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Efficient Protein Tertiary Structure Retrievals and Classifications Using

Content Based Comparison Algorithms

Pin-Hao Chi

Dr. Chi-Ren Shyu, Dissertation Supervisor

ABSTRACT

Functionally important sites of proteins are potentially conserved to specific three-

dimensional structural folds. To understand the structure-to-function relationship,

life sciences researchers and biologists have a great need to retrieve similar structures

from protein databases and classify these structures into the same protein fold. Tra-

ditional protein structure retrieval and classification methods are known to be either

computationally expensive or labor intensive. In the past decade, more than 35000

protein structures have been identified. To meet the needs of fast retrieval and clas-

sifying high-throughput protein data, our research covers three main subjects: (1)

Real-time global protein structure retrieval: We introduce an image-based approach

that extracts signatures of three-dimensional protein structures. Our high-level pro-

tein signatures are then indexed by multi-dimensional indexing trees for fast retrieval.

(2) Real-time global protein structure classification: An advanced knowledge discov-

ery and data mining (KDD) model is proposed to convert high-level protein signature

into itemsets for mining association rules. The advantage of this KDD approach

is to effectively reveal the hidden knowledge from similar protein tertiary structures

and quickly suggest possible SCOP domains for a newly-discovered protein. In addi-

tion, we develop a non-parametric classifier, E-Predict, that can rapidly assign known

SCOP folds and recognize novel folds for newly-discovered proteins. (3) Efficient local

protein structure retrieval and classification: We propose a novel algorithm, namely,

the Index-based Protein Substructure Alignment (IPSA), that constructs a two-layer

indexing tree to capture the obscured similarity of protein substructures in a timely

fashion. Our research works exhibit significantly high efficiency with reasonably high

accuracy and will benefit the study of high-throughput protein structure-function evo-

lutionary relationships.
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Chapter 1

Introduction

1.1 Motivations

Proteins are constructed by a long string of amino acid residues that fold into com-

plicated three-dimensional polypeptide chain structures. Observed in biological pro-

cesses, protein functions usually have strong correlations with their three-dimensional

structures [2–4]. Also, evolutionary evidence could potentially be derived from con-

served protein structures existed in multiple species [5, 6]. To understand the evolu-

tionary evidences and structure-to-function relationships, life sciences researchers and

biologists need to retrieve similar tertiary structures from protein databases. These

similar structures can be grouped into the same category of protein fold for further

study. Since the past few decades, both protein three-dimensional structure retrieval

and classification have been prevalent research topics in Computational Biology and

Structural Bioinformatics fields.

1.1.1 A Need for Fast Protein Three-Dimensional Structure
Retrieval

Given a protein three-dimensional structure of interest (query protein structure),

retrieving structurally similar proteins requires an one-against-all pairwise protein

structure comparison between the query protein structure and database protein struc-

tures. Similar protein structures are expected to be ranked higher in a retrieval result.

Traditional protein structure comparison approaches [7,8] focus on finding a structural

alignment in order to identify corresponding amino acid resides of two proteins that

1



get matched in three-dimensional space. The statistical significance to each struc-

tural alignment can be evaluated in the form of a P-value, which is the probability

that an alignment of two randomly selected proteins would obtain this score [9]. The

Root Mean Square Deviation (rmsd) is normally adopted to measure the distance

of aligned residues from their superimposition. The rmsd measurement is defined in

Equation 1.1, where d is the Euclidean distance between each of the n pairs of aligned

amino acid residues in two optimally superposed protein structures.

rmsd =

√∑
i d

2
i

n
(1.1)

A long alignment length and a small rmsd value are usually identified in two

protein structures with a high structural similarity. Since two protein structures

populate a huge combination of possible amino acid alignments, exhaustively finding

the optimal protein structural alignment has been proven as a complexity of NP-

Hard [10]. Even though computational methods, DALI [11] and CE [12] algorithms,

apply heuristics to improve the efficiency, the structural alignment algorithms are

still known to be computationally expensive. In recent years, structural genomics

(SG) projects [13–17] aim to link protein sequences to possible functions via high-

throughput techniques that determine three-dimensional protein structures, such as

X-ray crystallography and nuclear magnetic resonance (NMR). Figure 1.1 shows the

number of protein holdings in Protein Data Bank (PDB) [18] at four different time

stamps. As the number of newly-solved protein structures grows rapidly in Protein

Data Bank, retrieving structurally similar proteins using current structural alignment

algorithms may take hours or even days to compare protein structures and return

the search results. Therefore, improving the efficiency of protein structure retrieval

becomes an important research issue.

1.1.2 A Need for Fast Protein Three-Dimensional Structure
Classification

Protein structure classification means to categorize a newly-discovered protein struc-

ture into a protein fold, which is either a known fold or a novel fold. Computational

approaches usually conduct one-against-all protein structure comparisons between

2



Figure 1.1: Statistics of protein holdings in Protein Data Bank and SCOP.

a newly-discovered protein structure and database proteins. If significant structural

similarities are detected, the known fold of the top structurally matched database pro-

tein can be assigned to the newly-discovered protein. Otherwise, this newly-discovered

protein is categorized as a novel fold. Traditional protein structure classification al-

gorithms apply heuristics to reduce the computational effort of scanning large-scale

protein databases. The trade-off is that different heuristics may return divergent re-

sults for the same query protein. At present, the Structural Classification of Protein

(SCOP) database [19], which is manually constructed by human experts, is believed

to maintain the most accurate structural classification. Under the hierarchical con-

figuration of SCOP database, proteins with globally or locally similar structures are

usually grouped into the same SCOP fold. Manual classification provides reliable

results. However, it is labor intensive. Figure 1.1 shows that the gap between pro-

tein holdings of PDB and SCOP databases continues to grow. Hence, developing

an efficient and accurate classifier of protein structures will have a vital impact on

effectively classifying high-throughput newly-discovered structures.

3



This dissertation is organized as follows. Chapter 2 surveys recent research works

related to protein three-dimensional structure comparison, retrieval and classification.

Chapter 3 introduces our knowledge-based method for the real-time global protein

structure retrieval. Chapter 4 explains our classifiers for the real-time global protein

structure classification. Chapter 5 describes our Index-based Protein Substructure

Alignment (IPSA) algorithm for the efficient local protein structure retrieval and

classification. Web-based systems are demonstrated in Chapter 6. Finally, we sum-

marize this dissertation and discuss possible future works in Chapter 7.

4



Chapter 2

Literature Review

2.1 Protein Three-Dimensional Structure Compar-

ison and Retrieval

2.1.1 Structural Alignment Using Cartesian Coordinates of
Amino Acid Residues

Traditional protein structure comparison methods compute a pairwise similarity be-

tween two proteins by directly aligning three-dimensional coordinates of amino acid

residues. SSAP (Secondary Structure Alignment Program) [20] utilizes a two-layer

dynamic programming technique [21] to align two proteins. The first layer of dynamic

programming aligns the differences between two sets of vectors to compute a score of

Si,j. The first set includes vectors between the ith Cβ atom and its 2n nearest neigh-

bors in one protein. The second set includes vectors between the jth Cβ atom and its

2n nearest neighbors in the other protein. The second layer of dynamic programming

aligns the previous computed score of the entire pairs of animo acids in two proteins.

CE (Combinatorial Extension of the optimal pathway) [12] aligns two protein

structures based on the combinatorial extension of an alignment path, which is com-

posed of aligned fragment pairs (AFPs) with m amino acids. Two consecutive AFPs

in the alignment path satisfy one of following conditions:

PA
i+1 = PA

i +m and PB
i+1 = PB

i +m, (2.1)

PA
i+1 > PA

i +m and PB
i+1 = PB

i +m, (2.2)
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PA
i+1 = PA

i +m and PB
i+1 > PB

i +m, (2.3)

PA
i+1 ≤ PA

i +m+G, (2.4)

PB
i+1 ≤ PB

i +m+G, (2.5)

where PA
i denotes the position of starting residue in protein A for the ith AFP

in the alignment path and G is the maximal size of allowable gap. After rigid body

superpositions, the structural similarity, Root Mean Square Deviation (rmsd), is

measured based on inter-residue (Cα) distances. A Z-score is used as the significance

measure, which is statistically evaluated from comparing the alignment result with

another result of aligning two random structures with the same length.

FATCAT [22] first identifies a list of aligned fragment pairs (AFPs), which are

obtained from a superposition of two fragments in the two proteins. The algorithm

then applies the dynamic programming technique to align AFPs. Meanwhile, a rigid

transformation (rotation/translation) is computed from two consecutive AFPs to see

whether such a twist results in a better superposition of the structures. Also, a

unified scoring function is designed to combine the score of twist, gap, and extension

of alignment. FATCAT measures the chance of getting the same similarity in two

random structures, P-value, to evaluate the significance of the detected similarity.

DALI (Distance Alignment) [11] calculates a distance matrix from each pair of

Cα coordinates in a protein structure. The distance matrix is first decomposed into

hexapeptide-hexapeptide fragments, namely, contact patterns, to simplify the align-

ment task in later stages. DALI then searches through two distance matrices, which

are mapped from two proteins, to find similar contact patterns and assembles pairs

of contact patterns into larger sets of alignment using Monte Carlo simulation, which

is a randomized algorithm that is unable to guarantee convergence with the globally

optimal solution.

MINRMS [23] first limits the space of possible superpositions by superimposing

all segments of four consecutive amino acid residues (4-mer) from one protein onto

all 4-mer segments of the other protein. Given a candidate superposition of the two

protein, the algorithm then applies dynamic programming technique to align two

proteins and identify the minimal rmsd score. The algorithm recursively searches a

better alignment based on the superposition of two proteins derived from the currently
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best alignments.

Bhattacharya et al. [24] introduce an algorithm that decomposes a protein struc-

ture into multiple substructures, called neighborhoods. The algorithm then aligns all

pairs of neighborhoods (one from each protein) and computes the rigid transformation

from superimposing aligned neighborhoods. For each pair of aligned neighborhoods,

a intermediate similarity score is calculated between two proteins that have been ro-

tated and superimposed using the transformation of the previous step. To extend the

aligned neighborhoods, the algorithm computes final similarity scores using a greedy

fragment pair search, which picks the neighborhood of the highest score first and the

second best in the following order.

2.1.2 Structural Alignment Using Secondary Structure Ele-
ments

Instead of directly aligning three-dimensional coordinates of amino acid residues, one

effective strategy to speedup the pair-wise structural comparison is to compare protein

secondary structure elements (SSEs) such as Helix (H) and Sheet (E). VAST (Vector

Alignment Search Tool) [25, 26] first uses vectors to represent secondary structure

elements (SSEs). The algorithm then searches for matching pairs of vectors in two

protein structures with the same type (H, E) and comparable distances or angles,

which describe relative orientation. These matched pairs are further assembled to

build a larger set of SSEs. The significance of the results is evaluated by a P value,

which indicates the probability of obtaining the results by chance, multiplied by the

number of possible substructure pairs in the database.

