
VOLATILITY ESTIMATION AND PRICE PREDICTION 
USING A HIDDEN MARKOV MODEL 

WITH EMPIRICAL STUDY 
 

A Dissertation 
presented to 

the Faculty of the Graduate School 
University of Missouri-Columbia 

 

In Partial Fulfillment 
of the Requirements for the Degree 

 

Doctor of Philosophy 
 

by 
PEI YIN 

 

Dr. Allanus H. Tsoi, Dissertation Supervisor 
 

AUGUST 2007 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Pei Yin, 2007 
All Rights Reserved 



The undersigned, appointed by the Dean of the Graduate School, have examined
the thesis entitled

VOLATILITY ESTIMATION AND PRICE PREDICTION
USING A HIDDEN MARKOV MODEL

WITH EMPIRICAL STUDY

Presented by Pei Yin

A candidate for the degree of Doctor of Philosophy

And hereby certify that in their opinion it is worthy of acceptance.

Professor Allanus Tsoi

Professor Michael Taksar

Professor Carlo Morpurgo

Professor Carmen Chicone

Professor Tony Sun



Acknowledgments

My first thank goes to the Department of Mathematics, University of Missouri

at Columbia for its financial support and for facilitating my work.

Next I wish to express my sincere gratitude to my teacher, Professor Allanus

Tsoi, for introducing me to the subject and for his continuous advice, support and

encouragement during this work.

I am also grateful to Professors Michael Taksar, Professors Carlo Morpurgo,

Professors Carmen Chicone, Professor Zhenbo Qin and Dr. Eric Zeng for their

interest and support.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES v

LIST OF TABLES vii

1 INTRODUCTION AND PRELIMINARIES 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hidden Markov Models (HMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Kalman Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 EM Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.5 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 The Paradox of Efficient Market Hypothesis . . . . . . . . . . . . . . . . . . . . . 12

2 CONSTANT VOLATILITY 15

2.1 Geometric Brownian Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.2 Volatility in Option Pricing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

3 TIME VARYING VOLATILITY 23

3.1 ARCH and GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Regime-Switching Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Realized Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

4 HMM WITH STOCHASTIC DRIFT AND VOLATILITY 39

iii



4.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The Underlying Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Change of Probability Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Recursive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.5 EM Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Price Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 MODEL IMPLEMENTATION 73

5.1 Monte Carlo Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Statistic Analysis of the Prediction Performance . . . . . . . . . . . . . . . . . 76

5.3 The Selection of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Empirical Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Empirical Comparison of HMM with GARCH(1,1) . . . . . . . . . . . . . 118

6 CONCLUSIONS AND FUTURE WORK 123

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

APPENDIX 131

BIBLIOGRAPHY 155

VITA 163

iv



LIST OF FIGURES

1 Deterministic Model and Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Volatility Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Historical VIX 1990 - 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4 — Figure 22 are Results from HMM

4 α on Data from Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Standard Error on Data from Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 α on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Relative α on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 β on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Durbin-Watson Statistics on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Standard Error on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

11 Relative Standard Error on Entire Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12 t-statitics under H0 : α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13 P -values under H0 : α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14 t-statitics under H0 : β = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 P -values under H0 : β = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

16 t-statitics under H0 : β = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

17 P -values under H0 : β = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

18 Convergency of Estimates with OEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



19 Similarities within Different Categories of Indices . . . . . . . . . . . . . . . . . . . . . . . . . 101

20 Prediction on Prices of Stock: DELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

21 Prediction on Prices of Stock: MMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

22 Prediction on Prices of ETF: QQQQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

23 Difference in Two States of Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

24 Difference in Two States of Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

25 Annualized Volatility 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

26 Annualized Volatility 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 27 — Figure 30 are Results from Comparing HMM and GARCH(1,1)

27 Comparing Relative α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

28 Comparing β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

29 Comparing Relative Standard Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

30 Comparing Durbin-Watson Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi



LIST OF TABLES

1 Monte Carlo Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2 Average Prices, α and s for Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Data Sets included in Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Stocks included in Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5 Comparison of NDX and QQQQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Comparison of DJI and DIA, GSPC and SPY, SML and IJR . . . . . . . . . . . . . . .106

7 America’s Ten Biggest Mutual Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Estimates of Drift, Volatility, and Transition Matrix with HMM . . . . . . . 132-134

9 Prediction Performance of HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135-140

10 Prediction Performance of GARCH(1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141-146

11 Prediction Performance Comparison of HMM and GARCH(1,1) . . . . . . . 147–154

vii



viii



Chapter 1

Introduction and Preliminaries

In this chapter, we first give a brief introduction of this dissertation and then pro-

vide some preliminary background of our study. We will outline the basic concepts

of hidden Markov models, Kalman Filter algorithm, EM algorithm, and Monte

Carlo simulation method. Finally, we shall question the Efficient Market Hypoth-

esis and claim the effectiveness of technique analysis as there indeed exist certain

trends that financial time series follow to a large extent.

1.1 Introduction

A number of recent studies have sought to characterize the nature of financial

market return process, which has always been described as a combination of drift

and volatility. More models are established to focus on the volatility. Early stud-

ies simply assume constant volatility, while nowadays it is widely believed that

volatility itself is volatile. In this work we suggest a hidden Markov model(HMM)

where both drift and volatility are stochastic and they are driven by some sort of
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underlying economic forces which evolves as a finite-state, time-invariant Markov

chain. Through stochastic filtering techniques in the same flavor of Kalman Filter

algorithm we formulate EM estimates of the parameters by iterations in the same

spirit as the EM algorithm. Then we apply the HMM estimates to a price model

and develop the prediction formula. On an empirical level, we perform Monte

Carlo simulation analysis and apply our model to 73 cautiously selected data sets

of historical security prices. The results suggest great applicability of our HMM.

Moreover, we compare HMM and the well established GARCH(1,1) with the same

data sets, as far as the prediction performance is concerned, our results suggest

that HMM outperforms GARCH(1,1). Lastly, we provide some further avenues for

the future study.

1.2 Hidden Markov Models

A hidden Markov model (HMM) is characterized by the following elements:

1. {X} = {X1, X2, ......}: the unobserved Markov chain, called the signal se-

quence

2. {Y } = {Y1, Y2, ......}: the observation sequence

3. N : the dimension of the state space of the Markov chain

4. M : the dimension of the state space of the observations sequence

2



5. SX = {s1, s2, ..., sN}: the state space for the Markov chain

6. OY = {o1, o2, ..., oM}: the state space for the observation sequence

7. AN×N = (aij) where i, j = 1, , N the transition probability matrix: aij =

P (Xn+1 = si|Xn = sj),∀n

8. BM×N = (bij) where i = 1, ,M and j = 1, N the conditional distribution of

the observation given the signal: bij = P (Yn = oi|Xn = sj),∀n

9. ΠN×1 = (πi) where i = 1, , N the initial state distribution

Let us use a compact notation: λ = {A,B,Π}.

There are three basic problems of HMM when it is applied to the real world.

1. Given an observation sequence {Y }, and the model parameters λ = {A,B,Π},

how to compute P (Y |λ). i.e. once the model is known, what is the proba-

bility of getting a specific observation sequence? This problem can be solved

forward-backward algorithms (Rabiner 1989) .

2. Given the observation sequence {Y }, and the model specifications λ = {A,B,Π},

what is the underlying sequence {X} that can best explain the outcome of

the observation? This problem can be solved be Viterbi algorithms (Forney

1973).

3



3. Given the observation sequence {Y } and the state space {SX}, how do we

estimate the model parameters λ = {A,B,Π} which maximizes P (Y |λ)?

This problem can be solved by Baum-Welch algorithms (Welch 2003).

In the world of finance, if we consider {Y } as an observed financial time series,

{X} as some underlying economic forces, then the second problem is to find the

hidden path of the economic forces, the third problem is to estimate the model

parameters by using the observed information, the first problem is to predict the

future by employing the model with the historical observation.

Formally, the following definitions are widely accepted in the literature of HMM.

Let (Ω,F , P ) be a probability space, X = {Xt}t∈T be a stochastic process, T

denotes the collection of positive integers.

Definition 1.2.1. SX = {s1, s2, ...} is called the state space of X if for ∀t ∈ T ,

∀ω ∈ Ω, Xt(ω) ∈ SX . Moreover, Xt = sj where sj ∈ SX means the process is in

state sj at time t.

Definition 1.2.2. X is called a homogeneous Markov chain with state space SX

if: P (Xt+1 = si|Xt = sj, ..., X2, X1) = P (Xt+1 = si|Xt = sj) = aij

for ∀sj, si ∈ SX and ∀t ∈ T .

The probabilities aij are called the transition probabilities.

A = {aij}i,j=1,2,...,N is called the transition probability matrix (or transition matrix)

of the Markov chain X.

4



Note: throughout this research we only discuss the homogeneous Markov Chains

with finite state space. i.e. P (Xt+1 = si|Xt = sj) does not depend on t, and

SX = {s1, s2, ...sN} is finite.

Definition 1.2.3. A pair of stochastic processes {X, Y } where X = {Xt}t∈T and

Y = {Yt}t∈T is said to be a hidden Markov chain, if X is a Markov chain which

can not be observed directly, and Yt = f(Xt, ωt), where f is a deterministic Borel

measurable function and {ωt}t∈T is a sequence of i.i.d. random variables that are

independent of X. Here the process Y is called the observation process.

1.3 Kalman Filter Algorithm

To have a general idea of what filtering, smoothing and prediction are, we consider

the following example. We are given a signal process {xt} and a noise process {ut},

neither of them is observable. However we can observe a sequence yt = f(xt, ut).

Suppose we have observed the values of {y1, y2, ..., yT}, what can we infer from this

knowledge in regard to the underlying process {x1, x2, ..., xt}?

if t = T , this is called a filtering problem,

if t < T , this is called a smoothing problem,

if t > T , this is called a prediction problem.

5



The following system is suggested by Kalman(1960):

xt = Fxt−1 +Gut + εt

yt = Hxt + ηt

εt ∼ N(0, Rt) i.i.d ηt ∼ N(0, Qt) i.i.d

Thus,

(yt|xt, H,Qt) ∼ N(Hxt, Qt)

(xt|xt−1, F,G,Rt) ∼ N(Fxt−1 +Gut, Rt)

The underlying variable xt is an n× 1 vector, F is an n×n matrix. ut is an m× 1

vector, and m ≤ n, G is an n ×m matrix. We know ut and G. The observation

yt is a p × 1 vector, H is a p × n matrix. Let Yt be the σ − field generated by

{y1, y2, ..., yt}. The noise: εt is n× 1 and ηt is p× 1, therefore, Rt is n× n, and Qt

is p× p. We take the following notation: ( G. Welch and G. Bishop 2006)

xt|t = E(xt|Yt)

xt|t−1 = E(xt|Yt−1)

Σt|t = E((xt − xt|t)(xt − xt|t)
′|Yt)

Σt|t−1 = E((xt − xt|t−1)(xt − xt|t−1)
′|Yt−1)

By taking expectations on the original system we can have the following equations:

(1) xt|t−1 = Fxt−1|t−1 +Gut

(2) Σt|t−1 = Rt + FΣt−1|t−1F
′

(3) Define Jt as: Jt = Σt|t−1H
′(HΣt|t−1H

′ +Qt)
−1 so the dimension of Jt is n× p

(4) xt|t = xt|t−1 + Jt(yt −Hxt|t−1)

(5) Σt|t = (I − JtH)Σt|t−1 where I is the n× n unit matrix.

6



Given F,G,H,Q,R and suppose we know the initial conditions: x0|0 and Σ0|0, the

Kalman Filter algorithm works as the following:

step 1. Obtain x1|0 and Σ1|0 from equations (1) and (2).

step 2. Obtain J1 from (3)

step 3. Obtain x1|1 and Σ1|1 from equations (4) and (5).

step 4. Now we know x1|1 and Σ1|1, through the same procedures as in steps 1-3,

we obtain x2|2 and Σ2|2.

.......

Therefore, we get the filters xt|t, Σt|t and the predictions xt+1|t, Σt+1|t, t = 1, 2, ......

As for the smoothers after obtaining T observations, xt−1|T , Σt−1|T , next we run a

backwards algorithm for t = T, T − 1, ..., 1 to get the following equations:

(6) Kt−1 = Σt−1|t−1F
′Σt|t−1 so the dimension of Kt is n× n

(7) xt−1|T = xt−1|t−1 +Kt−1(xt|T − xt|t−1)

(8) Σt−1|T = Σt−1|t−1 +Kt−1(Σt|T − Σt|t−1)K
′
t−1

Take the initial conditions from the filters xT |T , ΣT |T and follow the steps below

we shall be able to get the smoothers xt|T and Σt|T where t = T − 1, T − 2, ..., 0.

step 1. Incorporating the filter ΣT−1|T−1 and the prediction ΣT |T−1 into

equation (6), we get KT−1.

step 2. Obtain xT−1|T by (7).

step 3. Obtain ΣT−1|T by (8).

step 4. Repeat the above three steps to get XT−2|T , ΣT−2|T , ...... , X0|T , Σ0|T .

7



1.4 EM Algorithm

Let us first review what is a maximum likelihood problem. Suppose we have a

probability distribution function p(z|Θ) that is determined by a set of parameters

Θ, and N independent random draw from this distribution to form a data set

Z = {z1, z2, ...zN}. The resulting joint probability density function for this sample

is p(Z|Θ) =
N∏

i=1

p(zi|Θ) = L(Θ|Z) The function L(Θ|Z) is called the likelihood

function. A maximizing likelihood problem is to estimate Θ under which the ob-

served data are most likely, i.e. the likelihood function has the greatest value. To

achieve this goal, we let the derivative of L(Θ|Z) with respect to each component

of Θ to be zero. In practice, the log likelihood function is more often used for easier

computation.

However if we are not able to obtain such a complete data set Z, but rather Z

is composed by two parts: Z = {X ,Y}, where Y are the values of the observed

variable, X are the missing data (can be either actual missing measurements or

hidden variables). In such a case, the likelihood function p(Z|Θ) = p(X ,Y|Θ) =

L(Θ|X ,Y) is actually a random variable since the missing information X is un-

known, random, and presumably governed by an underlying distribution. There-

fore, we can not maximize it by choosing the best Θ, i.e. the regular maximum

likelihood method will not give the estimate of Θ. An alternative way is to maxi-

mize the expected likelihood function, and this is the spirit of the EM algorithm.

8



The EM (Expectation-Maximization) algorithm will iteratively improve an initial

estimate Θ0 and construct new estimates Θ1,..., Θk... in this way:

To derive Θk+1 from Θk, we maximize the following function Q(Θ) with respect to

Θ.

Q(Θ) = Ex

(
ln p(X ,Y|Θ)

∣∣∣∣Y)
=

∫ ∞

−∞
ln p(X ,Y|Θ) · p(X|Y ,Θk)dx

There are two major steps repeated in the EM algorithm: the evaluation of the

above expectation is called the “E-step”, to maximize this expectation is called

the “M-step”. Each iteration is guaranteed to increase the log likelihood and the

algorithm is guaranteed to converge to a local maximum of the likelihood function,

depending on starting values. However, there is no guarantee that the sequence

converges to a maximum likelihood estimator.

Note that Expectation-Maximization is a concept for a class of related algorithms,

not a specific one. The EM estimates we shall develop in our primary model is

in line with the concept of Expectation-Maximization, but we modify the way of

iteration in the above EM algorithm.

1.5 Monte Carlo Simulation

Monte Carlo simulation method was originated as a reference to casino games.

Its use of randomness in the process are analogous to the activities conducted

at a casino. Stanislaw Marcin Ulam, an early pioneer in this field tells in his
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autobiography “Adventures of a Mathematician” that the method was named in

honor of his uncle, who was a gambler.

Monte Carlo simulation method is a technique that involves using simulated ran-

dom numbers as input to estimate stochastic models. It is useful especially for

modeling phenomena with significant uncertainty in inputs, such as estimating the

risk in financial time series. Therefore, what is a stochastic model? While creating

a model, we usually have a certain number of data as inputs and a few equations

that use those inputs to give you a set of outputs. This type of model is called a

deterministic model. For example, to model a risk free investment, let the principle,

annual interest rate, length of a financial period, number of years be the inputs,

you will then have a certain future value as the output no matter how many times

you re-calculate. However, if we replace some of the inputs in a deterministic model

by random variables, it turns into a stochastic model. For instance, to model the

stock returns, we let the risk element evolve as a random draw from a normal dis-

tribution. Even if the mean and variance of such distribution is known, when you

re-calculate the future value of an investment, each time you may get a different

result. The following diagram shows the difference between a deterministic model

and a stochastic model.
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The Monte Carlo simulation method is categorized as a sampling method because

the inputs are randomly generated from some probability distributions to simulate

a sample from an actual population. So we try to choose a distribution for the

inputs that most closely matches data we already have. It also bears mentioning

that the use Monte Carlo method requires large amounts of random numbers, which

has spurred the development of programmatic random number generators.

The use of Monte Carlo simulation method usually involves the following steps:(Gilks,

Richardson, Spiegelhalter 1996; Gamerman 1997)

step 1: Generate a set of random inputs, xi = {xi
1, x

i
2, ..., x

i
n}.

step 2: Create a parametric model, y = f(x1, x2, ..., xn).

step 3: Evaluate yi = f(xi) and store the results as {y1, y2, ...yt}.

step 4: Analyze the results by comparing {y1, y2, ...yt} with the observed data

and adjust the model specifications. What we mean by “analyze” depends on the

application, typically they should pass a series of statistical tests.
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1.6 The Paradox of Efficient Market Hypothesis

The concept of Efficient Market Hypothesis (EMH) was originally from Eugene

Fama’s influential PhD dissertation (1965) “Random Walks in Stock Market Prices”,

in which he persuasively made the argument that when information arrives at the

financial market, it is immediately incorporated into the security prices without

any delay.

Eugene F. Fama (1965) “An ‘efficient’ market is defined as a market
where there are large numbers of rational, profit-maximizers actively
competing, with each trying to predict future market values of individual
securities, and where important current information is almost freely
available to all participants. In an efficient market, competition among
the many intelligent participants leads to a situation where, at any point
in time, actual prices of individual securities already reflect the effects
of information based both on events that have already occurred and on
events which, as of now, the market expects to take place in the future.
In other words, in an efficient market at any point in time the actual
price of a security will be a good estimate of its intrinsic value.”

If market is indeed efficient, any technical analysis, the study of historical price

processes in an attempt to predict the future price is of no use since the past prices

are fully reflected in the current prices. In addition, any fundamental analysis, the

study of company’s asset value, financial statements, credit risk, etc., is of no use

since any public information is fully reflected in the security prices.

As a result of the efficient market, the price movement is a “random walk” which

will not follow any patterns. Actually, this “random walk” theory can be traced

back to 1900 when a French mathematician Louis Bachelier asserted in his PhD

12



dissertation “The Theory of Speculation” that “the mathematical expectation of

the speculation is zero”. However his theory was too profound to be accepted by

then and it finally became noticed after 1964 when the English translation was

published.

EMH has been an issue of debate among both the market practitioners and aca-

demic researchers. For example, the investment media asserts that the market is

not efficient as they make profit by supplying information to the investors. Simi-

larly, active fund managers1 are ambivalent toward EMH, otherwise their well paid

job is nothing but speculation. However passive managers2, who support EMH,

argue with the fact that majority of the active managers in a given market will

under perform an appropriate benchmark index3 in the long run.

In academics, EMH is first of all challenged by economists who take human be-

havior and psychological factors as dominating elements in their equilibrium price

models. Moreover, another group of proponents of EMH are the econometricians,

statisticians and financial mathematicians. They have built numerous models un-

der the assumption that the return processes are to a large extent predictable.

1Active fund management is an investment strategy of making specific portfolio selections in
an attempt to beat the market.

2Passive fund management is the strategy of investing in broad sectors of the market without
making any attempt to distinguish attractive or unattractive securities.

3For example, a small-cap stock fund is only comparable with indices of small-cap stocks,
therefore indices such as S&P 600 or Russell 2000 could be appropriate benchmarks. Or, a
growth stock fund can be compared with growth indices such as Vangard Growth Index.
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As we quoted above, the realization of “Efficient Market” is based on the hypothesis

that all market participants believe that the market is not efficient so they can use

certain strategies to outperform the benchmarks. In another word, if every investor

believes that the market is efficient, then the market will not be efficient. This is the

paradox of Efficient Market Hypothesis that makes the hypothesis itself doubtful.

In this thesis we shall discuss various models that capture the stylized facts about

return processes and their applicability put EMH questionable .
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Chapter 2

Constant Volatility

In this chapter we start with the first milestone in modeling the security price

processes, the Geometric Brownian Motion Model, which has introduced the con-

cept of drift and volatility in the return process. Then we talk about the role of

volatility estimation in option pricing given that the underlying stock price evolves

as the Geometric Brownian Motion.

2.1 Geometric Brownian Motion Model

The modeling for security price processes has been addressed for nearly a century.

Especially in the recent two decades, with the explosion of mathematic finance,

econometrics, financial engineering, there have been several well recognized theories

regarding this issue. Moreover, with the emergence of computer based numerical

experiments and historical data providers, most of the theories are challenged by

and supported with empirical results. Nevertheless, the problem of security price

processes is far from being solved. As Robert Almgren noted in an issue of The
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American Mathematical Monthly “Construct improved model for asset price motion

is a subject of active research”.

Among the numerous models, the first one with great recognition is the Brownian

Motion Model (Bachelier, 1900). dS = µdt+σdz , where z is a Wiener Process. In

this model, it is assumed that the magnitude of the stock price variation is unrelated

to the price itself. However, historical observation tells that the variation is larger

at a higher price level. Furthermore, take an extreme case where σ = 0, this stock

becomes a risk-free bond with an instantaneous rate of return µ. i.e. St = S0e
µt .

However Brownian Motion Model suggests St = µt .

Three decades later, in their landmark paper about option pricing, Black and

Scholes adopted Geometric Brownian Motion to describe the underlying stock price

process

dSt

St

= µdt+ σdz (2.1)

i.e. the instantaneous rate of return rather than the price itself is a Brownian

Motion. In this equation, µ is the drift term that gives direction to the movement

of the instantaneous rate of return. σ is the volatility term, which describes its

tendency to undergo price changes, i.e. more volatile stocks undergo larger or

more frequent price changes. Notice that z is a Wiener increment, dz = εd
√
t,

where ε is the standard normal distribution. And this specification of can lead to

a ”jumpy” movement in the S process. That is because, for a small time interval
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∆t,
√

∆t is much larger than ∆t, as a result, the standard deviation movement will

be much larger than the mean of movement. In the discrete form of this equation,

ln
S(t+ ∆t)

S(t)
is a normal random variable with mean µ∆t and variance σ2∆t.

The attractiveness of Geometric Brownian Motion includes:

1. In case where σ = 0, it implies St = S0e
µt, which is consistent with the fact

the price of a risk-free stock will grow over time just like a risk-free Treasury

Bill.

2. In agreement with the empirical finding, this model indicates that the mag-

nitude of the price change is positively correlated with the price level.

3. As it can be solved: E(St) = S0 · exp
{
t ·

(
µ +

σ2

2

)}
, the prices governed

by a Geometric Brownian Motion are unlikely to fall below zero, which is in

accord with the feature of ”Limited Liability” of any equity.

4. The change of the price is independent of the past price history and this

independence makes the price series a Markov Process, which is a powerful

mathematic tool.

5. From an analytic point of view, by using Geometric Brownian Motion, the

Black-Scholes Differential Equation can be transformed to a Heat Equation

and solved in a closed form.
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Even as a milestone, the Geometric Brownian motion is still far from being ”accu-

rate” in describing the stock processes. It violates a lot of stylized facts about the

stock returns. We name a few below:

1. Geometric Brownian Motion suggests: ln
S(t+ ∆t)

S(t)
∼ N(µ∆t, σ2∆t), but

empirical distribution is usually more ”peaked” with a ”fatter tail” than the

normal distribution.

2. Historically, the mean and variance change over time, which can not be the

case given constant µ and σ.

3. As the information arrives in chunks rather than a continuous stream, there

are surprises in the sample path of return: a rapid jumping up/down rather

than a continuous moving up/down.

2.2 Volatility in Option Pricing

For option traders, volatility is the essence of trading as options derive their theo-

retic prices in part from it. In this section, we first let the underlying stock price

evolve as a Geometric Brownian Motion, and derive the Black-Scholes formula

for European Call option by using Heat Equation and solve it in a closed form.1

Then we give an example to show how the theoretic option price changes with the

1Summarized from A Course in Financial Calculus, Cambridge University Press, Option
Pricing, Mathematical Models and Computation,Oxford Financial Press
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volatility of the underlying stock, thus it is important for professional traders to

have knowledge of theoretical option prices.

First we construct a portfolio with one unit of call option and −∆ units of the

underlying stock, then its value is given by: Πt = Ct − ∆St, where St is value of

the underlying stock, Ct is value of the value of the option.

dSt = µStdt+ σStdz

dCt = σSt

∂Ct

∂St

dz +

(
µSt

∂Ct

∂St

+
1

2
σ2S2

t

∂2Ct

∂S2
t

+
∂Ct

∂t

)
dt

Therefore, dΠt = σSt

(
∂Ct

∂St

−∆

)
dz +

(
µSt

∂Ct

∂St

+
1

2
σ2S2

t

∂2Ct

∂S2
t

+
∂Ct

∂t
−∆µSt

)
dt

We eliminate the random component by choosing ∆ =
∂Ct

∂St

i.e. let the coefficient

of dz term be 0.

From now on, we shall use Π, C, S, in stead of Πt, Ct, St, for the simplicity of

notation. Thus, dΠ =

(
1

2
σ2S2

∂2C

∂S2
+
∂C

∂t

)
dt

On the other hand, the return on an amount of Π invested in riskless assets would

see a growth of rΠdt in a time period dt. Then the assumption of no arbitrage

opportunity in the market requires:

dΠ =

(
1

2
σ2S2

∂2C

∂S2
+
∂C

∂t

)
dt = rΠdt = r(C −∆S)dt

⇒
∂C

∂t
+

1

2
σ2S2

∂2C

∂S2
+ rS

∂C

∂S
− rC = 0

The above equation is called the Black-Scholes Partial Differential Equation.

