision. Let β (u,v) be the coagulation 

coefficient for particles, u and v. Let βmin and βmax be the minimum and maximum 

coagulation coefficients obtained from the collisional matrix. The criterion for sampling 

can be mathematically expressed as: 

      [ , ] ( ,min max )Random u vβ β β≤        (3-1) 

where Random [a, b] implies a random number distributed uniformly between a and b. 

We will be using this nomenclature further in this work. βmin and βmax describe the limits 

of the distribution, and β(u,v) is compared against a random value chosen from this 

distribution using an acceptance rejection criterion, (3-1). 

The primary calculation which consumes a long time is the determination of βmin 

and βmax. This requires the pre-computation of the entire collisional matrix and its 

continual updating, which increases the computation time to an order of N2.  

 

3.2 Metropolis Sampling Algorithm 

3.2.1 Markov Chains 

The Markov chain is represented as a sequence of random variables chosen from 

a state space such that the distribution for the current variable depends only on the 

immediate past [24, 34, 35]. Thus, for a distribution, P(x): 

   1 1 2 1( | , ,..., ) ( | )t t tP x x x x P x x+ + t=        (3-2) 
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P(xt+1|xt) is termed as the transition distribution or the stationary distribution. An 

example of the Markov chain is the Metropolis algorithm. Unlike sampling based on the 

entire population, the Metropolis algorithm is based on the current and previous samples 

(the Markov property) such that the average distribution of samples is similar to that 

sampled from and based on the entire population. 

 

3.2.2 Metropolis Sampling Algorithm 

The Metropolis algorithm, formulated by Metropolis et al [24], is based on an 

acceptance rejection technique for sampling distributions. It is an example of a Markov 

chain generally used for large scale calculations and simulations in Physics and Statistics. 

Basically, the Metropolis algorithm is used to sample from a distribution, π when the 

distribution itself cannot be computed. Hence, a Markov chain is built with π as the 

stationary (transition) distribution and the initial sample, π(1) chosen at random. Now, 

the next sample in the chain is proposed as π(2). The Metropolis ratio, m(2,1) is then 

calculated as π(2) / π(1). If the ratio m(2,1) is greater than a random value, then the 

sample π(2) is termed to be accepted, else, it is rejected and another set of samples are 

chosen for π(2). If the sample is accepted, then the procedure is repeated for the next 

sample, π(3) and so on. 

We apply this principle to our sampling problem with the initial coagulation 

coefficient as a randomly chosen value, β(u′, v′) where u′  and v′  refer to the two 

particles sampled for collision. Let u and v be the particles sampled for the current 
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collision with the coagulation coefficient as β(u, v). Now, the criteria for sampling can be 

mathematically expressed as follows [34, 35]: 

( , )
 [0,1]

( , )
u v

Random
u v

β
β

≤
′ ′

        (3-3) 

 
The same steps are repeated for another new pair of particles, u and v randomly 

chosen for collision.  

  This technique does not require any collisional matrix to be calculated, stored and 

/ or updated continually. The use of the Metropolis algorithm avoids the need to pre-

compute and update the collisional matrix after every collision. Therefore, it reduces the 

computational overheads in programming thereby reducing the computation time to a 

significant extent, an order of N.  

 

3.3 No Time Counter (NTC) Method 

The NTC method, introduced by Bird, was considered to be very effective for 

rarefied gas dynamics [23]. The NTC method is different from the previously explained 

direct and the Metropolis sampling algorithms in that, it calculates the number of 

collisions over a time interval while the earlier methods update the collision times after 

every collision. The NTC method determines the number of collisions to occur during the 

interval prior to starting the collision process, thereby avoiding the calculation of 

collision times after every collision. The number of collisions, Nc in a time interval, Δt is 

calculated using the formula [23]: 

       21
2 maxcN N tβ= Δ        (3-4) 
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where N refers to the number of particles, and βmax refers to the maximum possible 

coagulation coefficient to be assumed initially. For the number of collisions or collision 

pairs calculated as Nc, the individual collision pairs are chosen based on an acceptance 

rejection technique. The two particles, u and v selected at random for collision will be 

accepted if they satisfy the criterion [23]: 

  ( , ) [0,1]
max

u vRandom β
β

≤        (3-5) 

During the interval, if the β (u, v) for any collision pair exceeds the βmax, the β (u, 

v) value is preserved for calculating the number of collisions, Nc for the next interval and 

hence use the value for the collision sample acceptance rejection criterion. Assuming 

βmax, eliminates the need to pre-compute and periodically update the collisional matrix 

and also reduces the computation time significantly to the order of N, the number of 

particles in the population. But determining the number of collisions based on the 

assumption, βmax may not be appropriate for all kinds of problems.  

 

3.4 Modified Direct Sampling Algorithm 

Following the Metropolis and the NTC sampling algorithms, we proposed the 

modified direct sampling algorithm, which, as the name suggests, is a modified version of 

the direct sampling algorithm, where we assume βmin and βmax, and continue with the 

collisional sampling algorithm based on an acceptance rejection technique similar to the 

one used in the direct sampling algorithm – equation (3-1). This eliminates the use of a 

collisional matrix and thus helps reduce the computation time significantly from the order 

of N2 to an order of N, the number of particles in the population. 
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Table 6: Summary of collision sampling algorithms. 
 

Technique Acceptance Criteria Assumptions Computation Time

Direct  [ , ] ( ,min max )Random u vβ β β≤ - Order of N2

Metropolis  
( , )

 [0,1]
( , )

u v
Random

u v
β
β

≤
′ ′

 - Order of N 

No Time Counter 
( , ) [0,1]

max

u vRandom β
β

≤  βmax Order of N 

Modified Direct [ , ] ( ,min max )Random u vβ β β≤ βmin and βmax Order of N 
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Table 6 summarizes the various sampling algorithms that have been explored for 

a DSMC multi-component aerosol dynamics problem. 

 

3.5 Test Problems 

We have verified the correctness of all the three algorithms against the direct 

sampling algorithm by comparing the sampling distributions of the various algorithms. 

Also, we have simulated the coagulation process for a DSMC multi-component aerosol 

dynamics problem using all the four sampling algorithms and compared their results for a 

variety of test problems. The components used for the simulations are listed in Table 4 

(chapter 2) with their densities specified under standard conditions of temperature and 

pressure. The test problems simulated are listed below.  

Test Problem I: Seven component problem using all four sampling algorithms. 

We use a small initial population (1,000 particles) as the direct sampling technique is 

time consuming - an order of N2, and hence, cannot handle a larger population.  

Test Problem II: Seven component problem similar to problem set I using 

modified direct, the Metropolis and the NTC sampling algorithms for a larger population 

(80,000 particles). 

Test Problem III: Seven component problem similar to the problem defined in 

the MAEROS user manual [13] using modified direct, the Metropolis and the NTC 

sampling algorithms for a larger population (~70,000 particles). 
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Table 7: Summary of the test problems. 

Sampling algorithms used 
 
Test problem 

Direct Metropolis NTC Modified direct 

I     

II     

III     
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The test problems and the different sampling algorithms used are summarized in table 7. 

Test problems I and II have similar initial conditions, except for the initial number 

of particles simulated, and are explained as follows. We have considered 1,000 and 

80,000 particles for the two test problems, respectively, in a volume of 1 m3 with the 

particle diameters ranging from 0.01 to 20 microns, having 20 sections logarithmically 

spaced in particle diameter. The initial mass concentration for all the particles is set to be 

in a logarithmic distribution.  

Test problem III is as described in the MAEROS user manual [13] which 

considers n particles in a volume of 1 m3 with the particle diameters within the range of 

0.01 and 20 microns, having 20 sections logarithmically spaced in particle diameter. 

Though it is a seven component problem, all the particles initially have only the first 

component, unlike test problems I and II. The total mass concentration of the particles in 

section I is given by equation (3-6) as: 

   3(8( 1) 1) / 4610     I
IM kg me −− − +−=                           (3-6) 

 

Particles are generated randomly with a diameter within the range specified by the 

section limits such that their total mass doesn’t exceed the total mass concentration 

specified for the section. Thus, the equation relating the mass and volume of the particles 

in every section I is given by equation (3-7) as: 

              3
, 1

1 6

In

p I I
p

Dπ ρ
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑ M                     (3-7) 
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where nI is the total number of particles in section I, Dp,I is the diameter of the pth particle 

in section I, Iρ  is the density of component 1, as only component 1 is assumed to be 

present initially and MI is the total mass concentration of particles in section I.  

Since there is a limitation on the computation time and memory usage for the 

DSMC computations, we have assumed the total mass concentration to be smaller than 

that specified in equation (3-6), as 1.0 × 10-10 × MI which resulted in ~70,000 initial 

numbers of particles. The initial particle number and component mass distributions for 

the test problems, I, II and III, are shown in fig. 11. The different shades in the 

component mass distributions represent the seven different components used for the 

simulation. 