SARF [27] identifiesHelix(H) and Sheet(E) substructures from Cartesian coordi-

nates of amino acid residues; the secondary structures in two proteins are represented

as vectors. The SARF algorithm compares angle and distance information between

every pair of vectors and identifies pairs of vectors that have similar orientation in

two proteins, efficiently aligning two protein structures. LOCK [28] is a hierarchical

approach that aims to minimize the rmsd of two structures at three levels. First

of all, protein secondary structure elements (SSEs) are represented as vectors. The

initial superposition is obtained by computing local alignment of SSEs using dynamic
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programming. The second level computes superposition of corresponding Cα atoms,

minimizing rmsd of the two proteins. In the third level, the core of the structure is

identified with another rmsd minimization. DEJAVU [29–31] exhaustively searches

matched SSEs, which are represented as vectors, to detect structural similarity be-

tween the query and database structures. The number and length of SSEs, mutual

distances and angles, connectivity and directionality are considered as filtering con-

straints. The matched SSEs are then used to initialize a superimposition of amino acid

residues in two protein structures. From the result of previous superimposition, the

algorithm then interactively extend the length of aligned residues if the minimization

of rmsd is possible.

MATRAS (MArkovian TRAnsition of protein Structure) [32] applies the theory

of Markov transition to measure the similarity in proteins. The algorithm first con-

ducts a hierarchical clustering to group multiple SSE pairs of two proteins. Starting

from previously aligned SSE pairs, dynamic programming is then iteratively used for

determining all possible pairs of aligned amino acid residues. GRATH [33] applies

graph theory [34,35] in the field of computational algorithm in order to compare two

protein structures. A protein tertiary structure is converted into a graph, which is

composed of nodes and edges, where nodes represent the SSEs and edges contain the

spatial relationships, such as distances, and angles between the SSEs. The algorithm

first generates a G1G2 matrix by finding all pairs of SSE that have common types

of secondary structure (α-helix or β-strand) in each graph. For every matched pairs

of SSE in G1G2, the algorithm checks whether the edge measurements in the two

proteins are within a chosen error tolerance. The previously computed results are

stored in another matrix, called the correspondence matrix. Then, the Bron and

Kerbosch algorithm [36] is then used for finding cliques in the correspondence graph.

Each clique mined from the correspondence matrix indicates a set of locally similar

SSEs.

TOPSCAN [37] uses a set of complex alphabets to describe topological properties

such as direction, proximity, accessibility and length of SSE and loops, converting

each protein structure into a long sequence. Then, a traditional global sequence

alignment [38] is conducted to compare two sequences and compute a similarity score.
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SCALE [39] converts protein three-dimensional structures into angle-to-distance (AD)

matrices, which combine the spatial information of angles and distances between

secondary structure element pairs. The algorithm applies dynamic programming

technique to search the maximal common sequences of SSE from two proteins, P1

and P2. A score is optimized from the sequence similarity of SSE, distance and angles

between the common subsequences of SSE. Even though the search time has been

successfully improved, retrieval precision is not as good as fine-grained alignment

methods such as DALI and CE. SSM [40] uses a two-step procedure to align two

protein structures. In the first step, SSEs have been modeled into a graph. SSE

graph matching is adopted to compute a structure alignment and superposition. The

second step, namely Cα-alignment, initially takes the alignment result of the previous

step and starts an iterative procedure to best describe the superimposition of two

structures based on the expansion of currently aligned residues.

To compare the structural similarity, the existed algorithms extract relevant fea-

tures from the secondary structure elements, alternative representatives of polypep-

tide chains such as three-dimensional Spline, or even the three-dimensional coor-

dinates of amino acid residues. With suitable feature extraction algorithms, each

protein tertiary structure is represented by a multi-dimensional feature vector. In

addition, similar protein structures are clustered together in the multi-dimensional

feature space. CTSS [41] transforms a protein structure into a three-dimensional

Spline as an intermediate representative. The discriminative features extracted from

three-dimensional Spline [42], such as curvature and torsion, can be used to filter out

most irrelevant proteins. An extended version of CTSS method, called ProGreSS [43],

combines the features extracted from three-dimensional Spline with the additional

amino acid sequence information. A geometric hashing technique is adopted to en-

hance the retrieving performance for both accuracy and efficiency. When archiving

1,810 protein chains in database, the average running time of CTSS and ProGreSS

methods is 37 seconds and 18 seconds, respectively.

Marsolo and Parthasarathy [44] propose an algorithm that first converts a dis-

tance matrix into a one-dimensional signal. Global features such as Zernike [45] and

wavelet [46] approximation coefficients are then extracts from the one-dimensional
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signal. SGM (Scaled Gauss Metric) [47] and PCC (Principle Component Corre-

lation) [48] extract global features from protein tertiary structures using Gaussian

integral invariants and the principle component correlation analysis, respectively. By

conducting the nearest neighbor search, the Euclidean distance is commonly used as

the similarity metric function. FoldMiner [49] performs structural comparison using

LOCK 2 algorithm, which extends LOCK algorithm [28] with several modifications.

First of all, the LOCK 2 algorithm allows all pairs of SSE vectors in the geometric

hashing to be compared without following the sequential order. Secondary, the algo-

rithm changes the scoring function that computes the distance between two aligned

vectors to deal with vectors of different lengths and orientations. The algorithm also

allows gaps during SSE alignments. The quaternion transformation is adopted to su-

perimpose two protein structures [50]. During the transformation procedure, LOCK

2 assigns each pair of aligned residues a weight, which is inversely proportional to the

length of the SSE. The dynamic programming procedure is recursively conducted to

refine the transformation until the score is converged.

A practical solution of accelerating the structural comparison process is to con-

struct hash or tree data structures to index the discriminative features extracted

from protein structures. Young et al. [51] introduce an algorithm that first computes

distances and angles among three secondary structure elements (SSE). Their algo-

rithm then utilizes hashing techniques to identify similar sub-structural cores that are

composed of triple secondary structure elements in two proteins. 3D-Hit [52] first gen-

erates structural clusters of short protein fragments; each cluster represents a group

of seeds, each of which contains thirteen Cα atoms. The rmsd value for each pair of

seeds in the cluster is less than 3.0 Å. A hashing procedure off-line connects seeds in

each cluster with all proteins from a large database based on the local similarity. A

query protein is divided into several seeds, each of which is compared with the cluster

database. According to the hash table, structurally matched seeds in the cluster lead

the way to candidate proteins in the large database. The algorithm then conducts

structural comparisons on the query structure and each of candidate database protein

structures.

Camogla et al. [53] presented the protein secondary structure as a vector that
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extracts several features, such as vector angle, center, and the secondary structure

element type. These data can be indexed by constructing the R*-Tree [18]. How-

ever, the R*-Tree is known to efficiently maintain feature vectors with only a few

dimensions. When the dimensionality of a feature vector exceeds a threshold, the

algorithm needs to divide the feature vector into multiple sub-vectors with a triplet

format, which results in high computational overhead to merge retrieved triplets.

Buchner et al. apply a suffix tree to index the φ and ψ angles of proteins [54]. This

method favors exact matching of a continuous substructural folding without flexi-

ble approximate matching. In addition, substructure cores may consist of multiple

broken substructural segments, which limits the usefulness of suffix trees.

Chen et al. [16] propose a three-dimensional reference frame to recalculate the co-

ordinates of amino acid residues in the preprocessing step. Once the hash values of all

reference residues have been stored in the hash table, they utilized geometric hashing

techniques to identify all possible residues by comparing against a query substruc-

ture. Since the number of possible candidates is huge, the algorithm establishes a

threshold to filter out a portion of dissimilar atoms using the sequence information in

PAM250 table. ProtDex2 [55] partitions the distance matrix into many sub-matrices,

called contact regions, each of which presents the spatial information between ev-

ery pair of secondary structure elements. The algorithm off-line processes the mean

distance and angle between two contact regions and utilizes the geometric hash tech-

nique to rapidly retrieve similar protein chains. Generally speaking, since hundreds

of polypeptide residues only form tens of secondary structure elements, the complex-

ity of these structure comparison algorithms can be greatly reduced. However, the

collision issues of their hash function have not been effectively addressed.

Several works study the retrieval of similar protein three-dimensional substruc-

tures without structural alignments. Chew et al. [56] first measure the Unit-vector

RMS (URMS) from corresponding amino acids by shifting one amino acid. A small

set of continuous amino acid segments is determined in terms of a drop of URMS.

Among these segments, the algorithm combines a partial set of segments that present

geometric similarity into a common sub-structural core. MAMMOTH [57] first com-

putes the unit-vector root mean square (URMS) distance [56] between all pairs of
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heptapeptides of two proteins and determines rotation matrices of each pair, which

is then used for finding the alignment of local structures that maximizes the local

similarity of both proteins. From the alignment result of local structures, the algo-

rithm then identifies the maximum subset of similar local structures with a statistical

evaluation of P-value.

MUSTA (Multiple Structure Alignment Algorithm) [58] first calculates a multi-

dimensional transformation vector by aligning k-tuple amino acid residues. A clus-

tering technique then groups similar transformation vectors and iteratively merges

k-tuple residues as a common substructure core. Zemla [59] proposes two heuristics

to compare two protein structures, global distance test (GDT) and longest continuous

segment (LCS). The GDT heuristic globally extends the alignment length for multiple

broken segments within a cut-off distance threshold. On the contrary, LCS heuristic

locally finds the longest continuous segment by minimizing the rmsd measurement.

The final score is a weighted mean of the GDT score and the LCS score.

Comparing proteins of length N , Erdmann et al. [60] apply the knot theory to

globally align secondary structures of two protein structures in O(N4). Kolodny

and Linial [61] study an approximate algorithm, which bounds the number of rigid

transformations to optimally align two protein structures in polynomial time O(N10

ε6 ),

where ε is an error threshold from the optimal score. Huan et al. [62] propose the

adjacent matrix to model the protein three-dimensional structure based on the graph

theory. They utilized a tree structure to organize the adjacency matrices of the

sub-graphs and developed an entropy-based similarity function to compare two sub-

graphs. Their objective is to mine frequent sub-graphs that help identify recurring

substructures that may correspond to enzyme active sites.

TOPOFIT [63] performs a three-step procedure to align two proteins. The first

step utilizes Delaunay tessellation (DT) points to represent protein structures. The

second step conducts a classification of the tetrahedrons by shape, volume, and back-

bone topology. Each pair of tetrahedrons from two proteins with the same category

is called a seed. The third step iteratively adds one or more new tetrahedrons to an

initial seed. When no new tetrahedrons are available or the number of mismatches

exceeds a predefined threshold, the algorithm stops growing the seed and uses it for
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evaluating the structural similarity of two proteins.

Recent research has studied mapping three-dimensional protein structures into

one-dimensional sequences for fast substructure retrieval. Protein block expert (PBE)

[64] uses 16 motifs (substructures) as structural alphabets and converts protein struc-

tures into one-dimensional sequences. A sequence alignment tool is then applied

to capture the structure similarity in the sequences. Another conceptually simi-

lar work, 3D-BLAST [65], partitions the (κ, α) map into 23 structural letters, en-

coding three-dimensional protein structures into one-dimensional sequences. The

three-dimensional Blast algorithm retrieves homologous proteins using an efficient

sequence-based alignment technique, BLAST [66], conducting evolutionary classifi-

cation of newly-discovered proteins. Both approaches exhibit good efficiency, except

that the one-dimensional representation of protein substructures potentially loose the

structural topology. Identical sequences from two proteins may correspond to dissim-

ilar structures in three-dimensional space. Therefore, the accuracy is lower than

detailed structure alignment algorithms such as DALI and CE.