The first boundary condition comes from the definition of the European Call Op-

tion, C(S, T ) = max(S − E, 0). Then, if S=0 on the expiration day, the payoff is
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0, this call option is worthless at anytime, so C(0, t) = 0. Finally, if S → ∞, this

option will be exercised for sure, and the magnitude of the exercise price becomes

unimportant, so C(S, t) ' S as S →∞. Now we obtain a system about C(S, t):

∂C

∂t
+

1

2
σ2S2

∂2C

∂S2
+ rS

∂C

∂S
− rc = 0

C(S, T ) = max(S − E, 0) C(0, t) = 0 C(S, t) ' S as S →∞
(2.2)

To solve this system, we do the following substitutions: let S = Eex, t = T −
τ

σ2/2
,

and let C(S, t) = Ev(x, τ). Then the Black-Scholes Partial Differential Equation

system becomes a system about v(x, τ):

∂v

∂τ
=
∂2v

∂x2
+ (k1 − 1)

∂v

∂x
− k1v where k1 =

r

σ2/2

v(x, 0) = max(ex − 1, 0)

(2.3)

Next we do another substitution, write v(x, τ) in the form of eax+bτu(x, τ). Choose

constants a and b that make u(x, τ) a Heat Equation of the form
∂u

∂τ
=
∂2u

∂x2
, i.e.

the coefficients of
∂u

∂x
and u in the equation of

∂u

∂τ
are 0. So the previous system

about v(x, τ) becomes a system about u(x, τ):

∂u

∂τ
=
∂2u

∂x2

u0(x)=̂u(x, 0) = max(e
k1+1

2
x − e

k1−1
2

x, 0)

(2.4)

Solving the above system about u(x, τ), we get:

u(x, τ) = e
(k1+1)x

2
+

(k1+1)2τ
4 ·N(d1)− e

(k1−1)x
2

+
(k1−1)2τ

4 ·N(d2)

where d1 =
x
√

2τ
+
k1 + 1

2

√
2τ d2 =

x
√

2τ
+
k1 − 1

2

√
2τ N(s) =

1
√

2π

∫ s

−∞
e−

ρ2

2 dρ
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By retracing the steps from C(S, t) to v(x, τ) to u(x, τ), we obtain the Black-Scholes

formula for pricing the European call option:

C(S, t) = sN(d1)− Ee−r(T−t)N(d2)

d1 =
ln
S

E
+ (r +

1

2
σ2)(T − t)

σ
√
T − t

d2 =
ln
S

E
+ (r −

1

2
σ2)(T − t)

σ
√
T − t

N(s) =
1

√
2π

∫ s

−∞
e−

ρ2

2 dρ

(2.5)

Therefore to theoretically price an option, we would like to know the volatility (σ)

that the underlying stock is going to have from the time the option is purchased (or

sold) until the expiration day. Unfortunately that volatility can never be known,

since the time frame is the future. Thus, we use a volatility estimate that is based

upon the historical volatility2 of the stock instead.

In practice, volatility is measured in percentages per annum, and price changes are

measured from one days closing price to the next. For example, when a stock is

described as having a volatility of 30, it means the stock moves either up or down

by 30% annually.

Consider an European call option with 9 months until expiration, the strike price

is 55, the underlying stock is priced at 50, zero dividend, and the riskfree interest

2It also takes into account any events that may have a significant impact on the price of the
stock and are known to be occurring during the lifetime of the option. For instance, the quarterly
announcement of the company’s earnings. Another factor to be taken into consideration is the
general condition of the market. With calm markets, all volatility estimates are reduced. But
sometimes world events have a great impact on stock prices then volatility estimates are raised.
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rate is 2%. By the Black-Scholes formula: 3

if the volatility estimate is 60, the theoretic price of the option is 8.7947

if the volatility estimate is 40, the theoretic price of the option is 5.2886

if the volatility estimate is 20, the theoretic price of the option is 1.906

if the volatility estimate is 10, the theoretic price of the option is 0.4158

Obviously the larger the volatility of the underlying stock is, the higher the theoretic

price of the option is. Intuitively, this is because option buyers make profits when

the underlying stocks undergo significant price changes in the correct direction.

Volatile stocks are much more likely to undergo large price changes, therefore option

buyers pay a much higher price for options of volatile stocks.

Knowing how to use theoretical option prices can help the trader to select the

particular option to buy or sell after he chooses a particular stock. The observation

that one series (a specific option, with a specific strike and expiration) is much

more overpriced or underpriced than others can help a trader decide a long or

short position.

It bears mentioning that except for option pricing, volatility estimation is also a

tool of quantitative risk management. Moreover, volatility, which is considered

the most accurate measure of risk, reflects underlying problems with the overall

financial market. For instance: lack of transparency, bad loans, default rates,

uncertainty, illiquidity, external shocks, and other negative externalities.

3The results below are calculated from an Equity Options Calculator by Dr. Robert Lum
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Chapter 3

Time Varying Volatility

After discovering the deficiency in the Geometric Brownian Motion Model as we

mentioned in the last chapter, there have been various models which can better de-

scribe the statistic features of financial time series emerged in this literature, enough

to fill a library of textbooks. According to Bob Jarrow, a professor at the Cornell

School of Business Management and research consultant for Kamakura Software,

“many of these models come out of the academic community, where disagreements

over the latest and greatest models have become something of an armchair sport”.

The most popular ones are stochastic volatility models including the ARCH and

GARCH models, and the Regime-Switching models. In this chapter, we first talk

about these two families of models as we shall compare them with our primary

hidden Markov model both theoretically and empirically. Then we talk about the

implied volatility, which is a whole different approach in a sense that these models

derive the volatilities of the underlying securities from the life prices of their deriva-
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tives, namely the options. Lastly, we talk bout the realized volatility which is a

“model-free” measure of volatility but its computation depends on high frequency

intra-daily data such as an observation for every five minutes.

3.1 ARCH and GARCH Models

Let yt+1 = ln
St+1

St

. According to the discrete version of Geometric Brownian

Motion model ln
S(t+ ∆t)

S(t)
∼ N(c∆t, σ2∆t), we have yt ∼ N(c, σ2). i.e.

yt = c+ εt where ε = σ · zt and zt is a Wiener Process. In this model, both the drift

tern c and the volatility term σ are constants. It is important not to misunderstand

εt as the volatility. Actually, εt is called the error term. As we discussed earlier,

empirical findings suggest that volatility is time varying. That is to say, we should

model the error as εt = σt · zt instead of εt = σ · zt.

The ARCH and GARCH class of models have been very popular in the area of

modeling σt, the time varying volatility. The ARCH model was first introduced by

Robert F. Engle in 1982 and he won the Nobel prize in 2003 for his contribution in

modeling volatility in the financial time series. ARCH means Autoregressive Con-

ditional Heteroscedasticity. Heteroscedasticity refers to a variable whose volatility

changes over time.

In ARCH(1), it is assumed that σ2
t = K + A · ε2t−1 where K and A are constants

with |A| < 1. Therefore, σ2
t = K + A · σ2

t−1 · z2
t−1. This reliance of σ2

t on σ2
t−1

is what we mean by ”autoregressive”. Actually, although the return process yt
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usually has little or no serial correlation, but the squared precess y2
t often exhibit

significant autocorrelation, which indicates ARCH as a good candidate of modeling

yt. In addition, ”conditional” implies given the past sequence of observation. Let

ψt be the σ − field generated by {yt, yt−1, ......, εt, εt−1, ......}, then ”conditional

heteroscedastic” means that V ar(εt|ψt−1) is time varying.

All models in the ARCH and GARCH family has the following four properties and

we shall take ARCH(1) as an example to prove them. For convention, we take

Et(.) = E(.|ψt)

Proposition 3.1.1. εt has zero mean.

Proof.

εt =
√
K + A · ε2t−1 · zt

Et−1(εt) =
√
K + A · ε2t−1 · Et−1(zt) =

√
K + A · ε2t−1 · 0 = 0

Et−2(εt) = E(εt|ψt−2) = E(E(εt|ψt−1)|ψt−2) since: ψt−2 ⊆ ψt−1

Therefore, Et−2(εt) = 0

......

E(εt) = E0(εt) = 0

Proposition 3.1.2. Et−1(ε
2
t ) = K + A · ε2t−1, Conditional Heteroscedastic

Proof.

Et−1(ε
2
t ) = Et−1[(K + Aε2t−1) · z2

t ] = K + Aε2t−1
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Proposition 3.1.3. E(ε2t ) is a constant. Unconditional Homoscedastic

Proof.

Et−2(ε
2
t ) = E(ε2t |ψt−2)

= E(E(ε2t |ψt−1)|ψt−2)

= K + A · E(ε2t−1|ψt−2)

= K +K · A+ A2 · ε2t−2

Et−3(ε
2
t ) = K +K · A+K · A2 + A3 · ε2t−3

......

E(ε2t ) = E0(ε
2
t ) = K +K · A+ ...+K · At−1 + At · ε20 =

K

1− A

Proposition 3.1.4. Et−1(εtεt−1) = 0, zero autocovariance

Proof.

Et−1(εtεt−1) = εt−1Et−1(εt) = 0

An ARCH(Q) model is defined as:

σ2
t = K +

Q∑
j=1

Aj · ε2t−j

s.t.
∑

Aj < 1, K > 0, Aj ≥ 0

(3.1)
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The volatility depends on the errors of the last Q periods. It may have a long

memory as Q might be greater than 1. The ARCH models became so popular as

they take care of changes in the econometrician’s ability to forecast. In the history

of this literature, interesting interpretations to the conditional heteroscedasticity

can be found. For instance, Lamoureux and Lastrapes(1990) explain it as a result

of the time dependence in the rate of information arrival to the market. They

use the daily trading volume as a proxy for such information arrival and show its

significance.

In 1986, Bollerslev improved the ARCH models by inventing the Generalized ARCH

models, the GARCH models, where the current volatility depends not only on the

past errors, but also on the past volatilities.

σ2
t = K +

P∑
i=1

Gi · σ2
t−i +

Q∑
j=1

Aj · ε2t−j

s.t.
∑

Gi +
∑

Aj < 1, K > 0, Gi ≥ 0, Aj ≥ 0

(3.2)

P∑
i=1

Gi ·σ2
t−i is the autoregressive part, and

Q∑
j=1

Aj · ε2t−j is the moving average part.

It should be noted that when P = 0, a GARCH(P,Q) model is an ARCH(Q) model.

The GARCH models are designed to capture the following three characteristics

associated with the returned process.

1. Volatility Clustering: while plotting the daily returns over a long term period,

it is found that large changes tend to be followed by large changes and small

changes are tend to be followed by small changes. It suggests that successive
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volatilities are serially dependent although uncorrelated.

2. Fat Tail: the observation of asset return series yt often exhibit a fatter tail

than a standard normal distribution. Statistically, this is known as excess

kurtosis, i.e the sample kurtosis

T
T∑

t=1

(yt − ȳ)4

( T∑
t=1

(yt − ȳ)2

)2
− 3 > 0.

3. Leverage Effect: the changes in security returns are often found negatively

correlated with the changes in volatility. This is due to the fact that a lower

rate of return is always associated with a higher risk.

The error term εt = yt−c is also known as the shock, and a negative shock is always

associated with bad news. As εt < 0 implies yt < c, the return falls below its mean

because of the bad news. Empirical studies on financial time series have shown

that conditional variance Et−1(σ
2
t ) often increases after negative shocks, i.e., after
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bad news being released to the market, the risk is higher. However, as suggested

by the equation σ2
t = K +

P∑
i=1

Gi · σ2
t−i +

Q∑
j=1

Aj · ε2t−j, the GARCH models are

symmetric models, where the sign of εt is ignored. Some asymmetric version of

GARCH models have been invented to capture this characteristic.

AGARCH(P,Q)-type 1

σ2
t = K +

P∑
i=1

Gi · σ2
t−i +

Q∑
j=1

Aj · (εt−j + γ)2

s.t.
∑

Gi +
∑

Aj < 1, K > 0, Gi ≥ 0, Aj ≥ 0, γ < 0

(3.3)

AGARCH(P,Q)-type 2

σ2
t = K +

P∑
i=1

Gi · σ2
t−i +

Q∑
j=1

Aj · (|εt−j|+ γ · εt−j)
2

s.t.
∑

Gi +
∑

Aj < 1, K > 0, Gi ≥ 0, Aj ≥ 0, γ < 0

(3.4)

GJR-GARCH(P,Q)

σ2
t = K +

P∑
i=1

Gi · σ2
t−i +

Q∑
j=1

(Aj + γ · It−j)ε
2
t−j

s.t.
∑

Gi +
∑

Aj < 1, K > 0, Gi ≥ 0, Aj ≥ 0, γ < 0

It = 1 if σt < 0

It = 0 if σt ≥ 0

(3.5)

EGARCH(P,Q)

ln(σ2
t ) = K +

P∑
i=1

Giln(σ2
t−i) +

Q∑
j=1

Ajzt−j +

Q∑
j=1

γj · (|zt−j| − E(|zt−j|))

s.t.
∑

Gi +
∑

Aj < 1, K > 0, Gi ≥ 0, Aj ≥ 0

zt =
εt

σt

(3.6)
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In a standard GARCH(1,1) model σ2
t = K + Gσ2

t−1 + Aε2t−1, conditional variance

Et−1(σ
2
t ) is minimized when there was no shock in the last period (εt−1 = 0). In an

AGARCH(1,1)-type 1 model, Et−1(σ
2
t ) is minimized when (εt−1 = −γ > 0), which

means the risk decreases after the release of good news.

In an AGARCH(P,Q)-type 2 model, εt−j < 0 ⇒ |εt−j| + γεt−j = (γ − 1)εt−j,

thus a decrease in εt−j shall cause an increase in Et−1(σ
2
t ). That is to say, given

there was bad news, then the worse it was, the higher the risk will be.εt−j > 0 ⇒

|εt−j|+γεt−j = (γ+1)εt−j, thus a decrease in εt−j shall cause a decrease in Et−1(σ
2
t ).

That is to say, given there was good news, then the better it was, the lower the

risk will be.

After the release of good news, a GJR-GARCH(P,Q) model is the same as a

GARCH(P,Q) model since εt−j ≥ 0 ⇒ It−j = 0. However, GJR-GARCH mod-

els magnify the impact of bad news, or say, negative shocks. This is because

εt−j < 0 ⇒ [Et−1(σ
2
t )]GJR−GARCH > [Et−1(σ

2
t )]GARCH .

All the GARCH models are uniquely described by the parameters

Θ = {K,G1, G2, ..., GP , A1, A2, ..., AQ}. The most widely accepted method of esti-

mating GARCH models is to maximize the conditional log likelihood function.

p(εt|σt,Θ) =
1

√
2πσt

e
−
ε2t

2σ2
t

L(εt|σt,Θ) =
T∏

t=1

(
1

√
2πσt

e
−
ε2t

2σ2
t

)
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ln L(εt|σt,Θ) = −
T∑

t=1

(
lnσt +

ε2t
2σ2

t

)

The last one is our objective function, where T is the number of terms in the

sequence.

The technique difficulty of ARCH, GARCH modeling lies in its dependence on P

(the length of its autoregressive part) and Q (the length of its moving average part).

The higher the P is, the longer volatility memory the process has and therefore

the less accurate the model is. Meanwhile, when P and Q are increased, there are

more parameters to be estimated.

There are some limitations in the design of GARCH models. For instance, they

can not fully explain the fat tail phenomenon. Most importantly, they often fail to

capture the highly irregular phenomena, including wild market fluctuations such

as crashes and subsequent rebounds, and other highly unanticipated events that

can lead to significant structural change. In the next section, we shall talk about

another popular type of models that can describe the relatively unstable market

conditions.

3.2 Regime-Switching Models

In his influential paper, Hamilton (1989) suggested Regime-Switching model for

non-stationary time series (log of GDP). The parameters of an autoregression are

viewed as the outcome of a discrete state stationary Markov process {Xt}, which
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could be explained as the underlying economic forces.

Rt = φRt−1 + [c0(1−Xt) + c1Xt] + [σ0(1−Xt) + σ1Xt]εt

where, Rt is the log of GDP, εt ∼ N(0, 1) i.i.d. Xt is a random variable that

capture the changes in the underlying economic forces. {Xt} evolves as a two-

state markov chain with the state space {0, 1}, and the transition probabilities:

p(Xt = 0|Xt−1 = 0) = q, p(St = 1|St−1 = 1) = p.

Later on, many papers have discussed the regime switching phenomena in stock

market returns under the framework of Hamilton’s Regime-Switching model. They

drop the autoregressive term by letting φ = 0. Turner, Startz, and Nelson (1989)

consider a Markov switching model in which either the drift, the volatility, or both

of them may differ between two regimes. They use a two-state Markov process

with constant transition probabilities. Schwert (1989) considers a model in which

returns may have either a high or a low volatility. He claims that a two-state

Markov process determines the switches of return distributions. Hamilton and

Susmel (1993) combine the ARCH model with the Markov switching method and

propose a Switching- ARCH (SWARCH) model. They address that there exist

sudden discrete changes in the process that determine volatility. These three papers

use the same technique provided by Hamilton (1989) to estimates the transition

probabilities in the two-state Markov processes.

Basically it is assumed in those papers that the return process can be described as
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the following:

Rt = [c0(1−Xt) + c1Xt] + [σ0(1−Xt) + σ1Xt]εt (3.7)

where, εt ∼ N(0, 1) i.i.d. {St} is a random variable that capture the changes in

the underlying economic forces nad it evolves as a two-state markov chain with

the state space {0, 1}, and the transition probabilities: pr(Xt = 0|Xt−1 = 0) = q,

pr(Xt = 1|Xt−1 = 1) = p. That is:

Rt|{Xt=0} = c0 + σ0εt

Rt|{Xt=1} = c1 + σ1εt

They use the technique provided by Hamilton(1989) to estimate the parame-

ters Θ = {c1, c2, σ1, σ2, p, q}, which is to maximize the log likelihood function of

(R1, R2, ..., RT ) given observation up to T − 1. Let Ωt be the σ − field generated

by {Rt, Rt−1, ..., R1, R0}

max ln L(R1, R2, ..., RT |R0,Θ) =
T∑

t=1

ln p(Rt|Ωt−1; Θ) w.r.t. Θ

An obvious deficiency in this technique lies in the fact that it is not easy to extend

it analytically to the case where the state space of the Markov chain has a higher

dimension.

3.3 Implied Volatility

Unlike the previous models, the implied volatility of the underlying security is

derived from the life prices of its derivatives, namely the options.
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In an option pricing model, such as Black-Scholes, a variety of variables are needed

as inputs to derive a theoretical value for an option. These inputs may vary de-

pending on the type of option being priced and the pricing model used. However,

the theoretic value of any option in any pricing model would depend on an estimate

of the volatility of the underlying security, σ. To express this idea mathematically:

C = f(σ,Υ), where C is the theoretic price of the option, Υ stands for all the

other inputs except for the volatility of the underlier, and f(.) is the option pricing

model. Assume there exists an inverse function h(.) = f−1(.), then σĈ = h(Υ, Ĉ),

where Ĉ is the realized option price. Therefore, we say σĉ is the volatility implied

by the market price Ĉ of the derivative (the option), thus σĉ is called the implied

volatility. The most technique difficulties in this approach lie in the fact that there

is usually not a closed form of such h function. In fact, for most of the derivative

securities, even the exact formulas of C = f(σ,Υ) are not available. In practice,

an iterative search procedure is often used to find the implied volatility. 1

Implied volatilities are of great interest to option traders as they reflect the market’s

opinion toward the volatility of a particular stock. They can also be used to

estimate the price of one option from the price of another option with the same

underlying. Very often, the implied volatilities are obtained simultaneously from

1There are generally two types of derivatives for which no exact pricing formulas available.
The first type is when the payoff of the derivative security is dependent on the history of the
underlying variable or where there are several underlying variables, in this case a Monte Carlo
simulation method is always useful; the second type is when the holder of the security has early
exercise decisions or other types of decisions to make prior to maturity, in this case, trees or finite
difference methods are useful.
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different options on the same stock and then a composite implied volatility for the

stock is calculated by taking suitable weighted average of the individual implied

volatilities. By “suitable”, we mean the weight should reflect the the sensitivity

of the option price to the volatility. To illustrate this point, suppose there are

two implied volatility estimates available, the first one is 0.32, based on an at-the-

money option, the second one is 0.26, based one an out-of-money option. The price

of the at-the-money option is far more sensitive to the volatility then the out-of-

the-money option, so we give the first one a weight of 80%, and give the second

one a weight of 20%, thus the composite volatility is 0.8 × 0.32 + 0.2 × 0.26 =

0.308, or 30.8% per annum. The most popular composite implied volatility is

the VIX(Volatility Index)on Chicago Board Options Exchange (CBOE), which is

calculated using a weighted average of implied volatilities in options on the S&P 500

Index futures. There also exists the Nasdaq 100 index futures volatility measure

(VXN) and the QQQQ volatility measure (QQV). The next graph2 displays the

hisotical VIX from Jan, 1990. 3

2The resource of this plot is MDWoptions - Options Education for the Public Investor
3CBOE changed its methodology for calculating the VIX in 1990
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Moreover, implied volatilities is used more and more in conjunction with statistic

volatilities (volatilities derived by measuring the actual price movements that the

underlying stock has made in the past.) to identify new profit-making opportuni-

ties. If implied volatility is substantially higher than statistic volatility, it is time to

sell volatility. Likewise, if implied volatility is much lower than statistic volatility,

it is time to buy volatility.

There has been disagreement among scholars and traders whether it is better off

to use historical security prices or current option prices to estimate volatility.

John Campbell, Andrew Lo, and Craig MacKinlay, (1997): “Con-
sider the argument that implied volatilities are better forecasts of future
volatility because changing market conditions cause volatilities to vary
through time stochastically, and historical volatilities cannot adjust to
changing market conditions as rapidly. The folly of this argument lies
in the fact that stochastic volatility contradicts the assumption required
by the B-S model - if volatilities do change stochastically through time,
the Black-Scholes formula is no longer the correct pricing formula and
an implied volatility derived from the Black-Scholes formula provides no
new information.”
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Meanwhile, it is found in practice that options based on the same underlying se-

curities but with expiration date and different strike value yield different implied

volatilities. This phenomenon is generally believed as evidence that volatility is

stochastic.

Whether or not you receive a valid implied volatility depends on the option model

you are using to solve for volatility. As Bob Jarrow noted “Any mis- specifications

in the model will affect the resulting implied volatility.”

3.4 Realized Volatility

Many difficulties in evaluating volatility models arise from the fact that volatility

is not observable, since one can not compared the forecasted volatility with a

“benchmark” that physically exists. Anderson and Bollerslev (1998) introduced

the concept of realized volatility, a “model-free” measure of volatility from which

evaluation of volatility models can be made. Realized volatility is calculated from

high frequency intra-daily data, rather than inter-daily data.

Anderson and Bollerslev collected data on the Deutsche Mark - U.S. Dollar and

Japanese Yen - U.S. Dollar spot exchange rates for every five minutes resulting in

288 observations per day. Then these 288 observations were used to compute the

variance of the exchange rate on that particular day. Their methodology can be

summarized as the following:

Let pn
t denote the security price at the nth time interval on the tth day. n =
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1, 2, ..., N and t = 1, 2, ... For example, N = 288 if we collect data on a five-minute

interval basis. Note that when N equals 1, which mean n could only be 1, and p1
t

is simply the inter-daily price rather than intra-daily prices. In such a case, we just

write it as pt. Define rn
t = log(pn

t ) − log(pn−1
t , thus rn

t is the observed intra-daily

returns on the tth day. The inter-daily return on the tth day can be obtained by

rt =
N∑

n−1

rn
t . Since

r2
t =

( N∑
n=1

rn
t

)2

=
N∑

n=1

(rn
t )2 + 2

N∑
n=1

N∑
m=n+1

rn
t r

m−n
t

σ2
t = E(r2

t ) = E

( N∑
n=1

(rn
t )2

)
+ 2

N∑
n=1

N∑
m=n+1

E(rn
t r

m−n
t ) = E

( N∑
n=1

(rn
t )2

)
Note that E(rn

t r
m−n
t ) equals zero as it is believed that the intra-daily returns are

uncorrelated.

Let s2
t =

N∑
n=1

(rn
t )2, then st is called the realized volatility.

The properties of the realized volatility are discussed by Anderson, Bollerslev,

Diebold and Labys (2001). While the concept of realized volatility does provide an

efficient way of estimating volatility, the problem of collecting information on the

security price every minute or so is immense.
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Chapter 4

HMM with Stochastic Drift and
Volatility

In this chapter we start with the model setup and a general guideline of the method-

ology in section 4.1. Then we explain the four major estimation steps one by one

in section 4.2 - 4.5. Finally, in section 4.6, we will introduce a price model which

can predict the next price by using the current price and the estimates we obtained

in section 4.5.

4.1 Model Setup

Assume the daily stock (could be any risky security) return process

{
ln
St+1

St

}
t=1,2,3,......

is governed by:

ln
St+1

St

= Gt + Vt · bt+1, bt ∼ N(0, 1), i.i.d. (4.1)

This model is basically under the framework of the discrete version of the Geometric

Brownian Motion Model except that we allow the drift {Gt} and the volatility
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{Vt} to be time varying. Unlike the Efficient Market Hypothesis, which claims the

current price reflect all the information, we consider there is a one day delay in the

information spread, and for investors, the information they gain from today’s price

is actually the information that should be available from the last trading day. As a

result, the evolving of today’s information: Gt and Vt depends on the information

of the last trading day: Gt−1 and Vt−1. Therefore, we model this pair {(Gt, Vt)} to

evolve as a first order Markov chain. As this Markov chain is unobservable(hidden),

this model belongs to the category of Hidden Markov Models.

The attractiveness of this model includes:

1. It maintained all the charms of the Geometric Brownian Motion Model with

loosened hypothesis. i.e., the drift and volatility can be time varying.

2. Unlike most of the time varying volatility models which force the drift to be

constant basically for analytic purpose (such as a typical GARCH model) ,

this model allows the drift to be time varying. However, as we admit there

are certain return processes do show a constant trend over certain periods,

we do not force the drift to be time varying. For instance, Gt can be some

constant. In our empirical implementation with 73 different data sets, we did

find some security returns have relatively steady drift.

3. Unlike the estimation technique employed in a typical Regime-Switching

model, we suggest a technique that can be easily extended to the cases where
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there are more than 2 states.

4. Unlike the Efficient Market Hypothesis, it admits the inefficiency: there exists

some delay in the information spread. As a result, the current price has some

sort reliance on the past price history. Meanwhile it capture of feature of

modern financial market, i.e. the information is quickly incorporated in the

security prices so the reliance on the past does not have a long memory. In

another word, what is reflected by today’s price depends only on what is

reflected by yesterday’s price.

5. Such dependence on the last trading day is a stochastic rather than a deter-

ministic function.

6. As it is shown by our paper, the implementation of this model is manageable

and the result is meaningful.

Suppose the chain {(Gt, Vt)}t=1,2,3,...... has an N dimensional state space

B = {(g1, v1), (g2, v2), ..., (gN , vN)} and stationary transition probabilities

P ((Gt+1, Vt+1) = (gs, vs)|(Gt, Vt) = (gr, vr)) = asr. Thus, A = (asr)s,r=1,2,...,N is the

transition probability matrix.

Let Rt be the return process, i.e. Rt =

{
ln

St

St−1

}
t=1,2,3,......

Obviously, the return process is observable. What we would like is to “see” the

unobservable Markov process through the return process so that we can have an
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expected next stage of this Markov cahin and use it to predict the next return and

thus make the investment decision. To achieve this goal, we need to estimate the

specifications of this Markov Chain, namely the state space B and the transition

probability matrix A.

The methodology can be summarized as the following:

First of all we transform the model by using a 1 − to − 1 mapping φ from B to

Σ = {e1, e2, ..., eN} where er is an N × 1 unit vector with the rth component equals

1 and the others equal zero. i.e. φ((gr, vr)) = er for ∀r = 1, 2, ..., N . Obviously Σ

is numerically more manageable than B as each of its entry is a unit vector rather

than a pair of numbers. More importantly, we use this 1− to−1 mapping to define

a process {Xt} which has a profound economic meaning. We shall discuss this step

in section 4.2.

