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ABSTRACT 

 

Combustion is a key issue in gas-fired furnaces in various industries such as glass 

manufacturing.  Its chemical reaction is based on two substances, oxidizer and fuel.  Its 

quality depends on their composition, which are measured in terms of rate of flow and 

oxidizer to fuel (O/F) ratio by the furnace control system.  Monitoring is crucial since 

improper composition produces hazardous byproducts and may waste expensive fuel. 

This research proposes a promising system architecture that provides a method for 

assessing combustion quality by analyzing two-dimensional furnace flame image and 

correlates it with its fuel and oxidizer composition as reflected by the furnace control 

reading.  The approach utilizes both image processing and machine learning techniques 

integrated with artificial intelligence techniques to identify correlations between flame 

characteristics and fuel flow rate and O/F ratio.  Its conceptual design, implementation 

and evaluation are executed based on a set of experimental runs sampled at nine different 

composition of fuel and oxidizer flow rates taken from a pilot-scaled glass furnace. 

A color CCD camera is used for capturing the furnace flame images.  The images are 

processed using image processing techniques, from de-interlacing, cropping, image 

segmentation using Otsu’s thresholding and image enhancement using proposed intensity 

suppression.  Nine features are used to quantify the flame condition of which four are 

uniquely introduced in this study.  Feature selection process is utilized to identify key 

features for the classification using wrapper method and decision tree classifiers.  Fuzzy 

logic is then introduced to provide capability in classifying fuel level and O/F ratio 

beyond the known test data.  Membership functions are designed and modeled based on 

key features output distribution, using generalized bell curve shape with parameters 

obtained by curve fitting and cubic interpolation technique.   

The final architecture is implemented, tested and proven capable to provide 

insight into the combustion quality in term of its fuel and O/F ratio class within seconds. 

 



 xvi

 

 

 

1. INTRODUCTION 

 

1.1 Overview 

Energy consumption of perishable source such as fossil fuels is a major concern in 

today’s world, for it is still the key source that many industries depend upon.  In fact, it is 

still the primary source of energy that provides relatively 90% of the world’s demand [1].  

One particular usage of fossil fuels would be for combustion-related industries, where it 

will remain to be important today and centuries to come [1]. 

A form of resource management is important for fossil fuel since its consumption always 

increases and implies economical consequence.  Furthermore, inefficient combustion 

processes have negative outcome to the environment.  The study of combustion process 

therefore becomes necessary and is a growing field of research [1]. 

This particular study is conducted based on the effort to assess efficient combustion for 

glass furnaces, focusing on its fuel and oxidizer level intakes relationship with the 

resulting flame.  The main goal is to increase its energy efficiency and reduction of 

hazardous by-products, by providing an assessment of the flame quality, using machine 

learning approach. 

 This chapter will be primarily focused on the brief introduction and overview on the 

subject, along with the general motivation behind the study itself.   
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1.2 Combustion and Its Application Overview 

The combustion process is also commonly known as burning process.  It is a rapid 

chemical process that involves a pair or more materials, producing both heat and light [2, 

3]. In a typical combustion process, two key substances are involved: fuel and oxidizer 

[2].  For example, when woods are burn in open air, the combustion process here 

involves woods acting as fuel and air as oxidizer.  In this study, the furnace flame is 

produced using methane (CH4) for fuel and oxygen (O2) is used as the oxidizer. 

 There are various types of combustion exists based on the characteristic of fluid 

motion of the flame and how its fuel and oxidizer are mixed.  If the fuel and oxidizer are 

mixed prior to combustion, it is called premixed flame.  Otherwise, it is referred as non-

premixed or diffusion flame where the mixing occurs during the combustion process.  

Two types of fluid motion of flames are defined, called laminar and turbulent.  Laminar 

flames have flow motion characteristic that is in parallel layers, following the contours of 

adjacent solid surface.   Another type is called turbulent.  It is characterized by having 

flow motion with irregular fluctuation [2].  Different type of combustion produces 

different visible characteristic of the flame.  Particularly for combustion process in glass 

furnace, including the ones observed in this study, they are turbulent diffusion flame type. 

 If the combination of oxidizer and fuel is such a way that they consume each 

other completely, it is a complete combustion and the resulted flame is defined to be in 

stoichiometric condition.  EQ (1.1) shows a stoichiometric equation by using oxygen as 

oxidizer and methane as fuel.  The chemical reaction from a complete combustion will 

result carbon dioxide, water and heat [2]. 

OHCOOCH 2224 22 +→+     EQ (1.1) 
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The oxidizer to fuel (O/F) ratio is used to depict the composition of fuel and oxidizer 

used.  The proper composition of fuel and oxidizer is necessary to result the 

stoichiometric condition with O/F ratio of 2.0.  In a condition where there is more fuel 

than necessary, defined as “fuel rich”, the ratio will be lower than 2.0 and pollutants such 

as carbon monoxide (CO) will be produced.  If fuel is less, defined as “fuel lean”, the 

ratio will be higher than 2.0 and results in an increase of nitrogen oxide (NOx) emissions.  

Both fuel rich and fuel lean conditions imply inefficient combustion with hazardous 

byproducts that is harmful for the environment [2]. 

Note that financial saving is an incentive for this study as well.  An optimal combustion 

insures consistent product quality, improved furnace reliability and longer service live of 

combustion-related subassemblies.  Moreover, inefficient combustion clearly has a 

negative cost implication since fuel is expensive.  A typical glass furnace that produces 

200 tons of glass daily, consumes approximately 2.4 million dollars worth of fuel [4].   

1.3 Combustion Quality Assessment 

 Conventional approaches monitor the combustion quality in various ways.  At the 

simplest form, there will be a periodical observation by furnace operator on the actual 

flame through manual operation or by the assistance of video camera.  Additionally, 

pyrometer and thermocouples can be used as well [5, 6], which provide temperature 

readings on the flames.  Their effectiveness is however limited to their physical 

installation location and observation region.   The accuracy is typically low and delay 

exists between the actual combustion’s temperature and their readings. 

 A more recent approaches implements more sophisticated instruments such as 

spectrometer [4, 7], ratio pyrometer [8, 9], laser-based [10, 11, 12] and fiber-optic sensor 
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probes [13] which able to provide a more accurate assessment of the combustion quality 

based on temperature approximation.  These approaches however can only provide 

observation on a specific and limited region, such as a straight line or a very small 

surface area [14].  Multiple instruments will be needed depending on the size of the 

furnace and number of flames to be monitored which may not be an economical solution.  

Some of the approach also requires the need for object insertion into the furnace which 

may not be desirable from the furnace maintenance point of view.  For example, laser-

based method may require the introduction of chemical substances to be added into the 

flame.  In this sense image analysis approach is more attractive since it does not require 

physical contact with the combustion process.  Moreover, a single camera alone has the 

potential of providing wider area that can be analyzed.  Additionally, camera equipments 

are less inexpensive and have simpler installation and maintenance requirement. 

 In related to methods using image analysis approach, various different techniques 

have been proposed in both industry and research field.  Typically the investigations are 

done in the ultraviolet and visible spectrum since the emissions produced by the 

combustion process can be correlated within their range [15, 16, 17].  Successful or 

promising results have been shown both in research and industrial area with methods 

varies depending on the purpose, such as measuring pollutants, fuel intake or combustion 

stability [18, 19, 20, 21, 22].  The advancement in imaging system also opens more 

possibility for flame image analysis, such as the utilization of high speed and multi-

spectral camera [23, 24].   
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1.4 Overview of Dissertation 

 The main focus of this study is in designing a complete system, using machine 

learning approach and inexpensive equipment to provide combustion assessment tool for 

gas-fired glass furnace.  Physically the system requires two primary devices: a CCD 

camera to acquire the images from the furnace’s interior and a workstation to run the 

image analysis software.  Figure 1.1 shows the proposed general process flow used for 

the system.  The camera is involved in the process for the image acquisition, afterwards 

the analysis is done using the workstation and it interfaces with the furnace control to 

provide the flame analysis result. 

 

Figure 1.1 Proposed Image Analysis Process 
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 The process flow follows a conventional machine learning process.  The acquired 

digital color images are converted into grayscale images based on its R, G, B, H, S and V 

channels.  Afterwards, two different process and analysis paths are required.  One path 

classifies the fuel level, while the other classifies oxidizer level.  As discovered from this 

study as well, fuel level classification result is needed to classify oxidizer as well. 

 The flame assessment is based on the fuel level and O/F ratio classification.  The 

idea is that the system will be able to tell whether the combustion is at fuel lean, fuel rich 

or stoichiometric condition at varying level of fuel and oxidizer.  Since the fuel level can 

be classified, it can provide information on what need to be adjusted if the combustion 

process is not at stoichiometry. 

 A preliminary study has been done as well in evaluating the feasibility of using 

images analysis to assess combustion technique in glass furnace with promising results 

[25].  This study share and support the same idea but utilizing different strategy to design 

comprehensive expert system architecture for possible implementation and integration 

with furnace control.  Additionally, unlike previous approach, the design also gives a 

possibility for a real-time analysis. 

 This dissertation is organized as follow:  Chapter two provides information on the 

image acquisition process from the CCD camera.  Chapter three covers image 

preprocessing to distinguish the flame region from the background image which is 

necessary so that features can be extracted properly. Chapter four provides the 

description of the features characteristics and strategies for analyzing the flame images.  

Key feature selection and its application for classifying fuel and oxidizer level is 

discussed and examined in chapter five along with the results based on experiment 
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conducted on pilot-scaled glass furnace.  The assessment of the combustion quality is 

then discussed in chapter six which proposed ways to build rules using fuzzy logic 

approach based on the key features thus completing the proposed architecture as shown 

in Figure 1.1.  Conclusion from this approach, future direction and improvement 

suggestions are discussed in chapter seven.  
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2. IMAGE ACQUISITION PROCESS 

 

2.1 Overview 

 Image acquisition process involves several steps which include capturing images 

from the flame in the furnace, extracting information from the physical phenomena based 

on the visible spectrum of light scene and converting it into its digital representation in 

the form of spatial two-dimensional color images.  The acquisition process and utilization 

of Charge-coupled devices (CCD) camera are discussed in this chapter. 

2.2 Color Representation 

 Imaging system works by collecting radiation information that is emitted by the 

objects and scene [26].  For human eye, the radiation is based on a narrow band of 

frequencies in the electromagnetic energy spectrum with wavelengths ranging from 360 

nm to 800 nm [27].  This range is known as visible light spectrum as shown in Figure 2.1.  

 

Figure 2.1 Range of Visible Spectrum in Nanometers 

 The camera utilized in this study is used to capture information emitted by lights 

in the visible spectrum and produces a visual reproduction for both human observer and 

image analysis purpose.  It is designed particularly for human observer, such that the 

visual information is acquired mostly from the visible spectrum.  The information then 

can be recreated on other imaging device, i.e., display device such as monitor or printing 
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device such as printers.  This information exchange requires a standardized means of for 

its representation which is achieved by using color models.  

 Color models are typically a three-dimensional coordinate system, where each 

color is represented as a point within the subspace [28].  There are various types of color 

models available for various purpose and applications, each with their own strength and 

limitation.  In this study, RGB and HSV color models are selected and utilized as 

discussed below.  

2.2.1 RGB Color Model 

RGB color model is a type of additive color model that uses three primary color 

channels or components to describe colors: red, green, and blue [29, 30].  The additive 

nature means production of colors based on combining any of the three primaries.  

Combination of the three components with equal maximum intensity yields white color 

while the absence of all of them yields black.  A combination of every two of the three 

components will yield secondary colors.  Figure 2.2 shows the additive nature of RGB 

color space.  Other colors are reproduced based on the variable combination of the three 

primaries.  Figure 2.3 shows a sample of RGB color space with its three axes 

representing the three primary components ranging from 0 to 1. 

 

Figure 2.2 Additive Nature of RGB Color Model 
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Figure 2.3 RGB Color Model 

 
RGB’s color model is related to human’s trichromatic visual system.  Human 

perceive colors based on the combination of three primary colors: red (R), green (G), and 

blue (B).  Each of these primary colors corresponds to the three types of conic 

photoreceptors cells located in human eye [27].  Each type has different sensitivity 

towards different range in the visible spectrum.  They are named as long (L), medium (M) 

and short (S) according to their wavelength sensitivity [27].  The various combinations of 

stimulation to the three types of photoreceptors are translated by the brain into what 

perceived as “colors” in human visual system.  The sensitivity of each photoreceptor 

however is not uniform and varies from one person to another.  Hence color perception 

can be very objective without any available guideline.  

In 1931, The Commission Internationale de l'Eclairage or The International 

Commission on Illumination (CIE) standardized human spectral response and set a 

specific wavelength values for the three primary colors.  These values are: blue = 435.8 

nm, green = 546.1 nm and red = 700 nm [26, 28].  Figure 2.4 shows the human spectral 

response based on the CIE standard.  The standard helps in defining the primary 

components characteristic in imaging devices designed for human observer such as 

television and monitor display.  
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Figure 2.4 Human Color Perception Sensitivity 

 
 RGB color model is convenient to use in this study since it is the native color 

model for image representation in the hardware devices such as the camera and monitor 

display.  In this particular study the native format is 24 bit RGB, where each primary 

color is represented by an 8-bit integer values.  Hence each channel has the range of 0 to 

255 with a total combination of approximately 16 millions possible colors. 

RGB representation of colors is not perceptually intuitive for human observer.  

This is due to non-uniform spectral response in human perception.  For example, if one 

doubles the intensity of a color (i.e., R:127 G:127 B:127 to R:255 G:255 B:255), it will 

not be perceived as twice as bright by human observer [26].  Hence for an analysis that 

involves human visual judgment, RGB color model may not be sufficient.  This is the 

reason for the inclusion of HSV color model as discussed below. 

 

2.2.2 HSV Color Model 

 Created in 1978 by Alvy Ray Smith, HSV is a color model that also represents 

colors using three components as well.  The components however designed for describing 

color the way a human would.  The three components in HSV color model are hue (H), 

saturation (S) and value (V).   
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 Hue is an attribute associated with the dominant wavelength in a mixture of light 

waves [28, 31].  For example, a light wave with central tendency of 565 to 590 nm will 

be perceived as “yellow” by human observer.  In HSV color model, hue represents the 

dominant color as observed by the human eye and measured in degree from 0° to 360°.  

 Saturation measures how vivid or pure a color is.  The purity refers the amount of 

“white” color mixed with a hue.  A highly saturated color implies a pure color while no 

saturation makes the hue appear grey.  The degree of saturation is inversely proportional 

to the amount of white light added.  White color has zero saturation. 

Value represents brightness of a color.  While hue and saturation defines 

chromaticity, value represents the achromatic notion of its intensity.  Pure achromatic 

colors range from black to white with all the possible gray colors in between.     

 HSV color space can be represented in various ways.  One typical representation 

is using a conical model as shown in Figure 2.5.   Hue is represented by the angular 

degree of the cone.  Saturation is represented by the distance from the center of any 

circular cross-section of the cone.  Value is represented by the distance to the bottom of 

the cone.  The conical shape represents limitation of human vision in differentiating 

chromaticity at different level of brightness [26]. 

 
Figure 2.5 HSV Color Space 
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 Since for this study the native color model is RGB, a nonlinear transformation 

operation is required to express the color in HSV format.  Hue parameter has a range of 0 

to 359, while both saturation and value have a range of 0 to 255.  EQ (2.1) shows the 

formula for the conversion from RGB to HSV. 
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MaxV =  

 where  R = Red value from RGB, ]255,0[∈R  
  G = Green value from RGB, ]255,0[∈G  
  B = Blue value from RGB, ]255,0[∈B  
  H = Hue value for HSV, ]360,0[∈H  
  S = Saturation value for HSV, ]255,0[∈S  
  V = Brightness value for HSV, ]255,0[∈V  
  Max = The maximum value of the color’s R, G and B components 
  Min =  The minimum value of the color’s R, G and B components 
 
 Aside for improving visual observation on the image, HSV color model proves to 

be useful in the image analysis process as discussed in the later chapters.   
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2.3 Image Acquisition using CCD Camera 

 Camera plays a very crucial role in the image acquisition process since it affects 

how the visual information is obtained from the real world scene.  For this study, a 

camera with charge-coupled device (CCD) sensor is utilized.  Technical specifications for 

the camera utilized here are provided in Appendix B [32]. 

 2.3.1 CCD Technology 

 CCD is a common imaging technology used for image acquisition process in 

digital photography as well as machine vision application.  Invented in 1969 by Willard 

Boyle and George Smith at AT&T Bell Labs, CCD is an image sensor technology that 

utilizes integrated circuit (IC) consisting of linked or coupled array of light-sensitive 

capacitors [33, 34]. 

 CCD has a characteristic of being small in size and very light in weight.  It also 

possesses a very high dynamic range with a near linear correlation between the incoming 

light energy and the produced electric signal [34]. 

2.3.2 Measuring Sensitivity 

 The quality of the visual information captured by CCD can be expressed using 

spectral response curve.  The curve defines its output per incident light energy per 

wavelength within its operating spectrum range [26].  Different type of CCD has different 

spectral response depending on the manufacturing technique. 

 Sensitivity is measured as percentage of photons from the incidental lights that are 

converted as electrical signal by the device.  This sensitivity is wavelength specific.  

Figure 2.6 shows the spectral response curve of the particular CCD camera used in this 

study. 
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Figure 2.6 Spectral Response Curve 

 

The IR cut filter is installed to remove unwanted information outside the visible 

spectrum range so that the acquired image remains similar to what a human observer 

would see.  Human observation is used to confirm correctness of the acquired images.  

As shown in Figure 2.6, with the IR cut filter installed, the CCD image sensor has 

sensitivity range from 350 to 800nm. 

2.3.3 Expressing Color Information with Single CCD 

 The camera used in this study is a single chip CCD as implicated by the single 

curve in the spectral response curve as shown in Figure 2.6.  Although this indicates that 

the camera is monochromatic, the actual resulting acquired image is in colors.  To depict 

colors, a color filter array (CFA) is used.  It is placed on top of the CCD chip after the IR 

cut filter as shown in Figure 2.7 [34]. 
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Figure 2.7 Usage of Color Array Filter 

 CFA is composed of various color filters aimed to specific visible wavelength.  

The filters are placed to split the incoming colors into its components.  The filters are 

designed in a mosaic pattern, where each filter provides one color component to one 

capacitor on the CCD beneath it.  The total number of filter in the CFA equals to the total 

resolution of the CCD camera.  Figure 2.8 shows the mosaic pattern used for this camera 

known as CYGM CFA which contains filter for cyan, yellow, green and magenta. 

 

 

 

Figure 2.8 CYGM Color Filter Array 

The approach implies that each pixel on the image has only one genuine color 

component extracted from the scene.  To obtain the information of the missing 

components for depicting the color of the pixel, it utilizes estimation algorithm based on 

its neighboring pixels’ information called “demosaicing” [35].   
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CFA filters are widely used since the camera only need a single CCD chip to 

produce color images.  It makes the camera inexpensive and more affordable with the 

tradeoff on color fidelity.  Alternatively one can utilize a more expensive three chip CCD.  

However, three chip CCD cameras have lower light sensitivity.  Another alternative is X3 

technology that enables a single image sensor to detect actual three color components of a 

single pixel using variable-depth photo detectors [36].  . 

Fortunately for this study, based on the experimental results, a single CCD camera 

is sufficient to achieve the desired goal.  The lesser color fidelity effect is suppressed 

since the image processing and analysis applied to the images are focused more on 

aggregated image regions rather than on specific individual pixel.   

 

2.3.4 Adjustment in CCD Camera 

 There are several parameters available to adjust the CCD camera to accommodate 

various scene conditions, such as shutter speed and gain control.  The acquisition rate of 

the CCD camera is defined at 30 frames per second.  That is, the electrical voltage 

contained within the capacitors on the CCD will be read every 1/30th of a second.  This 

rate is not adjustable.  To manage the amount of light exposed to the CCD, two 

parameters can be adjusted within CCD camera, the shutter speed and gain control. 

 Shutter speed is mechanism that resides on the camera for controlling the rate of 

exposure time.  The shutter speed can be adjusted from 1/60 per second to 1/10,000 per 

second.  For this study the shutter speed is set to be 1/60 per second which is the default 

setting. 
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 Gain control provides adjustment on the electrical current coming from the CCD 

chip.  Gain adjustment affects both the electrical signal of the actual data and its 

associated background noise [26,37].  For this particular study, no gain adjustment is 

made. 

2.4 Periscope Components 

 To protect the CCD camera from high temperature environment in the furnace, it 

is encased inside a water-cooled steel shell and called borescope or periscope [38] as 

shown in Figure 2.9.  The periscope has an objective lens with a 90-degree view angle so 

that it can provide a detailed view of the furnace’s interior.  The lens is kept clean by the 

purging air at the tip of the periscope. 

 

 

 

Figure 2.9 Periscope Components 

 The periscope is inserted into a port located on the furnace wall.  Two additional 

adjustments can be made on the periscope related to the image quality: iris and focus.  

Iris affects how much light can enter the periscope, while focus adjusts the focus of the 

image. 

 Once the physical setup is complete, the visual information captured by the 

camera is recorded and prepared for the next step. 
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2.5 Flame Image Preprocessing Preparation 

 Before the images are processed further, two additional preparation must be 

applied to the images which are deinterlacing and image cropping as discussed below. 

2.5.1 Deinterlacing 

 The particular CCD camera used in the study is an interlaced camera.  Interlacing 

technique is originally a technique in video transmission to maintain a good image 

quality within a limited frame rate or bandwidth.  An image is captured in a horizontal 

direction, row by row from top to bottom.  The rows are numbered from top to bottom, 

starting with number 1, such that they can be defined as odd or even fields according to 

their row number.  As illustrated in Figure 2.10 below, for an image with 6 x 6 pixels 

resolution, each of the odd and even field has 3 rows.  During image acquisition process, 

one field is filled with the visual information first before the other.  For an interlaced 

mage with acquisition rate of 30 frames per second, it implies that the rate of each field is 

60.   

 

Figure 2.10 Example of Interlaced Image Structure 

 Images acquired using interlacing can be a problem if the object within the scene 

moves or changes faster than the acquisition rate.  The reason is visual discrepancy 

between the odd and even field within the same image frame as shown in Figure 2.11. 

Odd Fields  Even Fields 
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Figure 2.11 Problem with Interlaced Image 

Deinterlacing process is needed to remedy the situation.  There are various 

different methods available to do this which usually involves interpolation [39, 40, 41].  

In this particular study, the approach taken is to convert the original image into two sub 

images based on the field group.  This approach will reduce the original resolution by 

half; however it maintains the original image information intact.  Figure 2.12 illustrates 

the deinterlacing process of the original acquired image and also shows the differences in 

the flame’s shape between fields. 

 

  `  

 

Figure 2.12 Deinterlacing Example of an Image Frame 

 

Odd Fields 
 
 
 
 
 

Even Fields 
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2.5.2 Cropping 

 During the image acquisition process, one must divide the image into different 

regions in order to discard unwanted trivial regions such as port walls as shown in Figure 

2.13.  The cropping process also reduces the amount of information to be processed in the 

following step.  Further discussion of impact and usefulness of cropping will be provided 

in the later chapters. 

    

Figure 2.13 Cropping an Image Frame 

 

Once the deinterlacing and cropping processes are completed, the acquired images are 

ready to be analyzed further as discussed in the next chapter. 
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3. FLAME IMAGE PREPROCESSING 

 

3.1 Overview 

 Preprocessing is the first step applied on the flame images such that desired 

information can be extracted and analyzed on the subsequent stages.  The goal is to find a 

way to minimize the impact of non-flame (background) region on the flame images, such 

that the image would only contain the flame region.  This process is necessary in order to 

extract the desired information about the flame from its image. 

 Two possible approaches are proposed in this study.  First is through the process 

of segmentation, which can be defined as a process of subdividing images into desired 

parts [42].  Particularly in this study, the segmentation process will subdivide the image 

into two parts, flame and non-flame regions.  Another approach is through image 

enhancement technique, which is specifically designed and proposed for this study.  This 

new approach is based on scaling by power function to emphasize flame region while 

suppressing background or non-flame regions.  Both methods have their own advantages 

and limitations as will be discussed in this chapter. 
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3.2 Segmentation Approach 

In segmentation approach, one would subdivide the image into sub-images based 

on certain criteria.  For this study, the image will be segmented into two sub-images, the 

flame and non-flame regions.  Figure 3.1 shows an example of a flame image before and 

after segmentation, with zero (black) pixel intensity is assigned to non-flame region.   

There are numbers of possible techniques for segmentation process [43, 44] and 

Otsu’s thresholding technique [45] is selected in this study.  The characteristics and 

implementation of this technique will be discussed in this chapter. 

 

 

 
Figure 3.1 Sample of a Flame Image before and after Segmentation Process  

by Otsu Thresholding Technique 

 

Prior study [25] also utilized a segmentation step as well.  Although a different 

segmentation technique, nevertheless the segmented flame images contain relevant 

information that strongly correlate with the flame condition regardless of the chosen 

technique.  

 The segmentation procedure can be achieved with a rather simple but effective 

approach due to the favorable condition of the images in this study as explained below. 

First, the types of objects that may exist in the images are known.  Although the 

flame moves, its movement is within a boundary that can be approximated well.  The 
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pixels’ intensity that constitute to the flames region in the images consistently have 

higher value or are brighter as compared to the non-flame regions.  The non-flames 

regions mostly depict the furnace wall.  As compared to the flame regions; the 

background pixels’ intensity are substantially lower.  Therefore, any procedures that can 

successfully separate between regions with lower pixel intensities and higher ones will 

provide the desirable segmentation.   

Previous study segments the image based on a manually selected set of threshold 

values beforehand.  These values act as thresholds for red, green, blue, hue, saturation 

and value channel such that any pixel values above the threshold will be left as is and 

zero otherwise.   

Although proven to be effective, the prior segmentation approach has several 

limitations.  First, the selected thresholds are constant values which are determined based 

on a few selected images acting as the reference or ground truth.  This can pose a 

problem since it might segment the subsequent images incorrectly should the flame 

behavior differs from the reference.  Furthermore there are no clear criteria on choosing 

the reference themselves.  Lastly, the threshold values are picked based on domain 

expert’s view and assessment on how the segmented results should look like which is 

potentially subjective. 

In this regard, a more robust and dynamic method of segmentation is needed.  The 

technique should not require a priori known reference rather it should be adaptively 

segment each image while providing acceptable confidence on its segmentation quality.  

Moreover, to make it more practical, segmentation process should be done automatically 

instead of requiring manual setup. 
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 There are many different methods on how one can segment an image.  

Particularly for color images, they have varying degree of complexity and sometimes 

may result more than one segmented object.  However, due to the particular image 

characteristics the separability between flame and non-flame regions is possible as 

discussed before and the procedure can be simplified to grayscale segmentation.   

 Each channel of a single image will be treated as a grayscale image that will be 

segmented separately.  Hence for each image, there are six possible segmentation results 

based on red, green, blue, hue, saturation and value channel.  For each channel, now 

treated as grayscale images, the image will be segmented into flame and non-flame 

regions.  Note that each channel will depict the notion of ‘flame region’ quite differently 

as shown in Figure 3.2.  Each of the six grayscale images shows consistency of 

separability between flame and non-flame regions.  The degree of separability is different 

for each channel based on its color space property.  Otsu thresholding method is selected 

and utilized for the segmentation procedure. 

 

 

 

Figure 3.2 Six Grayscale Images Derived from Image in Figure 3.1 Depicting (a) Red, (b) Green,  

(c) Blue, (d) Hue,  (e) Saturation and (f) Value Channel 

 

 

 

 

(a)    (b)    (c) 

(d)    (e)    (f) 
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3.2.1 Otsu Thresholding 

Otsu threshold is a segmentation technique based on finding the optimal threshold 

T that would separate an image into two classes (e.g. black and white).  The optimal 

threshold in this case is defined as the intensity value that would maximize the uniformity 

within each class or minimize the within class variance of its pixel intensity distribution 

[45].  The assumption is that the image can indeed be separated into two classes, which 

fits well to the flame image segmentation task. 

Once the threshold T is selected, image’s pixels will be grouped with one class 

for all values below or equal to T and another class for greater than T.  The characteristic 

of the segmentation can be better understood by analyzing on how the thresholding 

technique works. 