Particles in the current work are generated randomly. We have used Mathematica 

5.0, which has a built in random number generator. This generator, and the algorithm it is 

based upon, have been tested extensively, and is believed to repeat only after 10400 calls 

[36]. Thus, our calculations are presumably free of any bias that might arise from pseudo-

random number generation not being truly random. 
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Figure 11: Initial distributions for test problems I – III. 
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3.6 Results and Discussion 

In order to show the appropriateness of the sampling algorithms, the distributions 

of the collisional sampling algorithms were verified against the distribution obtained 

using the direct sampling method. For this purpose, we generated the distribution of 

coagulation coefficients of particles sampled for collision from a population of 1,000 

particles experiencing ~985 collisions. The distributions obtained have been plotted in a 

single plot as shown in fig. 12. The distribution obtained while using the four sampling 

techniques looks similar, which supports the use of the Metropolis, the NTC and the 

modified direct sampling algorithms in place of the direct sampling algorithm.  

The results obtained for test problem I are shown in fig. 13. The different shades 

shown in the component distributions indicate components, 1 through 7. A comparison 

on the distributions obtained using different sampling algorithms as given in fig. 13, 

shows that the results obtained using both the Metropolis and modified direct sampling 

algorithms follows those obtained using the direct sampling algorithm. But, the results 

obtained using the NTC method differs significantly from those obtained using the direct 

sampling algorithm. This difference is due to the βmax assumed for the simulation. 

The results obtained for test problem II are shown in fig. 14. A comparison on the 

particle number and component mass distributions obtained for the algorithms, shows 

that the results obtained using both the Metropolis and modified direct sampling 

algorithms are similar while those obtained using the NTC method differ significantly 

owing to the assumption made for βmax.  
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Modified Direct Sampling 

Figure 12: Sampling Distribution – A comparison of the sampling techniques. 
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Figure 13: Results obtained for Test Problem I after ~900 collisions. 
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Figure 14: Results obtained for Test Problem II after ~200 seconds. 
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Figure 15: Results obtained for Test Problem III after ~200 seconds. 
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We also compared the results of test problem III using the Metropolis, the NTC 

and modified direct sampling algorithms. The results of test problem III are shown in fig. 

15. The particle number and component mass distributions obtained using all the 

sampling techniques for test problem III look similar. Though the NTC method gave 

significantly different results for the previous test problems, it gave agreeable results for 

test problem III which reassures that the assumption made for βmax in the NTC method 

may not be appropriate for all kinds of problems.  

Additionally, test problem III was simulated with the initial mass concentration of 

5.0 × 10-10 × MI which accounted for ~350,000 initial numbers of particles. A plot of the 

number of particles vs. time for this test problem is shown in fig. 16 which compares the 

Metropolis, the NTC and modified direct sampling algorithms. Figure 16 shows clearly 

that the Metropolis algorithm gives better results than the NTC method when compared 

against the modified direct sampling algorithm. Also, the computation time for the 

Metropolis sampling algorithm was much less, ~90 seconds, in comparison to the 

computation times for the NTC and the modified direct sampling algorithms, which were 

562 seconds, and 1562 seconds, respectively. 

From fig. 16, we conclude that the Metropolis sampling technique provides better 

results than the NTC method and also, that the Metropolis algorithm works faster than the 

NTC and modified direct sampling algorithms. 
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Figure 16: Sampling Algorithms – A comparison. 
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4. AEROSOL DEPOSITION AND SOURCE REINFORCEMENT 

 

 

4.1 Aerosol Deposition 

Aerosols span a wide range of sizes, from a few nanometers to 100 microns. The 

larger particles settle more easily due to gravity while the smaller particles diffuse readily 

and undergo deposition by convection-diffusion. These processes of gravitational settling 

and convection-diffusion facilitate removal of particles from the entire population 

simulated and such a process is termed ‘deposition’ [16]. Deposition of particles can also 

be due to thermophoresis which is defined as the process by which particles in a 

temperature gradient move from a higher temperature region towards a lower temperature 

region [37, 38]. In this chapter, the effects of gravity and convection-diffusion on 

deposition have been explained. Gravitational settling, Rgravity (s−1) is calculated using 

equation (4-1) as [13, 39, 40]: 

  floor T
gravity

chamber

A V
R

V
= −                     (4-1) 

where Afloor is the floor area (m2), and Vchamber is the chamber volume (m3). VT is the 

particle settling velocity (m s−1) and is defined as: 

     
2  

18  
p

T

g d C
V

ρ
η χ

=                                  (4-2) 
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where ρp is the particle density (kg m−3), g is the acceleration due to gravity (m s−2), d is 

the particle diameter (m), η is the gas viscosity (kg m−1 s−1), χ is the dynamic shape factor 

(dimensionless), and C is the Cunningham factor (dimensionless). The diffusional 

deposition is calculated as shown in equation (4-3) [13]: 

    floor ceilingwall
diffusional

chamber chamber chamber

A AADR
V V V
⎛ ⎞

= − + +⎜ ⎟Δ ⎝ ⎠
      (4-3) 

where Awall is the area of the wall (m2), Aceiling is the area of the ceiling (m2), Δ is the 

diffusion boundary layer thickness (m), and D is the particle diffusivity or diffusion 

coefficient (m2 s−1). Rgravity and Rdiffusional represent the rates of particle deposition (s−1) 

occurring due to the effects of gravity and convection-diffusion, respectively. The total 

deposition rate is given by the sum of Rgravity and Rdiffusional.  Computation of these rates, 

as applied to nuclear aerosol codes, has been discussed in some detail by Fernandes and 

Loyalka [38, 39]. 

 

4.2 Aerosol Source Reinforcement 

Aerosols are released from the primary and secondary coolant systems and into 

the containment at specific source rates during nuclear reactor accidents. This 

phenomenon of adding aerosols to the volume of study in the form of new particles is 

called Source Reinforcement [16, 40]. These source particles will coagulate amongst 

themselves as well as with pre-existing aerosols, and affect the overall aerosol deposition 

and evolution. 
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4.3 DSMC Implementation 

The DSMC simulation is implemented in the same way as described earlier in 

chapter 3 – test problem III, where n particles are considered in a volume of 1 m3 with 

particle diameters from 0.01 to 20 microns divided into 20 sections logarithmically 

spaced in particle diameter. The sections (bins) and their associated particle diameter 

ranges are listed in Table 1. A multi-component, aerosol dynamics problem is considered 

for this work, where all the particles present initially contain only the first component. 

The total mass concentration of particles in section I is given by equation (3-6). 

Also, after every collision, components 2 through 7 are added to section 1 at a rate 

specified in the MAEROS user manual [13] as 10−9 / I2 kg m−3 s−1 where I refers to the 

component being added. The source rate is an arbitrary expression. The source thus 

defined is distributed uniformly as new particles in the entire volume. These new 

particles are made of components 2 through 7 and do not include component 1 in their 

composition. So, in summary, it can be said that, for all our test problems, new particles 

with particle sizes corresponding to section 1 are being generated at a constant rate.  

We assume that coagulation, deposition, and source reinforcement occur during a 

predetermined set of very short time intervals, Δt. As deposition rates are higher than 

particle coagulation rates, we have considered the deposition of particles to occur first 

during the time interval, Δt, followed by the coagulation of particles during the same time 

interval, Δt and finally, we allow source reinforcement to occur for the same time 

interval, Δt again. 
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The coagulation, deposition, and source reinforcement processes are integrated in 

this fashion for all of the test problems and particle compositions. The order of these 

processes can be deterministically changed depending upon the detailed statement of a 

particular problem, or can be ordered stochastically. Several test problems have been 

simulated for different combinations of the coagulation and deposition processes; both in 

the presence and absence of source reinforcement. The test problems simulated and the 

simulation results obtained are presented and discussed in greater detail in the following 

sections. Also, we need to note that significant work has been carried out in this area by 

Simons [41], Corner and Pendlebury [42], Williams and Loyalka [11], Fernandes and 

Loyalka [38, 39], and few others. 

 

4.4 Test Problems 

4.4.1 DSMC vs. Analytical: A Comparison 

We first consider a simple situation in which the number of particles in a volume 

under consideration is represented as a function of time, . Let us initially assume 

only deposition occurring at a constant rate represented by λ. The GDE for such a process 

is: 

( )n t

     
( ) ( )dn t n t

dt
λ= −                     (4-4) 

 

This is a very simple ordinary differential equation. With the initial condition, 0(0)n n= , 

the solution is given by: 

       0( ) tn t n e λ−=                       (4-5) 
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When coagulation occurs in addition to the deposition process, then the GDE for 

the coagulation and deposition processes occurring simultaneously is given by: 

       2( ) 1 ( ) ( )
2

dn t n t n t
dt

β λ= − −                      (4-6) 

 
where β  is the coagulation rate constant and λ is the deposition rate constant. This 

ordinary differential equation can be solved for the same initial condition: 0(0)n n=  such 

that,  

   ( )
1

0

1 1( ) 1
2

t tn t e e
n

λ β
λ

λ
−

− −⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
       (4-7) 

 

Figure 17 is a plot of the number of particles, , as a function of time, and 

compares the results obtained from both the DSMC and the above described analytical 

technique for a single component problem with both coagulation and deposition kernels. 