Next, consider the probability measure p in the real world. Under p, the drift

and volatility changes from one state to another with certain probabilities and the

return process has a noise term evolving as a random draw from a sequence of i.i.d.

random variables with Gaussian distribution. What we do in this step is to define a

probability ρ in a fictitious world under which the hidden Markov chain is still the

Markov chain with the same state space and transition probability matrix, however

the return process {Rt} becomes a sequence of i.i.d. random variables with uniform

distributions. The purpose of defining such a probability measure is to make the

next two steps possible: obtaining recursive filters, obtaining EM estimates. We
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call this step “change of probability measure”. The theoretic development of such

a probability measure and its properties are discussed in section 4.3.

Mathematically a recursive filter is a recursive equation where only the estimate

of the previous state and the current measurement are needed to compute the

estimate of the current state. In section 4.4, we first develop a general filter in the

fictitious world we have just defined in 4.3 (under the new probability measure)

using a similar idea to the Kalman Filter algorithm then use this general filter to

obtain the following four filters: the underlying Markov chain, occupation time,

number of jumps, and functionals of the observation.

Finally by maximizing the expectation of the likelihood functions, we obtain the

estimates of the transition probability matrix, the state space of the drift and

volatility, and some other model specifications as by-products. Our iteration is

similar to the EM algorithm but different in a sense that we update the observation

in each pass so that more emphasis is given to the recent information as it is more

relevant in regard to predicting the near future. We shall discuss how these EM

estimates are achieved in section 4.5

4.2 The Underlying Process

The state spaceB for drift and volatility isN dimensional, and so is Σ = {e1, e2, ..., eN}.

If we can define a 1-to-1 mapping between these two spaces then Σ could help us

to capture some features of B since after all, the shape of Σ is a lot easier.
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Proposition 4.2.1. There exists φ: B → Σ, s.t. φ((gr, vr)) = er ∀r = 1, 2, ..., N

The existence of φ is ensured by the fact that dim(B) = dim(Σ). We actually do

not have to worry about the exact formula of φ. Then we define a process {Xt}

by: Xt = φ((Gt, Vt))

Proposition 4.2.2. {Xt} evolves as a Markov Chain with state space Σ.

Proof.

P (Xt+1|Xt, Xt−1, ..., X0) = P (φ((Gt+1, Vt+1))|φ((Gt, Vt)), φ((Gt−1, Vt1)), ..., φ((G0, V0)))

= P ((Gt+1, Vt+1)|(Gt, vt), (Gt−1, Vt−1), ..., (G0, V0))

= P ((Gt+1, Vt+1)|(Gt, Vt))

= P (φ((Gt+1, Vt+1))|φ((Gt, Vt)))

= P (Xt+1|Xt)

(Gt, Vt) ∈ B and φ: B → Σ, so Xt = φ((Gt, Vt)) ∈ Σ

i.e. the state space of {Xt} is Σ.

Proposition 4.2.3. P (Xt+1 = es|Xt = er) = asr, therefore the chain {(Gt, Vt)}

and {Xt} have the same transition probability matrix.

44



Proof.

P (Xt+1 = es|Xt = er) = P (φ((Gt+1, Vt+1)) = φ((gs, vs))|φ((Gt, Vt)) = φ((gr, vr)))

= P ((Gt+1, Vt+1) = (gs, vs)|(Gt, Vt) = (gr, vr))

= asr

Next we denote the following filtrations: {Xk} = σ(X0, X1, ..., Xk),

{Fk} = σ(X0, X1, ..., Xk, R1, ..., Rk), and {Yk} = σ(R1, ..., Rk).

Let g = (g1, g2, ..., gN)′ and v = (v1, v2, ..., vN), then (gr, vr) = (< g, er >,< v, er >)

for ∀r = 1, 2, ..., N . Therefore (4.1) is transformed to:

Rt+1 =< g,Xt > + < v,Xt > bt+1

Xt+1 = AXt +Mt+1

A is the transition probability matrix

{Mt+1} is a martingale increment process with respect to the filtration {Ft}
(4.2)

This transforming not only makes the model easier analytically but also gives rise

to an economically meaningful process {Xt}. As we all know, forces that move

the security prices including the information about market sentiment1; fundamen-

1Market sentiment refers to the psychology of market participants, individually and collec-
tively.
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tal factors such as earning base2, valuation multiple3; technique factors such as

inflation4, economic strength of market and peers, substitutions, incidental trans-

actions, demographics5, trends6, liquidity,... Their overall impact varies on different

securities at different time period, so we can not have a clean equation to put all

the forces together. Instead we consider the combination of them as a magic “ma-

nipulator” of the financial market. For example, this manipulator makes a daily

choice on any specific security from the following strategy set: { high rise, low

rise, stay, low drop, high drop }, and his choice is based on his observation from

the previous trading day. For instance, if it was a ‘low rise’ on Monday, then the

probability for a ‘high rise’ on Tuesday is 0.2, for a ‘low rise’ again is 0.2, for ‘stay’

is 0.4, for a ’low drop’ is 0.1, and for a ‘high drop‘ is 0.1. As a result, the process

of his every day strategy evolves as a first order Markov Chain. Why does he only

take yesterday’s observation into account? First of all, all the information we just

mentioned are embedded in the observation. Secondly, the market adjusts so fast

upon the information arrival that only previous day’s observation could reflect all

2There are different measures of earning base, for example the earnings per share (EPS) is the
owner’s return on his or her investment.

3The valuation multiple is a way of representing the discounted present value of the anticipated
future earnings stream.

4Inflation is generally considered as good for stocks because it signifies a gain in pricing power
for companies.

5It is believed that the greater the proportion of middle-aged investors among the investing
population, the greater the demand for equities and the higher the valuation multiples.

6Trend is a two-sided impact, a stock that is moving up can gather momentum, as ”success
breeds success”, however it also suggests to move in opposite way in a trend and does what is
called ”reverting to the mean.”
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the historical information until yesterday. In fact, the underlying process {Xt} that

we defined earlier can be viewed as this market manipulator who works behind the

scene. When {Xt} is in state er, it drives the drift to gr and the volatility to vr.

We have introduced the hidden Markov models by a situation of playing bridge in

section 1.2, we estimate the opponent’s dealing habit and his evaluation of each

round. Here investing is like playing against this market manipulator and we try

to estimate his strategy of each trading day.

While we consider the underlying Markov chain as a market “manipulator”, the

combination of all the forces that move the security prices, which differs from stock

to stock, and time to time, some other papers have suggested that it is a specific

economic process. Blanchard and Watson (1982) provide one example of such

processes, the stochastic bubbles. They stress that a bubble may either survive

or collapse in each period; in such a world, returns would be drawn from one of

two distributions - surviving bubbles or collapsing bubbles. Cecchetti, Lam, and

Mark (1990) provide another example. They consider a Lucas asset pricing model

in which the economy’s endowment switches between high economic growth and

low economic growth. They show that such switching in fundamentals accounts

for patterns in the stock market.
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4.3 Change of Probability Measure

Let ϕ(x) denote the probability density function of a standard normal distribution.

i.e. ϕ(x) =
1

√
2π
exp

( − x2

2

)
.

Let ψt =

ϕ

(
Rt− < g,Xt−1 >

< v,Xt−1 >

)
< v,Xt−1 > ϕ(Rt)

and λt =
t∏

k=1

ψk

Define a new probability measure ρ by the Radon-Nikodym derivative
dp

dρ

∣∣∣∣Ft = λt

i.e. for ∀Λ ∈ Ft

∫
Λ
λtdρ = p(Λ)

In the sections 4.4 and 4.5, we shall derive recursive filters that describe the dynam-

ics of Eρ(·), the expectations under ρ, and then we use those filters to obtain the

estimates, therefore it is necessary for us to be able to change them back to E(·),

the expectations under p. In plain English, it is just like we ship the raw materials

to a fictitious world where manufacturing is easier, then we ship the products back

to the real world. Sections 4.4 and 4.5 shall talk about the manufacturing in the

fictitious world, and in this section, we talk about the shipping devices.

Lemma 4.3.1.

E(ωt) = Eρ(λtωt) For ∀ random variable ωt that is Ft measurable (4.3)

Proof. E(ωt) =
∫
ωtdp =

∫
ωt

dp

dρ
dρ =

∫
ωtλtdρ = Eρ(ωtλt)
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Lemma 4.3.2. The abstract Bayes’ Theorem:

E(Ht|Yt) =
Eρ(λtHt|Yt)

Eρ(λt|Yt)
Yt ⊆ Ft

For ∀ random variable Ht that is integrable and Ft measurable

(4.4)

Proof. For ∀B ∈ Yt, Let IB be the indicator function of B∫
B

Eρ(λtHt|Yt)

Eρ(λt|Yt)
dp = E

[
IB
Eρ(λtHt|Yt)

Eρ(λt|Yt)

]
= Eρ

[
λtIB

Eρ(λtHt|Yt)

Eρ(λt|Yt)

]

= Eρ

{
Eρ

[
λtIB

Eρ(λtHt|Yt)

Eρ(λt|Yt)

]∣∣∣∣Yt

}
= Eρ

[
IB · Eρ(λt|Yt)

Eρ(λtHt|Yt)

Eρ(λt|Yt)

]
= Eρ[IBEρ(λtHt|Yt)] = Eρ[IBλtHt] = E(IBHt)

=

∫
B

E(Ht|Yt)dp

the 2nd and the 7th equal signs are due to the lemma 4.3.1

therefore:
Eρ(λtHt|Yt)

Eρ(λt|Yt)
= E(Ht|Yt)

For the convenience of notation, we define: σt(Ht) = Eρ(λtHt|Yt).

The abstract Bayes Theorem gives,

σt(1) = Eρ(λt|Yt) =
Eρ(λtHt|Yt)

E(Ht|Yt)
∀Ht that is Ft measurable

We call σt(1) the normalizer.

When recursive filters are achieved in the fictitious world, we obtain estimates with

these filters then we take the estimates back to the real world by this normalizer.
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4.4 Recursive Filters

In this section, we shall first develop a general unnormalized filter then use it to

four specific unnormalized filters that will be needed in the EM estimation.

Let Γi(Rt) =

ϕ

(
Rt − gi

vi

)
vi · ϕ(Rt)

Note that ψt|Xt−1=ei
= Γi(Rt), and it is Yt measurable.

Let ai = A · ei

diag(ai) is a diagonal matrix with its entries on the diagonal to be entries in ai.

As a remark, there are two types of index sets involved: {r}, {s}, and {i} are index

sets for states, which means, r, s, i = 1, ..., N . While {k} is an index set for time,

i.e., k = 1, 2, ..., t.

Consider the following process: Ht = Ht−1 + αt+ < βt,Mt > +δtf(R)

where Mt = Xt − AXt−1, αt is a scalar, βt is an N × 1 vector, δt is a scalar.

Moreover, αt, βt, and δt are all Ft−1 measurable. i.e. Ht, as a scalar variable, is a

function of Xt, Rt and other variables that are all Ft predictable.

Theorem 4.4.1. For any {Ht} processes defined as above,

σt(HtXt) =
N∑

i=1

[
< σt−1(Ht−1Xt−1), ei > Γi(Rt)ai

+ σt−1(αt < Xt−1, ei >)Γi(Rt)ai

+ σt−1(δt < Xt−1, ei >)Γi(Rt)f(Rt)ai

+ (diag(ai)− aia
′
i)σt−1(βt < Xt−1, ei >)Γi(Rt)

]
(4.5)
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Proof.

σt(HtXt) = Eρ(λtHtXt|Yt)

= Eρ[(λt−1ψt)(Ht−1 + αt+ < βt,Mt > +δtf(Rt))(AXt−1 +Mt)|Yt]

this is to break Ht into parts with zero and nonzero conditional expectations.

= Eρ[(λt−1ψt)(Ht−1 + αt + δtf(Rt))AXt−1|Yt]

+ Eρ[(λt−1ψt)(Ht−1 + αt + δtf(Rt))Mt|Yt]

+ Eρ[(λt−1ψt) < βt,Mt > AXt−1|Yt]

+ Eρ[(λt−1ψt) < βt,Mt > Mt|Yt]

since Eρ(Mt|Yt) = Eρ[Eρ(Mt|Yt,Ft−1)|Yt] = Eρ[Eρ(Mt|Ft−1)|Yt]

and Eρ(Mt|Ft−1) = 0

we have Eρ(Mt|Yt) = 0

therefore, the second and the third terms in the above equation are zero.

Thus, we get the following equation, call it (♦):

σt(HtXt)

= Eρ[(λt−1ψt)(Ht−1 + αt + δtf(Rt))AXt−1|Yt] + Eρ[(λt−1ψt) < βt,Mt > Mt|Yt]

= Eρ[(λt−1ψt)Ht−1AXt−1|Yt] ............. 1◦

+ Eρ[(λt−1ψt)αtAXt−1|Yt] ............. 2◦

+ Eρ[(λt−1ψt)δtf(Rt)AXt−1|Yt] ............. 3◦

+ Eρ[(λt−1ψt) < βt,Mt > Mt|Yt] ............. 4◦
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and

ψtAXt−1

=

ϕ

(
Rt− < g,Xt−1 >

< v,Xt−1 >

)
< v,Xt−1 > ϕ(Rt)

N∑
i=1

ai < Xt−1, ei >

=
N∑

i=1

ai

ϕ

(
Rt− < g,Xt−1 >

< v,Xt−1 >

)
< v,Xt−1 > ϕ(Rt)

< Xt−1, ei >

=



N∑
i=1

ai0 = 0 Xt−1 6= ei

N∑
i=1

ai

ϕ

(
Rt− < g, ei >

< v, ei >

)
< v, ei > ϕ(Rt)

=
N∑

i=1

ai

ϕ

(
Rt − gi

vi

)
viϕ(Rt)

=
N∑

i=1

aiΓ
i(Rt) Xt−1 = ei

i.e. ψtAXt−1 =
N∑

i=1

aiΓ
i(Rt) < Xt−1, ei > ............. (∗)

Plug (∗) into 1◦ :

Eρ[(λt−1ψt)Ht−1AXt−1|Yt] note that Ht is a scalar

= Eρ

[
λt−1Ht−1

( N∑
i=1

aiΓ
i(Rt) < Xt−1, ei >

)∣∣∣∣Yt

]

=
N∑

i=1

Eρ[λt−1Ht−1 < Xt−1, ei > |Yt] aiΓ
i(Rt) note that Γi(Rt) is Yt measurable

=
N∑

i=1

Eρ[< λt−1Ht−1Xt−1, ei > |Yt] aiΓ
i(Rt)

=
N∑

i=1

< Eρ[λt−1Ht−1Xt−1|Yt], ei > aiΓ
i(Rt)

=
N∑

i=1

< σt−1(Ht−1Xt−1), ei > Γi(Rt)ai
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Plug (∗) into 2◦ :

Eρ[(λt−1ψt)αtAXt−1|Yt]

= Eρ

[
λt−1αt

( N∑
i=1

aiΓ
i(Rt) < Xt−1, ei >

)∣∣∣∣Yt

]

=
N∑

i=1

Eρ[λt−1αt < Xt−1, ei > |Yt] aiΓ
i(Rt)

=
N∑

i=1

Eρ[< λt−1αtXt−1, ei > |Yt] aiΓ
i(Rt)

=
N∑

i=1

Eρ[< λt−1αtXt−1, ei > |Yt−1] aiΓ
i(Rt) note that αt is Ft−1 measurable

=
N∑

i=1

< σt−1(αt < Xt−1, ei >) Γi(Rt)ai

Plug (∗) into 3◦ :

Eρ[(λt−1ψt)δtf(Rt)AXt−1|Yt]

= Eρ

[
λt−1δtf(Rt)

( N∑
i=1

aiΓ
i(Rt) < Xt−1, ei >

)∣∣∣∣Yt

]

=
N∑

i=1

Eρ[λt−1δt < Xt−1, ei > |Yt] aiΓ
i(Rt)f(Rt) note that f(Rt) is Yt measurable

=
N∑

i=1

Eρ[< λt−1δtXt−1, ei > |Yt] aiΓ
i(Rt)f(Rt)

=
N∑

i=1

Eρ[< λt−1δtXt−1, ei > |Yt−1] aiΓ
i(Rt)f(Rt) note that δt is Ft−1 measurable

=
N∑

i=1

< σt−1(δt < Xt−1, ei >) Γi(Rt)f(Rt)ai

To proceed with 4◦, we need to work on MtM
′
t first:

since Xt = AXt−1 +Mt

=⇒ XtX
′
t = AXt−1X

′
t−1A

′ +Mt(AXt−1)
′ + (AXt−1)M

′
t +MtM

′
t
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meanwhile, XtX
′
t = diag(Xt) = diag(AXt−1 +Mt) = diag(AXt−1) + diag(Mt)

therefore:

MtM
′
t = diag(AXt−1) + diag(Mt)− AXt−1X

′
t−1A

′ −Mt(AXt−1)
′ − (AXt−1)M

′
t

............(∗∗)

and sine:

diag(AXt−1)− AXt−1X
′
t−1A

′

= diag

( N∑
i=1

ai < Xt−1, ei >

)
−

( N∑
i=1

ai < Xt−1, ei >

)( N∑
i=1

ai < Xt−1, ei >

)′

= diag

( N∑
i=1

ai < Xt−1, ei >

)
−

N∑
i=1

( N∑
i=1

aia
′
i < Xt−1, ei >

2

)

= diag

( N∑
i=1

ai < Xt−1, ei >

)
−

N∑
i=1

( N∑
i=1

aia
′
i < Xt−1, ei >

)

=
N∑

i=1

(diag(ai)− aia
′
i) < Xt−1, ei > ............. (∗∗∗)

take (∗∗) and (∗ ∗ ∗) into 4◦

Eρ[(λt−1ψt) < βt,Mt > Mt|Yt]

= Eρ[(λt−1ψt)(MtM
′
t)βt|Yt]

= Eρ[(λt−1ψt)

· [diag(AXt−1) + diag(Mt)− AXt−1X
′
t−1A

′ −Mt(AXt−1)
′ − (AXt−1)M

′
t ]βt|Yt]

= Eρ[(λt−1ψt)[diag(AXt−1)− AXt−1X
′
t−1A

′]βt|Yt]

= Eρ

[
(λt−1ψt)

N∑
i=1

(diag(ai)− aia
′
i) < Xt−1, ei > βt

∣∣∣∣Yt

]
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=
N∑

i=1

(diag(ai)− aia
′
i) Eρ[(λt−1ψt) < Xt−1, ei > βt|Yt]

=
N∑

i=1

(diag(ai)− aia
′
i) Eρ[λt−1 < Xt−1, ei > βt|Yt] Γi(Rt) since ψt|(Xt−1=ei) = Γi(Rt)

=
N∑

i=1

(diag(ai)− aia
′
i)σt−1(βt < Xt−1, ei >)Γi(Rt)

Finally, take these four terms back to equation (♦), we finish the proof.

Next we develop an unnormalized filter for the conditional expectation of the un-

derlaying Markov chain {Xt}. By conditional, we mean given the observation up

to time t.

Theorem 4.4.2.

σt(Xt) =
N∑

i=1

< σt−1(Xt−1), ei > Γi(Rt)ai (4.6)

Proof. Let H0 = 1, αt = 0, βt = (0, ..., 0)′N×1, δt = 0,

thus Ht = Ht−1 + αt+ < βt,Mt > +δtf(R) = 1.

Note that αt, βt, δt are all Ft−1 measurable, Ht is Ft measurable, so we can plug

them into (4.5), then this theorem is proved.

Define N rs
t =

t∑
k=1

< Xk−1, er >< Xk, es >.

We know that < Xk−1, er >< Xk, es >= 1 iff Xk−1 = er, Xk = es, otherwise

< Xk−1, er >< Xk, es >= 0. In another word, during the time interval [0, t],

we count 1 whenever Xt jumps from state er to state es, otherwise we count 0.

Therefore N rs
t represents the number of jumps from state er to state es during

[0, t]. Thus we call N rs
t the number of jumps. Next we develop an unnormalized
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filter for the conditional expectation of the number of jumps. By conditional, we

mean given the observation up to time t.

Theorem 4.4.3.

σt(N
rs
t Xt) =

N∑
i=1

< σt−1(N
rs
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > asrΓ

r(Rt)es

(4.7)

Proof. Let H0 = 0, αt =< Xt−1, er > asr, βt =< Xt−1, er > es, δt = 0, thus

Ht = Ht−1 + αt+ < βt,Mt > +δtf(R)

= Ht−1+ < Xt−1, er > asr+ < Xt−1, er >< es,Mt >

= Ht−1+ < Xt−1, er >< AXt−1, es > + < Xt−1, er >< Mt, es >

= Ht−1 + + < Xt−1er >< Xt, es >

therefore, Ht =
t∑

k=1

< Xk−1, er >< Xk, es >= N rs
t

Note that αt, βt, δt are all Ft−1 measurable, Ht is Ft measurable,so we can plug

them into (4.5),

σt(N
rs
t Xt) =

N∑
i=1

[
< σt−1(N

rs
t−1Xt−1), ei > Γi(Rt)ai

]
............. 1◦

+
N∑

i=1

[
σt−1(< Xt−1, er > asr < Xt−1, ei >)Γi(Rt)ai

]
............. 2◦

+
N∑

i=1

[
(diag(ai)− aia

′
i)σt−1(< Xt−1, er > es < Xt−1, ei >)Γi(Rt)

]
............. 3◦
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For 2◦, only the term with i = r is left in the summation.

N∑
i=1

[
σt−1(< Xt−1, er > asr < Xt−1, ei >)Γi(Rt)ai

]
= σt−1(< Xt−1, er > asr)Γ

r(Rt)ar

=< σt−1(Xt−1), er > Γr(Rt)asrar

For 3◦, only the term with i = r is left in the summation.

N∑
i=1

[
(diag(ai)− aia

′
i)σt−1(< Xt−1, er > es < Xt−1, ei >)Γi(Rt)

]
= (diag(ar)− ara

′
r)σt−1(< Xt−1, er > es)Γ

r(Rt)

= (diag(ar)− ara
′
r)es < σt−1(Xt−1), er > Γr(Rt)

=< σt−1(Xt−1), er > Γr(Rt)(asres − asrar)

the last equal sign is because:

(diag(ar)− ara
′
r)es

=


a1r

. . .

asr

. . .

aNr




0
...
1
...
0

−


a2

1r · · · asra1r · · · aNra1r

· · ·
a1rasr · · · a2

sr · · · aNrasr

· · ·
· · · · · · asraNr · · · a2

Nr




0
...
1
...
0



=


0
...
asr
...
0

−


asra1r

...
a2

sr
...

asraNr


= asres − asrar
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therefore

σt(N
rs
t Xt)

=
N∑

i=1

< σt−1(N
rs
t−1Xt−1), ei > Γi(Rt)ai

+ < σt−1(Xt−1), er > Γr(Rt)asrar+ < σt−1(Xt−1), er > Γr(Rt)(asres − asrar)

=
N∑

i=1

< σt−1(N
rs
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > Γr(Rt)asres

Define Jr
t =

t∑
k=1

< Xk−1, er >.

We know that < Xk−1, er >= 1 iff Xk−1 = er, otherwise < Xk−1, er >= 0. In

another word, during the time interval [0, t], we count 1 whenever X occupies the

state er once, otherwise we count 0. Therefore Jr
t represents the occupation time

on state er during [0, t]. Thus we call Jr
t the occupation time. Next we develop

an unnormalized filter for the conditional expectation of the occupation time. By

conditional, we mean given the observation up to time t.

Theorem 4.4.4.

σt(J
r
t Xt) =

N∑
i=1

< σt−1(J
r
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > arΓ

r(Rt)

(4.8)

Proof. Let H0 = 0, αt =< Xt−1, er >, βt = 0, δt = 0, thus

Ht = Ht−1 + αt+ < βt,Mt > +δtf(R) = Ht−1+ < Xt−1, er >

therefore, Ht =
t∑

k=1

< Xk−1, er >= Jr
t
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Note that αt, βt, δt are all Ft−1 measurable, Ht is Ft measurable,so we can plug

them into (4.5),

σt(J
r
t Xt)

=
N∑

i=1

[
< σt−1(J

r
t−1Xt−1), ei > Γi(Rt)ai

]
+

N∑
i=1

[
σt−1(< Xt−1, er >< Xt−1, ei >)Γi(Rt)ai

]
note that for the second term, only the case where i = r is left. Therefore:

σt(J
r
t Xt) =

N∑
i=1

< σt−1(J
r
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > Γr(Rt)ar

Define Gr
t (f) =

t∑
k=1

< Xk−1, er > fk, where f = (f1, f2, ..., ft) and fk = f(Rk) is

any functional of Rk.

For example, f(Rk) = Rk, then Gr
t (f) =

t∑
k=1

< Xk−1, er > Rk, denote it as Gr
t (R)

or f(Rk) = R2
k, then Gr

t (f) =
t∑

k=1

< Xk−1, er > R2
k, denote it as Gr

t (R
2)

Next we develop an unnormalized filter for the conditional expectation of Gr
t (f),

and we shall need this filter for two cases: f(Rk) = Rk and f(Rk) = R2
k. By

conditional, we mean given the observation up to time t.

Theorem 4.4.5.

σt(G
r
t (f)Xt) =

N∑
i=1

< σt−1(G
r
t−1(f)Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > arΓ

r(Rt)f(Rt)

(4.9)
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Proof. Let H0 = 0, αt = 0, βt = 0, δt =< Xt−1, er >, thus

Ht = Ht−1 + αt+ < βt,Mt > +δtf(R) = Ht−1+ < Xt−1, er > f(Rt)

therefore, Ht =
t∑

k=1

< Xk−1, er > f(Rt) = Gr
t (f)

Note that αt, βt, δt are all Ft−1 measurable, Ht is Ft measurable,so we can plug

them into (4.5),

σt(G
r
t (f)Xt) =

N∑
i=1

[
< σt−1(G

r
t−1(f(Rt−1))Xt−1), ei > Γi(Rt)ai

]

+
N∑

i=1

[
σt−1(< Xt−1, er >< Xt−1, ei >)Γi(Rt)f(Rt)ai

]
note that for the second term, only the case where i = r is left. Therefore:

σt(G
r
t (f)Xt) =

N∑
i=1

< σt−1(G
r
t−1(f)Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > Γr(Rt)f(Rt)ar

4.5 EM Estimates

In the previous sections, we developed recursive filters given that the model pa-

rameters are known. In this section, we estimate these parameters by maximizing

the expectation of likelihood functions.

The following lemma is prepared for developing the likelihood function of (X0, X1, ..., Xt).

Lemma 4.5.1. Given asr s, r = 1, ..., N

p(Xk|Xk−1) =
N∏

r,s=1

a<Xk−1,er><Xk,es>
sr
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Proof.

p(Xk|Xk−1) =



a11 if Xk−1 = e1, Xk = e1
......
a1N if Xk−1 = eN , Xk = e1
......
asr if Xk−1 = er, Xk = es

......
aN1 if Xk−1 = e1, Xk = eN

......
aNN if Xk−1 = eN , Xk = eN

=
N∏

r,s=1

a<Xk−1,er><Xk,es>
sr

Assume the initial probability p(X0) is π0, and it is known.