 
0                             94       131                  200            255 

Figure 3.3 A Sample Pixel Distribution for The Blue Channel of a Flame Image 

 

A sample pixel distribution is shown as histogram in Figure 3.3 that is derived 

from the blue channel of the flame image depicted in Figure 3.2.  The pixel intensity 

value ranges from 0 to 255, with 0 being pure black and 255 pure white.  The threshold T 

thus has a range from 1 to 254.  There can be many possibility of choosing the threshold 

T to achieve the desired segmentation. 
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Figure 3.4 shows a sample of segmentation results, using two different manually 

selected thresholds at 94 and 200.  Using Otsu’s method, the threshold would be 

calculated as 131.   

 
Figure 3.4 Segmentation Results using Threshold at 200, 131 and 94 (Top to Bottom) 

  

Using the image from the blue channel for an example, as shown in Figure 3.4, 

the flame regions are classified as white pixels.  A different threshold value yield a 

different size of the flame regions.  As shown in this example, lower threshold will 

classify soot as white.  Soot regions do contain useful properties according to some 

studies for other combustion condition [46, 47] but still unknown for the combustion 

observed in this study.  At higher threshold, the flame regions shrinks since some part of 

it are classified as non-flame region or black pixels.  Hence, by changing the threshold 

one can change the size of the flame regions.  The key question is how to obtain the 

optimal threshold.   

 Otsu’s thresholding is a method which attempt to find the threshold T that 

separates the image into two classes by maximizing the cost function σ (See EQ 3.6) 
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through iterative process.  The two classes in this case would group the image pixels 

based on their intensity values, representing the flame and non-flame regions.   

 There are two general types of Otsu threshold methods, global and local.  Global 

method calculates threshold T that classifies the entire pixel in the image and segment it 

into two classes.  On the other hand, local method computes more than one threshold T, 

each of them segments some parts and subsets of the whole image.  The size of the subset 

is predetermined manually.  Local method is preferable if the image is expected to 

contain or can be separated into more than two classes.  Since the flame image is 

expected to have only two classes, global method is chosen for the task.  The method’s 

algorithm utilizes a set of equations as shown in EQ (3.1) to EQ (3.6).   

The Otsu algorithm can be summarized as follow: 

1. Set threshold = 1, σ’ = 0. 
2. Iterate from x = 1 until 254 do step 3 to 6: 
3. Compute q1(x) and q2(x) 
4. Compute µ1(x) and µ2(x) 
5. Compute σ. 
6. If σ’ < σ, set  σ’ to  σ and threshold to x 
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where  µ1(x) = Average pixels intensity for pixel intensity 0 to x 
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where  µ2(x) = Average pixels intensity for pixel intensity x to 255 
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where  σ  = cost function 
 

 The method can be understood by examining the formula and algorithm above.  

To begin with, it is an iterative method that attempts to find the maximum σ, such that 

both class’ averages, µ1(x) and µ2(x), will have maximum dissimilarity for some q1(x) 

and q2(x).  This implies that the two classes are optimally separated.   

The summation of q1(x) and q2(x) is equal to 1, thus they can be considered as 

probability of q1(x) and 1-q1(x) (“Not” q1(x)) given pixel intensity x.  The product of both 

components q1(x) and 1-q1(x) will find T such that the resulting variance will be 

minimum for each class.  In other word, each class will contain pixels with most similar 

intensity values.    

Thus the method can be summarized as an attempt to find a threshold T that will 

minimize variance within the same class and maximize variance between the two classes.   

A flame image always can be segmented into two classes.  This is because pixels’ 

intensity from the flame region is always different from that of non-flame.  At the same 

time, pixel intensities within the flame region, are very uniform with relatively little 

variance.  This situation will guarantee a low variance for 1 class.  However the non-
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flame region’s pixel intensity might not necessarily be uniform as previously shown in 

Figure 3.4.  Since this is a two-class classification problem, fortunately by successfully 

classifying one class, it will indirectly classify the others into one.  This is reflected by 

the q1(x) and 1-q1(x) component in Otsu’s method. 

 One special condition need to be taken care of with the automated thresholding 

method.  This is a condition when the flame is shut off, thereby creating a situation where 

the threshold T value will be meaningless.  Fortunately the condition can be detected 

based on the range of threshold T value.  Without the flame, the pixel intensity of the 

entire image has little variance and relatively dimmer which lead to lower range of 

threshold T values compared to when flame exists in the image.  This range can be 

determined through experiments. 

3.2.2 Segmentation Result 

Based on the experimental results, Otsu’s method applied on the six channels 

consistently yields good segmentation quality.  The quality of segmentation do differs for 

each channel, some better than the other.  In general, they are able to separate the flame 

regions as shown in Figure 3.5.  Blue channel in particular has a very good segmentation 

quality.   This is due to the fact that the flame region in the original image is significantly 

more saturated and brighter than its surrounding as visually apparent from the grayscale 

images shown in Figure 3.2. 

 
Figure 3.5 Sample of Otsu’s Threshold Results on Red, Green, Blue,  Hue,  Saturation and Value 

(Left to right, top to bottom) 
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There is no guarantee however, whether Otsu’s method would outperform or as 

good as manual segmentation done in the previous study.  Nonetheless it has the 

advantage of providing automated segmentation and the computation is adaptive, i.e. it 

takes into account the nature of the images.  Based on the experiments in this particular 

study, it works very well for this particular study. 

The method has its disadvantage nonetheless.  Compared to manual thresholding, 

it is much more expensive to calculate, thus affects the entire system performance 

substantially.  However based on the experiments, the performance is still quite 

acceptable.  With a more powerful hardware and resources, eventually this will not be a 

problem. 

Once segmentation is applied to the images, six different results will indicate the 

flame regions in black and white, as shown in Figure 3.5.  Except for saturation channel’s 

result, white region represents flame regions.  For the other channel, higher pixel 

intensity in the image indicates pixels that represent the flame region.  For saturation, 

lower pixel intensity represents the flame regions since zero saturation implies least 

saturated pixel.  Least saturated implies the ‘whitish’ regions in the original image which 

corresponds to the flame region.   

These black and white images shown in Figure 3.5 are also called ‘masks’.  The 

system would use them to determine where the flame region would be.  Information will 

be extracted only from the flame region as indicated by these masks as white pixel.  The 

masking process is shown in EQ (3.7).   
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),(),(),(' yxMyxPyxP ×=    EQ (3.7) 

where  P’(x,y)  = pixel intensity on the masked image at coordinate (x ,y) 
P(x,y)  = pixel intensity of the original image at coordinate (x ,y) 
M(x,y)  = pixel intensity of the mask at coordinate (x ,y) which is either 0 for  

   black or 1 for white 
 

A sample of a masked image result is shown in Figure 3.6 which is the result of 

the mask created by applying Otsu threshold method on the blue channel. 

 

 
Figure 3.6 Masked Image based on Segmentation Mask derived from the Blue Channel 

 

3.2.3 Segmentation Limitation 

 Aside from the advantages of incorporating Otsu method, there are several 

limitations that need to be addressed and discussed as well.   

One possible drawback in using Otsu method is its dependency upon the size of 

the crop window.  The crop size will completely include the flame region by default, 

however there are flexibility in determining how much non-flame regions is needed in 

order to exploit Otsu’s thresholding property in achieving the two-class segmentation 

goal.  Based on the experiments, incorrect crop size will lead to incorrect segmentation 

due to possible non-uniform pixel intensity on the non-flame region. 

Figure 3.7 shows various possible crop window to generate a sub-image that 

contains both flame and non-flame regions.  The crop size will directly affects the shape 

of the pixel intensity distribution and finding the optimal size is not trivial.   
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Figure 3.7 Various Possible Crop Size Windows Shown in Red, Green and Blue Borders  

 

Figure 3.8 shows one possible incorrect segmentation should the crop size is too 

big.  The error is caused by the non-uniform non-flame region.  The non-flame region in 

this case, includes the furnace’s interior and also the hole on the wall where the camera is 

placed.  The intensity difference between the furnace interior and hole on the wall is more 

substantial than the difference between flame and non-flame region, hence the incorrect 

segmentation. 

 

Figure 3.8 Incorrect Mask Due to Incorrect Crop Size using Green Channel 

Another possible drawback is due to the fact that the lighting property of t he 

scene in the image is affected by the flame itself.  The hotter the flame, the brighter the 

overall image will become.  Moreover, the hotter flame will also heat the furnace wall 
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more which in turns cause them to glow brighter.  Figure 3.9 shows such situation due to 

a high flow in fuel and air.   

 

Figure 3.9 Incorrect Mask Due to Glowing Furnace’s Interior Wall using Green Channel 

 
The non-uniform background region is also channel dependent.  The severity of 

the segmentation error is different for each of the color channels.   Figure 3.10 shows the 

mask that is created based on segmentation on blue channel.  Since blue pixel intensity is 

apparently very low unless around the flame region, the resulted mask is still correct even 

with the wrong crop size or non-uniform background. 

 
Figure 3.10 Correct Mask with Incorrect Crop Size and Non-Uniform Background  

using Blue Channel 
 

Non-uniform background implies a difficulty in detecting non-flame region due to 

a possibility of having more than two distinctive groups of pixels in their distribution.  

The groups usually can be reflected by the number of local maxima in the distribution.  

Hence, the pixel intensity distribution of the image to be segmented may not reflect the 

desired two classes as shown in Figure 3.11.  This is a well known problem in two-class 

segmentation [42] and Otsu’s method certainly affected by it.  The impact in real case is 

not as severe as the simulated image of Figure 3.11, otherwise Otsu’s method would have 
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failed completely.  However the existence of this limitation still need to be addressed and 

it leads to the second strategy of using different approach in achieving the desired flame 

image preprocessing. 

 

 
Figure 3.11 Sample of Uniform and Non-Uniform Background with their Pixel Intensity 

Distribution 
 

 

 

 

 

 

 

a. Uniform Background 

b. Non-uniform Background 
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3.3 Image Enhancement Procedure 

 Segmentation technique divides an image into separate sub-images, whereas 

image enhancement utilizes a function to convert an image into a processed image with 

more desirable characteristics.  There are many varieties of functions in image 

enhancement technique for various applications [48]. 

 An image enhancement technique is designed specifically for this study to 

overcome the limitation of Otsu’s method discussed previously.  The goal of the 

proposed technique is to suppress pixels’ intensity in the non-flame region such that the 

impact of the background on the image analysis will be insignificant.  This is achieved by 

using a function defined as “Intensity Suppression” method as proposed and applied here. 

 3.3.1 Intensity Suppression Method  

Intensity suppression method is a type of image enhancement requiring 2 steps: 1) 

Transformation of the range of the pixel intensity between 0 and 1, and 2) Modifying the 

pixel intensity of the original image using a selected magnitude of power.   

The first step is achieved by dividing the pixel intensity by the maximum intensity, 

which is 255 in this particular study.  This step would not be necessary should the 

original image have its pixel intensity range from 0 to 1.  The transformation is necessary 

so that the resulting processed image will have pixel intensity value from 0 to 1 as well.  

In addition, the range of 0 to 1 is useful for both displaying and feature extraction process. 

The second step is depicted in EQ (3.8), which is the proposed formula as 

implemented in this study.   
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where  P(x,y)  = pixel intensity of the image at coordinate (x ,y) 
P’(x,y)  = pixel intensity of the new image at coordinate (x ,y) 
n  = the degree of power applied to P(x ,y) 

 

Similar to Otsu’s method, the image conversion will be applied separately for 

each color channel.  The method is relatively simple to compute but sufficiently practical 

in achieving the desired goal as shown in Figure 3.12.  Note that the image in Figure 3.12 

is the same image that Otsu’s method incorrectly segments as shown in Figure 3.9.   

 

Figure 3.12 Sample of Intensity Suppression using n = 4 using Green Channel 

 

An exponential function has a property of reducing pixel intensities with the range 

of 0 to 1, such that lower intensities will be reduced more than higher ones as shown in 

Figure 3.13.  Hence, the method is appropriate for this study since the lower background 

intensities could be substantially reduced as the power of the exponential function 

increase.       
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Figure 3.13 Sample plot of Exponential Function with Varying Degree of Magnitude 

3.3.2 Intensity Suppression Result  

Based on the experiment, the resulted processed images have intensity reduction 

on the non-flame region that is more significant that they become relatively more uniform.  

At the same time, for the relatively higher pixels intensity of the flame region, their 

intensity is less reduced if not retained.  Furthermore, even for flame pixels with not very 

high intensities, their reduction will always be much less compared to the non-flame 

region.  

Figure 3.14 shows results based on the images shown in Figure 3.9 and 3.12 with 

various magnitude of power n and corresponding pixel intensity distribution.  The higher 

the power n the more pixels will be converted to lower intensity, hence, shifting the 

distribution shape towards the lower range.  Note the change of the scale in the 

distribution plot of Figure 3.14.   

The lower range of the distribution depicts the non-flame region while flame 

pixels are at a higher range compared to the background region.  Intensity suppression 

when applied to the non-flame region pixels causes them to have intensities even lower 
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and closer to zero; hence their intensity values are closer to each other than before 

thereby generating a more uniform background.  The intensity values of the flame region 

are also suppressed, however, since their intensity values are always higher than the non-

flame regions, the degree of reduction is much less than the background.  The resulting 

processed image will then have the non-flame regions more uniform while keeping the 

flame region separable from them. 

A uniform non-flame region makes this particular method not dependent on the 

crop window size since different crop sizes will only add or remove non-flame pixels 

with a more or less similar intensity values. 

As the power n increases the size of the flame is reduced further to the point only 

the brightest flame region remains.  Hence one would need to be careful in selecting the 

parameter n to avoid losing desired information. 

 Unlike segmentation method which uses mask, with proposed image enhancement 

method there is no additional step.  The intensity suppression generates a weighted image 

based on its own pixel intensity while masking process in segmentation method, as 

depicted in EQ (3.7), weights each pixel with either a 1 or 0 constant. 
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Figure 3.14 Sample of Intensity Suppression Results on Green Channel with The Corresponding 
Intensity Pixel Distribution 

 

n = 1 

n = 2 

n = 3 

n = 4 

n = 10 
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3.3.3 Image Enhancement Limitation 

 Even though the proposed method addresses certain drawbacks with Otsu method 

such as crop window size dependency and non-uniform background, it still possesses 

certain limitation. 

  As shown in Figure 3.14, there are many possible values of n to select with 

varying degree of results.  It is treated as an independent parameter in the system and its 

adjustment varies depending on the furnace under study.  The selection of the power n is 

very crucial and needs to be chosen properly in every furnace application.  In this study, 

the selection of the value of n is based on experiment and is set to 4. 

In this study both the Otsu’s segmentation and the proposed image enhancement 

are adopted in the strategy for flame image preprocessing.  The resulting processed 

images then will be ready for feature extraction process as discussed in the next chapter. 
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4. FEATURES DESIGN 

 

4.1 Overview 

 This chapter is dedicated to definition, design and explanation of “features” and 

feature extraction techniques. 

 After the flame images are segmented, the next step is to obtain the essential 

information from them.  This information, called features, is a set of numerical data 

calculated from the flame image on which the flame analysis will be based upon.  The 

process of deriving these features from the image is called the feature extraction process.   

Features are extracted from the flame image in several ways.  Some of the 

features are statistical measurement based on the pixel intensity of the flame image while 

others are based on geometrical or structural aspect of it.  At the present, there are five 

feature examined in prior study [25] and also four new ones are proposed and explored in 

this study.  Their design, characteristic and formulization will be discussed in detail in 

this chapter. 

4.2 Feature Definition 

Features are essentially algorithms based on mathematical formulas.  The choice 

and possibility in designing one can be very complex.  In this particular study, some of 

the important aspects to consider are simplicity to minimize calculation time, robustness 

to minimize impact of other variables on their values, and high sensitivity in order to 

maximize their detection in all operation condition.   
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Simplicity is important because the flame analysis system is designed to be a real-

time application.  At the same time, one would need to be able to correlate the feature to 

the actual physical phenomenon as close as possible.  Robustness is in reference to a 

feature that will be reliable and consistent from one experiment to another and easily 

applicable to various different types of furnaces.  Finally sensitivity is very important as 

the features must not only be able to reflect the characteristic of the flames but also to 

detect the changes in an acceptable time frame.  

Based on each channel of RGB and HSV color space, there are six different kind 

of segmented flame images.  Thus, for each type of feature there will be six 

measurements generated based on each channel.  There are a total of nine feature types in 

this study; hence the total number of possible features output is 54 given one image frame. 

To calculate the value of each feature, one needs to establish a coordinate system 

to identify each pixel location.  EQ (4.1) will be used to represent pixel intensity of a 

flame image or frame at position (x, y).  The two-dimensional coordinate system used to 

reference a pixel position in an image is shown in Figure 4.1.  Given the flame image 

with size w x h, its top left corner coordinate will be set as (0, 0) and bottom right corner 

as (w-1, h-1).  

 
Figure 4.1 Coordinate System Configuration 
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P(x,y) = pixel intensity value at position (x,y) 

[ ]1,0 −∈ wx  , [ ]1,0 −∈ hy  and [ ]255,0),( ∈yxP    EQ (4.1) 

4.2.1 Previously Implemented Features Set 

This section describes the mathematical representative of several features from 

prior related study on flame image processing [25] that are utilized here, as well as the 

four new features designed in this research work.  Five prior features are also utilized 

here because they show good sensitivity toward changes in air and fuel level.  These 

features are named area, average, variance, skew and kurtosis. 

4.2.1.1 Area 

 Area refers to the total number of non-zero pixels in a given image.  The idea is 

that the visible size of the flame would correlate directly with how both air and fuel 

intakes change.  The increase in the level of either one would constitute to bigger flame 

size and vice versa.  EQ (4.2) shows the formula used to compute area.  It is one of the 

simplest features to compute and is extracted first because it is used by other features as 

part of their calculation.   
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 where A = area 
  Iij = unit measure for pixel at location (i, j), 1 being flame pixel and 0  
         being  background pixel 
  P(i, j)  = pixel intensity at location (i, j)  
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4.2.1.2 Average 

Average, with its formula as shown in EQ (4.3), measures the average pixel 

intensity of the flame region in the segmented flame image.  It is one of the best features 

according to previous study [25] in detecting changes in flame characteristic.   
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 where µ = average 
  A = area 
  P(i, j)  = pixel intensity at location (i, j)  
 
 

It should be mentioned that since the image is segmented; its regions that are 

considered to be non-flame have pixel intensity of zero.  Therefore average feature can be 

considered as computing the average intensity of non-zero pixels in the image.   

Average computation requires area as one of its parameter.  Thus its output would 

be available after area has been computed.  In turns, average’s output will also become a 

parameter for other features calculation such as variance, skew and kurtosis. 

Based on the experiments, the pixels intensity values in the flame region are 

relatively homogenous.  Hence its average could be a reliable source in reflecting the 

changes in flame region and its condition. 

 
4.2.1.3 Variance 

Similar to average, variance also suggested to be a good feature based on previous 

study [25].  Measuring variance of the pixel intensity in the flame region reflects the 

magnitude of fluctuation or non-uniformity of the region.  

Variance computation has the same order of complexity as area and average.  It 

requires both area and average for its computation as shown in EQ (4.4).  Variance is 
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computed following the average.  Its output in turn becomes a parameter for both skew 

and kurtosis feature calculation.  Since the numbers of pixel are relatively large, the 

biased version of variance is used in EQ (4.4). 
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 where V = variance 
  µ = average 
  A = area 
  P(i, j)  = pixel intensity at location (i, j)  
 
4.2.1.4 Skew 

Skew is a feature for measuring the degree of unevenness of a distribution.  

Skew’s value will be more negative for a distribution that is skewed to the left, positive 

for skewed to the right and zero for normal.  As a feature, it is used to measure the 

skewness of the pixel intensity distribution of the flame image.  EQ (4.5) shows the 

formula used in this study to compute skew.   
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 where S = skew 
  V = variance 
  µ = average 
  A = area 
  P(i, j)  = pixel intensity at location (i, j)  

 

Skew is a good feature as well, in particular since the original image in this study 

is segmented using Otsu Threshold method that takes into account the overall pixel 

intensity distribution.  Hence, skew measurement can be very sensitive to visible changes 

of the flame’s condition.  The only drawback, as shown in the equation, is that it can be 
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computationally intensive to measure.  Moreover, its calculation has to wait until area, 

average and variance have been computed. 

 

4.2.1.5 Kurtosis 

Similar to skew, kurtosis is also originally a statistical measurement representing 

shape of a distribution.  In this case, a small value means a distribution that is very 

narrow and concentrated around the mean, while large value implies a broad distribution.  

EQ (4.6) shows the formula incorporated to measure kurtosis.  Its inclusion is also 

important since it reflects the intensity distribution.  Like skew, it is computationally 

intensive.  Similarly, its calculation has to wait until area, average and variance have been 

computed. 
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 where K = kurtosis 
  V = variance 
  µ = average 
  A = area 
  P(i, j)  = pixel intensity at location (i, j)  
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4.2.2 New Feature Set 

Aside from the above features introduced in the previous study, four new ones are 

designed and examined as well.  Based on the experimental results they contribute in 

further improvements for real time flame analysis.  These are otsu threshold level, image 

entropy, average flame temperature and center of mass.  Their description and 

corresponding mathematical equations are explained below.  

4.2.2.1 Otsu Treshold Level 

Otsu threshold level, as discussed in the previous chapter, refers to the pixel 

intensity value derived using Otsu method to obtain the flame region in the image.  

Naturally, it would be the first feature to be computed and its output will affect the other 

features.   

The Otsu threshold value inclusion as a feature along with its reasons is already 

explained in the previous chapter.   

4.2.2.2 Image Entropy 

In image compression, one would like to reduce the data size of an image as much 

as possible without losing the important information contained in it.  Image entropy, as 

typically used for image compression [49], is a method to measures the amount of 

information an image contains.   

The term “information” is a representative of how homogenous the pixel intensity 

values are.  The more uniform the pixels intensity, the less informative the data carried by 

the image.  This uniformity measurement further implies the likelihood of one’s ability to 

aggregate them, thereby reducing the image’s data size.   
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In this study, image entropy is anticipated to provide some measurement of 

uniformity of the pixels intensity of the flame region.  Entropy has a relatively similar 

goal as variance, although with a different way of expression.  Its computation is less 

taxing compared to variance.  It does require that pixel intensity distributions be available 

beforehand.  Fortunately, during the feature extraction process, they are available for 

Otsu threshold computation for image segmentation.  Additionally, unlike variance, 

image entropy can be computed as soon as the segmented flame image is available.  Its 

inclusion therefore is not only to improve the flame analysis, but also to provide a 

possibility of replacing another feature that is more taxing to calculate.  EQ (4.8) shows 

the formula used to compute entropy [50].  Note that its input value are not normalized to 

simplify and expedite its computation. 

∑
=

−=
255

0
2log

i
ii hhE , QE ∈        EQ (4.8) 

 where E = image entropy 
                       hi = number of pixels with intensity i, [ ]255,0∈i   
 
4.2.2.3 Average Flame Temperature 

Flame color is a well known indicator for flame condition and has been one of the 

conventional means for the furnace operator to monitor furnace flame.  Flame color is 

directly related to its temperature; therefore temperature is a very good feature that is 

sensitive to the flame condition.  Fortunately it is feasible to measure temperature based 

on the flame image using technique called two-color method. 

 Two-Color method is a well known technique for measuring temperature using 

total radiation from luminous gas flame in a furnace, as pioneered by Hottel and 

Broughton [51].  The method selects two wavelengths of its radiation spectrum and its 
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conceptual formulation is based on Planck’s Law of blackbody radiation [52].  It has 

been used by scientists for measuring temperature in coal burner, steel furnace, and 

combustion engines [15, 17, 53, 54].   

The two color based temperature information can be obtained in many ways [55].  

A one dimensional flame temperature can be obtained by using a spectrometer which is 

explained in a prior research activity [56].  Furthermore, a two dimensional flame 

temperature measurement can be obtained from images taken by a CCD camera based on 

proportionality of radiation energy to image pixel intensity [57].  Therefore, it is possible 

to measure flame temperature based on the flame images and use them as feature. 

EQ (4.9) shows the original formula to measure pixel temperature at position (x, y) 

in the image.  The equation involves several known constants and coefficients that need 

to be computed or known beforehand.  C2 is one of the constant for Planck’s radiation 

law.  λR and λG are the wavelength of red and green channel, 700nm and 546nm 

respectively. CA is a correction coefficient required because pixel intensity is used instead 

of radiation energy.  It is also influenced by factors such as spectral sensitivity of the 

CCD camera, sensor noise, etc.  εR and εG are emmisivity constant for red and green 

channel respectively. 
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 where T(x,y) = temperature for pixel at position (x,y), in K. 
  C2 = Second Planck’s constant 
  PR(x,y) = Image’s pixel intensity of Red channel at position (x,y) 
  PG(x,y) = Image’s pixel intensity of Green channel at position (x,y) 
  λR = Constant of Red channel’s radiation wavelength 
  λG = Constant of Green channel’s radiation wavelength 
  CA = Correction coefficient 
  εR = Emissivity constant for Red channel 
  εG = Emissivity constant for Green channel 

 

One technique used to measure the temperature is based on utilizing a known 

temperature from external independent temperature measurement device such as IR Gun 

or thermocouple, and calculating a comprehensive correction C'A which contains both CA 

and the emmisivity approximation as well.  The formula for C'A is given in EQ (4.10) 

[57].   
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 EQ (4.10) 

 where C'A = Comprehensive correction coefficient 
  PR(x,y) = Image’s pixel intensity of Red channel at position (x,y) 
  PG(x,y) = Image’s pixel intensity of Green channel at position (x,y) 
  λR = Constant of Red channel’s radiation wavelength 
  λG = Constant of Green channel’s radiation wavelength 
  Tknown = A known reference temperature 
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With a measurable C'A as the comprehensive correction coefficient, one can 

measure the temperature on a given location (x, y) on the image based on EQ (4.11) [57].  

Using this temperature one can measure the new feature µT, which is the average 

temperature of the flame region in the segmented flame image as shown in EQ (4.12).   
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 where T(x,y) = temperature for pixel at position (x,y), in K. 
  C2 = Second Planck’s constant 
  λR = Constant of Red channel’s radiation wavelength 
  λG = Constant of Green channel’s radiation wavelength 
  PR(x,y) = Image’s pixel intensity of Red channel at position (x,y) 
  PG(x,y) = Image’s pixel intensity of Green channel at position (x,y) 
  C'A = Comprehensive correction coefficient 
 
 
 
 

Table 4.1 Constants Values Used for Temperature Feature 

Constant 
Parameter 

Value 

C2 0.0143875 
λR  700E-9 
λG   546E-9 
C'A 5.6874 
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 where  µT = Average temperature of the flame region 
  T(i, j) = Temperature for pixel at position (i, j), in K. 
  Iij = unit measure for pixel at location (i, j), 1 being flame pixel and 0  
         being  background pixel 
  A = Flame area as computed using EQ (4.2) 
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 Although temperature is probably the most relevant feature to correlate with the 

furnace flame, it has its own challenge of identifying the level of accuracy of the 

measured temperature.  Due to the sensitivity of the correction coefficient used in the 

temperature equation, it must be calculated for the same flame under study otherwise the 

calculated value could be off from the actual temperature.  Its inclusion as a feature in 

this study however is valuable beyond its accuracy because the trend of its output is very 

useful.  That is, its rate of change and sensitivity toward the physical changes in the 

furnace flame is indeed more important for this study than the absolute temperature 

measurement itself. 

 

4.2.2.4 Flame’s Center of Mass about Y Axis 

The visual appearance of the flame is not made of uniform pixel intensity even 

though they are brighter than the background.  Part of its region is particularly brighter 

then the rest and located relatively around the same region in the flame as shown in 

Figure 4.2.  Its existence is the reason for incorporating center of mass computation as a 

feature in this study.  This bright region is proven to be useful for locating a common 

flame region as it will be discussed later in this chapter. 

 
Figure 4.2 Location of Bright Region in a Flame Image 

 
 
 

Bright Region
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 Center of mass is considered a moment-based shape feature that treats pixel 

intensities as mass [4, 25].  In this particular study, the flame region is considered as a 

two-dimensional object with pixels intensities representing its total mass.  Since brightest 

region on the image are typically located at the center of the flame as shown before, thus 

computing center of mass will track the location of the flame’s brightest spot at any given 

time.  