2.2 Protein Three-Dimensional Structure Classifi-

cation

Traditional classification literature studies categorizing proteins based on structural

similarities. Generally, these systems rely on structural alignment algorithms to mea-

sure the similarity of two proteins. The CATH (Class, Architecture, Topology, Ho-

mologous Superfamily) database [67–69] is constructed by applying the Secondary

Structure Alignment Program (SSAP) [20], which consists of a double dynamic pro-

gramming technique in order to find the optimal structural alignment of two pro-

teins. The FSSP (Fold Classification based on Structure-Structure Alignment of

Proteins) database [70–72] is built based on the Distance Alignment (DALI) [11] al-

gorithm that applies Monte Carlo heuristics to compare structural similarities from

two-dimensional distance matrices mapped from three-dimensional protein structures.

Both CATH and FSSP conduct one-against-all structural comparisons to measure

structural similarities between a newly-discovered protein and known database pro-

teins. The fold of the best structurally matched database protein is then assigned
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to this new newly-discovered protein structure. Since SSAP and DALI utilize differ-

ent heuristics to obtain local optima of structural alignments, classification methods,

CATH and FSSP, may return divergent results for the same test protein. At present,

the Structural Classification of Protein (SCOP) database [19], which is constructed

based on human inspections, is believed to provide highly accurate structural classifi-

cation results. In SCOP, proteins with structural relationships are usually hierarchi-

cally grouped into the same fold. Even though this human curated database provides

reliable results, it is labor intensive.

Several works [1,73–75] apply a consensus strategy to classify the protein domains

or folds for newly-discovered proteins by intersecting multiple classification results

from classical structural alignment algorithms such as DALI [11], MAMMOTH [57],

Combinatorial Extension (CE) [12] and VAST [25, 26]. These consensus approaches

yield higher classification accuracies than each individual method. However, a com-

bination of structural alignment algorithms is computationally expensive.

Another work, proCC [76], first decomposes protein structures into multiple SSE

triplets. The algorithm then extracts 10 features from a SSE triplet based on the

spatial relationships of SSEs such as distances and angles. R*-Tree [18] is utilized to

index 10-D feature vectors of SSE triplets. Similarly, a query protein is decomposed

into multiple SSE triplets, which are searched against the R*-Tree. For each database

protein, a weighted bipartite graph is generated based on the matched SSE triplets

of retrieval results. A maximum weighted bipartite graph matching algorithm is used

for computing an overall similarity score between the query protein and the database

protein. Once the algorithm finds the top k similar database proteins, K-NN [77] and

SVM [78] techniques are adopted to classify the query protein into known folds. When

the classifier cannot assign a class label to the query protein with enough confidence,

the algorithm employs a clustering technique to detect new protein folds. The proCC

takes 9 minutes to compare a query structure with 2733 database proteins. Table 2.1

summarize performance evaluations of our survey. Basically, accurate methods are

less efficient and efficient approaches are less accurate.
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Table 2.1: A performance summary of our survey.
Approach Substructure

search
Efficiency Server Accuracy Test set

IPSA (unpub-
lished)

Yes 37.66 times faster
than DALI ; 2.78
times faster than
CE

2.8GHz Pentium
4 Processor

presenting compara-
ble fold-level retrieval
accuracy (71.01%)
with DALI (73.65%)
and better accuracy
than CE (54.98%)

150 vs 2802 repre-
sentative proteins

PBE [64] Yes within one
minute for one-
against-all search

32 processor IBM
AIX52

81.3% fold accuracy 9392 proteins rep-
resentative from
SCOP 1.65

3D-Blast [65] Yes 1.298 sec. to
search 11001
database proteins

2.8 GHz Pentium
4 processors

81% precision at 50%
recall

894 vs 9354 repre-
sentative proteins

ProteinDBS [79] No (Global
Similarity)

< 10 sec. to
search 53356
database proteins

2.4GHz Xeon IV
processor

94.37% precision at
10% recall, 88.98%
precision at 50% recall

7702 representa-
tive proteins from
SCOP

Marsolo and
Parthasarathy
[44]

No (Global
Similarity)

n/a 2.8 GHz Pentium
4 processor

78% accuracy 653 representa-
tive proteins

SSAP [20] Yes 36 min. for 150
residue protein
pairs

micro-VAX II un-
der VMS

* representative
protein pairs

CE [12] Yes 20 sec. for 172
residue protein
pairs

Ultra Sparc II
248Mhz

* representative
protein pairs

DALI [11] Yes 5-10 min. for pro-
tein pairs

Sparc-1 * representative
protein pairs

VAST [26] Yes aligning protein
pairs in seconds

n/a * representative
protein pairs

SARF [27] Yes n/a n/a * representative
protein pairs

MATRAS [32] Yes 2 sec. for 150
residue protein
pairs

MIPS R10000 175
MHz

presenting compara-
ble fold accuracy with
DALI

1487 representa-
tive proteins

MAMMOTH [57] Yes 0.02 sec. for
100 residue pro-
tein pairs

500Mhz Alpha
workstation

presenting 50% fold
accuracy, which is less
than 60% accuracy of
DALI

representative
protein pairs

TOPOFIT [63] Yes 15 sec. for pro-
tein pairs

2.4 GHz Pentium
4 CPU

presenting compa-
rable accuracy with
DALI and CE

representative
protein pairs

MUSTA [58] Yes aligning 4-13 pro-
teins within min-
utes

PC 400Mhz * representative
protein sets

DEJAVU [30] Yes 30 sec. to a cou-
ple of minutes for
one-against-all
search

n/a * 2400 representa-
tive proteins

GRATH [33] Yes n/a n/a providing statistical
analysis of similarity
scores

1702 representa-
tive proteins from
CATH

LOCK [28] yes 18.28 min. for
database search

180 MHz MIPS
R5000 micropro-
cessor

presenting compa-
rable accuracy with
DALI

796 representa-
tive proteins

TOPSCAN [37] Yes 30000 times
faster than SSAP

Dual Pentium III
450Mhz

presenting lower accu-
racy than SSAP

3124 representa-
tive proteins

SCALE [39] Yes 10.26 sec. for all-
against-all search
(90 vs 90)

n/a presenting better
accuracy than TOP-
SCAN and Blast

90 representative
proteins from
SCOP

ProtDex2 [55] No (Global
Similarity)

16 seconds for
database search
(20 vs 200)

1.6GHz Pentium
4 Processor

presenting lower accu-
racies than DALI and
CE with significantly
higher efficiency

20 vs 200 repre-
sentative proteins

SSM [40] Yes within one min.
for one-against-
all search

CPU cluster presenting compa-
rable accuracy with
DALI, CE, and VAST

the whole PDB

CTSS [41] Yes 93 sec. for query-
ing a protein with
254 residues

2.0GHz Pentium
4 Processor

* 1949 representa-
tive proteins from
PDBSELECT

ProGreSS [43] Yes 37 times faster
than CTSS

1.6Ghz Athlon
processors

100% accuracy of
SCOP class and 97%
accuracy of SCOP
superfamily

1810 representa-
tive proteins

SGM [47] No (Global
Similarity)

n/a n/a 95.51% accuracy of
CATH folds

20937 proteins
from CATH 2.4

PCC [48] No (Global
Similarity)

n/a n/a presenting compa-
rable accuracy with
SGM

56 representative
proteins from
CATH

FoldMiner [49] Yes 3.6 min. for one-
against-all search

1.2GHz Athlon
processor

presenting compara-
ble accuracy with CE
and VAST

2448 representa-
tive proteins

3D-Hit [52] Yes one minute for
one-against-all
search

PC 2GHz presenting compa-
rable accuracy with
DALI

5000 representa-
tive proteins

∗: presenting aligned residues, rmsd, and a view of coordinate superimposition
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Chapter 3

Real-time Global Protein
Structure Retrieval

3.1 Preliminaries

Protein tertiary structures are a series of amino acid residues in three-dimensional

space, each of which contains exactly one Cα atom. Much of the computational

biology literature [11,12,69] uses the Cα atom to describe each amino acid and com-

pares protein tertiary structures based on protein backbones. The protein backbone

presents a characteristic protein folding by sequentially plotting all coordinates of the

Cα atoms in three-dimensional space. The kth backbone in a protein database with

n amino acids is modeled as Ωk = { ~
Ck,1

α ,
~
Ck,2

α , ...,
~
Ck,n

α }, where
~
Ck,i

α denotes the three-

dimensional coordinate of ith Cα atom. To measure the structural similarity between

two protein backbones, traditional protein structure comparison methods [11, 12, 20]

are focused on finding an optimal structural alignment, which best identifies corre-

sponding amino acid residues between two protein backbones, a.k.o. aligned residues,

that have a highly matched superimposition in the three-dimensional space. The

similarity of two protein backbones is usually computed based on two crucial mea-

surements, alignment length and root mean square deviation (rmsd). The alignment

length, NA, is the total number of aligned residues. The root mean square deviation

measures the average Euclidean distance between each pair of aligned Cα atoms af-

ter proper rotation and translation operations are applied in order to superimpose

aligned residues of two proteins in the three-dimensional space. Two structurally
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similar backbones usually have a high alignment length and a smaller rmsd value.

Due to a huge combination of aligned amino acid segments, exhaustively finding the

corresponding amino acid residues in two protein backbones has been proven as a

complexity of NP-Hard [10].

3.1.1 Representatives of Protein Backbone Structure

To reduce the computational complexity, a higher level comparison method is pro-

posed by Can et al. [41], transforming protein backbones into three-dimensional

splines as intermediate representatives. Their algorithm then extracts features from

transformed three-dimensional splines, such as curvature and torsion. Similar protein

backbones can generate splines with similar features. After filtering out dissimilar

structures, a traditional structural alignment algorithm is performed on a small set

of database proteins with features in common. Besides the three-dimensional spline,

another representative of three-dimensional protein backbone is the two-dimensional

distance matrix, which has been used to compare protein structures in the Distance

Alignment algorithm (DALI) [11]. The matrix is derived from calculating the Eu-

clidean distance between every pair of Cα atoms in a protein backbone. For exam-

ple, a backbone structure, Ωk, with n amino acids can be transformed into a n × n
distance matrix, denoted by Dk. Each element of matrix, Dk[i, j], represents the

distance between
~
Ck,i

α and
~
Ck,j

α , where i, j = {1 . . . n}. Supported by distance ge-

ometry methods [80], the distance matrix is sufficiently informative to reconstruct

the three-dimensional backbone structure. Therefore, we choose two-dimensional

distance matrix as our intermediate representative of protein tertiary structures for

Global-To-Global structure comparison. Our assumption is based on the fact that

globally similar protein structures should have distance matrices with similar visual

contents. In addition, we expect that proteins in the same SCOP domain poten-

tially present structural similarities in both three-dimensional backbone structures

and two-dimensional distance matrices. To pictorially explain our assumption, Fig-

ure 3.1 shows that protein chains from SCOP protein domains, Carbonic anhydrase

and D-xylose isomerase, present high similarities in both three-dimensional tertiary

structures and two-dimensional distance matrices. Even though similar visual pat-
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.1: Three-dimensional backbone structures and two-dimensional distance ma-
trices from protein chains selected from the SCOP domain Carbonic anhydrase: (a-b)
1am6, (c-d) 1bic, and the SCOP domain D-xylose isomerase: (e-f) 9xim D, (g-h)
1xlb A

terns can be identified by manual inspections, it is still a challenging research topic

to accurately mimic distance matrix comparisons using computational techniques.

