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ABSTRACT

The intersubband (ISB) dynamics of conduction electrons in semiconductor
quantum wells exhibits a variety of interesting and potentially useful nonlinear
phenomena. At the same time, due to its simple (essentially one-dimensional)
nature, ISB dynamics serves as an ideal test system to study collective electronic
many-body dynamics. In this work we present three different formalisms which
we use to describe ISB effects in the nonlinear regime. The time-dependent
density functional theory (TDDFT) formalism contains many-body effects (ex-
change and correlation) in principle exactly, and hence is a suitable framework
for studying ISB dynamics in quantum wells. We first develop a density-matrix
approach based on TDDFT to describe nonlinear ISB conduction electron dy-
namics in the time domain. This formalism is capable of easily handling an
arbitrary number of subband levels, and one can calculate non-adiabatic or tran-
sient effects associated with sudden switching or short pulses. We then focus on
the fact that the exact time-dependent exchange-correlation (xc) potential con-
tains information about the previous history of the system, including its initial
state. However, almost all present applications of TDDFT employ the adiabatic
approximation for the xc potential, ignoring all functional dependence on den-
sities at previous times. We describe two different formalisms which go beyond
the adiabatic approximation and apply them to collective charge-density oscil-
lations in quantum wells. First, we develop a viscosity-based TDDFT in the
time domain. A striking consequence of the memory and velocity dependence of
the viscosity-based xc potential is that it introduces retardation, which in turn
leads to decoherence and energy relaxation. From this formalism, we clarify the
dissipation mechanism, and extract ISB relaxation rates. Also, for strong exci-
tations we observe plasmon sidebands. The other formalism is an orbital-based

approach, the time-dependent optimized effective potential method (TDOEP).

xiii



TDOEP has the advantage that it works for both finite and extended systems
and yields the correct asymptotic behavior of the xc potential. We solve the full
TDOEP integral equation with exact exchange for a quantum well with free and
driven plasmon oscillations. We show how the memory arises from the exact
exchange and results in retardation effects in the electron dynamics. This work
represents the first successful implementation of exact exchange TDDFT in the

time domain.
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Chapter 1

Introduction and overview

Quantum wells are semiconductor nanostructures in which one can observe
and control many quantum mechanical effects. These structures are grown using
modern epitaxial growth techniques which allow one to control the composition
of a heterostructure down to the level of a single atomic layer. The intersubband
(ISB) dynamics of conduction electrons in semiconductor quantum wells exhibits
a variety of interesting and potentially useful nonlinear phenomena. Many ISB
effects of practical interest occur in the nonlinear regime, such as second and third
harmonic generation [1], intensity dependent saturation photoabsorption [2, 3],
directional control over photocurrents [4], generation of ultrashort THz pulses [5],
plasma instability [6], or optical bistability [7-9]. Studying ISB dynamics is cur-
rently of great experimental and theoretical interest, since electronic ISB tran-
sitions are the basis of a variety of new devices operating in the THz frequency
regime [10], for example detectors, modulators, quantum cascade lasers, etc.

Most previous theoretical studies of nonlinear ISB dynamics were based on
the semiconductor Bloch equations in Hartree [11-13] or exchange-only [14,15]
approximations. The time-dependent density functional theory (TDDFT) [16]
formalism contains many-body effects (exchange and correlation) from first prin-
ciples. Hence it is an ideal framework for studying electron dynamics of finite

systems such as individual atoms or molecules with fixed nuclei. In extended



systems such as bulk or heterostructured metals or semiconductors, additional
intricacies in the electron dynamics arise due to dissipation effects. Intrinsic
mechanisms (phonons, coulomb interactions) are present in any material or de-
vice. However, these effects are often overshadowed by strong extrinsic dissipa-
tion mechanisms caused by impurities or disorder.

This thesis presents the results of our various efforts aimed at a theoretical
description of the collective electron dynamics in n-doped semiconductor quan-
tum wells, with particular emphasis on electronic many-body effects and intrinsic
and extrinsic dissipation. The work has been carried out in the formal frame of
TDDEFT; we have developed, explored, and numerically tested new methodolo-
gies to describe dynamical exchange and correlation in TDDFT. It turned out
that quantum wells, due to their very simple geometry and simple electronic
structure in effective-mass approximation are ideal systems in which to study
novel TDDFT approaches. On the other hand, we have also focused on effects of
practical interest, namely the coherent control of nonlinear ISB dynamics, which
may lead to novel experimental realizations of electrooptical modulators in the
THz regime.

Thus, the work presented here has a twofold character: (i) we use quantum
wells as simple test systems to study fundamental aspects of dynamical many-
body effects and dissipation, (ii) on the other hand, we use TDDFT in concrete,
practical investigations of ultrafast nonlinear ISB dynamics in quantum wells,
with an eye towards experiment and, of course, comparing to other theories in
the literature.

Coming back to the problem of treating the collective electronic dynamics
in the presence of dissipation: A generalization of TDDFT in the presence of
dissipation was derived earlier in the linear response limit of weakly disordered
systems [17]. This theory includes intrinsic damping due to electronic many-body

effects via time-dependent current density functional theory [18], and extrinsic



damping due to impurities and disorder through the so called memory function
formalism. This approach was used very successfully in GaAs/Aly 3Gag 7As quan-
tum wells to calculate the linewidths of intersubband plasmons [19]. However,
this theory, in particular the memory-functional formalism, is only available in
linear response, and is formally and computationally expensive.

As an alternative, we have developed a density-matrix approach based on
TDDFT beyond linear response to describe the ISB dynamics in the time do-
main in the presence of disorder [9,20], which is treated phenomenologically.
This formalism is capable of handling an arbitrary number of subband levels.
Exchange and correlation can be included through local time-dependent poten-
tials, and one can also calculate non-adiabatic or transient effects associated with
sudden switching or short pulses. We have applied this density-matrix approach
to coherent-control problems in quantum wells.

The exact time-dependent exchange-correlation (xc) potential contains infor-
mation about the previous history of the system, including its initial state [21].
However, almost all present applications of TDDFT ignore all functional depen-
dence on past densities at previous times by employing adiabatic approximations
(i.e., no memory) for the xc potential. The most popular representative of this
class of approximation is the adiabatic local density approximation (ALDA).

There have been several attempts to go beyond the ALDA [17,18,22,23]. A
non-adiabatic local approximation requires the time-dependent current as basic
variable [22]. Non-adiabatic xc effects appear as viscoelastic stresses in the elec-
tron liquid, using the language of hydrodynamics [17,18,24,25]. We present an
analysis and applications of the current as basic variable in the time domain [26].
A striking consequence of this approach is that it introduces retardation into
TDDF'T, which in turn leads to decoherence and energy relaxation. We illus-
trated this for charge-density oscillations in quantum wells.

We have developed another attempt beyond ALDA to describe electron dy-



namics in quantum wells: the time-dependent optimized effective potential (OEP)
method [27], which has the double advantage of working for both finite and ex-
tended systems and having a correct asymptotic behavior. Since the development
of the static OEP method [28,29], it has been recognized [30, 31] as the exact
implementation of exchange-only DFT [32-34]. Due to the rather large compu-
tational effort involved, this scheme has not been used extensively in practice
except for isolated atoms. However, there exists an approximate OEP scheme
proposed by Krieger, Li and Iafrate (KLI) [36,37], which has been very successful
in calculations of atomic and molecular properties in exchange-only approxima-
tion. We were successful in carrying out the full TDOEP scheme as well as the
TDKLI for a quantum well. An interesting feature in this TDOEP method is
that it has an infinite memory because of a time integral. We have explored
the numerical and practical consequences of this infinite memory for the electron
dynamics in quantum wells.

To summarize, this work comprises three different kinds of formalisms to de-
scribe the electron dynamics in quantum wells. In Chapter 2 of this work, we
shall give a brief overview of TDDFT. The combination of TDDFT with density
matrix formalism will be discussed in Chapter 3. Also, we will discuss opti-
cal bistability and nonlinear photoabsorption using the density matrix method.
Chapter 4 is dedicated to an introduction of current density functional theory
and to showing that one can describe interacting electrons as a viscous liquid
with memory. We will clarify the dissipation mechanism, and also extract ISB
relaxation rates. Our TDOEP scheme (in exchange-only) is presented in Chapter
5, showing how retardation in the electron dynamics arises from the time inte-
gral of TDOEP equation. Summary plus outlook are given in Chapter 6. Some

technical details are given in the Appendices.



Chapter 2

Time-dependent density
functional theory

2.1 Introduction

The basic idea of density functional theory (DFT) is to describe an interacting
quantum many-particle system completely in terms of its particle density. There

are two basic theorems associated with this formalism.

e Every observable quantity can be calculated, at least in principle, from the
density alone. This means that each quantum mechanical observable can

be written as a functional of the density.

e The density of the interacting system of interest can be obtained as the
density of an auxiliary system of noninteracting particles moving in an

effective local single particle potential.

The above theorems were proven in the work of Hohenberg and Kohn [32] and
Kohn and Sham [33] for the ground-state density of static many-body sys-
tems. Based on this formal framework DFT has been successful in calcula-
tions of ground-state properties of atoms, molecules and solids over the past

decades [34,35].



The Hohenberg-Kohn theorem guarantees that the ground-state density uni-
quely determines the external potential up to an arbitrary constant. One may
wonder if a similar statement can be made for time-dependent densities and
potentials. 20 years after Hohenberg and Kohn, Runge and Gross [16] proved
that a similar statement can indeed be made and hence provided the basis for
the time-dependent density-functional theory (TDDFT). The proof of the Runge-
Gross theorem is given in section 2.2. The essence of the theorem is that there is
a unique correspondence, for t>t,, where t; is some given initial time, between

the time dependent density
n(r,t) = N/.../dstQ...dXN\\I!(r,s,XQ, ..... Xn,1)[? (2.1)

and the time-dependent external potential v (r,t), where X = (r,s) denotes
the spatial and spin coordinates of an electron in an N-electron system described
by the Hamiltonian

1

i — 1]

— (2.2)

H(t) = i (—hQV? + Vet (i, t)) + %2 i
i—1 i#j
and evolving from an initial many-body state ¥g = ¥ (X7, ... Xy, ). This means
that n(r,t) uniquely determines wvey(r,t), and therefore the Hamiltonian and
everything derivable from it. More details about TDDF'T can be found in several

reviews [38-41].

2.2 The Runge-Gross theorem

The Runge-Gross theorem states that two densities n(r, t) and n'(r, t) evolving
from a common initial state |¥g) = |¥(%o)) under the influence of two potentials
v(r,t) and v'(r,t) (both expandable in Taylor series around the initial time ¢ =
t9), cannot be the same, provided that the two potentials differ by more than a
pure function of time,

o(r,t) # ' (r, 1) + O(b). (2.3)

6



To prove this theorem, we use the condition that the time-dependent potentials

v and v’ can be expanded in a Taylor series:

1
ik
1

vk (1) (t — t0)". (2.5)

vk(r) (t — to)"* (2.4)

k-l

From this we see that Eq. (2.3) is equivalent to the statement that for the

expansion coefficients there exists a smallest integer k£ > 0 for which

v (r) — vl (r) = %(U(r, D—v(rt) % const. (2.6)

t=to

Using the quantum mechanical equation of motion for the expectation value of

an operator Q(t),

0
ot

(v ()|Q<)|¢(t>>=<@(t>|(@—z[czo ﬁ(t)]) vy, @7

we obtain for the current densities:

%j(r, t) = % (U(0)|3p(x) [ W) = =i (U ()| [p(x), HOT[E()) (2.8

%j’(r, t) = %(‘P'(t)ljp(r) [W'(1)) = —i (W' (1)] [p(x), H' ()] [¥'(1)) (2.9)

where the paramagnetic current density operator is defined as
1N

= 3 Z —i{V,d0(r —r;)}. (2.10)

J

In the above, {A, B} = (AB+ BA) denotes the anticommutator of two operators
A and B. Since the wave functions |¥(¢)) and |¥'(t)) evolve from the same initial

state we can write

930 1) 3 (0.t = —4 (Wl Gy (r), Bt0) — B (1) [00)  (2.11)



since 0)) = 0)) = |Wy) . dince the two Hamiltonians are the same except
ince [W(tg)) = [¥'(ty)) = |Wo) . Since th Hamiltoni h p

for the potentials, we can simplify Eq. (2.11) as

0
2600 )| =@V ) e, (212)
t=to
where ny(r) = n(r, tp) is the initial density. If condition (2.6) is satisfied for £ = 0
then the right hand side of Eq. (2.11) cannot vanish and the current densities
j and j' will become different infinitesimally later than ¢y. If condition (2.6) is
not satisfied for £ = 0 then one can always find a smallest k£ > 0 for which it is

satisfied. One can repeatedly use the Eq. (2.7) to arrive at

66161;1(3( ) =J(m0)) = —no(r)Vw(r) # 0 (2.13)

t=to

where
8k

wr(r) = s (v(x, ) = v/(x,1)) (2.14)

t=to
Therefore we can conclude that the two current densities will differ infinitesimally

later than ty,. To prove an analogous statement for the corresponding densities

we make use of the continuity equation,

0 . .
S (n(r,t) = n'(r,) = =V - (i(r,8) = (r,1) (2.15)
which, after differentiating k£ + 1 times, gives for the density difference at %,
8k+2 .
W(n(r, t) —n'(r,1)) =V - (ng(r)Vwg(r)). (2.16)

t=to
To prove that the densities n(r,t) and n'(r, t) will become different infinitesimally
later than ¢y, we have to demonstrate that the right hand side of Eq. (2.16)
cannot vanish. This can be shown using the following arguments. Applying the

Green’s theorem, consider the integral

/drn (Vwg(r = —/drwk - (no(rVwg(r))
+ }{ dS - (no (r)wy(r) Ve (r)). (2.17)

8



For finite systems the surface integral will vanish, since any realistic potential
(i.e. potentials due to normalizable external charge densities) falls off at least
as 1/r at r — oo, while the density will decay exponentially. This immediately
leads to the conclusion that V - (ng(r)Vwg(r)) # 0 because if it were equal to
zero, it would imply that (Vwy)? = 0, which is a contradiction to the assumption
wg(r) is not constant [Egs. (2.6), (2.14)]. An important observation is that the
density difference in Eq. (2.16) is linear in the wg(r). Hence, this difference is
already nonvanishing to first order in v(r,t) — v'(r,t). In particular this implies
that the linear density response function is invertible.