For this study, the computation for center of mass is with respect to Y axis.  The 

reason is that the flame movements are more apparent in the horizontal direction.  The 

formula for calculating the flame’s center of mass about Y axis is given in EQ (4.13). 
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 where CX = Center of mass about Y axis 
  w = Width of the flame image 

h = Height of the flame image 
P(x,y) = Pixel intensity of the flame image at coordinate (x, y) 

 

4.3 Challenges and Solutions 

In summary, the feature extraction process will produce a set of numerical values 

derived from the features’ formulas for each flame image.  This set of values is defined as 

a set of feature output, which will consist of 54 numerical values in total based on the 

nine features for each of the six color channels.   

Note that since the original images used in this study are interlaced, every one of 

them will be de-interlaced first into two separate flame images.  Hence, two sets of 

feature outputs are derived from a single original image.  In another word, 60 flame 

images need to be processed per second due to the 30 fps acquisition rate. 
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 In the feature extraction process, there are several challenges that need to be 

addressed.  This is related to the large fluctuations on the feature output values due to 

flame movement, as well as the high volume of data that needs to be processed and 

analyzed due to the number of features and the image acquisition rate.   

4.3.1 Stabilizing Feature Output 

With an image acquisition rate of 30 frames per second, flames are still perceived 

as blurry object since the actual chemical reaction and turbulence speed is much faster 

than this acquisition rate [1, 2].  As a result, the shape of the flame can be quite different 

even between subsequent flame images as shown in Figure 4.3.  This is the reason for 

large fluctuations on the feature output values thereby making it harder to do flame 

classification at the next analysis stage. 

 
Figure 4.3 Sample of a Flame Image and Its Changes in Subsequent Image 

 

One strategy to solve this is to use aggregation technique in some fashion so that 

the feature outputs are not based on one individual flame image, rather on a group of 

images.  Thus at any given time during the image analysis, the extraction process yields 

an aggregated set of feature output that is impacted by the trend of the flame region.  An 
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aggregated feature output not only reduces the amount of fluctuation, but also makes the 

feature analysis process more reliable and coherent.  The number of feature output sets to 

be aggregated and how the corresponding procedure has to be carefully planned to insure 

that the changes in flame characteristic due to oxidizer and fuel flow variation can be 

analyzed and detected properly. 

Observing trend is also a preferred strategy because there would be a certain 

degree of correlation for any flame image with images before and after it.  Thus if one 

only observe at the level of individual flame image, this correlation with the other images 

will be missed. 

Two aggregation methods are proposed in this study in the form of statistical 

average operation.  One method is a moving average process which is applied to the 

feature output sets.  The second method is a periodical average process which is applied 

to the flame images themselves.  The aggregation applied to feature output sets results in 

a set of averaged numerical values.  Aggregations to the flame images results in averaged 

flame images and are referred to as “flame profiles”.  Both methods are described below. 

 

4.3.1.1 Moving Average 

Moving average is originally a statistical technique for analyzing time series data.  

It is used to smooth short-term fluctuations so that patterns on a longer-term would 

become more visible.   

In this study, moving average operation is applied to the periodically generated 

set of feature output values.  In any given time it will compute a set of average values, 

one for each feature, based on the N most recent extracted feature output sets.  Hence 
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moving average will produce a set of 54 numerical values corresponding to the 9 features 

and 6 channels. 

The formula used to apply moving average is shown in EQ (4.14).  In this study 

the parameter N is set to 60.  Thus at any given time, 60 of the most recent sets of feature 

output will be averaged.  The value 60 is chosen based on image acquisition of 30 fps 

which produces 60 flame images per second after de-interlace operation.  Hence, the 

moving average output will always contain the most recent one-second worth of feature 

extraction process. 
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 where t = a unit of time when one set of feature output is extracted, t > N 
[ ]featuresofnumberj ,1∈  

  N = number of feature output sets to be averaged 
  Fj(t)  = feature output value at time t for the jth feature   
  Mj(t) = moving average value at time t for the jth feature 

 

Note that as indicated by the formula, its computation requires keeping 

information on the feature output sets produced from time t – N to time t - 1.  In this 

study it implies that one needs to store current feature output set along with 59 most 

recently extracted sets.  It also means the first moving average operation starts after N 

numbers of feature output sets have been extracted and stored.  Hence for this study, 

using moving average means there is a one second delay at the beginning before the 

analysis process can start. 

Moving average as a method to measure trend in the feature outputs has several 

advantages.  It is a relatively simple method that can be incorporated in a real-time 

system without extensive additional demand for computational process and resource.  
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Moreover, based on the experiments, it proves to improve the stability in flame image 

classification and analysis as well by suppressing fluctuation and outliers. 

In the implementation, this method would indeed require resource that depends on 

parameter N.  Each set needs to be stored in order to compute subsequent moving average 

operation, hence requiring computational resource.  

 

4.3.1.2 Periodical Average 

 Another aggregation approach to suppress the fluctuation is computing an average 

periodically.  The equation to compute periodical average is shown in EQ (4.15).  In 

terms of the computation procedure, it is identical to moving average operation.  The 

difference is in the periodical nature of the operation.  Unlike moving average, the 

periodical average is only computed at a specific time interval, and applied to the flame 

images. 

The parameter N is set to 60 for current implementation, so at any given time the 

output from periodical average is based on averaging 60 flame images or 1 second worth 

of acquired images.  The period for computing the periodical average is also set at 1 

second, such that all 60 flame images are utilized in exactly one periodical average 

operation.  Therefore, an output from this method is produced once for every second. 
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 where t = a unit of time when one set of feature output is extracted  
[ ]featuresofnumberj ,1∈  

  N = number of feature output sets to be averaged 
  Fj(t)  = feature output value at time t for the jth feature   
  Aj(t) = periodical average value at time t for the jth feature 
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Using this method implies longer waiting time before an output can be analyzed 

as compared to using moving average method.  This approach however still has an 

advantage over moving average when it comes to flame images aggregation.  Had 

moving average been used, each of the 60 flame images would need to be stored 

individually which can be taxing for both computational operation and resource 

requirement.  For periodical average, the flame images are not stored individually.  Only 

their combined summation is stored at any given time, thus requiring less computational 

resource as compared to moving average computation. 

 As revealed from the experiment, applying periodical average to the flame images 

is proven to be useful for analysis.  The resulting images based on averaging flame 

images, which is called flame profile in this study, help in providing insights in the 

correlation between the visible structure of the flames and its characteristic.   

Figure 4.4 shows an example of a flame profile.  This profile is a single periodical 

average generated using 600 flame images, or 5 seconds worth of image acquisition.  

Note that flame images shown in Figure 4.3 which are included in the aggregation 

process no resemblance to Figure 4.4.  There is a distinctive shape that can be seen on the 

resulting image whose flame bears little resemblance to the individual flame images that 

generate it.  This is the main reason for incorporating center of mass computation as 

mentioned earlier in this chapter.  The flame profile is proven to be distinctive for 

different flames according to the changes in fuel and oxidizer levels.  This result is fully 

explained in the next chapter. 



 60

 

Figure 4.4 Sample of Flame Profile 

 

4.3.2 Managing Amount of Computation  

Using conventional 720x480 resolution 30fps CCD camera, about a megabyte of 

data is available for processing and analysis for every 1/30th of a second.  Further 

improvements in the image acquisition technology will more likely increases the 

resolution and the frame rate as well.  Hence, there is a need for a strategy to keep the 

amount of computation tasks manageable such that the system performance is fast 

enough to be considered real-time without sacrificing reliability.  Three strategies are 

proposed as described below. 

4.3.2.1 Configuring Crop Windows Size 

 The utilization of crop windows helps in reducing the amount of data hence 

minimizing the computation cost.  In this study, the size is particularly optimized as the 

smallest window size without losing valuable flame information.  Detailed explanation 

and implementation of this strategy is provided in chapter 5. 

4.3.2.2 Observation Rate Reduction 

 It is also possible to have the observation rate less than the actual acquisition rate.  

For example, even though there are 30 images acquired by the camera per second, it is 

possible to only process every other image and reducing the observation rate to 15 per 

second.  The observation rate reduction to 15 frames per second is proven to be sufficient 
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for the purpose of fuel and oxidizer classification as described in detail in the next 

chapter.  

 

4.3.2.3 Features Reduction 

There are a total of 9 features that could be extracted from the six channels (red, 

green, blue, hue, saturation and value) for every frame.  It would take a considerable 

amount of time to compute all of them.  Feature selection is necessary in order to select 

the least number of features for classifying the flames belonging to various operational 

conditions.  A feature selection strategy is used in order to find the most sensitive features 

that meet the objectives and to reduce the amount of computation.  The technique used 

for feature selection and the performance evaluation of the selected features is discussed 

in the next chapter. 

4.4 Feature Extraction Procedure 

The methods proposed for image preprocessing along with the solutions to its 

challenges provides various possible configurations for the feature extraction process.  

Two configurations are proposed in this study as shown in Table 4.2. 

 

Table 4.2 Feature Extraction Procedure 

Criteria Configuration 1 Configuration 2 

Preprocessing Method Otsu’s Thresholding Intensity Suppression 

Fluctuation Reduction Moving Average on 
Feature’s Output 

Periodical Average on 
Input Flame Image 

Maximum Rate of 
Output 1/30th of second 1 second 
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 Configuration 1 is designed for feature extraction that can provide faster output 

rate thus creating a system that is more responsive to flame changes.  On the other hand, 

configuration 2 is designed to provide output rate that is slower but more robust due to 

using flame profiles as its input flame image.  The robustness is due to a more uniform 

shape of the flame in the image.  Figure 4.5 illustrates the differences in processing steps 

between the two configurations. 

 
Figure 4.5 Feature Extraction Procedures for (a) Configuration 1 and (b) Configuration 2 

  

Both configurations convert the original flame image into red, green, blue, hue, 

saturation and value channels.  Each of these channels is treated as a separate grayscale 

image.  The main difference between the two configurations is in the preprocessing stage 

afterwards.  For configuration 1, Otsu method’s is applied to segment the image and the 

features are extracted afterwards.  In configuration 2 intensity suppression method is 

applied to the flame profiles and the features are extracted afterwards.  Configuration 1 

utilizes moving average process while configuration 2 does not. 
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5. FEATURE SELECTION AND EXPERIMENT ANALYSIS 

 

 

5.1 Overview 

The results based on prior study [25] have already shown that it is feasible to 

detect the changes in the flame using certain features such as average, variance and 

kurtosis.  These features and the new ones are investigated further in this chapter to 

develop a procedure on how the classification can be done on individual level of fuel and 

oxidizer as well. 

Additionally, flame profiles that are introduced in chapter 4 are used as a tool for 

visually confirming the classification feasibility.  A feature selection method is then 

proposed to identify key features and eliminate less sensitive ones, thereby improving the 

classification performance.  The existence of these key features is very crucial since it 

will allow the possibility for an improved flame analysis system that will be discussed in 

the later chapter. 

The features’ sensitivity and potential as key features are investigated by 

incorporating them in experimental data collected from a pilot scale glass melting furnace.  

Using a pilot scale furnace is appropriate because it depicts an environment close to a 

small commercial furnace that is arguably hard to model and simulate otherwise. 

The data used in this study were collected on March 16, 2002 with experiments 

covering various levels of fuel and oxidizer in the pilot-scale furnace.   
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5.2 Furnace Description 

The glass furnace is a pilot-scale furnace which is capable of producing from 45 

to 900 kg glass daily and operating at 23 – 146 kW (0.16 Million Btu/hr).  It has the 

flexibility to arrange different burner setups, which allows either air-fuel or oxy-fuel type 

of combustion.  In the experiment for this study, only oxy-fuel configuration is selected 

with   natural gas (CH4) as fuel and oxygen (O2) as oxidizer. The flow rate of fuel during 

the experimental runs varies from 80 to 140 standard cubic feet per hour (scfh) while the 

oxidizer flow rate varies from 144 to 336 scfh. 

LabVIEW [58] hardware and software package are used for control in this 

particular furnace.  Furnace temperature is monitored using three thermocouples installed 

inside its interior.  Also, as well as providing record of periodical log output on the fuel 

and oxidizer consumption is available.   

The furnace has an ideal experimental environment since it provides flexibility in 

configuring the fuel and oxidizer intakes.  The LabVIEW system allows an easy way to 

adjust both fuel and oxidizer flow level in the furnace, along with their actual flow rate 

readings on furnace control console.  Additionally, the furnace has only a single burner 

which makes the flame analysis task easier since there is no need to separate several 

flame regions in the image. 
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5.2.1 Equipment Setup and Image Acquisition 

 The video footage of the flame is recorded at 30 frames per second using a CCD 

camera.  The camera used is Panasonic GP KR-222 which is an interlaced color camera 

with single CCD [32].  The camera is a ½'' interline transfer CCD with resolution 768 x 

494 pixels.   

To protect the camera from the extreme heat of the furnace, it is enclosed in a 

water-cooled casing or periscope.  As shown in Figure 5.1, the tip of the periscope is 

placed into a port hole on the side wall of the furnace at a position that would be directly 

pointing at the flame.  The periscope has a 90 degree viewing angle lens which allows a 

complete view of the flame along with some part of furnace interior.  

The output from the CCD camera is connected via S-video cable and recorded to 

MiniDV tape [59] using Sony DV Camcorder [60].  The camcorder is only utilized as a 

video recorder from the Panasonic CCD camera.  The resulting video footages on the 

tapes are later transferred to the workstation using video editing software. 

For this experiment, the video footage from the MiniDV tape is converted into 

raw 24-bit 720x480 pixels RGB images.  The data transfer is done by connecting the 

camcorder to a workstation using IEEE 1394 cable [61].  The workstation is a PC with 

Intel 3.0 GHz CPU  [62] and 2GB RAM running Windows XP [63] operating system.   

The video to image conversion is done using Adobe Premiere v6.0 video editing 

software [64].  These set of images then become the input images for the flame analysis 

in this study.  Figure 5.2 shows the summary configuration of the image acquisition 

process.  
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Figure 5.1 Periscope Setup in the Pilot Scale Glass Furnace 

 

 

 

 

Figure 5.2 Equipment Configuration for Flame Image Acquisition  
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5.2.2 Experiment Configuration 

 The experiments conducted at the pilot scale furnace are grouped into several runs 

with various levels of gas and fuel as summarized in Table 5.1.  There are a total of 15 

experiment runs, with each run lasting approximately a minute (about 1800 image frames) 

except for 14th and 15th run which lasts about 3 minutes each.  Table 5.1 also shows the 

furnace temperature measured by furnace thermocouple during each run.  Each run is 

separated from one another approximately by 10 minutes to allow the flame to stabilize 

as fuel and/or oxidizer change from one experiment to another. 

 The experiments contain a good number of runs with various flow rates for both 

fuel and oxidizer.  The experiment or run number 1 through 13 shows various 

experiments with changes in fuel and oxidizer.  Run number 14 has a gradual decrease 

change in fuel flow rate, defined as “ramp down”, at the rate of 0.5 scfh/sec.  Run number 

15 has an abrupt change in fuel flow rate from 128 scfh to 96 scfh, stay at 96 scfh for 

more than a minute, then another abrupt increase to 128 scfh.  Abrupt flow rate change is 

defined as “step” changes and run number 15 has both step up and step down changes. 

Table 5.1 Pilot Scale Furnace Experiment Run Summary 

Run # NG O2 O2/NG T Number of 
  (scfh) (scfh)  ratio (°C) Image Frame 

1 110 231 2.1 1185 1791 
2 80 144 1.8 1166 1784 
3 110 198 1.8 1170 1786 
4 140 252 1.8 1184 1788 
5 80 168 2.1 1161 1788 
6 110 231 2.1 1164 1790 
7 140 294 2.1 1180 1786 
8 80 192 2.4 1154 1702 
9 110 264 2.4 1156 1791 

10 140 336 2.4 1174 1780 
11 96 231 2.4 1153 1805 
12 110 231 2.1 1155 1792 
13 128 231 1.8 1167 1768 
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14 128-96 231 1.8-2.4 1167 5100 
15 128-96-128 231 1.8-2.4-1.8 1168-1164 5100 

All the runs depicted in Table 5.1 can be grouped into 9 classes, based on its fuel 

and oxidizer flow rate.  Figure 5.3 shows the range of the input dimension depicting the 

three classes of O/F ratios.  The marked 9 yellow points on the figure represent the 9 

group of O/F ratios sampled for this experiment.  

 
Figure 5.3 Oxidizer to Fuel Relationship Diagram 

 

5.2.3 Sample Feature Output 

 To provide some idea on how the feature output look like, a sample feature output 

are provided here.  It is Otsu’s threshold level from blue channel, extracted from 

experiment run number 15.  The extraction process is based on configuration 1. 

 Run number 15 is chosen particularly because some of its feature outputs can 

clearly depicts the changes intuitively.  The run lasted for approximately 3 minutes, in 

which the changes occurred twice with relatively equal amount but at opposite direction.  

Figure 5.4 shows the feature output extracted from this particular run.  A complete 



 69

feature output set output for all the features extracted from run number 15 for 

configuration 1 and 2 is provided in appendix A. 

Otsu Threshold Level from Blue Channel of Run 15
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Figure 5.4 Sample of a Feature Output Extracted from Run Number 15 
 

 

5.3 Building Flame Profiles 

Flame profiles are used to investigate whether visible structural patterns can be 

found from the flames.  The profiles discussed here are generated by averaging a minute-

worth of flame images for each experimental run.   

There are 9 runs selected based on their fuel and oxidizer configuration and 

arranged to represent changes of natural gas from minimum to maximum (80 to 140 scfh).  

Also the O/F ratio is arranged from minimum to maximum (1.8 to 2.4) corresponding to 

each level of natural gas.  This arrangement is shown in Table 5.2.   
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Table 5.2 Experiment Run for Building Flame Profiles 

Run # NG O2 O/F 
 (scfh) (scfh) Ratio 

2 80 144 1.8 
5 80 168 2.1 
8 80 192 2.4 
3 110 198 1.8 
6 110 231 2.1 
9 110 264 2.4 
4 140 252 1.8 
7 140 294 2.1 

10 140 336 2.4 
 

For each run, 6 flame profiles will be generated based on the red, green, blue, hue, 

saturation and value channels.  For easier visualization and comparison, the profiles are 

grouped based on their channel and arranged corresponding to Table 5.3.  Table 5.3 is 

arranged in such a way so that fuel will increases column-wise from 80 to 140 scfh, while 

the O/F ratio increases row-wise from 1.8 to 2.4. 

Table 5.3 Flame Profiles’ Runs Arrangement 

Run 2 
NG: 80 scfh 
O2: 144 scfh 
O/F ratio : 1.8 

Run 3 
NG: 110 scfh 
O2: 198 scfh 
O/F ratio: 1.8 

Run 4 
NG: 140 scfh 
O2: 252 scfh 
O/F ratio: 1.8 

Run 5 
NG: 80 scfh 
O2: 144 scfh 
O/F ratio : 2.1 

Run 6 
NG: 110 scfh 
O2: 231 scfh 
O/F ratio: 2.1 

Run 7 
NG: 140 scfh 
O2: 294 scfh 
O/F ratio: 2.1 

Run 8 
NG: 80 scfh 
O2: 192 scfh 
O/F ratio : 2.4 

Run 9 
NG: 110 scfh 
O2: 264 scfh 
O/F ratio: 2.4 

Run 10 
NG: 140 scfh 
O2: 336 scfh 
O/F ratio: 2.4 

 

Figure 5.5 through 5.10 show flame profiles for each channel.  Each figure 

contains 9 profiles, one from each run with their corresponding run number and 

arrangement as shown in Table 5.3.  The red vertical line on each profile is drawn as 
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visual aid to compare length of the flames within the same fuel level (Such as run 2, 5, 

and 8). 

 
Figure 5.5 Nine Flame Profiles Based on Red Channel 

 
 

 
Figure 5.6 Nine Flame Profiles Based on Green Channel 

 

 
Figure 5.7 Nine Flame Profiles Based on Blue Channel 
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Figure 5.8 Nine Flame Profiles Based on Hue Channel 

 
 

 
Figure 5.9 Nine Flame Profiles Based on Saturation Channel 

 
 

 
Figure 5.10 Nine Flame Profiles Based on Value Channel 

 

The profiles indeed show some interesting visible patterns.  These patterns are 

more apparent in some channels than others.  Blue and saturation channels, as shown in 

Figure 5.7 and 5.9, particularly depict the best visible patterns that occur in the flame 

region.  This is due to the fact that the flame object has brightest pixel intensity close to 
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white, while the background in general are less white with color predominantly resulted 

from combination of red and green channel.  Hence, blue pixels are predominantly high 

in the flame region only.  Additionally, only in the flame region that the saturation is 

close to zero which implies close to white.   

Based on the blue and saturation profiles, it appears that changes in fuel level 

affect the shape of the flame.  At the lowest fuel level, shape of the flame is thicker and it 

becomes thinner as the fuel level increases.  Additionally, the overall length of the flame 

appears to change depending on the oxidizer level.  At lower oxidizer level, the flame is 

actually longer and becomes shorter as the oxidizer level increases.  

Flame profiles are proven useful in providing insights on correlation between the 

shape of the flame and its corresponding fuel and air oxidizer level.  These patterns 

appear to be in a certain order and indicate that the shape of the flame can be correlated 

with the changes in both level of fuel and oxidizer involved.  Additionally, it also 

confirms the feasibility in using the proposed features in this study for reflecting the 

flame changes. 

It must be mentioned that the profiles are utilized in this study more for human 

observer’s benefit in confirming its feasibility than for the actual machine learning 

process.  Even though the patterns are not as obvious visually in other channels, it does 

not mean they are less sensitive.  As discussed later in this chapter, the features extracted 

from other channels are able to perform as well if not better in depicting the flame 

changes compared to those extracted from blue and saturation channel. 
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5.4 Feature Selection 

 The main goal in the feature selection process is to identify the key features for 

classifying both fuel and oxidizer levels.  This goal is achieved by analyzing a classifier 

algorithm performance in classifying the data according to the feature outputs extracted 

from the experimental runs.   

5.4.1 Dataset Preparation 

For this experiment, the dataset used as the base for the classification is taken 

from the 11 experimental runs numbered 1 through 10 and run 12.  They are selected 

since they can be arranged and labeled in an intuitive way according to their fuel and 

oxidizer flow rates.   

The runs are grouped and labeled such that classification can be done based on 

their label.  For fuel changes, the labels are “HIGH”, “NORMAL” and “LOW” which 

correspond to 140, 110 and 80 scfh respectively.  80 scfh is the minimum fuel rate of the 

furnace and 140 scfh is the maximum.  The 110 scfh is the fuel flow rate for normal 

stoichiometry furnace operation.  For oxidizer, the labels are according to the O/F ratio’s 

terms which are “FUEL LEAN” (2.4), “STOICHIOMETRY” (2.1) and “FUEL RICH” 

(1.8) that correspond to O/F ratios of 2.4, 2.1 and 1.8 respectively.  The O/F terms are 

used rather than the actual oxidizer flow rate since most run has different oxidizer level.  

Moreover feature selection based on the actual oxidizer flow rate level is proven in this 

study to be undesirable and impractical as shown later in this chapter. 

The 11 runs are then grouped based on the classes as shown in Table 5.3.  From 

each run, 1500 consecutive image frames are used and de-interlaced; hence it doubles the 

data size. 
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Table 5.3 Runs Classification 

Run # NG O2 Total Fuel O/F Oxidizer 
 Scfh scfh Data Label Ratio Label 

2 80 144 1.8 FUEL RICH 
5 80 168 2.1 STOICHIOMETRY 
8 80 192 

9000 LOW 

2.4 FUEL LEAN 
3 110 198 1.8 FUEL RICH 
1 110 231 2.1 STOICHIOMETRY 
6 110 231 2.1 STOICHIOMETRY 

12 110 231 2.1 STOICHIOMETRY 
9 110 264 

15000 NORMAL 

2.4 FUEL LEAN 
4 140 252 1.8 FUEL RICH 
7 140 294 2.1 STOICHIOMETRY 

10 140 336 

9000 HIGH 

2.4 FUEL LEAN 

 

Once the classes have been defined, the next step is to select a classifier algorithm 

that will classify the dataset according to its class label.  Decision tree algorithm as 

described below is used for this task.   

5.4.2 Decision Tree as Classifier 

Decision tree is a well-known machine learning and data-mining tool used for 

classifying data and/or predicting outcome.  The tree itself is a hierarchical structure 

comprised of intermediary nodes called “branches” and terminal nodes called “leaves”.  

Each branch represents conjunction of features that would lead to certain leaves which 

represent the outcome or class.  Given a sample data, it will then traverse through the 

branches undergoing intermediary decisions made based on its feature values and 

eventually lead to a leaf which defines its class [65].   

The first step in using decision tree for feature selection is to select a particular 

algorithm for building the tree.  There are several types for decision tree algorithm 

available.  For this particular study, a commercial software for decision tree analysis tool 

named See5 [66] is utilized.   
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The decision tree performance evaluation is based on confusion matrices 

produced using by ten-fold cross validation technique.  The matrices reflect how good the 

decision tree is in classifying the datasets.  Once a tree with the best matrix is found, one 

can investigate the features selected by it.  This set of selected features become candidate 

of key features. 

5.4.3 Feature Cost Consideration 

 It is possible to have decision trees that are built with different set of features and 

complexities but still yield similar performance.  The decision tree algorithm however 

has no ability to differentiate computational cost of the features such as time cost to 

compute them.  Different features require different amount of time to compute depending 

on their mathematical operation.  Moreover, certain features have some of their input 

parameters depend on the others’ output.   

 To get an idea on computational cost related to time, Table 5.4 shows the average 

time it takes to compute an image frame for each feature based on configuration 1.  Each 

image frame has 99000 pixels in total and the time measurement is done in milliseconds 

based on average of 100 frames.  The time cost is measured from the moment the 

extraction process begins to the moment the actual feature output value is obtained.  

Based on the required time shown in Table 5.4, one can obtain insight on features’ 

computational cost.  More complex features require more time to compute such as skew 

and kurtosis.  

Note that features based on HSV channels are consistently more expensive than 

RGB since the data is originally in RGB format and extra time for conversion of RGB to 

HSV step is required.  
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Table 5.4 Feature’s Time Cost in Milliseconds for Extracting 1 Frames 

Feature Name R G B H S V 

Otsu Threshold 66.56 66.72 69.84 75.00 73.91 74.53 

Area 76.56 77.19 79.68 89.06 88.60 87.97 

Average 76.88 76.72 80.79 89.38 88.28 88.44 

Center of Mass 
about Y axis 

77.81 77.19 79.85 89.22 88.91 88.29 

Entropy 77.50 77.65 79.84 89.54 88.12 89.22 

Average Flame 
Temperature 

79.84 77.97 82.03 90.62 90.47 91.56 

Variance 90.16 86.25 90.31 103.28 102.97 105.00 

Skew 96.09 90.16 93.60 105.16 106.57 110.16 

Kurtosis 95.94 89.84 93.28 105.78 107.03 110.00 

 

Beside time cost consideration, it is also preferable to select features that can be 

computed with the least dependency on other features.  The more dependent a feature is, 

the longer it takes to compute and the more likely its output is influenced by the features 

it depends on.  Figure 5.11 and 5.12 shows the order of features computed based on their 

parameter interdependencies for each configuration.  Note that for configuration 2, no 

segmentation threshold is computed, hence, features at its group 1 level can be calculated 

independently. 
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Figure 5.11 Order of Feature Computation for Configuration 1, with Arrows Representing Flows of 
Dependent Information 

 
 
 
 

 
Figure 5.12 Order of Feature Computation for Configuration 2, with Arrows Representing Flows of 

Dependent Information 
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To incorporate this idea of feature cost, one can use feature subset selection 

method.  In this particular study, a method for selecting the desired feature subset called 

wrappers is used.  It is a method proposed by Kohavi and John [67] for selecting features 

and is known for its simplicity and practicality.  The method regards the classifier, in this 

case the decision tree, as a black box into which features are the input and the 

classification is the output.  Features are selected based on using either forward selection 

or backward elimination method.  Both respectively either add or remove certain features 

from the classifier until desired performance is achieved.  Forward selection starts with a 

defined small set of features and progressively new features are added.  Backward 

elimination works in reverse, starting with all features and progressively removing 

features from the classifier.  Desired performance is measured based on the confusion 

matrix the decision tree produces and also the size of the tree.   