3.1.2 Content-Based Distance Image Retrieval

Fortunately, several research works have been proposed in the area of content-based

image retrieval (CBIR) since early 80’s [81–83]. Many research groups have made a

great contribution in finding relevant features from images [84–86]. Given an image

of interest (query image), the concept of CBIR is to efficiently and accurately retrieve

visually similar images from databases. Once three-dimensional protein structures are

mapped into two-dimensional images of distance matrices, a higher level of protein

structure comparisons can be conducted in terms of matching visual patterns in the

distance matrices. Therefore, adopting CBIR technique is a feasible solution for fast

protein structure comparisons.

3.2 Knowledge-Based Feature Extraction

Since a distance image has symmetric properties, to reduce the computational over-

head of feature extraction process, our algorithm analyzes only upper triangular dis-

tance matrices. For the convenience of explanation, we interchangeably use the upper

triangular distance matrix and distance image in the remainder of this dissertation.

To effectively retrieve similar candidates from a large population of distance images,

which are mapped from protein backbones in PDB database, extracting relevant fea-

tures becomes an important issue to study. Our approach measures global character-

istics of the distance image using a suite of computer vision algorithms [87–89]. Fur-
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Figure 3.2: The difference of blob locations in two distance matrices effects structural
variations of protein backbones using the four band partition.

thermore, understanding visual patterns in distance matrices is believed to be the key

to detecting local structural similarities of proteins. We propose a knowledge-based

method to identify local features based on the understanding of spatial relationships

among protein local segments of amino acid residues in a distance image. Statistical

tests are then conducted to ensure the efficacy of these features.

3.2.1 Local Features

In order to extract local features, our method first partitions a distance image into

bands, parallel to its diagonal. In each band, we then calculate the distance his-

tograms, which have four bins with distance ranges (in pixels): [0-5], [6-10], [11-15],

and [16-∞]. Let NB be the number of bands in a distance image, Dk, which is mapped

from the kth protein backbone in the database. Elements of the rth band in Dk are

represented by the following set in Equation (3.1):

Br
k = {Dk[i, j] | d

n× (r − 1)

NB

e ≤ (j − i) ≤ dn× r
NB

e}

, where 0 ≤ i ≤ j ≤ n, r = 1, 2, ..., NB (3.1)

With multiple-band partitions, local structural similarities are expected to be

captured in each band. Considering a partition with NB bands, visual patterns in

bands near a diagonal of distance image can be interpreted as distances between

amino acid residues in the vicinity along a protein backbone structure. When a band

is located further from the diagonal, its visual pattern reveals distances between

amino acids separated by a longer residue gap in a three-dimensional backbone. A

visual content such as a low-attenuation blob can be expected under the following
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situations: 1) two continuous local segments of amino acid residues in a polypeptide

chain are spatially close to each other and 2) a Helix(H) secondary structure. Let

Ωp and Ωq denote two protein backbones. Their corresponding distance images are

termed as Dp and Dq, respectively. If Ωp and Ωq are highly similar, the location of a

low-attenuation blob B in Dp is usually spatially corresponding to the location of a

similar blob B′ in Dq. When two chains have local structural variations, the location

of blobs may not have spatial correspondences. From our observations, both B and

B′ occurring in the same band may suggest local structural similarities. For example,

two protein chains Ωp and Ωq composed of 250 Cα atoms are shown in Figure 3.2

(b) and (d), respectively. Blob B in Dp represents two spatially nearby segments of

amino acids in Ωp, { ~Cp,5
α , ~Cp,6

α , ..., ~Cp,15
α } and { ~Cp,200

α , ~Cp,201
α, , ..., ~Cp,210

α }, that folds into a

particular ring-shaped substructure. A comparable local substructure of Ωq folded by

segments { ~Cq,70
α , ~Cq,71

α , ..., ~Cq,80
α } and { ~Cq,225

α , ~Cq,226
α , ..., ~Cq,235

α }, forms a corresponding

blob object B
′
in Dq. Even though blobs B and B′ are formed at different locations

in the same band of distance images, they share similar ring-shaped structural folds.

Another intuitive example is when two protein chains with segments of head and tail

that are spatially close to each other, a pair of blobs A and A′ is located in the band

that are furthest from the diagonal of Dp and Dq, respectively. The protein secondary

structures, Helix, also manifest themselves as blobs in the inner most band that are

adjacent to the diagonal, such as blobs C and C ′ depicted in Figure 3.2 (a) and

(c). Our image partition method is flexible to capture local structural variations.

To detect local structural similarities from visual contents of blobs, optimizing the

number of bands, NB, is required. Partitions that are too fine may result in losing

moderate-size blobs. Band regions that are too coarse may not be able to spatially

describe the localization of blobs. The best setting is 6-band partition derived from

our empirical observations.

3.2.2 Global Features

The global features are extracted from the entire upper triangular distance matrix

using standard computer vision algorithms. The first feature is the binary threshold of

the Otsu algorithm [88]. This algorithm is based on the assumption that a histogram
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Table 3.1: Normalized local feature vectors of four protein chains from two SCOP
protein domains. Histogram[a,b] means the distance histogram for the ath band and
the bth bin.

Image Features 1o7j A 1hg0 A 1jsm A 1jso A
Histogram[1,1] 0.0000 0.0000 0.0913 0.0908
Histogram[1,2] 0.0076 0.0075 0.3849 0.3873
Histogram[1,3] 0.2518 0.2579 0.0505 0.0514
Histogram[1,4] 0.6237 0.6773 0.0000 0.0000
Histogram[2,1] 0.0016 0.0014 0.2140 0.2148
Histogram[2,2] 0.1027 0.1018 0.6123 0.6106
Histogram[2,3] 0.3850 0.3724 0.2108 0.2108
Histogram[2,4] 0.5944 0.6156 0.0248 0.0245
Histogram[3,1] 0.0296 0.0286 0.4051 0.4046
Histogram[3,2] 0.2252 0.2227 0.7240 0.7249
Histogram[3,3] 0.5119 0.5106 0.2836 0.2833
Histogram[3,4] 0.4370 0.4430 0.0153 0.0152
Histogram[4,1] 0.1350 0.1325 0.4136 0.4142
Histogram[4,2] 0.4669 0.4661 0.6513 0.6518
Histogram[4,3] 0.5554 0.5502 0.3454 0.3444
Histogram[4,4] 0.1943 0.1983 0.0264 0.0263
Histogram[5,1] 0.1978 0.1944 0.2968 0.2969
Histogram[5,2] 0.6491 0.6425 0.7066 0.7064
Histogram[5,3] 0.4974 0.5010 0.3381 0.3387
Histogram[5,4] 0.0816 0.0833 0.0348 0.0345
Histogram[6,1] 0.4093 0.4027 0.4396 0.4406
Histogram[6,2] 0.8413 0.8377 0.8219 0.8210
Histogram[6,3] 0.5410 0.5426 0.4781 0.4768
Histogram[6,4] 0.0470 0.0499 0.0401 0.0401
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is a mixture of two Gaussian classes and the optimum threshold that separates them

is the ratio of between class variance and the sum of within class variances. The

higher this threshold, the sparser the protein structure. The other global features are

all texture related measurements based on co-occurrence matrices. The co-occurrence

method, first introduced by Haralick et al. [87], is based on the notion that a texture

can be characterized by measuring the distributions of pairs of gray levels (i, j) that

are separated by a given distance d in a given direction θ. The frequency Pd,θ(i, j) is

calculated by accumulating the occurrences of a pair of pixels that have grey levels

(i,j) and separated by a distance d with direction θ. Using the co-occurrence matrix,

the following texture measures shown in Equation (3.8) are computed for each distance

image:

Energy =
∑
(i,j)

Pd,θ(i, j)
2 (3.2)

Entropy =
∑
(i,j)

− Pd,θ(i, j)logPd,θ(i, j) (3.3)

Homogeneity1 =
∑
(i,j)

Pd,θ(i, j)

1 + |i− j|
(3.4)

Homogeneity2 =
∑
(i,j)

Pd,θ(i, j)

1 + |i− j|2
(3.5)

Contrast =
∑
(i,j)

|i− j|2Pd,θ(i, j) (3.6)

Correlation =
∑
(i,j)

(i− µ)(j − µ)Pd,θ(i, j)

σ2
(3.7)

, where µ =
∑
(i,j)

iPd,θ(i, j)

σ =
∑
(i,j)

(i− µ)2Pd,θ(i, j)

Cluster Tendency =
∑
(i,j)

(i+ j − 2µ)2Pd,θ(i, j) (3.8)

As expressed above, each texture measure depends on the distance d and the orienta-

tion θ. For example, entropy measures the mutual entropy associated with the gray

levels that are separated by physical distance d at orientation θ. If all pairs of gray

levels are distributed in space with equal likelihood of occurrence, the entropy for

such d and θ would be large. On the other hand, if a particular pair of gray levels is
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Table 3.2: Normalized global feature vectors of protein chains from two SCOP protein
domains.

Image Features 1o7j A 1hg0 A 1jsm A 1jso A
Size 0.1153 0.1161 0.1138 0.1138
Binary Threshold 0.1418 0.1418 0.0896 0.0896
Energy 0.0027 0.0026 0.0050 0.0050
Entropy 0.7146 0.7165 0.6370 0.6369
Homogenity1 0.1555 0.1540 0.1726 0.1727
Homogenity2 0.0973 0.0960 0.1115 0.1116
Contrast 0.0465 0.0469 0.0405 0.0404
Correlation 0.6311 0.6335 0.3356 0.3358
Cluster Tendency 0.0137 0.0140 0.0049 0.0049

predominant, then the entropy would be close to zero. Similarly, contrast measures

the average value of the squared difference |i− j|2 for pixels separated by d at angle

θ. In many application domains, the textures are not oriented along any particular

direction. For computing texture measures in distance images of proteins, there is no

particular purpose required to retain the θ dependence. Therefore, we compute the

above mentioned measures θ = 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦,

and take the average over these angles. We also include the number of amino acid

residues in the protein backbone as one of global features since comparable length of

protein backbones are expected in the top retrieval results. Our 33 image features,

normalized between 0 and 1, include 24 local features and 9 global features listed

in Table 3.1 and 3.2, respectively. Two sets of protein pairs (1o7j A, 1hg0 A) and

(1jsm A, 1jso A) from the same SCOP domain (Asparaginase type II) and (Hemag-

glutinin) share fairly similar feature values and are expected to be clustered together

in the three-dimensional feature space.

3.2.3 Feature Evaluation

Multivariate Analysis of Variance (MANOVA) [90] has been widely applied to evaluate

the significance of the mean differences on multi-dimensional data in multiple cate-

gories. We apply MANOVA to test the discrimination power of our knowledge-based

features on pairs of protein groups with distinguishing SCOP protein domains. For
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the purpose of description, we interchangeably use group and SCOP protein domain

in the remaining of this dissertation.

Given that X̄f denotes the mean of p-dimensional feature vectors in group f

which has Nf protein chains and X̄ is the global mean of all proteins from both

groups. The feature vector of the jth protein in group f , Xf,j, can be decomposed

using the Equation (3.9):

Xf,j = X̄ + (X̄f − X̄) + (Xf,j − X̄f ) (3.9)

The second term in the above equation, τf = (X̄f − X̄), is the distance between the

mean of a group to the overall mean for all proteins from both groups in the feature

space. If our knowledge-based features are able to distinguish proteins from each pair

of groups, u and v, the null hypothesis H0 : τu = τv = 0 should be rejected. On

contrary, if our features are unable to reject H0, proteins from both groups have a

substantial degree of overlapping in the feature space. To test the null hypothesis, we

calculate between class B and within class W variances using the total variance T .