The single component in this problem is assumed to be water with ρ = 1,000 kg m

( )n t

−3. 

The DSMC and analytical results, when plotted together, trace the same curve as 

shown in fig. 17, and are indistinguishable. Here, we have used β  = 2.4 × 10−7 s−1 and λ 

= 0.001 s−1 for both the DSMC and analytical techniques. Other, more specific, test 

problems and simulations, their initial conditions, and the results obtained, are explained 

further in this chapter. 
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Figure 17: Variation of the number of particles with time. The thin curve 

represents one realization of the DSMC results. The thick curve represents 

analytical results (β  = 2.4 × 10−7 s−1 and λ = 0.001 s−1). As shown, the two 

curves are indistinguishable. 
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4.4.2 More Significant Test Problems 

We have simulated the following combinations of aerosol processes for several 

test problems with different particle compositions.  

i. Coagulation alone (C) 

ii. Deposition alone (D) 

iii. Coagulation and deposition (CD) 

iv. Source reinforcement alone (S) 

v. Coagulation and source reinforcement (CS) 

vi. Deposition and source reinforcement (DS) 

vii. Coagulation, deposition and source reinforcement (CDS) 

The various processes included in each test run and the particle component sets 

considered for every test run are listed in Table 8. The DSMC results obtained for the set 

of test runs for a seven-component, aerosol dynamics problem with the same component 

densities have been compared with the sectional results. The DSMC and the sectional 

results obtained for these test conditions have been presented in the following section. 

Since the sectional technique cannot handle different densities, only the DSMC results 

were obtained for the seven-component and the two-component, aerosol dynamics 

problems with different component densities. 
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Table 8. Summary of test problems. 

Particle Composition / 

Processes 

Seven-component, 

Constant Density 

Seven-component, 

Different Density 

Two-component, 

Different Density 

C     

D       

S      

CD       

CS      

DS      

CDS       

 

Table 9. Components and their densities at STP.∗

Component Symbol Density (kg m−3) 

Uranium Oxide UO2 10,970 

Water H2O 1,000 

Tellurium Te 6,240 

Boron Oxide BB2O3 2,550 

Cadmium Cd 8,650 

Lead Pb 11,340 

Cesium Iodide CsI 4,510 

                                                 
∗ Source: Information on the elements in the periodic table from www.webelements.com 
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4.4.3 Initial Conditions for the Test Problems 

The initial conditions considered are the same for all the test problems and are 

obtained from the MAEROS user manual [13]. Particle diameters are in the range of 0.01 

and 20 μm, and are divided into 20 sections, logarithmically spaced. The seven 

components and their densities used for seven-component, aerosol dynamics problems 

with different component densities are given in Table 9. All the values reported 

correspond to STP conditions. 

For the seven-component, same component density test problems, the total mass 

concentration initially present is obtained from equation (3-6). Since there are limitations 

on the computation time and memory usage available for the DSMC computations, we 

have assumed the total mass concentration to be smaller than that specified in equation 

(3-6); specifically, 1.0 × 10−9 × MI. This accounts for ~805,000 initial particles. Also, we 

have assumed that the new particles being added to section 1 have a total particle mass of 

1.0 × 10−17 / I2 kg m−3 where I refers to the component being added. The particle diameter 

of nI particles being added in each section has been assumed to follow an arithmetic 

progression. A density of 1,000 kg m−3, representing the density of water, has been 

assumed for all the seven components. A comparative study of the DSMC and sectional 

results obtained for several test cases are presented in the following section.  

For the seven-component, different component density test problems, the total 

mass concentration initially present is assumed to be 5.0 × 10−8 × MI which correspond to 

~4 million particles. The source rate being added to section 1 every second is assumed to 
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have a total particle mass concentration, inclusive of components 2 through 7, of 5.0 × 

10−17 / I2 kg m−3 where I refers to the component being added. The seven components and 

their densities used for these test runs are given in Table 9. The DSMC results obtained 

for the test runs listed in Table 8 are presented later in this chapter. 

During reactor accidents and/or accidental releases of radioactive materials to the 

containment, the radioactive elements interact with non-radioactive elements undergoing 

coagulation and deposition. The two-component, different component density test 

problem analyzes one such condition specified in Williams and Loyalka [11], where an 

accident in an LMFBR (Liquid Metal-cooled Fast Breeder Reactor) releases aerosols 

containing a mixture of non-radioactive sodium oxide and radioactive fuel elements into 

the containment. It is assumed that the non-radioactive particles are present in the initial 

aerosol in large numbers. The total mass concentration present initially is assumed to be 

1.0 × 10−8 × MI which correspond to ~3.7 × 106 particles. The source rate being added to 

section 1 every second is assumed to have a total particle mass concentration, inclusive of 

components 2 through 7, of 1.0 × 10−17 / I2 kg m−3 where I refers to the component being 

added. The DSMC results obtained for the set of test runs listed in Table 8 are presented 

in the following section. The two components and their densities considered in these test 

runs are: 

Component 1: Sodium Oxide, density: 2,270 kg m−3 

Component 2: Uranium Oxide, density: 10,970 kg m−3 

Finally, in an effort to study the effect of different component densities, we have 

simulated the DSMC seven-component test problem for three different cases involving 
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different component densities in the presence of aerosol processes such as coagulation, 

deposition, and source reinforcement. The initial conditions for all three cases with 

different component densities are: an initial mass concentration of 1.0 × 10−9 × MI, 

consisting of component 1 only, and a source rate being added only to section 1 every 

second assumed to have a total particle mass concentration, inclusive of components 2 

through 7, of 1.0 × 10−19 / I2 kg m−3 where I refers to the component being added. For 

these test problems, the initial mass concentrations are considered to be the same and the 

following three different cases of component densities are considered.  

i. Same component density, assuming the density of water – a case similar to 

that specified in the MAEROS user manual [13]. 

ii. Different component densities with water present initially, in order to make 

sure that component 1 is the same as in the problem specified above. 

Components 2 – 7 are the same as listed in Table 9. 

iii. Different component densities with UO2 present initially and the remaining 

components as listed in Table 9 – an approximate accident scenario. 

Every test run listed in Table 8 is simulated for 200 seconds, and the particle 

number and component mass distributions are analyzed after 200 seconds. Since there 

were no particles present in any sections beyond section 7, all of the distributions have 

been formatted to show only sections 1 through 7. 
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4.5 Results and Discussions 

4.5.1 DSMC vs. Sectional: A comparative study 

The initial distribution and the particle number and component mass distributions 

after 200 seconds for all of the test cases run using the DSMC and the sectional 

techniques are shown in figs. 18 and 19, respectively. For the initial distribution of 1.0 × 

10−9 × MI, the DSMC calculations resulted in ~805,000 initial particles while the 

sectional calculations had 927,551 initial particles. The difference of ~13% between these 

numbers is due to the random behavior inherent in the DSMC approach. A comparison of 

the results from figs. 18 and 19 show that the DSMC results agree well with those of the 

sectional method.  

Though the test problem is for a seven-component aerosol dynamics problem, the 

initial component mass distributions in figs. 18 and 19 show only component 1 due to the 

initial problem set up. Components 2 through 7 show up in the distributions only when 

new particles are added at a constant rate by the source reinforcement process as included 

in cases S and CDS. The different shades in the component mass distributions for the S 

and CDS cases in figs. 18 and 19 correspond to components 2 through 7. Using the 

DSMC technique, 5,058 particles are added every second. Though the mass concentration 

of particles being added is the same, 5,831 particles were added every second, while 

using the sectional technique. Again, there is a difference of ~13% between the DSMC 

and the sectional technique due to the fundamental difference in the DSMC and the 

sectional approaches.  
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From figs. 18 and 19, it can be seen that the DSMC and the sectional results agree 

well with each other except for some subtle differences which are due to the randomness 

of the DSMC approach and to the differences in the initial distributions. Comparing the 

initial distributions and the distributions after 200 seconds for case D, it can be seen that 

~96.5 % of the particles were deposited within 200 seconds (note that the scale for the 

graph has been changed). As the particle population decreases, the relevant statistics get 

poorer. Hence, the distributions in cases D and CD develop significant differences 

between the DSMC and the sectional results. 