In this study, the features are grouped based on their computational cost and 

interdependency.  Table 5.5 shows the proposed subsets with subset 1 being the least 

expensive feature.  The features are added or removed during the selection process as a 

group rather than individually.  Configuration 1 has 5 groups while configuration 2 has 4.  

The additional conversion cost from RGB to HSV is not considered as it is small relative 

to features cost.   
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Table 5.5 Features’ Cost Group 

FEATURE 
GROUP CONFIGURATION  1 CONFIGURATION  2 

1 Otsu’s Threshold n/a 

2 

Area 

Center of Mass about Y Axis 

Entropy 

Average Flame Temperature 

Area 

Center of Mass About Y Axis 

Entropy 

Average Flame Temperature 

3 Average Average 

4 Variance Variance 

5 
Skew 

Kurtosis 

Skew 

Kurtosis 

 

Each configuration has its own separate feature selection process.  The reason 

being it is hard to compare inter-configuration complexity since they have different 

stages during feature extraction process.  For example, the speed in configuration 2 is 

affected by the time interval while in configuration 1 it is not.  

5.4.4 Fuel Classification 

Once the data is labeled according to their class label and the features are grouped 

based on their cost, the decision trees can be built using the wrapper method as discussed 

above.  The first feature selection process is for fuel classification. 

5.4.4.1 Fuel Classification using Configuration 1 

Figure 5.13 show the results based on forward selection, which shows that a 

single feature is sufficient to provide good fuel classification.  Two of such features are 
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blue channel’s otsu threshold level and value channel’s entropy level.  For backward 

elimination, similarly a single feature is sufficient, which is red channel’s center of mass 

about Y axis as shown in Figure 5.13.  All three features has identical confusion matrix 

with zero classification error for all three fuel levels.   

Confusion matrix however cannot reflect the actual separability between different 

fuel classes on each feature.  The easiest way to investigate this is by observing the actual 

feature output plots for the three fuel classes using each selected features.   

 
a) 
 

BLU_OTS <= 128.717: high (9000) 
BLU_OTS > 128.717: 
:...BLU_OTS <= 138.133: normal (15000) 
    BLU_OTS > 138.133: low (9000) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          9000                (a): class low 
                15000         (b): class normal 
                      9000    (c): class high 
  
 Error rate: 0% 

 
b) 
 

VAL_ENT <= -473996: high (9000) 
VAL_ENT > -473996:  
:...VAL_ENT <= -296588: normal (15000) 
    VAL_ENT > -296588: low (9000) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          9000                (a): class low 
                15000         (b): class normal 
                      9000    (c): class high 
 
Error rate: 0% 

 
Figure 5.13 Decision Trees for Fuel Classification using Forward Selection: 
 (a) Blue Channel’s Otsu Threshold Level and (b) Value Channel’s Entropy  

 
 
 

RED_COM <= 254.938: high (9000) 
RED_COM > 254.938: 
:...RED_COM <= 311.489: normal (15000) 
    RED_COM > 311.489: low (9000) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          9000                (a): class low 
               15000          (b): class normal 
                      9000    (c): class high 
 
Error rate: 0% 

 
Figure 5.14 Decision Tree for Fuel Classification based on Backward Elimination Result 
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As shown from two-dimensional scatter plots in Figure 5.15 to 5.17, fuel level 

classification is indeed feasible.  Each of the fuel class is completely separable from one 

another for all the selected features.  Each cluster represents one class of natural gas.  

Center for each of the three clusters are computed as the mean of each features in that 

class.   
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Figure 5.15 Scatter Plot of Blue Channel’s Otsu Threshold Level and Value Channel’s Entropy 
 

Clusters of Three Fuel Levels 
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Figure 5.16 Scatter Plot of Blue Channel’s Otsu Threshold Level and Red Channel’s Center of Mass 
about Y Axis 
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Clusters of Three Fuel Levels  
Red Center of Mass about Y Axis vs Value Entropy
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Figure 5.17 Scatter Plot of Red Channel’s Center of Mass about Y Axis and Value Channel’s 
Entropy 

 

The correlation between the features’ output values and the actual fuel flow rate 

as read from the furnace control may not have a linear relationship.  The flow rate level 

of natural gas for each class is correspondingly 80, 110 and 140 scfh.  Each of this level 

differs equally by 30 scfh.  However, the distance between the classes in the feature 

outputs as shown in Figure 5.15 to 5.17 do not appear to be the same for different plots.    

Using blue channel’s otsu’s threshold and value channel’s entropy as shown in Figure 

5.15 produces similar distances between the three classes as compared to using the other 

two as shown in Figure 5.15 and 5.17.  This is because feature output values from red 

channel’s center of mass about Y axis have different distance between clusters while it is 

not the case for the other two features.  

Aside from similar distances between classes, Blue channel’s Otsu’s threshold 

and value channel’s entropy also has relatively linear relationship between classes.  The 

linearity nature of Blue channel’s Otsu’s threshold and value channel’s entropy is 

desirable.  For example, it is possible to have fuel level set between 80 and 110 scfh.  
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Should this occur, then one would expect that the features’ output values would lie 

between low and normal class.  The linearity provides an opportunity to approximate this 

fuel level. 

Note that there exist some variances or fluctuations within each class that differ 

from one another.  Easily noticeable from the scatter plots, each cluster has different 

shape and size.  The correlation between the cluster variance and fuel level might be 

influenced by the O/F ratio or oxidizer level which will be discussed later. 

5.4.4.2 Fuel Classification using Configuration 2 

For configuration 2, similar method is used for the feature selection process as 

mentioned before.  The features selected are different, but similarly provides good 

classifications with zero error as shown in Figure 5.18 and 5.19, one feature from forward 

selection and two features from backward elimination.  Figure 5.20 to 5.22 shows the 

two-dimensional scatter plots of the three features. 

 

VAL_COM <= 321.047: high (150) 
VAL_COM > 321.047: 
:...VAL_COM <= 347.746: normal (250) 
    VAL_COM > 347.746: low (150) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
           150                (a): class low 
                 250          (b): class normal 
                       150    (c): class high 
 
Error rate: 0% 

 
Figure 5.18 Decision Tree for Fuel Classification based on Forward Selection 
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a) 
GRE_VAR <= 5.4e-005: high (150) 
GRE_VAR > 5.4e-005: 
:...GRE_VAR <= 0.000107444: normal (250) 
    GRE_VAR > 0.000107444: low (150) 

 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
           150                (a): class low 
                 250          (b): class normal 
                       150    (c): class high 
 
Error rate: 0% 

 

b) 

VAL_SKW <= 0.522905: high (150) 
VAL_SKW > 0.522905: 
:...VAL_SKW <= 1.32689: normal (250) 
    VAL_SKW > 1.32689: low (150) 
 

 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
           150                (a): class low 
                 250          (b): class normal 
                       150    (c): class high 
 
Error rate: 0% 
 

Figure 5.19 Decision Tree for Fuel Classification based on Backward Elimination: 
 (a) Green Channel’s Variance and (b) Value Channel’s Skew  

 

 

Clusters of Three Fuel Levels 
Green Variance vs Value Center of Mass about Y Axis

300
320
340
360
380
400

0.E+00 5.E-05 1.E-04 2.E-04 2.E-04
Green Variance

Va
lu

e 
C

en
te

r o
f M

as
s 

ab
ou

t Y
 A

xi
s

low  (80 scfh) normal (110 scfh)

high (140 scfh) cluster center
 

Figure 5.20 Scatter Plot of Value Channel’s Center of Mass about Y Axis and Green Channel’s 
Variance 
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Clusters of Three Fuel Levels 
Value Center of Mass about Y Axis vs Value Skew

0
0.5

1
1.5

2
2.5

300 310 320 330 340 350 360 370 380 390 400
Value Center of Mass about Y Axis

Va
lu

e 
Sk

ew

low  (80 scfh) normal (110 scfh)

high (140 scfh) cluster center
 

Figure 5.21 Scatter Plot of Value Channel’s Center of Mass about Y Axis and Value Channel’s Skew 
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Figure 5.22 Scatter Plot of Green Channel’s Variance and Value Channel’s Skew 
 

All the three plots show that the three features are able to provide good 

separability for all the three different classes.  Similar to configuration 1, each cluster has 

different variance and size.  However the features have less linearity characteristic. 

Table 5.6 summarizes the six features and the absolute distances between classes 

based on the classes’ means using each feature.  The ratio of distances also provided to 
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provide approximation of similarity between class distances with 1 being equal distance 

between class low to class normal and class normal to class high.  In overall, both 

configurations provide good separation and several key features to select from exist.  

Configuration 1’s blue channel’s otsu’s threshold and value channel’s entropy are 

selected since not only the features has more linearity characteristic compared to the 

others, but they require less computational cost as well.  Furthermore configuration 1 can 

produce output faster than configuration 2. 

 

Table 5.6 Six Selected Features and their Distances between Classes 

Feature High to Normal Normal to 
Low 

(High to Normal) / 
(Normal to Low) 

Blue Otsu Threshold 10.6 11.1 0.96 

Value Entropy 18.6E+3 13E+3 1.36 

Red Center of Mass about Y Axis 94.5 135.8 0.69 

Value Center of Mass about Y Axis 33.7 24.3 1.96 

Green Variance 7.7E-05 3.9E-05 1.39 

Value Skew 0.82 0.58 1.41 
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5.4.5 Oxidizer Classification 

 Oxidizer classification however is not as straight forward as fuel’s because of the 

different level of flow rates in the experimental runs.  Several different arrangements of 

the classes are tested in the feature selection process to investigate the classification 

feasibility. 

5.4.5.1 Different Ways of Arranging Class Label   

 Table 5.7 shows one possible arrangement that has 7 different classes of oxidizer, 

however the resulting decision tree is very complex for both configurations using either 

forward selection or backward elimination as shown in Figure 5.23 to 5.26 respectively.  

The features involved are also numerous.  Additionally, all of them have non-zero 

classification errors that varies from 0.06% to 1.2% which are relatively small 

nonetheless. 

 

Table 5.7 Arrangement of Experimental Runs based on Oxidizer Level 

Test # NG O2 CLASS 

  Scfh Scfh LABEL 
2 80 144 EXTREME LOW 
5 80 168 VERY LOW 

8 80 192 LOW 

3 110 198 LOW 

1 110 231 NORMAL 

6 110 231 NORMAL 

12 110 231 NORMAL 

4 140 252 HIGH 

9 110 264 HIGH 

7 140 294 VERY HIGH 

10 140 336 EXTREME HIGH 
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SAT_OTS <= 161.1: 
:...RED_OTS <= 187.383: 
:   :...HUE_OTS <= 96.55: 
:   :   :...BLU_OTS <= 125.6: high (213) 
:   :   :   BLU_OTS > 125.6: normal (171) 
:   :   HUE_OTS > 96.55: 
:   :   :...SAT_OTS <= 161.033: high (5615) 
:   :       SAT_OTS > 161.033: 
:   :       :...BLU_OTS <= 133.317: normal (6) 
:   :           BLU_OTS > 133.317: high (27) 
:   RED_OTS > 187.383: 
:   :...HUE_OTS <= 91.3833: 
:       :...BLU_OTS <= 124.25: very_high (93/1) 
:       :   BLU_OTS > 124.25: 
:       :   :...VAL_OTS > 189.017: extreme_high (2730) 
:       :       VAL_OTS <= 189.017: 
:       :       :...BLU_OTS <= 126.2: very_high (3) 
:       :           BLU_OTS > 126.2: extreme_high (22) 
:       HUE_OTS > 91.3833: 
:       :...VAL_OTS > 190.5: extreme_high (173) 
:           VAL_OTS <= 190.5: 
:           :...BLU_OTS > 126.483: 
:               :...SAT_OTS <= 156.15: extreme_high (10) 
:               :   SAT_OTS > 156.15: very_high (16) 
:               BLU_OTS <= 126.483: 
:               :...SAT_ARE <= 19815.7: very_high (2810/1) 
:                   SAT_ARE > 19815.7: 
:                   :...HUE_ARE <= 10375.7: very_high (21) 
:                       HUE_ARE > 10375.7: extreme_high (4) 
SAT_OTS > 161.1: 
:...SAT_OTS <= 164.267: 
    :...GRE_ARE > 19555.8: low (91) 
    :   GRE_ARE <= 19555.8: 
    :   :...VAL_OTS <= 188.333: normal (8521/6) 
    :       VAL_OTS > 188.333: 
    :       :...HUE_ARE <= 11602.3: normal (6) 
    :           HUE_ARE > 11602.3: high (21) 
    SAT_OTS > 164.267: 
    :...SAT_OTS <= 170.1: 
        :...SAT_OTS > 164.617: low (5396) 
        :   SAT_OTS <= 164.617: 
        :   :...BLU_OTS <= 133.583: low (395) 
        :       BLU_OTS > 133.583: normal (125) 
        SAT_OTS > 170.1: 
        :...HUE_OTS <= 99.2333: 
            :...GRE_ARE > 18081.7: extreme_low (483) 
            :   GRE_ARE <= 18081.7: 
            :   :...RED_ARE <= 23021.3: extreme_low (43) 
            :       RED_ARE > 23021.3: very_low (12) 
            HUE_OTS > 99.2333: 
            :...SAT_OTS > 172.617: 
                :...GRE_OTS > 170.417: 
                :   :...RED_OTS > 193.217: extreme_low (40) 
                :   :   RED_OTS <= 193.217: 
                :   :   :...RED_ARE <= 19025.9: extreme_low (5) 
                :   :       RED_ARE > 19025.9: very_low (34) 
                :   GRE_OTS <= 170.417: 
                :   :...GRE_OTS <= 170.183: extreme_low (601/1) 
                :       GRE_OTS > 170.183: 
                :       :...GRE_ARE <= 15535.8: very_low (2) 
                :           GRE_ARE > 15535.8: 
                :           :...VAL_ARE <= 20077.4: extreme_low (52) 
                :               VAL_ARE > 20077.4: very_low (3) 
                SAT_OTS <= 172.617: 
                :...SAT_ARE > 23400.5: extreme_low (164) 
                    SAT_ARE <= 23400.5: 
                    :...BLU_OTS <= 142.933: 
                        :...HUE_ARE > 11956.5: 
                        :   :...SAT_OTS <= 172.1: very_low (100/2) 
                        :   :   SAT_OTS > 172.1: extreme_low (5) 
                        :   HUE_ARE <= 11956.5: 
                        :   :...RED_ARE > 23206: 
                        :       :...SAT_ARE > 22940.7: extreme_low (41) 
                        :       :   SAT_ARE <= 22940.7: 
                        :       :   :...HUE_ARE > 11515: very_low (107) 
                        :       :       HUE_ARE <= 11515: 
                        :       :       :...GRE_ARE <= 17669: very_low (4) 
                        :       :           GRE_ARE > 17669: 
                        :       :           :...BLU_OTS <= 142.8: extreme_low (31) 
                        :       :               BLU_OTS > 142.8: very_low (2) 
                        :       RED_ARE <= 23206: 
                        :       :...SAT_OTS > 171.567: 
                        :           :...BLU_OTS <= 142.767: 
                        :           :   :...GRE_ARE > 17066: extreme_low (425/1) 
                        :           :   :   GRE_ARE <= 17066: 
                        :           :   :   :...HUE_ARE <= 10849: extreme_low (4) 
                        :           :   :       HUE_ARE > 10849: very_low (3) 
                        :           :   BLU_OTS > 142.767: 
                        :           :   :...RED_OTS <= 190.767: very_low (12/1) 
                        :           :       RED_OTS > 190.767: 
                        :           :       :...RED_ARE <= 22102.9: extreme_low (139/1) 
                        :           :           RED_ARE > 22102.9: [S1] 
                        :           SAT_OTS <= 171.567: 
                        :           :...SAT_OTS <= 171.117: very_low (28) 
                        :               SAT_OTS > 171.117: 
                        :               :...RED_OTS <= 191.05: very_low (18) 
                        :                   RED_OTS > 191.05: 
                        :                   :...BLU_OTS <= 142.583: extreme_low (102) 
                        :                       BLU_OTS > 142.583: [S2] 
                        BLU_OTS > 142.933: 
                        :...SAT_OTS <= 172: 
                            :...BLU_OTS > 143.5: very_low (877) 
                            :   BLU_OTS <= 143.5: 
                            :   :...SAT_OTS <= 171.617: 
                            :       :...BLU_OTS > 142.967: very_low (481) 
                            :       :   BLU_OTS <= 142.967: 
                            :       :   :...RED_OTS <= 192.65: very_low (29) 
                            :       :       RED_OTS > 192.65: extreme_low (2) 
                            :       SAT_OTS > 171.617: 
                            :       :...RED_OTS <= 191.517: very_low (113) 
                            :           RED_OTS > 191.517: 
                            :           :...HUE_ARE > 11480.8: 
                            :               :...GRE_ARE <= 18081.7: very_low (75) 
                            :               :   GRE_ARE > 18081.7: extreme_low (2) 
                            :               HUE_ARE <= 11480.8: 
                            :               :...SAT_ARE <= 20396: very_low (36) 
                            :                   SAT_ARE > 20396: 
                            :                   :...GRE_OTS > 169.85: [S3] 
                            :                       GRE_OTS <= 169.85: [S4] 
                            SAT_OTS > 172: 
                            :...BLU_OTS > 144.133: 
                                :...RED_OTS > 193.75: 
                                :   :...SAT_OTS <= 172.3: very_low (11) 
                                :   :   SAT_OTS > 172.3: extreme_low (15) 
                                :   RED_OTS <= 193.75: 
                                :   :...GRE_OTS <= 169.633: 
                                :       :...VAL_ARE <= 18214: extreme_low (4) 
                                :       :   VAL_ARE > 18214: very_low (22/2) 
                                :       GRE_OTS > 169.633: 
                                :       :...BLU_OTS > 144.167: very_low (517) 
                                :           BLU_OTS <= 144.167: 
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                                :           :...SAT_OTS <= 172.4: very_low (14) 
                                :               SAT_OTS > 172.4: extreme_low (3) 
                                BLU_OTS <= 144.133: 
                                :...GRE_ARE <= 15778.3: 
                                    :...RED_OTS <= 191.933: very_low (130) 
                                    :   RED_OTS > 191.933: 
                                    :   :...SAT_OTS <= 172.25: very_low (27) 
                                    :       SAT_OTS > 172.25: extreme_low (14) 
                                    GRE_ARE > 15778.3: 
                                    :...HUE_ARE <= 10914.9: 
                                        :...GRE_OTS <= 168.333: very_low (12) 
                                        :   GRE_OTS > 168.333: 
                                        :   :...SAT_OTS > 172.167: extreme_low (384) 
                                        :       SAT_OTS <= 172.167: [S5] 
                                        HUE_ARE > 10914.9: 
                                        :...SAT_OTS > 172.317: extreme_low (49) 
                                            SAT_OTS <= 172.317: 
                                            :...HUE_OTS <= 99.8667: extreme_low (19/1) 
                                                HUE_OTS > 99.8667: 
                                                :...SAT_OTS > 172.267: [S6] 
                                                    SAT_OTS <= 172.267: [S7] 
 
SubTree [S1] 
 
GRE_OTS <= 169.633: very_low (14) 
GRE_OTS > 169.633: extreme_low (14) 
 
SubTree [S2] 
 
GRE_OTS > 170.05: extreme_low (37/1) 
GRE_OTS <= 170.05: 
:...SAT_OTS <= 171.483: very_low (41) 
    SAT_OTS > 171.483: 
    :...BLU_OTS <= 142.75: extreme_low (11) 
        BLU_OTS > 142.75: very_low (3) 
 
SubTree [S3] 
 
BLU_OTS <= 143.333: extreme_low (66) 
BLU_OTS > 143.333: 
:...SAT_OTS > 171.85: extreme_low (12) 
    SAT_OTS <= 171.85: 
    :...GRE_OTS <= 170.283: very_low (8) 
        GRE_OTS > 170.283: extreme_low (2) 
 
SubTree [S4] 
 
HUE_ARE <= 10445.2: extreme_low (22) 
HUE_ARE > 10445.2: 
:...GRE_OTS <= 169: extreme_low (7) 
    GRE_OTS > 169: 
    :...GRE_OTS <= 169.467: very_low (30) 
        GRE_OTS > 169.467: 
        :...VAL_OTS <= 193.083: extreme_low (7) 
            VAL_OTS > 193.083: very_low (8/1) 
 
SubTree [S5] 
 
BLU_OTS > 143.8: very_low (14) 
BLU_OTS <= 143.8: 
:...GRE_ARE > 16135.6: extreme_low (96/1) 
    GRE_ARE <= 16135.6: 
    :...BLU_OTS <= 143.467: extreme_low (6) 
        BLU_OTS > 143.467: very_low (5) 
 
SubTree [S6] 
 
BLU_OTS <= 143.333: extreme_low (10) 
BLU_OTS > 143.333: 
:...HUE_OTS <= 100.833: extreme_low (3) 
    HUE_OTS > 100.833: very_low (7) 
 
SubTree [S7] 
 
HUE_OTS > 102.267: very_low (100/1) 
HUE_OTS <= 102.267: 
:...HUE_ARE > 11314.2: very_low (26) 
    HUE_ARE <= 11314.2: 
    :...BLU_OTS > 143.683: very_low (10) 
        BLU_OTS <= 143.683: 
        :...RED_OTS <= 191.683: very_low (7) 
            RED_OTS > 191.683: extreme_low (20) 
 
 
 
 

           (a)   (b)   (c)   (d)   (e)   (f)   (g)    <-classified as 
          ----  ----  ----  ----  ----  ----  ---- 
          2993     7                                  (a): class extreme_low 
             6  2994                                  (b): class very_low 
                      5999                            (c): class low 
                            9000                      (d): class normal 
                               6  5994                (e): class high 
                                        3000          (f): class very_high 
                                           2  2998    (g): class extreme_high 
  Error rate: 0.06% 
 

Figure 5.23 Decision Tree for Configuration 1 using Forward Selection 
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HUE_TMP <= 1874.16: 
:...RED_OTS <= 187.383: high (5882) 
:   RED_OTS > 187.383: 
:   :...BLU_SKW <= -0.217246: extreme_high (2934/1) 
:       BLU_SKW > -0.217246: 
:       :...SAT_OTS > 152.8: very_high (2923) 
:           SAT_OTS <= 152.8: 
:           :...BLU_SKW <= -0.123637: extreme_high (8) 
:               BLU_SKW > -0.123637: very_high (17) 
HUE_TMP > 1874.16: 
:...RED_TMP <= 1820.8: normal (8823) 
    RED_TMP > 1820.8: 
    :...SAT_SKW > 1.01652: low (5882) 
        SAT_SKW <= 1.01652: 
        :...SAT_SKW <= 1.01513: 
            :...GRE_OTS <= 170.267: 
            :   :...BLU_VAR > 0.0145155: extreme_low (1269) 
            :   :   BLU_VAR <= 0.0145155: 
            :   :   :...SAT_TMP <= 1904.19: very_low (10) 
            :   :       SAT_TMP > 1904.19: extreme_low (41) 
            :   GRE_OTS > 170.267: 
            :   :...SAT_SKW > 1.01487: 
            :       :...BLU_SKW <= -0.671247: very_low (104) 
            :       :   BLU_SKW > -0.671247: extreme_low (27/1) 
            :       SAT_SKW <= 1.01487: 
            :       :...BLU_KRT <= -0.435997: extreme_low (174) 
            :           BLU_KRT > -0.435997: 
            :           :...SAT_VAR <= 55466.2: very_low (9) 
            :               SAT_VAR > 55466.2: extreme_low (6) 
            SAT_SKW > 1.01513: 
            :...BLU_SKW > -0.612152: 
                :...HUE_TMP <= 1902.94: 
                :   :...GRE_ARE <= 18049: very_low (205/2) 
                :   :   GRE_ARE > 18049: extreme_low (58) 
                :   HUE_TMP > 1902.94: 
                :   :...RED_TMP <= 1889.54: 
                :       :...BLU_KRT <= -0.810661: extreme_low (37) 
                :       :   BLU_KRT > -0.810661: very_low (64) 
                :       RED_TMP > 1889.54: 
                :       :...SAT_COM > 358.817: 
                :           :...BLU_SKW <= -0.588554: very_low (24) 
                :           :   BLU_SKW > -0.588554: extreme_low (18) 
                :           SAT_COM <= 358.817: 
                :           :...BLU_KRT <= -0.718058: extreme_low (1018) 
                :               BLU_KRT > -0.718058: 
                :               :...RED_TMP <= 1893.32: very_low (7) 
                :                   RED_TMP > 1893.32: extreme_low (25) 
                BLU_SKW <= -0.612152: 
                :...GRE_COM <= 384.399: extreme_low (35) 
                    GRE_COM > 384.399: 
                    :...GRE_VAR > 0.010845: 
                        :...SAT_KRT <= -1.95974: extreme_low (130/1) 
                        :   SAT_KRT > -1.95974: very_low (107) 
                        GRE_VAR <= 0.010845: 
                        :...HUE_TMP > 1905.69: 
                            :...GRE_VAR > 0.010357: extreme_low (35) 
                            :   GRE_VAR <= 0.010357: 
                            :   :...HUE_VAR <= 72008.7: very_low (52) 
                            :       HUE_VAR > 72008.7: extreme_low (3) 
                            HUE_TMP <= 1905.69: 
                            :...SAT_OTS > 172.633: 
                                :...GRE_COM <= 410.617: extreme_low (13) 
                                :   GRE_COM > 410.617: very_low (12) 
                                SAT_OTS <= 172.633: 
                                :...SAT_COM > 334.9: very_low (1650) 
                                    SAT_COM <= 334.9: 
                                    :...SAT_SKW <= 1.0154: 
                                        :...BLU_AVG <= 0.844772: extreme_low (27) 
                                        :   BLU_AVG > 0.844772: 
                                        :   :...VAL_ENT <= -157502: very_low (116) 
                                        :       VAL_ENT > -157502: extreme_low (18/1) 
                                        SAT_SKW > 1.0154: 
                                        :...BLU_SKW <= -0.617094: very_low (550/1) 
                                            BLU_SKW > -0.617094: 
                                            :...RED_COM <= 373.125: very_low (29) 
                                                RED_COM > 373.125: [S1] 
 
SubTree [S1] 
 
VAL_OTS <= 193.35: extreme_low (7) 
VAL_OTS > 193.35: very_low (2) 
 
 
 
           (a)   (b)   (c)   (d)   (e)   (f)   (g)    <-classified as 
          ----  ----  ----  ----  ----  ----  ---- 
          2997     3                                  (a): class extreme_low 
             3  2997                                  (b): class very_low 
                      6000                            (c): class low 
                            9000                      (d): class normal 
                                  6000                (e): class high 
                                        2999     1    (f): class very_high 
                                              3000    (g): class extreme_high 
 
  Error rate: 0.02% 
 
 