From the previous discussion we can thus say that there is a 1-1 correspon-
dence between time-dependent densities and time dependent potentials. This
can be established for any given interaction and also for non-interacting parti-
cles. Therefore the external potential of a non-interacting system reproducing a

given density is uniquely determined.

2.3 The time-dependent Kohn-Sham equation

The goal of this section is to generalize the Kohn-Sham equations of station-
ary DFT to generate time-dependent densities at all times. In the following we
consider systems that are everywhere nonmagnetic, and thus ignore spin when-
ever appropriate. The most convenient method for obtaining the density n(r, )
is by considering an auxiliary system of noninteracting electrons moving in an

effective one-body potential

v(r, ) = Vext (1, 1) + v (r, 1) + vy (r, 1), (2.18)
where
=e [dr ﬁi; (2.19)

is the time-dependent Hartree potential, and wvy(r,t) is the time-dependent

exchange-correlation (xc) potential. Similar to static DF'T [34,42,43], one arrives

9



at a time-dependent Kohn-Sham (TDKS) equation:
L 0p;(r,t) h?V?
Zh]é)it =" +o(r, t)| p,(r,1), (2.20)

which yields the density via
N
n(r,t) =3 le;(r )" (2.21)
j=1

Eq. (2.20) thus has the form of a single-particle time-dependent Schrodinger
equation, featuring an effective potential. Formally, the TDKS equation rep-
resents an initial-value problem. The summation in Eq. (2.21) is over all the
orbitals 7 that are occupied at the initial time.

Like in static DFT, the effective potential (2.18) is a functional of the den-
sity, which means that the TDKS scheme requires a self-consistent solution of
Egs. (2.18), (2.20) and (2.21). The time-dependent xc potential is an unknown
functional of the density and needs to be approximated. In stationary DFT, ap-
proximations for the xc potential can be obtained from the knowledge that it is
the functional derivative of the xc energy with respect to the density. There exists
a huge body of literature on approximate xc functionals. Most prominent among
these are the local-density approximation (LDA) and the generalized-gradient
approximation (GGA).

Unfortunately, in TDDFT it is not possible to write vy(r, t) as the functional
derivative with respect to the density of any functional; in particular, vy is not
the functional derivative of the standard quantum mechanical action, although it
can be defined as functional derivative of a Keldysh action functional [44]. This
new kind of action functional is defined on the Keldysh contour [45], in which
the physical time is parametrized by an underlying pseudotime parameter. In
this case the TDKS equations do not require the variational principle for their
derivation, but a functional derivative of the Keldysh action functional. However,
it is also possible to derive the TDKS equation without involving a variational

principle at all [41].
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2.4 The adiabatic local density approximation

The diabatic approximation, which is the most straightforward method to
derive time-dependent xc functionals, uses any one of the available xc potentials
from static DFT and evaluates them at the time-dependent density. The most
popular method is the adiabatic local-density approximation (ALDA), which is
defined as

_ de()

ALDA(r,t) = 2.22
vaA(r, 1) = S , (222

Ai=n(r,t)
where €, (72) is the xc energy density of a homogeneous electron gas of density 7,
which is known from quantum Monte Carlo calculations. Note that vAMPA(r, ¢)
LDA

XC

(r) evaluated at the instantaneous time-

ALDA
XC

is equal to the functional form of v
dependent density n(r,t). Therefore, v (r,t) is both local in space and local
in time. This means that it neglects memory effects arising from the dependence
of the exchange-correlation potential at a time ¢ on the density at earlier times
t <t

The ALDA too will suffer from the shortcomings of LDA, for example the
incorrect long range behavior. However there are many successful applications
using ALDA even for systems that are not slowly varying in space and time [39].
In the next chapter we will discuss such an application using TDDFT with the

density matrix formalism. In later chapters we shall discuss xc functionals beyond

the adiabatic approximation.

2.5 Applications of TDDFT

This section highlights some of the practical successes of TDDF'T calculations,
which are discussed in recent reviews and recent literature [46-49]. Applications
of TDDFT have enjoyed exponential growth in the last few years and this scheme

yields predictions for a huge variety of phenomena.
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The majority of successful applications have so far been in the linear re-
sponse regime. Most of the applications in Chemistry use TDDFT to calculate
electronic excitation energies [50,51]. In this area, TDDFT is rapidly becoming
a standard tool, compared to the traditional wave-function band techniques of
quantum chemistry [52]. This allows to study larger systems, due to the ad-
vantage in computational efficiency. A survey given in Refs. [48,52] shows that
typical results for molecular electronic transition frequencies fall within 0.4eV of
experimental data. Structural properties of excited states are almost as good
as those of ground state calculations with bond lengths to within 1%, dipole
moments to within 5%, and vibrational frequencies to within 5%.

In organic chemistry [48], TDDFT has been applied to study the response of
molecules such as thiouracil and s-tetrazine, and annulated porphyrins. Particu-
larly impressive applications were for the photochemistry of biological molecules
such as chlorophyll [53]. In inorganic chemistry, the optical response of transition
metal complexes and some X-ray absorption were calculated. Linear response
TDDFT can also be used to calculate both electronic and magnetic circular
dichroism [54, 55]. There are also many successful applications in nanocrys-
tals [56] and quantum dots within and beyond the linear regime, such as second-
and third-order response ( [48] and references within).

In the fully nonlinear regime, where the time-dependent field cannot be
treated perturbatively and where electron-electron interaction is important, TDDF'T
is essentially the only practical scheme. Due to advances in laser technology,
many experiments are now possible in regimes where the laser field is stronger
than the nuclear attraction. In this regime, many interesting nonlinear phenom-
ena take place, for example, high harmonic generation, multi-photon ionization,
above-threshold ionization, and (for molecules) above threshold dissociation or
(for clusters) coulomb explosion.

TDDFT has been successful in describing high-harmonic generation in atoms
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and molecules [57,58]. Furthermore, the electronic kinetic-energy spectra from
above-threshold ionization have been calculated [59,60]. A tough problem re-
mains to calculate the relative proportion of double to single ionization for He in
strong laser pulses. Here, TDDFT has failed to describe the direct double ion-
ization processes leading to famous “knee” structure seen in experiments [61,62].

Some of the other applications of TDDFT are to van der Waals forces and
bond-breaking with symmetry problems [63]. Quantum control and quantum
nuclear motion beyond the Born-Oppenheimer approximation are other recent

areas of increasing interest [49].
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Chapter 3

Time-dependent density
functional theory in a
density-matrix framework

3.1 Density-matrix TDDFT formalism

The TDKS scheme is capable of describing, in principle exactly, the electron
dynamics of finite systems such as individual atoms or molecules with fixed nu-
clei, since it includes dynamical many-body effects through the time-dependent
xc potential. In extended systems such as bulk or heterostructured metals or
semiconductors, dissipation effects play an important role in addition to the dy-
namical many-body effects. Intrinsic dissipation mechanisms are present even in
ideal materials or devices, and arise from electron-electron and electron-phonon
interaction. In reality, these effects are often overshadowed by strong extrinsic
dissipation mechanisms, such as impurities or disorder.

First steps towards a generalization of TDDFT in the presence of dissipation
were recently taken for the linear response of weakely disordered systems [19].
In Ref. [19], disorder was treated microscopically using the so-called memory-
function formalism. This approach, however, is difficult to generalize to the

time domain. In this section, we formulate a computationally efficient TDDFT
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approach beyond linear response in the presence of disorder. We shall treat
intrinsic and extrinsic scattering mechanisms phenomenologically, and show that
this approach is very useful for many practical applications.

In the following, we describe a density-matrix TDDFT formalism. We be-
gin by expanding the occupied TDKS orbitals in terms of the ground state KS

orbitals:
@j(r)t) = chk(t)gpg(r)a .7 = 1Na (31)
k

and we define the associated KS density matrix p; as

piki(t) = cji(t)cj(t). (3.2)

Then the TDKS Eq. (2.20) for the orbital ¢,(r, t) can rewritten as a Liouville-von

Neumann equation for p;:

2 = 2 {h(0), (), (33

where the TDKS Hamiltonian matrix is

hi = /d?’r(pg(r) l— h;ZQ + v(r,t)] o) (r). (3.4)

The time-dependent density is given by
N
n(r,t) =D > pin(t)ep ()¢ (r). (3.5)
j=1 ki
To include intrinsic and extrinsic scattering mechanisms on a phenomeno-

logical level, we use a standard approach [11,12] and introduce a relaxation

term [9,20] R so that Eq. (3.3) becomes

0p.

= —{h(t), p,(0)] - B, (36)
where
Rjgr = Tjra(pjma(t) — pjir)- (3.7)
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The elements of I';, I';y; = T'j, are phenomenological scattering rates, and

22 =0, (to). For a two-level system, the relaxation matrix is

Li(pin — pY) Talpiz — p) )
R= , 3.8
( Lo(p21 — /031) [i(pr2 — 0(1)2) (3:8)

where I'y = i/T; and T's = //T5 introduce the usual relaxation and decoherence

times T1 and T2.

3.2 Intersubband dynamics in quantum wells

We apply our density-matrix TDDFT formalism to describe ISB conduc-
tion electron dynamics in strongly driven modulation doped GaAs/Aly3Gag 7As
quantum wells [9,20]. For simplicity, we treat the conduction electrons in the
effective-mass approximation, where m* = 0.067m and e* = e/ /¢, ¢ = 13, are
the effective mass and charge for GaAs. The difference of the conduction band
edges is 257.6 meV for GaAs/Aly3Gag7As. The conduction electrons therefore
live in a square potential well, where we assume the z-axis to be in the direction
of quantum confinement (i.e., the direction of growth of the heterostructure).
The electrons are not confined along the x and y directions and form essentially
a two-dimensional electron gas.

The electronic ground state in a quantum well is then characterized by single-
particle states of the form \I!?q” (r) = A~1/2 e"UM19(z), with rj and q | in the z—y
plane. The envelope function for the jth subband 49 (z) follows self-consistently

from a one-dimensional Kohn-Sham (KS) equation [65]:

<_ 221* % + Veont (2) + vn(2) + ve(2) — 59‘) ¥j(z) = 0. (3.9)

Here, veont(2) is the confining potential (here, a square well), and the Hartree

potential vy(z) follows from Poisson’s equation, d*vy(z)/dz? = —4me*n(z). The
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ground-state density is given by

2) =2 [U(2)[* O(er — Ejq)) (3.10)
7,4
assuming a parabolic energy dispersion, Ej, = €; + qH 2/2m*, and €; are the

subband energy levels. The subband states are occupied up to the conduction

band Fermi level , N
wh° N, 1 e
= TN +5 ; £y (3.11)

where N; is the electronic sheet density, and N, is the number of occupied
subbands. This is illustrated in Fig. 3.1, where only the lowest subband is
occupied up to the conduction band Fermi level.

We consider the ISB dynamics under the influence of linearly polarized

electromagnetic fields, with associated one-dimensional external potential

Vext (2, 1) = var(2, 1) + Veont (2)- (3.12)

Here, vg(2,t) = e€2f(t) sin(wt) describes the driving field in dipole approxima-
tion, with electric field amplitude &, frequency w, and envelope f(t). Veont(2)
is the confining square-well potential. The time-dependent states have the form
Vg (r,t) = ﬁeiqllr\le(z,t), since vex(2,t) depends only on z. Therefore we
only have to deal with the time evolution of the envelope function 1;(z,t). In

the absence of scattering this follows from a TDKS equation:

e et)) () = ih et 313
o gz TV i(2,1) = iho,i(2,1), (3.13)

where, as before,
v(2,t) = Vexs (2, 1) + vr(2, 1) + vxe(2, 1), (3.14)

and 9;(z,t0) = ¥9(z). We use the ALDA, Eq. (2.22), to get vy(2,2). The
time-dependent density directly follows from Eq. (3.10):

* Nocc

n(zt) = g z (2,0) 2 (er — €5), (3.15)
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% E(q))

9

Figure 3.1: Quantum well subbands. Right: Only the lowest level is occupied
up to the Fermi level. Left: Electronic envlope functions for three levels. We
consider far-infrared light polarized along the growth direction of the quantum
well, which excites electrons from first level to second level collectively.

since we propagate those states that were initially occupied, i.e. E;(q) < ep.
We will consider the density-matrix equation (3.6) for quantum well ISB
dynamics in the presence of phenomenological relaxation and decoherence. The

density matrix pjr; = cj;(t)c;(t) is constructed from the envelope functions as

Vi(z,t) =D ci(t)p(2), (3.16)
k
and the TDKS Hamiltonian matrix elements are
hua(t) = [ dzp(z) |- L T (3.17)
WA k 2m* dz? ’ L '
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We limit the size of the density matrix by including only the lowest N, bound
subband levels in the expansion (3.16), which is a good approximation as long
as the intensity of the driving field is too weak to cause substantial ionization.
Details about how to solve the density matrix Eq. (3.6) numerically given in

Appendix A.

3.3 Iterative solution of the density matrix equa-
tion of motion

Before going on and presenting results, let us say a few words on analytical
solutions of the density-matrix equation of motion. A special role is played here
by two-level systems, which have been extensively treated in the literature [64].
In particular, the ISB dynamics in quantum wells has been treated using 2-level
systems in the popular so-called rotating wave approximation (RWA) [11] or
other averaging methods [13]. In the following, we will show how the RWA can
be viewed as the lowest order contribution in an iterative solution of the density-
matrix equation of motion. This will be useful later on when we discuss how the
RWA breaks down for the nonlinear dynamics in asymmetric wells.