T =
∑

fε{u,v}
Nf (X̄f − X̄)(X̄f − X̄)T

+
∑

fε{u,v}

Nf∑
j=1

(Xf,j − X̄f )(Xf,j − X̄f )
T

= B +W. (3.10)

For a large data-set such as our protein database feature vectors, Bartlett [91]

shows that the null hypothesis, H0, can be rejected if

−(n− 1− p+ f

2
)ln(

|W |
|B +W |

) > χ2
p(f−1)(α) (3.11)

where χ2
p(f−1)(α) is the upper (100α)th percentile chi-square distribution with p(f−1)

degrees of freedom. With pairwise tests on randomly selected 50 groups of protein

chains, the results are shown in Table 3.3. An additional issue that needs to be ad-

dressed is that if two groups share an identical value of any feature for all proteins, we

will obtain an under-ranking matrix, which is unable to conduct this hypothesis test.

Without considering under-ranking samples, our features have successfully rejected

95.02% of all H0 tests among 797 pairs of groups.

24



Table 3.3: The statistical results of MANOVA with three significant levels α = 0.01,
0.05, and 0.1 for 797 pairs of protein groups.

Significance level(α) 0.01 0.05 0.1 Average
Reject hypothesis H0(%) 93.73 95.36 95.98 95.02
Accept hypothesis H0(%) 6.27 4.64 4.02 4.98

3.3 Database Indexing

After numerical features have been extracted from distance images, the data set of

protein structures exists as a collection of multi-dimensional feature vectors with their

associated PDB identifiers. By comparing these high-level structural features, tasks

of retrieving globally similar protein structures from PDB database become computa-

tionally achievable. However, since the number of proteins archived in PDB is massive

and still increased rapidly, both efficiency and accuracy need to be carefully inves-

tigated. In this dissertation, two indexing methods that support multi-dimensional

data searching are utilized, EBS k-d tree [92] and M-tree [93], to guarantee the per-

formance of global protein structure retrieval.

3.3.1 Online Index Using EBS k-d Tree

This extended version of the EBS k-d tree utilizes knowledge from domain experts

to build indices that can select relevant features, as well as cluster similar protein

chains in the multi-dimensional space for fast and accurate retrievals. EBS k-d tree

is a decision tree-based data structure, which is able to index a labeled data set.

To label the protein feature vectors, first of all, we use 150 groups from the SCOP

database as training data, comprised of 7702 protein chains that are associated with

ground truth class labels. Secondly, a training EBS k-d tree can be built on the

labeled training data. The unlabeled protein feature vectors can be directed into the

appropriate leaf nodes of this training tree. Then, unlabeled protein feature data

located in each leaf node are assigned with a unique class label. Once all protein

feature vectors have been labeled, a final EBS k-d tree is built on these labeled data

for fast retrieval. Given a query protein feature vector, retrieving globally similar

protein structures from the EBS k-d tree is reasonably efficient. Each search into the
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EBS k-d tree compares one feature value of query protein with a decision threshold at

each internal node, determining the path from a root node to a leaf node via a series

of binary decisions. Until a leaf node is reached, all protein feature vectors in this

leaf node are collected and sorted based on Euclidean distances to the query protein

feature vector. This advanced indexing structure also uses a priority queue to link

the data leaves for supporting k nearest neighbor (k-NN) search, effectively creating

a weighted directed-edge graph among the leaf nodes [92]. Even though searching

into an EBS k-d tree is fast, building the index on the entire protein feature vectors

and loading this index into memory are computationally expensive.

3.3.2 Online Index Using M-tree

To address the efficiency of constructing and loading an indexing structure, especially

for a large population of feature vectors, we study another multi-dimensional indexing

structure, M-tree [93]. This indexing tree structure is scalable to provide dynamic

operations such as insert, delete or update. To index protein feature vectors, each

root node of a subtree maintains a radius range, Rs, and a prototype of the protein

feature vector that creates a hyper-sphere in the multi-dimensional feature space, As,

in order to cover all protein feature vectors within the subtree. Searching into M-

tree using the Depth-First-Search (DFS) traversal, the algorithm maintains a priority

queue with k slots to record current k nearest neighbors. First of all, a hyper-sphere

search space, Aq, is created by a centered vector of query protein and a radius range,

Rq, which is set to ∞. Initially, Aq overlaps with the entire protein feature vectors

in the M-tree. Whenever more feature vectors of the nearest neighbor proteins have

been inserted into the priority queue, the radius of searching range, Rq, is iteratively

updated by the maximum Euclidean distance between current neighbor proteins in

the queue and the query protein. The updated searching range, Rq, in turn results

in another smaller search space, Aq. Basically, a fast search of the nearest neighbors

is achieved for the following facts: 1) Applying the triangular inequality, the M-tree

algorithm avoids traversing subtrees which are not overlapped with the search space

Aq. 2) Concurrently, Aq shrinks at a rapid rate due to the insertion of proteins in the

queue. In our implementations, M-tree indices have been properly organized into the
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memory on several servers for a robust and balanced nearest neighbors search.

3.4 Computational Results and Discussions

Experiments using 10 fold cross-validation [94] are conducted to systematically evalu-

ate the retrieval performance. Our ground truth data contains 7702 randomly selected

protein chains from 150 SCOP protein domains. Among each group of ground truth

data, 90% serves as the training data and the other 10% serves as the testing data.

An indexing tree is then built on the training data for fast searching the nearest

neighbors. Let nt denote the number of training protein feature vectors in a SCOP

protein domain, t. Our experiment queries each testing protein feature vector against

the indexing tree and searches the nr nearest neighbors of training proteins. The

precision rates, defined in Equation (3.12), are then calculated from the ranked re-

trieval result, which is denoted as r. A function, s(r, i), returns the rank of the ith

training protein feature vector of SCOP protein domain, t, in r. Another function,

min(nr, nt), returns the minimum number of either nr or nt. In contrast to regular

performance metrics of information retrieval [95], where the precision is a simple ratio

of the number of correct retrievals over the result size nr, Equation (3.12) gives more

penalization on the precision for the same incorrect retrieval in r. This measure-

ment generally reflects the usability of our system and yields a lower rate than the

equivalent simple ratio measurement of precision.

Precision =

∑min(nr,nt)
i=1 i/s(r, i)

min(nr, nt)
(3.12)

Precision rates are reported to evaluate the retrieval accuracy based on 10 recall

rates from 10%, 20% to 100%. Each recall rate shows the fraction of relevant training

protein chains that have been retrieved. A training protein is considered to be relevant

only if this training protein has the same label of SCOP protein domain as the testing

protein. Due to the overlapping nature of the protein chain structures in the feature

space, all relevant training proteins are normally less likely to be perfectly ranked with

the top positions in the retrieval result. Completely hitting entire relevant training

protein chains usually demands a visit down to certain lower ranks of retrieval results,
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Figure 3.3: A comparison of retrieval accuracy between EBS K-D Tree and M-Tree
using 6-Band image partition setting.

resulting in a decreased precision rate.

The first experiment compares the retrieval accuracy of EBS k-d Tree and M-Tree

indices using a 6-band partition setting. Figure 3.3 provides a plot of the average

retrieval precision versus the increased recall rates. M-Tree exhibits 97.04% precision

recalling up to 10% of the testing set, 93.51% precision recalling 50%, and 87.82%

precision recalling the entire blind testing set. Another indexing technique, EBS

k-d Tree, achieves 94.37% precision while recalling 10% of the testing set, 88.98%

precision recalling 50%, and 82.06% precision recalling the entire blind testing set. As

expected, the precision decreases as the recall rate increases. Both database indexing

structures perform well on our test bed. In another sense, given average group sizes

of approximately 20 protein structures, our system usually needs to retrieve only 23

and 25 protein structures from M-Tree and EBS k-d Tree, respectively, to ensure a

100% recall rate.
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Figure 3.4: The retrieval precisions against the recall rates from 10% to 100% using
M-Tree online indices on four different band partition setting.

The second experiment investigates whether the number of partitioned bands in

protein distance images have an impact on the retrieval accuracy. M-Tree is used as

an indexing data structure. Figure 3.4 shows that the 6-band partition mechanism

outperforms the other three types of image partition settings, 4-band, 8-band, and

12-band. From our computational results, increasing the number of partitioned bands

cannot guarantee the improvement of retrieval accuracy. This could be due to the

local patterns of blobs existing in a band region. Partitions that are too fine may result

in losing moderate-size blobs. On the contrary, band regions of 4-band, which are

considered to be too coarse, may not be able to informatively describe the localization

of blobs.

As of April 15 2007, our database has archived 93997 protein chains from the

PDB database. To further evaluate the retrieval accuracy on a large-scale database,

we selected 50 representative groups of protein chains in SCOP as a testing set that
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Figure 3.5: The retrieval precisions against the recall rates from 10% to 100% using
M-Tree that indexes 93997 PDB proteins.

have 776 protein chains in total. Each group contains at least 10 protein chains. Since

proteins within each group are usually structurally similar, the nearest neighbor search

using our 6-band setting potentially retrieves the query protein on the top rank and

the rest of the proteins within a group on the higher ranks. Excluding the query

protein from the retrieval result, our experiment measures precision and recall rates

based on the ranking information of those proteins that are within the same group

of the query protein. Figure 3.5 shows a plot of the average retrieval precision versus

the increased recall rates. M-Tree exhibits 78.93% precision recalling up to 10% of

the testing set, 63.41% precision recalling 50%, and 43.49% precision recalling 100%.

To evaluate the retrieval efficiency, we measure the average retrieval response time.

The protein structure retrieval system has been implemented on a Linux Redhat

system with Dual Xeon IV 2.4GHz processors and 2GB RAM. Multi-dimensional

indices are loaded on four Linux Redhat systems with Pentium IV 2.8GHz processor
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Figure 3.6: Average response time for various query protein chain sizes in the 6-band
setting.

and 2GB memory. Without considering network delay in 100 Mbps LAN, we record

the response time of searching each protein feature vector in our testing data and

calculate the average response time on each length of protein chains. The system

performance is shown in Figure 3.6 (b). As expected, the average response time

increases with chain size. The system completes the search of the testing protein chain

with the maximum length, 566 Cα atoms, in 3.37 seconds. For a longer protein chain,

our system needs more computational demands on memory and CPU to perform the

feature extraction process. We selected a large PDB protein chain 1i50 A with 1419

Cα atoms to examine the efficiency of an extreme case. The feature extraction process

is completed in 9.67 seconds, exhibiting a real-time global protein structure retrieval.
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Chapter 4

Real-time Global Protein
Structure Classification

4.1 SCOP Protein Domain Classification

The Structural Classification of Protein (SCOP) database [19] is manually constructed

by human experts to understand the structural, functional and evolutionary relation-

ships of proteins. Globally similar proteins are usually classified into the same SCOP

protein domain. With the effort of human curation, the SCOP database is believed to

be more reliable than applying traditional structural alignment methods. However, it

is also labor intensive. Utilizing features extracted from distance images, we build a

non-parametric classifier to assign a set of known SCOP domains for newly-discovered

protein structures.