 
Figure 5.24 Decision Tree for Configuration 1 using Backward Elimination 
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RED_AVG > 0.0202968: 
:...GRE_TMP <= 1376.08: extreme_high (49) 
:   GRE_TMP > 1376.08: very_high (50/2) 
RED_AVG <= 0.0202968: 
:...VAL_COM <= 347.746: 
    :...GRE_TMP > 1424.86: low (50/1) 
    :   GRE_TMP <= 1424.86: 
    :   :...VAL_AVG <= 0.018592: 
    :       :...GRE_TMP <= 1393.85: high (29) 
    :       :   GRE_TMP > 1393.85: normal (187/1) 
    :       VAL_AVG > 0.018592: 
    :       :...GRE_TMP <= 1413.55: high (70/1) 
    :           GRE_TMP > 1413.55: normal (3) 
    VAL_COM > 347.746: 
    :...HUE_COM <= 550.729: 
        :...GRE_TMP <= 1430.48: low (47) 
        :   GRE_TMP > 1430.48: very_low (3/1) 
        HUE_COM > 550.729: 
        :...GRE_TMP <= 1429.83: 
            :...VAL_AVG <= 0.0169017: very_low (9) 
            :   VAL_AVG > 0.0169017: low (2) 
            GRE_TMP > 1429.83: 
            :...RED_COM > 375.144: extreme_low (14) 
                RED_COM <= 375.144: 
                :...SAT_COM > 418.422: very_low (14/1) 
                    SAT_COM <= 418.422: 
                    :...RED_COM > 370.215: extreme_low (13) 
                        RED_COM <= 370.215: 
                        :...GRE_TMP <= 1444.65: very_low (15/1) 
                            GRE_TMP > 1444.65: 
                            :...HUE_AVG > 0.00111426: extreme_low (14) 
                                HUE_AVG <= 0.00111426: 
                                :...BLU_AVG <= 0.00675775: extreme_low (5) 
                                    BLU_AVG > 0.00675775: 
                                    :...GRE_TMP > 1451: extreme_low (2/1) 
                                        GRE_TMP <= 1451: 
                                        :...RED_COM <= 362.503: very_low (8) 
                                            RED_COM > 362.503: 
                                            :...RED_AVG <= 0.0167444: extreme_low (2) 
                                                RED_AVG > 0.0167444: very_low (2) 
 
 
 
 
           (a)   (b)   (c)   (d)   (e)   (f)   (g)    <-classified as 
          ----  ----  ----  ----  ----  ----  ---- 
            49     1                                  (a): class extreme_low 
             1    49                                  (b): class very_low 
                   1    99                            (c): class low 
                         1   149                      (d): class normal 
                               1    99                (e): class high 
                                     1    49          (f): class very_high 
                                           1    49    (g): class extreme_high 

Error rate: 1.5% 
 

 
Figure 5.25 Decision Tree for Configuration 2 using Forward Elimination 
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RED_AVG > 0.0202968: 
:...GRE_TMP <= 1376.08: extreme_high (49) 
:   GRE_TMP > 1376.08: very_high (50/1) 
RED_AVG <= 0.0202968: 
:...VAL_COM <= 347.746: 
    :...GRE_TMP > 1424.86: low (50/1) 
    :   GRE_TMP <= 1424.86: 
    :   :...SAT_VAR <= 0.000211992: 
    :       :...VAL_VAR <= 7.81e-005: normal (6) 
    :       :   VAL_VAR > 7.81e-005: high (82/2) 
    :       SAT_VAR > 0.000211992: 
    :       :...GRE_TMP > 1398.07: normal (188) 
    :           GRE_TMP <= 1398.07: 
    :           :...VAL_AVG <= 0.017836: normal (4) 
    :               VAL_AVG > 0.017836: high (20) 
    VAL_COM > 347.746: 
    :...RED_SKW <= -1.00433: 
        :...RED_KRT <= -1.9654: very_low (1) 
        :   RED_KRT > -1.9654: low (50/1) 
        RED_SKW > -1.00433: 
        :...RED_SKW > -0.975867: extreme_low (19/1) 
            RED_SKW <= -0.975867: 
            :...VAL_ENT > -1360000: 
                :...GRE_TMP <= 1448.6: very_low (22/1) 
                :   GRE_TMP > 1448.6: 
                :   :...SAT_SKW <= 1.80662: very_low (2) 
                :       SAT_SKW > 1.80662: extreme_low (4/1) 
                VAL_ENT <= -1360000: 
                :...RED_SKW > -0.991308: 
                    :...VAL_ENT <= -1370000: extreme_low (7) 
                    :   VAL_ENT > -1370000: 
                    :   :...GRE_TMP <= 1436.41: very_low (2/1) 
                    :       GRE_TMP > 1436.41: extreme_low (11/1) 
                    RED_SKW <= -0.991308: 
                    :...GRE_TMP > 1437.85: 
                        :...GRE_VAR <= 0.000165712: extreme_low (5) 
                        :   GRE_VAR > 0.000165712: very_low (3/1) 
                        GRE_TMP <= 1437.85: 
                        :...VAL_AVG > 0.0155511: very_low (18) 
                            VAL_AVG <= 0.0155511: 
                            :...GRE_TMP <= 1429.83: very_low (1) 
                                GRE_TMP > 1429.83: extreme_low (3) 
 
 
           (a)   (b)   (c)   (d)   (e)   (f)   (g)    <-classified as 
          ----  ----  ----  ----  ----  ----  ---- 
            47     3                                  (a): class extreme_low 
             3    47     1                            (b): class very_low 
                       100                            (c): class low 
                         1   147     2                (d): class normal 
                                   100                (e): class high 
                                     1    49          (f): class very_high 
                                           2    48    (g): class extreme_high 
 
  Error rate: 2.4% 

 
 

Figure 5.26 Decision Tree for Configuration 2 using Backward Elimination 
 

Although the classification performances are acceptable, the drawback to the 

arrangement is that it involves various features which can make the fuzzy logic 

implementation complex.  The resulting decision trees are also less intuitive and it is hard 

to find correlation between the selected features and the oxidizer level.  The non-uniform 

choice of features for branching also makes it challenging to approximate the 

classification of unknown level of oxidizer changes that is beyond the dataset.   
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Another possible arrangement is to group the oxidizer level based on the O/F ratio 

as mentioned earlier in Table 5.3.  The arrangement reduces the class from 7 to 3 as 

shown in Table 5.8.  However, it has similar problem on the decision tree as previous 

arrangement.  That is, even though the classification errors are small, the decision trees 

themselves are complex involving numerous features.  The decision tree results are 

shown in Figure 5.27 to 5.30 for both configurations using forward selection and 

backward elimination respectively.  Note that even though configuration 2’s decision 

trees has higher classification error rate, the complexity of the tree is much less than 

configuration 1’s.  

Table 5.8 Arrangement of Experimental Runs based on O/F Ratio 

Run # NG O2 O/F Oxidizer 
 Scfh Scfh Ratio Label 

2 80 144 1.8 FUEL RICH 
3 110 198 1.8 FUEL RICH 
4 140 252 1.8 FUEL RICH 
5 80 168 2.1 STOICHIOMETRY 
1 110 231 2.1 STOICHIOMETRY 
6 110 231 2.1 STOICHIOMETRY 

12 110 231 2.1 STOICHIOMETRY 
7 140 294 2.1 STOICHIOMETRY 
8 80 192 2.4 FUEL LEAN 
9 110 264 2.4 FUEL LEAN 

10 140 336 2.4 FUEL LEAN 
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BLU_OTS <= 121.75: 
:...RED_OTS <= 187.233: fuel_rich (2871) 
:   RED_OTS > 187.233: stoichiometry (25/1) 
BLU_OTS > 121.75: 
:...VAL_OTS <= 184.35: 
    :...HUE_ARE <= 12216.9: fuel_rich (2304) 
    :   HUE_ARE > 12216.9: stoichiometry (141) 
    VAL_OTS > 184.35: 
    :...SAT_OTS <= 170.917: 
        :...VAL_OTS > 189.983: 
        :   :...HUE_ARE <= 9568.65: stoichiometry (156) 
        :   :   HUE_ARE > 9568.65: 
        :   :   :...SAT_OTS <= 170.1: fuel_lean (5395) 
        :   :       SAT_OTS > 170.1: stoichiometry (25) 
        :   VAL_OTS <= 189.983: 
        :   :...GRE_ARE <= 15848.5: 
        :       :...SAT_OTS <= 161.567: fuel_lean (2754) 
        :       :   SAT_OTS > 161.567: stoichiometry (220) 
        :       GRE_ARE > 15848.5: 
        :       :...SAT_OTS > 164.617: fuel_rich (637) 
        :           SAT_OTS <= 164.617: 
        :           :...HUE_OTS <= 90.9833: 
        :               :...BLU_OTS <= 124.75: stoichiometry (26) 
        :               :   BLU_OTS > 124.75: fuel_lean (452) 
        :               HUE_OTS > 90.9833: 
        :               :...HUE_ARE <= 7298.35: fuel_rich (69) 
        :                   HUE_ARE > 7298.35: 
        :                   :...HUE_ARE > 13216.9: 
        :                       :...VAL_OTS <= 186.417: stoichiometry (401) 
        :                       :   VAL_OTS > 186.417: fuel_lean (148) 
        :                       HUE_ARE <= 13216.9: 
        :                       :...HUE_OTS <= 91.5667: 
        :                           :...BLU_OTS <= 125.55: stoichiometry (132) 
        :                           :   BLU_OTS > 125.55: fuel_lean (34) 
        :                           HUE_OTS > 91.5667: 
        :                           :...GRE_ARE > 15949.5: stoichiometry (10480/3) 
        :                               GRE_ARE <= 15949.5: 
        :                               :...SAT_OTS <= 161.133: fuel_lean (37) 
        :                                   SAT_OTS > 161.133: stoichiometry (187) 
        SAT_OTS > 170.917: 
        :...HUE_OTS <= 99.2333: 
            :...GRE_ARE > 18081.7: fuel_rich (483) 
            :   GRE_ARE <= 18081.7: 
            :   :...RED_ARE <= 23021.3: fuel_rich (43) 
            :       RED_ARE > 23021.3: stoichiometry (12) 
            HUE_OTS > 99.2333: 
            :...SAT_OTS > 172.617: 
                :...GRE_OTS > 170.417: 
                :   :...RED_OTS > 193.217: fuel_rich (40) 
                :   :   RED_OTS <= 193.217: 
                :   :   :...RED_ARE <= 19025.9: fuel_rich (5) 
                :   :       RED_ARE > 19025.9: stoichiometry (34) 
                :   GRE_OTS <= 170.417: 
                :   :...GRE_OTS <= 170.183: fuel_rich (601/1) 
                :       GRE_OTS > 170.183: 
                :       :...GRE_ARE <= 15535.8: stoichiometry (2) 
                :           GRE_ARE > 15535.8: 
                :           :...VAL_ARE <= 20077.4: fuel_rich (52) 
                :               VAL_ARE > 20077.4: stoichiometry (3) 
                SAT_OTS <= 172.617: 
                :...SAT_ARE > 23400.5: fuel_rich (164) 
                    SAT_ARE <= 23400.5: 
                    :...BLU_OTS <= 142.933: 
                        :...HUE_ARE > 11956.5: 
                        :   :...SAT_OTS > 172.1: fuel_rich (5) 
                        :   :   SAT_OTS <= 172.1: 
                        :   :   :...SAT_ARE <= 23137.5: stoichiometry (96) 
                        :   :       SAT_ARE > 23137.5: 
                        :   :       :...RED_ARE <= 22491: stoichiometry (2) 
                        :   :           RED_ARE > 22491: fuel_rich (2) 
                        :   HUE_ARE <= 11956.5: 
                        :   :...SAT_OTS > 171.733: 
                        :       :...BLU_OTS <= 142.8: fuel_rich (352) 
                        :       :   BLU_OTS > 142.8: 
                        :       :   :...RED_ARE <= 22102.9: fuel_rich (112) 
                        :       :       RED_ARE > 22102.9: 
                        :       :       :...GRE_OTS <= 169.65: stoichiometry (17) 
                        :       :           GRE_OTS > 169.65: fuel_rich (6) 
                        :       SAT_OTS <= 171.733: 
                        :       :...RED_OTS <= 191.05: 
                        :           :...BLU_OTS <= 141.95: fuel_rich (6) 
                        :           :   BLU_OTS > 141.95: stoichiometry (75) 
                        :           RED_OTS > 191.05: 
                        :           :...SAT_OTS <= 171.117: stoichiometry (45/1) 
                        :               SAT_OTS > 171.117: 
                        :               :...BLU_OTS <= 142.567: fuel_rich (207/1) 
                        :                   BLU_OTS > 142.567: [S1] 
                        BLU_OTS > 142.933: 
                        :...SAT_OTS <= 172: 
                            :...BLU_OTS > 143.5: stoichiometry (877) 
                            :   BLU_OTS <= 143.5: 
                            :   :...SAT_OTS <= 171.617: 
                            :       :...BLU_OTS > 142.967: stoichiometry (481) 
                            :       :   BLU_OTS <= 142.967: 
                            :       :   :...RED_OTS <= 192.65: stoichiometry (29) 
                            :       :       RED_OTS > 192.65: fuel_rich (2) 
                            :       SAT_OTS > 171.617: 
                            :       :...RED_OTS <= 191.517: stoichiometry (113) 
                            :           RED_OTS > 191.517: 
                            :           :...HUE_ARE > 11480.8: stoichiometry (77/2) 
                            :               HUE_ARE <= 11480.8: [S2] 
                            SAT_OTS > 172: 
                            :...BLU_OTS > 144.133: 
                                :...RED_OTS > 193.75: 
                                :   :...SAT_OTS <= 172.3: stoichiometry (11) 
                                :   :   SAT_OTS > 172.3: fuel_rich (15) 
                                :   RED_OTS <= 193.75: 
                                :   :...GRE_OTS <= 169.633: 
                                :       :...VAL_ARE <= 18214: fuel_rich (4) 
                                :       :   VAL_ARE > 18214: stoichiometry (22/2) 
                                :       GRE_OTS > 169.633: 
                                :       :...BLU_OTS > 144.183: stoichiometry (513) 
                                :           BLU_OTS <= 144.183: [S3] 
                                BLU_OTS <= 144.133: 
                                :...GRE_ARE <= 15778.3: 
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                                    :...RED_OTS <= 191.933: stoichiometry (130) 
                                    :   RED_OTS > 191.933: 
                                    :   :...SAT_OTS <= 172.25: stoichiometry (27) 
                                    :       SAT_OTS > 172.25: fuel_rich (14) 
                                    GRE_ARE > 15778.3: 
                                    :...HUE_ARE <= 10914.9: 
                                        :...GRE_OTS <= 168.417: [S4] 
                                        :   GRE_OTS > 168.417: 
                                        :   :...SAT_OTS > 172.167: fuel_rich (373) 
                                        :       SAT_OTS <= 172.167: [S5] 
                                        HUE_ARE > 10914.9: 
                                        :...SAT_OTS > 172.317: fuel_rich (49) 
                                            SAT_OTS <= 172.317: 
                                            :...HUE_OTS <= 99.8667: fuel_rich (19/1) 
                                                HUE_OTS > 99.8667: 
                                                :...SAT_OTS > 172.267: [S6] 
                                                    SAT_OTS <= 172.267: [S7] 
 
 
 
SubTree [S1] 
 
RED_OTS <= 191.617: stoichiometry (26) 
RED_OTS > 191.617: 
:...SAT_OTS > 171.5: fuel_rich (93/1) 
    SAT_OTS <= 171.5: 
    :...GRE_OTS <= 170.083: stoichiometry (45/1) 
        GRE_OTS > 170.083: fuel_rich (27/1) 
 
SubTree [S2] 
 
SAT_ARE <= 20396: stoichiometry (36) 
SAT_ARE > 20396: 
:...GRE_OTS > 169.85: 
    :...BLU_OTS <= 143.333: fuel_rich (66) 
    :   BLU_OTS > 143.333: 
    :   :...SAT_OTS > 171.85: fuel_rich (12) 
    :       SAT_OTS <= 171.85: 
    :       :...GRE_OTS <= 170.283: stoichiometry (8) 
    :           GRE_OTS > 170.283: fuel_rich (2) 
    GRE_OTS <= 169.85: 
    :...HUE_ARE <= 10445.2: fuel_rich (22) 
        HUE_ARE > 10445.2: 
        :...GRE_OTS <= 169: fuel_rich (7) 
            GRE_OTS > 169: 
            :...GRE_OTS <= 169.467: stoichiometry (30) 
                GRE_OTS > 169.467: 
                :...VAL_OTS <= 193.083: fuel_rich (7) 
                    VAL_OTS > 193.083: stoichiometry (8/1) 
 
SubTree [S3] 
 
SAT_OTS <= 172.467: stoichiometry (18) 
SAT_OTS > 172.467: fuel_rich (3) 
 
SubTree [S4] 
 
SAT_OTS <= 172.333: stoichiometry (12) 
SAT_OTS > 172.333: fuel_rich (11) 
 
SubTree [S5] 
 
BLU_OTS > 143.8: stoichiometry (14) 
BLU_OTS <= 143.8: 
:...GRE_ARE > 16135.6: fuel_rich (96/1) 
    GRE_ARE <= 16135.6: 
    :...BLU_OTS <= 143.467: fuel_rich (6) 
        BLU_OTS > 143.467: stoichiometry (5) 
 
SubTree [S6] 
 
BLU_OTS <= 143.333: fuel_rich (10) 
BLU_OTS > 143.333: 
:...HUE_OTS <= 100.833: fuel_rich (3) 
    HUE_OTS > 100.833: stoichiometry (7) 
 
SubTree [S7] 
 
HUE_OTS > 102.267: stoichiometry (100/1) 
HUE_OTS <= 102.267: 
:...HUE_ARE > 11314.2: stoichiometry (26) 
    HUE_ARE <= 11314.2: 
    :...BLU_OTS > 143.683: stoichiometry (10) 
        BLU_OTS <= 143.683: 
        :...RED_OTS <= 191.683: stoichiometry (7) 
            RED_OTS > 191.683: fuel_rich (20) 
 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          8991     9          (a): class fuel_rich 
             6 14994          (b): class stoichiometry 
                   3  8997    (c): class fuel_lean 
 
  Error rate: 0.1% 
 

 
Figure 5.27 Decision Tree for Configuration 1 using Forward Selection 
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RED_TMP <= 1777.18: 
:...BLU_SKW <= -0.148437: fuel_lean (2776) 
:   BLU_SKW > -0.148437: stoichiometry (48) 
RED_TMP > 1777.18: 
:...GRE_ARE <= 15850.2: 
    :...SAT_SKW > 1.01652: 
    :   :...VAL_OTS <= 186: stoichiometry (138) 
    :   :   VAL_OTS > 186: 
    :   :   :...BLU_OTS <= 133.917: stoichiometry (69) 
    :   :       BLU_OTS > 133.917: 
    :   :       :...GRE_ARE <= 15814.4: fuel_lean (4951) 
    :   :           GRE_ARE > 15814.4: 
    :   :           :...RED_SKW <= 0.588576: fuel_lean (84) 
    :   :               RED_SKW > 0.588576: stoichiometry (16) 
    :   SAT_SKW <= 1.01652: 
    :   :...SAT_SKW <= 1.01504: fuel_rich (101/2) 
    :       SAT_SKW > 1.01504: 
    :       :...SAT_COM > 334.9: stoichiometry (642) 
    :           SAT_COM <= 334.9: 
    :           :...HUE_TMP > 1904.59: 
    :               :...VAL_ENT <= -161980: stoichiometry (2) 
    :               :   VAL_ENT > -161980: fuel_rich (12) 
    :               HUE_TMP <= 1904.59: 
    :               :...GRE_VAR <= 0.0107398: stoichiometry (140) 
    :                   GRE_VAR > 0.0107398: 
    :                   :...BLU_COM <= 314.55: fuel_rich (13) 
    :                       BLU_COM > 314.55: stoichiometry (17) 
    GRE_ARE > 15850.2: 
    :...GRE_OTS > 171.133: 
        :...SAT_SKW <= 1.01652: stoichiometry (169) 
        :   SAT_SKW > 1.01652: fuel_lean (518) 
        GRE_OTS <= 171.133: 
        :...BLU_SKW > -0.0223269: fuel_rich (2941) 
            BLU_SKW <= -0.0223269: 
            :...RED_TMP <= 1820.8: 
                :...VAL_OTS > 190.5: fuel_lean (165) 
                :   VAL_OTS <= 190.5: 
                :   :...HUE_ARE > 13216.9: 
                :       :...SAT_SKW <= 1.02594: stoichiometry (459) 
                :       :   SAT_SKW > 1.02594: fuel_lean (148) 
                :       HUE_ARE <= 13216.9: 
                :       :...GRE_ARE > 15949.5: stoichiometry (10851/2) 
                :           GRE_ARE <= 15949.5: 
                :           :...SAT_SKW <= 1.02567: stoichiometry (185) 
                :               SAT_SKW > 1.02567: fuel_lean (35) 
                RED_TMP > 1820.8: 
                :...BLU_OTS <= 142.117: 
                    :...BLU_KRT <= -0.737893: fuel_rich (3460) 
                    :   BLU_KRT > -0.737893: 
                    :   :...BLU_COM <= 304.1: fuel_rich (21) 
                    :       BLU_COM > 304.1: stoichiometry (4) 
                    BLU_OTS > 142.117: 
                    :...SAT_KRT <= -1.96082: 
                        :...BLU_VAR <= 0.0144449: 
                        :   :...SAT_SKW <= 1.0147: fuel_rich (63) 
                        :   :   SAT_SKW > 1.0147: stoichiometry (70) 
                        :   BLU_VAR > 0.0144449: 
                        :   :...RED_TMP <= 1896.07: 
                        :       :...BLU_VAR > 0.0153348: fuel_rich (150) 
                        :       :   BLU_VAR <= 0.0153348: 
                        :       :   :...BLU_COM <= 283.683: fuel_rich (3) 
                        :       :       BLU_COM > 283.683: stoichiometry (57) 
                        :       RED_TMP > 1896.07: 
                        :       :...SAT_SKW <= 1.01513: fuel_rich (1209/1) 
                        :           SAT_SKW > 1.01513: 
                        :           :...GRE_KRT <= -1.00545: fuel_rich (51) 
                        :               GRE_KRT > -1.00545: stoichiometry (4) 
                        SAT_KRT > -1.96082: 
                        :...BLU_SKW > -0.612152: 
                            :...SAT_SKW > 1.01588: stoichiometry (194/2) 
                            :   SAT_SKW <= 1.01588: 
                            :   :...RED_KRT > -1.11143: stoichiometry (30/1) 
                            :       RED_KRT <= -1.11143: 
                            :       :...HUE_TMP <= 1903.84: 
                            :           :...RED_TMP <= 1892.78: stoichiometry (62) 
                            :           :   RED_TMP > 1892.78: [S1] 
                            :           HUE_TMP > 1903.84: 
                            :           :...VAL_ENT > -204263: fuel_rich (523/1) 
                            :               VAL_ENT <= -204263: [S2] 
                            BLU_SKW <= -0.612152: 
                            :...GRE_COM <= 384.399: fuel_rich (25) 
                                GRE_COM > 384.399: 
                                :...GRE_VAR > 0.0108621: 
                                    :...SAT_SKW <= 1.01557: fuel_rich (99) 
                                    :   SAT_SKW > 1.01557: stoichiometry (44) 
                                    GRE_VAR <= 0.0108621: 
                                    :...SAT_OTS > 172.55: 
                                        :...GRE_OTS <= 170: fuel_rich (13) 
                                        :   GRE_OTS > 170: stoichiometry (15) 
                                        SAT_OTS <= 172.55: 
                                        :...HUE_AVG > 0.732535: [S3] 
                                            HUE_AVG <= 0.732535: 
                                            :...SAT_COM > 329.5: [S4] 
                                                SAT_COM <= 329.5: [S5] 
 
SubTree [S1] 
 
HUE_VAR <= 73229: stoichiometry (3) 
HUE_VAR > 73229: fuel_rich (68) 
 
SubTree [S2] 
 
SAT_COM <= 320.133: fuel_rich (15) 
SAT_COM > 320.133: stoichiometry (4) 
 
SubTree [S3] 
 
HUE_TMP <= 1897.62: fuel_lean (144) 
HUE_TMP > 1897.62: stoichiometry (21) 
 
SubTree [S4] 
 
HUE_SKW <= 1.11039: stoichiometry (1099) 
HUE_SKW > 1.11039: 
:...HUE_TMP <= 1906.13: stoichiometry (22) 
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    HUE_TMP > 1906.13: fuel_rich (3) 
 
SubTree [S5] 
 
BLU_VAR > 0.0156205: fuel_rich (16) 
BLU_VAR <= 0.0156205: 
:...SAT_SKW <= 1.01532: 
    :...BLU_OTS <= 143.85: fuel_rich (26) 
    :   BLU_OTS > 143.85: stoichiometry (15) 
    SAT_SKW > 1.01532: 
    :...BLU_SKW <= -0.62248: stoichiometry (289/1) 
        BLU_SKW > -0.62248: 
        :...RED_COM <= 373.125: stoichiometry (34) 
            RED_COM > 373.125: 
            :...RED_TMP <= 1892.35: stoichiometry (4) 
                RED_TMP > 1892.35: fuel_rich (11) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          8994     4          (a): class fuel_rich 
             4 14996          (b): class stoichiometry 
                   2  8998    (c): class fuel_lean 
 
  Error rate: 0.06% 

 
Figure 5.28 Decision Tree for Configuration 1 using Backward Elimination 

 
 
 

SAT_COM <= 404.595: 
:...HUE_COM > 568.8994: fuel_rich (91/2) 
:   HUE_COM <= 568.8994: 
:   :...GRE_AVG <= 0.007720813: fuel_rich (7/1) 
:       GRE_AVG > 0.007720813: fuel_lean (2) 
SAT_COM > 404.595: 
:...SAT_AVG > 0.01074972: 
    :...RED_AVG > 0.01633964: stoichiometry (11) 
    :   RED_AVG <= 0.01633964: 
    :   :...BLU_COM <= 422.6686: fuel_rich (40) 
    :       BLU_COM > 422.6686: 
    :       :...RED_COM <= 370.9891: stoichiometry (12) 
    :           RED_COM > 370.9891: fuel_rich (7) 
    SAT_AVG <= 0.01074972: 
    :...HUE_COM <= 538.399: 
        :...VAL_AVG > 0.01817645: fuel_lean (72) 
        :   VAL_AVG <= 0.01817645: 
        :   :...RED_COM <= 341.1211: stoichiometry (15) 
        :       RED_COM > 341.1211: fuel_lean (47/2) 
        HUE_COM > 538.399: 
        :...VAL_AVG > 0.02138686: 
            :...GRE_COM <= 330.9509: stoichiometry (4) 
            :   GRE_COM > 330.9509: fuel_lean (26) 
            VAL_AVG <= 0.02138686: 
            :...GRE_COM <= 393.8683: stoichiometry (207/9) 
                GRE_COM > 393.8683: 
                :...RED_COM > 372.7943: fuel_rich (3) 
                    RED_COM <= 372.7943: 
                    :...VAL_AVG <= 0.01716943: stoichiometry (4) 
                        VAL_AVG > 0.01716943: fuel_lean (2) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
           145     5          (a): class fuel_rich 
                 248     2    (b): class stoichiometry 
             3     4   153    (c): class fuel_lean 
 
  Error rate: 2.5% 

 
 

Figure 5.29 Decision Tree for Configuration 2 using Forward Selection 
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RED_TMP <= 1192.47: 
:...RED_SKW <= -0.9702253: fuel_lean (134/5) 
:   RED_SKW > -0.9702253: stoichiometry (5) 
RED_TMP > 1192.47: 
:...SAT_COM <= 404.595: 
    :...VAL_VAR <= 9.24e-005: fuel_rich (68) 
    :   VAL_VAR > 9.24e-005: 
    :   :...HUE_COM <= 569.0953: fuel_lean (2) 
    :       HUE_COM > 569.0953: fuel_rich (30/2) 
    SAT_COM > 404.595: 
    :...GRE_TMP > 1442.045: fuel_rich (48/1) 
        GRE_TMP <= 1442.045: 
        :...RED_SKW <= -1.009382: fuel_lean (14) 
            RED_SKW > -1.009382: 
            :...BLU_COM > 429.3526: 
                :...RED_KRT <= -1.96472: fuel_rich (2) 
                :   RED_KRT > -1.96472: stoichiometry (7/1) 
                BLU_COM <= 429.3526: 
                :...BLU_ENT > -994246: 
                    :...HUE_SKW <= 4.393744: stoichiometry (7) 
                    :   HUE_SKW > 4.393744: fuel_lean (2) 
                    BLU_ENT <= -994246: 
                    :...SAT_COM > 407.1514: stoichiometry (224/2) 
                        SAT_COM <= 407.1514: 
                        :...HUE_KRT > 19.42931: fuel_rich (1/1) 
                            HUE_KRT <= 19.42931: 
                            :...GRE_AVG <= 0.007144373: fuel_rich (1) 
                                GRE_AVG > 0.007144373: stoichiometry (6) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
           148     2          (a): class fuel_rich 
             1   244     5    (b): class stoichiometry 
             3     1   146    (c): class fuel_lean 
 
  Error rate: 2.1% 

 
 

Figure 5.30 Decision Tree for Configuration 2 using Backward Elimination 
 
 
 
 The final arrangement follows the grouping as defined previously in Table 5.3.  It 

is an attempt to see if there is any correlation between changes in fuel with the oxidizer 

classification.  The flame profiles discussed before supports this idea as well.   