We consider a non-interacting two-level system driven by a sinusoidal elec-
tromagnetic field. The density matrix equation of motion (3.6) can be written

as [11]

pra = [iwg — Ty —i(Hy — Hag)|p1a + iH1pA (3.18)
A = Qing(plg — pTQ) - Fl(A — A(O)), (319)

where hwo; = €9 — €1 is the bare subband spacing, and A = py; — pgo is the
population difference between the first and the second subband level. It mea-
sures, basically, how many electrons are excited. In turn, I'y is the relaxation
rate which measures deexcitation back into the first level. p;5 is the polarization

of the first and second subband level, and I's is the decoherence rate. Initially

19



A© =1 and pgg) = (0. We write the Hamiltonian matrix elements as
Hy = Hi' + Hyg ™, (3.20)

where
H{' = Eesin(wt) /dzw,g(z)zq/)? (2) (3.21)

is the dipole matrix element, and

Hjte = /dzlﬁ,g(z)(vH(z, 1) + vee(2, 1) — v (2,0) — vee(2,0))0) (2) (3.22)

are the dynamical Hartree+xc matrix elements. General solutions for (3.18) and

(3.19) can be expressed through the following ansatz:

pr2(t) =Y pra(nw)e” ™ (3.23)
A(t) =Y Alnw)e ™", (3.24)
A detailed description of obtaining the above expressions is given in Appendix B.

For a symmetric quantum well, H&* = H$® = 0. Therefore one can find closed

solutions for pjp and A within the rotating-wave approximation (RWA) [12,68],

PA() = IS (—e)e ! + P ()" (3.25)
and similar for A®WA  This type of solution has been used by Zatuzny [11]

to analyze nonlinear ISB photoabsorption. In the following, we examine these
solutions more closely, comparing with our fully numerical results. It will turn

out that the RWA becomes unreliable for asymmetric systems.

3.4 ISB dynamics within and beyond RWA

In this section, we calculate photoabsorption spectra for GaAs/AlGaAs sym-
metric and asymmetric single wells and compare the results with a simplified

two-level model within RWA.
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Figure 3.2: ISB photoabsorption and second-level occupation probability p, for
a 40 nm GaAs/AlGaAs quantum well with electron density 6.4 x 10'%m™2,
driven by THz fields with intensities as indicated (lines: 2-level rotating-wave
approximation [11]; points: 6-level TDDFT density-matrix calculation).

3.4.1 Photoabsorption in a symmetric single well

We consider a 40 nm GaAs/Al 3Gag 7As square quantum well with Ny, = 6.4 x
10'%cm™2, following Craig et al. [3]. The lowest subband spacing is ey —&; = 8.72
meV, and the ISB plasmon frequency is found from linear-response theory [65] as
hwisg = 9.91 meV. The system has 9 bound levels, and we take the lowest six to
construct the density matrix (/V, = 6). We use the ISB scattering times 77 = 40
ps and T, = 3.1 ps, consistent with recent measurements of 77 and 75 for similar
systems [66,67]. To describe ISB photoabsorption, we propagate Eq. (3.6) in the

presence of THz driving fields, switched on at ¢, over a 5-cycle linear ramp and
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then kept at constant intensity for several hundred ps. From the dipole moment

Ny
a) = Ny S pult) [ dz ()20 (2), (3.26)
kl
we obtain the photoabsorption cross section (the dissipated power)
T
o(w) ~ w / cos(wt')d(t') dt’, (3.27)
t

where T is one cycle of the driving field v4,. Following the switching on of the
THz field, o(w) fluctuates considerably from one cycle to the next, but eventually
approaches a stable value as the transients settle down.

Fig. 3.2 shows o(w) calculated with our 6-level density-matrix formalism, in
close agreement with the two-level rotating-wave approximation [11] including
xc. For low intensities, o(w) is a Lorentzian with maximum at wisg and width

2h/T,. Approaching the saturation intensity
Iy = ce'?h? /8Ty Toe?| (43 2[40) |2, (3.28)

the photoabsorption peak shifts to lower energies and changes shape (here, Iy =
26.8 W/cm?). The physical reason for this effect is that the depolarization shift
hwisg — (€2 — €1) is proportional to the population difference p; — po. Initially,
p1 = 1 and py = 0. Strong driving fields lead to a decrease of p; — py because
of transitions into the second and, eventually, higher levels, see the lower panel
of Fig. 3.2. Since this population transfer is most efficient around the ISB
resonance, the peak of o(w) shifts more than the tails, leading to an asymmetric
line shape. For intensities over 16 W /cm? we discover regions of optical bistability
in o(w): the system responds in two different ways to one and the same driving
field (the middle branch is unstable). We will say more about this bistability in

section 3.5.
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Figure 3.3: ISB photoabsorption for a 40 nm GaAs/AlGaAs quantum well with
electron density 6.4 x 10!° cm~2 and DC bias 0.1, 0.5, and 1.0 mV/nm, driven
by THz fields with intensities as indicated. Lines: 2-level RWA [11]. Symbols:
full 2-level (circles) and 6-level (triangles) density-matrix propagation.

23



3.4.2 Photoabsorption in an asymmetric single well

Using our TDDF'T density-matrix formalism, we have demonstrated numer-
ically that the 2-level RWA [11] works well for symmetric quantum wells, yet it
breaks down when the system becomes asymmetric under the influence of DC
electric fields [20]. We consider the same type of well described in section 3.4.1
and apply DC electric fields 0.1, 0.5, and 1.0 mV /nm, and perform 2-level and
6-level density matrix calculations. Fig. 3.3 shows the results for the photoab-
sorption.

At low intensities the photoabsorption has a Lorentzian shape, and the RWA
and full calculations agree very well for all cases of DC bias. The Lorentzian
lineshape was changed at higher intensities of the driving field, since population
transfer into higher levels reduces the depolarization shift. The 2-level RWA and
the full density-matrix calculations remain close for small asymmetries (less than
0.1lmV/nm).

With increasing DC bias (0.5mV/nm and higher) and at high intensities,
we find strong discrepancies between the 2-level RWA and the more rigorous
calculations. Overall, the RWA tends to strongly exaggerate the redshift and
asymmetry of the absorption peaks. The reason for this discrepency is twofold.
First of all, at higher intensities, more than the lowest 2 levels play a role in the
electron dynamics. Indeed, we find that there is a sizable difference between out
2-level and 6-level exact numerical results.

However, even more dramatic is the failure of the RWA itself, compared
with the exact 2-level results. Our analytical investigations in Appendix B show
clearly which contributions are neglected in the RWA: namely, higher harmonics
of the driving frequency w, and the coupling to the diagonal matrix elements of
the total time-dependent potential, which become finite for asymmetric wells.

Thus, the bottom line is clearly that the RWA provides a quick and easy

method to obtain the linear and nonlinear ISB dynamics in quantum wells, as
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Figure 3.4: Ilustration of hysteresis-like behavior in optical bistability

shown by Zatuzny. [11], but it breaks down for asymmetric wells and strong

driving fields. The density-matrix equation must then be solved fully numerically.

3.5 Coherent control of optical bistability

In section 3.4.1 we discussed the appearance of optical bistability. The two
states are characterized by density oscillations with different amplitudes and
phases (upper branch: close to 7/2; lower branch: around 7/4), and different
level populations.

Whether the system will be in the upper or lower bistable state depends
on its history. A hysteresis-like behavior (see Fig. (3.4)) is observed at fixed
intensity and under adiabatically slow frequency changes of the driving field [13]:
Entering the bistability region from the low-frequency side, the system continues
on the lower branch and then jumps up at the end of the bistability region.
Entering from the other side, the system follows the upper branch. The required
continuous, adiabatic frequency tuning of THz driving fields is difficult to realize

in experiment, and of little practical use in exploring ISB optical bistability for
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Figure 3.5: Illustration of control pulses used for switching between bistable
states.

potential applications. Instead, it would be desirable to switch rapidly between
the two bistable states.

In the following, we demonstrate coherent control of ISB optical bistability
by short THz control pulses. This method is both rapid and robust, and lends
itself for experimental implementation. Fig. 3.2 suggests that a switch from the
lower to the upper bistable state requires a transfer of population into the second
level. The necessary energy can be rapidly injected into the system by a short
THz pulse. On the other hand, we expect switching down from the upper to the
lower state to be inherently slower, since upper-level population needs time to
relax.

We consider a driving field with 7 = 30 W/cm? and hw = 9.3 meV (0.445
ps per cycle) in the middle of the bistable region, such that the system is in
the lower bistable state. At ¢, we apply a short pulse with the same frequency
and in phase with the driving field, and with a trapezoidal pulse envelope (left
panel of Fig. 3.5): linearly turned on and off over 5 cycles, constant in between
over N, cycles (the precise pulse shape is not essential). We calculate d(t) and
o(w) as above, using our density-matrix formalism. After transients and other
disturbances induced by the pulse have subsided, the system either slowly returns
to the lower state, or converges towards the upper bistable state, in which case

we define a “switching time” as that time after ¢; when o(w) is converged to
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Figure 3.6: Intensity and length of THz control pulses for ultrafast switching
(left/right panel: up/down) between the lower and upper ISB bistable states
at I = 30 W/cm? and w = 9.3 meV driving field. Contour labels indicate the
switching times in ps. No switching occurs in the hatched regions.

within 5% of its final value. To study the reverse process, we prepare the system
in the upper bistable state and then apply similar control pulses, phase shifted by
7 with respect to the driving field (right panel of Fig. 3.5). After the transients
have settled, the system either remains in the upper state, or goes down to the
lower state.

Control pulses as shown in Fig. 3.5 of various intensity and length N, were
tested to determine the conditions for successful up- or down-switching, and to
find those pulses that induce the fastest switching. The results are summarized
in Fig. 3.6. The hatched areas indicate the unsuccessful pulses: in the case of
up-switching, they do not have sufficient energy to promote enough electrons to
the upper level, and in the case of down-switching, they are too short to allow
enough electrons to relax down.

The limiting curve in Fig. 3.6 (left) separating the successful from the un-
successful pulses corresponds to pulses of energy 1.87 x 1071% J/ecm?. The short-

est switching times of 15-20 ps are achieved for somewhat higher pulse energy,
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around 3.3 x 1071% J/cm?. No systematic effort was made to further optimize
the control pulses. A physical limit for switching speed is set by the decoherence
time Ty (here 3.1 ps), which governs the decay of transients.

Down-switch from the upper to the lower ISB bistable state requires longer
control pulses, at least 30 cycles. The associated switching times are limited
by the ISB relaxation time 77 (here 40 ps). We find that the shortest down-
switching times of 50-60 ps are achieved by control pulses with intensity not far
from the driving field, 30 W/cm?. Due to the phase difference , these control
pulses effectively suppress the driving field, giving electrons time to relax from
the upper level.

In summary, we have simulated coherent control of ISB optical bistability in
quantum wells, using THz control pulses to switch rapidly between the bistable
states. Switching times are in principle limited only by the intrinsic relaxation
and decoherence times. Interestingly, a shorter relaxation time 73 (i.e., more
scattering) implies faster switching.

More realistic simulations would replace 77 and 75, with microscopic, intensity-
dependent scattering theories, including finite temperatures, and detailed mod-
eling of the absorption profile and waveguide geometry of the choice. This may
open up opportunities for new experimental and theoritical studies of optical
bistability, which in the long run may lead to THz application such as high-

speed all-optical modulators and switches.
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Chapter 4

Time-dependent current density
functional theory in the
nonlinear regime

In this chapter, we turn to a different method of introducing dissipation. In Chap-
ter 3, we treated dissipation through phenomenological scattering times 7} and
T,, which account for both intrinsic and extrinsic scattering mechanisms. Now we
focus exclusively on intrinsic scattering caused by electron-electron interactions
due to Coulomb forces. We will treat this scattering mechanism microscopically

using the idea of viscoelastic forces in the electron liquid.

4.1 Introduction to TDCDFT

The central idea of time-dependent current density functional theory (TD-
CDFT) is that one uses the current density as the basic variable. This idea was
first introduced by Ghosh and Dhara [71,72], in order to include time-dependent
magnetic fields in the TDDF'T framework. They provided a generalization of the
Runge-Gross theorem for arbitrary fields, that is, they showed that the single
particle current density uniquely determines, up to an arbitrary gauge trans-

formation, the time-dependent scalar and vector potentials. Compared to the
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1987 Ghosh and Dhara formulation, Vignale [74] has given an easier and more
complete formulation of the TDCDFT, which can be viewed as a generalized
van Leeuwen theorem [44] to include general time dependent fields. Vignale’s
theorem will be summarized in the following.

Let n(r,t) and j(r, t) be the density and current density of a many-particle system
that evolves from an initial state |¥U(%p)). The motion of the system is governed
by the following Hamiltonian:

A=Y (%[—ivj + %A(rj, OF +v(t3,1) + Ve (4.1)

J

where v(r,t) and A(r,t) are scalar and vector potentials, which are analytic

functions of time around %y. V,. represents the electron-electron interaction.

The current density operator is given in term of the velocity operator
A . 1
v = (—ZVJ' + EA(I‘]‘, t)) (42)

as,

i) = 5 S50, 60— )] (43)

Following [74], one can prove that the same density and current density can be
reproduced by another many-particle system evolving under a different Hamil-
tonian H'(t). This Hamiltonian will have the form,

o 1. . 1, 9 , ~,

RS (51195 + A, OF + /(3. 0) + Ve (4.4)
This Hamiltonian propagates a different initial state ¥(,, which produces the same
density and current density as ¥, at ¢ = ¢y in the unprimed system. The poten-

tials v'(r,t) and A'(r,t) are uniquely determined up to gauge transformations of

the form
A
v'(r,t) — (r,t) + W
Al'(r;t) — A'(r,t) + VA(r,1). (4.5)
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Here A(r, t) is a regular function of r and ¢. One can choose A(r,t) such that the
scalar potential is always zero in both primed and unprimed systems. One can
then solve the equation of motion, such that the vector potential A’(r,t) produces
the same current density as the vector potential A(r,t) in the unprimed system.
In the case in which the primed and unprimed systems are such that Ve’e =V
and ¥'(ty) = U(ty) one can show that A'(r,t) = A(r,t) at all times. This result
is the analogue of the Runge-Gross theorem for the TDCDFT. That is, two vector
potentials that produce the same current-density in two systems evolving from
the same initial state must be the same up to a gauge transformation. In other
words, there exits a one-to-one mapping between vector potentials and current
densities.

The current density produced in an interacting system under a vector poten-
tial A(r,t) can thus always be reproduced in a system with a different type of
interaction evolving under a suitable vector potential A'(r,t), even in the case in
which the primed system is noninteracting, i.e., IA/e'e = 0. In this case we have a
solid basis to use the TDKS formalism. Keeping in mind that the current couples
to a vector potential, the ordinary xc potential can be replaced by an xc vector
potential [22,73,74]; in the next section we will discuss the TDKS formalism
with TDCDFT in the time domain.