Thus, the likelihood function of (X0, X1, ..., Xt) given π0 and asr is:

p(X0, X1, ..., Xt|π0, asr) = p(X0)p(X1|X0) · · · · · ·p(Xt|Xt−1)

= π0

t∏
k=1

p(Xt|Xt−1)

= π0

t∏
k=1

N∏
r,s=1

a<Xk−1,er><Xk,es>
sr

Similarly, given the estimates of the transition probabilities after t observations

âsr(t), the likelihood function of (X0, X1, ..., Xt) is:

p(X0, X1, ..., Xt|π0, âsr(t)) = π0

t∏
k=1

N∏
r,s=1

âsr(t)
<Xk−1,er><Xk,es>

Then we can write the likelihood ratio and its natural logarithm as:

ξt =

π0

t∏
k=1

N∏
r,s=1

âsr(t)
<Xk−1,er><Xk,es>

π0

t∏
k=1

N∏
r,s=1

a<Xk−1,er><Xk,es>
sr

=
t∏

k=1

N∏
r,s=1

(
âsr(t)

asr

)<Xk−1,er><Xk,es>
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lnξt =
t∑

k=1

N∑
r,s=1

< Xk−1, er >< Xk, es > (lnâsr(t)(t)− lnasr)

=
N∑

r,s=1

N rs
t (lnâsr(t)− lnasr)

From the equation of the log likelihood ratio above we find it is impossible to

maximize it directly since the time series of {Xt} is not observable, so we can not

treat N rs
t as given information. Fortunately we know the time series of σt(N

rs
t Xt)

from proposition 4.4.3 and we can always use a normalizer to change it back to

E(N rs
t |Yt). Therefore, instead of maximizing lnξt, which would result in unsolvable

equations, we choose to maximize the expected log likelihood ratio E(lnξt|Yt).

Before proceeding to first order, second order conditions, we consider the constrain
N∑

s=1

âsr(t) = 1. In the next lemma, we convert this condition in another form. The

purpose of this step is to pave the way for the coming maximization problem.

Lemma 4.5.2.

N∑
s=1

âsr(t) = 1 ⇐⇒
N∑

s=1

Jr
t âsr(t) = t

Thus
N∑

s=1

E(Jr
t |Yt)âsr(t) = t is the constrain.

The following theorem gives the estimates of transition probabilities.

Theorem 4.5.1.

âsr(t) =
σt(N

rs
t )

σt(Jr
t )

(4.10)
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Proof. The maximization problem is:

max
âsr(t)

E(lnξt|Yt)

s.t.
N∑

s=1

E(Jr
t |Yt)âsr(t) = t

E(lnξt|Yt)

= E

( N∑
r,s=1

N rs
t (lnâsr(t)− lnasr)

∣∣∣∣Yt

)

= E

( N∑
r,s=1

N rs
t lnâsr(t)

∣∣∣∣Yt

)
− Z(a)

=
N∑

r,s=1

lnâsr(t)E(N rs
t |Yt)− Z(a)

where Z(a) = E

( N∑
r,s=1

N rs
t lnasr(t)

∣∣∣∣Yt

)
is irrelevant to âsr(t)

The lagrange function is:

L(λ, âsr) =
N∑

r,s=1

lnâsr(t)E(N rs
t |Yt)− Z(a) + λ

( N∑
r,s=1

âsr(t)E(Jr
t |Yt)− t

)

f.o.c.
E(N rs

t |Yt)

âsr(t)
+ λE(Jr

t |Yt) = 0 ∀r, s = 1, ..., N

E(N rs
t |Yt) = (−λ)E(Jr

t |Yt)âsr(t) = (−λ)t

∵
N∑

r,s=1

N rs
t =

N∑
r,s=1

( t∑
k=1

< Xk−1, er >< Xk, es >

)

=
t∑

k=1

( N∑
r,s=1

< Xk−1, er >< Xk, es >

)
=

t∑
k=1

1 = t

∴
N∑

r,s=1

E(N rs
t |Yt) = t

Therefore λ = −1 plug it into the f.o.c.
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âsr(t) =
E(N rs

t |Yt)

E(Jr
t |Yt)

=

σt(N
rs
t )

σt(1)

σt(J
r
t )

σt(1)

=
σt(N

rs
t )

σt(Jr
t )

The above theorem could be intuitively explained as: given observation up to time

t, the estimated transition probability from state r to state s equals the expected

number of jumps from state r to states divided by the time length of occupation

on state r. Moreover, this conditional expectation could be either in the real world

(under probability p) or in the fictitious world (under probability ρ).

Notice that we do not have the filters for σt(N
rs
t ) or σt(J

r
t ), instead we have them

for σt(N
rs
t Xt) and σt(J

r
t Xt), the next lemma provides the formulas to connect them.

Lemma 4.5.3.

σt(1) =< σt(Xt), I >

σt(N
rs
t ) =< σt(N

rs
t Xt), I >

σt(J
r
t ) =< σt(J

r
t Xt), I >

where IN×1 = (1, 1, ..., 1)′

(4.11)

Proof.

since < Xt, I >= (0, ......, 1, ......, 0)(1, 1, ......, 1) = 1

we have σt(1) = σt(< Xt, I >) =< σt(Xt), I >

moreover σt(N
rs
t ) = σt(N

rs
t < Xt, I >) = σt(< N rs

t Xt, I >) =< σt(N
rs
t Xt), I >

similarly σt(J
r
t ) = σt(J

r
t s < Xt, I >) = σt(< Jr

t Xt, I >) =< σt(J
r
t Xt), I >
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To estimate the transition probabilities, we consider the likelihood function of

(X0, X1, ..., Xt). To estimate g = (g1, ..., gN)′ and v = (v1, ..., vN)′, we use the EM

algorithm on the likelihood function of (R1, R2, ..., Rt).

Since Rt =< g,Xt−1 > + < v,Xt−1 > bt ∼ N(< g,Xk−1, < v,Xt−1 >
2) i.i.d.

For ∀k = 1, ..., t p(Rk|Xk−1, g, v) =
1

√
2π < v,Xk−1 >

exp

(
−

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

)
.

Therefore, the likelihood function of (R1, ..., Rt) given Xt−1, g, and v is:

p(R1, ..., Rt|Xt−1, g, v) = p(R1, ..., Rt|X0, ..., Xt−1, g, v)

= p(R1|X0, g, v) · · · · · ·p(Rt|Xt−1, g, v)

=
t∏

k=1

1
√

2π < v,Xk−1 >
exp

(
−

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

)
In order to estimate g, we fix v first, the likelihood function of (R1, ..., Rt) given

Xt−1, ĝ(t), and v is:

p(R1, ..., Rt|Xt−1, ĝ(t), v) =
t∏

k=1

1
√

2π < v,Xk−1 >
exp

(
−

(Rk− < ĝ(t), Xk−1 >)2

2 < v,Xk−1 >2

)
So we can write the likelihood ratio and its natural logarithm as:

ξt =
t∏

k=1

exp

[
−

(Rk− < ĝ(t), Xk−1 >)2

2 < v,Xk−1 >2
+

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

]

lnξt =
t∑

k=1

[
−

(Rk− < ĝ(t), Xk−1 >)2

2 < v,Xk−1 >2
+

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

]

=
t∑

k=1

2Rk < ĝ(t), Xk−1 > − < ĝ(t), Xt−1 >
2 −2Rk < g,Xk−1 > + < g,Xt−1 >

2

2 < v,Xk−1 >2

65



=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)

·
2Rk < ĝ(t), Xk−1 > − < ĝ(t), Xt−1 >

2 −2Rk < g,Xk−1 > + < g,Xt−1 >
2

2 < v,Xk−1 >2

=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)

·
2Rk < ĝ(t), er > − < ĝ(t), er >

2 −2Rk < g, er > + < g, er >
2

2 < v, er >2

=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)
·
2Rkĝr(t)− ĝr(t)

2

− 2Rkgr + g2
r

2v2
r

For the same reason, we can not maximize the lnξt, since {Xt} is not observable,

instead we shall maximize the expectation of lnξt. The following theorem gives the

estimates of g.

Theorem 4.5.2.

ĝr(t) =
σt(G

r
t (R))

σt(Jr
t )

(4.12)

Proof. The maximization problem is:

max
ĝr(t)

E(lnξt|Yt)

max
ĝr(t)

E

[ t∑
k=1

( N∑
r=1

< Xk−1, er >

)
·
2Rkĝr(t)− ĝr(t)

2

− 2Rkgr + g2
r

2v2
r

∣∣∣∣Yt

]

f.o.c. E

[ t∑
k=1

< Xk−1, er > ·
2Rk − 2ĝr(t)

2v2
r

∣∣∣∣Yt

]
= 0

therefore,

E

( t∑
k=1

< Xk−1, er > Rk

∣∣∣∣Yt

)
= E

( t∑
k=1

< Xk−1, er > ĝr(t)

∣∣∣∣Yt

)

= ĝr(t)E

( t∑
k=1

< Xk−1, er >

∣∣∣∣Yt

)

E(Gr
t (R)|Yt) = ĝr(t)E(Jr

t |Yt)
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thus,

ĝr(t) =
E(Gr

t (R)|Yt)

E(Jr
t |Yt)

=

σt(G
r
t (R))

σt(1)

σt(J
r
t )

σt(1)

=
σt(G

r
t (R))

σt(Jr
t )

Where,

σt(G
r
t (R)) =< σt(G

r
t (R)Xt), I > and IN×1 = (1, 1, ..., 1)′ (4.13)

In order to estimate v, we fix g at this time, take gr = ĝr(t), the likelihood function

of (R1, ..., Rt) given Xt−1, v̂(t), and g is:

p(R1, ..., Rt|Xt−1, v̂(t), g) =
t∏

k=1

1
√

2π < v̂(t), Xk−1 >
exp

(
−

(Rk− < g,Xk−1 >)2

2 < v̂(t), Xk−1 >2

)
So we can write the likelihood ratio and its natural logarithm as:

ξt =
t∏

k=1

< v,Xt−1 >

< v̂(t), Xt−1 >
exp

[
−

(Rk− < g,Xk−1 >)2

2 < v̂(t), Xk−1 >2
+

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

]

lnξt =
t∑

k=1

[
ln < v,Xk−1 > −ln < v̂(t), Xk−1 >

−
(Rk− < g,Xk−1 >)2

2 < v̂(t), Xk−1 >2
+

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

]

=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)
·
[
ln < v,Xk−1 > −ln < v̂(t), Xk−1 > −

(Rk− < g,Xk−1 >)2

2 < v̂(t), Xk−1 >2
+

(Rk− < g,Xk−1 >)2

2 < v,Xk−1 >2

]

=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)
·
[
ln < v, er > −ln < v̂(t), er > −

(Rk− < g, er >)2

2 < v̂(t), er >2
+

(Rk− < g, er >)2

2 < v, er >2

]
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=
t∑

k=1

( N∑
r=1

< Xk−1, er >

)
·
[
lnvr − lnv̂r(t)−

(Rk − gr)
2

2v̂r(t)
2 +

(Rk − gr)
2

2v2
r

]
We obviously can not maximize the lnξt directly, since {Xt} is not observable,

instead we shall maximize the expectation of lnξt. The following theorem gives the

estimates of v.

Theorem 4.5.3.

v̂r(t)
2

=
σt(G

r
t (R

2))− 2ĝr(t)σt(G
r
t (R)) + ĝr(t)

2
σt(J

r
t )

σt(Jr
t )

(4.14)

Proof. The maximization problem is:

max
v̂r(t)

E(lnξt|Yt)

max
v̂r(t)

E

[ t∑
k=1

( N∑
r=1

< Xk−1, er >

)
·
(
lnvr − lnv̂r(t)−

(Rk − gr)
2

2v̂r(t)
2 +

(Rk − gr)
2

2v2
r

)∣∣∣∣Yt

]

f.o.c. E

[ t∑
k=1

< Xk−1, er > ·
( − 1

v̂r(t)
+

(Rk − gr)
2

v̂r(t)
3

)∣∣∣∣Yt

]
= 0

therefore,

1

v̂t(t)
3E

( t∑
k=1

< Xk−1, er > (R2
k − 2Rkgr + g2

r)

∣∣∣∣Yt

)
=

1

v̂t(t)
E

( t∑
k=1

< Xk−1, er >

∣∣∣∣Yt

)
1

v̂t(t)
3

(
E(Gr

t (R
2)|Yt)− 2grE(Gr

t (R)|Yt) + g2
rE(Jr

t |Yt)

)
=

1

v̂t(t)
E(Jr

t |Yt)

v̂r(t)
2

=
E(Gr

t (R
2)|Yt)− 2grE(Gr

t (R)|Yt) + g2
rE(Jr

t |Yt)

E(Jr
t |Yt)

=
σt(G

r
t (R

2))− 2grσt(G
r
t (R)) + g2

rσt(J
r
t )

σt(Jr
t )

Note that we fix gr = ĝr(t) at the begin when we try to estimate v, therefore:

v̂r(t)
2

=
σt(G

r
t (R

2))− 2ĝr(t)σt(G
r
t (R)) + ĝr(t)

2

σt(J
r
t )

σt(Jr
t )
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Where,

σt(G
r
t (R

2)) =< σt(G
r
t (R

2)Xt), I > and IN×1 = (1, 1, ..., 1)′ (4.15)

Up to here, with the estimated model specifications, A, g, and σ, we can simulate

the underlying Markov chain {Xt} by: E(Xt|Yt) =
σt(Xt)

σt(1)

Moreover, we can estimate:

(1) the number of jumps from the rth state to the sth state within the time interval

[0 , t] :

E(N rs
t |Yt) =

σt(N
rs
t )

σt(1)

(2) the occupation time on the rth state within the time interval [0 , t] :

E(Jr
t |Yt) =

σt(J
r
t )

σt(1)

Suppose we have observation up to time T and we are going to have a data length

of n for each pass of iteration. We start with any initial guess Θ0 = {A0, g0, v0}.

The first pass is done after having n observation {R1, ..., Rn} and we get Θ1 =

{A1, g1, v1}. They become the initials of the second pass where we have observation

{Rn+1, ..., R2n}, and we get Θ2 = {A2, g2, v2} ...... Our iteration is essentially

similar to the spirit of the EM algorithm we presented in chapter one, namely,

estimate Θk+1 from Θk, where Θ stands for {A, g, v} in our case, and Θk means the

estimates from the kth pass. However, they are not exactly the same, instead of

using the same observation sequence {R1, R2, ..., RT} for all the passes, we update
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the observation sequence as well, i.e., {R1, ..., Rn} for the first pass, {Rn+1, ..., R2n}

for the second pass...... The idea is to seek the quality of information rather than

just the quantity, as the recent data are more relevant in terms of predicting the

near future. In our iteration, not only the parameters but also the observation get

updated in each pass.

4.6 Price Prediction

In this section we develop a formula for price prediction.

First let us review a lemma.

Lemma 4.6.1.

if b ∼ N(0, 1), we have E(ev·b) = ev2/2

Proof.

E(evz) =

∫ ∞

−∞
evz 1√

2π
e

z2

2 dz

=
1√
2π

∫ ∞

−∞
e−

(z−v)2

2 e
v2

2 dz

= e
v2

2
1√
2π

∫ ∞

−∞
e−

y2

2 dy (change variable, y = z − v)

= e
v2

2

Based on the information up to the current trading day, we obtain estimates of A,

g, and v by (4.10) to (4.14). Then we can predict the price of the next trading day
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by using the estimates of A, g, v and the price of the current trading day. The

formula is given by the theorem below.

Theorem 4.6.1.

E(Sn+1|Yn, g, v, A) = Sn

N∑
i=1

egieσ2
i /2

〈
σn(Xn)

σn(1)
, ei

〉
(4.16)

where σn(Xn) =
N∑

i=1

< σn−1(Xn−1) , ei > ·
ϕ(
Rn − gi

vi

)

vi · ϕ(Rn)
· A · ei

ϕ is the probability density function of a standard normal distribution

and σn(1) =< σn(Xn), I >

Proof. since Sn+1 = Sne
Rn+1

E(Sn+1|Yn, g, v, A)

= Sn · E
(
eRn+1

∣∣∣∣Yn, g, v, A

)
= Sn · E

( N∑
i=1

< Xn, ei > e<g,Xn>+<v,Xn>bn+1

∣∣∣∣Yn, g, v, A

)

= Sn · E
( N∑

i=1

< Xn, ei > e<g,ei>+<v,ei>bn+1

∣∣∣∣Yn, g, v, A

)

= Sn ·
N∑

i=1

E

(
< Xn, ei >

∣∣∣∣Yn, g, v, A

)
E

(
egi

∣∣∣∣Yn, g, v, A

)
E

(
evibn+1

∣∣∣∣Yn, g, v, A

)
since gi, vi are independent of {Yn, g, v, A}, and bi ∼ N(0, 1) i.i.d.

E

(
egi

∣∣∣∣Yn, g, v, A

)
= egi

E

(
evibn+1

∣∣∣∣Yn, g, v, A

)
= evibn+1 = ev2

i /2
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as to the first expectation

E

(
< Xn, ei >

∣∣∣∣Yn, g, v, A

)
=

〈
E(Xn

∣∣∣∣Yn, g, v, A) , ei

〉
=

〈
σn(Xn)

σn(1)
, ei

〉
thus, we get

E(Sn+1|Yn, g, v, A) = Sn

N∑
i=1

egieσ2
i /2

〈
σn(Xn)

σn(1)
, ei

〉

from (4.6), we get

σn(Xn) =
N∑

i=1

< σn−1(Xn−1) , ei > ·
ϕ(
Rn − gi

vi

)

vi · ϕ(Rn)
· A · ei

form (4.11), we get

σn(1) =< σn(Xn), I >

After obtaining the estimates of A = (asr)s,r=1,...,N from (4.10), g = {gr}r=1,...,N

from (4.12), and v = {vr}r=1,...,N from (4.14), we plug them in (4.17) to predict the

price of the next trading day.

Later on in section 5.5, we shall compare the prediction performance of HMM

and GARCH(1,1). The predicted price from GARCH(1,1) is obtained in this way:

E(Sn+1|Yn, g, v) = Sne
geσ2/2 where, g and v are the drift and volatility forecasts

by GARCH(1,1).
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Chapter 5

Model Implementation

In this chapter we start with the Monte Carlo Simulation Analysis followed by the

statistic analysis of the prediction performance with real data sets. Then we talk

about how the data sets are cautiously selectly and some finding within the data

sets. Next we give a general outline of our empirical finds with HMM. Finally, we

compare the prediction performance of HMM with GARCH(1,1).

5.1 Monte Carlo Simulation Analysis

In the Monte Carlo simulation analysis, we assume the length of observation process

is 13981 and the dimension for the state space is 2, thus the state space for the

underlying Markov chain {Xt} is Σ = {e1, e2}, where e1 = (1, 0)′, e2 = (0, 1)′.

Suppose we know the initial distribution π0. Then we fix the transition probability

matrix A2×2, the state space of the drift g = (g1, g2)
′, and the state space of the

volatility v = (v1, v2)
′ as the “true” values.

1We select such a length because the length of each real data set we shall use later is 1398
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First of all, we generate a sequence of i.i.d. random variables with Gaussian distri-

bution {bt}1398
t=1 , then by using the “true” value of A we generate a Markov chain

{Xt}1397
t=0 . Next, with this generated {Xt} and the “true” values of g and v, we

simulate a sequence of 1398 daily returns by: Rt+1 =< g,Xt > + < v,Xt > bt+1

Finally, we take this simulated sequence as the observation process and use it to

estimate the model, namely, A, g, v. Ideally, the estimates should resemble the

“true” values we fixed at the beginning.

Let us summarize all the equations that will be used in the model implementation.

Γi(Rt) =

ϕ

(
Rt − gi

vi

)
vi · ϕ(Rt)

ai = A · ei IN×1 = (1, 1, ..., 1)′ (5.1)

σt(Xt) =
N∑

i=1

< σt−1(Xt−1), ei > Γi(Rt)ai σt(1) =< σt(Xt), I > (5.2)

σt(N
rs
t Xt) =

N∑
i=1

< σt−1(N
rs
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > asrΓ

r(Rt)es

σt(N
rs
t ) =< σt(N

rs
t Xt), I >

(5.3)

σt(J
r
t Xt) =

N∑
i=1

< σt−1(J
r
t−1Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > arΓ

r(Rt)

σt(J
r
t ) =< σt(J

r
t Xt), I >

(5.4)
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σt(G
r
t (R)Xt) =

N∑
i=1

< σt−1(G
r
t−1(R)Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > arΓ

r(Rt)Rt

σt(G
r
t (R)) =< σt(G

r
t (R)Xt), I >

σt(G
r
t (R

2)Xt) =
N∑

i=1

< σt−1(G
r
t−1(R

2)Xt−1), ei > Γi(Rt)ai+ < σt−1(Xt−1), er > arΓ
r(Rt)R

2
t

σt(G
r
t (R

2)) =< σt(G
r
t (R

2)Xt), I >

(5.5)

âsr(t) =
σt(N

rs
t )

σt(Jr
t )

(5.6)

ĝr(t) =
σt(G

r
t (R))

σt(Jr
t )

(5.7)

v̂r(t)
2

=
σt(G

r
t (R

2))− 2ĝr(t)σt(G
r
t (R)) + ĝr(t)

2

σt(J
r
t )

σt(Jr
t )

(5.8)

E(N rs
t |Yt) =

σt(N
rs
t )

σt(1)

E(Jr
t |Yt) =

σt(J
r
t )

σt(1)

(5.9)

The first pass of estimation is done after 56 observation {R1, ..., R56}. We start

with some randomly picked A0, g0, and v0. And Let σ0(X0) = X0 = π1
0e1 + π2

0e2,

σ0(N
rs
0 X0) = σ0(J

r
0X0) = σ0(G

r
0(R)X0) = σ0(G

r
0(R

2)X0) = 1. Next we simulate

the filters by (5.1)− (5.5), then plug them into (5.6)− (5.8). In this way we obtain

the estimates after the first pass: A1, g1, and v1. They becomes the initials of the

second pass where we have observation {R57, ..., R112}, and we perform the same

estimation as in the first pass to obtain the estimates after the second pass: A2, g2,

and v2. ...... Since the length of observation is 1398, and the length of each pass is

56, we have repeated 24 passes and the final estimates are: A24, g24, and v24.

After obtaining estimates of {A, g, v}, we use (5.9) to estimate the number of jumps

within the last pass and the occupation time within the last pass. In addition, we
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compare them with the real number of jumps and occupation time.

The following result shows that our estimates closely resemble the true values.

Simulation Result Transition Prob  
Data Length=1398 True: 0.1 0.6
Data length of each pass=56 0.9 0.4
24 Passes Estimate: 0.163 0.6702

0.837 0.3298

Number of Jumps within a pass
Drift  True: 3 20
True: -0.07 0.07 21 11
Estimate: -0.08 0.0699 Estimate: 3.0412 20.7447

20.9212 10.2929

Volatility  Occupation Time with a Pass
True: 0.06 0.02 True: 24 32
Estimate: 0.0611 0.0204 Estimate: 24.7859 31.2141

5.2 Statistic Analysis of the Prediction Perfor-

mance

We implement our hidden Markov model on 73 data sets of historical price pro-

cesses. The Predicted Prices are achieved by (4.16).

E(St+1|Yt, g, v, A) = Sn

N∑
i=1

egieσ2
i /2

〈
σt(Xt)

σt(1)
, ei

〉
where ei is the unit vector
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σt(Xt) =
N∑

i=1

< σt−1(Xt−1) , ei > ·
ϕ(
Rt − gi

vi

)

vi · ϕ(Rt)
· A · ei

σt(1) =< σt(Xt), I >

The prediction performance of our model is judged by the following regression:

Actual Pricei = α+ β · Predicted Pricei + εi (5.10)

We report the following variables in the output table: estimates of Drift, Volatility,

Transition Probability (Appendix A); estimates of the regression coefficients α and

β; as well as the relative α, standard error of regression (s), as well as the relative

standard error, Durbin-Watson statistics (DW ), in addition, t-statistics and p-

values for the coefficients are also included (Appendix B).

First of all, the regression result is assessed on a basis of the 3 criteria for a good

model proposed by Fama and Gibbons (1984):

(1) serially uncorrelated residuals

(2) a low standard error of regression

(3) conditional unbiasedness, i.e., the intercept α should be close to zero,

and the regression coefficient β should be close to one.

We use Durbin-Watson (DW) Statistics to check whether the residuals are serially

uncorrelated. The DW stat is defined as:

DW =

n∑
i=2

(εi − εi−1)
2

n∑
i=1

ε2
i

=

n∑
i=2

ε2
i +

n∑
i=2

ε2
i−1 − 2

n∑
i=2

εiεi−1

n∑
i=1

ε2
i

When n is large enough, both
n∑

i=2

ε2
i and

n−1∑
i=1

ε2
i →

n∑
i=1

ε2
i , in addition, if residu-
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als are serially uncorrelated,
n∑

i=2

εiεi−1 → 0. Therefore DW → 2 indicates that

residuals are serially uncorrelated.

A regression is considered as a good fit if the standard error of the regression (s)

is close to zero. We obtain s in this way: s =

√ ∑n
i=1 ε

2
i

df
where εi = data - fit

= Pricei − P̂ ricei; and df is the degree of freedom, computed by subtracting the

number of terms included in the regression (which is 2 in our case) from the number

of data points.

Hoping that the predicted price closely resembles the actual price, it is quite nature

for us to expect that α is close to zero and β is close to 1. The problem is “how

close is close enough”. For instance, 0.01 is close to zero compared with 1, but

compared with 10,000 why can we think 100 is close to zero? It is a problem of

relatively close to zero.

A quick glance at the plots of α and the standard error of regression (s), we see a

few points that are way above zero. Therefore, special attention is paid to those

points and their similarities are drawn to the next table. We found that α and

s are extraordinarily high with the indices and the actual prices for indices are

substantially larger than the others.
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Index Average Price alpha standard error
^DJI DOW JONES INDUSTRIAL AVERAGE IN 11146.27 1120.2 90.71440

^RUA RUSSELL 3000 INDEX 738.1819596 47.4651 6.85640
^IXIC NASDAQ COMPOSITE 2179.66756 81.3016 24.31200

^NDX NASDAQ-100 (DRM) 1589.556122 62.3106 18.77580
^OEX S&P 100 INDEX,RTH 581.2536806 51.3247 4.53120
^GSPC S&P 500 INDEX,RTH 1271.124672 96.8597 10.53510

^RUI RUSSELL 1000 INDEX 690.9786325 48.5067 5.80320
^MID S&P 400 MIDCAP INDEX 761.7627119 35.9552 8.57450
^SML S&P 600 SMALLCAP INDEX 373.6832972 17.2268 4.95650

^RUT RUSSELL 2000 INDEX 719.9188713 40.8194 10.04050
^NYA NYSE COMPOSITE INDEX (NEW METHO 8175.071918 477.42420 80.59000
^HSI HANG SENG INDEX 16316.92308 1060.60000 160.38850
^N225 NIKKEI 225 15257.08061 1400.60000 210.53720
^FTSE FTSE 100 5864.922813 1367.70000 42.56620

Go back to the original regression: Actual Pricei = α + β · Predicted Pricei + εi,

compared with these large actual prices, their corresponding α, although still large

numerically, can be viewed as ”close to zero”. Prompted by this observation, we

divide both side of (5.10) by the mean of the actual prices (m.ac.),

Actual Pricei

m.ac.
=

α

m.ac.
+ β ·

Predicted Pricei

m.ac.
+

εi

m.ac.
(5.11)

We shall call
α

m.ac.
, the new constant term, ‘relative α’.