Table 10 shows a listing of the number of particles present at different times as 

calculated using the DSMC and the sectional techniques for a seven-component, same 

component density, aerosol dynamics problem for the D, CD, and CDS cases. A plot of 

the data in Table 10 is shown in fig. 20, where it can be seen that the DSMC results agree 

well with the sectional results. We have assumed that the initial total mass concentration 

is 1.0 × 10−9 × MI and also that the new particles being added to section 1 have a total 

mass concentration, inclusive of components 2 through 7, of 1.0 × 10−17 / I2 kg m−3 

(where I refers to the component being added). 
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Figure 18: Test results for a same component density problem using the DSMC technique. 
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Figure 19: Test results for a same component density problem using sectional technique. 
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Table 10. Comparison of the DSMC vs. sectional techniques. 

Number of particles in suspension 

Case D Case CD Case CDS Time in 
seconds 

DSMC Sectional DSMC Sectional DSMC Sectional 

0 804,881 927,551 804,451 927,551 804,958 927,551 

1 790,998 911,282 789,450 910,473 794,970 916,247 

10 677,179 777,362 667,757 771,167 714,921 824,060 

60 294,280 323,833 282,258 315,423 471,475 523,911 

100 156,194 162,643 149,804 158,743 389,004 422,183 

200 35,995 31,438.70 36,589 32,041.70 324,104 341,120 

300 10,022 7,337.49 10,708 8,086.54 308,806 325,521 

400 3,403 2,231.26 3,786 2,656.50 303,540 321,617 

500 1,336 871.27 1,600 1,085.10 302,335 320,319 
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Figure 20: DSMC vs. Sectional - A comparison. 
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4.5.2 DSMC Seven-Component, Different Component Density Problem 

The seven components used for this simulation are listed in Table 9. The initial 

number of particles for each of the test cases is about 3.7 × 106. The initial total 

component mass concentration is 5.0 × 10−8 × MI, as specified in the initial conditions. 

The initial distributions and the particle number and component mass distributions after 

200 seconds for all test cases are shown in fig. 21. Here too, the initial component mass 

distribution shows only component 1 as the problem defines only component 1 to be 

present initially. For the test cases involving source reinforcement, the source rate added 

to section 1 every second is assumed to be 5.0 × 10−17 / I2 kg m−3 (where I refers to the 

component being added). This corresponds to ~15,000 particles added per second. The 

different shades in the component mass distribution for cases S, CS, DS and CDS show 

new particles with components 2 through 7. It can be observed in fig. 21 that particle 

coagulation does not have a significant effect because particle deposition dominates the 

loss process. Also, since the source adds only components, 2 through 7 to the volume and 

not component 1, after few hundred seconds, component 1 will deplete and components, 

2 through 7 will become more prominent in the distributions. 
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Figure 21: Results obtained for a seven-component different component density problem. 
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4.5.3 DSMC Two-Component, Different Component Density Problem 

Figure 22 shows the DSMC results for the two-component, different component 

density, aerosol problem which is a simple case that occurs in the reactor containment 

during an accident. The different shades in the component mass distributions for cases 

CS, DS and CDS represent components 1 and 2. We have considered the total mass 

concentration to be 1.0 × 10−8 × MI. This corresponds to an initial number of particles of 

~3.7 × 106. Also, 324 particles were added every second as determined by the source rate, 

10−17 / I2 kg m−3 (where I refers to the component being added). 

In figs. 21 and 22, it can be observed that the concentration of component 1 

decreases rapidly in the first few hundred seconds due to the deposition process being 

dominant.  
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Figure 22: Results obtained for a two-component, different component density problem. 
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4.5.4 Effect of different component densities 

The component mass and particle number distributions obtained for the three 

different cases of component densities in the presence of aerosol processes such as 

coagulation, deposition, and source reinforcement at different times have been tabulated 

in figs. 23 and 24. Though the initial mass concentrations and the source rates were the 

same for all three cases, the particle numbers were different for case III owing to the 

differences in the component densities. This difference can be seen in fig. 24 where 

different scaling is used for case III. From these figures, it can be seen that the results 

obtained for the problem using the same component density differ significantly from the 

different component density results. Also, it can be concluded that the assumption made 

in the MAEROS code [13, 17] regarding the use of a single mean density is not 

appropriate when simulating multi-component aerosol dynamics problems involving 

different component densities.  
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Figure 23: Effect of different component densities on the component mass distribution. 
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Figure 24: Effect of different component densities on the particle number distribution. 
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5. AEROSOL CONDENSATION 

 

 

5.1 Aerosol Condensation 

Considering only the condensation process in a spatially homogeneous medium, 

the aerosol GDE can be expressed as: 

     ( ) ( ) (
1

, , , , , ,
N

p
p p

n t I t n t
t v=

∂ ∂ )⎡ ⎤= − ⎣ ⎦∂ ∂∑v m v m v m       (5-1) 

Considering both coagulation and condensation processes in a spatially homogeneous 

medium, the aerosol GDE can be expressed as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) (

1

0 0 0 0

1 0 0

, , , , , ,

1                 , , , , , | ,
2

                 , , , | , , ,

N

p
p p

N

p p p p p p
p

n t I t n t
t v

d d d d n t n t K u q w s

v u w m q s n t d d K u q v m n tδ δ

=

∞ ∞ ∞ ∞

∞ ∞

=

∂ ∂ ⎡ ⎤+ ⎣ ⎦∂ ∂

=

× − − − − −

∑

∫ ∫ ∫ ∫

∏ ∫ ∫

v m v m v m

u w q s u q w s

v m u q u q )

          (5-2) 

Assuming only a single component problem, the GDE in equation (5-2) can be simplified 

to equation (5-3) as: 

[ ]
0 0

1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2

v

n v t I v t n v t K v u n v u t n u t du n v t K v u n u t du
t v

∞∂ ∂
+ = − −

∂ ∂ ∫ ∫  (5-3) 
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Note that the particle volumes, v and u, used in equation (5-3) are scalars and the particle 

number,  is independent of the mass of the particle. Various methods of solving 

integro-differential equations such as this include the finite elements method, the 

sectional method, the analytical method, and the numerical method among others and 

have been explained in Williams and Loyalka [11]. Also, there are computer programs 

(MAEROS [13] in CONTAIN [17], etc.) that solve these equations and simulate the 

particle number and component mass distributions at various times. Studies have been 

made in this area by Ramabhadran et al [43], Gelbard and Seinfeld [44], Park and 

Loyalka [45, 46] and Simons [47]. 

( , )n v t

 

5.2 Test Problem I: Aerosol Condensation 

For the first problem, we consider challenging, single component aerosols 

undergoing condensation alone. We consider two specific cases for this test problem. 

Case I considers a constant condensation rate and case II considers the condensate rate, I 

to be dependent on particle volume, v. The system of equations defining the two test 

cases with condensation process alone and their corresponding analytical solutions are 

given in Table 11. Since condensation affects only the particle volume and not the 

particle number, the system of equations in Table 11 shows only total volume,φ  as a 

function of time, t. The initial condition is given as: 0(0)φ φ= . N0 is taken as the number 

of particles present in the system per unit volume, which remains constant with time for 

this problem as condensation does not change the total number of particles.  For initial 
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conditions, we assume particle diameters to follow a log-normal distribution and the 

distribution is shown in equation (5-4) as [11, 43]:  

0

0 0

( ,0) expN vn v
v v

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
                 (5-4) 

where N0 refers to the initial number of particles per unit volume (m–3) and v0 is the mean 

initial volume of the particles present in the distribution (m3). It needs to be mentioned 

here that, I and 0σ have units of m3 s–1, 1σ  has units of s–1, ( )tφ  has units of m3, and 

 has units of m( , )n v t –6. 
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Table 11: Condensation problem - Parameters and analytical solutions. [11, 43] 

Test Cases  Parameters   System of equations Analytical Solution 

I oI σ=   0 0
d N
dt
φ σ=  0 0 0( )t N tφ φ σ= +   

II 1I vσ=   1
d
dt
φ σ φ=  [ ]0 1( ) expt tφ φ σ=   
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The particle number distribution,  as a function of particle size, v and time, 

t for the two cases is given by equations (5-5) and (5-6), respectively, as [11, 43]:  

( , )n v t

          
0 0

0
0 0

0

( )exp           ( ) 0
( , )

0                                        ( ) 0

N v t v t
n v t v v

v t

σ σ

σ

⎧ ⎡ ⎤−
− − ≥⎪ ⎢ ⎥= ⎨ ⎣ ⎦

⎪ − <⎩

                (5-5) 

 [ ] [ ]0
1

0 0

 ( , ) exp exp expN vn v t t t
v v

σ σ1

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
                 (5-6) 

5.3 Test Problem II: Aerosol Condensation and Coagulation 

This problem includes both condensation and coagulation occurring 

simultaneously. The three test cases considered are given in Table 12. The coagulation 

and condensation rates are represented by K and I respectively, with the rate constants for 

coagulation and condensation defined respectively as, K0, K1 and 0σ , 1σ  (for test cases, I 

- III). The system of equations and the corresponding analytical solutions for the three 

test cases are also given in Table 12. Here again, K, I, K0 and 0σ  have units of m3 s–1, K1 

and 1σ  have units of s–1, ( )tφ , u and v have units of m3,  has units of m( , )n v t –6, and 

 and N( )N t 0 have units of m–3. 
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Table 12: Condensation and coagulation - Parameters and analytical solutions. [11, 43] 

Test 

Cases 
Parameters 

  System of 

equations 
Analytical Solution 

I 0

1

K K
I vσ
=
=

 

20
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2
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dt
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⎝ ⎠⎣ ⎦
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Since coagulation affects the particle population and condensation affects the 

particle volume, both the particle population, N, and total volume, φ , are considered in 

the system of equations, as functions of time, t, and are shown in Table 12. The initial 

conditions are specified as: 0(0)N N=  and 0(0)φ φ= . The initial size distribution 

considered for the particle diameters is given below in equation (5-7) as a log-normal 

distribution with v0 as the mean initial volume of the particles in the distribution [11, 43].  