The distribution of feature values is expected to have a significant correlation to

the structural similarities of proteins. For each individual feature, it is important to

investigate the relationship between its feature interval and a specific SCOP protein

domain. Figure 4.1 depicts a simplified example to classify three protein domains

using three features, namely the 8th localized histogram, which is extracted from the

4th gray-scale level in the 2nd band partitioned region of distance image. The 5th

texture (Homogenity) and the 9th texture (Cluster Tendency) are two global tex-

ture measurements [87] extracted from the entire distance matrix. The top range

line of Figure 4.1 shows all database protein structures from Carbonic anhydrase

(D1), and D-xylose isomerase (D2) domains share the same feature interval of “His-
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Figure 4.1: An example of feature intervals for two SCOP domains, D1:Carbonic
anhydrase, D2: D-xylose isomerase and D3: Calmodulin

togram 8”. It is obvious that the histogram feature has no discriminatory power

to distinguish both domains. Similarly, the “Texture 5” feature is unable to sep-

arate proteins in D-xylose isomerase (D2) from those in Calmodulin (D3). How-

ever, adding association information among feature intervals, the algorithm can then

correctly classify a newly-discovered protein structure to either Carbonic anhydrase

(D1) (fHistogram8 ∈ [0.040,0.045) and fTexture9 ∈ [0.005,0.010)), D-xylose isomerase

(D2) (fHistogram8 ∈ [0.040,0.045) and fTexture5 ∈ [0.085,0.090)), or Calmodulin (D3)

(fTexture5 ∈ [0.085,0.090) and fTexture9 ∈ [0.005,0.010)).

Knowledge discovery in databases and data mining techniques (KDD) have been

widely used in high-throughput data analysis of various aspects, such as mining in

web contents, spatial data, document indexing [96], and biological domains [97, 98].

Association rule (AR) mining is known to be a major data mining technique designed

to retrieve hidden patterns and discover meaningful information from the data. In our

proposed KDD model, a protein chain p1 is first preprocessed into an m-dimensional

feature vector {fp1
1 , f

p1
2 , f

p1
3 , ..., f

p1
m }, where fp1

i has been normalized in R[0, 1] and

1 ≤ i ≤ m. Then, the algorithm partitions R[0, 1] space of each individual feature

of proteins into a set of disjoint intervals {[0, η1], (η1, η2], ..., (ηn, 1]}, where 0 < η1 <

η2 < ... < ηn < 1. For the convenience of explaining our association rule mining

algorithm, each feature interval (ηi, ηi+1] is defined as an item. For example, three

feature intervals (items), I1 = [0.0, 0.2], I2 = (0.2, 0.75], and I3 = R(0.75, 1.0], are
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generated from a partition of feature space, R[0,1], associated with the jth feature

of protein distance images. The jth feature value of protein p1, f
p1
j = 0.5, will be

mapped into the item, I2.

In terms of applying this item-mapping process for all our numerical features of

distance images, each protein feature vector is transformed into a set of m items,

where m is the number of features. Our best setting for the image band partition is

6-band, which populates 33 image features of the distance matrix (m = 33). With

the mapping from protein feature values to items, a collection of m items forms a

transaction. Therefore, a database, D, with n proteins can be transformed into n

transactions for mining item associations. Let I denote a set of items. An association

rule is considered as an implication rule composed of items with a form {X ⇒ Y },
where X, Y ⊆ I and X ∩ Y = ∅. In addition, Itemsets X and Y are named as

Antecedent and Consequent, respectively. For an association rule, {X ⇒ Y }, the

support of the rule is the percentage of all transactions in D that include {X ∪ Y }
items. The confidence of the rule is a ratio of the number of transactions that contain

{X∪Y } items to the number of transactions that contain {X} items. The association

rule mining generates relevant rules in the database with the support and confidence

that can pass minimal support and minimal confidence thresholds.

To precisely classify a newly-discovered protein structure among hundreds or even

thousands of SCOP protein domains, we need to carefully study appropriate parti-

tioned feature intervals and identify associations among these relevant intervals within

each SCOP domain. The way to formulate a partition of a continuous feature space,

R[0, 1], has a vital impact on the performance of classification. Over partitioning, a

feature space can generate numerous tiny intervals, which, in turns, result in huge

amount of association rules and demand high computational resources. A coarse

partition of space will create intervals that mix multiple domains without enough

discriminatory power. Instead of randomly or evenly partitioning the feature space

into intervals, we apply the C4.5 decision tree [99] to identify relevant intervals for

each feature.
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Figure 4.2: A binary decision tree to determine thresholds for a space partition of
feature fi

4.1.1 Space Partition Algorithm Using C4.5 Decision Tree

Our algorithm constructs a C4.5 decision tree [99] for each individual feature of all

m-dimensional protein feature vectors in the database. In our application of protein

feature data, there are 33 decision trees built for 33 features of distance images. To

build the tree using C4.5, the splitting criteria is based on the minimization of entropy.

Let Dt be the set of protein features stored at a certain node t. The entropy of node

t, H(Dt), and the weighted entropy, H(Dt′), of its left and right child nodes tl and tr

are computed as follows:

H(Dt) = −
r∑

j=1

pt
dj
× log(pt

dj
), (4.1)

H(Dt′) = α×H(Dtl) + (1− α)×H(Dtr), (4.2)

where pt
dj

denotes a ratio, the number of proteins in domain dj over the total num-

ber of proteins that exist in node t. To compute H(Dt′), α represents the percentage

of protein chains that have been dispatched from a parent node to the left child based

on a pre-defined threshold, η. In our implementation, the C4.5 algorithm exhaus-
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tively sets η from 0 to 1 with an incremental value of 0.01. Since information entropy

measures the degree of uncertainty, a smaller entropy usually presents a higher dis-

criminatory power for classifying data. When the entropy of child nodes is smaller

than the entropy of the parent node based on a threshold of η, a decision of splitting

the parent node into child nodes theoretically obtains a higher discriminatory power

than the other decision to maintain the parent node.

The optimal threshold of η is determined from the maximization of the entropy

gain, H(Dt)−H(Dt′). Under a condition that there is no entropy gain for all η values,

the algorithm stops splitting the node. With a top-down iterative node splitting, our

space partition algorithm collects optimal η thresholds of k internal nodes using in-

order traversal, and partitions the feature space, R[0,1], into k+1 intervals as a set of

items. For example, Figure 4.2 shows that eight items, I1 = R[0.0, η4], I2 = R(η4, η2],

..., I8 = R(η7, 1.0], are partitioned by seven threshold values {η4, η2, η5, η1, η6, η3, η7}.
Using the intervals selected by the decision trees, each protein can be mapped into a

transaction that contains 33 items for further mining item associations.

4.1.2 Rule-Based Classification Model

After transforming database protein structures, which are collected from SCOP, into

the form of transactions, our KDD method then applies the Apriori algorithm [100] to

mine associations of the items. The main concept of Apriori algorithm is to generate

association rules from frequent itemsets whose support values are greater than the

minimal support threshold. Based on the fact that any subset of a frequent itemset is

still a frequent itemset, the algorithm recursively finds candidates of frequent itemsets

with ni items from frequent itemsets with ni − 1 items, where ni ≥ 1. In Figure 4.3,

we list 8 association rules as an example when itemsets {I1, I3, I5} and {I2, I5, I6}
are frequent for the SCOP domains Carbonic anhydrase and D-xylose isomerase,

respectively.

In the Apriori algorithm, minimal support is a prominent criterium to determine

the quantity of association rules. For each SCOP protein domain, d, we perform the

Apriori algorithm with an initial setting, minimal support = 90%. In addition, each

frequent itemset, I, from a domain d refers to an association rule I ⇒ d. Prior to
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Figure 4.3: Association Rules generating from partitioned feature intervals using
Apriori algorithm. In Aprori, any subset of a frequent itemset also maintains the
frequent property. Our rule is generated from a frequent itemset associated with a
SCOP domain label.

the classification stage, our KDD method prunes out a small portion of rules (2.81%)

that are shared by multiple SCOP protein domains. Mining training proteins of

150 SCOP domains populates 2,354 association rules. Also, these discovered rules

have been properly organized and loaded into the memory to guarantee a fast SCOP

protein domain classification.

The next step is to design a scoring function that ranks possible SCOP domains

in higher orders. Given a newly-discovered protein t, an itemset, I t = {I t
1, I

t
2, ..., I

t
m},

is formed by a mapping mechanism similar to the one we have discussed previously.

A protein tertiary structure is mapped into m-D feature vector, which is in turn

converted into m items, where m is the total number of features with a setting of

m = 33 in our model. Our KDD method compares I t with each association rule

that we have mined from the training protein set. Let {Iri
1 , I

ri
2 , ..., I

ri
n } ⇒ d be an

association rule and k be the number of association rules of SCOP protein domain d,

where m ≥ n ≥ 2 and k ≥ i ≥ 1. Among these k rules, we group them into two sets:

matched rules Rd
c and mismatched rules Rd

m, where |Rd
c | + |Rd

m| = k. The i-th rule

matches for the newly-discovered protein t when {Iri
1 , I

ri
2 , ..., I

ri
n } ⊆ {I t

1, I
t
2, ..., I

t
m}.

Conversely, a mismatched rule for the unknown protein t has at least one item in its

antecedent that is not included in I t.

Our scoring function will reward matched rules and penalize mismatched rules

in each domain. For the i-th matched rule, the scoring function further considers

the item size of its antecedent as the degree of reward Ni. To gauge the degree of

penalty for mismatched rules, we define a discrete distance measurement as follows:

Let rm:{Im
1 , I

m
2 , ..., I

m
n } ⇒ d be a mismatched rule, fea(I

m
i ) be the function to return

the feature that generates item Im
i , and idx(I

m
i ) be the function to return the index

37



value of item Im
i as an integer. For instance, the decision tree for the 3rd feature

generates 10 items {I ′
1, I

′
2, ..., I

′
10}, which are sequentially stored in an array of posi-

tions {65, 66, ..., 74}, and fea(I
′
1) returns 3 and idx(I

′
1) is equal to 65. Even though

mismatched items could be penalized, items in the neighborhood of partitioned fea-

ture intervals are expected to have structural similarities. Therefore, the degree of

penalty is measured based on the distance between the mismatched item and the

match item. The discrete distance measurement between a mismatched rule and an

unknown protein t is defined as:
∑|Rd

m|
j=1

∑
i∈δ

∑m
n=1 |Idx(i) − Idx(I

t
j)|2 × g(i, I t

j), where

δ is the set of items in rm. For any two items x and y, we define g(x, y) = 1 when

fea(x) = fea(y) and g(x, y) = 0 if fea(x) 6= fea(y). This penalty is then normalized

by Md, the total number of mismatched items from Rd
m. Taking both reward and

penalty into consideration, the scoring function for each domain is defined as follows:

Score(d) =

∑|Rd
c |

i=1 Ni

(
∑|Rd

m|
j=1

∑
i∈δ

∑m
n=1 |Idx(i)− Idx(I t

j)|2 × g(i, I t
j))/Md

(4.3)

,where

g(x, y) =

{
0 , if fea(x) = fea(y)
1 , if fea(x) 6= fea(y)

The algorithm returns ranked scores for all SCOP domains and classifies a newly-

discovered protein to a domain with the highest score. According to the SCOP

hierarchical setting, proteins that share similar secondary structure arrangements

are usually classified in fold level [19]. Proteins in a SCOP fold may have local

similarities and the chain length of these proteins can be divergently distributed. In

this case, distance images from the same SCOP fold can have different dimensions with

variant feature values. Since the relevance of discovered rules strongly depends on

the quality of the database protein feature data, directly labeling the same fold class

to proteins that have divergent feature values cannot provide meaningful association

rules. To extend this approach for SCOP fold classification, we utilize the one-to-

many relationship between SCOP fold and domain [19]. That means a SCOP fold

hierarchically contains one or more protein domains. The algorithm first assigns a

SCOP domain for a newly-discovered protein using our KDD model. Its SCOP fold

is then determined by referencing the existing hierarchical information obtained from
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Figure 4.4: A precision-to-recall chart for 10 rounds of experiments

SCOP database. In addition, this extended approach has a chance to conclude correct

folds from incorrectly predicted domains. For instance, a SCOP fold f1 contains three

domains, called d1, d2, and d3. Even though the algorithm misclassifies a testing

protein of SCOP domain d1 as d2, the SCOP fold is still correctly recognized as f1.