Hoping that the
Predicted Pricei

m.ac.
can closely resemble the

Actual Pricei

m.ac.
, we expect

that relative alpha is close to zero.

Meanwhile, for (5.11), a brief computation suggests that the standard error of

this regression is actually
s

m.ac.
, which we shall call it ‘relative standard error’.
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√√√√√ ∑n
i=1

(
εi

m.ac.

)2

df
=

1

m.ac.

√ ∑n
i=1 ε

2
i

df
=

s

m.ac.

As a modification of Fama and Gibbons (1984), we think the relative α is a better

criterion than α as it can eliminate the effect caused by the magnitude of the actual

prices and the same applies to the relative standard error. In another word, as long

as the relative α (relative standard error) is close to zero numerically, we consider

α (standard error) as close enough to zero.

In addition to the estimates of α and β, we also seek information about the precision

of the estimates. Are there any variables removable from the regression? So the

t-stats and P -values for α and β under the null hypothesis that the corresponding

coefficient equals zero are also reported in the output table. Obviously if the

hypothesis that a coefficient is zero can not be rejected statically, we consider this

variable as removable.

For a regression model Y = α + β ·X , under the null hypothesis H0 : β = 0, we

know that tβ=0 =
β̂ − 0

standard error of β
is a value of a random variable having the

t-distribution with n-2 (as we have 2 terms, thus 2 coefficients to be estimated)

degrees of freedom. Similarly, under the null hypothesis H0 : α = 0, the t-stat for

α is tα=0 =
α̂− 0

standard error of α
. These t-statistics, coefficient estimates divided by

their respective standard errors, are often used to test the hypothesis that the true

value of the coefficient is zero, in another word, if the variable is significant. The

t-distribution resembles the standard normal distribution, with a somehow “fatter

tail”, i.e., relatively more extreme values. However, the difference between the t
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and the standard normal is negligible if the number of degrees of freedom is more

than 30, which is indeed satisfied in our regression, where the number of degrees of

freedom is 54. In a standard normal distribution, only 5% of the values fall outside

the plus-or-minus 2 range, i.e., a t-statistics larger than 2 in magnitude would only

have a 5% or smaller change of happening under the assumption that the true

coefficient is zero. Hence, there is the commonest rule-of-thumb in this regard: if

its t-stat is greater than 2 in absolute value, we reject the null hypothesis and the

corresponding variable could be removed without seriously affecting the standard

error of the model. But this rule does not serve as a basis for deciding whether

or not to include the constant term, as the constant term is usually included for

priori reason(s).

The results in appendix B (4)-(6) suggest no doubt that β is significant, actually

we are more concerned about whether β is significantly 1. So here comes another

null hypothesis to test: H0 : β = 1 . The corresponding t-stat is

tβ=1 =
β̂ − 1

standard error of β
.

The P -value is the probability that a t-distributed variable is larger than the cor-

responding t-statistics given the null hypothesis is true. Specifically in our case,

Pα=0 = Prob(t > |tα=0|) + Prob(t < −|tα=0|) under the hypothesis H0 : α = 0,

where the variable t in this equation has a t distribution with the degrees of freedom

equals the degrees of freedom in the regression. We have included Pα=0, Pβ=0,and

Pβ=1 in appendix B (4)-(6). Any coefficient θ may be only “accidentally” signif-
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icant if the corresponding Pθ=0 is greater than 0.05. Basically the P -value is a

measure of how much evidence you have against the null hypothesis. The smaller

the P -value, the more evidence you have. The following table provides a widely

accepted interpretation of the P -values:

P ≤ 0.01 very strong evidence against H0

0.01 < P ≤ 0.05 moderate evidence against H0

0.05 < P ≤ 0.1 suggestive evidence against H0

0.1 < P little or no real evidence against H0

First of all, we plot all the estimates of α hoping the points could be close to zero,

which is fairly the case with only a few exceptions jumping too high. Since those

anomies are all from the indices with very high actual prices, we plot the relative

alpha next and it brings all the points to [−0.05, 3], moreover, they are clustered

around [0, 0.2].

Next, we plot the estimates of β. Almost all the points are nicely gathered between

0.75 and 1.

We know that E[Actual Price | Predicted Price] = α+ β · Predicted Price. As the

next three figures suggested, the predicted price is quite an unbiased estimate.
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As we can see from the next plot of the Durbin-Watson statistics, the points are

scattered within [1.6, 2.3]. This is indicative of a great extent to which residuals

are serially uncorrelated.
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To check the overall fit of the regression, we plot the standard errors and observe

a few points climbing too high as the price level is high. Therefore we plot the

relative standard errors as well, and gladly find most of the points are under 0.025.
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While plotting the t-statistics for α under H0 : α = 0, we see about one fourth of

them slightly above 2, but still controlled by 3, which says no significant evidence

to reject the null hypothesis. As to the P -values for α, the figure presents it clearly

that the majority of the points are above 0.05, which means there is only a little

evidence against H0. Keep in mind that alpha is the constant term and whether to

include the constant term or not is usually determined by priori reason(s) instead

of the t-stat or P -value. x
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p-value for alpha, H0: alpha=0
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As to the t-statistics for β under H0 : β = 0 , the first plot below shows that all

points are way higher than 2. This, in addition with the fact that the P -values

for β under H0 : β = 0 are much lower than 0.05, which is displayed in the second

figure below, suggests a great significance of the regression.

Finally, we plot the t-statistics and P -values for β under H0 : β = 1 in the third

and the fourth figures below. They both suggest no significant evidence against

this null hypothesis H0 : β = 1. Up to now, we should have no doubt about the

precision of this regression.
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In summary, according to the 3 criteria proposed by Fama and Gibbons (1984) with

our modification, i.e. replace α by relative α, replace standard error by relative

standard error, our prediction results indicate a great applicability of our prediction

methodology based on the hidden Markov model.

5.3 The Selection of Data Sets

To thoroughly check the applicability of our prediction methodology, we try to

achieve the highest completeness and diversification of the data sets. Meanwhile,

after the methodology has been testified, it also provides us a tool to draw the

similarities and distinctions among those data sets. Each of the data set contains

historical prices from 3/12/2001 to 10/3/2006, so the data length for each one is

about 1,938 except that it is 1,377 for Heng Seng Index, 1,369 for Nikkei-225, 1,404

for FTSE-100, this slight difference is due to the fact that different countries have

different holidays (no trading, no historical price). It also bears mentioning that

we start with 2001 just to make sure that all the historical prices are available.

The rest of this chapter explains how and why we choose such a portfolio for this

experiment.

Our data sources are CRSP ( Center for Research in Security Prices, maintained by

the University of Chicago) and Yahoo Finance( maintained by Yahoo INC) . From

any historical price providers we can get 5 kinds of daily prices: open, low, high,

close, and adjusted prices. The classical models on daily prices are all implemented
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with close-to-close or adjusted-to-adjusted prices. We use adjusted prices in our

research. The adjusted price is made from closing price adjusted according to the

most common corporate actions: cash dividend, stock dividend and stock split.

For example, assume the closing price for one share of Company X is $20 on March

9, 2006 (Thursday). After close on that day, Company X announced a dividend

distribution of $1.50 per share. The adjusted closing price for the stock would then

be $18.50. If Company X announced a 2:1 stock dividend instead, which means for

any investor, she would receive two more shares for any share she owned. In this

case, the adjusted price would be $20/3=$6.67, rounded to penny. If Company

X announced a 2:1 stock split, then any investor would receive an extra share for

every share she owned. As a result, the adjusted price would be $20/2=$10.

We use a length of 56 for each pass, so there are 24 passes (except that 25 passes

for Nikkei-225) for each data set. The following three figures plot the estimates of

drift, volatility and the diagonal of the transition matrix from the historical data

of OEX (The S&P 100 Index). They show a trend of convergency from about the

17th pass. As a matter of fact, the results from all the data sets are convergent

given such a 56× 24 structure.
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                      Names and Symbols of selected data sets

Table 1 Indices and the corresponding ETFs Table3 Stocks
Stocks in S&P500(large-cap)

^DJI DOW JONES INDUSTRIAL AVERAGE GE GEN ELECTRIC CO
DIA DIAMONDS TRUST SER 1 MSFT MICROSOFT CP

XOM EXXON MOBIL CP
^RUA RUSSELL 3000 INDEX PFE PFIZER INC
IWV ISHARE RUS 3000 INDX C CITIGROUP INC

Stocks in S&P400(middle-cap)
^IXIC NASDAQ COMPOSITE WPO WASHINGTN POST CO B
ONEQ NASDAQ COMP NDX FUND NYB NEW YORK CMMTY BNC##

TSN TYSON FOODS INC CL A
^NDX NASDAQ-100 (DRM) VLO VALERO ENERGY CP
QQQQ NASDAQ 100 TR SER I LLL L-3 COMM HLDGS INC

Stocks in S&P600(small-cap)
^OEX S&P 100 INDEX,RTH NVR N V R L P
OEF ISHARE SP 100 INDEX URBN URBAN OUTFITTERS I

MRX MEDICIS PHARMA CP
^GSPC S&P 500 INDEX,RTH IDXX IDEXX LABS
SPY S&P DEP RECEIPTS ROP ROPER INDUST INC

Stocks in NASDAQ 100(tech)
^RUI RUSSELL 1000 INDEX QCOM QUALCOMM INC
IWB ISHARE RUS 1000 INDX INTC INTEL CP

CSCO CISCO SYS INC
^MID S&P 400 MIDCAP INDEX EBAY EBAY INC
MDY S&P MID DEPOSIT RCPT DELL DELL INC

^SML S&P 600 SMALLCAP INDEX Table 4 ETFs
IJR ISHARE SP SC 600 INX

MTK MORGAN STANLEY TECHN
^RUT RUSSELL 2000 INDEX XLK TECHNOLOGY SPDR
IWM ISHARE RUS 2000 INDX IYW ISHARE DJ TCH SC INX

ETF, Large Blend
^NYA NYSE COMPOSITE INDEX IVV ISHARE S&P 500 INDX
^HSI HANG SENG INDEX VV VANGUARD LG-CAP ETF
^N225 NIKKEI 225 ELV STREETTRACKS SERIES
^FTSE FTSE 100 ETF, Mid-Cap Blend

IJH ISHARE SP MC 400 INX
IWR ISHARE RUS MC INDX
VO VANGUARD MID-CAP ETF
ETF, Small Blend
VB VANGUARD SM-CAP ETF

Tabe 2 Bonds IWC ISHARES RUSSELL MICR
DSV SPDR DJ WILSHIRE SMA

^TNX 10-YEAR TREASURY NOTE BA BOEING CO
^TYX 30-YEAR TREASURY BOND

Table 5 Mutual Funds
INBNX RIVERSOURCE DIVERSIFIED BOND VFINX VANGUARD INDEX TRUST 500 INDEX
AFTEX AMERICAN FDS TAX-EX BOND FUND AGTHX AMERICAN FDS GROWTH FUND
PTHYX PUTNAM TAX-FREE HIGH YIELD FUND AIVSX AMERICAN FDS INVESTMENT CO
ELFTX ELFUN TAX EXEMPT INCOME FUND AWSHX AMERICAN FDS WASHINGTON MUTUAL
MDXBX MARYLAND TAX-FREE BOND FUND FCNTX FIDELITY CONTRA FUND

Gov Bonds

Bond Funds

ETF, Specialty-Technology
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The above 5 tables present the names and symbols of the 73 data sets that were

explored in this experiment including: 14 major Indices; 10 corresponding Index

Based ETFs; 2 government bonds and 5 bond funds; 5 mutual funds; 25 common

stocks including 5 from the composition of Dow Johns Industrial Average, 5 from

S&P LargeCap 500, 5 from S&P MidCap 400, 5 from S&P SmallCap 600, and 5

from Nasdaq-100; finally another 12 ETFs including 3 ’Specialty-Technology’, 3

’Large Blend’, 3 ’Mid-Cap Blend’, 3 ’Small Blend’.

Next, we shall explain how and why we choose such a portfolio to meet our goal of

completeness and diversification.

Table 1 includes major indices (Arnott, Hsu, and Moore, 2005; Amenc, Goltz, and

Sourd, 2006) and their most well known corresponding ETFs. We start with the

Dow Jones Industrial Average (DJI), the best-known and most widely followed

index among the world. Even though it only contains 30 industrial companies, it

is highly correlated to more diverse indices like the S&P 500.

Next, S&P 500 LargeCap (GSPC), the most commonly referenced U.S. equity

benchmark.. It consists 500 leading companies from a wide variety of 100 economic

sectors and thus they respond to every important factor in the overall economy.

However, the S&P 500 does not provide investors with exposure to some of the

smaller, yet in many cases faster growing, companies on the market because they

are unlikely to qualify due to the index’s high market cap requirements. For the

completeness of our experiment, we also include its siblings: S&P 400 MidCap
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(MID), S&P 600 SmallCap (SML). A mid-cap company is broadly defined as one

with a market capitalization ranging from about $2 billion to $10 billion. S&P

400 MidCap contains solid companies with good track records that are simply not

large enough to be included in the much larger S&P 500. A small-cap company is

generally defined as one with a market capitalization between $300 million and $2

billion. S&P SmallCap 600 index was introduced in an effort to represent a smaller

segment of the market than the S&P MidCap 400 Index. In order to compare

the prediction performance of our model within different markets, we then include

another member of this family, S&P 100 (OEX), a subset of the S&P 500 tracking

the largest, most liquid stocks in it. S&P 100 is made up of 100 major, blue chip

stocks across diverse industry groups.

In addition to the S&P family, we also exam the three members in the Russell

family. Russell 3000 (RUA), the index comprised of the 3000 largest and most liquid

stocks based and traded in the U.S. It can be subdivided into two segments: the

Russell 1000 large-cap ( RUI ) and Russell 2000 small-cap (RUT). The delineation

is clear enough–the Russell 1000 represents the 1000 largest stocks in the index

(based on market cap), while the remaining 2000 are placed in the Russell 2000.

Because of its broad diversification and large number of holdings, Russell 3000

often makes a good capture of the overall market.

The next one is Nasdaq Composite (IXIC), a broad market index that encompasses

about 4,000 issues traded on the Nasdaq National Market. Although it is not as
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actively traded as its much smaller cousin, the Nasdaq-100, this index is more com-

monly referred to by investors and the financial press. When the question ”How did

the Nasdaq (National Association of Securities Dealers Automated Quotations) do

today?” is asked, the answer is usually the value of this index. Because technology

firms account for roughly 2/3 of the index, investors often use it as a guide to help

them determine the strength of technology stocks. We also include Nasdaq-100

(NDX), which gives investors a quick snapshot of how some of the nation’s largest

technology firms are faring. It includes almost all of the country’s top technology

stocks, so it is a better proxy for this sector than most other indices. In addition to

the issues traded on the Nasdaq Exchange, we are also interested in those traded

on the New York Stock Exchange, so the NYSE Composite (NYA) is included

in our experiment as well. This index measures all common stocks listed on the

New York Stock Exchange and four subgroup indexes: Industrial, Transportation,

Utility, and Finance.

Finally, for a taste of some major oversea Exchanges, we add three more major

foreign indices: Hang Seng Index (HIS), which consists of the 33 largest companies

traded on the Hong Kong Stock Exchange and represents approximately 70% of

the value of all stocks traded on the exchange; Nikkei-225 (N225), the index com-

prised of 225 top-rated Japanese companies listed in the First Section of the Tokyo

Stock Exchange; and Financial Times 100 Index (FTSE), the most widely used

benchmark for the performance of equities traded on the London Stock Exchange,
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representing about 80% of the value of all issues traded on the exchange.

To meet the goal of a highly complete and diversified portfolio, after the indices, we

select the following two types of equities that should be very different in their price

processes: the bonds and the common stocks. The first difference between them

is that bonds are less risky, i.e. less volatile in prices, especially for government

bonds, they can never default, as the government can always print more money

to pay you back. In addition, stocks and bonds move in the opposite directions.

Because money flows into and out of assets on a regular basis as investors try

to find the hot spot in the world of asset allocation. This means that as stock

prices rise, bonds fall. It bears mentioning that this was not the case historically,

especially before 2000, back to then, stocks and bonds periodically moved in the

same direction, but at other times have moved in opposite directions (depending

on where we were in the business cycle). This is another reason we start our data

sets in 2001. As you can see from table 2, there are 2 Treasury Bills included. In

addition, there are 5 bond funds studied in this experiment for the following two

reasons: historical data for corporate bonds are hard to achieve while the bond

funds we choose are portfolios of corporate bonds, secondly, they are from different

categories of bond funds so such a selection meet our goal of diversification.

Table 3 lists the 25 common stocks that are studied in this experiment. There are

thousands of stocks traded in the U.S. market, as suggested by Wilshire 5000, the

“total market index”, which encompasses about 6,700 stocks. Which ones should be

99



included in our portfolio? Thanks to the analysis on indices at the beginning. If we

put technology based indices in one category, large cap indices in another category,

and small/mid cap indices in the third category, the table and plots below show

the similarities within each category and the differences between categories in the

prediction performance. We achieve the lowest relative α (< 0.04) and the most

close-to-1 β (> 0.96)with Nasdaq cousins. For large cap indices, relative α is within

[0.07, 0.09] and β is within [0.91, 0.93], while relative α is within [0.046, 0.057] and

β is within [0.94, 0.95] for the small/mid cap indices. i.e. we achieve the best

prediction on technology based indices, second best on small/mid cap indices, the

third on large cap indices.
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relative alpha beta Durbin-Watson

^IXIC NASDAQ COMPOSITE+B49 0.03730 0.96290 1.73500

^NDX NASDAQ-100 (DRM) 0.03920 0.96090 1.83210

^OEX S&P 100 INDEX,RTH 0.08830 0.91180 1.83630
^GSPC S&P 500 INDEX,RTH 0.07620 0.92390 1.78970

^RUI RUSSELL 1000 INDEX 0.07020 0.93020 1.76220

^MID S&P 400 MIDCAP INDEX 0.04720 0.95340 1.60920
^SML S&P 600 SMALLCAP INDEX 0.04610 0.95370 1.66830

^RUT RUSSELL 2000 INDEX 0.05670 0.94360 1.59020
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Suggested by the similarities within each category and the differences between

categories in the prediction performance, we take 5 stocks from Nadaq-100; 5 stocks

form the large cap index, S&P 500; 5 from a middle cap index, S&P 400; 5 from a

small cap index, S&P 600; and of course, 5 from the Dow.

Basically we seek stocks with highest weight thus the greatest influence in the

corresponding indices. What does weight mean? (Fernholz, Garvy, and Hannon,

1998; Haugen and Baker, 1991) The Efficient Market Inefficiency of Capitalization-

Weighted Stock Portfolios,) Among all the major U.S. indices, the Dow is the only

price-weighted index. In other words, stocks with higher prices are given a greater

weighting in the index than lower-priced stocks regardless of each company’s actual

size. The calculation is quite complex, but essentially it is summing up the prices

of all 30 member stocks and then dividing that figure by a ”magic number.” In an

effort to maintain the index’s continuity, this divisor changes over time to reflect

changes in the Dow’s 30 component stocks. The other indices are calculated based

on a market cap weighting, i.e., the weight of any given stock holds in the index is

determined by this stock’s market capitalization (its price multiplied by the number

of shares outstanding). Therefore, the largest firms have the greatest impact on

the value of a market cap weighted index. There is a slight difference in Nasdq-100

though. It is computed using a modified market weighting. Although firms with

the largest market caps still have the largest influence on the index, its value is

modified to keep any issues from having an overwhelming effect on the index value.
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For example, Microsoft has a market cap 5X larger than that of Qualcomm, yet

it only boasts a 50% greater weighting in the index. This keeps the index from

being dominated by a handful of stocks. The actual computation methods are

proprietary to the Nasdaq. The next table lists all the stock we have selected with

their weighting in the indices.2

Note: data as of July 2004 Companies in S&P 500

Company Symbol Weight General Electric GE 3.20%

Microsoft MSFT 2.90%

ExxonMobil XOM 2.70%

Pfizer PFE 2.50%

Citigroup C 2.30%

Companies in Dow Companies in S&P 400

3M MMM 6.30% Washington Post WPO 0.90%

Johnson & Johnson JNJ 4.00% NY Comm. Bancorp NYB 0.80%

Wal-Mart Stores WMT 3.80% Valero Energy VLO 0.80%

Coca-Cola KO 3.70% Tyson Foods TSN 0.70%

Boeing BA 3.60% L3 Communications LLL 0.70%

Companies in Nasdaq-100 Companies in S&P 600

Qualcomm QCOM 5.40% NVR Inc.  NVR 1.30%

Intel INTC 5.10% Urban Outfitters URBN 1.00%

Cisco Systems CSCO 4.80% Medicis Pharma. MRX 1.00%

eBay EBAY 3.10% IDEXX Labs IDXX 0.90%

Dell DELL 2.80% Roper Ind. ROP 0.70%

An other type of securities that has grown increasingly popular in recent years is

2Major resource: Yahoo Finance, Street Authority
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the exchange-traded fund (ETF). ETFs are securities that closely resemble index

funds, but can be bought and sold throughout the day, purchased on margin, or

even sold short, just like common stocks. These investment vehicles allow investors

a convenient way to purchase a broad basket of securities in a single transaction.

Essentially, ETFs offer the convenience of a stock along with the diversification of

a mutual fund. Whenever an investor purchases an ETF, he or she is basically

investing in the performance of an underlying bundle of securities – usually those

representing a particular index or sector. ETFs are very liquid compared with the

traditional mutual funds, as they can be bought and sold at any time throughout

the trading day, many have average daily trading volumes in the hundreds of thou-

sands or even millions per day. For instance, the average daily volume of QQQQ

(NASDAQ 100 TR SER I ) from March 12, 2001 to October 3, 2006 is 88,967,298

and it is 44,009,298 for SPY(S&P DEP RECEIPTS). Compared with some rela-

tively liquid stocks, say, WMT (WAL MART STORES), the average daily volume

during the same period is 10,087,066 and it is14,539,203 for C (CITIGROUP INC).

Given its popularity, we definitely need to include this type of securities in our

study. Meanwhile, ETFs have been very attractive to market players ever since

the first one (SPDR) was born in 1993, however most of the theoretic and empirical

research has not paid enough attention to it. In this paper, we showed that ETFs

and common stocks do share a lot of statistic properties and our HMM works on

ETFS just as well as it does to the other securities.
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The selection of ETFs started from QQQQ, the best-known ETF in existence. It

tracks the Nasdaq-100 Trust Index (NDX). The experiment result is astounding, we

found QQQQ resembles NDX very closely, as the next table suggested. Although

the price level of NDX is almost 60 times that of the QQQQ, the difference in

the estimates of drift, volatility, transition probability can almost be neglected.

Moreover they can be predicted at the same level of accuracy as it is shown in the

estimates of the regression coefficients and statistics for testing significance.

Drift 1 Drift 2 Volatility 1 Volatility 2 Transition Prob

^NDX -0.0028 -0.0027 0.0118 0.0118 0.5008 0.5008
0.4992 0.4992

QQQQ -0.0028 -0.0028 0.0118 0.0118 0.5007 0.5007
0.4993 0.4993

relative alpha beta relative standard error D-W

^NDX 0.0392 0.9609 0.0118 1.8321

QQQQ 0.0387 0.9615 0.0117 1.7874

t for alpha t for beta t for beta p for alpha p for beta p for beta

H0:  alpha=0 H0: beta=0 H0: beta=1 H0: alpha=0 H0: beta=0 H0: beta=1

^NDX 1.0153 24.8931 -1.0118 0.3145 0.0000 0.3161

QQQQ 1.0106 25.1208 -1.0068 0.3167 0.0000 0.3185

Opem High Low Close Volume Adjusted

^NDX 1427.64 1442.58 1412.11 1427.00 1759978005.72 1427.00

QQQQ 35.39 35.79 34.96 35.37 88967298.08 34.99

Average Mar 12, 2001 --- Oct 3, 2006
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Impelled by such an amazing discovery, we shall go further to compare each major

index with its most well known ETF as you shall find in table 1. The outcome

is again promising, most of the index based ETFs do a good job to mimic the

corresponding indices. According to ETF Investment Outlook, there are 4 index

based ETFs among the 10 most active ETFs,3 and they are Nasdaq 100 Trust

(QQQQ), S&P 500 SPDR (SPY), iShare SP SC 600 INX (IJR), Dow Diamonds

Trust (DIA). We have the result from SPY, IJR, and DIA reported in the table

below along with the indices we are trying to resemble.

As far as the estimates of drift and volatility are concerned, there is no difference

between the index and its corresponding ETF up to the third decimal place. Even

with the prediction performance of our methodology, the differences in relative α,

and β between the index and its corresponding ETF is basically under 0.02.

3The others are: Energy SPDR (XLE), Semiconductor HOLDRS (SMH), Oil Service HOLDRS
(OIH), Financial SPDR (XLF), Retail HOLDRS (RTH), Utilities SPDR (XLU)
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D 1 D 2 V 1 V 2 Transition Prob

^DJI -0.0011 -0.0008 0.0083 0.0083 0.5104 0.5113

0.4896 0.4887

DIA -0.0012 -0.0005 0.0088 0.0080 0.5228 0.5238

0.4772 0.4762

^GSPC -0.0011 -0.0009 0.0084 0.0083 0.5068 0.5070

0.4932 0.4930

SPY -0.0010 -0.0008 0.0087 0.0086 0.5119 0.5116

0.4881 0.4884

^SML -0.0042 0.0006 0.0134 0.0136 0.524 0.5261

0.476 0.4739

IJR -0.0041 0.0007 0.0131 0.0125 0.5193 0.5120

0.4807 0.4880

relative beta relative D-W t for alpha t for beta t for beta p for alpha p for beta p for beta

alpha S. E.  for H0: H0: H0: H0: H0: H0: 

regression alpha=0 beta=0 beta=1 alpha=0 beta=0 beta=1

^DJI 0.1005 0.8996 0.0081 1.7699 1.8955 16.9745 -1.8934 0.0634 2.64E-23 0.0637

DIA 0.1126 0.8875 0.0082 1.7235 1.9958 15.7297 -1.9932 0.0510 8.16E-22 0.0513

^GSPC 0.0762 0.9239 0.0083 1.7897 1.4516 17.6010 -1.4503 0.1524 5.00E-24 0.1528

SPY 0.0886 0.9116 0.0086 1.7804 1.5810 16.2712 -1.5787 0.1197 1.79E-22 0.1202

^SML 0.0461 0.9537 0.0133 1.6683 1.0026 20.7732 -1.0084 0.3206 2.02E-27 0.3178

IJR 0.0666 0.9337 0.0129 1.7084 1.4776 20.7362 -1.4716 0.1453 2.20E-27 0.1469
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ETFs are often categorized by the types of their underlying securities. For example,

a ‘Large Blend’ ETF holds only large cap stocks, the same rule applies to ‘Mid-Cap

Blend’ and ‘Small Blend’. Some ETFs consist of stocks from a certain economic

sector, such as technology, we call this category ‘Specialty-Technology’. From each

of the above four categories, we chose 3 ETFs with the highest NAV except for

those listed in table 1 already. Selected ETFs are listed in table 4.