      0

0 0

( ,0) expN vn v
v v

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
                      (5-7) 

Cases I and III consider a constant coagulation rate while case II considers the 

coagulation rate to be dependent on the volume of the particles sampled for collision, u 

and v. Also, test cases I and II consider the condensation rate to be dependent on particle 

volume, v and case III considers a constant condensation rate. The particle number 

distribution,  as a function of particle size, v and time, t for the three cases is given, 

respectively, by equations, (5-8) – (5-10) as [11, 43]: 

( , )n v t

            ( )20

0 0

2 2( , ) 1 exp exp[ (1 )exp ]
(1 ) (1 )

N vn v t
v v

τ ττ τ
τ τ

⎡ ⎤ ⎡Λ Λ
= − − − − −

⎤
⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣ ⎦

              (5-8) 

 0
1

0 0

 ( , ) exp (1 )(2 ) 2(1 ) 1    ; exp
(1 )1

N v vn v t I
v vv

ω ττ ω τ ω ω
τω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − − − − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥Λ −− ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5-9) 

 ( )00 0
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2 ( 1)( 2 ( 1 ln )) 2 ( 1 ln )
andv vN vn v
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χ τχ

χ
χχ χ χ χ χ χ χ χ χ

= +− Λ −⎡ ⎤
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Table 13: Definitions for symbols, Λ and τ  used in equations, (5-8) – (5-10). 

Test Cases Λ  ( )tτ  

I 1

0 0K N
σ

Λ =  
0 0

21
2 K N t

τ = −
+

 

II 1

1 0 0K N v
σ

Λ =  [ ]11 exp tτ σ= −  

III 0

0 0 0K N v
σ

Λ =  0 0 / 2K N tτ =  
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The definitions of the symbols, Λ and τ  used in the above equations for the three 

cases are shown in Table 13. It has to be noted that both Λ and τ  are dimensionless 

numbers. 

The different test problems discussed in this chapter can describe representative 

cases of practical interest. These sample test problems and their corresponding analytical 

solutions are explained in Ramabhadran et al [43] and Williams and Loyalka [11]. We 

have compared the DSMC results against the analytical results for all these test problems 

and test cases, and discussed the same later in this chapter. 

5.4 Implementation of the DSMC Technique 

For our simulation here, we use 100,000 particles as the initial particle population. 

All the test problems simulated and presented in this chapter assume a single component 

(water), to be present in all the particles. As explained in the test problems in the earlier 

chapters, here too, these particles have their particle diameters ranging from 0.01 μm to 

20 μm. For display purposes, there are 20 sections considered which are logarithmically 

spaced in particle diameters. For all the test problems, the initial particle size distribution 

is assumed to follow a logarithmic distribution and the individual particle diameters of 

these 100,000 particles present initially are sampled from this distribution. 

The total component mass of all the particles present initially is assumed to be in 

the order of 10−19 kg with the particle size following a logarithmic distribution. All the 

particles are assumed to be made of only one component – water, with density, ρ = 1,000 
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kg m−3. This results in the initial total volume of particles, 0φ  to be in the order of 10−17 

m3 and the average initial particle volume, v0 to be in the order of 10−22 m3. 

 

5.4.1 Test Problem I: Condensation 

This test problem includes only the condensation process. The time intervals are 

progressively reduced until good accuracy (convergence) is achieved, and the results 

reported correspond to an approximately small interval. The mass condensed on each 

particle,  during the time interval, Δt for the two cases – I and II considered, are 

calculated as shown in equations (5-11) and (5-12), where d

( , )pu d tΔ%

p refers to the diameter of the 

particle (m), and 0σ  is the condensation rate constant (m3 s–1) for case I, and 1σ  is the 

condensation rate constant (s–1) for case II. Also, note that the condensate mass, 

 is expressed in units of mass, kg. ( , )pu d tΔ%

      0:    ( , )   pCase I u d t tσ ρΔ = Δ%                 (5-11) 

      3
1:  ( , )    

6p pCase II u d t d tπ σ ρΔ = Δ%      (5-12) 

Once the initial conditions are set, condensation is allowed to occur where the 

mass condensed on each particle during the time interval, Δt is calculated using equation 

(5-11) for case I and equation (5-12) for case II. The condensate mass,  is then 

added to the mass of each particle. The particle number and volume distributions are then 

observed. This process is repeated until the end of the simulation. 

( , )pu d tΔ%
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5.4.2 Test Problem II: Condensation and Coagulation 

This test problem includes both condensation and coagulation. Here, too, the 

aerosol behavior is observed at regular time intervals. At every time interval, Δt, the mass 

condensed on each particle, is calculated, followed by the coagulation of particles. The 

mass condensed on each particle depends on the condensation rate – constant or volume 

dependent condensation rates. Here, again, equation (5-11) is used to calculate the mass 

condensed when the condensation rate is constant, 0I σ=  (m3 s–1) and equation (5-12) is 

used to calculate the condensate mass when the condensation rate is volume dependent, 

1I vσ=  (m3 s–1).  

After condensation, the mass of each particle is increased by the condensate mass, 

, following which coagulation of particles occurs. After every particle collision 

(coagulation), the collision time or the time per collision, t

( , )pu d t% Δ

n

n

c (s), is calculated using 

equation (5-13) where  refers to the total number of particles before collision (mi
–3), 

 refers to the total number of particles after collision (m1i+
–3), K refers to the coagulation 

rate (m3 s–1), and the factor 2 in the numerator eliminates the double counting of 

collisions occurring between two particles. 

                     1
1

1

2  ,   ;        1 i i
c

i i

n nTime per collision t n n
n n K

+
+

+

⎛ ⎞−
i i= = −⎜ ⎟

⎝ ⎠
               (5-13) 

The particles are allowed to coagulate until the total time of collisions is 

approximately equal to the time interval, Δt for which the condensation had occurred in 

the previous step. In the reactor environment, condensation and coagulation occur 
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simultaneously. Hence, both condensation and coagulation have been implemented for 

the same amount of time, Δt, but in a sequence instead of occurring simultaneously. This 

sequence is an approximation we have made. Since we are taking very fine time intervals, 

this approximation stands good.  

We have implemented the DSMC technique so that condensation occurs first, 

followed by coagulation. This order can be changed depending on the method of 

programming or the nature of the problem. After the condensation and coagulation 

processes have been simulated for a time interval, the particles are sorted in the sections 

for reporting purposes. The same steps are repeated for further iterations until the end of 

the simulation. 

For case II in the test problem II, where both the condensation and coagulation 

rate constants are assumed to be volume dependent, we need very short time intervals 

which are not feasible due to limitations of present-day computational resources. These 

finer intervals are needed for determining the mass condensed on each particle during the 

time interval, Δt. So, in order to reduce every interval, Δt, into N intervals, such that the 

time interval now becomes smaller, Δt/N, equation (5-12) has to be modified such that the 

total mass of each particle, u d , at time t( , )t

t

p i i, after allowing condensation for time 

interval, Δt is as shown in equation (5-14), where dp refers to the diameter (m) of the 

particle before condensation (at time, ti − Δ

( , )u d t

).  Here, too, the unit of the total mass of 

each particle,  is in kilograms. p i

   3
1( , )  (1+  / )

6
N

p i pu d t d t Nπ σ ρ= Δ      (5-14) 
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This results in a new expression for the condensate mass,  and is given 

in equation (5-15) where 

( , )pu d tΔ%

( , )p iu d t t− Δ  refers to the mass of the particle prior to the start 

of the condensation process. 

     3 3
1( , ) ( , ) ( , )  (1+  / )  

6 6
N

p p i p i pu d t u d t u d t t d t N d p
π πσ ρΔ = − −Δ = Δ −% ρ       (5-15) 

This expression for ( , )pu d tΔ%  can be used for case II in test problem I and also for 

cases I and II in test problem II, where the condensation rates are considered as volume 

dependent.  