One discovery made in this study is that the previously complex decision tree 

classifications of oxidizer can indeed be simplified provided the fuel level is known 

beforehand.  This particular arrangement groups the original 11 runs in two levels, first 

by the fuel level then for each fuel level by the O/F ratio.  The total number of class for 

oxidizer level is still three according to the O/F ratio. 
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5.4.5.2 Oxidizer Classification using Configuration 1 

 The arrangement based on Table 5.3 improves the simplicity of the decision tree 

for certain fuel level thus substantially reduces the number of features selected to classify 

oxidizer level.  The classification error rates are also improved.  However, the selected 

features are not the same for each class of fuel as shown in Figure 5.31 to 5.36.  It still 

does not solve the complex classification process involving many features.  Fortunately 

configuration 2 is able to provide a much better solution. 

 
 
SAT_OTS <= 170.1: fuel_lean (2941) 
SAT_OTS > 170.1: 
:...HUE_OTS <= 99.2333: 
    :...BLU_OTS <= 142.683: fuel_rich (410) 
    :   BLU_OTS > 142.683: 
    :   :...SAT_OTS > 171.533: fuel_rich (104) 
    :       SAT_OTS <= 171.533: 
    :       :...HUE_OTS <= 98.9833: fuel_rich (9) 
    :           HUE_OTS > 98.9833: 
    :           :...BLU_OTS > 142.817: stoichiometry (9) 
    :               BLU_OTS <= 142.817: 
    :               :...RED_OTS <= 192.25: stoichiometry (3) 
    :                   RED_OTS > 192.25: fuel_rich (3) 
    HUE_OTS > 99.2333: 
    :...SAT_OTS > 172.617: 
        :...GRE_OTS > 170.417: 
        :   :...RED_OTS > 193.217: fuel_rich (40) 
        :   :   RED_OTS <= 193.217: 
        :   :   :...BLU_OTS <= 144.617: fuel_rich (5) 
        :   :       BLU_OTS > 144.617: stoichiometry (34) 
        :   GRE_OTS <= 170.417: 
        :   :...GRE_OTS <= 170.183: fuel_rich (601/1) 
        :       GRE_OTS > 170.183: 
        :       :...HUE_OTS > 104.45: stoichiometry (2) 
        :           HUE_OTS <= 104.45: 
        :           :...RED_OTS > 192.55: fuel_rich (46) 
        :               RED_OTS <= 192.55: 
        :               :...BLU_OTS <= 144.467: fuel_rich (6) 
        :                   BLU_OTS > 144.467: stoichiometry (3) 
        SAT_OTS <= 172.617: 
        :...BLU_OTS <= 142.9: 
            :...SAT_OTS <= 171.1: stoichiometry (58) 
            :   SAT_OTS > 171.1: 
            :   :...RED_OTS <= 191.1: 
            :       :...GRE_OTS <= 168.183: fuel_rich (151/1) 
            :       :   GRE_OTS > 168.183: 
            :       :   :...SAT_OTS > 172.1: fuel_rich (11) 
            :       :       SAT_OTS <= 172.1: 
            :       :       :...RED_OTS > 191.017: 
            :       :           :...BLU_OTS <= 142.25: fuel_rich (7) 
            :       :           :   BLU_OTS > 142.25: stoichiometry (10/1) 
            :       :           RED_OTS <= 191.017: 
            :       :           :...BLU_OTS > 142.067: stoichiometry (131) 
            :       :               BLU_OTS <= 142.067: 
            :       :               :...RED_OTS <= 190.583: stoichiometry (3) 
            :       :                   RED_OTS > 190.583: fuel_rich (3) 
            :       RED_OTS > 191.1: 
            :       :...BLU_OTS <= 142.567: 
            :           :...GRE_OTS > 168.283: fuel_rich (407) 
            :           :   GRE_OTS <= 168.283: 
            :           :   :...HUE_OTS <= 100.233: stoichiometry (8/1) 
            :           :       HUE_OTS > 100.233: fuel_rich (13) 
            :           BLU_OTS > 142.567: 
            :           :...SAT_OTS <= 171.5: 
            :               :...GRE_OTS > 170.067: fuel_rich (24) 
            :               :   GRE_OTS <= 170.067: 
            :               :   :...VAL_OTS > 193.517: fuel_rich (9/1) 
            :               :       VAL_OTS <= 193.517: 
            :               :       :...SAT_OTS <= 171.483: stoichiometry (64) 
            :               :           SAT_OTS > 171.483: 
            :               :           :...BLU_OTS <= 142.7: fuel_rich (2) 
            :               :               BLU_OTS > 142.7: stoichiometry (2) 
            :               SAT_OTS > 171.5: 
            :               :...RED_OTS > 191.8: fuel_rich (194) 
            :                   RED_OTS <= 191.8: 
            :                   :...HUE_OTS <= 100.033: 
            :                       :...BLU_OTS <= 142.617: fuel_rich (3) 
            :                       :   BLU_OTS > 142.617: stoichiometry (16/1) 
            :                       HUE_OTS > 100.033: 
            :                       :...SAT_OTS > 171.917: fuel_rich (96) 
            :                           SAT_OTS <= 171.917: 
            :                           :...RED_OTS <= 191.5: stoichiometry (10/1) 
            :                               RED_OTS > 191.5: fuel_rich (21) 
            BLU_OTS > 142.9: 
            :...SAT_OTS > 172: 
                :...BLU_OTS > 144.133: 
                :   :...RED_OTS > 193.75: 
                :   :   :...SAT_OTS <= 172.3: stoichiometry (11) 
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                :   :   :   SAT_OTS > 172.3: fuel_rich (15) 
                :   :   RED_OTS <= 193.75: 
                :   :   :...GRE_OTS <= 169.633: 
                :   :       :...SAT_OTS <= 172.483: stoichiometry (17) 
                :   :       :   SAT_OTS > 172.483: 
                :   :       :   :...GRE_OTS <= 169.2: stoichiometry (3) 
                :   :       :       GRE_OTS > 169.2: fuel_rich (6) 
                :   :       GRE_OTS > 169.633: 
                :   :       :...BLU_OTS > 144.183: stoichiometry (513) 
                :   :           BLU_OTS <= 144.183: 
                :   :           :...SAT_OTS <= 172.467: stoichiometry (18) 
                :   :               SAT_OTS > 172.467: fuel_rich (3) 
                :   BLU_OTS <= 144.133: 
                :   :...HUE_OTS > 104.5: 
                :       :...RED_OTS > 192.35: fuel_rich (9) 
                :       :   RED_OTS <= 192.35: 
                :       :   :...HUE_OTS > 104.65: stoichiometry (137) 
                :       :       HUE_OTS <= 104.65: 
                :       :       :...SAT_OTS <= 172.333: stoichiometry (23) 
                :       :           SAT_OTS > 172.333: fuel_rich (8) 
                :       HUE_OTS <= 104.5: 
                :       :...SAT_OTS > 172.317: fuel_rich (337) 
                :           SAT_OTS <= 172.317: 
                :           :...BLU_OTS > 143.933: stoichiometry (33) 
                :               BLU_OTS <= 143.933: 
                :               :...RED_OTS <= 191.75: 
                :                   :...SAT_OTS > 172.233: fuel_rich (13/1) 
                :                   :   SAT_OTS <= 172.233: 
                :                   :   :...BLU_OTS > 143.183: stoichiometry (76) 
                :                   :       BLU_OTS <= 143.183: [S1] 
                :                   RED_OTS > 191.75: 
                :                   :...BLU_OTS > 143.7: 
                :                       :...RED_OTS <= 192.383: stoichiometry (29) 
                :                       :   RED_OTS > 192.383: [S2] 
                :                       BLU_OTS <= 143.7: 
                :                       :...RED_OTS > 192.017: fuel_rich (164) 
                :                           RED_OTS <= 192.017: [S3] 
                SAT_OTS <= 172: 
                :...BLU_OTS > 143.5: stoichiometry (877) 
                    BLU_OTS <= 143.5: 
                    :...SAT_OTS <= 171.617: 
                        :...BLU_OTS > 142.967: stoichiometry (481) 
                        :   BLU_OTS <= 142.967: 
                        :   :...RED_OTS <= 192.683: stoichiometry (53/2) 
                        :       RED_OTS > 192.683: fuel_rich (6) 
                        SAT_OTS > 171.617: 
                        :...RED_OTS <= 191.517: stoichiometry (119) 
                            RED_OTS > 191.517: 
                            :...GRE_OTS > 170.283: fuel_rich (25) 
                                GRE_OTS <= 170.283: 
                                :...SAT_OTS > 171.9: 
                                    :...BLU_OTS <= 143.3: 
                                    :   :...RED_OTS > 191.75: fuel_rich (43) 
                                    :   :   RED_OTS <= 191.75: [S4] 
                                    :   BLU_OTS > 143.3: 
                                    :   :...GRE_OTS <= 169.7: stoichiometry (18) 
                                    :       GRE_OTS > 169.7: [S5] 
                                    SAT_OTS <= 171.9: 
                                    :...BLU_OTS > 143.183: stoichiometry (71) 
                                        BLU_OTS <= 143.183: 
                                        :...VAL_OTS > 193.4: fuel_rich (27) 
                                            VAL_OTS <= 193.4: 
                                            :...GRE_OTS > 169.95: [S6] 
                                                GRE_OTS <= 169.95: [S7] 
 
SubTree [S1] 
 
GRE_OTS <= 169.133: stoichiometry (9/1) 
GRE_OTS > 169.133: fuel_rich (3) 
 
SubTree [S2] 
 
VAL_OTS <= 194: fuel_rich (31) 
VAL_OTS > 194: stoichiometry (5) 
 
SubTree [S3] 
 
HUE_OTS <= 101.733: stoichiometry (17) 
HUE_OTS > 101.733: 
:...BLU_OTS <= 143.367: fuel_rich (43) 
    BLU_OTS > 143.367: 
    :...RED_OTS <= 191.9: stoichiometry (12) 
        RED_OTS > 191.9: fuel_rich (6) 
 
SubTree [S4] 
 
GRE_OTS <= 169.317: stoichiometry (6) 
GRE_OTS > 169.317: fuel_rich (9) 
 
SubTree [S5] 
 
VAL_OTS <= 193.683: fuel_rich (9) 
VAL_OTS > 193.683: stoichiometry (2) 
 
SubTree [S6] 
 
SAT_OTS <= 171.7: stoichiometry (3) 
SAT_OTS > 171.7: fuel_rich (12) 
 
SubTree [S7] 
 
GRE_OTS <= 169.5: stoichiometry (41) 
GRE_OTS > 169.5: 
:...HUE_OTS <= 101.033: stoichiometry (15) 
    HUE_OTS > 101.033: 
    :...VAL_OTS <= 193.217: fuel_rich (4) 
        VAL_OTS > 193.217: stoichiometry (2) 
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           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          2993     7          (a): class fuel_rich 
             4  2996          (b): class stoichiometry 
                      3000    (c): class fuel_lean 
 

Error rate: 0.1% 
 

 
Figure 5.31 Decision Trees for Configuration 1 using Forward Selection for Low Fuel Level  

 
 
SAT_SKW > 1.01652: fuel_lean (2941) 
SAT_SKW <= 1.01652: 
:...SAT_SKW <= 1.01513: 
    :...GRE_OTS <= 170.267: 
    :   :...BLU_VAR > 0.0145154: fuel_rich (1269) 
    :   :   BLU_VAR <= 0.0145154: 
    :   :   :...SAT_TMP <= 1904.19: stoichiometry (10) 
    :   :       SAT_TMP > 1904.19: fuel_rich (41) 
    :   GRE_OTS > 170.267: 
    :   :...SAT_SKW > 1.01487: 
    :       :...BLU_SKW <= -0.671247: stoichiometry (104) 
    :       :   BLU_SKW > -0.671247: fuel_rich (27/1) 
    :       SAT_SKW <= 1.01487: 
    :       :...BLU_KRT <= -0.435997: fuel_rich (174) 
    :           BLU_KRT > -0.435997: 
    :           :...SAT_VAR <= 55466.2: stoichiometry (9) 
    :               SAT_VAR > 55466.2: fuel_rich (6) 
    SAT_SKW > 1.01513: 
    :...BLU_SKW > -0.612152: 
        :...HUE_TMP <= 1902.94: 
        :   :...GRE_ARE > 18047.5: fuel_rich (58) 
        :   :   GRE_ARE <= 18047.5: 
        :   :   :...RED_SKW > 0.190039: stoichiometry (198) 
        :   :       RED_SKW <= 0.190039: 
        :   :       :...BLU_SKW <= -0.575634: stoichiometry (5) 
        :   :           BLU_SKW > -0.575634: fuel_rich (2) 
        :   HUE_TMP > 1902.94: 
        :   :...RED_TMP <= 1889.54: 
        :       :...BLU_KRT <= -0.810661: fuel_rich (37) 
        :       :   BLU_KRT > -0.810661: stoichiometry (64) 
        :       RED_TMP > 1889.54: 
        :       :...SAT_COM > 358.817: 
        :           :...BLU_SKW <= -0.588554: stoichiometry (24) 
        :           :   BLU_SKW > -0.588554: fuel_rich (18) 
        :           SAT_COM <= 358.817: 
        :           :...BLU_KRT <= -0.718058: fuel_rich (1018) 
        :               BLU_KRT > -0.718058: 
        :               :...RED_TMP <= 1893.32: stoichiometry (7) 
        :                   RED_TMP > 1893.32: fuel_rich (25) 
        BLU_SKW <= -0.612152: 
        :...GRE_COM <= 384.386: fuel_rich (35) 
            GRE_COM > 384.386: 
            :...GRE_VAR > 0.010845: 
                :...SAT_KRT <= -1.95974: fuel_rich (130/1) 
                :   SAT_KRT > -1.95974: stoichiometry (107) 
                GRE_VAR <= 0.010845: 
                :...HUE_TMP > 1905.69: 
                    :...GRE_VAR > 0.0103569: fuel_rich (35) 
                    :   GRE_VAR <= 0.0103569: 
                    :   :...HUE_VAR <= 72008.7: stoichiometry (52) 
                    :       HUE_VAR > 72008.7: fuel_rich (3) 
                    HUE_TMP <= 1905.69: 
                    :...SAT_OTS > 172.633: 
                        :...GRE_COM <= 410.617: fuel_rich (13) 
                        :   GRE_COM > 410.617: stoichiometry (12) 
                        SAT_OTS <= 172.633: 
                        :...SAT_COM > 334.9: stoichiometry (1650) 
                            SAT_COM <= 334.9: 
                            :...SAT_SKW <= 1.0154: 
                                :...BLU_AVG <= 0.844772: fuel_rich (27) 
                                :   BLU_AVG > 0.844772: 
                                :   :...VAL_ENT <= -157502: stoichiometry (116) 
                                :       VAL_ENT > -157502: fuel_rich (18/1) 
                                SAT_SKW > 1.0154: 
                                :...BLU_SKW <= -0.617094: stoichiometry (550/1) 
                                    BLU_SKW > -0.617094: 
                                    :...RED_COM <= 373.125: stoichiometry (29) 
                                        RED_COM > 373.125: 
                                        :...VAL_OTS <= 193.35: fuel_rich (7) 
                                            VAL_OTS > 193.35: stoichiometry (2) 
 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          2999     1          (a): class fuel_rich 
             3  2997          (b): class stoichiometry 
                      3000    (c): class fuel_lean 
 
  Error rate: 0.04% 
 
Figure 5.32 Decision Trees for Configuration 1 using Backward Elimination for Low Fuel Level  
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SAT_OTS <= 161.1: 
:...BLU_OTS <= 132.667: stoichiometry (177) 
:   BLU_OTS > 132.667: fuel_lean (2914) 
SAT_OTS > 161.1: 
:...SAT_OTS > 164.25: 
    :...BLU_OTS <= 135.05: fuel_rich (2810) 
    :   BLU_OTS > 135.05: 
    :   :...SAT_OTS <= 165.25: stoichiometry (136) 
    :       SAT_OTS > 165.25: fuel_rich (52) 
    SAT_OTS <= 164.25: 
    :...VAL_OTS <= 183.95: fuel_rich (79) 
        VAL_OTS > 183.95: 
        :...VAL_OTS <= 188.333: stoichiometry (8510/6) 
            VAL_OTS > 188.333: 
            :...BLU_OTS <= 134.033: stoichiometry (6) 
                BLU_OTS > 134.033: fuel_lean (21) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          3000                (a): class fuel_rich 
                9000          (b): class stoichiometry 
                   6  2994    (c): class fuel_lean 
 

  Error rate: 0.04% 

Figure 5.33 Decision Trees for Configuration 1 using Forward Selection for Normal Fuel Level  
 
 
 
 
SAT_SKW > 1.02543: fuel_lean (3000) 
SAT_SKW <= 1.02543: 
:...RED_TMP <= 1820.8: stoichiometry (9000) 
    RED_TMP > 1820.8: fuel_rich (3000) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          3000                (a): class fuel_rich 
                9000          (b): class stoichiometry 
                      3000    (c): class fuel_lean 
 
  Error rate: 0% 

 
Figure 5.34 Decision Trees for Configuration 1 using Backward Elimination for Normal Fuel Level  

 
 
 
RED_OTS <= 187.267: fuel_rich (3000) 
RED_OTS > 187.267: 
:...HUE_OTS <= 91.3833: 
    :...BLU_OTS <= 124.25: stoichiometry (93/1) 
    :   BLU_OTS > 124.25: 
    :   :...VAL_OTS > 189.017: fuel_lean (2730) 
    :       VAL_OTS <= 189.017: 
    :       :...BLU_OTS <= 126.2: stoichiometry (3) 
    :           BLU_OTS > 126.2: fuel_lean (22) 
    HUE_OTS > 91.3833: 
    :...VAL_OTS > 190.5: fuel_lean (173) 
        VAL_OTS <= 190.5: 
        :...BLU_OTS > 126.483: 
            :...SAT_OTS <= 156.15: fuel_lean (10) 
            :   SAT_OTS > 156.15: stoichiometry (16) 
            BLU_OTS <= 126.483: 
            :...SAT_OTS > 153.417: stoichiometry (2753) 
                SAT_OTS <= 153.417: 
                :...BLU_OTS <= 123.867: stoichiometry (77) 
                    BLU_OTS > 123.867: fuel_lean (5) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          3000                (a): class fuel_rich 
                3000          (b): class stoichiometry 
                   1  2999    (c): class fuel_lean 
 
  Error rate: 0.01% 

 
Figure 5.35 Decision Trees for Configuration 1 using Forward Selection for High Fuel Level  
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BLU_SKW > -0.0223269: fuel_rich (3000) 
BLU_SKW <= -0.0223269: 
:...BLU_SKW <= -0.217246: fuel_lean (2992/1) 
    BLU_SKW > -0.217246: 
    :...SAT_OTS > 152.8: stoichiometry (2982) 
        SAT_OTS <= 152.8: 
        :...BLU_SKW <= -0.123637: fuel_lean (8) 
            BLU_SKW > -0.123637: stoichiometry (17) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
          3000                (a): class fuel_rich 
                2999     1    (b): class stoichiometry 
                      3000    (c): class fuel_lean 
 
  Error rate: 0.01% 

 

Figure 5.36 Decision Trees for Configuration 1 using Backward Elimination for High Fuel Level  
 

5.4.5.3 Oxidizer Classification using Configuration 2 

 The flame profiles indicate that differences in various level of oxidizer are visible 

even for human observer.  Configuration 2 uses flame profiles in its extraction process 

and given the similar class arrangement as before, it turns out to provide a solution to the 

classification.  Figure 5.37 to 5.42 shows the decision tree built based on using 

configuration 2 using both forward selection and backward elimination.  

 
GRE_TMP <= 1489.161: fuel_lean (50) 
GRE_TMP > 1489.161: 
:...GRE_TMP <= 1517.491: stoichiometry (50) 
    GRE_TMP > 1517.491: fuel_rich (50) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 
 

Figure 5.37 Decision Trees for Configuration 2 using Forward Selection for Low Fuel Level  
 
 
 
 

HUE_COM <= 544.1109: fuel_lean (50) 
HUE_COM > 544.1109: 
:...RED_SKW <= -1.017371: stoichiometry (50) 
    RED_SKW > -1.017371: fuel_rich (50) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 

 

Figure 5.38 Decision Trees for Configuration 2 using Backward Elimination for Low Fuel Level  
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BLU_COM <= 398.1476: fuel_rich (50) 
BLU_COM > 398.1476: 
:...GRE_TMP <= 1446.385: fuel_lean (50) 
    GRE_TMP > 1446.385: stoichiometry (150) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                 150          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 

 
Figure 5.39 Decision Trees for Configuration 2 using Forward Selection for Normal Fuel Level  

 
 

SAT_SKW <= 1.132026: fuel_rich (50) 
SAT_SKW > 1.132026: 
:...GRE_TMP <= 1446.385: fuel_lean (50) 
    GRE_TMP > 1446.385: stoichiometry (150) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                 150          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 

 
Figure 5.40 Decision Trees for Configuration 2 using Backward Elimination for Normal Fuel Level  

 
 
 

BLU_COM <= 375.9651: fuel_rich (50) 
BLU_COM > 375.9651: 
:...GRE_COM <= 362.9271: stoichiometry (50) 
    GRE_COM > 362.9271: fuel_lean (50) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 
 

Figure 5.41 Decision Trees for Configuration 2 using Forward Selection for High Fuel Level  
 
 
 

BLU_COM <= 375.9651: fuel_rich (50) 
BLU_COM > 375.9651: 
:...GRE_COM <= 362.9271: stoichiometry (50) 
    GRE_COM > 362.9271: fuel_lean (50) 

 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 
 
Figure 5.42 Decision Trees for Configuration 2 using Backward Elimination for High Fuel Level  
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 The decision trees are much simpler than configuration 1’s and the numbers of 

features selected are much less.  The error rates are also superior with zero percent for all 

classes.  It shows that proper arrangement and the usage of flame profiles are important 

for a good oxidizer level classification.   

One particular observation on the results is how green channel’s average 

temperature and blue channel’s center of mass about Y axis occurs frequently in most 

trees.  Figure 5.43 and 5.44 show the result of decision tree classifications using only 

each individual feature. 

 
a)   GRE_TMP <= 1489.161: fuel_lean (50) 

      GRE_TMP > 1489.161: 
:...GRE_TMP <= 1517.491: stoichiometry (50) 

                 GRE_TMP > 1517.491: fuel_rich (50) 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
 
  Error rate: 0% 
 
 

b) GRE_TMP <= 1446.385: fuel_lean (50) 
  GRE_TMP > 1446.385: 
  :...GRE_TMP <= 1478.176: stoichiometry (150) 
          GRE_TMP > 1478.176: fuel_rich (50) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                 150          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
 
  Error rate: 0% 
 
 

c)  GRE_TMP <= 1413.665: fuel_lean (50) 
  GRE_TMP > 1413.665: 
  :...GRE_TMP <= 1428.14: stoichiometry (50) 
          GRE_TMP > 1428.14: fuel_rich (50) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 
 
 

Figure 5.43 Decision Trees using Green Channel’s Average Temperature 
 for (a) Low, (b) Normal, and (c) High Fuel Level  
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 a)   BLU_COM > 431.6786: fuel_lean (50) 
  BLU_COM <= 431.6786: 
  :...BLU_COM <= 425.9099: fuel_rich (49) 
          BLU_COM > 425.9099: stoichiometry (51/1) 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            49     1          (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
 
  Error rate: 0.7% 
 
 
 b) BLU_COM <= 398.1476: fuel_rich (50) 
  BLU_COM > 398.1476: 
  :...BLU_COM <= 429.214: stoichiometry (150) 
      BLU_COM > 429.214: fuel_lean (50) 
 
 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                 150          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
 
  Error rate: 0% 
 
 
 c)  BLU_COM <= 375.9651: fuel_rich (50) 

 BLU_COM > 375.9651: 
 :...BLU_COM <= 402.9732: stoichiometry (50) 
         BLU_COM > 402.9732: fuel_lean (50) 

 
           (a)   (b)   (c)    <-classified as 
          ----  ----  ---- 
            50                (a): class fuel_rich 
                  50          (b): class stoichiometry 
                        50    (c): class fuel_lean 
 
  Error rate: 0% 
 
 

Figure 5.44 Decision Trees using Blue Channel’s Center of Mass about Y Axis 
 for (a) Low, (b) Normal, and (c) High Fuel Level  

 

The single feature classification provides similar result with mostly zero percent 

of classification error except for one class as shown in Figure 5.44a.  However the error is 

also very small.  The two features and their arrangements are attractive because simpler 

feature implies simpler classification process and makes it feasible to approximate 

classification for oxidizer levels beyond current dataset.  
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 Similar to fuel classification analysis, scatter plot visualization is used to 

investigate the feature output.  The intention is to confirm the decision trees’ results and 

to insure the feasibility for the oxygen classification as a whole using only these features. 

Figure 5.45 to 5.47 depicts the actual feature output using both features.  The 

three figures represent the three different fuel levels and each figure contains the output 

for the three different O/F ratios.   
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Figure 5.45 Feature Output for Oxidizer Level Classification Fuel Level Low 
 

Three Level of Oxidizer Classes for Fuel Level Normal
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Figure 5.46 Feature Output for Oxidizer Level Classification for Fuel Level Normal 
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Three Level of Oxidizer Classes for Fuel Level High
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Figure 5.47 Feature Output for Oxidizer Level Classification for Fuel Level High 
 

 

 First immediate impression on the visualizations is there are visible clusters for 

each oxidizer level thus the classification is feasible.  It also explains why previous 

arrangements failed.  Without grouping in fuel level, many runs with different oxidizer 

level actually have similar output values thereby their clusters overlap and require 

complex decision trees for proper classification. 

 Nonetheless, compared to fuel level classification, oxidizer’s classification is not 

as trivial.  For example, as shown in Table 5.9 and 5.10, the distances between cluster 

centers are not uniform for all the fuel classes as in the case for fuel level classification.  

For high and normal fuel level, the distance between the cluster centers are relatively 

similar and almost linear.  However for low fuel level, the distance between cluster 

centers are very different from one to another.     

 Additionally, the proposed arrangement implies that the approximation would 

require a proper classification of the fuel level beforehand.  Thus one’s classification on 

the oxidizer level is affected by the fuel level classification.   
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Table 5.9 Distances between Cluster Centers for Oxidizer Classes  
using Green Channel’s Average Temperature 

 

Fuel Class Fuel Rich to 
Stoichiometry 

Stoichiometry 
to Fuel Lean 

(Fuel Rich to 
Stoichiometry) 

/ 

(Stoichiometry to 
Fuel Lean) 

Low 7.8 29.2 0.2 

Normal 36.7 27.4 1.3 

High 25.4 14.9 1.7 
 

Table 5.10 Distances between Cluster Centers for Oxidizer Classes  
using Blue Channel’s Center of Mass about Y Axis 

 

Fuel Class Fuel Rich to 
Stoichiometry 

Stoichiometry 
to Fuel Lean 

(Fuel Rich to 
Stoichiometry) 

/ 

(Stoichiometry to 
Fuel Lean) 

Low 6.7 19.2 0.4 

Normal 26.7 22.9 1.2 

High 27.4 17.6 1.5 
 

 The implication based on the findings, aside for the challenges, is that there is still 

a good possibility that one can model a system to approximate oxidizer level based on 

using green channel’s average temperature and blue channel’s center of mass about Y 

axis.  For classifying the three oxidizer classes, it will be guaranteed feasible.   