The Last investment vehicles that we shall discuss is the Mutual Fund. According

to ICI (the Investment Company Institute), as of April 1, 2006, the number of

registered mutual funds has grown to 8606 ever since the first one was launched 65

years ago, and they manage about $9.2 trillion dollars. Over 91 million Americans,

from 47% of the nation’s households, invest in mutual funds. In our experiment, we

choose the five biggest mutual funds available to individuals. The ranking below

is from Cox Newspaper by Hank Ezell(2005).
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The biggest mutual fund of all is the Vanguard 500 Index fund, which is built

to match the performance of the Standard & Poor’s 500 index. From the second

to the fourth are managed by the American Funds. The fifth one is managed by

Fidelity.

5.4 Empirical Findings

The most significant advantage of this hidden Markov model while implemented

with daily data is its predictability. The three figures below show the prediction

performance on DEll (DELL INC.), MMM (3M COMPANY), and QQQQ (NAS-

DAQ 100 TRUST, SERIES I) .

Take the prediction on the stock prices of DELL for example. First we plot the

predicted prices on the y-axis and the actual prices on the x-axis. The first plot

displays the prediction of prices on a range of 56 days. For each point, the x coor-

dinate represents the actual price and the y coordinate represents the predicated

price given information of the actual prices up to the last trading day. We can

see that all points are closely gathered around the diagonal y = x. Generally it

indicates a good prediction. To see how good it is, the second plot shows the whole

paths of actual price (solid line) and predicted price (dashed line). Not only we

find the predicted path closely resembles the actual path, but also we discover an

interesting phenomenon. When the prices are increasing, we see under prediction,

conversely when the prices are decreasing, we see over estimate. This phenomenon
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can be found with quite a lot of data sets. One might take this into account when

using our program to predict the prices. And of course more work has to done to

study the cause of this phenomenon.
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Prediction on DELL 
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Prediction on MMM 
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Prediction on QQQQ 
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Historically most of the models assume constant drift. If that is indeed the case

we should not see much differences in the estimates of two states. The figure below

plots
D1 −D2

D1

% where {D1, D2} is the estimate of the state space of the drift. The

73 points representing the results from 73 data sets. We find there are indeed two

different states for the drift (except for a few points lie on the line zero). Moreover,

the difference in the two states is bigger among technology stocks and small-cap

stocks.
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There is another interesting finding, during the period from Mar 2001 to Oct 2006,

when most of the U.S. indices suggest negative drifts, the estimate of the drifts for

the foreign indices (Hang Seng, Nikkei, FTSE) are positive for both states.
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Next we plot
V1 − V2

V1

% where {V1, V2} is the estimate of the state space of the

volatility. Comparatively, the difference in the two states of volatilities (mostly

from −50% to +100%) is a lot more significant than the difference in the two

states of drifts (mostly from −10% to +10%). Therefore, for analytic reason, some

practices can assume constant mean.
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According to our estimates, the typical values of annualized volatility are within

10% to 30%, as indicated from the next two plots.

115



Annualized V1

0

0.1

0.2

0.3

0.4

0.5

0.6

Annualized V2

0

0.1

0.2

0.3

0.4

0.5

0.6

116



More over, when we look at the transition probabilities, the overall financial market

(indicated by the indices) has pretty close probabilities of staying in each state

which is indicative to a steady movement of the price process. However, some

of the individual stocks such as XOM, PFE have big differences in the transition

probabilities, which is an evidence that one state dominant the other over that

period.
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5.5 Empirical Comparison of

HMM with GARCH(1,1)

The classical GARCH(1,1) model and Our primary HMM model both assume that

the value of the current volatility depends only on the information from previous

adjacent period. In this section, we compare the prediction performance of these

two models.

First of all, we achieve the predicted prices by GARCH(1,1) on the same data sets

as we worked with HMM, then we run the same regression:

Actual Pricei

m.a.c.
= relative α+ β ·

Predicted Pricei

m.a.c.
+

εi

m.a.c.

The prediction performance of GARCH(1,1) is also assessed by relative α, β, rel-

ative standard error, the t-statistics, and the P -values (Appendix C). Then we

compare the relative α, β, relative standard error, and Durbin-Watson statistics

achieved from GARCH(1,1) and from HMM (Appendix D).

For the four figures below, each point is corresponding to a data set, so there are 73

points in each figure. Take the leftmost (first) point in the first figure for example,

it corresponds to DJI, the first data set (Appendix D). We run regression for the

actual prices of DJI on the HMM predicted price, and we obtain relative αHMM

then we run regression for the actual prices of DJI on the GARCH(1,1) predicted

price, and we obtain relative αGARCH(1,1). The y-coordinate of the first point is

|relative αHMM − 0| − |relative αGARCH(1,1) − 0| on data set DJI.
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The first figure displays | relative αHMM − 0| − | relative αGARCH(1,1) − 0| . It is

obvious that most of the points are below zero, which suggests that relative αHMM

is closer to zero. The second figure displays |βHMM − 1| − |βGARCH(1,1) − 1| . We

still have majority of the points below zero, i.e. βHMM is closer to one. So far we

can conclude that HMM provides a more unbiased prediction than GARCH(1,1).

Next we plot | relative standard errorHMM−0|−| relative standard errorGARCH(1,1)−

0|. Again we find that most of the points are below zero. This suggests that

relative standard errorHMM is smaller, i.e. the regression of actual price on HMM

predicted price has less error than the regression on the GARCH(1,1) predicted

price.

The last figure above displays | Durbin-WatsonHMM−2|−| Durbin-WatsonGARCH(1,1)−

2| . Since most of the points are below zero, we have Durbin-Watson SatHMM closer

to 2, i.e. the residuals in the regressions on HMM predicted prices are less serially

correlated.

According to the 3 criteria for a good model proposed by Fama and Gibbons (1984),

we conclude that HMM outperforms GARCH(1,1).
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Chapter 6

Conclusion and Future Work

In this chapter we conclude our work and provide some further avenues for the

future work.

6.1 Conclusion

This work starts with summarizing and comparing all the popular models for fi-

nancial market return process on both a theoretic level and an empirical level. It

ranges from the ancient Geometric Brownian Motion model to the cutting edge

stochastic models, along with the implied volatility and the “model free” realized

volatility. It provides a solid development of a hidden Markov model (HMM),

from the economic insight of the hypothesis to the mathematic formulation of the

estimation and prediction.

In addition, enormous empirical work is done with HMM on our cautiously se-

lected data sets including: 14 major Indices; 10 corresponding Index Based ETFs;

2 government bonds and 5 bond funds; 5 mutual funds; 25 common stocks in-
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cluding 5 from the composition of Dow Johns Industrial Average, 5 from S&P

LargeCap 500, 5 from S&P MidCap 400, 5 from S&P SmallCap 600, and 5 from

Nasdaq-100; finally another 12 ETFs including 3 ‘Specialty-Technology’, 3 ‘Large

Blend’, 3 ‘Mid-Cap Blend’, 3 ‘Small Blend’. The results can be incorporated with

the phenomena observed from the real financial market. Moreover, we compare

the applicability of our model with the well established GARCH(1,1) model. As

far as the prediction performance is concerned, our results indicate that HMM

outperforms GARCH(1,1).

There are several originalities in this work, from the mathematic inferences to

the economic interpretations, and from the theoretic foundation to the empirical

implementation. We name a few below:

1. In our EM iteration, not only the parameters but also the observation get

updated in each pass. This is similar to but different from the classical EM

algorithm. The idea is to seek quality rather than quantity of the information,

as the recent data are more relevant in terms of predicting the near future.

(pp. 69)

2. While judging the prediction performance, we employ the concepts of “rela-

tive α” and “relative standard error” as modification to the three criteria for

a good model proposed by Fama and Gibbons (1984). This modification has

been proved to be more appropriate. (pp. 84)
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3. As far as the underlying Markov process is concerned, previous work intended

to explain it as a specific economic process. We suggest that it is a combina-

tion of all the forces that can move the stock price, including the information

about market sentiment, the psychology of market participants; fundamental

factors such as earning base, evaluation multiple; and technical factors such

as inflation, economic strength of market and peers, substitutions, incidental

transactions, demographics, trends, liquidity. Our discovery is that we do

not need a clean equation to describe them, which is impossible anyway, and

it is sufficient to estimate their overall impact on any price process, i.e. to

estimate the hidden Markov chain. (pp. 45)

4. It is interesting to consider how the behaviors of drift and volatility are related

across states. However, most of the models force the drift to be constant for

analytic reasons. We suggest a technique to model them together as a pair

of random variables. Our results indicate that except for a few securities the

drift does have different states. In addition, we find very little evidence of

leverage effect. (pp. 39, pp. 132 - 134)

5. Our empirical findings include:

• Let large cap, middle cap, small cap, and technology based indices be

different categories, the prediction performance of our model is similar

within each category and different between categories. (pp. 100)
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• As far as the estimates of drift, volatility, and transition probabilities

are concerned, Nasdaq 100 Trust (QQQQ) resembles Nasdaq-100 In-

dex (NDX), S&P 500 SPDR (SPY) resembles S&P 500 Index (GSPC),

iShare SP SC 600 (IJR) resembles S&P 600 Small Cap Index (SML),

Dow Diamonds Trust (DIA) resembles Dow Jones Industrial Average

Index (DJI). (pp. 105 - 106)

• The difference in the two states of volatilities (mostly from -50% to

+100%) is a lot more significant than the difference in the two states of

drifts (mostly from -10% to +10%). (pp. 114)

• Generally the difference in two states is higher among technology stocks

and small-cap stocks. (pp. 114 - 115)

• The transition probabilities among indices are relatively closer compared

with the transition probabilities among individual securities. (pp. 132 -

134)

6.2 Future Work

In addition to the improvements and developments we have made in this research,

there are further avenues for future work that could be done.

1. Our model assumes that the probability of a change in the underlying eco-

nomic forces depends on the past only through the value of the most recent
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state but this hypothesis has not been tested against a more general case

where it could evolve as a higher order Markov chain. This question is sim-

ilar to the GARCH(P,Q) model, a longer autoregressive part(higher P) or

a long moving average part(higher Q) will increase the number of parame-

ters to be estimated thus decrease the accuracy. i.e. In order to loosen the

hypothesis, we may sacrifice the accuracy in the estimates.

2. It is important to test the hypothesis of N states against N + 1 states.

3. The simple time-invariant Markov chain is a good starting point but more

work should be done to study the case where the transition probability matrix

is At rather than the constant A. For example, the January effect1, Mark

Twain effect2, Halloween indicator3 would all suggest that At can be different

in January, October, or November.

4. For the EM estimates, each iteration is guaranteed to increase the log like-

lihood and the algorithm is guaranteed to converge to a local maximum de-

pending on starting values. However, there is no guarantee that the sequence

converges to a maximum likelihood estimator. So the initial value has a great

1The January effect is the phenomenon that stocks, especially small-cap stocks, have histor-
ically tended to rise during the period starting on the last day of December and ending on the
fifth trading day of January.

2The Mark Twain effect is the phenomenon of stock returns in October being lower than in
other months.

3The Halloween indicator refers to the phenomenon that the period from November to April
inclusive has significantly stronger stock market growth on average than the other months.
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impact on the final estimates and even the computation time, thus the cost

of computation in reality. Therefore, certain standard of choosing the initial

value has to be established.

5. Some previous papers have suggested an autoregressive tern in the return

process itself and it was shown to be relevant for Danish Data. We might

consider adding an autoregressive term under the hidden Markov framwork.

6. As volatility estimation plays such an important role in option trading and

portfolio risk management, the application of our model to these two fields

should be further studied

7. On an empirical level, a lot more experiments can be done. For example:

our empirical results are from a complete and diversified portfolio but they

are restricted to a certain historical period, namely from Mar 12, 2001 to

Oct 3, 2006 on a daily basis. It is quite natural to ask: would the monthly

data has a stronger (or weaker) hidden Markov property? The daily data is

more meaningful as far as the prediction is concerned, however it can be more

valid to check the leverage effect by using monthly data. Is the lower drift

always associated with a higher volatility while using monthly data? Even

with the daily data, we could ask: are the estimates different from period to

period? For example, during the period of financial crisis, business cycles, or

fundamental changes in the monetary or fiscal policy, can we have akk = 1?
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i.e. the underlying economic forces would stay in a certain state and will

not go out. If so, how long would it stay? Can we predict the occupation

time of such state? Our prediction generally has β < 1 which indicates over

prediction generally. Moreover there is usually an under prediction when the

price is on an increasing trend and over prediction when the price is on a

decreasing trend. What could be the reason for it?
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Appendix

A. Estimates of Drift, Volatility, Transition

Model: HMM

B. Prediction Performance

Model: HMM

C. Prediction Performance

Model: GARCH(1,1)

D. Model Comparison

Model: HMM and GARCH(1,1)
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HMM Drift 1 Drift 2 Volatility 1 Volatility 2 Transition Prob

Data: adjusted price:  3/12/2001---10/3/2006, data length = 1938
Indices, corresponding
^DJI -0.0011 -0.0008 0.0083 0.0083     0.5104    0.5113

    0.4896    0.4887
DIA -0.0012 -0.0005 0.0088 0.008     0.5228    0.5238

    0.4772    0.4762
^RUA -0.0011 -0.0008 0.0094 0.0094     0.5100    0.5103

    0.4900    0.4897
IWV -0.0015 -0.0008 0.0091 0.0088     0.5165    0.5194

    0.4835    0.4806
^IXIC -0.0026 -0.0023 0.0111 0.0112     0.5036    0.5040

    0.4964    0.4960
ONEQ -0.0013 0.0003 0.012 0.0116     0.5121    0.5107

    0.4879    0.4893
^NDX -0.0028 -0.0027 0.0118 0.0118     0.5008    0.5008

    0.4992    0.4992
QQQQ -0.0028 -0.0028 0.0118 0.0118     0.5007    0.5007

    0.4993    0.4993
^OEX -0.0008667 -0.0008412 0.0079 0.0079     0.5018    0.5018

    0.4982    0.4982
OEF -0.0008187 -0.0007881 0.0077 0.0077     0.5021    0.5022

    0.4979    0.4978
^GSPC -0.0011 -0.0009 0.0084 0.0083     0.5068    0.5070

    0.4932    0.4930
SPY -0.000979 -0.0008368 0.0087 0.0086     0.5119    0.5116

    0.4881    0.4884
^RUI -0.0008411 -0.0006916 0.0088 0.0088     0.5087    0.5089

    0.4913    0.4911
IWB -0.0013 -0.0007 0.009 0.0086     0.5209    0.5224

    0.4791    0.4776
^MID -0.0023 -0.0005 0.0122 0.0112     0.5300    0.5290

    0.4700    0.4710
MDY -0.0032 0 0.0123 0.0106     0.5399    0.5362

    0.4601    0.4638
^SML -0.0042 0.0006 0.0134 0.0136     0.5240    0.5261

    0.4760    0.4739
IJR -0.0041 0.0007 0.0131 0.0125     0.5193    0.5120

    0.4807    0.4880
^RUT -0.0036 -0.0004 0.0138 0.0142     0.4996    0.4993

    0.5004    0.5007
IWM -0.0048 0.0013 0.0149 0.0141     0.5200    0.5137

    0.4800    0.4863

^NYA -0.0013 -0.0011 0.01 0.0099     0.5160    0.5150
    0.4840    0.4850

^HSI 0.0023 0.001 0.0068 0.0126     0.4837    0.5157
    0.5163    0.4843

^N225 0.0013 0.0013 0.0147 0.0137     0.5203    0.5213
    0.4797    0.4787

^FTSE 0.0000828 0.0001178 0.0077 0.0077     0.5003    0.5003
    0.4997    0.4997

† Appendix A. Estimates of Drift, Volatility, Transition Matrix (1) Model: HMM
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Gov Bonds
^TNX -0.0008309 0.0002196 0.0078 0.0076     0.5382    0.5486

    0.4618    0.4514
^TYX 0.0016 0.0006 0.0076 0.0073     0.4972    0.5002

    0.5028    0.4998
Bond Funds
INBNX 0.0000882 0.0001445 0.0021 0.0021     0.4714    0.4837

    0.5286    0.5163
AFTEX 0.0000234 0.0001794 0.0006 0.0017     0.2553    0.3115

    0.7447    0.6885
PTHYX 0.0003311 -0.0000385 0.0008 0.001     0.3841    0.5129

    0.6159    0.4871
ELFTX -0.00009709 0.00009709 0.0008 0.0019     0.4408    0.5428

    0.5592    0.4572
MDXBX -0.0000284 0.0001941 0.0009 0.0019     0.5455    0.4329

    0.4545    0.5671
Stocks in DJI
MMM -0.0011 -0.0085 0.0078 0.0258     0.7296    0.6642

    0.2704    0.3358
JNJ 0.0022 0 0.0095 0.0048     0.3104    0.3162

    0.6896    0.6838
WMT -0.0011 -0.0008 0.012 0.0125     0.5032    0.5033

    0.4968    0.4967
KO 0.0007529 0.0007585 0.0075 0.0075     0.5001    0.5001

    0.4999    0.4999
BA -0.0002 -0.0018 0.0191 0.0152     0.4753    0.4732

    0.5247    0.5268
Stocks in S&P500
GE -0.0009352 -0.0009009 0.0069 0.0073     0.5365    0.5355

    0.4635    0.4645
MSFT -0.0018 -0.0043 0.0083 0.0269     0.4496    0.4752

    0.5504    0.5248
XOM -0.0005 0.0019 0.0146 0.0131     0.4959    0.4997

    0.5041    0.5003
PFE 0.0002 -0.0021 0.0139 0.0085     0.2216    0.2582

    0.7784    0.7418
C -0.0006061 -0.0006063 0.0114 0.0113     0.4955    0.4955

    0.5045    0.5045
Stocks in S&P400
WPO 0.0033 -0.0022 0.0158 0.0079     0.4139    0.4069

    0.5861    0.5931
NYB 0.0011 -0.0005 0.0137 0.0078     0.3221    0.3146

    0.6779    0.6854
TSN -0.002 0.0033 0.0119 0.0319     0.7139    0.4690

    0.2861    0.5310
VLO -0.0005117 0.0002455 0.0212 0.0213     0.4654    0.4560

    0.5346    0.5440
LLL -0.0013 -0.001 0.0102 0.0265     0.6881    0.6222

    0.3119    0.3778
Stocks in S&P600
NVR -0.0115 -0.0075 0.0308 0.0159     0.5883    0.6008

    0.4117    0.3992
URBN -0.0088 -0.0049 0.0178 0.0243     0.5207    0.5823

    0.4793    0.4177
MRX -0.0026 -0.0081 0.0113 0.0324     0.5621    0.5790

† Appendix A. Estimates of Drift, Volatility, Transition Matrix (2) Model: HMM
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    0.4379    0.4210
IDXX -0.0055 -0.0002 0.0128 0.0083     0.4612    0.2218

    0.5388    0.7782
ROP -0.0037 -0.0012 0.0248 0.0097     0.4286    0.4083

    0.5714    0.5917
Stocks in NASDAQ100
QCOM -0.0041 -0.0076 0.0149 0.028     0.5064    0.4577

    0.4936    0.5423
INTC -0.0018 -0.0015 0.0137 0.0216     0.5718    0.5635

    0.4282    0.4365
CSCO -0.0024 -0.0035 0.012 0.0214     0.5848    0.5693

    0.4152    0.4307
EBAY -0.0033 -0.007 0.014 0.0368     0.6321    0.5643

    0.3679    0.4357
DELL -0.0023 -0.0047 0.0101 0.0208     0.5320    0.5003

    0.4680    0.4997
ETF, Tech
MTK -0.0034 -0.0031 0.012 0.0118     0.5057    0.5059

    0.4943    0.4941
XLK -0.0028 -0.0026 0.0106 0.0104     0.5049    0.5052

    0.4951    0.4948
IYW -0.0032 -0.003 0.0121 0.0119     0.5051    0.5053

    0.4949    0.4947
ETF, Large-cap
IVV -0.0011 -0.0007 0.0088 0.0084     0.5168    0.5171

    0.4832    0.4829
VV 0.0014 0.0009 0.0076 0.0052     0.4266    0.4292

    0.5734    0.5708
ELV -0.0008255 -0.0003611 0.0092 0.0069     0.4819    0.4750

    0.5181    0.5250
ETF, Middle-cap
IJH -0.0031 -0.0001 0.0129 0.0103     0.5561    0.5511

    0.4439    0.4489
IWR -0.0016 -0.0007 0.011 0.0106     0.5045    0.5015

    0.4955    0.4985
VO 0.0002 0.0011 0.0096 0.0068     0.5418    0.5141

    0.4582    0.4859
ETF, Small-cap
VB -0.0004 0.0013 0.0112 0.0099     0.5139    0.5091

    0.4861    0.4909
IWC -0.0003025 0.0006296 0.0111 0.011     0.5036    0.5028

    0.4964    0.4972
DSV -0.0029 0.0007 0.0116 0.0099     0.5358    0.4887

    0.4642    0.5113
Mutual Funds
VFINX -0.0011 -0.0008 0.0084 0.0083     0.51149   0.5121

    0.48851   0.4879
AGTHX -0.0016 -0.0009 0.0087 0.0087     0.50595   0.50475

    0.49405   0.49525
AIVSX -0.0007 -0.0003 0.0069 0.0069     0.51088   0.51016

    0.48912   0.48984
AWSHX -0.0006 -0.0004 0.0074 0.0073     0.5222   0.52009

    0.4778   0.47991
FCNTX -0.0010 -0.0014 0.0102 0.0102     0.47697   0.46803

    0.52303   0.53197

† Appendix A. Estimates of Drift, Volatility, Transition Matrix (3) Model: HMM
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HMM alpha relative beta S. E.  for relative S.E. D-W
alpha regression for regression

Data: adjusted price:  3/12/2001---10/3/2006, data length = 1938
 Indices, corresponding ETFs
^DJI 1120.2000 0.1005 0.8996 90.7144 0.0081 1.7699

DIA 12.3891 0.1126 0.8875 0.9059 0.0082 1.7235

^RUA 47.4651 0.0643 0.9356 6.8564 0.0093 1.7818

IWV 5.6249 0.0767 0.9234 0.6528 0.0089 1.7782

^IXIC 81.3016 0.0373 0.9629 24.3120 0.0112 1.7350

ONEQ 8.5784 0.1039 0.8962 0.9739 0.0118 1.7610

^NDX 62.3106 0.0392 0.9609 18.7758 0.0118 1.8321

QQQQ 1.5101 0.0387 0.9615 0.4581 0.0117 1.7874

^OEX 51.3247 0.0883 0.9118 4.5312 0.0078 1.8363

OEF 5.5014 0.0945 0.9056 0.4447 0.0076 1.8402

^GSPC 96.8597 0.0762 0.9239 10.5351 0.0083 1.7897

SPY 11.1868 0.0886 0.9116 1.0798 0.0086 1.7804

^RUI 48.5067 0.0702 0.9302 5.8032 0.0084 1.7622

IWB 5.8763 0.0856 0.9145 0.5968 0.0087 1.7905

^MID 35.9552 0.0472 0.9534 8.5745 0.0113 1.6092

MDY 7.8859 0.0569 0.9433 1.6021 0.0116 1.6525

^SML 17.2268 0.0461 0.9537 4.9565 0.0133 1.6683

IJR 4.1207 0.0666 0.9337 0.8000 0.0129 1.7084

^RUT 40.8194 0.0567 0.9436 10.0405 0.0139 1.5902

IWM 4.5731 0.0642 0.9363 1.0423 0.0146 1.6908

^NYA 477.4242 0.0584 0.9416 80.5900 0.0099 1.6987

^HSI 1060.6000 0.0650 0.9349 160.3885 0.0098 1.8891

^N225 1400.6000 0.0918 0.9081 210.5372 0.0138 1.9442

^FTSE 1367.7000 0.2332 0.7670 42.5662 0.0073 2.0863

† Appendix B. Prediction Performance (1) Model: HMM
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Gov Bonds
^TNX 0.8439 0.1653 0.8347 0.0383 0.0075 2.1038

^TYX 0.8492 0.1643 0.8358 0.0381 0.0074 2.0085

Bond Funds
INBNX 0.8570 0.1884 0.8116 0.0094 0.0021 1.8945

AFTEX 0.8510 0.0711 0.9289 0.1287 0.0108 1.9444

PTHYX 0.7951 0.0631 0.9370 0.0119 0.0009 2.1950

ELFTX 0.7863 0.0703 0.9297 0.0167 0.0015 2.0154

MDXBX 0.8734 0.0857 0.9142 0.0151 0.0015 1.9702

Stocks in DJI
MMM 8.0556 0.0999 0.9001 1.1656 0.0145 2.1643

JNJ 2.6273 0.0443 0.9556 0.3976 0.0067 1.9630

WMT 7.8045 0.1667 0.8334 0.5356 0.0114 1.7717

KO 4.1096 0.0968 0.9035 0.3004 0.0071 1.8809

BA 12.9808 0.1577 0.8424 1.3503 0.0164 1.7374

Stocks in S&P500
GE 4.2936 0.1290 0.8711 0.2266 0.0068 2.2466

MSFT -0.7063 -0.0310 1.0322 0.5085 0.0223 2.1383

XOM 5.4137 0.0896 0.9106 0.8200 0.0136 2.0890

PFE 1.5870 0.0686 0.9316 0.2335 0.0101 1.6592

C 14.0730 0.2960 0.7041 0.4869 0.0102 1.9529

Stocks in S&P400
WPO 110.9407 0.1433 0.8571 8.9835 0.0116 1.7870

NYB 3.4763 0.2189 0.7812 0.1539 0.0097 2.0443

TSN 1.9725 0.1306 0.8692 0.3251 0.0215 1.7898

VLO 5.2865 0.0855 0.9149 1.2826 0.0207 1.8359

LLL 3.8091 0.0496 0.9509 1.3093 0.0170 1.9824

Stocks in S&P600
NVR 14.4651 0.0247 0.9772 12.2259 0.0209 2.3116

URBN 0.0865 0.0047 0.9964 0.3865 0.0210 2.2012

MRX 0.3109 0.0112 0.9904 0.6544 0.0236 1.8190

† Appendix B. Prediction Performance (2) Model: HMM
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IDXX 0.3488 0.0045 0.9963 0.7659 0.0099 1.6610