 

5.5 Results and Discussions 

5.5.1 Test Problem I: Condensation 

Figure 25 shows how the total volume varies as a function of time for the two test 

cases. The condensation rates considered for cases I and II are:  (m-5
0  1 × 10I σ= = 3 s–1) 

and  
-1

1  5 × 10I vσ= = v  (m3 s–1), respectively. The total volume was observed for 50 

seconds for test problem I, and the same for test problem II was observed for 25 seconds. 

The total volume calculated, both analytically and using the DSMC technique, is plotted 

against time for both the cases – I and II, and are shown in fig. 25. 

The DSMC results obtained for cases I and II agree well with the analytical 

results. The thick, dark line indicates the DSMC results while the thin line represents the 

analytical results. Since the results agree very closely, the curves obtained for the DSMC 

and analytical results are indistinguishable.  
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  a) Case I:  (m-5

0  1 × 10σ = 3 s–1)             b) Case II:  (s-1
1  5 × 10σ = –1) 

Figure 25: DSMC vs. Analytical – A comparison. 
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5.5.2 Test Problem II: Condensation and Coagulation 

The number of particles that undergo coagulation and the mass condensed were 

calculated at regular intervals. Since condensation was stronger in our examples, we 

allowed condensation to occur first followed by coagulation of particles for each interval. 

The particle number and total volume are observed for ~200 seconds for test cases I and 

III, and the same for test case II are observed for ~100 seconds. The number of particles 

remaining and total volume of particles present, both calculated analytically and using the 

DSMC technique, are plotted against time for each of the cases – I, II and III and are 

shown in fig. 26. 
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Figure 26: DSMC vs. Analytical – A comparison of results from test problem II. 
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The dark thick lines indicate the DSMC results while the thin lines represent the 

analytical results. Since they agree very closely for cases I and III, the curves obtained for 

the DSMC and the analytical results are indistinguishable. The DSMC results obtained 

for cases I and III agree well with the analytical results. However, the DSMC result 

simulated for case II differs slightly from the analytical result. This is because the change 

in the distribution is very sharp, which poses a serious test of the simulation. It is possible 

to improve the agreement by using even finer time intervals than we have used. Again, 

we were not able to generate such fine time intervals due to the limitations of present day 

computer resources. The coagulation and condensation rates used for all three cases show 

that very strong condensation occurs in comparison to the coagulation process. These are 

shown clearly in figs. 31 and 32 later in this chapter. 

 

5.5.3 Particle Number Distributions 

We have also compared the DSMC results against the analytical results for the 

particle number distributions,  as a function of time, t, and particle size, v, for all 

the test cases. The results obtained for the two cases in test problem I and for different 

times, are shown in figs. 27a and 27b. The results obtained for the three test cases in test 

problem II and for different times are shown in figs. 28 – a, b and c. The thick gray lines 

in figs. 27 and 28 represent the analytical results while the thin black lines indicate the 

DSMC results. Since the DSMC results agree well with the analytical results, the thin 

black lines and the thick gray lines are indistinguishable.  

( , )n v t
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a) Case I            b) Case II 

Figure 27: Particle number distributions for test problem I. 

(Thin black lines represent DSMC results and thick gray lines indicate analytical results) 
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a) Case I: Constant coagulation and linear condensation rates. 

 

20 40 60 80 100
Section HbinsL

1

2

3

4

5

6

reb
mu

N
fo

selcitrap
*

01
3

SizeDistribution

 

b) Case II: Linear condensation and coagulation rates. 
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c) Case III: Constant condensation and coagulation rates. 

Figure 28: Particle number distributions for test problem II. 

(Thin black lines represent DSMC results and thick gray lines indicate analytical results) 
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The initial conditions considered for each of the test problems and corresponding 

test cases are specified in Table 14. The terms  and  refer to the minimum and 

maximum particle diameters (m). The abscissa represents 100 sections (bins) 

logarithmically spaced in particle diameters ranging from  to . The particle 

population is shown in the ordinates. In order to check the time evolution of the particle 

size, the distributions were observed for three specific times for all the test problems 

simulated. The particle number distributions for the cases I and II of the condensation test 

problem I were observed for t = (0, 1500 and 10,000 seconds) and t = (0, 500 and 1300 

seconds), respectively. The particle number distributions for cases I, II and III of the 

condensation and coagulation test problem II were observed for t = (0, 10 and 100 

seconds), t = (0, 1200 and 1800 seconds) and t = (0, 1 and 10 seconds), respectively. 

Additionally, figs. 29 and 30 are provided to show the particle number distributions in a 

histogram format, obtained for test problems I and II and their corresponding test cases, 

at different times where the particle diameters are spaced in 20 sections (bins) for display 

purposes. The mean initial particle volume, the range of particle diameters, and the 

number of sections (bins) have been changed for this set of simulations and are given in 

Table 14. This change was necessary to show clearly the time evolution of particle sizes 

observed for the test problems. 

mind maxd

mind maxd
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Table 14: Initial conditions specified for the test problems and corresponding test cases. 

Test 

Problems 

Test 

Cases 

I  

(m3 s–1) 

K  

(m3 s–1) 

v0  

(m3) 

mind   

(m) 

maxd   

(m) 

I 10−25 − 1.8 × 10−22 1.0 × 10−8 1.00 × 10−6

I 

II 10−2 v − 1.8 × 10−22 1.0 × 10−8 5.25 × 10−6

I 10−2 v 5.0 × 10−6 1.8 × 10−22 1.0 × 10−8 1.00 × 10−5

II 10−3 v 1.0 × 106 (u + v) 1.8 × 10−15 2.5 × 10−7 1.25 × 10−3II 

III 10−25 5.0 × 10−6 1.8 × 10−22 1.0 × 10−8 1.00 × 10−6

Note: u and v are particle volumes (m3). 
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Figure 29: Particle number distributions for test problem I. 
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Figure 30: Particle number distributions for test problem II. 
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5.5.4 Effect of condensation and coagulation rates 

In the case of constant coagulation and condensation rates, the particle number 

still depends only on the coagulation rate and hence, the condensation rate does not affect 

the particle number, as can be seen in Table 12 – case III. However, both the constant 

coagulation and condensation rates affect the total volume. For this reason, fig. 31 shows 

only the effect of constant coagulation and condensation rate constants on the total 

volume, ( )tφ  where the initial total volume of particles is in the order of 10–17 m3. Figure 

31a shows the plot obtained when using a specific coagulation rate constant, K0 = 0.01 

(m3 s–1) and varying the condensation rate constant, 0σ  as 0.001, 0.005 and 0.008, in 

units of m3 s–1. Figure 31b shows the effect of different coagulation rate constants, 

(0.05, 0.07, 0.1) m0K = 3 s–1, when the condensation rate constant is fixed at 0 0.035σ =  

m3 s–1. Figures 31a and 31b show that a small change in the condensation rate leads to a 

larger change in volume and also that coagulation has relatively less significant effect on 

the volume, ( )tφ . 

In the case of linear coagulation and condensation rates, the total volume varies 

exponentially based on the condensation rate. But the particle number varies due to both 

the condensation and coagulation rates, as can be seen in Table 12 – case II. This is 

shown in figs. 32a and 32b. Figure 32 shows the effect of different coagulation and 

condensation rate constants on the particle number as a function of time. Figure 32a 

shows the effect of different condensation rate constants, 1σ = (0.025, 0.05, 0.019) s–1 

when the coagulation rate constant is fixed at 1 0.5K =  s–1. Figure 32b shows the plot 

obtained when using the coagulation rate constants, K1 = (0.01, 0.5, 1.0) s–1 and the 
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condensation rate constant, 1σ  = 0.035 s–1. Here too, the initial total volume of particles 

considered is in the order of 10–17 m3. Figures 32a and 32b reveal the dominant nature of 

the condensation rate on the particle number over the coagulation rate, as small variations 

in 0σ  leads to larger changes in the particle number. This is due to the increased mass 

condensed on each particle which increases the chances of coagulation, thereby reducing 

the total number of particles. 
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Figure 31: Effect of constant coagulation and condensation rates on total volume, ( )tφ . 
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Figure 32: Effect of linear coagulation and condensation rates on particle number. 
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5.6 Multi-component Aerosol Condensation 

In a real-time, post-accident reactor environment, several chemical species will be 

present. The high temperature and pressure conditions and the highly unstable situation 

might cause strong condensation to occur. Most of the chemical species present inside the 

containment might condense on existing aerosol particles. The mass condensed on each 

particle will then depend on several factors, such as the particle diameter, diffusion 

coefficient of the species (component) in air medium, and time. The condensate mass, 

 in units of kilograms, for each component, I over time, t can be calculated using 

the equation (5-16) [11, 16]:  