 The two selected features will be the key features for classifying the oxidizer level 

based on its O/F ratio.  They have a relatively low computational costs thus a real-time 

performance is possible.  Moreover their simplicity makes the approximation model 

possible as it will be investigated further in the next chapter.   Note that no key features 

from configuration 1 are selected.   
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5.5 Experimental Conclusion 

 The results of the analysis in this chapter show the feasibility of distinguishing 

various fuel flow rates and O/F ratios apart based on information extraction from flame 

images.  The last step in this study is in the actual prediction and approximation of the 

classes.  This is achieved through the use of fuzzy logic which is discussed and 

elaborated in the next chapter. 
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6. MODELLING APPROXIMATION 

 

6.1 Overview 

Fuzzy system is a common strategy adopted for many applications in engineering 

including control and classification [68, 69] pioneered by Zadeh in 1965 [70] .  It is a 

system that utilizes fuzzy sets instead of crisp sets to accommodate the existence of 

uncertainty or inherent inaccuracy within the task at hand.  This chapter describes how 

fuzzy system can be adopted and utilized to provide a comprehensive flame status. 

The key features selected in the previous chapter can successfully classify the 

flame according to the three different fuel levels and their corresponding O/F ratio class.  

However this is not sufficient to provide the flexibility in classifying other possible 

situation beyond the test data condition.  As mentioned in the previous chapter, in reality 

both fuel and oxidizer flow rate can bet at any levels between their minimum and 

maximum range. 

A method for classifying other possible levels is proposed as a form of 

approximation based on the key features information as obtained and discussed 

previously.  The approximation model chosen is based on fuzzy system approach. 

The fuzzy system built in this study is designed as a promising basis for an expert 

system to provide similar approximation to a domain expert, using the prior test data and 

selected key features as the knowledge base. 
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6.2 Fuzzy Set for Approximating Uncertainty 

Fuzzy set theory can be defined as an extension of classical set theory, also 

known as crisp set.  In crisp set, an element has to belong to a set or otherwise.  In fuzzy 

set however, an element can have a certain degree of belonging to one or more sets.  This 

degree is measured using membership functions with degree of membership measured 

between zero (not a member) to one (complete member) [70].  Figure 6.1 illustrates an 

example of membership function on a fuzzy set with element values range from 0 to 10. 

 
Figure 6.1 Membership Function Examples 

 

Fuzzy set is particularly useful for describing measurement on things that are 

expected to contain certain degree of inaccuracy or uncertainty.  It mimics the way 

humans, including domain experts, in quantifying measurements.  For example, in the 

domain of measuring furnace flame quality, an experienced furnace operator might 

measure the quality of the flame based on his/her visual judgment which translates to 

fuzzy measurement such as “too low”, “too high” or “just right”. 

Consequently the main challenge in this study would be how one can model a 

fuzzy system that will provide a reliable approximation on the furnace flame condition 
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based on the prior known knowledge.  This leads to the task of building the fuzzy sets 

themselves as membership functions for the approximation. 

 

6.3 Building Membership Functions 

 Membership functions can be designed in different ways and approaches, 

depending on many factors.  The shape and characteristic of the functions will be crucial 

in the overall fuzzy system’s characteristic.  Two particular aspects need to be addressed 

as well in choosing the right functions: how it represents the task itself and the choice of 

functions to model them. 

 In this particular study, the task is to approximate the status of the fuel flow rate 

and the O/F ratio.  Together it provides the current status of the flame, along with 

capability of providing suggestion of what need to be adjusted when the condition is not 

at stoichiometry.  For this reason, the membership functions are applied at the key feature 

output space.  The approximation is then derived from their outputs. 

 The shape and position of the membership function can be determined in many 

ways.  In this study, the strategy is for the functions to be built based upon the shape of 

the feature output distribution of the experiments in the previous chapter.  This approach 

is both intuitive and appropriate since there exist a form of order and consistency from 

low to high and lean to rich in the feature output space. 

 Generalized bell function is used to model the membership functions [71].  Its 

formula is shown in EQ (6.1).  Their implementation and parameter setup for fuel and 

O/F ratio approximation will be discussed below. 
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where, µ(x)  = degree of membership for output value x  
 a = curvature parameter, affecting width 
 b = curvature parameter, affecting steepness 
 c = center position of the curve 

 

6.4 Fuel Level Approximation 

 As stated previously, the approximation for fuel level is based on using 

membership functions that are derived from the key feature outputs.  The two previously 

selected key features, blue channel’s Otsu threshold level and value channel’s entropy 

will be the basis for the approximation.  Figure 6.2 and 6.3 show the normalized 

distributions for the three different class labels of the fuel flow rate, which is high, 

normal and low for both features.   

 

Blue Channel's Otsu Threshold Level Distribution
for Fuel Level Approximation 
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Figure 6.2 Feature Output Distribution based on Blue Channel’s Otsu Threshold 
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Figure 6.3 Feature Output Distribution based on Value Channel’s Entropy 

  

 Both features have been proven before to be able to provide good classification as 

shown by the separability of the output distributions of each class.  The distribution shape 

will then be used as the guideline on creating the membership functions.  There are many 

ways however, with no particular constraint, in modeling the membership function that 

best describe the nature of relationship between a class and its distribution [72].  The 

interpretation of boundaries, regions and where a particular class begins and ends are up 

to the observers.  In this particular study, due to their various and non-modal distribution 

shapes, the generalized bell function is proposed as the membership function.  The 

assumption is that the class begins and ends within the distribution boundary. 

 Generalized bell requires three parameters to model the membership function as 

previously shown in EQ (6.1).  Parameters a and b, which determine the width and 

curvature of the function, are derived by using least squares curve fitting method [73] 

such that it produces a membership function that best model the class distribution.  EQ 

(6.2) shows the function to be minimized to obtain parameter a and b.  Parameter c, 

which defines the center of the curve, is set as the center of mass of the class distribution.  

Center of mass is used rather than mean since the distribution shape is non-modal.  The 
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center of mass equation used to calculate parameter c is shown in EQ (6.3).  The resulting 

three parameters for each class on both key features are shown in Table 6.1. 
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where  SM  = sum of the squares of residual for class M 
 PM(x) = number of feature output values with output x for class M 
 a = membership function parameter, affecting width 
 b = membership function parameter, affecting steepness 
 c = center position of the curve 
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where  CM  = center of mass for class M  
 x = feature output value 
 P(x) = number of feature output with value x 

 

 

Table 6.1 Generalized Bell Curve Parameter 

Blue  Channel’s Otsu Threshold Value Channel’s Entropy 
 

Low Normal High Low Normal High 

a 1.45 2.9 3.8 23.2 22.9 11 

b 3 3.2 3.5 1.94 1.21 1.54 

c 143.5 133.9 123.1 180.3x-103 366.2 x-103 503.8 x-103

 

 The resulting membership function is shown in Figure 6.4 and 6.5, along with the 

actual feature output distribution for comparison.  The average differences between the 
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actual feature output distributions and the modeled curves is about 0.025 unit of measure 

for both key features.  The differences is largely occurs at the middle section of the 

distribution of class normal and high where the related feature output values do have 

fluctuations.  For the purpose of approximation by membership function, this is still 

acceptable since the particular region is comprised of data that represent its class.   
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Figure 6.4 Membership Function for Fuel Approximation based on Blue Otsu Threshold Level 
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Figure 6.5 Membership Function for Fuel Approximation based on Value Entropy 

  

 The three memberships function become the base for modeling additional 

membership functions to approximate fuel level beyond the known data.  Four different 

such regions exist as shown in Figure 6.6, which are the left side of class low, between 

low and normal, between normal and high, and the right side of high.  However, the 
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regions one and four of figure 6.x are not of interest here as they are beyond the operating 

region of fuel rate and hence O/F ratio. 

 
Figure 6.6 Four Regions between the Known Data 

 

 The particular interest would be in finding strategy for a good approximation of 

the two regions between low and normal, and normal and high.  To define them, one 

would need to know the boundaries between classes.  One particular challenge is that the 

boundary between the known classes themselves contains uncertainty since they are 

derived based on what is reflected by the distribution.  Since some classes have the shape 

of their distribution as non-modal, it is also uncertain whether the test data do represent 

comprehensive ranges for each class.   

 Amidst the shortcomings, there are still several aspects that are clear from the 

membership functions.  For example, the position of each class is within the order of the 

class, such that normal is between high and low.  Especially for blue channel’s otsu 

threshold, there is a linear trend of increasing variance with the class distribution from 

class low to class high as reflected by the width of the membership function.  

Furthermore, the obtained membership functions’ parameters also display an almost 
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linear trend from one class to another.  These characteristics are absent from the value 

channel’s entropy feature.  The existence of the trend in blue channel’s Otsu threshold 

feature is the basis for creating the in-between membership functions.  In this study, these 

functions are built by applying linear interpolation of the parameters from the existing 

membership functions of this particular feature. 

. Figure 6.7 to 6.9 shows the trend for each of the three parameters for the 

membership functions of the three known classes based on the blue channel’s otsu 

threshold feature output.  The parameters a, b and c for the in-between functions are then 

selected using the equation of the linear interpolation as the mid points between the 

known parameters.  Table 6.2 shows the three parameters obtained using linear 

interpolation for the in-between membership functions. 
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Figure 6.7 Plot of Trend for Membership Functions’ for Parameter a 
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Trend of Parameter b
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Figure 6.8  Plot of Trend for Membership Functions’ for Parameter b 

 

Trend of Parameter c

110
115
120
125
130
135
140
145
150

1 2 3
Class Label (1 - Low 2 - Normal 3 - High)

Pa
ra

m
et

er
 c

 
Figure 6.9  Plot of Trend for Membership Functions’ for Parameter c 

 

Table 6.2  Membership Functions’ Parameters for the In-between Classes 

Parameter Low to Normal Normal to High 

a 2.15 3.35 

b 3.1 3.35 

c 139 128.5 
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 Figure 6.10 shows the two approximated membership functions along with the 

original three. The estimated membership functions cover the in-between regions very 

well as expected and will be used for the approximation of the in-between flow rate level. 

 
Figure 6.10 Membership Functions using Linear Interpolation 

  

 In the case of the left side of “low” and right side of “high”, since these are 

beyond what considered being boundary condition of the fuel flow rate itself, both sides 

are labeled as “unknown” region.  Possible cause of having the feature output at such 

condition is due many things such as flame shut off, camera disabled or device 

malfunction.  Regardless of the cause, no flame analysis can be or should be done at such 

condition thus at the unknown region, the “unknown” outcomes implies no further 

analysis is required.  The boundaries of the “unknown” region are assumed to be similar 

to the feature output distribution boundaries.  Hence for using blue otsu threshold, the 

boundaries are set to be below 112 and above 148.  The boundaries are denoted by the 

membership function for the “unknown” class as shown in EQ (6.4). 
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where,  µunknown(x) = membership degree for the “unknown” class 
 x    = feature output value 

 

 At this point there are a total of six membership functions created.  The flow rate 

approximation then can be obtained based on processing the membership degree outputs 

from all of them given an output value from the blue channel’s otsu threshold.  There are 

many methods that one can use to interpret or process the membership degree outputs.  In 

this study, the approach is to assign the feature output value to the class with the highest 

membership degree as shown in EQ (6.5).  For clarity purpose, each class is assigned a 

numerical label as well as shown in the equation accordingly.  Note that there exist the 

possibility where there is more than one membership function has the highest degree.  

This implies a situation where the output value may belong to either class.  For simplicity, 

in this study such output value will be classified to the left-most membership functions or 

the smaller numerical label.  For example, if the membership degree is equal for class 

“Low” and class “Low to Normal”, thus it will be classified as “Low”. 

 

{ })(),(),(),(),(),()( 543210 xxxxxxMaxxClass µµµµµµ=   EQ (6.5) 

where  Class(x) = class of output value x 
 x = feature output value 
 µ0(x)  = membership degree for the class unknown 
 µ1(x)  = membership degree for the class low 
 µ2(x)  = membership degree for the class low-to-normal 
 µ3(x)  = membership degree for the class normal 
 µ4(x)  = membership degree for the class normal-to-high 
 µ5(x)  = membership degree for the class high 
 

 



 124

 To assess the fuel flow rate approximation, experiment run 15 is used.  Data for 

this run is acquired at the same time and camera location as the ones used in feature 

selection process discussed in the previous chapter.  Run 15 data is not used in the feature 

selection process due to its differences both in fuel level and length of the run.  Instead of 

a consistent one fuel level within a minute like the others, run 15 has its fuel level 

changes from 128 to 96 and back to 128 scfh within approximately 3 minutes.  It is 

considered to be a good test on the approximation since it starts and ends at 128 scfh 

which is between 110 and 140 scfh (i.e., above stoichiometry); and it reaches 96 scfh 

during its run which is between 80 and 110 scfh (i.e., below stoichiometry).  Thus it 

perfectly simulates a condition where the flow rate changes beyond the known three 

classes of fuel level and a form of approximation will be required. 

 The first flow rate changes occur approximately within a minute into the run and 

the second time within a minute later.  The changes can be visually confirmed from the 

feature output as shown in Figure 6.11.  The output values are extracted from a total of 

5100 flame images or about 2 minutes and 50 seconds worth of flame video footage with 

30 frames per second of flame images.  Figure 6.12 shows a simulated model of ideal 

changes in the fuel flow rate during the run.  Note that mechanical errors do exist in the 

actual physical flow itself so its depiction here is only for comparison purpose where one 

can visually observe and correlate it with the feature output as shown in Figure 6.11. 
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Figure 6.11 Feature Output for Experimental Run 15 based on Blue Channel’s Otsu Threshold Level 
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Figure 6.12 Fuel Flow Rate Changes for Run 15 

 

 The fuel approximation output is shown in Figure 6.13 which is computed using 

EQ (6.5) applied on the feature output shown in Figure 6.11.  A simulated “ideal” 

classification output is created shown as red line in Figure 6.13.  It acts as a reference so 

that the classification accuracy can be assessed quantitatively.   
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Figure 6.13 Output for Experimental Run 15 

 

 As depicted in Figure 6.13, the actual fuel classification do follow the ideal case, 

which classify the fuel level from “Normal to High” to “Low to Normal” and back to 

“Normal to High”.  There are 3570 flame images for class “Normal to High” and 1800 

for class “Low to Normal”.  Note that in the very beginning there is a one second period 

or 30 flame images with fuel level of class “Unknown”, which is needed to represent the 

delay due to aggregation process during feature extraction.   

 Assessment of the classification is measured based on the rate of misclassification.  

The assumption is that a classification error is defined by a classification output that 

differs from the ideal case counterpart.  Table 6.3 summarizes the classification 

assessment. 
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Table 6.3 Fuel Approximation Error Assessment 

Fuel Class 
Total Data 

(n) 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 

Unknown 30 0 0 

Normal to High 3570 354 9.9 

Low to Normal 1800 1138 63.3 

 

 The quality of the classification does not perfectly follow the ideal case.  Error 

rate is particularly very high when the fuel level is expected to be classified as “Low to 

Normal”.  Upon observation on the actual feature output, this seems to be caused by the 

existence of transition periods during the change from one fuel level class to another 

which is longer than ideally expected.  This transition period exist every time the fuel 

changes and due to the design of the ideal case, it affects the assessment for class “Low to 

Normal” substantially.  During this transition time, it seems that some oscillation 

behaviors might occur as well between two adjacent classes.  The class oscillation 

indicates that the feature values are close to where the relevant membership function 

intersects.  In this particular test, the feature values seem to be close where the 

membership function for class “Normal” and “Low” intersect during the transition period.  

The overall trend of the approximation itself is still correct.   

 As described in the previous chapter, the fuel classification affects the O/F 

classification process.  It is designed as one output per second whereas fuel classification 

is at 30 outputs per second.  Therefore, for every single feature value for O/F 

classification there is a set of 30 fuel class labels that needs to be considered.  One 
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possible strategy is to aggregate every 30 class labels from the fuel classification into one.  

This aggregated class then represents the fuel class label for the O/F classification. 

 The class label is represented as numerical values as described earlier in EQ (6.5), 

hence its aggregation can be expressed numerically as well.  In this study the aggregation 

is based on the majority class label as shown in EQ (6.6) which implies at any given time, 

the aggregate class label is the median of the most recent 30 class labels. 

 

{ })()...3(),2(),1()(' tCntCntCntCMediantC −−−−−−=   EQ (6.6) 

where  C’(x) = aggregate class label at time x 
 C(x) = class label at time x 
               n            = number of aggregated class labels, set at 30 

 

 The aggregated class output is as shown in Figure 6.14 below.  Note that the 

aggregation also improves the overall trend and error rate of the classification as shown 

in the assessment results in Table 6.4.  At this point, it is then ready to be used for O/F 

classification which is the next focus in this chapter. 

 
Figure 6.14 Approximation Output for Experimental Run 15 
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Table 6.4 Fuel Approximation Error Assessment 

Fuel Class 
Total Data 

(n) 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 

Unknown 1 0 0 

Normal to High 119 2 1.7 

Low to Normal 60 26 43.3 

 

6.5 O/F Ratio Approximation 

 Once the fuel flow rate is approximated, the final step would be approximating 

the O/F ratio.  The approach is similar to fuel approximation but with additional 

complexity.  As indicated in the previous chapter, the O/F classification depends on the 

fuel level.  This implies the need to choose different sets of membership functions for 

each different level of fuel flow rate. 

 The first step in the approximation is similar as before, that is building 

membership functions based on the known feature output values.  The features used are 

based on the previously selected key features which are blue channel’s center of mass 

about Y axis and green channel’s average temperature.  Similar as before, generalized 

bell function is used to model the membership functions and the parameters are obtained 

through curve fitting.  For each class of fuel flow rate, there are three classes of O/F 

ratios which is fuel rich (1.8), stoichiometry (2.1)1 and fuel lean (2.4).  Thus for each 

feature, there are nine membership functions built accordingly based on the three original 

fuel class of low, normal and high.  Note that for modeling the membership functions for 

the in-between fuel classes, it will be handled separately afterwards.  Figure 6.15 to 6.20 
                                                 
1 In combustion theory, actual stoichiometry ratio is defined at 2.0.  Due to oxidizer impurity in this 
particular furnace, the ratio is compensated to 2.1. 
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shows the feature output distribution along with the modeled membership function for the 

three original fuel classes.  Table 6.5 to 6.6 shows the parameters of the membership 

functions accordingly. 

 

 
Figure 6.15 Membership Function for O/F Level with Fuel Level at High based on Blue Channel’s 

Center of Mass around Y Axis 
 

 
Figure 6.16 Membership Function for O/F Level with Fuel Level at Normal based on Blue Channel’s 

Center of Mass around Y Axis 
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Figure 6.17 Membership Function for O/F Level with Fuel Level at Low based on Blue Channel’s 

Center of Mass around Y Axis 
 

 
Figure 6.18 Membership Function for O/F Level with Fuel Level at High based on Green Channel’s 

Average Temperature 
 

 
Figure 6.19 Membership Function for O/F Level with Fuel Level at Normal based on Green 

Channel’s Average Temperature 
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Figure 6.20 Membership Function for O/F Level with Fuel Level at Low based on Green Channel’s 

Average Temperature 
 
 

Table 6.5 Membership Function Parameters for O/F Level 
based on Blue Channel’s Center of Mass around Y Axis 

 

O/F Class 
Fuel 

Class 

Membership  

Function 

Parameters 
Fuel  

Rich 
Stoichiometry 

Fuel 

 Lean 

a 3.12 5.37 3.16 

b 5.59 5.98 2.87 High 

c 375.02 401.42 418.87 

a 7.54 6.39 5.02 

b 2.0 2.0 3.5 Normal 

c 393.3 419.5 443.18 

a 4.05 2.06 4.47 

b 5.97 3.67 2.77 Low 

c 423.5 430.35 449.2 
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Table 6.6 Membership Function Parameters for O/F Level 
based on Green Channel’s Average Temperature 

 

O/F Class 
Fuel 

Class 

Membership  

Function 

Parameters 
Fuel  

Rich 
Stoichiometry 

Fuel 

 Lean 

a 2.9 3.2 2.8 

b 5.0 2.2 5.7 High 

c 1452.9 1427.4 1412.6 

a 4.8 9.5 3.2 

b 5.9 4.8 2.0 Normal 

c 1509.6 1473.9 1445.9 

a 2.0 2.0 4.3 

b 2.0 2.7 2.0 Low 

c 1525.6 1517.3 1488.6 

 
  

 As shown in Figure 6.15 to 6.20 above, there exist gaps between the membership 

functions similar to the case of fuel flow rate approximation.  This indicates the need to 

model the in-between classes for the O/F ratio approximation in order to provide a more 

comprehensive classification.   

The parameters that model the current membership functions are similarly used to 

model the membership functions and become the guideline for the interpolation.  

However, unlike fuel approximation, the task is less trivial since the trend of changes for 

the parameters are not linear.  Since neither key feature depicts any clear indication of 

being simpler than the other, both will be investigated simultaneously. 

Note that exception case exists where fuel class is low.  Between class 

stoichiometry and class fuel rich, there is no gap for blue channel’s center of mass about 
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Y axis and relatively small for green channel’s average temperature.  The proposed 

interpolation process however will still provide an in-between membership functions for 

this particular class.  Although this implies a possible misclassification as will be 

discussed later, in practicality the consequent is minor since the class fuel low depicts a 

combustion condition at the mechanical limit that one would naturally avoid during an 

actual production process. 

 There are two main tasks related to the building of membership functions for O/F 

approximation.  First is to build two O/F membership functions, positioned at the in-

between regions where the known three do not have significant membership degree for 

each fuel flow rate class of low, normal and high.  These regions are labeled as “Rich to 

Stoichiometry” and “Stoichiometry to Lean” accordingly.  Afterward, new sets of O/F 

membership functions will need to be created for the in-between class of fuel level 

“normal to high” and “low to normal” as well.  In the end, each feature will have a total 

of 25 membership functions for O/F approximation across different fuel classes. 

  Interpolation is once again incorporated to approximate the parameters.  Due to 

the non-linearity nature and limited number of known parameters, instead of using linear 

interpolation as in the case of fuel approximation, O/F approximation is done by using 

natural cubic spline interpolation which based on experiments yield a relatively good 

result [74]. 

In natural cubic spline interpolation, given a data set {xi}of n+1 points and 0 < i < 

n, one can assemble a cubic spline S based on n piecewise cubic polynomials between the 

data as shown in EQ (6.7).  Note that the coefficients in EQ (6.7) are determined by 

solving EQ (6.8). 
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where  z0 = 0 
  zn = 0 
   

 

 For each fuel level, three values for each membership function parameter are 

known based on the O/F class.  For the in-between membership functions, the parameter 

a, b and c are derived based on the mid-point from the spline interpolation between its 

adjacent membership functions.  That is, as shown in EQ (6.7), given the known S(1), S(2) 

and S(3) for each membership parameter, thus the interpolation will compute S(1.5) and 

S(2.5) for the in-between membership functions.  The results from the interpolation are 

shown in Table 6.7 and 6.8 below. 
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Table 6.7 Membership Function Parameters for O/F Level  
based on Blue Channel’s Center of Mass About Y Axis 

 

O/F Class 

Fuel 

Class 

Membership  

Function 

Parameters 
Fuel Rich  

to Stoichiometry 

Stoichiometry 

to 

Fuel Lean 

a 4.75 4.99 

b 6.22 4.86 High 

c 389.34 411.26 

a 6.99 5.73 

b 1.81 2.56 Normal 

c 406.72 431.66 

a 2.51 2.72 

b 4.65 3.05 Low 

c 425.43 438.27 

 
Table 6.8 Membership Function Parameters for O/F Level  

based on Green Channel’s Average Temperature 
 

O/F Class 

Fuel 

Class 

Membership  

Function 

Parameters 
Fuel Rich  

to Stoichiometry 

Stoichiometry 

to 

Fuel Lean 

a 3.1 3.1 

b 2.8 3.2 High 

c 1438.8 1418.7 

a 8.5 7.7 

b 5.6 3.6 Normal 

c 1490.8 1458.9 

a 1.7 2.9 

b 2.5 2.5 Low 

c 1524.0 1505.5 
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 Once the parameters for the in-between O/F class are obtained, the next step is to 

build membership functions for the fuel class “Low to Normal” and “Normal to High”.  

The difficulty here is that there is no prior test data used as guidelines to model the 

membership functions as in the case of fuel class “Low”, “Normal” and “High”.  There is 

no data that represent the three O/F classes of “Fuel Rich”, “Stoichiometry” and “Fuel 

Lean” for fuel class “Low to Normal” and “Normal to High” since the fuel class 

themselves are results of interpolations.   

 There are many possible approaches to resolve this condition.  In this study, the 

strategy is to derive the membership function parameters for these classes based on the 

O/F membership function parameters from fuel class “Low”, “Normal” and “High”.  The 

membership function parameters of a particular fuel and O/F class are obtained using 

interpolation on the same O/F class of the adjacent fuel class.  For fuel class “Low to 

Normal”, its adjacent fuel class is “Low” and “Normal” while for fuel class “Normal to 

High” it is “Normal” and “High” respectively.  For example, the membership parameter 

for O/F class “Stoichiometry” with fuel class “Normal to High” would be derived using 

interpolation on O/F class “Stoichiometry” from fuel class “Normal” and “High”.  The 

interpolation used is also cubic spline due to the non-linearity in the membership 

parameters.  The complete parameters for all fuel and O/F classes are shown in Table 6.9 

and 6.10. 

 
 
 
 
 
 
 
 
 
 



 138

Table 6.9 Membership Function Parameters for O/F Level Approximation  
based on Blue Channel’s Center of Mass around Y Axis 

 

O/F Class Fuel 

Class 

M. F. 

Parameters 1.8 1.8 - 2.1 2.1 2.1 – 2.4 2.4 

a 3.12 4.75 5.37 4.99 3.16 

b 5.59 6.22 5.98 4.86 2.87 High 

c 375.02 389.34 401.42 411.26 418.87 

a 6.32 6.71 6.55 5.83 4.56 

b 2.85 3.11 3.28 3.36 3.36 

Normal 

to 

High 
c 382.67 397.87 411.37 423.19 433.31 

a 7.54 6.99 6.39 5.73 5.02 

b 2.0 1.81 2.0 2.56 3.5 Normal 

c 393.3 406.72 419.5 431.66 443.18 

a 6.78 5.59 4.89 4.69 4.99 

b 3.04 2.32 2.13 2.46 3.31 

Low 

to 

Normal 
c 406.91 415.91 425.84 436.69 448.48 

a 4.05 2.51 2.06 2.72 4.47 

b 5.97 4.65 3.67 3.05 2.77 Low 

c 423.5 425.43 430.35 438.27 449.2 
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Table 6.10 Membership Function Parameters for O/F Level Approximation  
based on Green Channel’s Average Temperature 

 

O/F Class Fuel 

Class 

M. F. 

Parameters 1.8 1.8 - 2.1 2.1 2.1 – 2.4 2.4 

a 2.9 3.1 3.2 3.1 2.8 

b 5.0 2.8 2.2 3.2 5.7 High 

c 1452.9 1438.8 1427.4 1418.7 1412.6 

a 4.5 7.4 8.1 6.6 2.9 

b 6.1 5.0 4.1 3.6 3.4 

Normal 

to 

High 
c 1486.3 1467.1 1451.0 1438.0 1428.1 

a 4.8 8.5 9.5 7.7 3.2 

b 6.0 5.6 4.8 3.6 2.0 Normal 

c 1509.6 1490.8 1473.9 1458.9 1445.9 

a 4.0 6.7 7.5 6.5 3.6 

b 4.6 4.8 4.3 3.3 1.5 

Low 

to 

Normal 
c 1522.7 1509.7 1496.0 1481.4 1466.1 

a 2.0 1.7 2.0 2.9 4.3 

b 2.0 2.5 2.7 2.5 2.0 Low 

c 1525.6 1524.0 1517.3 1505.5 1488.6 

 

 Figure 6.21 to 6.30 shows the complete membership functions for O/F class 

approximation for both key features for each fuel class.  Note that only O/F class 

“Unknown” is not shown due to its trivial nature. 
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Figure 6.21 Membership Function for O/F Level Approximation with Fuel Level at High based on 
Blue Channel’s Center of Mass around Y Axis 
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Figure 6.22 Membership Function for O/F Level with Fuel Level at Normal to High based on Blue 
Channel’s Center of Mass around Y Axis 
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Figure 6.23 Membership Function for O/F Level with Fuel Level at Normal based on Blue Channel’s 
Center of Mass around Y Axis 
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Figure 6.24 Membership Function for O/F Level with Fuel Level at Low to Normal based on Blue 
Channel’s Center of Mass around Y Axis 
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Figure 6.25 Membership Function for O/F Level with Fuel Level at Low based on Blue Channel’s 
Center of Mass around Y Axis 
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Figure 6.26 Membership Function for O/F Level with Fuel Level at High based on Green Channel’s 
Average Temperature 
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Figure 6.27 Membership Function for O/F Level with Fuel Level at Normal to High based on Green 
Channel’s Average Temperature 
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Figure 6.28 Membership Function for O/F Level with Fuel Level at Normal based on Green 
Channel’s Average Temperature 
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Figure 6.29 Membership Function for O/F Level with Fuel Level at Low to Normal based on Green 
Channel’s Average Temperature 

 



 143

0

0.2

0.4

0.6

0.8

1

14701480149015001510152015301540

Green Channel's Average Temperature

M
em

be
rs

hi
p 

D
eg

re
e

Rich Rich to Stoichiometry Stoichiometry Stoichiometry to Lean Lean
 

Figure 6.30 Membership Function for O/F Level with Fuel Level at Low based on Green Channel’s 
Average Temperature 

 

 From observing the created membership functions, the set from Green Channel’s 

Average Temperature indicates higher possibility of inaccurate approximation since it has 

more gaps between its membership functions.  Fortunately Blue Channel’s Center of 

Mass about Y Axis depicts less gaps problem and seems to be more applicable in overall 

for the O/F approximation task.  However it also has inaccurate membership functions for 

fuel class “High” and “Low”.  Particularly at fuel class “Low”, the O/F class “Lean” and 

“Stoichiometry to Lean” is almost completely overlap one another.  This is considered to 

be the current limitation to the approach and strategy.  Fortunately in a real practical 

situation, one never operate the furnace at either extreme of 80 or 140 scfh flow rate thus 

keeping the approximation at the more manageable in-between ranges.   