4.2 TDKS with TCDFT in the time domain

In the presence of external scalar and vector potentials, v(r,t) and A(r,t),
the TDKS equation is

2

ihp;(r,t) = l (Y.Jr A(r,t)—i—%Axc(r,t))

+ o, t) + o, t)}(pj(r, oy (4.6)
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where vy is the Hartree potential and Ay (r,?) is the xc vector potential. A
non-adiabatic, nonlinear xc vector potential has been given by [18]

V j0xe,ij (T, 1)

e -
_Axci = — Vy ALDA
¢ Aei(0,t) = =V R )+ 3 =T R

J

(4.7)

where the viscoelastic stress tensor g,. of the electron liquid is defined in terms

of the velocity field u(r,t) = j(r,t)/n(r,t):

i
ch,ij (I‘, t) = /

-0

dt'{n(r, t,t) {Vjui(r, t') + Viu;(r,t)
— g V - u(r, t')é,-j] +((r, t,t")V - u(r, t')éij}. (4.8)

The viscosity coefficients in Eq.(4.8) are defined as

dw -~y —ZUJ _ 4
77(1'a ta t,) = % 77(7% w)e (=¢) ’ (49)
a=n(r,t)
and similar for ¢, where
2
- n
- n? 4 A€y
C(n,w) = - lfoc —3 o 2 ] ; (4.11)

and fL and fZI are the longitudinal and transverse frequency-dependent xc ker-
nels of a homogeneous electron gas of density n [75,76]. For quantum wells, since
all spatial dependence is along the z direction, the xc vector potential (4.7) can
be transformed into a scalar potential by integrating Eq. (4.7). One can write it
as Uye(2,t) = vAPA(2 1) + vM(2,t) (ALDA+M), with the memory part given by

z  d
U%(Zat) = _/—oo n(z’ t)

Vo Oxc,zz(Z', 1) (4.12)

The zz component of the xc stress tensor is given below. The density entering the

viscosity coefficients can be evaluated at ¢ or at the earlier time t'. Without loss
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of generality, we use t, since the difference is only of higher order in gradients.
Notice that the lower limit of time integration can be replaced by 0 if the system

has been in a steady state with zero velocity field for ¢<0,

t
Orens (2 1) = / Y(n(2,1),t — ')V yun (2, ) dt" | (4.13)
0
where the memory kernel Y is defined as
4
Y(n,t—t) = gn(n,t—t') +{(n,t—1). (4.14)

This quantity is of central importance, since it determines the retardation effects

in the xc potential.

4.3 Gross-Kohn and Qian-Vignale memory ker-
nels

L

-, one can express the

With the help of the Kramers-Kronig relations for
memory kernel given by the Eq.(4.14) as:

4 2 rd
Yt =) = 3 e - ”? / U“’ S1L (w) cosw(t — 1), (4.15)
with the static xc shear modulus of the electron liquid [76],
3n? I A€y
Hxe = T <§foc(0) - dn2 ) : (416)

The short-time behavior of Y (n,t—t') is of particular interest, since it governs
the high-frequency dynamics. Y (n,0) can be expressed analytically using the

Kramers-Kronig relation,

oo

I f°dw . L L

— — =Rf.(0) — 4.17

W[w w S xc(w) xc( ) ( )
where the high-frequency limit fOLo is known via the third moment sum rule [76].

The result is [77]

20 26n dexe  d%exe
Yin,0) = T3S T T

(4.18)
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Figure 4.1: Imaginary and real part of fX (w) within the GK and QV parametriza-
tion for an electron gas at Wigner-Seitz radius r;=3.

ay

o (n,0) = 0, i.e., the memory kernel

It is also straightforward to see that
starts with zero slope.

We compared the behavior of the memory kernel Y evaluated with two differ-
ent parametrizations for fL(w), Gross-Kohn (GK) [75] and Qian-Vignale(QV)
[76] (see Fig (4.1) for the behavior of the real and imaginary part of fLZ (w)). Fig.
4.2 shows the memory kernel for a homogeneous electron gas of Wigner-Seitz
radius 7, = 3, evaluated with GK and QV. Overall, the behavior of Y%K and
YQV looks similar, although Y“K decreases monotonically, rapidly approaching
its asymptotic exponential falloff. Physically, it means that the electron liquid
rapidly forgets, on a timescale of less than one plasma cycle. On the other hand,
YV goes through a minimum and then approaches its asymptotic value. As
shown in the inset, it appears that the memory of the electron gas becomes more
and more long ranged for lower densities. In other words, the short-term dynam-
ics of the system is governed by the high-density regions, whereas the long-term

memory resides in the low-density regions.

To get a first impression of the behavior of the xc memory potential v} (2, 1),
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Figure 4.2: Memory kernel Y (n,t — t') for ry = 3, using the QV and GK
parametrizations [75,76] for fZ (w). Inset: YOX for r, between 1 and 15, indicat-
ing exponential memory loss, with a longer-ranged memory for lower densities.

we evaluate it using a simple analytical model density [26] :

2N, . .
n(z,t) = 7 cos® (%) [1 + Asinwt sin (%)] , (4.19)

which mimics the non-interacting density in a hard wall quantum well, driven
by an AC field of frequency w. We take A=0.01, Ny, = lag~2 and L = 10ag, such
that r; ~ 1 in the center and the system is in a weakly driven case.

Fig. 4.3 shows a stroboscopic plot of v} (z, t) during the 4™ cycle after switch-
on of the time dependent model density. It can be seen from the four highlighted
snapshots that, when the density passes through equilibrium, turns around at
the right wall, sloshes back and hits the left wall, vM opposes the instantaneous
current flow by building up a S-like potential barrier in the central part of the
wall, trying to slow down the sloshing motion of density. There is little overall

impact from the large-amplitude fluctuations of v close to edges since they occur
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Figure 4.3: Memory part of the xc potential [Eq. (4.12)], evaluated for n(z,t) of
Eq. (4.19) in GK and QV parametrization, shown in a stroboscopic plot during
the 4th cycle after switch-on. The heavy lines indicate equidistant snapshots.
Compared to the ALDA fluctuations (bottom panel), vMQV and vM“K have a
phase lag a little over 7/2. The density oscillation in the inset is drawn with
enhanced amplitude for clarity.

in low-density regions. Both the GK and QV potential have similar magnitude
and shape, but lag behind the fluctuations of ALDA. For a purely dissipative,
quarter-cycle (m/2) phase lag, the opposing potential barriers would be largest
at the instants of maximal current flow, and flat when the density hits the wall
and turns. The QV causes stronger damping than GK, since its phase lag is a
bit closer to 7/2, which is most efficient for retardation. The observation of a

phase lag slightly higher than 7/2 for both QV and GK is due to the presence
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of dissipative as well as elastic contributions.

4.4 Dipole moment, energy dissipation and side-
band generation

We now turn to a more realistic case and solve the TDKS equation with
memory for a 40nm GaAs/Aly3Gag7As quantum well as in Chapter 3, but with

2 and without periodic driving field. Initially, the

electron density 1 x 10*cm™
ground state was calculated in the presence of an electric field. Then the electric
field is abruptly switched off. This leaves the quantum well electrons in an
excited state and triggers collective charge-density oscillations. We calculate
the dipole moment for weak excitation and strong excitation. Fig. 4.4 shows
the dipole moment d(t) = [zn(z,t)dz versus time (1 a.u. = 61 fs in GaAs) for
two initial electric fields, & = 0.01 and & = 0.5 mV/nm, comparing ALDA
with ALDA+M. For weak excitation, we see regular oscillations associated with
ISB plasmon. In ALDA, there is no damping, but with memory we find an
exponential damping with characteristic decay time [26] and a small blueshift of
the ISB plasmon frequency, very similar to the pump-probe experiments done
by Heyman et al. [5]. With stronger excitation, the plasmon oscillation picks up
higher harmonics and thus becomes more irregular.

The decoherence of the dipole oscillations is accompanied by energy dissipa-
tion. Fig. 4.5 shows the excitation energy per unit area, E(t), scaled by the
square of the initial electric field £ [26,78]. As a consequence of the quadratic
Stark effect, F(t)/£€? is independent of £ for small fields < 0.01 mV/nm, i.e., all
curves lie on top of one another. For larger £, higher-order deviations from the
quadratic Stark effect emerge, and the curves start to move down.

2t where

For small &, the excitation energy decreases as E(t) = E(0)e”
' = (48 ps)~!. For larger &, there is a more rapid initial decay. Also, note

the appearance of a larger step structure. As long as these steps are not too
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Figure 4.4: Dipole moment d(t) of a 40-nm GaAs/Aly3Gag7As quantum well
with electron density 1 x 10! ¢cm™2, initially in a uniform electric field & =
0.01 mV/nm (top) and & = 0.5 mV/nm (bottom), which is abruptly switched
off at ¢ = 0. Dashed lines: ALDA. Full lines: ALDA+M (using QV).

pronounced, E(t) is well described by a biexponential model, with an additional
fast channel accounting for the hot-electron relaxation from higher subbands
[26,78]. The associated relaxation rate varies between 0.017 and 0.021 a. u. for
& between 0.1 and 0.3 mV /nm.

The steps in E(t) arise from a nonlinear coupling between the lowest (1-2,
odd-parity) and next higher (1-3, even-parity) ISB plasmon modes, mediated
through modulations in the TDKS effective potential. The crosstalk of these
modes generates sidebands around wy9, as shown in the right panel of Fig. 4.5,

which depicts the dipole power spectrum for weak and strong excitations. The
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Figure 4.5: Left: dissipation of excitation energy F(t) for a 40 nm GaAs/AlGaAs
quantum well after sudden switch-off of initial fields £ between 0.01 and 1
mV/nm. Right: dipole power spectrum of the associated charge-density os-
cillations for £ = 0.01 and 0.5 mV /nm (dashed and full lines), the latter showing
sideband generation.

frequency spacing w3 — 2wie increases with £ (0.27, 0.39, and 0.52 a.u. for
0.1, 0.5, and 1 mV/nm). We emphasize that the sidebands observed here arise
purely from ISB collective electron dynamics, mediated through modulation of
the time-dependent KS potential.

Finally, we comment on the physical mechanism for energy dissipation. In the
linear regime, the Vignale-Kohn theory locally assumes a homogeneous electron
gas subject to small periodic modulations. The frequency-dependent xc kernels
then cause the decay of collective modes into multiple particle-hole excitations,
even if Landau damping is forbidden [17,18,22]. In the time domain, one can
view the dynamics of an inhomogeneous electron distribution as a superposi-
tion of local plasmon modes, each subject to decay into multiple particle-hole
excitations.

In conclusion, we have given an explicit demonstration how memory effects
introduce the element of intrinsic decoherence and energy relaxation into TDKS

theory. We have explicitely solved, for the first time, a TDKS equation where
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the xc potential is retarted, i.e., depends on previous densities.

This represents an alternative viewpoint to the density-matrix approach of
Chapter 3, which, in its simplest form, describes dissipation through phenomeno-
logical decoherence and relaxation times (known as 77 and 715 for 2-level systems).
A combination of the two approaches suggests itself as a powerful TDDFT tool
to describe nonlinear electron dynamics in the presence of intrinsic and extrinsic

(impurities and disorder) dissipation mechanisms.
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Chapter 5

Time-dependent optimized
effective potential method

In this chapter we will present another TDDFT approach to go beyond the
adiabatic approximation to describe the electron dynamics in quantum wells:
the time-dependent optimized effective potential (TDOEP) method. It is the
time dependent version of the well-known OEP [28,29], as introduced by [27]
for atoms in strong laser pulses. In the following, we will consider mainly the
exchange-only limit of the TDOEP approach. It will turn out that this leads
again to a theory which features retardation. However, as we will discuss in
detail, there will be no dissipation on the exchange-only level of the theory. We
will use atomic units (h = m = e = 1 where m and e refer to effective masses

and charges whenever appropriate) in this chapter.

5.1 OEP and TDOEP basics: three generations
of functionals

Modern DFT is based on the Hohenberg-Kohn (HK) theorem [32]. This
theorem can be viewed as an exact reformulation of the quantum many body
problem, only using the one-particle electronic density instead of the much more

complicated many-body wave function. We will now briefly discuss how, over the
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successful history of DFT, the constructions of functionals has proceeded over
three generations.

In the first generation of DF'T, explicitly density-dependent functionals were

used to approximate both the kinetic energy of noninteracting particles, i.e.,
Ts[n], and the xc energy F.,.; both are not known exactly as a functional of the
density n. The simplest and oldest approximation is the Thomas-Fermi model,

where

Tyn] = 5—0(37#)2/3 [ ey (5.1)
In this model Ey. is completely neglected. For functionals of this type, one
can easily use the HK variational principle which implies a differentiation of the
total energy with respect to the density. This leads to equations of the Thomas-
Fermi type. These equations can be easily solved numerically, since they contain
only one basic variable, namely the density. Results obtained in this method
are moderately accurate; in particular, they fail to give a realistic account of

chemical binding.

The major advance of the second generation of DFT was introduced by Kohn

and Sham [33]. The essential idea was to introduce the exact functional for the

kinetic energy of non-interacting particles. This can be written as

il =3 [ el (~55) i) (52

where ¢, are single particle orbitals. According to the HK theorem, any func-
tional depending explicitly on the set of single-particle orbitals, like the above
expression for kinetic energy is an implicit functional of the density. In this case,
the orbitals should come from a local potential. In the second generation of DF'T,
since we are treating the kinetic energy functional exactly, only the xc energy
has to be approximated. In practice, the KS equations have to be solved self-
consistently employing approximate but explicitly density-dependent functionals

for Fy.[n]. The most commonly use approximation is the LDA, where one uses
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the xc energy per particle of the homogeneous electron gas of constant density n.
More recently, the so called generalized gradient approximations (GGAs) have
shown excellent results for a wide range of atomic, molecular and solid state
systems [79-82].