The advantage of this KDD model is to effectively reveal the hidden knowledge from

globally similar protein tertiary structures for classifying and ranking possible SCOP

domains and folds.

4.1.3 Computational Results and Discussions

With 7702 database proteins from 150 SCOP domains, we measure classification

performance using 10 fold cross-validation. To evaluate the accuracy, we use Precision

and Recall in the context of machine learning [101], which have different meanings

from the Precision and Recall in the information retrieval area. Given nr SCOP

domains in the testing data, Nd
P denotes the number of testing proteins that are

classified to the domain d, 1 ≤ d ≤ nr and Nd
TP is the number of testing proteins

whose classified domain d matches its true SCOP domain. The number of testing

proteins that are from domain d is Nd
T . These two measurements are formulated as

follows:
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Figure 4.5: An accumulated recall chart for top 13 suggested domains

Precision =
1

nr

nr∑
d=1

Nd
TP

Nd
P

(4.4)

Recall =
1

nr

nr∑
d=1

Nd
TP

Nd
T

(4.5)

Figure 4.4 presents a plot of Precisions against Recall ranging from 10% to 90%.

The ideal case occurs when all testing proteins are predicted correctly, achieving

100% precision at any recall rate. Normally, the precision will drop by increasing

the recall rate. Our KDD algorithm exhibits 92.42% precision with a 10% recall,

91.35% precision recalling 50%, and 79.77% precision recalling 90% of the entire

testing protein set.

A more practical goal for domain classification is to suggest a small set of candidate

domains to streamline the manual process. To demonstrate the usefulness of our

prediction model, we also measure the recall rate by accumulating True Positives

from the top predicted SCOP domains in the ranked results. In Figure 4.5, our KDD

method delivers 91.27% recall rate from the top predicted domain and 99.22% from

the top 5 predicted domains. A 100% recall rate is achieved by the top 13 predictions.

This means a domain expert in SCOP only needs to examine 5 domains to guarantee
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Figure 4.6: Average response times to predict SCOP domains with various protein
chain sizes

99.22% coverage of the true domain and 13 domains for 100% coverage.

To evaluate the efficiency of SCOP domain classification, we measure the aver-

age response time with the same hardware configuration in Section 3.4. Figure 4.6

shows the response time of prediction, including feature extractions, itemset gen-

erations, and the ranked scores computation. When the protein size increases, it

demands more computational resources to extract features on larger distance matri-

ces. This reflects the gaps between two curves in Figure 4.6, where the top curve

reports the response time with feature extraction and the bottom curve depicts the

response time for computing scores and ranking domains. On the average, predicting

an unknown protein to a SCOP domain takes 6.34 seconds. Comparing to a well-

recognized structural alignment algorithm (CE [12]) on the same testing data, we

conduct pairwise structural alignments for 1 against 7,701 proteins using the Leave-
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One-Out strategy. The SCOP domain of protein with the highest score is specified as

the predicted result. We find that CE can predict the SCOP domains of all testing

proteins correctly. However, pairwise alignments using CE takes 15,461.29 seconds.

By sacrificing bearable accuracy, our algorithm runs near 2,000 times faster than the

CE algorithm. Our KDD method is also compared to a recent approach in terms of

data size, precision, and response time. A prominent work called the 3-step scheme

(PA+CP+DALI [102]) reports 98.8% accuracy in fold prediction and the average re-

sponse time is 24,501 seconds. It is noteworthy to mention that their experiments are

conducted on a comparably small testing set (600 proteins) from 15 SCOP folds.

4.2 SCOP Fold Classification

To further improve the performance of SCOP fold classification, we develop an ad-

vanced classification model, E-Predict [103], that extends algorithms from information

retrieval fields [95]. In our E-Predict model, there exist two principal issues to classify

newly-discovered proteins in fold level. 1) Known SCOP Fold Assignments: the algo-

rithm assigns a newly-discovered protein structure into a known SCOP fold. 2) Novel

SCOP Fold Recognitions: the algorithm detects whether a newly-discovered protein

structure should be categorized into a novel fold or not.

4.2.1 Known Fold Assignment

According to the SCOP hierarchical setting, proteins that share similar secondary

structure arrangements are usually classified in the fold level [19]. The entire process

of assigning newly-discovered proteins to the known folds is shown in Figure 4.7. The

labeling procedure transforms protein structures from the SCOP database into three-

dimensional feature vectors, which are labeled with their corresponding SCOP folds.

These labeled proteins are then used as our database proteins. The testing procedure

converts newly-discovered proteins into feature vectors and submits these unlabeled

vectors into a classifier to obtain possible SCOP fold assignments. Since distance

matrix generation and feature extraction have been discussed previously, emphasis is

now put on the classifier design.

42



Figure 4.7: E-Predict model for assigning newly-discovered proteins to the known
folds.

To ensure high accuracy when classifying a newly-discovered protein, we have de-

signed a novel method that extends algorithms from Information Retrieval (IR) [104].

For the assignment of newly-discovered proteins to the known folds, we first discuss

two well-recognized methods, C4.5 Decision Tree (DT) [99] and Nearest Neighbor

(NN) [77], and then our new approach, E-Predict, which achieves a better classifica-

tion accuracy than C4.5 DT or NN.

Decision tree approaches have been developed for classification in supervised ma-

chine learning [99]. Using a training set that contains feature vectors of database pro-

teins and their associated fold labels, a classifier usually divides the high-dimensional

feature space, discussed previously, into multiple subspaces, which are normally in

the form of hyper-cubes or hyper-spheres. In the labeling process using C4.5 DT, the

majority of proteins from the same fold are expected to be clustered into a small num-

ber of subspaces. Proteins from different folds are separated into different subspaces

based on minimization of entropy. A newly-discovered protein can then be classified

into one of the known subspaces for fold assignment by following decision features

of internal tree nodes and their corresponding thresholds. However, a small number

43



Figure 4.8: A comparison of classification performance between E-Predict, NN, 3-NN,
5-NN, and C4.5 DT classifiers using testing proteins in ∆v2,known

v1
which are selected

from the SCOP folds in v2 that have at least one protein in v1.

of proteins from the same SCOP fold with similar feature values may be partitioned

into different leaf nodes by C4.5 DT due to their feature values, which are distributed

around thresholds of internal nodes. With hundreds of folds in the SCOP database,

the more proteins from different folds that have been grouped into a leaf node, the

higher the probability of misclassification.

Instead of partitioning the high-dimensional space, Nearest Neighbor (NN) [77] as-

signs a SCOP fold for a newly-discovered protein by searching for its nearest neighbor

with the Euclidean distance measurement. Figure 4.8 shows that NN outperforms

C4.5 DT by 13%, on average, for fold assignments using the test sets in ∆v2,known
v1

,

which are selected from the SCOP folds in the SCOP v2 release that have at least

one protein from the SCOP v1 release. Figure 4.9 shows that NN also outperforms

C4.5 DT by 8.45%, on average, for fold assignments using the test sets in ∆v2,known
v1

,

which are selected from the SCOP folds in the SCOP v2 release that have at least

10 proteins from the SCOP v1 release. Even though NN yields a better classification

performance than C4.5 DT, there is still an important issue to consider: misclassi-

fications from an outlier in the NN search. An outlier is defined as a protein chain

whose feature vector deviates greatly from the majority of proteins in the same SCOP
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Figure 4.9: A comparison of classification performance between E-Predict, NN, 3-NN,
5-NN, and C4.5 DT classifiers using testing proteins in ∆v2,known

v1
which are selected

from the SCOP folds in v2 that have at least 10 proteins in v1.

fold. In the high-dimensional feature space with multiple overlapping SCOP folds,

the NN search may assign an incorrect SCOP fold to a newly-discovered protein by

selecting an outlier as the nearest neighbor. For instance, we assume that the true

fold of a newly-discovered protein t is F2. From Result F1, shown in the second row

of Figure 4.10, the nearest neighbor of t is P1, which is an outlier to the majority

of proteins in fold F1. When the NN search is used for classification, the algorithm

falsely classifies t to fold F1. One possible way to address this issue is to assign the

newly-discovered protein to the SCOP fold that has the majority in the top k Nearest

Neighbor (k-NN). In Figure 4.9, 3-NN yields a better accuracy than 5-NN in six test

sets. Also, we find that 3-NN achieves a better accuracy than NN in ∆v1.67,known
v1.65 .

Unfortunately, 3-NN does not perform as well as NN on the other test sets due to the

existence of two or more outliers in the 3-NN selection. In general, the k-NN clas-

sification method simply takes the majority of the top k nearest neighbors without

considering the ranking information of nearest neighbor proteins.

In this dissertation, we have developed the E-Predict algorithm which applies the

E Measure metric [105] to calculate the ranking information of the nearest neighbor

proteins. E Measure was originally developed to evaluate the effectiveness of retrieval
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Figure 4.10: An example of E Measure calculations for two SCOP folds in a list of
the nearest neighbor proteins.

systems in IR. The more relevant documents retrieved with high ranks, the higher

the retrieval accuracy. In the context of IR, Precision and Recall are two commonly

used metrics for evaluating the retrieval performance. Let nt be the total number

of relevant documents in the database for a certain query t and s(R, i) be the rank

of the top ith relevant document in the retrieved document set R with 1 ≤ i ≤ nt.

Precision can be obtained by computing the ratio of the number of relevant documents

retrieved to the total number of documents retrieved. Recall is the ratio of the number

of relevant documents i retrieved to the total number of relevant documents nt in the

database.

Precision(i) =
i

s(R, i)
(4.6)

Recall(i) =
i

nt

(4.7)

E Measure takes into consideration both Precision and Recall to evaluate the

retrieval accuracy with a weighting factor b as shown in the following equation:

E Measure(i, b) = 1− 1 + b2

1
Precision(i)

+ b2

Recall(i)

(4.8)

When a relevant document is highly ranked, a low E Measure is expected. The

effectiveness of a retrieval system ς can be evaluated by the summation of E Measures

for all nt relevant documents.
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Algorithm 1 E-Predict Algorithm

Require: t,R, b, nt, λ
1:

∏
= ∅

2: for each protein p ∈ R do
3: if p.fold 6∈

∏
then

4:
∏

=
∏∪{p.fold}

5: Count[p.fold]← 1
6: else
7: Count[p.fold]← Count[p.fold] + 1
8: end if
9: end for

10: for i← 0 to |∏ | − 1 do
11: if Count[i] < nt then
12:

∏← ∏−{i}
13: end if
14: Et

sum[i]← 0
15: Count[i]← 0
16: end for
17: for each candidate SCOP fold F ∈ ∏

do
18: for each p ∈ R starting from the top ranked protein do
19: if p.fold = F then
20: Count[F ]← Count[F ] + 1
21: if Count[F ] < nt then
22: Et

sum[F ]← Et
sum[F ] + E Measure(p, b)

23: end if
24: end if
25: end for
26: end for
27: F ∗ ← arg minf E

t
sum[f ]

28: if (λ = on) AND (S(t,P0) < S(t,P F ∗
NN)) then

29: F ∗ ← P0.fold

30: end if
31: return F ∗

Et
sum(ς) =

nt∑
i=1

E Measure(i, b) (4.9)

In practice, the best IR system is the one with the smallest Et
sum(ς).