( )I pu d%

( ) ( )
12

( ) 2 ( 1)                 1
1

I
I p I p I I I I

I

Knu d D d S f Kn t and f Kn
Kn
π ξ ζπ ρ

ξ

−
⎡ ⎤+

= − = +⎢ ⎥+⎣ ⎦
%    (5-16) 

where DI is the diffusion coefficient of component, I in air in m2 s−1, dp is the diameter of 

particle, p in m, Iρ  is the saturation density of component, I in kg m−3 and is assumed to 

be 4% of the density at STP for water and 0.01% of the density at STP for all other 

components, SI is the saturation ratio of component, I and is assumed to be 1.00374,  

is the Knudsen number for component, I (dimensionless), and ξ and ζ are the 

dimensionless auxiliary factor and jump distance with values, 1.3333 and 1.0161 

respectively [11]. Since, equation (5-16) resulted in a very large condensation rate and 

hence, condensate mass - u d , we introduced a factor of 10

IKn

( )%I p
−9 in all our simulations 

such that the particle growth and evolution is observable.  
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5.7 Two-component, Aerosol Dynamics Test Problems: Coagulation, 

Deposition, Condensation and Source Reinforcement 

After benchmarking our DSMC results against analytical results for a single 

component, condensation, and coagulation problem, we integrated all the four processes 

studied so far – coagulation, deposition, condensation and source reinforcement. Here, 

too, we assumed all the four processes to occur simultaneously, and are simulated in a 

sequence for the same time interval, Δt. Three test problems are simulated using the 

DSMC technique for a two-component aerosol dynamics problem undergoing 

coagulation, deposition, condensation and source reinforcement. The three test problems 

differ in the two-components used for the simulation. The components used in each test 

problem and their diffusion coefficients are given in Table 15. The initial conditions for 

the three test problems are the same and are similar to the initial conditions specified for 

test problem III in chapter 4. These initial conditions are explained as follows. 
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Table 15: Components used for test problem, I – III and their properties. 

Test 

Problem 
Component Symbol

Molecular Weight 

(amu) 

Density 

(kg m−3) 

DI  × 10−4 

(m2 s−1) 

Uranium Oxide UO2 270 10,970 0.12a

I 

Water H2O 18 1,000 0.24b

Water H2O 18 1,000 0.24 

II 

Polonium Po 218 9,196 0.056c

Water H2O 18 1,000 0.24 

III 

Iodine I2 253 4,940 0.053d

 

                                                 
a See Appendix for formula used [9, 48, 49] and calculations. 
b Reference [9]. 
c Reference [50, 51]. 
d Reference [52]. 
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For all three test problems, we considered particle diameter ranges between 0.01 

and 20 microns and the sections (bins) used for display purposes total up to 20 bins, 

logarithmically spaced in particle diameters. The total mass concentration present 

initially is obtained from equation (3-6) as, 1.5 × 10−10 × MI. This accounts for ~100,000 

particles. The new particles added to section 1 consist of component 2 alone and have a 

total mass concentration of 1.0 × 10−18 / I2 kg m−3, where I refers to the component being 

added. Due to very strong coagulation and condensation, we have introduced a scaling 

factor to reduce the coagulation and condensation rates by a factor 108 and 10−9 

respectively, such that the aerosol behavior and evolution can be studied closely. Here, 

too, the diameters of the particles added are assumed to follow an arithmetic progression.  

The particle number and component mass distributions are observed initially and 

at regular intervals of time for the three test problems and are shown in figs. 33 and 34. 

Figures 33 and 34 show the time evolution of the component mass and particle number 

distributions respectively. Also, it could be seen that the results for test problems II and 

III seem similar while the results for test problem I differ significantly. This is due to the 

effect of different component densities on the aerosol evolution and dynamics. 
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Figure 33: Component Mass Distributions at different times for test problems I – III. 
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After 200 seconds, 
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Figure 34: Particle Number Distributions at different times for test problems I – III. 
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After 200 seconds, 
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6. CONCLUSION 

 

 

The purpose of this research had been to overcome the limitations of and 

eliminate use of assumptions made in the present-day computer codes and eventually 

develop a production computer program to predict and evaluate the dynamics and 

behavior of aerosols without compromising the physics of collisions. We approached the 

goal in steps – firstly, we included aerosol processes such as coagulation, deposition, 

condensation, and source reinforcement; secondly, we explored collision sampling 

algorithms in order to reduce computational overheads and hence, speed up 

computations; and finally, we explored the effect of different component densities on the 

dynamics of multi-component aerosols. Further research is required to explore several 

other factors such as shape, charge, radioactivity and spatial inhomogeneity. 

We have explored several collisional sampling algorithms – direct sampling, the 

Metropolis sampling, the NTC method and modified direct sampling algorithms. We 

were able to verify the applicability of the Metropolis, the NTC and modified direct 

sampling algorithms to a collisional problem by comparing their distributions against that 

obtained using the direct sampling algorithm. We concluded that the Metropolis sampling 

algorithm gave better results than other sampling algorithms and also reduced the 

computation time significantly. Therefore, we were able to increase the total number of 
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particles considered for the study to 100,000 particles. By increasing the system memory 

to 2 GB (RAM), we were able to increase the initial particle population to 4 million. 

We have extended the aerosol dynamics problem to include several aerosol 

processes such as deposition, coagulation and source reinforcement. We have simulated 

several test problems and compared the DSMC results against the sectional and analytical 

results for appropriate test problems. The DSMC results agreed well with the analytical 

results simulated for test problems undergoing deposition in the presence and absence of 

aerosol coagulation. We were able to integrate coagulation, deposition and source 

reinforcement processes for multi-component aerosol dynamics problem, and simulated 

several test problems with different particle compositions.  

We further simulated three test problems to study the effect of different 

component densities on the aerosol dynamics problem. From our results, we concluded 

that the assumption of a single mean density for a multi-component aerosol dynamics 

problem leads to results that are not in agreement with the actual physics of the problem.  

Further, we extended the study to explore aerosol condensation for a challenging 

single component problem. We were able to simulate the DSMC results for several test 

problems and test cases. A comparison on the DSMC results against the analytical results 

showed that the DSMC results were in excellent agreement with the analytical results, for 

all the test problems and test cases involving aerosol condensation and coagulation 

processes. 

The aerosol condensation process implemented using the DSMC technique for a 

single component problem has been integrated with the aerosol dynamics to include 
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aerosol processes such as coagulation, deposition, condensation and source 

reinforcement, and also extended to study the multi-component aerosol dynamics 

problem. We have simulated three test problems with three different sets of components 

and the results presented illustrate the time evolution of the particle number and 

component mass distributions. 

This research assumed a spatially homogeneous medium. But in real-time 

accident scenarios, the medium under study will be heterogeneous in nature (spatially 

inhomogeneity). There is scope in future to study and account for the effects of spatial 

inhomogeneities in this research. 

Furthermore, the particles (aerosols) considered in the current research have been 

assumed to be rigid spheres which may not hold good at all times. Hence, this work can 

be extended to consider the shape effects of the aerosols under study. 

We should also note that simultaneous work is being performed in exploring the 

effects of charge and radioactivity on aerosol particles and their evolution and behavior. 

After completion of this study, their work can also be integrated with the current study to 

make a more complete model to explore the dynamics of multi-component aerosols 

without compromising the collisional physics.  

At every stage of the development of this research, a simultaneous effort should 

be made to explore acceleration schemes, overcome computational overheads 

(limitations) and also, improve the speed of computations. 

 
 

 102



REFERENCES 
 
 

1. U. S. Atomic Energy Commission, “Theoretical Possibilities and Consequences 

of Major Accidents on Large Nuclear Power Plants,” Report # WASH-740 

(1957). 

2. U. S. Atomic Energy Commission, “Calculation of Distance Factors for Power 

and Test Reactor Sites,” Report # TID-14844 (1962). 

3. U. S. Department of Energy, “Health and Environmental Consequences of the 

Chernobyl Nuclear Power Plant Accident,” Report # DOE/ER-0332, UC-41 & 48 

(1987). 

4. U. S. Nuclear Regulatory Commission, “Reactor Safety Study: An Assessment of 

Accident Risks in U.S. Power Plants,” Report # WASH-1400, NUREG-75/014 

(1975). 

5. U. S. Nuclear Regulatory Commission, “Technical Basis for Estimating Fission 

Product Behavior During LWR Accidents,” Report # NUREG-0772 (1981). 

6. U. S. Nuclear Regulatory Commission, “Severe Accident Risks: An Assessment 

for Five U. S. Nuclear Power Plants,” (Final Summary Report) NUREG-1150, 

Vols. 1-2 (1990). 

7. Soffer, L., “Revision of Reactor Accident Source Terms and Implications for 

Nuclear Air Cleaning Requirements,” 22nd DOE/NRC Nuclear Air Cleaning and 

Treatment Conference, Session 8: Reactor Accidents (1992). 

8. Loyalka, S. K., “Mechanics of Aerosols in Nuclear Reactor Safety: A Review,” 

Prog. Nuc. Energy, 12, 1 (1983). 

 103



9. Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of 

Airborne Particles, John Wiley & Sons, New York (1982). 