In the third generation of DFT, one opts to use explicitly orbital depen-

dent functionals for E., thus providing more freedom in the construction of xc
functionals. This approach has a much better chance for successful calculations
where GGAs are failing. For example, GGA does not predict the existence of
negative ions, fails to produce dispersion forces, and has some difficulties with the
treatment of higher angular momentum [83,84]. In this generation, not only the
exact expression for kinetic energy, but also the exact expression for the exchange
energy is employed. The exchange energy is given by the Fock expression,

Bn] =2 5% [ aor [ oy EietDPRo o)

o gk ‘r_rl|

Therefore, only the correlation energy needs to be approximated in this approach.
The level of approximation to the xc energy makes the difference between the
second and third generation.

However, the calculation of xc potentials needs a differentiation with respect
to the density and is not straightforward, since now FEy. explicitly depends on
the orbitals. The corresponding indirect scheme to obtain this is known as the
OEP method [28,29]. In this method, the minimization of the orbital functional
with respect to the density is achieved by repeated application of the chain rule
for functional differentiation,

B [ [ [IBellod] dnl) b
Ureln](r) = on(r) /d /d Zl dpi(r")  dug(r") on(r) * ( )
5.4

Further evaluation of Eq. (5.4) gives rise to the OEP integral equation which we

i

will discuss below in detail. As an alternative to solving the full OEP equation,

Krieger, Li, and Iafrate (KLI) have proposed a simple but surprisingly accurate
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approximation instead of the full OEP [36,37]. The high accuracy attained in
applications of OEP for example in spherical atoms [36,37,85] and for solids [86],
and the fact that it is easier to devise orbital functionals than explicit density
functionals, makes the OEP concept attractive. Yet, due to the rather large
computational effort involved in this scheme, it has not been used extensively.
Most of the OEP methodology carried out using exchange energy only, neglecting
the correlation energy, thus known as exact-exchange method.

There are interesting properties associated with the OEP and KLI methods.

e No spurious self-interactions

Both OEP and KLI methods are constructed to deal with orbital depen-

dent functionals. Therefore, one can employ functionals, which exactly
cancel the spurious self interaction contained in the Hartree term. Such
functionals are the exact-exchange, or the Perdew-Zunger self-interaction

corrected functionals (see below).

e Asymptotics
Both the OEP and the KLI potential fall of correctly as —1/r as r — oo
(36, 88] if the exact exchange is used. This holds for all orbitals, unlike in
Hartree-Fock where this happens only for the occupied orbitals. This is

because the KS potential is the same for all orbitals.

e Derivative discontinuities

The exact xc potential exhibits discontinuities at integer values of N [87],
if we consider it to be a function of the particle number N. The OEP and
the KLI potential can reproduce this important feature. Neither LDA nor

the GGAs can produce these discontinuities.

The time-dependent generalization of the OEP method was first introduced
by Ullrich et al. and has been successfully applied to non-perturbative descrip-

tions of atoms and clusters [27]. Like in the stationary case, the TDOEP method
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offers a valuable route to go beyond the local density approximations. In the com-
ing sections of this chapter, we will show the full, real-time TDOEP scheme for
electronic dynamics in a quantum well. This approach genaralizes the work done
by Hirata et al. [89] who used the exact-exchange frequency-dependent kernel
in linear response, and the work by Mundt and Kiimmel [90] who made first
(but ultimately unsuccessful) attempts at the time-dependent formalism. We

will start by introducing the OEP for stationary (static) quantum wells.

5.2 OEP for quantum wells

We take as starting point a given expression for the total energy E[{¢;,}] of

an N-electron system as a functional of a set of spin orbitals {¢;.(r)},

Bl{gin}] = Zfi / d3w}g(r)(—V2/2)s@ja(r)+Z [ @ no(x)ven(x)
iy [ d3' + Bl{eio )] (5.5)

A detailed description of obtaining the OEP integral equation is given in Ap-
pendix C. We have just summarize the essentials here. The Fock exchange term

E, for a quantum well reads [91]:

By ==Y Kokl [ d [ 2o, ()i ()05 ()eio ()Pl (. 4), (56)

7.7:

where

Fll(z,7) = (5.7)

A / dpJy (K7 p)Ju (k{wgp)
4 P /,02 +(z—2')2
Here, J;(x) stands for the cylindrical Bessel function of order 1, A represents the

area, and (k%9)? = 2(ex — ¢;). The exact exchange potential is defined as

dEy
dng(z)’

Vxxo(2) = (5.8)
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which cannot be immediately evaluated, since Fy is a functional of the orbitals,
not of the density. However, using the chain rule for functional differentiation

twice, we find

Vxxo(z AZ/d 'Mgi“:a )/dz" [ 6(E") 5(‘5/(2’5(0( ),) +c.c.] : (5.9)

Viss(2')/0n,(2) = x;'(z,2') is the inverse of the KS noninteracting response

function x,(z,2') = 0ny(2)/0Viss(2'), given by

o2, ) = Z{(f:jx (07 (2) (z')Gw(z,z')—i—c.c.]}. (5.10)

The static Green’s function G, is given by

Gl ) = 3 FielZ)0io2) (5.11)

i£j €joc — Cio

From Eq. (5.9), the OEP equation for N occupied subbands follows as [91]:

S R)? [ dVixe) = o NIGiole!, )¢ (o (2) + .k = 0,

(5.12)

where
4 5EX

(k¥ )25, (2") (")

uxqi(2') = (5.13)

The OEP integral equation (5.12) needs to be solved numerically for Vx x,, which
relatively is straightforward, since it needs the solution of system of linear equa-
tions. In this section, I will not give the numerical details of solving this equa-
tion. However, in later section I will give numerical details of solving the TDOEP

scheme, which is more complicated than the OEP equation.
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5.2.1 Slater, KLI, OEP

Solving the full OEP integral equation is computationally more demanding
mainly due to the presence of the Green’s function (5.11). This Green’s function
depends on the complete KS spectrum, not just the occupied states. The full
solution of (5.12) thus requires the evaluation, as well as the storage of all oc-
cupied and unoccupied KS states. There is a simplified procedure to avoid this:
the KLI method. The idea is to use a closure approximation for the Green’s
function. By approximating the eigenvalue difference, €¢;, — €, ~ AFE in the
denominator of Eq. (5.11) and substituting that into Eq. (5.12), one arrives at
the KLI equation [36,37] as shown below:

S K)? [ Vino ) — w2085 ()i () (2) + = 0.
j#i =1
(5.14)
We can rewrite Eq. (5.14) as

ZZ (k¥7) / d2'[Vxxo(2') = uxoi())pjo(2) 05, (2)¢i () 0io ()

- Zl k}g)Q/dZ'[VXXa(Z') — Ux4i(2')|io(2) 0}, (2) 05, () pin (2)
+ec=0. (5.15)

Using completeness 3, ;0 (2')¢},(2) = 0(2—2"), and defining (ki7)?¢;, (2)pic(2) =
nis(z), we can write Eq. (5.15) as

1 1
VXXO’(Z) — TZ”ZO’(Z)U’XO'Z m;nia(z)
x [ 4265, ()pun () Vicxa?) = uxel2)],  (5:16)

where n,(z) = Zj(k}}”)Zapja(z)goja (z). This equation can now be solved explicitly
for Vx xo, as follows. The so called Slater potential [92] is given by the first term
in Eq. (5.16),

2)ux,i(2,0). (5.17)
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Figure 5.1: Exchange potential of a 40-nm GaAs/Aly 3Gag7As quantum well with
two occupied subbands calculated with different approximations. The edges of
the quantum well are also indicated.

Therefore, letting [ dz'¢}, (2')pir(2')Vxx(2',0) = Vxxi, and operating on Eq.
(5.16) with [ dzy;, (2)¢ks(2) on both sides, we get

VXXk VXk-f-/ngOkg (pkg an [VXXZ Um] (518)
Letting My; = [ dz¢}, (2) ko (2)nis (2) /Ny (2) one can write Eq. (5.18) as
R _ _S _

In the following, we consider only two occupied subbands. Then Eq. (5.19)
can be solved analytically for Vxx, without matrix inversion. We solved the
full OEP equation, together with the KLI and Slater approximations for a 40-
nm GaAs/Aly3Gag7As quantum well as described in Chapter 3, with a sheet
density of N, = 2.2 x 10'! ecm~2, i.e. the two lowest subbands are occupied.

Agreeing with the features describe at the beginning of this chapter, we found
the following (see Fig. 5.1):

e LDA differs significantly from the other potentials and does not have the

48



oep potential (ar. u.)
W

-250  -200 -150 -100  -50 0 50 100 150 200 250
0
Z(A)

Figure 5.2: Exchange potential of a 40-nm GaAs/Aly3Gag7As quantum well
with slightly different sheet densities. Solid line: Potential only with the first
subband occupied. Dotted line: Potential when the second subband is occupied
infinitesimally.

correct asymptotic behavior: it drops exponentially to zero outside the

well. By contrast, Slater, KLI and OEP potentials all go to zero as —1/z.

e There is only a marginal difference between the KLI exchange potential
and the OEP exact-exchange potential. The Slater potential is a bit deeper
than KLI and OEP. This is well known for atoms [37].

e The KLI as well as OEP exchange potentials reproduce an important prop-
erty of the exact xc potential: they jump discontinuously when a new level
is filled [37,94]. We observe this discontinuity when we start occupying the
second subband (Fig. 5.2). This effect is absent in LDA.
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Figure 5.3: LDA-SIC OEP potential of a 40-nm GaAs/Aly3Gag7As quantum
well with two occupied subbands calculated with different approximations. The
edges of the quantum well are also indicated.

5.2.2 LDA-SIC OEP potential

A major drawback of the LDA is that it has the wrong asymptotic behav-
ior. As a consequence, the energy eigenvalue of the highest occupied KS orbital
deviates considerably from the exact ionization energy of the system (the two
should be equal if the exact vy, were used). Thus, for example, in atoms, this
violates Koopmans’ theorem which states that the ionization energy is identical
with the single-particle energy of the last bound electron [95]. In metal clusters,
because of the inappropriate ionization potential, features of electron emission
are spoiled. This is because LDA includes an interaction of localized electrons
with themselves. Various efforts have been made to eliminate the self interac-
tion error in LDA [96]. The most widely used scheme is the self-interaction
correction (SIC) by Perdew and Zunger [97]. It turns out that SIC leads to im-
provements in total energies of atoms, and also improves the band gap of solids.

The LDA-SIC has been used successfully to describe electron affinities, static
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and dynamical properties, as well as transition metal oxides [98-102]. In the
LDA-SIC one eliminates the self-interaction component by explicitly subtracting
the erroneous terms for the each orbital, which results in an orbital-dependent
xc¢ functional [97]. Therefore it is a suitable candidate for the OEP scheme.

We calculated the LDA-SIC potential for quantum well, closely following
the implementation suggested by Ullrich et al. [103]. In this case the LDA-SIC
exchange potential for a spin-up particle in state 7 for a quantum well is given
by

uxj(2') = vidng, ny)(2') — valng] (2) — vEE 4 ngs, 0(2'). (5.20)

One can easily prove, using the exchange energy functionals with spin polariza-

tion, that

() = - (2) 7 (5.21)
and

g 01(2) = - ()" (5.22)

In the LDA-SIC OEP scheme, one can use (5.20) instead of Eq. (5.13). There-
fore, numerically solving the full OEP equation with LDA-SIC is much simpler,
especially in the time-dependent case, since one doesn’t need to deal with orbitals
and the Bessel function integrations.

We compared the validity of this scheme with the full OEP exact-exchange
scheme. In the static case, results were similar to that of OEP exact-exchange
case, in particular, the LDA-SIC gives the correct asymptotic behavior (see Fig.
(5.3)). The time-dependent results are given in further below. Our main purpose
of solving LDA-SIC OEP was to see whether we can get a stable solution in the
time-dependent scheme, since at first we encountered a numerical problem with
full TDOEP exact exchange. In a later section we will show that we overcame
this problem and were able to solve for the first time the TDOEP equation with

exact exchange.
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5.3 TDOEP for quantum wells

5.3.1 Formalism

The full, exchange-only TDOEP equation for a quantum well for N occupied
subbands is given by

No ] t
! Z(k%o)Q / dt / dZI[VXXJ (Z,’ tl) B UXJ'U(ZIa tl)]Kja(zla t,, 2, t)
Jj=1 >
X (/ﬁ;a(zla t1)¢ja(za t) +c.c=0, (523)

where

Ko (2t 2, t) = Z o (2, 1) iy (2, 1), (5.24)
Py

and uyj,(2',t') is obtained from the time dependent version of Eq. (5.13). The
detailed derivation of above (5.23) is not given here, one can easily obtain it by
closely looking at the derivation given by Ullrich et al. for atoms and molecules
[27], but here for a quantum well.

There are several interesting features in this optimized potential method. Eq.
(5.23) reduces to the static case, and since it contains a time integral (not like
TDKLI [93]), it has an infinite memory. Also, it was shown that in Eq. (5.23),
one has to take -oo as the lower limit of the time integral in order to recover
the static limit from the time-dependent formalism, otherwise with a finite lower
time boundary this results in an unphysical time dependence even in the static
case. This is due to the fact that a finite limit does not correctly account for the
full memory in Vxx. The information that the system has been in the ground
state for all times up until ¢ = ¢, must be built into the formalism [93]. We can

rewrite Eq. (5.23) as follows:

No t t
i S (KI)? [ [+ | dt'] [ 42/ Viexo (2, #) = wxjo 1)
j=1 —o0 to

x Kjo (2,1, 2,t)95,(2', 1) pjo (2, 1) + c.c = 0. (5.25)
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The system is assumed to be in its ground state for -co < t < t;. We can write
the time-dependent orbitals as ¢;,(2,t) = @j,(2)e~"*! for t < ¢;. Then Eq.
(5.25) becomes

PSS [t [ Vo () — o (e (2, 3 2. )

J=1k#j
X (p;a(Z,)ona(Zl)e_i(eka_eja)(t’_to) + c.c.