ROP 2.9197 0.0634 0.9369 0.8326 0.0181 2.0071

Stocks in NASDAQ 100
QCOM 1.1622 0.0264 0.9739 0.9805 0.0223 1.7194

INTC 1.0860 0.0597 0.9408 0.3172 0.0174 2.0516

CSCO 2.2606 0.1128 0.8872 0.3255 0.0162 1.9988

EBAY 1.9060 0.0622 0.9383 0.7823 0.0255 1.7731

DELL 3.1291 0.1278 0.8721 0.3792 0.0155 1.9549

ETF, Tech
MTK 1.0769 0.0216 0.9786 0.5931 0.0119 1.7069

XLK 0.3599 0.0176 0.9826 0.2164 0.0106 1.8059

IYW 0.9460 0.0197 0.9806 0.5805 0.0121 1.8454

ETF, Large-cap
IVV 11.3092 0.0890 0.9111 1.0790 0.0085 1.7426

VV 3.4679 0.0611 0.9389 0.3535 0.0062 1.9442

ELV 6.7927 0.0937 0.9063 0.5793 0.0080 1.7316

ETF, Middle-cap
IJH 4.5919 0.0603 0.9400 0.8945 0.0117 1.6429

IWR 4.9994 0.0553 0.9450 0.9733 0.0108 1.8088

VO 7.7205 0.1178 0.8821 0.5333 0.0081 1.8228

ETF, Small-cap
VB 9.2734 0.1515 0.8484 0.6208 0.0101 1.8832

IWC 7.0269 0.1347 0.8653 0.5622 0.0108 1.7518

DSV 5.3191 0.0828 0.9175 0.6910 0.0108 1.6529

Mutual Funds
VFINX 9.6930 0.0837 0.9164 0.9590 0.0083 1.7844

AGTHX 1.3391 0.0441 0.9559 0.2644 0.0087 1.5347

AIVSX 2.6823 0.0885 0.9116 0.2083 0.0069 1.6366

AWSHX 3.6646 0.1185 0.8815 0.2244 0.0073 1.7192

FCNTX 3.4812 0.0576 0.9425 0.6138 0.0102 1.5971

† Appendix B. Prediction Performance (3) Model: HMM
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HMM t_alpha t_beta t_beta P_alpha P_ beta P_beta
H0: H0: H0: beta=1 H0: H0: beta=0 H0: 
 alpha=0 beta=0 beta=1  alpha=0 beta=0 beta=1

Data: adjusted price:  3/12/2001---10/3/2006, data length = 1938
Indices, corresponding ETFs
^DJI 1.89546 16.9745 -1.8934 0.063389 2.6356E-23 0.063665

DIA 1.99576 15.7297 -1.9932 0.051014 8.1618E-22 0.051306

^RUA 1.19516 17.399 -1.1978 0.23725 8.5049E-24 0.23622

IWV 1.4786 17.8069 -1.4768 0.14506 2.9199E-24 0.14553

^IXIC 0.946197 24.4674 -0.94278 0.34826 6.67E-31 0.34999

ONEQ 1.41215 12.1822 -1.4107 0.16364 4.0265E-17 0.16406

^NDX 1.01528 24.8931 -1.0118 0.3145 2.8695E-31 0.31614

QQQQ 1.01061 25.1208 -1.0068 0.31671 1.8238E-31 0.31852

^OEX 1.5765 16.2779 -1.575 0.12075 1.7612E-22 0.1211

OEF 1.66026 15.905 -1.6588 0.10266 4.9802E-22 0.10295

^GSPC 1.4516 17.601 -1.4503 0.1524 4.9976E-24 0.15277

SPY 1.58098 16.2712 -1.5787 0.11972 1.7943E-22 0.12024

^RUI 1.35648 17.9848 -1.3493 0.18059 1.8422E-24 0.18289

IWB 1.54379 16.5034 -1.5423 0.12848 9.467E-23 0.12885

^MID 1.13841 22.9971 -1.1252 0.25998 1.44E-29 0.26546

MDY 1.3185 21.8814 -1.3142 0.1929 1.6352E-28 0.19432

^SML 1.00255 20.7732 -1.0084 0.32055 2.0194E-27 0.31778

IJR 1.47756 20.7362 -1.4716 0.14534 2.2006E-27 0.14693

^RUT 1.28734 21.4427 -1.2822 0.20347 4.3689E-28 0.20524

IWM 1.37396 20.0494 -1.3649 0.17513 1.1046E-26 0.17793

^NYA 1.29312 20.8432 -1.2919 0.20148 1.7176E-27 0.20191

^HSI 1.79136 25.764 -1.7954 0.07884 5.1631E-32 0.078186

^N225 1.61802 16.0201 -1.6211 0.11148 3.6072E-22 0.11083

^FTSE 2.6573 8.7393 -2.6552 0.010338 6.4407E-12 0.010395

† Appendix B. Prediction Performance (4) Model: HMM
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Gov Bonds
^TNX 2.2332 11.2774 -2.2333 0.029701 8.1857E-16 0.029697

^TYX 2.20028 11.1959 -2.1992 0.032085 1.079E-15 0.032166

Bond Funds
INBNX 2.47841 10.6737 -2.4784 0.016354 6.4667E-15 0.016353

AFTEX 1.31522 17.192 -1.3161 0.19399 1.4727E-23 0.1937

PTHYX 1.34526 19.9875 -1.3449 0.18416 1.2802E-26 0.18429

ELFTX 1.28854 17.0514 -1.2886 0.20305 2.1442E-23 0.20302

MDXBX 1.53204 16.3389 -1.5329 0.13135 1.4882E-22 0.13114

Stocks in DJI
MMM 2.6919 24.2835 -2.6942 0.0094398 9.827E-31 0.0093821

JNJ 0.937564 20.2479 -0.94026 0.35264 6.8989E-27 0.35127

WMT 3.0864 15.4406 -3.086 0.0031939 1.8579E-21 0.0031974

KO 1.36341 12.7239 -1.3583 0.17841 6.9768E-18 0.18003

BA 2.34447 12.5295 -2.3434 0.022762 1.3031E-17 0.022823

Stocks in S&P500
GE 2.48836 16.8031 -2.4872 0.01595 4.1857E-23 0.015998

MSFT -0.375436 12.4944 0.38937 0.70881 1.4592E-17 0.69854

XOM 1.73143 17.601 -1.7273 0.089084 4.9983E-24 0.089826

PFE 1.68097 22.845 -1.6771 0.098546 1.9939E-29 0.099311

C 3.6868 8.7711 -3.6861 0.00052795 5.731E-12 0.00052924

Stocks in S&P400
WPO 2.12063 12.6894 -2.1156 0.038562 7.7919E-18 0.039003

NYB 2.6009 9.2818 -2.5994 0.011971 8.9367E-13 0.012017

TSN 2.00678 13.3676 -2.0113 0.04979 9.125E-19 0.049301

VLO 1.52361 16.329 -1.5192 0.13344 1.5295E-22 0.13455

LLL 1.13783 21.8292 -1.1267 0.26021 1.8367E-28 0.26483

Stocks in S&P600
NVR 1.52996 61.424 -1.436 0.13186 1.187E-51 0.15677

URBN 0.203457 43.8927 -0.1606 0.83954 6.3213E-44 0.87301

MRX 0.482552 42.9694 -0.41749 0.63136 1.9309E-43 0.67798

† Appendix B. Prediction Performance (5) Model: HMM
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IDXX 0.0994003 21.7896 -0.081229 0.92119 2.006E-28 0.93556

ROP 1.15593 17.1114 -1.1515 0.2528 1.8264E-23 0.2546

Stocks in NASDAQ
QCOM 0.947595 35.1494 -0.94199 0.34756 6.857E-39 0.3504

INTC 1.07358 16.9268 -1.0647 0.28778 2.9969E-23 0.29177

CSCO 2.30201 18.1257 -2.3035 0.025218 1.2819E-24 0.025131

EBAY 1.36875 20.7129 -1.3613 0.17674 2.3224E-27 0.17908

DELL 2.62966 17.962 -2.6334 0.011111 1.954E-24 0.011004

ETF, Tech
MTK 0.666582 30.2366 -0.66258 0.50788 1.5802E-35 0.51042

XLK 0.466443 26.0645 -0.46232 0.64277 2.8894E-32 0.64571

IYW 0.556198 27.763 -0.55025 0.58037 1.206E-33 0.58442

ETF, Large-cap
IVV 1.59638 16.3459 -1.594 0.11624 1.4595E-22 0.11676

VV 1.59152 24.4721 -1.5925 0.11733 6.6959E-31 0.1171

ELV 1.60374 15.5068 -1.603 0.1146 1.5379E-21 0.11477

ETF, Middle-cap
IJH 1.37594 21.4658 -1.3709 0.17452 4.1467E-28 0.17608

IWR 1.03635 17.7156 -1.0318 0.30466 3.7038E-24 0.30679

VO 2.09619 15.7 -2.0978 0.040766 8.8786E-22 0.040615

ETF, Small-cap
VB 2.30832 12.9329 -2.3111 0.024839 3.5837E-18 0.024673

IWC 2.04825 13.1588 -2.0482 0.045411 1.7547E-18 0.045411

DSV 1.6228 17.9878 -1.6172 0.11046 1.8277E-24 0.11166

Mutual Funds
VFINX 1.52787 16.737 -1.5266 0.13238 5.0068E-23 0.13271

AGTHX 1.05174 22.7877 -1.0517 0.2976 2.25E-29 0.29764

AIVSX 1.56829 16.1619 -1.5677 0.12266 2.43E-22 0.1228

AWSHX 1.85907 13.8266 -1.8583 0.06847 2.21E-19 0.068587

FCNTX 1.2887 21.0937 -1.2875 0.203 9.66E-28 0.2034

† Appendix B. Prediction Performance (6) Model: HMM
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GARCH(1,1) Predicted alpha relative beta S. E.  for relative D-W
Next Day alpha regressionS. E.  for
Volatility regression

Data: adjusted price:  3/12/2001---10/3/2006, data length = 1938
Indices, corresponding ETFs
^DJI 0.005335 1136 0.1019 0.89949 90.78 0.008143 1.7704

DIA 0.00515 12.533 0.11394 0.88741 0.90652 0.008241 1.7226

^RUA 0.00579 48.706 0.065965 0.93521 6.8618 0.009293 1.777

IWV 0.005541 5.7742 0.078731 0.92292 0.65332 0.008908 1.776

^IXIC 0.008732 87.716 0.040203 0.96274 24.367 0.011168 1.7404

ONEQ 0.008834 8.7411 0.10588 0.89509 0.97413 0.0118 1.7652

^NDX 0.009903 67.066 0.042219 0.96099 18.821 0.011848 1.8378

QQQQ 0.009757 1.6288 0.041755 0.96149 0.45921 0.011772 1.7933

^OEX 0.005108 52.33 0.09005 0.91115 4.5334 0.007801 1.8358

OEF 0.005012 5.5915 0.096092 0.90504 0.44488 0.007645 1.8384

^GSPC 0.005372 99.281 0.078117 0.92331 10.543 0.008295 1.7882

SPY 0.005181 11.42 0.090435 0.91099 1.0805 0.008557 1.7774

^RUI 0.005425 49.649 0.071829 0.92967 5.8068 0.008401 1.7636

IWB 0.005304 6.0181 0.087632 0.91389 0.59725 0.008697 1.7892

^MID 0.00751 37.254 0.04893 0.95359 8.5884 0.01128 1.6088

MDY 0.008259 8.1078 0.05848 0.94388 1.605 0.011576 1.6469

^SML 0.009517 17.919 0.047913 0.95427 4.9657 0.013277 1.6626

IJR 0.009717 4.2181 0.068156 0.93444 0.80157 0.012952 1.7034

^RUT 0.010071 42.071 0.058438 0.94431 10.061 0.013974 1.5868

IWM 0.010269 4.6808 0.06573 0.93693 1.0443 0.014664 1.6857

^NYA 0.005379 488.61 0.059814 0.9419 80.692 0.009878 1.6953

^HSI 0.008009 1064.7 0.065297 0.93345 160.16 0.009822 1.8835

^N225 0.010519 1404.8 0.092037 0.90715 210.36 0.013782 1.945

^FTSE 0.007055 1368.5 0.23336 0.7671 42.576 0.00726 2.0872

† Appendix C. Prediction Performance (1) Model: GARCH(1,1)
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Gov Bonds
^TNX 0.007513 0.84508 0.16554 0.83477 0.038352 0.007513 2.1034

^TYX 0.008051 0.85185 0.16479 0.8356 0.038102 0.007371 2.0085

Bond Funds
INBNX 0.002344 0.85634 0.1883 0.81176 0.009375 0.002062 1.8936

AFTEX 0.001633 0.83655 0.069859 0.93025 0.017521 0.001463 1.9361

PTHYX 0.001172 0.78598 0.06234 0.93776 0.011891 0.000943 2.2002

ELFTX 0.00177 0.77704 0.069432 0.93066 0.016653 0.001488 2.0135

MDXBX 0.001608 0.85975 0.084388 0.91578 0.015094 0.001482 1.9631

Stocks in DJI
MMM 0.01076 8.1952 0.10165 0.90193 1.1723 0.014541 2.1625

JNJ 0.005396 2.6219 0.044167 0.9556 0.39774 0.0067 1.963

WMT 0.011161 7.7789 0.16611 0.83484 0.53651 0.011457 1.7718

KO 0.005762 4.1579 0.097964 0.902 0.30013 0.007071 1.8795

BA 0.014595 13.063 0.15872 0.84375 1.3534 0.016443 1.7387

Stocks in S&P500
GE 0.007282 4.3289 0.13007 0.87124 0.22677 0.006814 2.2422

MSFT 0.012354 -0.52359 -0.02301 1.0269 0.5104 0.022426 2.1506

XOM 0.013677 5.4134 0.08963 0.91061 0.81994 0.013576 2.0891

PFE 0.010214 1.6203 0.070024 0.93149 0.23361 0.010096 1.6495

C 0.007381 14.051 0.29555 0.70557 0.48784 0.010261 1.942

Stocks in S&P400
WPO 0.012602 110.89 0.1432 0.85729 8.9835 0.011602 1.787

NYB 0.010551 3.4934 0.22001 0.78103 0.15407 0.009703 2.0364

TSN 0.019915 1.9844 0.13141 0.86982 0.32611 0.021595 1.7864

VLO 0.026261 5.322 0.086043 0.91579 1.2843 0.020765 1.8332

LLL 0.011255 4.0316 0.052533 0.951 1.3118 0.017094 1.9736

Stocks in S&P600
NVR 0.026957 15.847 0.027072 0.98566 12.37 0.021132 2.312

URBN 0.029183 0.14895 0.008011 1.0022 0.39091 0.021024 2.1972

MRX 0.017269 0.33987 0.012273 0.99399 0.65829 0.023771 1.8155

† Appendix C. Prediction Performance (2) Model: GARCH(1,1)
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IDXX 0.013804 0.64488 0.008406 0.9951 0.77708 0.010129 1.6779

ROP 0.015833 3.0433 0.066038 0.9373 0.83488 0.018116 2.0247

Stocks in NASDAQ 100
QCOM 0.022383 1.2507 0.028418 0.9784 0.98711 0.022429 1.7248

INTC 0.017371 1.1202 0.061601 0.94071 0.31755 0.017463 2.0512

CSCO 0.019498 2.2999 0.11476 0.88869 0.32634 0.016283 1.9998

EBAY 0.027195 2.005 0.065413 0.94104 0.78644 0.025657 1.7755

DELL 0.017766 3.2011 0.13074 0.87275 0.37987 0.015515 1.9516

ETF, Tech
MTK 0.011073 1.2227 0.024523 0.97918 0.59517 0.011937 1.7157

XLK 0.009139 0.43575 0.021307 0.9818 0.2171 0.010616 1.8224

IYW 0.01013 1.1032 0.022932 0.98065 0.58251 0.012109 1.859

ETF, Large-cap
IVV 0.005221 11.535 0.090776 0.91064 1.0797 0.008497 1.7395

VV 0.005993 3.4956 0.061562 0.9378 0.3532 0.00622 1.9367

ELV 0.005637 6.8778 0.094922 0.90611 0.57967 0.008 1.7295

ETF, Middle-cap
IJH 0.007768 4.7174 0.061938 0.94047 0.89618 0.011766 1.6372

IWR 0.006511 5.2374 0.057933 0.9442 0.97465 0.010781 1.7984

VO 0.006477 7.7147 0.11771 0.88238 0.53337 0.008138 1.8244

ETF, Small-cap
VB 0.008733 9.2704 0.15141 0.84857 0.62092 0.010141 1.884

IWC 0.008993 7.0394 0.13496 0.86543 0.56236 0.010782 1.7521

DSV 0.008246 5.4202 0.084382 0.91765 0.69279 0.010785 1.6487

Mutual Funds
VFINX 0.005347 9.9172 0.085609 0.91581 0.95969 0.008284 1.783

AGTHX 0.005459 1.392 0.045879 0.9559 0.26481 0.008728 1.5335

AIVSX 0.004202 2.7144 0.089526 0.91143 0.20841 0.006874 1.6357

AWSHX 0.004985 3.7057 0.11987 0.88114 0.22446 0.007261 1.7178

FCNTX 0.006062 3.5638 0.058973 0.94287 0.61471 0.010172 1.5926

† Appendix C. Prediction Performance (3) Model: GARCH(1,1)
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GARCH(1,1) t for alphat for beta t for beta p for alphap for beta p for beta
H0: H0: H0: H0: H0: H0: 
alpha=0 beta=0 beta=1 alpha=0 beta=0 beta=1

Data: adjusted price:  3/12/2001---10/3/2006, data length = 1938
Indices, corresponding ETFs
^DJI 1.9208 16.959 -1.895 0.060046 2.75E-23 0.063446

DIA 2.0175 15.716 -1.994 0.04863 8.47E-22 0.051215

^RUA 1.2254 17.378 -1.2039 0.22573 8.98E-24 0.23387

IWV 1.5165 17.782 -1.4851 0.13522 3.12E-24 0.14332

^IXIC 1.0185 24.408 -0.94454 0.31296 7.62E-31 0.3491

ONEQ 1.4386 12.164 -1.4257 0.15604 4.28E-17 0.15971

^NDX 1.0901 24.834 -1.0081 0.2805 3.23E-31 0.31791

QQQQ 1.0874 25.06 -1.0037 0.2817 2.06E-31 0.32001

^OEX 1.6066 16.259 -1.5855 0.11397 1.86E-22 0.1187

OEF 1.6867 15.888 -1.6671 0.097435 5.22E-22 0.10128

^GSPC 1.4868 17.578 -1.46 0.14287 5.31E-24 0.15008

SPY 1.6129 16.251 -1.5878 0.1126 1.9E-22 0.11817

^RUI 1.3875 17.963 -1.3589 0.17098 1.95E-24 0.17982

IWB 1.5799 16.48 -1.5528 0.11997 1.01E-22 0.12631

^MID 1.1776 22.965 -1.1178 0.24412 1.54E-29 0.26861

MDY 1.3532 21.854 -1.2994 0.18164 1.74E-28 0.19932

^SML 1.0409 20.747 -0.99431 0.30255 2.15E-27 0.32451

IJR 1.5095 20.711 -1.453 0.137 2.33E-27 0.15201

^RUT 1.3242 21.417 -1.2631 0.19103 4.63E-28 0.21197

IWM 1.4037 20.026 -1.348 0.16614 1.17E-26 0.18329

^NYA 1.3217 20.823 -1.2844 0.19183 1.8E-27 0.20448

^HSI 1.801 25.762 -1.8367 0.077292 5.18E-32 0.071756

^N225 1.6242 16.017 -1.6394 0.11016 3.64E-22 0.10693

^FTSE 2.6582 8.7387 -2.6531 0.010314 6.45E-12 0.010452

† Appendix C. Prediction Performance (4) Model: GARCH(1,1)
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Gov Bonds
^TNX 2.236 11.276 -2.2319 0.029509 8.21E-16 0.029791

^TYX 2.2071 11.193 -2.2022 0.031579 1.09E-15 0.031943

Bond Funds
INBNX 2.4762 10.675 -2.4754 0.016445 6.45E-15 0.016478

AFTEX 1.292 17.204 -1.2899 0.20186 1.42E-23 0.20258

PTHYX 1.3354 20.088 -1.3332 0.18735 1.01E-26 0.18805

ELFTX 1.2743 17.081 -1.2726 0.20801 1.98E-23 0.2086

MDXBX 1.5052 16.334 -1.5022 0.13811 1.51E-22 0.13886

Stocks in DJI
MMM 2.7229 24.193 -2.6306 0.008697 1.18E-30 0.011085

JNJ 0.93524 20.239 -0.94025 0.35383 7.05E-27 0.35128

WMT 3.0711 15.441 -3.0546 0.003337 1.86E-21 0.003496

KO 1.3805 12.712 -1.3812 0.17311 7.24E-18 0.17292

BA 2.354 12.521 -2.3186 0.02224 1.34E-17 0.024233

Stocks in S&P500
GE 2.5067 16.793 -2.4818 0.015227 4.3E-23 0.016216

MSFT -0.27725 12.384 0.32426 0.78264 2.09E-17 0.74699

XOM 1.7314 17.601 -1.7279 0.089089 4.99E-24 0.089725

PFE 1.7151 22.827 -1.6789 0.09207 2.07E-29 0.098944

C 3.674 8.7722 -3.6606 0.00055 5.71E-12 0.000573

Stocks in S&P400
WPO 2.1196 12.692 -2.1129 0.038654 7.72E-18 0.039251

NYB 2.6115 9.2715 -2.5993 0.011649 9.27E-13 0.01202

TSN 2.0125 13.334 -1.9956 0.049169 1.01E-18 0.051029

VLO 1.5317 16.323 -1.5009 0.13143 1.56E-22 0.13922

LLL 1.202 21.789 -1.1227 0.23463 2.01E-28 0.26655

Stocks in S&P600
NVR 1.6567 61.237 -0.89107 0.10339 1.40E-51 0.37685

URBN 0.34632 43.65 0.097401 0.73045 8.46E-44 0.92277

MRX 0.52444 42.873 -0.2592 0.60212 2.17E-43 0.79647

† Appendix C. Prediction Performance (5) Model: GARCH(1,1)
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IDXX 0.18111 21.45 -0.10558 0.85696 4.30E-28 0.91631

ROP 1.2016 17.071 -1.1419 0.23478 2.04E-23 0.25854

Stocks in NASDAQ 100
QCOM 1.0129 35.075 -0.77437 0.3156 7.65E-39 0.44209

INTC 1.1059 16.904 -1.0653 0.27365 3.19E-23 0.29147

CSCO 2.3361 18.109 -2.2683 0.02323 1.34E-24 0.027336

EBAY 1.4322 20.662 -1.2946 0.15784 2.61E-27 0.20095

DELL 2.685 17.94 -2.6159 0.009612 2.07E-24 0.011516

ETF, Tech
MTK 0.75416 30.15 -0.64098 0.45403 1.83E-35 0.52425

XLK 0.56312 25.966 -0.48125 0.57568 3.49E-32 0.63228

IYW 0.64642 27.672 -0.54594 0.52074 1.42E-33 0.58736

ETF, Large-cap
IVV 1.6271 16.326 -1.6021 0.10954 1.54E-22 0.11497

VV 1.6058 24.467 -1.6227 0.11416 6.76E-31 0.11047

ELV 1.6228 15.494 -1.6054 0.11045 1.59E-21 0.11423

ETF, Middle-cap
IJH 1.411 21.438 -1.3569 0.16398 4.41E-28 0.18046

IWR 1.0843 17.678 -1.0448 0.28307 4.09E-24 0.30077

VO 2.0942 15.701 -2.0929 0.040954 8.85E-22 0.041068

ETF, Small-cap
VB 2.3072 12.933 -2.3081 0.024905 3.58E-18 0.024853

IWC 2.0514 13.158 -2.0459 0.04509 1.76E-18 0.045651

DSV 1.6495 17.945 -1.6105 0.10486 2.04E-24 0.11313

Mutual Funds
VFINX 1.5621 16.715 -1.5365 0.1241 5.32E-23 0.13025

AGTHX 1.0918 22.756 -1.0499 0.27978 2.41E-29 0.29846

AIVSX 1.5861 16.15 -1.5695 0.11855 2.51E-22 0.12238

AWSHX 1.879 13.814 -1.8634 0.065644 2.30E-19 0.067846

FCNTX 1.3174 21.072 -1.2768 0.19327 1.01E-27 0.20714

† Appendix C. Prediction Performance (6) Model: GARCH(1,1)
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| relative alpha - 0 | | beta - 1 | | relative S.E. - 0 | | DW - 2 |
HMM-GARCH(1,1) HMM-GARCH(1,1) HMM-GARCH(1,1) HMM-GARCH(1,1)

Indices and ETFs
^DJI -0.0014 -0.00011 -0.000004 0.0005
DIA -0.00134 -9E-05 -0.000008 -0.0009
^RUA -0.001665 -0.00039 -0.000005 -0.0048
IWV -0.002031 -0.00048 -0.000007 -0.0022
^IXIC -0.002903 -0.00016 -0.000014 0.0054
ONEQ -0.00198 -0.00111 -0.000004 0.0042
^NDX -0.003019 9E-05 -0.000036 0.0057
QQQQ -0.003055 -1E-05 -0.000032 0.0059
^OEX -0.00175 -0.00065 -0.000006 -0.0005
OEF -0.001592 -0.00056 -0.000007 -0.0018
^GSPC -0.001917 -0.00059 -0.000007 -0.0015
SPY -0.001835 -0.00061 -0.000005 -0.003
^RUI -0.001629 -0.00053 -0.000002 0.0014
IWB -0.002032 -0.00061 -0.000003 -0.0013
^MID -0.00173 0.00019 -0.000024 -0.0004
MDY -0.00158 0.00058 -0.000016 -0.0056
^SML -0.001813 0.00057 -0.000013 -0.0057
IJR -0.001556 0.00074 -0.000022 -0.005
^RUT -0.001738 0.00071 -0.000027 -0.0034
IWM -0.00153 0.00063 -0.000032 -0.0051
^NYA -0.001414 0.0003 -0.000020 -0.0034
^HSI -0.000297 -0.00145 0.000007 -0.0056
^N225 -0.000237 -0.00095 0.000017 0.0008
^FTSE -0.00016 1E-04 -0.000003 -0.0009

Gov Bonds
^TNX -0.00024 7E-05 -0.000011 0.0004
^TYX -0.00049 -0.0002 0.000001 0

Bond Funds
INBNX 0.0001 0.00016 0.000005 -0.0009
AFTEX 0.001241 0.00135 0.009290 -0.0083
PTHYX 0.00076 0.00076 0.000001 -0.0052
ELFTX 0.000868 0.00096 0.000005 0.0019
MDXBX 0.001312 0.00158 0.000000 -0.0071

Stocks in DJI
MMM -0.00175 0.00183 -0.000086 0.0018
JNJ 0.000133 0 0.000004 0
WMT 0.00059 0.00144 -0.000017 1E-04
KO -0.001164 -0.0015 0.000004 -0.0014
BA -0.00102 0.00135 -0.000039 0.0013