10. Friedlander, S. K., Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 

Oxford University Press, Oxford (2000). 

11. Williams, M. M. R. and Loyalka, S. K., Aerosol Science: Theory and Practice 

with Special Applications to the Nuclear Industry, Pergamon Press, Oxford, U. K. 

(1991). 

12. Kress, T. S., “Review of the Status of Validation of the Computer Codes Used in 

the Severe Accident Source Term Reassessment Study,” (BMI-2104), ORNL-

2104, Oak Ridge, Tennesse 37831 (1985). 

13. Gelbard, F., “MAEROS User Manual,” NUREG/CR-1391, SAND80-0822, 

Sandia National Laboratories, Albuquerque, New Mexico (1982). 

14. Allison, C., Rest, J., Lorenz, R., Hagrman, D., Carlson, E., and Broughton, J., 

“Severe Core Damage and Associated In-vessel Fission Product Release,” Prog. 

Nuc. Energy, 20, 89 (1987). 

15. Brockmann, J. E., “Ex-vessel Releases: Aerosol Source Terms in Reactor 

Accidents,” Prog. Nuc. Energy, 19, 7 (1987). 

16. Park, J. W., “Solutions of Aerosol GDE for ReactorSafety,” Ph. D. Thesis, 

University of Missouri – Columbia (1988). 

17.  “CONTAIN 1.2 Code Manual, A Computer Code for Severe Accident Analysis,” 

Sandia National Laboratories, Albuquerque, New Mexico. Prepared for the U. S. 

Nuclear Regulatory Commission (1993).  

 104



18. Bixler, N., “VICTORIA 2.0: A Mechanistic Model for Radionuclide Behavior in 

a Nuclear Reactor Coolant System under Severe Accident Conditions” (1998). 

19. Gauntt, R., “MELCOR Computer Code Manuals: Primer and User’s Guide,” 

Version 1.8.5, Rev.2, Vol. 1 (2000). 

20. Loyalka, S. K., “Direct Simulation of Multi-component Aerosol Dynamics,” 

Trans. American Nuclear Society, 88, 334 (2003). 

21. Rangaraj, D. and Loyalka, S. K., “Direct Simulation Monte Carlo Aerosol 

Dynamics II – Role of Component Density Difference in Brownian 

Agglomeration,” Trans. American Nuclear Society, 90, 301 (2004). 

22. Palaniswaamy, G., and Loyalka, S. K., “Direct Simulation Monte Carlo Aerosol 

Dynamics: Coagulation and Collisional Sampling,” Nucl. Tech., 156, 29 (2006). 

23. Bird, G. A., Molecular Gas Dynamics and Direct Simulation of Gas Flows, 

Oxford University Press, Oxford (1994). 

24. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, 

E., “Equation of state calculations by fast computing machines,” J. Chem. Phys., 

21, 1087 (1953). 

25. Palaniswaamy, G., and Loyalka, S. K., “Direct Simulation Monte Carlo Aerosol 

Dynamics: Collisional Sampling Algorithms,” Ann. Nucl. Energy, 156, 29 

(2006). 

26. Palaniswaamy, G., and Loyalka, S. K., “Direct Simulation Monte Carlo Aerosol 

Dynamics: Coagulation, Deposition, and Source Reinforcement,” Nucl. Tech., 

(Accepted for publication in November, 2007 issue). 

 105



27. Fuchs, N. A., The Mechanics of Aerosols, Pergamon Press, New York, NY 

(1964). 

28. Gelbard, F. M. and Seinfeld, J. H., “Simulation of Multi-component Aerosol 

Dynamics”, J. Colloid Interface Sci., 78, 485 (1980). 

29. Fuchs, N. A., and Sutugin, A. G., “High Dispersed Aerosols,” in Topics in 

Current Aerosol Research, Vol. 2, G. M. Hidy and J. R. Brock, Eds., Pergamon 

Press, Oxford, U. K. (1971). 

30. Bird, G. A., Molecular Gas Dynamics, Oxford University Press, Oxford (1976). 

31. Saffman, P. G., and Turner, J. S., “On the Collision of Drops in Turbulent 

Clouds,” J. Fluid Mech, 1, 16 (1956). 

32. Loyalka, S. K., “Brownian Coagulation of Aerosols,” J. Colloid Interface Sci., 57, 

3 (1976).  

33. Buckley, R. L. and Loyalka, S. K., “Implementation of a New Model for 

Gravitational Collision Cross Sections in Nuclear Aerosol Codes,” Nucl. Tech., 

109, 346 (1995). 

34. Koonin, S. E., Computational Physics, The Benjamin/Cummings Publishing 

Company Inc., California, USA (1986). 

35. Robert, C. P. and Casella, G., Monte Carlo Statistical Methods, 2nd Edition, 

Springer, New York (2004). 

36. Mathgroup forums on Mathematica website. (Accessed on 02/06/2007). Web 

address: http://forums.wolfram.com/mathgroup/archive/1995/Jul/msg00211.html. 

 106



37. Prieve, D. C., and Ruckenstein, E., “Rates of Deposition of Brownian Particles 

Calculated by Lumping Interaction Forces into a Boundary Condition,” J. Colloid 

Interface Sci., 57, 547 (1976). 

38. Fernandes, A., and Loyalka, S. K., “Modeling of Thermophoretic Deposition of 

Aerosols in Nuclear Reactor Containments,” Nucl. Tech., 116, 270 (1996). 

39. Fernandes, A., and Loyalka, S. K., “Modeling of Diffusive Gravitational Aerosol 

Deposition in CONTAIN,” Nucl. Tech., 113, 155 (1996). 

40. Park, J. W., and Loyalka, S. K., “Role of Spatial Inhomogeneities in Source Term 

Aerosol Dynamics,” Nucl.Sci. & Engg.,101, 269-279 (1989). 

41. Simons, S., “The Coagulation and Deposition of Radioactive Aerosols,” Ann. 

Nucl. Energy, 8, 287-194 (1981). 

42. Corner, J., and Pendlebury, E. D., “The Coagulation and Deposition of a Stirred 

Aerosol,” Proc. Phys. Soc. Lond., B64, 645-654 (1951). 

43. Ramabhadran, T. E., Peterson, T. W., Seinfeld, J. H., “Dynamics of Aerosol 

Coagulation and Condensation,” J. AIChe, 22 (5), 840 (1976). 

44. Gelbard, F., and Seinfled, J. H., “Exact Solution of the General Dynamics 

Equation for Aerosol Growth by Condensation,” J. Colloid Interface Sci., 68 (1), 

173 (1979). 

45. Park, J. W., and Loyalka, S. K., “Kinetic Theory of Gelation: Numerical 

Simulation and Comparison with Analytical Results,” J. Colloid Interface Sci., 

125 (2), 615 (1988). 

 107



46. Park, J. W., and Loyalka, S. K., “Aerosol Growth by Condensation: A 

Generalization of Mason’s Formula,” J. Colloid Interface Sci., 125 (2), 712 

(1988). 

47. Simons, S., “The Condensation, Coagulation and Deposition of a Multi-

component Radioactive Aerosol,” Ann. Nucl. Energy, 9, 473-479 (1982). 

48. Tompson, R. V., and Loyalka, S. K., “Chapman-Enskog Solution for Diffusion: 

Pidduck’s Equation for Arbitrary Mass Ratio,” J. Phys. Fluids, 30 (7), 2073 

(1987). 

49. Ronchi, C., Iosilevski, I. L., and Yakub, E. S., Equation of State of Uranium 

Dioxide: Data Collection, Springer, New York (2004). 

50. NCRP, “Measurement of Radon and Radon Daughters in Air,” Report # 97 

(1988). 

51. Kinsara, A. A., Loyalka, S. K., and Tompson, R. V., “Polonium-218 Deposition 

Measurements in a Straight Tube,” Trans. American Nuclear Society”, 65, 373 

(1992). 

52. Langmuir, I., “The Evaporation of Small Spheres,” Phys. Rev., 12, 368-370 

(1918). 

 
  

 108



APPENDIX 
 

Calculation of Diffusion Coefficient of UO2 in air 

 

Chapman-Enskog Approximation: [48] 

1/ 2 1/ 21/ 2

2 2
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where 

k :  Boltzmann’s constant = 1.38 × 10−23  J K−1.  

T :  Temperature in K = 300 K. 

2n : Number density of air in m−3 = 2.687 × 1025 m−3.  

1m : Molecular weight of UO2 in kg = 4.4847 × 10−25 kg (270 amu).  

2m : Molecular weight of air in kg = 4.8169 × 10−26 kg (28.97 amu).  

1σ : Molecular diameter of UO2 in m = 3.74 Å = 3.74 × 10−10 m. [9] 

2σ : Molecular diameter of air in m = 3.70 Å = 3.70 × 10−10 m. [49] 

 

Using all the above data, the diffusion coefficient of UO2 in air was calculated as 

0.12 × 10−4 m2 s−1. 
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