No . t
+iy D (k) /t dt’ / d2'[Vxxo(2',t) — uxjo(2', )]0}, (2, 1)

J=1k#j
X Gjo(2,t)Pp, (2, ) o (2, 1) + c.c. = 0. (5.26)

In the first part of Eq. (5.26), the integral over ¢’ can be carried out. Thus, we
get the TDOEP equation with the initial condition explicitly built in [41,104]:

S S [ @ Wixo () — xso ()6 (2:)

=1 ks
* ! !
x 6 (2, t)w Lee.
Cjo = Cho (5.27)
No ) t
i3 S (k) / dt’ / 42 [Vixo (1) — uxjo(#, )]
J=1k#j to

X qﬁ’;a(z', ) jo(2,t)Pry (2, 1) Pro (2, ') + c.c =0

Letting R(z,t) and M(z,t,2',t') be
No . t
R(zt) = i (62 [t [ d/luxio(2, 00165, (2, ¥) 5o (2, 1)
i=1 fo
X Y (2, )0k (2, 1) + c.c.

k#j
No .
= Y Sk [ 4 Vo () = uxjo ()] (21)
J=1k#j
X ¢ro (2, t)M +c.c. (5.28)
€joc — €ko
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No

M(z,8,2,1) = i3 (k) Vixo (2, 1) 05, (2 ) 5o (2:1)

=1

X Y Opo (2 ) Pro (2, 1) + e, (5.29)
k#j

we can rewrite Eq.(5.27) in a more compact form

i
/ dt’ / 42 Vixo (2, )Mz, 1, 2 ') = R(z, 1). (5.30)
to

Solving Eq. (5.30) for Vxx,, we will be able to calculate the exact exchange
potential in the TDOEP scheme. Solving the full TDOEP equation has always
been computationally and numerically a challenging task. For the first time, we
have shouldered this task and were able to solve the full TDOEP equation for
a quantum well. Unlike the instabilities suggested by Mundt and Kiimmel [94]
from a different method, we were able to get stable solutions for the quantum

well.

5.3.2 Numerical Solution

Solving the TDOEP equation

Our task is to solve (5.30) for Vxx, for a quantum well. To do this we
discretize the time variable in uniform time steps At. (The spatial variable is
discretized in a similar way, which is more straightforward and does not need to
be discussed here.)

From Eq. (5.29), we see that M (z,t,2',t") = 0 for ¢t = ¢'. Therefore, in order
to solve for Vxx, we need to consider the ¢ + 2At region, given that we use a

time step of At for our time propagation. Eq. (5.30) yields

t+2At
/ dt’ / d2'Viexo (2, )M (2, ¢ + 208, 2/, 1) = R(z,t + 2A8).  (5.31)
0
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We have

t+2At
/ dt’ / d2'Vxxo (2,1 )M (z,t + 2At, 2, 1)

t

t
— R(z,t + 2At) — / dt’ / d2'Viexo (2, 8) M (2, ¢ + 208, 2/, 1), (5.32)
0

We use the simple trapezoidal rule [105] to evaluate the ¢’ integrals. Eq. (5.32)

becomes

At/dz'VXX(,(z’, t+ AM (2t + 20t 2t + At)
— R(z,t + 2At) — At/2 / d2' Vi xo (2, 0)M (2, + 2AAt, 2", 0)

_At/dz'VXXU(z',t)M(z,t+2At, )
N¢—2

S / d2'Vixo ()M (2,1 + 2A8, 2/, 1)), (5.33)
j=2

where we use the notation ¢; = (j — 1)At, and ¢ = (N; — 1)At. Since we have
placed the static and time dependent orbitals on a uniform one-dimensional
spatial grid with typically Ng.;q ~ 250 points, we can use the same trapezoidal
rule to do the 2’ and z integration. The value of Vxx,(%',0) was obtained from
solving the static OEP equation. We then solved Eq. (5.33) by matrix inversion
using the singular value decomposition method [105]. The important trick at this
moment to remember is that you need to evaluate (5.7) only once. Then we used
a look-up table procedure, whenever we need it in evaluating R(z,t + 2At). In
practice, we were able to carry out time propagation over approximately N; = 600

time steps, limited by CPU time and single-processor RAM.

Self-consistent iterative scheme

A potential pitfall of the TDOEP scheme is the fact that Vy x, depends on
the time-dependent orbitals, which, in turn, are determined by Vxx,. In other
words, the TDOEP scheme requires self-consistency over the entire interval [0,T]

of time propagation. Mundt and Kiimmel [94] have claimed that the TDOEP
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Figure 5.4: Self-consistence numerical procedure

scheme is inherently unstable. We have, however, developed a stable iterative
scheme with which we have successfully reached self-consistency.

Our scheme is summarized in the flow chart of Fig. (5.4). The procedure
consists of the following steps.

Step 1: start with the full OEP ground state.

Step 2: solve the TDKS equation using the TDKLI functional over the inter-
val [0,T]. This yields approximate TDKS orbitals ¢}V (z,1).

Step 3: use the so obtained TDKS orbitals as input in Eq. (5.33) to construct
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the approximate TDOEP potential, Vyx ™" in [0,T].

Step 4: solve the TDKS equation in [0,T] again with the total potential
Vix(t) = (1 = a)Vgg®H (1) + aVyr?™ (1) (5.34)

where a € [0, 1].

Step 5: solve the TDKS equation using Vxx, which gives new approximate
orbitals.

Step 6: repeat steps 3, 4 and 5, while gradually increasing « from 0 to 1, in
steps of 0.1 or 0.2. Once we have o = 1, it means that we feed in the full TDOEP
potential of the previous iteration. This is then repeated until convergence is
achieved (typically about 10-20 times).

In this way, we have found that we were able to solve the TDOEP scheme
without any instabilities. It is essential for convergence to start with KLI and

only gradually mix in TDOEP with the help of the a-parameter.

5.4 Adiabatic TDOEP

The adiabatic approximation for vy, is one in which we ignore all dependence
on the past, and allow only dependence on the instantaneous density. That is, in
the approximations it uses the same functional as for the ground state, but this
functional is evaluated using a time-dependent input. This operational definition
can be written as

ve%a ] (r, t) = vih[n(t)](r). (5.35)

XC XC

The most commonly used one is the ALDA, which is an explicit functional of
n, and one just needs to plug in the time-dependent density n(r,¢). Now the
question is how does it work for orbital functionals? The TDKLI and time-
dependent Slater functionals are in a sense already adiabatic approximations,
since they are explicit functionals of the occupied orbitals ¢; and one simply

needs to plug in the time-dependent ¢’s. Now for full TDOEP, it is not that
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easy, since it is an explicit functional of all orbitals and all the eigenenergies.
Since one cannot exactly say what the €;(t) are, the TDOEP scheme cannot be
made adiabatic in a straightforward way. Since we don’t know the phases e'“?,
one cannot exactly say how TDOEP in the adiabatic approximations, will reduce
to static OEP. So the normal operational definition for ALDA, KLI is no good
for OEP, and we need to look at it from a different perspective.

The adiabatic approximation means that one pretends that the system evolves
so slowly in vex (%), that it always remains in the ground state which belongs to
the instantaneous vey. S0, in TDOEP, we therefore need to find that static OEP
potential which produces n(t) as a ground state. That is, take the density at
some time %y, and ask: what is the static OEP potential which leads to n(r, )

as its ground state? We proceed in two steps:

(1) Inversion of the KS equation

Closely following the iterative scheme given by van Leeuwen [106], one can

calculate the KS potential corresponding to a density n. Suppose at some time

during the iteration, we have calculated orbitals ¢3'
corresponding density n°¢ and potential v°.

with eigenvalues €7 and
Then in the next step one can

define the new potential v™" to be
old
pren(e) = 8 oty (5.36)

following the KS equation. Then using this potential one can calculate new
orbitals and a new density and find the same way a new potential. This procedure
is continued until the density calculated from the orbitals is the same as the
given density. In the first step, we therefore use the van-Leeuwen procedure
to construct that single-particle potential v*%%(2, t) which produces n(t) as its
ground state. From the static KS equation featuring v**"¢(2, ), we then get a

complete spectrum of eigenvalues €5"*“(t) and eigenfunctions ¢5'*(z, t).
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(2) Constructing the adiabatic TDOEP potential

We next take the eigenvalues €5'*“(t) and eigenfunctions ¢5'*(z,t) which we

obtained in our inversion procedure and plug them into the static OEP integral

equation (5.12). This yields V24a(z, ¢).

5.5 Results and Discussion

This section is dedicated to a discussion of the results we have obtained
solving the full TDOEP equation with the numerical methods described earlier.
All our simulations were performed for a 40nm GaAs/Aly 3Gag 7As quantum well
as described in Chapter 3 with N, = 2.2x10'%cm~2, i.e. the lowest two subband
levels are occupied. We have performed our calculations for two different types

of plasmon oscillations: free and driven oscillations.

5.5.1 Free oscillations

Initially, the ground state was calculated in the presence of an electric field
(“tilted” quantum well). At ¢t = 0, the electric field is abruptly switched off,
which leaves the quantum well electrons in an excited state and triggers collec-
tive charge-density oscillations. We use an electric field of 0.01mV /nm, so that
the oscillations mainly probe the lowest ISB plasmon, since it is a rather weak
excitation.

We calculate the time-dependent dipole moment d(t) = [ zn(z,t)dz versus
time from the full TDOEP method and compare it with the TDKLI method
which has no memory. We follow the numerical procedure given earlier in this
Chapter to solve the TDOEP equation (see Fig. (5.4)). The convergence is
checked as follows: Suppose at one iteration, we have calculated the dipole mo-

ment dpe,(t) and we have the dipole moment of previous iteration dyq(t). Then
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Figure 5.5: G [Eq. (5.37)] versus number of iterations until convergence is
achieved for exact-exchange free oscillations.

we calculated a quantity G as given below for total time of propagation 7"

— f()T dt‘dold(t) — dnew(t)‘
Jy dtldnen(®)]

We say that convergence has occurred when G < 107%. Fig. 5.5 shows the

G

(5.37)

convergence for exact-exchange calculations for free oscillations. Similar checks
have been done throughout all our calculations described in this section.

Fig. 5.6 shows the dipole moment, calculated by our numerical procedure
using TDOEP and TDKLI. We can clearly see the retardation effect associated
with exact exchange. The full TDOEP oscillates a bit faster than the TDKLI,

as one would expect from the elastic behavior of exact exchange [25]. This may
at first appear a bit paradoxical, but is explained in the subsequent paragraphs.
The power spectrum shows that the TDOEP peak is blueshifted in relation to
the TDKLI peak, and the appearance of a higher plasmon mode (ws3), which is

responsible for the somewhat irregular dipole oscillations.
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Figure 5.6: Left: time-dependent dipole moment for free oscillations in exact
exchange. Right: dipole power for free oscillations in exact exchange. (blue
dotted line: TDKLI, red solid line: TDOEP)

We had discussed in the previous chapter that the electron liquid can be
viewed as a medium with viscoelastic propeties, which stand in a direct relation-
ship with dynamical xc effects. In general, these effects cause both dissipation
and frequency renormalization of collective charge-density oscillations. It was
shown recently [107] that dissipation is a result of the decay of a collective mode
into incoherent multiple particle-hole excitations. In the exchange-only limit,
this mechanism is not possible, since this limit represents the lowest order in a
diagrammatic expansion in the Coulomb interaction, and thus does not couple to
multiple excitations. What remains, instead, is a renormalization of the plasmon
frequency. This can be viewed as a purely elastic effect.

In Ref. [77], it was shown that elastic effects can become dominant at high
frequencies in the nonlinear regime. The elasticity of the electron liquid tends
to oppose attempts to subject the system to strong and rapid deformations.
This general tendency explains, for example, why the Vignale-Kohn theory has
been successful for molecular polarizabilities, which are greatly overestimated in

ALDA [108]. Dynamic polarization of the system corresponds to a redistribution
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of the charge density, i.e. to the deformation of an electron subsystem, which
causes a counteracting xc force. This force is an intrinsically nonadiabatic effect
that is completely missing in approximations such as ALDA or TDKLI. Put in
different words, the retardation of TDOEP causes a “stiffening” of the “spring
constant” associated with the collective ISB plasmon oscillations, which causes
the blueshift observed in Fig. 5.6.

Let us now investigate whether these effects are also captured with the
exchange-only LDA-SIC method (see section 5.2.2), when combined with the
TDOEP scheme. Fig. 5.7 shows dipole moment and dipole power spectrum
from the LDA-SIC using the TDOEP and TDKLI methods. Unlike in exact-
exchange (Fig. 5.6), here the higher plasmon peak is less pronounced, which is
due to the fact that the second subband level is not as populated for the same set
of parameters. We clearly see that SIC fails to capture the retardation: on the
contrary, when used in conjunction with the TDOEP, the plasmon oscillations
slightly slow down! This unphysical behavior indicates that the SIC, although it
has many nice features such as correct asymptotics, fails to produce the essential

signature of non-adiabaticity in exchange-only TDDFT.

5.5.2 Driven oscillations

So far we have shown that one can solve the full TDOEP equation in exact
exchange, the infinite memory due to the time integral causing retardation. We
suspect that memory will play an even more dramatic role if the system under-
goes sudden changes or moves with high frequencies. To illustrate and analyze
the retardation effects we use a similar quantum well as described above in the
presence of a laser driven field.

To observe the retardation effects, we use different frequencies to drive the
system. We solve the full TDOEP equation with TDKS propagation in the

presence of THz laser fields, switched on at initial time ¢y, over a 1-cycle linear
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Figure 5.7: Left: time-dependent dipole moment for free oscillations in LDA-SIC
approximations. Right: dipole power for free oscillations in LDA-SIC approxi-
mations. (blue dotted line: LDA-SIC TDKLI, red solid line: LDA-SIC TDOEP)

ramp and then kept constant throughout the propagation. We calculate the
dipole moment for TDOEP exact-exchange, TDKLI, and also from the adiabatic
TDOEP discussed in section 5.4, for laser frequencies of 5 meV, 11.2 meV (close
to the lowest ISB plasmon resonance), 20 meV and 40 meV. Fig. 5.8 shows dipole
moment calculations for different frequencies of the driving field. The intensities
of the driving fields are 20, 10, 20 and 40 W/cm? respectively. Since 11.2 meV
is close to resonance, the dipole amplitude is largest. Overall, we find that the
three methods give comparable results. The adiabatic TDOEP falls somewhere
in between full TDOEP and TDKLI. The discrepancy between full TDOEP and
the other schemes is most pronounced at the 40 meV laser field.