Stocks in SP500
GE -0.00107 0.00014 -0.000006 0.0044
MSFT 0.007994 0.0053 -0.000108 -0.0123
XOM -3E-05 1E-05 -0.000005 -0.0001

† Appendix D. Model Comparison (1) HMM and GARCH(1,1)
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PFE -0.001424 -0.00011 -0.000003 -0.0097
C 0.00045 0.00147 -0.000020 -0.0109

Stocks in SP400
WPO 0.0001 0.00019 0.000002 0
NYB -0.00111 -0.00017 -0.000012 0.0079
TSN -0.00081 0.00062 -0.000070 -0.0034
VLO -0.000543 0.00089 -0.000021 -0.0027
LLL -0.002933 1E-04 -0.000045 -0.0088

Stocks in SP600
NVR -0.002372 0.00846 -0.000256 -0.0004
URBN -0.003311 0.0014 -0.000023 0.004
MRX -0.001073 0.00359 -0.000197 -0.0035
IDXX -0.0039058 -0.0012 -0.000248 0.0169
ROP -0.002638 0.0004 -0.000036 -0.0176

Stocks in NDX
QCOM -0.002018 0.0045 -0.000156 0.0054
INTC -0.001901 -9E-05 -0.000026 0.0004
CSCO -0.00196 0.00149 -0.000041 0.001
EBAY -0.003213 0.00274 -0.000128 0.0024
DELL -0.00294 0.00065 -0.000028 -0.0033

ETF, Tech
MTK -0.002923 0.00058 -0.000041 0.0088
XLK -0.003707 -0.0008 -0.000034 0.0165
IYW -0.003232 5E-05 -0.000020 0.0136

ETF, Large-cap
IVV -0.001776 -0.00046 -0.000005 -0.0031
VV -0.000462 -0.0011 0.000008 -0.0075
ELV -0.001222 -0.00019 -0.000009 -0.0021

ETF, Middle-cap
IJH -0.001638 0.00047 -0.000020 -0.0057
IWR -0.002633 -0.0008 -0.000015 -0.0104
VO 9E-05 0.00028 -0.000001 0.0016

ETF, Small-cap
VB 9E-05 0.00017 0.000001 0.0008
IWC -0.00026 0.00013 -0.000005 0.0003
DSV -0.001582 0.00015 -0.000029 -0.0042

Mutual Funds
VFINX -0.001935 -0.0006 -0.000006 -0.0014
AGTHX -0.001744 1E-05 -0.000012 -0.0012
AIVSX -0.001058 -0.00015 -0.000004 -0.0009
AWSHX -0.00133 -0.00039 -0.000004 -0.0014
FCNTX -0.001367 0.0004 -0.000015 -0.0045

† Appendix D. Model Comparison (2) HMM and GARCH(1,1)
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HMM GARCH HMM GARCH HMM GARCH
t for alpha t for alpha t for beta t for beta t for beta t for beta
H0: H0: H0: H0: H0: H0: 
 alpha=0  alpha=0 beta=0 beta=0 beta=1 beta=1

Indices and ETFs
^DJI 1.8955 1.9208 16.9745 16.959 -1.8934 -1.895

DIA 1.9958 2.0175 15.7297 15.716 -1.9932 -1.994

^RUA 1.1952 1.2254 17.399 17.378 -1.1978 -1.2039

IWV 1.4786 1.5165 17.8069 17.782 -1.4768 -1.4851

^IXIC 0.9462 1.0185 24.4674 24.408 -0.94278 -0.94454

ONEQ 1.4122 1.4386 12.1822 12.164 -1.4107 -1.4257

^NDX 1.0153 1.0901 24.8931 24.834 -1.0118 -1.0081

QQQQ 1.0106 1.0874 25.1208 25.06 -1.0068 -1.0037

^OEX 1.5765 1.6066 16.2779 16.259 -1.575 -1.5855

OEF 1.6603 1.6867 15.905 15.888 -1.6588 -1.6671

^GSPC 1.4516 1.4868 17.601 17.578 -1.4503 -1.46

SPY 1.5810 1.6129 16.2712 16.251 -1.5787 -1.5878

^RUI 1.3565 1.3875 17.9848 17.963 -1.3493 -1.3589

IWB 1.5438 1.5799 16.5034 16.48 -1.5423 -1.5528

^MID 1.1384 1.1776 22.9971 22.965 -1.1252 -1.1178

MDY 1.3185 1.3532 21.8814 21.854 -1.3142 -1.2994

^SML 1.0026 1.0409 20.7732 20.747 -1.0084 -0.99431

IJR 1.4776 1.5095 20.7362 20.711 -1.4716 -1.453

^RUT 1.2873 1.3242 21.4427 21.417 -1.2822 -1.2631

IWM 1.3740 1.4037 20.0494 20.026 -1.3649 -1.348

^NYA 1.2931 1.3217 20.8432 20.823 -1.2919 -1.2844

^HSI 1.7914 1.8010 25.764 25.762 -1.7954 -1.8367

^N225 1.6180 1.6242 16.0201 16.017 -1.6211 -1.6394

^FTSE 2.6573 2.6582 8.7393 8.7387 -2.6552 -2.6531

† Appendix D. Model Comparison (3) HMM and GARCH(1,1)
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Gov Bonds
^TNX 2.2332 2.2360 11.2774 11.276 -2.2333 -2.2319

^TYX 2.2003 2.2071 11.1959 11.193 -2.1992 -2.2022

Bond Funds
INBNX 2.4784 2.4762 10.6737 10.675 -2.4784 -2.4754

AFTEX 1.3152 1.2920 17.192 17.204 -1.3161 -1.2899

PTHYX 1.3453 1.3354 19.9875 20.088 -1.3449 -1.3332

ELFTX 1.2885 1.2743 17.0514 17.081 -1.2886 -1.2726

MDXBX 1.5320 1.5052 16.3389 16.334 -1.5329 -1.5022

Stocks in DJI
MMM 2.6919 2.7229 24.2835 24.193 -2.6942 -2.6306

JNJ 0.9376 0.9352 20.2479 20.239 -0.94026 -0.94025

WMT 3.0864 3.0711 15.4406 15.441 -3.086 -3.0546

KO 1.3634 1.3805 12.7239 12.712 -1.3583 -1.3812

BA 2.3445 2.3540 12.5295 12.521 -2.3434 -2.3186

Stocks in SP500
GE 2.4884 2.5067 16.8031 16.793 -2.4872 -2.4818

MSFT -0.3754 -0.2773 12.4944 12.384 0.38937 0.32426

XOM 1.7314 1.7314 17.601 17.601 -1.7273 -1.7279

PFE 1.6810 1.7151 22.845 22.827 -1.6771 -1.6789

C 3.6868 3.6740 8.7711 8.7722 -3.6861 -3.6606

Stocks in SP400
WPO 2.1206 2.1196 12.6894 12.692 -2.1156 -2.1129

NYB 2.6009 2.6115 9.2818 9.2715 -2.5994 -2.5993

TSN 2.0068 2.0125 13.3676 13.334 -2.0113 -1.9956

VLO 1.5236 1.5317 16.329 16.323 -1.5192 -1.5009

LLL 1.1378 1.2020 21.8292 21.789 -1.1267 -1.1227

Stocks in SP600
NVR 1.5300 1.6567 61.424 61.237 -1.436 -0.89107

URBN 0.2035 0.3463 43.8927 43.65 -0.1606 0.097401

MRX 0.4826 0.5244 42.9694 42.873 -0.41749 -0.2592

† Appendix D. Model Comparison (4) HMM and GARCH(1,1)
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IDXX 0.0994 0.1811 21.7896 21.45 -0.081229 -0.10558

ROP 1.1559 1.2016 17.1114 17.071 -1.1515 -1.1419

Stocks in NDX
QCOM 0.9476 1.0129 35.1494 35.075 -0.94199 -0.77437

INTC 1.0736 1.1059 16.9268 16.904 -1.0647 -1.0653

CSCO 2.3020 2.3361 18.1257 18.109 -2.3035 -2.2683

EBAY 1.3688 1.4322 20.7129 20.662 -1.3613 -1.2946

DELL 2.6297 2.6850 17.962 17.94 -2.6334 -2.6159

ETF, Tech
MTK 0.6666 0.7542 30.2366 30.15 -0.66258 -0.64098

XLK 0.4664 0.5631 26.0645 25.966 -0.46232 -0.48125

IYW 0.5562 0.6464 27.763 27.672 -0.55025 -0.54594

ETF, Large-cap
IVV 1.5964 1.6271 16.3459 16.326 -1.594 -1.6021

VV 1.5915 1.6058 24.4721 24.467 -1.5925 -1.6227

ELV 1.6037 1.6228 15.5068 15.494 -1.603 -1.6054

ETF, Middle-cap
IJH 1.3759 1.4110 21.4658 21.438 -1.3709 -1.3569

IWR 1.0364 1.0843 17.7156 17.678 -1.0318 -1.0448

VO 2.0962 2.0942 15.7 15.701 -2.0978 -2.0929

ETF, Small-cap
VB 2.3083 2.3072 12.9329 12.933 -2.3111 -2.3081

IWC 2.0483 2.0514 13.1588 13.158 -2.0482 -2.0459

DSV 1.6228 1.6495 17.9878 17.945 -1.6172 -1.6105

Mutual Funds
VFINX 1.5279 1.5621 16.737 16.715 -1.5266 -1.5365

AGTHX 1.0517 1.0918 22.7877 22.756 -1.0517 -1.0499

AIVSX 1.5683 1.5861 16.1619 16.15 -1.5677 -1.5695

AWSHX 1.8591 1.8790 13.8266 13.814 -1.8583 -1.8634

FCNTX 1.2887 1.3174 21.0937 21.072 -1.2875 -1.2768

† Appendix D. Model Comparison (5) HMM and GARCH(1,1)
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HMM GARCH HMM GARCH HMM GARCH
p for alpha p for alpha p for beta p for beta p for beta p for beta
H0: H0: H0: H0: H0: H0: 
 alpha=0  alpha=0 beta=0 beta=0 beta=1 beta=1

Indices and ETFs
^DJI 0.063389 0.060046 2.6356E-23 2.7457E-23 0.063665 0.063446

DIA 0.051014 0.04863 8.1618E-22 8.4742E-22 0.051306 0.051215

^RUA 0.23725 0.22573 8.5049E-24 8.9817E-24 0.23622 0.23387

IWV 0.14506 0.13522 2.9199E-24 3.1161E-24 0.14553 0.14332

^IXIC 0.34826 0.31296 6.67E-31 7.6207E-31 0.34999 0.3491

ONEQ 0.16364 0.15604 4.0265E-17 4.2757E-17 0.16406 0.15971

^NDX 0.3145 0.2805 2.8695E-31 3.2291E-31 0.31614 0.31791

QQQQ 0.31671 0.2817 1.8238E-31 2.0577E-31 0.31852 0.32001

^OEX 0.12075 0.11397 1.7612E-22 1.8567E-22 0.1211 0.1187

OEF 0.10266 0.097435 4.9802E-22 5.2165E-22 0.10295 0.10128

^GSPC 0.1524 0.14287 4.9976E-24 5.312E-24 0.15277 0.15008

SPY 0.11972 0.1126 1.7943E-22 1.8999E-22 0.12024 0.11817

^RUI 0.18059 0.17098 1.8422E-24 1.9496E-24 0.18289 0.17982

IWB 0.12848 0.11997 9.467E-23 1.0097E-22 0.12885 0.12631

^MID 0.25998 0.24412 1.44E-29 1.5404E-29 0.26546 0.26861

MDY 0.1929 0.18164 1.6352E-28 1.7374E-28 0.19432 0.19932

^SML 0.32055 0.30255 2.0194E-27 2.1457E-27 0.31778 0.32451

IJR 0.14534 0.137 2.2006E-27 2.3337E-27 0.14693 0.15201

^RUT 0.20347 0.19103 4.3689E-28 4.6349E-28 0.20524 0.21197

IWM 0.17513 0.16614 1.1046E-26 1.1674E-26 0.17793 0.18329

^NYA 0.20148 0.19183 1.7176E-27 1.8016E-27 0.20191 0.20448

^HSI 0.07884 0.077292 5.1631E-32 5.1779E-32 0.078186 0.071756

^N225 0.11148 0.11016 3.6072E-22 3.6415E-22 0.11083 0.10693

^FTSE 0.010338 0.010314 6.4407E-12 6.4545E-12 0.010395 0.010452

† Appendix D. Model Comparison (6) HMM and GARCH(1,1)
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Gov Bonds
^TNX 0.029701 0.029509 8.1857E-16 8.2141E-16 0.029697 0.029791

^TYX 0.032085 0.031579 1.079E-15 1.0909E-15 0.032166 0.031943

Bond Funds
INBNX 0.016354 0.016445 6.4667E-15 6.445E-15 0.016353 0.016478

AFTEX 0.19399 0.20186 1.4727E-23 1.4249E-23 0.1937 0.20258

PTHYX 0.18416 0.18735 1.2802E-26 1.0076E-26 0.18429 0.18805

ELFTX 0.20305 0.20801 2.1442E-23 1.9817E-23 0.20302 0.2086

MDXBX 0.13135 0.13811 1.4882E-22 1.5086E-22 0.13114 0.13886

Stocks in DJI
MMM 0.0094398 0.0086969 9.827E-31 1.183E-30 0.0093821 0.011085

JNJ 0.35264 0.35383 6.8989E-27 7.0509E-27 0.35127 0.35128

WMT 0.0031939 0.0033367 1.8579E-21 1.8582E-21 0.0031974 0.0034964

KO 0.17841 0.17311 6.9768E-18 7.2424E-18 0.18003 0.17292

BA 0.022762 0.02224 1.3031E-17 1.3409E-17 0.022823 0.024233

Stocks in SP500
GE 0.01595 0.015227 4.1857E-23 4.3031E-23 0.015998 0.016216

MSFT 0.70881 0.78264 1.4592E-17 2.0891E-17 0.69854 0.74699

XOM 0.089084 0.089089 4.9983E-24 4.99E-24 0.089826 0.089725

PFE 0.098546 0.09207 1.9939E-29 2.07E-29 0.099311 0.098944

C 0.00052795 0.00054962 5.731E-12 5.71E-12 0.00052924 0.00057306

Stocks in SP400
WPO 0.038562 0.038654 7.7919E-18 7.72E-18 0.039003 0.039251

NYB 0.011971 0.011649 8.9367E-13 9.27E-13 0.012017 0.01202

TSN 0.04979 0.049169 9.125E-19 1.01E-18 0.049301 0.051029

VLO 0.13344 0.13143 1.5295E-22 1.56E-22 0.13455 0.13922

LLL 0.26021 0.23463 1.8367E-28 2.01E-28 0.26483 0.26655

Stocks in SP600
NVR 0.13186 0.10339 1.187E-51 1.40E-51 0.15677 0.37685

URBN 0.83954 0.73045 6.3213E-44 8.46E-44 0.87301 0.92277

MRX 0.63136 0.60212 1.9309E-43 2.17E-43 0.67798 0.79647

† Appendix D. Model Comparison (7) HMM and GARCH(1,1)
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IDXX 0.92119 0.85696 2.006E-28 4.30E-28 0.93556 0.91631

ROP 0.2528 0.23478 1.8264E-23 2.04E-23 0.2546 0.25854

Stocks in NDX
QCOM 0.34756 0.3156 6.857E-39 7.65E-39 0.3504 0.44209

INTC 0.28778 0.27365 2.9969E-23 3.19E-23 0.29177 0.29147

CSCO 0.025218 0.02323 1.2819E-24 1.34E-24 0.025131 0.027336

EBAY 0.17674 0.15784 2.3224E-27 2.61E-27 0.17908 0.20095

DELL 0.011111 0.0096119 1.954E-24 2.07E-24 0.011004 0.011516

ETF, Tech
MTK 0.50788 0.45403 1.5802E-35 1.83E-35 0.51042 0.52425

XLK 0.64277 0.57568 2.8894E-32 3.49E-32 0.64571 0.63228

IYW 0.58037 0.52074 1.206E-33 1.42E-33 0.58442 0.58736

ETF, Large-cap
IVV 0.11624 0.10954 1.4595E-22 1.54E-22 0.11676 0.11497

VV 0.11733 0.11416 6.6959E-31 6.76E-31 0.1171 0.11047

ELV 0.1146 0.11045 1.5379E-21 1.59E-21 0.11477 0.11423

ETF, Middle-cap
IJH 0.17452 0.16398 4.1467E-28 4.41E-28 0.17608 0.18046

IWR 0.30466 0.28307 3.7038E-24 4.09E-24 0.30679 0.30077

VO 0.040766 0.040954 8.8786E-22 8.85E-22 0.040615 0.041068

ETF, Small-cap
VB 0.024839 0.024905 3.5837E-18 3.58E-18 0.024673 0.024853

IWC 0.045411 0.04509 1.7547E-18 1.76E-18 0.045411 0.045651

DSV 0.11046 0.10486 1.8277E-24 2.04E-24 0.11166 0.11313

Mutual Funds
VFINX 0.13238 0.1241 5.0068E-23 5.32E-23 0.13271 0.13025

AGTHX 0.2976 0.27978 2.25E-29 2.41E-29 0.29764 0.29846

AIVSX 0.12266 0.11855 2.43E-22 2.51E-22 0.1228 0.12238

AWSHX 0.06847 0.065644 2.21E-19 2.30E-19 0.068587 0.067846

FCNTX 0.203 0.19327 9.66E-28 1.01E-27 0.2034 0.20714

† Appendix D. Model Comparison (8) HMM and GARCH(1,1)

154



Bibliography

[1] N. Amenc, F. Goltz, and V. L. Sourd, Assessing the Quality of Stock Market

Indices, EDHEC Publication (2006)

[2] R.D. Arnott, J. Hsu, and P. Moore, Fundamental Indexation, Financial

Analysts Journal 60(2) (2005) 83-99.

[3] L.E.Baum and T.Petrie, Statistical Inference for Probabilistic Functions of

Finite State Markov Chains, Ann. Math. Statist 37 (1966) 1554–1563.

[4] L.E.Baum, T.Petrie, G.Soules, and N.Weiss, A Maximization Technique

Occuring in the Statistical Analysis of Probabilistic Functions of Markov

Chains, Ann. Math. Statist 41 (1970) 164–171.

[5] F.Black and M.Scholes, The Pricing of Options and Corporate Liabilities,

J. Pol. Econ. 81 (1973) 637–659.

[6] F.Black, The Pricing of Commodity Contracts, Journal of Financial Eco-

nomics 3 (1976) 167–179.

155



[7] N.Bollen, Valuing Options in Regime-Switching Models, Journal of Deriva-

tives 6 (1998) 38–49

[8] T.Bollerslev, Generalized Autoregressive Conditional Heteroskedasticity,

Journal of Econometrics 31 (1986) 307–327

[9] D.A.Coast, G.G.Cano, and S.A.Briller, Use of Hidden Markov Models for

Electrocardiographic Signal Analysis Journal of Electrocardiol. 23 Suppl.

(1990) 184–191

[10] J.C.Cox, S.A. Ross and M. Rubinstein, Option Pricing: A Simplified Ap-

proach, Journal of Financial Economics 7 (1979) 229-263.

[11] J.C.Cox and M. Rubinstein, Options Markets, Prentice Hall (1985)

[12] N.J. Cutland,P.E.Kopp and W.Willinger, Stock Price Returns and the

Joseph Effect, A Fractional Version of the Black-Sholes Model, Seminar

on Stochastic Analysis, Random Fields and Applications, Progress in Prob-

ability, Ascona 36 (1993) Birkhauser (1995), 327–351.

[13] A. Dembo and O.Zeitouni, Parameter Estimation of Partially Observed

Continuous Time Stochastic Processes via the EM Algorithm, Stochastic

Processes and their Applications 23 (1986) 91–113.

[14] J.L. Doob, Regularity Properties of Certain Families of Chance Variables,

Transactions of the American Mathematical Society 47 (1940) 455–486.

156



[15] J.L. Doob, Stochastic Processes Wiley New York (1953).

[16] R.J. Elliott, Stochastic Calculus and Applications, Springer Verlag New

York (1995).

[17] R.J. Elliott, L.Aggoun and J.B.Moore, Hidden Markov Models: Estimation

and Control; Vol.18 of Applications of Mathematics, Springer Verlag New

York (1982).

[18] R.J.Elliott,W.C.Hunter and B.M.Jamieson, Drift and Volatility Estimation

in Discrete Time, Journal of Economic Dynamics and Control 22(1998),

209-218.

[19] R.J. Elliott, W.P.Malcolm and A.H.Tsoi, Robust Parameter Estimation for

Asset Price Models with Markov Modulated Volatilities, Journal of Eco-

nomic Dynamics and Control 27(8) (2003) 1391–1409.

[20] R.J. Elliott and R.W.Rishel, Estimating the Implicit Interest Rate of a Risky

Asset, Stochastic Processes and their Applications 49 (1982) 199–206.

[21] R.J. Elliott and J.van der Hoek, An Application of Hidden Markov Models

to Asset Allocation Problems, Finance and Stochastics 13(2) (1997) 229–

238.

[22] R.J. Elliott, Exact Adaptive Filters for Markov Chains Observed in Gaus-

sian Noise, Automatica 30(9) (1994) 1399–1408.

157



[23] R.J. Elliott, New Finite Dimensional Filters and Smoothers for Noisily Ob-

served Markov Chains, IEEE Transactions on Information Theory 39(1)

(1993) 265–271.

[24] R.J. Elliott and H.Yang, Forward and Backward Equations for an Adjoint

Process, Festschrift for G.Kallianpur, Springer Verlag (1992) 61–70.

[25] R. Engle, Autorregressive Conditional Heteroskedasticity with estimates of

United Kingdom Inflation, Econometrica 50 (1982) 987-1008 61–70.

[26] Y. Ephraim and N.Merhav, Hidden Markov Processes, IEEE Transactions

on Information Theory 48(6) (2002) 1518–1569.

[27] A. Etheridge, A Course in Financial Calculus Cambridge University Press

(2002).

[28] E.F. Fama and M.R. Gibbons, A Comparison of Inflation Forecasts, Journal

of Monetary Economics 13 (1984) 327–348.

[29] R.Fernholz, R. Garvy, and J. Hannon, Diversity-Weighted Indexing, Journal

of Portfolio Management24(2) (1998) 74-82

[30] G. D. Forney, The Viterbi algorithm, Proceedings of the IEEE 61(3) (1973)

268-278

158



[31] R. Frey and W.Runggaldier, A Nonlinear Filtering Approach to Volatil-

ity Estimation with a View Towards High Frequency Data, International

Journal of Theoretial and Applied Finance 4 (2001) 199–210.

[32] D. Gamerman, Markov Chain Monte Carlo: Stochastic Simulation for

Bayesian Inference, Chapman & Hall CRC (1997).

[33] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Markov Chain Monte

Carlo in Practice, Chapman & Hall CRC (1996).

[34] L. Glosten, R. Jagannathan, and D. Runkle, Relationship between the Ex-

pected Value and the Volatility of the Nominal Excess Return on Stocks,

Journal of Finance 48 (1993) 1779-1801.

[35] J.D. Hamilton, Rational Expectations Econometric Analysis of Changes in

Regimes: An Investigation of the Term Structure of Interest Rates, Journal

of Economic Dynamics and Control 12 (1988) 385–423

[36] J.D. Hamilton, A New Approach to the Economic Analysis of Non-

stationary Time Series, Econometrica 57 (1989) 357–384

[37] R.A.Haugen and N.L. Baker, The Efficient Market Inefficiency of

Capitalization-Weighted Stock Portfolios, Journal of Portfolio Management

(1991)

159



[38] J. Hsu and C.Jason, Cap-Weighted Portfolios are Sub-optimal Portfolios,

Journal of Investment Management 4(3) (2006) 1-10

[39] Y. Hu and B.Oksendal, Fractional White Noise Calculus and Applications

to Finance, Infinite Dimensional Analysis, Quantum Probability and Related

Topics 6(1) (2003) 1–32.

[40] J.C.Hull, Options, Futures,and Other Derivatives Securities, Prentice Hall

(1993).

[41] R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems,

Journal of Basic Engineering 82 (1960) 35–45

[42] A.N. Kolmogorov, Grundbegriffe der wahrsch, Ergodic Mathematics (1933).

[43] G.C. Lamoureux and W.D. Lastrapes, Heteroskedasticity in Stock Return

Data: Volumn versus GARCH Effects, preprint.(2005).

[44] S. Luo and A.H.Tsoi, Optimal Stopping via Partial Observation, Journal of

Finance 45 (1990) 221-229.

[45] S. Luo and A.H.Tsoi, American Option Pricing under Weak Markov Envi-

ronment, Working Paper.(2005).

[46] S. Luo and A.H.Tsoi, Weak Markov Renewal Process, Working Pa-

per.(2005).

160



[47] B.B. Mandelbrot and J.W.van Ness, Fractional Brownian Motions, Frac-

tional Noises and Applications, SIAM Rev. 10 (1968) 422–437.

[48] I. Manno, Introduction to the Monte Carlo Method, Akademiai Kiado

(1999).

[49] R.C.Merton, Theory of Rational Option Pricing, Bell Journal of Economics

and Management Science 4 (1973) 141–183.

[50] R.C.Merton, Option Pricing when Underlying Stock Returns Are Discon-

tinuous, Journal of Financial Economics3 (1976) 125–144.

[51] R.C.Merton, On the Pricing of Contingent Claims and the Modigliani-Miller

Theorem, Journal of Financial Economics 5 (1977) 241–249.

[52] N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of American

Staistics Associasion 44 (1949) 335-341.

[53] N. Metropolis, The Beginning of the Monte Carlo Method, Los Alamos

Science Special Issue 15 (1987).

[54] G. A. Mikhailov, Parametric Estimates by the Monte Carlo Method,

Utrecht, Netherlands: VSP (1999).

[55] L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applica-

tions in Speech Recognition, Proceedings of the IEEE 77(2) (1989) 257-286

161



[56] I. M. Sobol, A Primer for the Monte Carlo Method, CRC; Subsequent edition

(1994).

[57] A.H. Tsoi, H.Yang and S.N.Yeung, European Option Pricing when the Risk-

free Interest Rate Follows a Jump Process, Stochastic Models 16(1) (2000)

143–166.

[58] J. Ville, Étude Critique de la Notion de Collectif, Gauthier-Villars, Paris

(1939).

[59] G.Welch and G.Bishop, An Introduction to the Kalman Filter, UNC-Chapel

Hill, TR: 95-041 (2006)

[60] Lloyd R. Welch, Hidden Markov Models and the Baum-Welch Algorithm,

IEEE Information Theory Society Newsletter 53(4) (2003)

[61] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing, Mathematical

Models and Computation,Oxford Financial Press (1995).

162



VITA

Pei Yin was born on July 23, 1978 in Wuhan, China. After attending public

schools in Wuhan, she received the following degrees: B.A. in Economics and B.S. in

Mathematics from Wuhan University, China (2000); M.A. in Economics and M.S.

in Applied Mathematics from the University of Missouri-Columbia (2003). Then

she started her Ph.D. study in the Mathematics Department at the University of

Missouri-Columbia in Aug 2003. She plans to graduate in July 2007.

163