 Finally, similar to fuel approximation, minimum and maximum threshold need to 

be specified as well for regions that fall outside the range of known O/F class.  The 

selection of these thresholds is done manually for each fuel class by observing the feature 

output range of the membership functions.  The assumption is that even though it is 

possible for the feature output values to fall on these ranges, but it is highly improbable 

based on the a priori knowledge from the test data.  EQ(6.9) shows the threshold formula 
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used to classify “Unknown” class for different fuel classes.  Table 6.11 and 6.12 shows 

the minimum and maximum thresholds set for each fuel class.  Any output that is less 

than minimum and bigger than maximum will be assigned with O/F class “Unknown”. 
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1
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where  µm
unknown(x) = membership degree for the class unknown for fuel class m 

 x    = feature output value 
 

Table 6.11 Threshold for O/F Class “Unknown” 
based on Blue Channel’s Center of Mass around Y Axis 

 

Thresholds Fuel 

Class Min Max 

High 365 430 

Normal to High 365 450 

Normal 356 450 

Low to Normal 390 450 

Low 415 460 

 
 

Table 6.12 Threshold for O/F Class “Unknown”  
based on Green Channel’s Average Temperature 

Thresholds Fuel 

Class Min Max 

High 1400 1460 

Normal to High 1420 1500 

Normal 1430 1520 

Low to Normal 1450 1540 

Low 1470 1540 
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 The process of determining the O/F class is done in two steps.  First the proper 

fuel class needs to be selected.  This information is obtained using method previously 

discussed.  The fuel class then defines which set of O/F membership functions to be used.  

The actual O/F approximation is then carried in the second step, which in this study is 

defined based on the highest membership degree.  Similar to fuel approximation, each 

O/F class is assigned a numerical number from 1 to 5 with 0 being “Unknown”.  EQ 

(6.10) shows the formula for O/F class selection along with number assignment for each 

class. 

{ })(),(),(),(),(),()( 543210 xxxxxxMaxxClass µµµµµµ=   EQ (6.10) 

where  Class(x) = class of output value x 
 x = feature output value 
 µ0(x)  = membership degree for the class unknown 
 µ1(x)  = membership degree for the class fuel rich 
 µ2(x)  = membership degree for the class rich-to-stoichiometry 
 µ3(x)  = membership degree for the class stoichiometry 
 µ4(x)  = membership degree for the class stoichiometry-to-lean 
 µ5(x)  = membership degree for the class lean 

 

 To test the O/F approximation, the same experiment run 15 is used.  The 

aggregated class label output from the previous fuel classification will be used here to 

select the proper set of O/F membership functions.  Figure 6.31 and 6.32 shows the actual 

key feature output values for run 15.  Interestingly the trend of change is quite visible 

even at the feature output level for Blue Channel’s Center of Mass about Y Axis. 
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Figure 6.31 Blue Channel’s Center of Mass about Y Axis Feature Output for Step Run 

 

 
Figure 6.32 Green Channel’s Average Temperature Feature Output for Step Run 

 

 Using EQ (6.10), the O/F classification output is as shown in Figure 6.33 and 6.34 

for both key feature values.  Similar to fuel classification, an ideal case of O/F class is 

created for classification assessment.  Additionally, since the fuel classification itself 

contains inaccuracy, another set of O/F classification is carried on by using the ideal fuel 

class thus providing the ability to observe the true accuracy of the O/F classification itself.  

An ideal case is again introduced here so that some error assessment can be measured.  It 
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depicts the expected trend based on the experiment description rather than the actual 

information from the furnace control since it is unavailable.  It shows the trend from class 

“Fuel Rich” in 60 seconds, then change to “Fuel Lean” for another 60 seconds then return 

to “Fuel Rich”.  The O/F classification results are shown in Figure 6.35 and 6.36. 

 
Figure 6.33 O/F Classification Output based on Blue Channel’s Center of Mass about Y Axis 

 
 

 
Figure 6.34 O/F Classification Output based on Green Channel’s Average Temperature 

 



 148

 
Figure 6.35 O/F Classification Output based on Blue Channel’s Center of Mass about Y Axis using 

Ideal Fuel Class 
 

 
Figure 6.36 O/F Classification Output based on Green Channel’s Average Temperature using Ideal 

Fuel Class 
 

 The classification results appear to have many misclassifications particularly if 

one compared it with the ideal case.  Green Channel’s Average Temperature particularly 

appears to provide the worst performance which is expected due to its membership 

function configurations.  Similar to fuel classification case, the actual trend of change 

however still exists for both features although with varying qualities.  It is particularly 
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very visible in Blue Channel’s Center of Mass about Y Axis.  Interestingly, using the 

ideal case of fuel class appears to have insignificant impact to the overall O/F 

classification for both features which indicates that the inaccuracies are independent of 

fuel classification. 

 Table 6.13 and 6.14 shows the error assessment for both features respectively.  

The error rate itself seems rather high for both features and at first might seem 

contradictory to their good performance during feature selection process.  The main cause 

of the high error rate however is not because of the feature output themselves but also of 

the ideal case to which the assessment is compared with.  For example, similar to fuel 

classification, there exists transition period from one O/F ratio to another which is not 

considered with the ideal case.  This transition period appears to be different for both 

features with Green Channel’s Average Temperature being longer.  The length of 

transition time can be caused by two things.  One is the temperature change in the flame 

takes longer time than the position of the combustion zone during the changes.  Another 

is the quality of the membership function configurations.  Particularly for Blue Channel’s 

Center of Mass about Y Axis, it is very likely that many of the feature values falls around 

the range where the membership functions intersect.  This can be seen from Figure 6.33 

and 6.35 for the classification output where oscillations occur between class “Rich” and 

“Rich to Stoichiometry” and also between class “Stoichiometry to Lean” and “Lean”.   
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Table 6.13 O/F Approximation Error Assessment 
using Blue Channel’s Center of Mass about Y Axis 

 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 

Fuel Class 
Total 
Data 

(n) Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Approximated 
Fuel Class  

(%) 

Ideal Fuel 
Class 

 (%) 

Unknown 1 0 0 0 0 

Rich  109 51 47 46.8 43.1 

Lean  60 25 21 41.6 35 

Total   76 68 44.7 40 

 

Table 6.14 O/F Approximation Error Assessment  
using Green Channel’s Average Temperature 

 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 

Fuel Class 
Total 
Data 

(n) Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Approximated 
Fuel Class 

 (%) 

Ideal Fuel 
Class 

 (%) 

Unknown 1 0 0 0 0 

Rich  109 27 21 24.8 19.3 

Lean  60 58 55 96.7 91.7 

Total  170 85 76 50 44.7 

 

 

 Table 6.15 and 6.16 shows a different assessment by combining class “Rich” and 

“Rich to Stoichiometry” into one class “Rich”.  Also, combine “Stoichiometry to Lean” 

and “Lean” into one class “Lean”.  One could consider this as being a measurement of 
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how far the flame condition is from the desired stoichiometry condition.  This approach 

seems to reduce the amount of misclassifications as expected, particularly on errors 

caused by class oscillations.  Especially for Blue Channel’s Center of Mass about Y Axis, 

the error rate is reduced a lot more which indicates the original error rate is largely due to 

class oscillations. 

Table 6.15 O/F Approximation Error Assessment 
using Blue Channel’s Center of Mass about Y Axis 

 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 
Fuel Class 

Total 
Data 

(n) Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Unknown 1 0 0 0 0 

Rich  109 8 4 7.3 3.7 

Lean  60 12 10 20 16.7 

Total  170 20 14 11.8 8.2 

 
 

Table 6.16 O/F Approximation Error Assessment  
using Green Channel’s Average Temperature 

 

Total Incorrect  

Classification 

(x) 

Error Rate 

(x / n) * 100% 
Fuel Class 

Total 
Data 

(n) Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Using 
Approximated 

Fuel Class 

Using Ideal 
Fuel Class 

Unknown 1 0 0 0 0 

Rich  109 9 6 8.3 5.5 

Lean  60 49 45 81.7 75 

Total 170 58 51 34.1 30 
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 Based on the error assessment, it is concluded that Blue Channel’s Center of Mass 

about Y Axis is a better feature to use for O/F approximation.  Its performance however 

is not perfect; yet it appears to be quite promising.  Further improvements in the 

approximation are possible as well particularly in the task of modeling the membership 

functions.  Also, since it uses blue channel information which is also the case in fuel 

approximation, thus the overall flame image analysis can be done by using a single color 

channel alone which reduces the computational costs. 

 Another test is conducted for further assessment of the selected key feature’s 

performance using experiment run 14.  Similar to experiment run 15, run 14 has its fuel 

flow rate from 128 scfh to 96 scfh changes during the run.  However, instead of an abrupt 

change, it is more of a gradual change resulting in a ramp-up effect that lasts for one 

minute.  The run spanned approximately for 3 minutes.  It starts with fuel flow rate at 128 

scfh and after a minute it is slowly decreased manually by 1 scfh for every 2 seconds thus 

reaching 96 scfh in the next minute.  Once it reaches 96 scfh, the flow rate is abruptly 

changed back to 128 scfh.  The oxidizer flow is kept at constant throughout the whole 

experiment at 231 scfh.   

 Figure 6.37 shows the fuel flow rate classification result based on blue channel’s 

Otsu threshold feature output which visually depicts the said ramp effect.  The red lines 

on the plot are meant as a visual guideline for depicting general trend of the flow rate 

changes.  Figure 6.38 depicts the desired trend according to the change made within the 

furnace control.  Similar to run 15, run 14 provides a good test case for both fuel and O/F 

ratio classification assessment in terms of having fuel flow rates that are in-between the 
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known classes as well as providing insight to the key feature’s sensitivity during a small 

incremental changes in fuel flow rate.   
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Figure 6.37 Experiment Run 14 with Fuel Flow Rate Changes 

 

Fuel Flow Rate Changes for Run 14
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Figure 6.38 Experiment Run 14 with Fuel Flow Rate Changes 

 

 As shown in Figure 6.37 above, fuel classification using the Blue Otsu threshold 

follows the gradual changes that occur at the 2nd.  Noticeably some fluctuations occur in 

the feature output during the 1st minute that gradually stabilizes particularly by the 2nd 

minute onward. 
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Interestingly as depicted by Figure 6.37, the abrupt change of the fuel flow rate 

from 96 to 128 scfh at the 2nd minute takes time to stabilize.  This phenomenon is 

consistent with run 15 as well.  This indicates the discrepancy between desired output 

based on the furnace control and the actual combustion do exist which can be caused by 

the furnace mechanism or the combustion process itself.   

 Figure 6.39 shows the flame analysis output, depicting the O/F ratio changes 

during the run using blue channel central of mass about Y axis as the key feature.  The 

three colors are provided for visual guideline purpose to mark regions based on the 3 

minutes span of the experiment run.  Similar to run 15, there are some oscillations of 

classification particularly for neighboring classes.  The oscillation occurs during all the 3 

minute runs, even when the fuel classification output already stabilized at the 2nd minute.  

Nevertheless the overall trend of the classification, do depict the desired gradual changes 

from fuel rich situation in the 1st minute, the gradual change to fuel lean in the 2nd minute 

and then gradually back to fuel rich in the 3rd minute.  It is observed that at the beginning 

of the ramp test during the fuel rich period the sensitivity is not as good as second half of 

the ramp which can be attributed to the small rate of changes. 
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Figure 6.39 Flame Analysis Output for Experiment Run 14 
 

 It is therefore concluded that the strategy and methodology proposed in this 

chapter including the fuzzy system are feasible and provide reasonably acceptable results. 

6.6 Implementation Summary 

 From the experimental results and findings in this study, the proposed system 

architecture as previously depicted in Chapter 1 (Figure 1.1), can be summarized and 

realized into eight main processes.  This processes are summarized in Figure 6.40 below. 

 

 

Figure 6.40 Finalized Process Flow of Proposed System Architecture 

5. Apply  
Fluctuation Reduction  
by Moving Average 

7. Classify Fuel Level  

1. Flame Image Acquisition 

2. De-interlace and cropping. 

4. Build Flame Profile 

 8. Classify O/F Level  

3. Compute Otsu’s Threshold 

6. Compute  
Center of Mass about Y Axis. 
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 The finalized architecture is simulated using MatLab [75] and tested on a 

workstation using Intel P3 1.3GHz CPU [62] with 512MB RAM running Windows 2000 

operating system [63].  For performance evaluation, each processed are timed based on 

processing 120 interlaced color flame images with 720x480 pixel resolutions.  These 

images are acquired at 30 frames per second.  Table 6.17 shows the task and pseudo code 

for each process along with the actual average time required to process one frame.  Note 

that the images used are in the form of image files residing in the workstation. 

Table 6.17 Processes Descriptions and Timing Summary 

Process  
no. 

Summary Pseudo Code Time  
(ms) 

1  Load flame images from 
hard drive. 

 Extract B channel 
information from images. 

01 for each image do 
02   img = load_image() 
03    imgB = extract_B_Chnl(img) 
04    do process 2 
05 end 

23.84 

2  De-interlace image into two 
sub-images based on odd and 
even field. 

 Crop sub-images as 
appropriate. 

01set flag = 1  
02 for each row of imgB 
03   if (flag) 
04       append row to imgB1 
05    else  
06         append row to imgB2  
07    flag = 1 – flag 
08 end 
09 imgB1c = crop(imgB1) 
10 imgB2c = crop(imgB2) 
11 execute separate thread for 
12    do process 3 (imgB1c, imgB2c) 
13    do process 4 (imgB1c, imgB2c) 
14 end 

29.30 

3  Compute Otsu Threshold on 
sub-images based on EQ 
(3.1) to EQ (3.6). 

01 otsu1 = applyOtsu(imgB1c) 
02 otsu2 = applyOtsu(imgB2c) 
03 do process 5(otsu1, otsu2) 

77.1 

4  Build flame profiles for 
every 60 sub-images based 
on EQ (4.15). 

 Apply intensity suppression 
for each completed flame 
profile based on EQ (3.8). 

01 tmpImg += imgB1c + imgB2c 
02 for every 60 sub-images do 
03     imgFP = tmpImg / 60; 
04     imgFPis = power(imgFP,4) 
05     do process 6 (imgFPis) 
06 end 

23.8 

5  Apply moving average for 
latest 60 results from process 
3 based on EQ (4.14). 

01 put otsu1 to buffer 
02 put otsu2 to buffer 
03 remove 2 oldest data from buffer 

0.4 
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04 mvg_avg = mean(buffer) 
05 do process 7 (mvg_avg) 

6  Compute Center of Mass 
about Y Axis based on result 
from process 4 based on EQ 
(4.13) 

01 result = compute(imgFPis) 
02 do process 8 (result) 

32.5 

7  Compute membership degree 
using functions based on EQ 
(6.1) and (6.4) using process 
5’s result. 

 Determine fuel class from 
process 5 based on EQ (6.5) 

 Update fuel class label buffer

01 µ0 = class_0(mvg_avg) 
02 µ1 = class_1(mvg_avg) 
03 µ2 = class_2(mvg_avg) 
04 µ3 = class_3(mvg_avg) 
05 µ4 = class_4(mvg_avg) 
06 µ5 = class_5(mvg_avg) 
07 µmax = max(µ0, µ1, µ2, µ3, µ4, µ5) 
08 fuel_class = n where (µn == µmax) 
09 fuel_classBuffer = update(fuel_class) 

1.2 

8  Aggregate latest fuel class 
labels from process 7 based 
on EQ (6.6).  

 Determine set of 
membership function 
parameters based on the 
aggregated fuel class label. 

 Compute membership degree 
using functions based on EQ 
(6.1) using process 6’s result. 

 Determine O/F ratio class 
based on EQ (6.9) and 
(6.10). 

01 aF_class = median(fuel_classBuffer) 
02 load_OF_mf_params(aF_class) 
03 µ0 = class_0(mvg_avg) 
04 µ1 = class_1(mvg_avg) 
05 µ2 = class_2(mvg_avg) 
06 µ3 = class_3(mvg_avg) 
07 µ4 = class_4(mvg_avg) 
08 µ5 = class_5(mvg_avg) 
09 µmax = max(µ0, µ1, µ2, µ3, µ4, µ5) 
10 OF_class = n where (µn == µmax) 
 

7.5 

 

 From this implementation, total time to classify fuel and O/F ratio can be obtained.  

For fuel classification, it takes process 1, 2, 3, 5 and 7 to complete.  Thus it requires 

146.24 ms per image frame.  For O/F class, the total time to complete needs to take into 

account the existence of parallel processing.  The bottleneck relies on the longer total 

processing time between path 3, 5 and 7 and path 4 and 6.  The first is longer since the 

total time for 30 sets of path 3, 5 and 7 is 30 * 93.1 ms = 2.8 seconds while path 4 and 6 

is 56.3 ms.  Hence the total time for O/F ratio classification, depends on path 1, 2, 30 sets 

of path 3, 5, 7 and path 8 which is 2.9 seconds. 
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 Assuming an input rate to the system of 30 frames per second, fuel classification 

can be achieved with no problem since the total time to process a frame is faster than the 

input rate.  On the other hand, O/F classification which classifies every 30 images takes 

longer than 1 second thus a form of synchronization will be required to maintain proper 

flame analysis. 

 Improvement to the performance time for both classifications can be obtained by 

improving hardware capacity as well as software optimization. 
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7. CONCLUSION 

 

 System architecture for analyzing flame quality using a combination of image 

processing and machine learning methodology is proposed and examined in this study.  

The architecture is developed and evaluated using video footages of furnace flames with 

varying flow rate level of fuel and oxidizer intakes, acquired from a pilot-scale glass 

furnace.  As shown by this study, the architecture has a high potential for monitoring 

combustion quality based on real-time flame image analysis that assesses its fuel flow 

rate and O/F ratio. 

 The proposed architecture consists of four main processes: image acquisition, pre-

processing, feature extraction and finally flame image classification.  Two separate 

processing paths or process configurations are examined for pre-processing and feature 

extraction processes.  Each process configuration contains unique step of processing 

logics and are run in parallel.  One configuration is designed for detection of changes in 

fuel flow rate and in turn its output becomes an input parameter for the second 

configuration for determining the O/F ratio.  Based on the fuel flow rate and O/F ratio, 

one can derive the oxidizer flow rate and thus the full insight to the furnace flame’s 

combustion status.   

 At the image acquisition process, two-dimensional furnace flame images are 

obtained from the furnace.  The image acquisition device is an interlaced color CCD 

camera equipped with a 90° viewing angle lens, capable of acquiring uncompressed 
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video footage with 720 x 480 image resolutions and a frame rate of 30 frames per second.  

At this stage, each acquired image frame is deinterlaced to two sub-images to ensure the 

flame image integrity.  Subsequently, stationary unwanted region such as the furnace wall 

and camera hole are removed from the image by manual cropping.  

 During the pre-processing stage the flame regions are first identified in every 

frame images.  Two different strategies are proposed and tested for flame identification: 

automatic two-class image segmentation using Otsu threshold method and image 

enhancement by mapping function.  Otsu threshold method is particularly valuable since 

not only it is proven to be capable of identifying the flame region, but also its output can 

be utilized as one of the feature to be analyzed.  The thresholding method results in a 

crisp segmentation of the image into two classes: flame and non-flame.  Image 

enhancement approach identifies the flame region by manipulating pixel intensity and is 

not limited by the two-class hypotheses as in the case of Otsu method.  As discussed in 

chapter 3, each strategy has its own strength and usefulness for each process 

configuration. 

 Once the flame region has been identified, its features are computed during the 

feature extraction process.  Set of prospective features are designed and proposed which 

are derived based on their feasibility in concept for quantifying flame image 

characteristics.  These features evaluate the flame images based on their spatial and pixel 

intensity characteristic as discussed in Chapter 4.  A total of nine features are examined in 

this study.  Five are based on their typical inclusion in previous studies: area, average, 

variance, skew and kurtosis.  Four new features are designed and proposed in this study: 

pseudo flame temperature, Otsu threshold, image entropy and center of mass about Y 
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axis.  These features are computed separately for each red, green, blue, hue, saturation 

and value channel of each identified flame region within a flame image.  Depending on 

the configuration, aggregations using moving or grouping average are applied to the 

feature output values which improve flame classification performance during flame 

analysis. 

 The feature extraction process involves large amount of computation due to the 

size of input data as well as the number of features computed.  Feature selection process 

is introduced and discussed in Chapter 5 using decision tree classifier with wrapper 

method to select the best features for the flame image analysis and consequently reducing 

the amount of computation significantly.  Two sets of key features are identified for both 

fuel and O/F ratio classification.  These are Otsu’s threshold level from blue channel and 

image entropy from value channel for classifying fuel flow rate.  Average temperature 

from green channel and center of mass about y axis from blue channel are shown to be 

sensitive towards changes in O/F ratio.  As previously discussed, these four key features 

are sensitive with respect to changes in both fuel flow rate and the O/F ratio.  Through 

additional tests these four features are further reduced to two key features as discussed 

below. 

 Additional strategy is required to complete the flame image analysis process for 

monitoring fuel flow level and O/F ratio.  Fuzzy system is proposed for the task due to its 

capability in accommodating uncertainty by using membership functions.  These 

membership functions are modeled based on generalized bell formula, with its parameters 

derived based on the key features’ output distribution characteristics as extracted from the 

known test cases.  To test the fuzzy model, two experimental runs are used which contain 
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both fuel and oxidizer flow level outside the previously used test cases.  In addition, each 

run contains varying level of fuel flow rates, hence, shedding light on the classification 

sensitivity in detecting flow rate changes.  From this test, two key features provide 

promising performances for fuel and O/F ratio approximation respectively: blue 

channel’s Otsu’s threshold level and center of mass about y axis.  Both features succeed 

in depicting changes between stoichiometry and non-stoichiometry flame condition for 

both test runs.  Now, the architecture is more simplified with less computational effort as 

only blue channel is needed with only one feature for each classification. 

 A sample implementation based on the finalized system architecture is also 

provided.  It provides both proof of concept, task summaries, as well as estimated 

computational cost for both fuel and O/F ratio classifications.  The results show 

feasibility for real-time implementation in fuel classification.  O/F ratio classification 

takes longer time, nonetheless it is still within acceptable limit.  Both processes’ 

performances can be improved further by better hardware and optimized software.  

 The test results ultimately show the feasibility of the proposed flame image 

analysis architecture.  The classification rate may not be as high as expected as shown in 

Chapter 6.  However this is due to its measured against an ideal situation which can be 

considered as overly pessimistic evaluation.  For future work, a more objective ground-

truth will also be needed in order to provide a more accurate performance evaluation. 

 The high speed of this promising paradigm for image-based flame analysis and 

classification and its relatively simple approach make it feasible for actual integration 

with an existing furnace control in a production environment.  This task is certainly a 

sensible follow up and is recommended for future work. 
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 Additional device enhancements are possible within the proposed architecture 

itself.  One particular area of interest that can be crucial to the flame image analysis is the 

evaluation of different aspect of camera improvement.  For example, a more detailed 

flame image can be obtained by using higher resolution progressive camera with faster 

acquisition rate.  Also, multi-spectral camera with adjustable spectral sensitivity can 

provide further insight on the flame image visualization itself at different spectra.  

Naturally this implies an increase in the amount of data to be analyzed.  To maintain the 

real-time analysis nature of the system, a dedicated hardware-based image processing 

tool or component may be necessary to enhance the performance speed for image 

acquisition, image pre-processing and feature extraction processes.  
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APPENDIX A Sample Feature Output for Run 15 
 
 

 

Figure 1 Set of Area Features from RGB and HSV channel for Step Change Experiment Run 15 
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Figure 2 Set of Average Features from RGB and HSV channel for Step Change Experiment Run 15 
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Figure 3 Set of Variance Features from RGB and HSV channel  
for Step Change Experiment Run 15 
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Figure 4 Set of Skew Features from RGB and HSV channel for Step Change Experiment Run 15 
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Figure 5 Set of Kurtosis Features from RGB and HSV channel for  
Step Change Experiment Run 15 
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Figure 6 Set of X-axis Moment of Inertia Features from RGB and HSV channel  
for Step Change Experiment Run 15 
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Figure 7 Set of Otsu Threshold Level Features from RGB and HSV channel 
 for Step Change Experiment Run 15 
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Figure 8 Set of Entropy Features from RGB and HSV channel  
for Step Change Experiment Run 15 
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Figure 9 Set of Average Temperature Features from RGB and HSV channel  
for Step Change Experiment Run 15 
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APPENDIX B  Panasonic GP KR-222 CCD Specification 
 

 

 
 
• 1/2" interline transfer CCD with 768 (H) x 494(V) pixels 
• 480-line horizontal resolution 
• Minimum scene illumination of 3 lux at F1.4 
• Signal-to-noise ratio of 50dB 
• Digital signal processing circuit 
• Electronic Light Control and Backlight Compensation 
• C or CS-mount selectable 
• S-VHS (Y/C) & Standard NTSC Composite output 
• Selectable aperture level 
• Auto Gain Control 
• 12 Volt DC operation 
 
Specification: 

• Camera System: NTSC or PAL (GP-KR222E) 
• Pick-up Device: 768 (H) x 494 (V) Pixels, interline transfer CCD 
• Scanning Area: 525 lines/60 fields/30 frames horizontal 15.734kHz 
• Scanning System: 2:1 interlace 
• Synchronization: Internal 
• Video Output: 1.0Vp-p NTSC composite / 75 ohms 
• Horizontal Resolution: 480 TV lines 
• S/N Ratio: 50dB (min.) (luminance S/N) (at AGC off, weight on) 
• Minimum Illumination: 2 lux at f1.2 (3 lux at f1.4) 
• AGC (Automatic Gain Control): Selectable on and off (approximately 14dB) 
• White Balance: Selectable ATW and AWC (with white balance R/B VR) 
• Aperture: Selectable - SOFT (off) / SHARP (on) 
• Electronic Light Control: Equivalent to 1/60s - 1/15700s continuous variable 
• shutter speed 
• Lens Mount: Selectable C-mount and CS-mount 
• Auto Iris Lens Type: DC Type Auto-Iris 
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• BLC (Backlight Compensation): Selectable normal and backlight control 
• Y/C Out: Y out (1.0Vp-p/75 ohms) 
• C out (0.286Vp-p/75 ohms burst level) 
• Power Requirements: 10.8 to 16 Volts D.C. 
• Dimensions: (excluding lens) 2 1/8"H x 2 5/8"W x 4 13/16"D 
• Weight: 460g (1 lbs.) 
• Operating Ambient Temperature: +14°F to +122°F 
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