In the driven oscillations, unlike in free oscillations, one cannot say much
about the phase lag (retardation effect) just looking at the dipole moments of
these methods. Besides one gets messy irregular dipole moments when driving
with higher frequencies, since we are hitting the higher excitations. Therefore, for
more qualitative analysis, it is useful to consider the xc power associated with the

charge-density oscillations, since it is directly associated with the xc potential.
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Figure 5.8: Time-dependent dipole moment for laser driven oscillations in
TDOEP exact exchange (red), TDKLI (green), and adiabatic TDOEP (blue).
Top left: w=5 meV, Top right: w=11.2 meV, Bottom left: w=20 meV, Bottom
right: w=40 meV.

We define the power in the usual way as xc force density times velocity:
) = /dzv(z, t)n(z,t)(%(VXX(z,t) — Vxx(2,0)). (5.38)

Since one can write the velocity field in terms of the current density j(z,t), Eq.

(5.38) can be written as
t) /dzj(z t)_a'(VXX(Z t) — Vxx(2,0)) (5.39)
"0z ’ e '

One can obtain the current density as follows:

- 0CC

j(z,t) = —o— Z (9 (2, 1) Vdi(2, 1) — Voi(z,t)dr(2, 1)) (er — ). (5.40)
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Figure 5.9: Time-dependent xc power for laser driven oscillations in TDOEP
exact exchange (red), TDKLI (green), and adiabatic TDOEP (blue). Dotted
line: adiabatic dipole moment scaled to fit power. Top left: w=5 meV, Top
right: w=11.2 meV, Bottom left: w=20 meV, Bottom right: w=40 meV.

Fig. 5.9 shows the power P, calculated with laser frequencies of 5 meV, 11.2
meV, 20 meV and 40 meV for TDOEP, TDKLI and adiabatic TDOEP. We have
plotted adiabatic dipole oscillations in the same graph, scaled to fit the power, as
a point of reference to understand the behavior of the TDOEP exact-exchange.
One can clearly observe the retardation associated with the exact exchange with
increasing frequency of the driving field: for 11.2 meV, 20 meV it is slightly going
ahead of TDKLI and adiabatic TDOEP. For 40 meV, similar to dipole oscillations
we observe irregular oscillations and we can see clearly TDOEP deviates from

its adiabatic approximations. Since the power is the product of current and

65



gradient of potential, we can see that power oscillates twice as fast as the dipole
oscillations.
We also mention that we carried out numerical checks of the zero-force the-

orem in TDDF'T,

/dzn(z,t)dizvxc(z,t) =0, (5.41)

i.e. the system cannot exert a Coulomb force on itself. We found this to be satis-
fied in our qunatum wells to within our numerical limits, for all time-dependent
functionals, even TDKLI. This sheds new light on the recent work by Mundt
et al. [109], who have found a violation of the zero-force theorem by TDKLI,
leading to spurious self-excitation. We find that this violation does not play a
role in our systems, probably due to the strong confinement of the quantum well.
TDKLI is therefore safe to use.

We thus see from our results of driven oscillations in a quantum well that
retardation has a significant impact on the electron dynamics, producing a change
in the time-dependent dipole amplitude of order ~ 10-20% for oscillations not
far above the resonance. The effects thus seems to be clearly nonnegligible,
and certainly warrants more exploration in other systems such as atoms and
molecules.

We also mention the work by Hirata et al. [89], who applied frequency-
dependent (i.e., retarded) excat-exchange kernels in linear response, and found
only small effects in dynamical polarizabilities. This is in hindsight not very
surprising, since these applications were performed at relatively low frequencies
where retardation can be expected play only a minor role. In our case, the fre-
quencies were higher (around or above the ISB plasmon), and we found significant

effects.
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Chapter 6

Summary and Outlook

Semiconductor devices are used for generating electromagnetic radiation in
many everyday applications. Radiation in the low frequency region is produced
by oscillating circuits based on transistors. On the other hand, semiconductor
lasers produce light in the visible region. The terahertz region (1-10THz) between
these high and low frequency ranges has been identified as suitable for various
possible applications. Chemical detection, astronomy and medical imaging are
some of them [110-113]. However, THz technology is still underdeveloped despite
much research activity [114,115]. Semiconductor heterostructures are natural
candidates for THz sources since the intersubband transitions lie in the THz
region. To interpret experimental results and guide further research, one should
have a clear understanding of the physical mechanisms governing THz dynamics
in quantum wells, especially in the nonlinear regime.

To describe electron dynamics, many different theoretical tools are available.
Mostly used ones are density-matrix techniques such as the semiconductor Bloch
equations [116]. The solution of these equations can be difficult, and one often
negelects Coulomb interactions [117], or uses simplifications such as the RWA
[11]. However, for an accurate description of electron dynamics, non-adiabatic
and many-body effects play a major role.

In this thesis, we presented three different formalisms based on TDDFT to
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describe electron dynamics beyond the adiabatic approximation, including many-
body effects. First we treated decoherence and relaxation by intrinsic and ex-
trinsic mechanisms, by combining TDDFT with a density matrix formalism. We
applied this formalism to study coherent control of optical bistability. It turns
out that one can achieve theoretical switching times in picoseconds range, which
in principle is limited only by the relaxation and decoherence time 77 and 75.
More realistic simulations would replace 77 and 7, with microscopic, intensity-
dependent scattering theories, including finite temperatures and a detailed mod-
eling of the absorption profile and waveguide geometry of the device. In the
search for THz devices and applications, nonliner ISB effects such as bistability
merit further exploration. We also observed discrepancies between the 2-level
RWA to our method in the photoabsorption for a quantum well with increasing
DC bias. The RWA breaks down for asymmetric systems, and thus has to be
used with caution.

Next we presented a formalism based on current-TDDFT, which described
dynamic exchange and correlation beyond the adiabatic approximation to study
retardation and memory effects. We showed that one can describe interacting
electrons as a viscous liquid with memory, and how memory effects introduced
the element of intrinsic decoherence and energy relaxation to TDKS theory. This
is an alternate method to the density matrix formalism described before in which
we described dissipation through phenomenological decoherence and relaxation
times.

The next formalism, TDOEP, is yet another method to describe the electron
dynamics in quantum wells beyond the adiabatic approximation. The advantage
of orbital-based TDOEP is that it works for both finite and extended systems. A
discontinuity is built up in the exact exchange potential when a new subband is
filled. The major difference between the TDOEP and TDKLI is that it contains

a time integral and therefore it has an infinite memory.
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A major breakthrough reported in this thesis is that we have succeeded to
solve the full exact-exchange TDOEP equation for a quantum well for the first
time. We have seen under free oscillations, that memory causes retardation in
exact exchange. Since exact exchange is purely elastic, we have seen a phase dif-
ference in the calculations of exact power under driven oscillations. We have also
seen that adiabatic TDOEP changes drastically with higher frequencies of the
driving fields with respect to TDKLI. Therefore one should pay close attention
if a system undergoes sudden changes or oscillates with high frequencies.

The calculations presented here were carried out for simple quantum wells in
effective-mass approximation. These systems are ideal to test the complex non-
adiabatic approaches that we considered here, and have shown that it is feasible
to carry out TDKS calculations where the xc potential includes a memory. The
nonadiabatic behavior of the electron liquid, in the form of elastic and dissipative
effects, can be expected to play a role in a multitude of applications, from atoms
and molecules and polymers to solids and nanostrutures. The present work thus

constitutes a first step towards many new and exciting applications in TDDFT.
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Appendix A

Numerical details for solving the
density-matrix equation of
motion

The numerical solution of TDKS equations is a well-documented subject [118].
A multitude of propagation algorithms and several well-established computer
codes are available [119]. In the following, we give some details on the numerical
procedure used in our home-made density-matrix code for quantum wells. We
discretize the static and time-dependent wave functions 19 (z) and 1;(z,t) on a
uniform one-dimensional spatial grid with typically about N4 ~ 400 points.
We use a standard eigenvalue solver to get the self-consistent solution of the
static KS equation (3.9). The ground state subband envelope functions are the
initial state, to be propagated in time.

We need an algorithm to propagate the KS wave function from time ¢ to

t + At in the TDKS Eq. (3.13). We use the Crank-Nicholson algorithm [120],
Ut + At t) ~ (I — %HKSAt)(I + %HKSAt)‘l (A.1)
to carry out the step

VYi(z,t + At) = U(t + At t);(z, 1), (A.2)
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where U is the time evolution operator, which transforms state |1(0)) into state
9 ()):

¥ () = U(t,0) [4(0)) - (A.3)
In order to ensure that the system is in the state [1(0)) at time ¢ = 0 it is
necessary to have the initial condition U(0,0) = 1. To conserve the norm,
the time evolution operator must be unitary, i.e., Ul = U~'. If Hkg is time
independent, by formally integrating time-dependent Schrodinger equation, we

get
U(t,0) = e(7i/) Hxst (A.4)

which yields Eq. (A.1). In general, the Hamiltonian is of course time depen-
dent Hks(t), and the expression (A.4) becomes more complicated. However, for

propagation from ¢ to ¢ + At, we can write
Ut + At, 1) = el~m) Hs(+5t, (A.5)

The Crank-Nicholson algorithm is unitary and of second order accuracy in At.
In the above, U,I and Hks are all matrices of dimension NgpigX Ngria- 1 is a
unit matrix, and Hgg is a tridiagonal matrix following from a finite-difference
discretization of the TDKS Hamiltonian,

At K2 d2

Hys(t+ —) = —— 2
KS(+2) 2m* dz?

+ ozt + At)2). (A.6)

The time-dependent potential in Eq. (A.6) is evaluated midway along the time
step between ¢t and ¢ + At. Both vy and vy require n(z,t + At/2) as input, but
at this point we know the density only up until the time ¢. Therefore we use a
predictor corrector approach to get the potential at ¢t + At/2. This means that
we use v(z,t) in Hks to predict a solution w](p ) (2,t + At), and use the resulting
nP)(z,t + At) to construct v®)(z,t + At). Next, we use a corrected potential,
v (2, t + At/2) = [v(2,t) + vP)(z,t + At)]/2 in Hgs and propagate again to

get a corrected solution wj(c) (z,t + At). It may be necessary to perform several
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corrector steps to get the desired accuracy in the time propagation of ;(z,1).
If 9;(z,t) does not significantly change anymore within a given tolerance over
the total time propagation interval including another corrector step, then self-
consistency has been achieved. In practice, we found 2-3 corrector steps to be
sufficient.

The numerical solution of the density-matrix equation of motion (3.6) starts

from discretization p; = [p(t + At) — p(t)]/At, leading to
pi(t+ At) = U(t + At, 1) p; ()T (t + At, t) — AtR;(1). (A7)

For the time-evolution operator we again use the Crank-Nicholson form:

Ut + At t) ~ (I — %hAt) (i+ %hAt)‘l, (A.8)
where h is the TDKS Hamiltonian matrix (3.17) evaluated at ¢ + At/2. We
include only the lowest N, bound quantum well states. Therefore, together
with the predictor-corrector scheme and inversion of N, X N, matrices, the
TDDFT density-matrix equation (3.6) can be solved solved numerically in a

rather straightforward manner.
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Appendix B

Order by order expansion of the
density matrix

The task is to get an analytical scheme for solving the density-matrix equation

of motion for a two-level system. We start with Eqgs. (3.18) and (3.19):

,b12 = [iw21 — F2 — ’i(HH - HQZ)]ﬂlQ + 7;H12A (Bl)
A = 27;H12(p12 — pTQ) - Fl(A — A(O)) (BQ)

Since we start from the ground state, the initial value of the population difference
A is A© =1, and the initial ISB polarization is p{% = 0.

In the following, our goal is an iterative solution of Eqs. (B.1)+(B.2) in orders
of the external electric field strength &£, which is taken as our small parameter.
Clearly, the external-field matrix element Hg® is of first order in £. We assume
that the Hartree and xc matrix elements H ,5“”“ can be formally represented in a
suitable expansion in orders of £. Clearly, H;; ™ will also contain higher orders

of £, due to the nonlinear dependence on the density. Therefore, we have

Hy =Y H, (B.3)
n=1
where
H,El") =&y H™ (qu)ett, (B.4)
g=-n
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1. First order

We notice that the term 2iH15(p12 — p},) starts out with second order in £ (since
the lowest order of ps is the first). So to lowest order (linear in &), Eq. (B.2) is

A = A and the lowest order approximation for p;, follows from (B.1) as

5 = (iwn — To)ply + il A (B.5)

We use the ansatz
pr () = 715 (e ™ + 1y (—w)e’. (B.6)
This gives:

—Zu)ﬁ%) (w)e—iwt + iw[)g)(_w)eiwt — (iw12 _ F2)[;5g12) (w)e—iwt + ﬁ%)(_w)eiwt

+755 (0)] + i[HS) (—w)e!t

+H (w)e ™A, (B.7)
Comparing e~** and ™! terms, we get
(1) (0)
~(1) _ iHyy (w)A BS
piz (w) —iw — twig + T (B-8)
() (0)
_ 1H w)A
Y () = ) (B.9)

w — iwlg + FQ '

If we assume Hi, to be constant then above Egs. (B.8), (B.9) are identical to

the solutions given in [11].

2. Second order

Now let’s look at the second order,
P2 = (iws — Ta)pty — iRW ply +iH{ A, (B.10)
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where RO = H)) — H)). Using the ansatz

A0 = A0+ AR A e
~|—,5§22) (2w)e 2" 4 /3§2) (—2w)e?™t, (B.11)

which accounts for second-harmonic generation as well as rectification, we get

—iwpiy (w)e

—iwt

+ zwp12 ( w)e™t — 2iw,5§22)(2w) —wt g 22wp(2)( 2u) et
= (w21 — F2)[/312 (0) + /)12 (w)e iy /392)(_ )et + P§2)(2w) B

+413 (~20)e ] —i[RO (w)e ™! R“)(—w)emuﬁu (w)e™"

+713 (—w)e™!] +ilH1 (0) + Hf (w)e ™" + Hi (~w)e™

+H(2)(2w)e*2“"t+H&)(—Qw)em‘”t]A(O)- (B.12)

—2iwt

Comparing e~?**and e*“! terms, we get

@) S (2w)A® — iRM (W) (w)
piy (2w) = ——— (B.13)
—2iw — twie + 'y

rr(2) © _ i (D
~(2) Zle( QW)A ZR(l)( w)ﬂlz( W)

-2 = ) B.14
prz (=2w) 2iw — iwis + [y (B-14)

Next comparing e~ and e terms, we have

iH;) (w)A©
—iw — twig + 'y

73 (w) = (B.15)

iHY (—w)A©@
W — ’iw12 + FQ,

P37 (~w) = (B.16)

which is similar to first order term. Now we compare the €’ term. Then we
have

5 (g) = 12 (A = iR )5 (—w) + RO ()7l ()]
2 —iw — Wiz + T

(B.17)

Now we are ready to get the third-order solution. Important at this moment

is to note that the terms ﬁg)(j:Qw) and ﬁg) (0) will contribute to the solution,
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which is ignored in the RWA. Before going into the third order of p;s, let’s look

at the second order of A. This can be written as
A = 35D Y = HE ) T4 (A9 1), (515
where we have used A®©) = 1. We make the ansatz
AP () = AP (0) + AP (2w)e 2t 4 AP (—2)e?™t, (B.19)
This gives

—2iwA® (2w)e™ 2 4 2iw AP (—2w) et
= 2i[(H3 (w)e ™" + Hyy (—w)e™") (A1 (w)e ™" + iy (—w)e”

—(HR (@)e ™ + Al (~w)e ) (35 ()e ' + 55 (~w)e™]
T [A®(0) + AP (2w)e 2t + AB) (—2w)e 2t —1]. (B.20)
Comparing e?*! and e 2!, we get
RO(caw) = 2 [Ex o)Ay (ww) | A o)y @) )
2w + Fl (w — Wo1 — ZFQ) (UJ + wo1 — ZFQ) )
. 1 (1 1 1)* T
A = 2| B @)W | @ (W) |y
—2tw + Fl ( W — Wo1 — ZF2) (—w + Wo1 — ZFQ)
Comparing constant terms, we get
RO =1 4 2| Hr@HY (W) | By (W) )
Fl i (w — W91 — ZFQ) ( W — W1 — ZFQ)
i 21 ﬁg( )H12 *(w) ﬁ (= )H12 *(W) (B.23)
Fl (w —+ Wy — ZFQ) ( W+ Wop — ’LFQ)

3. Third order

The next task is to look at the third order of p;5. The 3"¢ order equation is
oY) = (twey — Fg)pgg) — iRV —iR@ 5N 4 i HDA® L iHEAO, (B.24)
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We make the ansatz

P70 = 71 (0) + A (w)e ™" + i) (—w)e™ + By (w)e !
+ 50 (—2w)e™t 4 5 (3w)e ¥t 4 5 (—3w)e . (B.25)
This gives
—iwﬁg)( Je (3)( )eiwt_inﬁg)(zw)eﬁiwt+ﬁg§)(_2w)eziwt
—3iwpiy (3w)e ™ + iy (—3w)e!
= (i =D (0) + 717 (W)e™™" 4 7i (~w)e™ + 7 (2u)e”
13 (—2w)e”™! + 5 (Bw)e T + i) (—Bw)e™ ]
—ilRO@)e "+ RO (w)e 315 (0) + 73 (w)e
71 (—w)e ! + B (w)e ! + B (—2w) e ]
_Z'[R(Q)(w)e—zwt_'_R (_w)eiwt+R(Z)(Qw)e—%wt+R(2)(_2w)62iwt]
X[ (w)e ™" + pi3 (—w)e™!] + i) (w)e ™! + A (—w)e™!]

—iwt

+ wp

x[A®(0) + A (2w)e™?* 4+ AP (—2w)e”™] +i[ 13 (0)
+H12 (w)e ™" + H(g)( w)et + ﬁll(g)(Qw)e_int + lfll(g)(—Zw)eQM
+HSD (3w)e 3wt + 58 (—3w)ed | A (B.26)
Comparing 3! and e=3“? terms, we get
P2 (—3w) = —i[(RY(~w)p3 (—2w) + R (~2w)pi3 (—w)
— A (~) A (~2w) — A (-30)A0)]
1
™ Biw — i + T,
Py (3w) —i[(RV ()73 (2w) + R® (2w) 3 (w)
—H3 (0)AP (2w) — A (3w)}AO)]
1
X . (B.27)

—3iw — iwlg + Fg

—2iwt

Comparing e and e?“! terms, we get

A9 (—2w) = i[RO(~w)p3 (—w) + B (~w)py (~w)
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~ (3 0 1
—HS (—2w)A©] x @i o Ty (B.28)
73 w) = i[RM(w)55 W) + RP (W) ()
— D (20)A0)] x ! (B.29)

(—in - iwlg + Fg) '

Similarly, comparing e*! and e~**, we can get

AP (~w) = [(BY(=w)p (0) + RY (w)py (—2w) + R (—2w) 53 (w))

—(HY (~w)A®P(0) + A (w0)A? (—2w) + A (~w)A®))]
1
% (—w 4 wig + i)

P (w) = [(RO(W)piZ (0) + RO (=w)pty (2w) + RP (2w)p1) (-w)

—(AY ()A®(0) + AY (—w) A (2w) + A (w)A®)]
1
X - .
(w+ wig +1ily)

(B.30)

This is the key result of our derivation. It shows that ﬁg) (which enters
in the photoabsorption spectra computed in section 3.4) contains contributions
that are not captured by the RWA. In particular, the term R™ (w)p(® (—2w) will
contribute strongly for asymmetric wells (when R (w) is nonzero). This shows

the reason for failure of the RWA that we observed in section 3.4.2.
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Appendix C

Derivation of the OEP integral
equation for a quantum well

The starting point of our derivation of the OEP integral equation is the energy

functional (5.5), writing it here again as,

E[{®,,)] ZZ / Prat (0)(—=V2/2),(r) + 3 / &g (1) veat (T)

/ oo f e (‘) B{®5,}) (1)

Instead of using Ey[{®,,}], we take the main advantage of the OEP method,
that it allows for the exact treatment of the exchange energy, and derive the OEP
integral equation for exchange only. The use of the exact exchange energy has
several advantages over the conventional explicitly density dependent xc func-
tionals. Most importantly it ensures the correct asymptotic behavior, reflecting
the fact that it is self-interaction free for both the occupied and the unoccupied
orbitals. We use the Fock exchange energy expression,

— __ZZ/dS /d3 Iq)Za (I)lff( I)(DZU(I.)(DTU(I‘)' (02)

okl |r—r’\

For a quantum well, replacing the discrete quantum number £ as (q,%), the

orbitals are
Dy (r) = €Uy, (2), (C.3)
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where ¢/ is the in-plane wave vector and k is the subband index. Then
occ

_ ——Z Z / PBr / P 1010 () 0jo (2) 0l (2) 0] (2)

v —

d? qH d2q” Qﬁ q|'|2 (@)’ .,
T F S — £,5)0 — A e I qH)(I'” rH)
X / (2 )2 / (2 )2(:)(6 510) (SF 630’)6 )

2 2
(C.4)

Let p = (r| — rh), and carrying out ¢ integration, one can write one of the g
integrations of (C.4) as

2
— = q 2m 7 cos
(%)2/0 qdqO(er — g —6,-0)/0 dfe' 1P oSt (C.5)
We have
2m i
/0 d06111||10c0s0 — 27T=]0(qp), (06)

where Jy is a cylindrical Bessel function. Therefore one can solve (C.5) to be
1 kla’
or Jo dardo(aip), (C.7)

™

Where ki = /2(er — €ir). Then letting © = g p, one can simplify (C.7) to be
Qﬂp £ J,(ki¢), where J; is a cylindrical Bessel function of order 1. Therefore, (C.4)

becomes
B = _1 ECI / d*r / oy P ()24 (29 (2) 6], (2)
2 o r —r'|
]{;%‘,’ %‘U 10 Jjo
ALK ) D K ) ©8)
1 occ / , ,
= g 2 [ @ [ 426l ()0s0()ein ()50 (2)
1,7,0
1 , - 1
X/d2T||/d27'|,|_2=]1(k3~gp)=]1(k%‘ P) ' (CQ)
p P2+ (z = 2')?

We can carry out one integral [ d2r|'| = A and write the other one as [d’r| =

2m J5° pdp, since the integrand depends only on |r — rj|. Therefore the exact

80



exchange energy expression for a quantum well is

= SRk [ de [ 426, ()0 ()65, () eso () PR (2, #), (C.10)

1,5,0

where

Fll(z Z) A/ dle(k}gp)Jl(k%Up) (C.ll)

4 p/p? + (2 — 2)? '
The next step is to evaluate the terms in (C.1) for a quantum well. First evaluate

the kinetic energy term. Let

Fiin = 22 / &rad’, (r)(=V2/2)®;(x), (C.12)

then, F,;, can be written for a quantum well as

occ 2 2 0
2 g @ 1d
Eyin = E E / ! @ % - gia)ﬁpia(z)( 2H - idZQ)QDZU(Z) (013)

This can be evaluated to

) — lj—;] Vis(2)dz, (C.14)

o= 5 S [t

occ
l_ 2

noting that

d2q|| Qﬁ B 2 00 Qﬁ
/ Oler — — —€ip) = W/O qdq O (er — 5 Eio)

(2m)? 2
= ) (C.15)
and 2qy 4 qf 11, .
/ﬁ%e(&“ - g — €ig) = Ei(k?)4' (C.16)

Next we will evaluate the external energy term,

B =Y / Py (1) Vet (T). (C.17)
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Since the total density is given by

occe 2
9

- % [ Uoer - e (pnl).  (C18)

we have
occ

Z Z 1 6701 (2)io (2): (C.19)

Therefore,
occ

Z Z w /dZUezt%g (Pw( ) (CQO)

The Hartree energy is given by

_ Ly o n(r)n(r)
_ 1 3 3 1 1
= /d r/d U 7
occ Yo
XY Z /f? (k)05 (2)0i0 (2) 050 () 0jor (/). (C-22)
oo! ij

This can be evaluated to be,

occ (k?))Q(kff ))2
(4m)?

oo’ ij
x [z [ 426t ()00 (D)2 = 2100 ()i (). (C23)

We have obtained (C.23) by substracting the oo contribution which is cancelled

out by the ionic background, since

1
d27‘|’| d27‘|| 7_ ; = d27‘|| d2r||
r —r'|

(z — 2')?
1
= 27rA/ pdp
0 02+ (2 — 2')?
=21A(c0 — |2 — 2'|). (C.24)
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Now we have evaluated all the terms in (C.1), and we can write the total enery

as
E == Ekin —+ Eext + EH + E (025)
occ 1 d2
= Z ; (k¥ /‘PW S (k) — Eﬁ]wia(z)dz
occ
+47r Z Z kF /dzvemt%a )Pio (2)

OC’C

i0)\2(7.99')\2
ALY EeDCET [ [ azyehin(a)le = 2150 (Dom ()
- Sk [ a: / (D0 ()0 (e (FL (). (C20)

The OEP equation is obtained by minimization of total energy with respect to

the potential. Using the variational principle, this can be written as,

5901'0’( I)
! c=0. C.27
5VXXa /d 5%0 5VXXa Tec ( )
Now
&'DL’('Z) = —Gig (7, 2) 0ic (2)050 - (C.28)
5VXX0’

This was obtained from lowest order perturbation theory, where the Green func-
tion is
Gig(2,2) =) M. (C.29)
j#i  Gio ~ o
In order to satisfy Eq. (C.27), we need to find the functional derivatives of E.

The functional derivative of kinetic and external energy is

5(Ekin + Eext) ey Jo / 1 d2
= kw ex
5991'(7’(2,) Z Z k szO]a F) 2 dz 7.9 +v t(z)

X(S( — )(5@'500
A

At rrae’\2 1 io’\2
- g [y08)

1 d?

- 5@ + UeXt(ZI)] QD,?U; (ZI) (030)
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The functional derivative of the Hartree energy is,

0 Fiy QS (k)2 (k%)
ot = AT U oo
TR P i o A
X[@ho (2)0(2 = 2')6ik 000 o (2" )pjon (2")
+ ko (2)Pro ()50 (2")0(2" = 2')ji0057]

2mA

2 EC (ks
G R CDIPY

2
[ i (D ro(z) |z~ #ld.

Letting
v AN _ (kﬁ'a—)Q * _ !
H(Z) - 27‘-2 4 ngU(Z)QOkU(ZNZ z ‘dza (031)
= T
we can write
oF A .
- — (k)2 vr ()l (7). (C.32)

dig (2 ) 47
The next task is to find the functional derivative of the exchange energy:

0F.
T - _ jo "ok '
S0 () EJ: ki ks / dz / d2" 01 (2") 0} (2) 4o (2)
XF%l( ) )50(7' [5(2 - Z,)(Sikgoja('z”) + (pka(z)é(zu - Z,)éij]
24 OCC o
= 2% S [ degin (s (i () P (2. 2). (C.33)
.7

Then one can write

0Ey
S i (2N wyor (21), C.34
e (i () (C:34)
defining
) P S L (C.35)

ki 0l (21) 0piar (2')
Now let’s put all these values in Eq. (C.27) in order to derive the OEP equation.
This gives

occ

Z /dewz 2) iz (2)
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A, 1 d?

1o
X[E(kg)Q Ve + Vext (2') + vn(2') + Z(/f?)Q]S%(Z')
+E T waie (2) 05, (2)] + c.c. = 0. (C.36)
Now,
1 d2 1 % (Eio' + GF)
ErE + Vext (2) + vn(z) + é(eF — ei(,)] oi(z) = [T —Vxx(2)| .
(C.37)
Therefore, Eq. (C.36) can be written as
occ
> [ 4G, )i ()i ()
A 10\2 ! 10 !
x [E(kF) Viex (7)) = kiZwgio ()| + .. = 0, (C.38)

since [dz'Gi(2',2)¢f,(2') = 0. One can then rewrite (C.38) to arrive at the
OEP integral equation (5.12),

> (k)2 [ a2 Viex () = wxoi(2)]Gio (), 2) s (2), () + c.c. = 0, (C.39)

7

where
47 1 0F,

ki2)? o1, (2) 0pigr (')

(C.40)

UXm'(Z) = (
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