Instead of directly applying the above-mentioned evaluation method for our SCOP

fold classification task, our E-Predict algorithm extends the method by visiting can-

didate folds in the top k nearest neighbor results R, and then ranking the folds
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using E Measure. The pseudo code of E-Predict is shown in Algorithm 1. From

lines 2 to 16, the algorithm collects the SCOP folds of retrieved proteins in R into

a set of candidate SCOP folds, Π, with each candidate fold having at least nt pro-

teins appearing in R. The algorithm then computes an evaluation score Et
sum(F )

for each candidate SCOP fold, F ∈ Π, by accumulating E Measures of the top nt

proteins labeled with F , as shown from lines 17 to 26. Our approach assumes that

the most relevant SCOP fold assigned to a newly-discovered protein t should have

proteins that are highly ranked in R. For example, if F1 ∈ Π is the candidate

SCOP fold to be evaluated, we revisit R by assigning the label ‘relevant’ to pro-

teins that are from F1 and the label ‘irrelevant’ to those from folds other than F1.

Among these relevant proteins, we select the top nt proteins and form RF1 for our

classification process. The Result F1 in Figure 4.10 shows that the top two pro-

teins (nt = 2) labeled with F1 are ranked at 1 and 10. For fold F1, the pairs of

(precision, recall) for these two proteins are (Precision(1) = 1
1
, Recall(1) = 1

2
) and

(Precision(2) = 2
10
, Recall(2) = 2

2
). Applying Equation (4.8) with b = 1.0, we obtain

E Measure(1, 1.0) = 1
3

and E Measure(2, 1.0) = 2
3
. Substituting these two values

into Equation (4.9), we compute Et
sum(ςF1) = 1.00. Similarly, for candidate fold F2,

using Result F2 of Figure 4.10, the effectiveness of F2 is Et
sum(ςF2) = 0.70.

According to Figure 4.11, there exists a significant number of small-size folds in the

SCOP v1.69 release, with 143 folds containing only one protein chain and 140 folds

with two protein chains. When a newly-discovered protein belongs to a small-size

fold, the algorithm might give a false positive due to insufficient database proteins.

To classify proteins in these small-size folds, we expect the NN search to retrieve a

correct fold in the high-dimensional space by turning on a parameter λ in the E-

Predict algorithm. Let P0 be the nearest neighbor protein of a query t in R and P F ∗
NN

be the nearest neighbor protein in the candidate fold with the minimum Et
sum score

(see line 28 of Algorithm 1). The algorithm computes the structural variation values,

S, for one pair (t,P0) and the other pair (t,P F ∗
NN) using the function in Equation (4.10).

The algorithm finally assigns the candidate fold with the minimum S value to the

newly-discovered protein.

In the E-Predict algorithm, two parameters, b and nt, affect classification results.
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Figure 4.11: The amount of proteins in the folds against the number of SCOP folds
in the SCOP v1.69 release.

From our empirical observations, the best setting for the latest SCOP v1.69 release

has b = 1.5 and nt = 6 with λ = on and k set to 500 nearest neighbors. Figures 4.8

and 4.9 show comparisons of classification accuracies among E-Predict, NN, 3-NN,

5-NN, and C4.5 DT across seven test sets from ∆v1.57,known
v1.55 to ∆v1.69,known

v1.67 . For all test

sets, E-Predict always outperforms k-NN and C4.5 DT with an improved classification

accuracy.

4.2.2 Novel Fold Recognition

Classifying newly-discovered proteins into either the novel folds or the known folds has

been identified as a two-class recognition problem [1]. Let v1, v2 and v3 denote three

different SCOP releases in chronological order. To classify proteins from ∆v3,novel
v2

,

our algorithm relies on database proteins from ∆v2
v1

with three features, which are

derived from the result of E-Predict algorithm and will be discussed in great detail

in the following section. In the labeling procedure of Figure 4.12, the algorithm first

extracts the three features from proteins in ∆v2
v1

. These proteins are then categorized

into either the known folds of v1 or the novel folds as our database protein data. In the

testing procedure, proteins in the novel folds of ∆v3,novel
v2

are selected as our test data
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Figure 4.12: E-Predict model for recognizing the novel folds for newly-discovered
proteins.

and are disjoint with our database proteins. Once the three features are extracted

from the testing proteins, we apply the E-Predict algorithm to classify test proteins

into either the novel folds or the known folds.

For a newly-discovered protein PN that does not belong to the known folds, we

assume this protein has a low structural similarity to those proteins in the known

folds. Under this assumption, we identify the three features that are used to achieve

the novel fold recognition task. Figure 4.13 illustrates an example showing the three

features for PN . The first feature, EPN
sum(ςF ∗), is the minimum evaluation score of PN

using the E-Predict algorithm with a suggested known fold F ∗. The second feature,

Dist, represents the Euclidean distance between PN and P F ∗
NN , which denotes the

nearest neighbor protein of PN labeled with fold F ∗. The third feature, S, is the

structural variation value between PN and P F ∗
NN . For a pair of proteins (p1,p2), the

structural variation S is defined as follows:

S(p1, p2) = rmsd/(
NA

Np1 +Np2

) , (4.10)

where rmsd means the root mean square deviation of aligned segments, and NA
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Figure 4.13: An example of identifying P F ∗
NN for a newly-discovered protein PN in the

novel folds by selecting the nearest neighbor protein in a fold F ∗ derived from the
E-Predict algorithm.

denotes the number of amino acids in the aligned segments of two proteins. Np1 and

Np2 represent the number of amino acid residues in p1 and p2, respectively. These

measurements are computed using SARF [27]. The smaller S value can be interpreted

as a better structural match for two proteins p1 and p2. Two proteins that have a

high structural similarity can usually be superimposed with longer aligned residue

segments and a small rmsd value, resulting in a small S value. For example, the

SARF algorithm aligns a query protein t with 100 amino acids and its best matched

protein p1 with 100 amino acids and returns structurally similar segments with 90

amino acid residues and 0.3 Å of rmsd. Their structure variation value S is computed

as 0.3/( 90
100+100

) = 0.67. After feature extraction, these feature values are normalized

between 0 and 1; each protein is then represented by a three-dimensional feature

vector. The rationale for using these three features is in the following. Let PK

be a newly-discovered protein that has been classified in the known folds. If PN is

structurally dissimilar to all known protein structures from the SCOP database, then

the Euclidean distance between PN and its nearest neighbor protein in a known fold

suggested by E-Predict is expected to be greater than the distance between PK and
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Table 4.1: A comparison of the three features for proteins in the novel folds and the
known folds.

(f1)Et
sum(ςF∗) (f2)Dist (f3)S

novel folds High High High
known folds Low Low Low

its nearest neighbor protein P F ∗
NN . Similarly, the structural variation value of PN and

its nearest neighbor protein is expected to be higher than the structural variation

value of PK and its nearest neighbor protein. Also, the minimum evaluation score of

PN , EPN
sum(ςF ∗), is expected to be higher than the score of PK . Table 4.1 lists a brief

summary of expected properties of the three features for proteins in the novel folds

and the known folds.

With the three features, labeling and testing procedures can be conducted to rec-

ognize the novel folds for newly-discovered proteins. From our empirical observations,

the classifier is biased to favor the known folds in a three-dimensional feature space

with two overlapping classes. To reduce noise from the known folds, our model ran-

domly selects an equal number of proteins from the known folds and the novel folds

in the labeling procedure. We then apply the E-Predict algorithm to classify test

proteins into either the novel folds or the known folds.

4.2.3 Computational Results

There are two important tasks for the SCOP fold classifications. 1) Known SCOP

Fold Assignments: the algorithm assigns newly-discovered protein structures into the

known SCOP folds. 2) Novel SCOP Fold Recognitions: the algorithm detects whether

or not newly-discovered protein structures should be categorized into the novel folds.

Given two SCOP database releases v1 and v2 (v1 ⊂ v2), ∆v2
v1

denotes a set of newly-

discovered proteins in v2 that have not been identified in v1. The proteins from ∆v2
v1

will be partitioned into either the known SCOP folds of v1 (∆v2,known
v1

), or the novel

folds that have not been determined prior to v2 (∆v2,novel
v1

), where ∆v2,known
v1

⋃
∆v2,novel

v1
=

∆v2
v1

. In our experiments, we measure the classification accuracy for proteins from

∆v2,known
v1

, and then we gauge the accuracy for classifying proteins from ∆v2,novel
v1

.

Finally, we report the efficiency of SCOP fold classifications.
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Table 4.2: A test set that contains 37 protein chains from ∆v1.61,known
v1.59 [1].

pdb id fold id pdb id fold id pdb id fold id pdb id fold id
1gyz A 63569 1key A 48370 1key B 48370 1key C 48370
1lkv X 48370 1ldk A 48370 1ifr A 48725 1ivt A 48725
1gyu A 48725 1iu1 A 48725 1iu1 B 48725 1gyw A 48725
1l6p A 48725 1lpl A 50036 1k3b A 50875 1gyh A 50933
1gyh C 50933 1gyh D 50933 1gyh E 50933 1gyh F 50933
1gye B 50933 1jof A 50964 1jof B 50964 1jof C 50964
1jof E 50964 1jof F 50964 1jof G 50964 1jof H 50964
1ln4 A 55199 1kuu A 56234 1gyd B 50933 1jof D 50964
1key D 48370 1gyv A 48725 1gyw B 48725 1gyh B 50933
1l2q A 51350

Assigning Newly-Discovered Proteins to the Known Folds

We conduct three experiments for classifying newly-discovered proteins into the known

folds. The first experiment compares our classification model, E-Predict, with several

methods reported in a research work [1] such as CE, DALI, VAST and CBOOST.

Our test data shown in Table 4.2 is the same test set used in their work, which

has proteins with average sequence identities equal to 16.88% and average sequence

similarities equal to 20.76% by conducting all against all pairwise alignments using

EMBOSS-Align [38] algorithm. The same database proteins with their work includes

proteins from the entire SCOP v1.59 release. To evaluate the accuracy, we use a

general metric, Correct Classification Rate (CCR), which is defined as follows:

CCR =
The number of correctly classified proteins

The total number of test proteins
(4.11)

Figure 4.14 shows that E-Predict outperforms DALI, CE, and VAST, exhibiting an

accuracy of 64.86%. Can et al. [1] have proposed a method, named CBOOST, which

utilizes a decision tree to integrate DALI, CE, and VAST, achieving the same accu-

racy of 64.86%. It is worth mentioning that the computationally expensive structural

alignment algorithms of CBOOST may not be able to efficiently classify a large num-

ber of newly-discovered proteins generated from on-going, high-throughput structure

determination projects.

The second experiment exhaustively evaluates the accuracy of E-Predict on several

general test sets from ∆v1.57,known
v1.55,general to ∆v1.69,known

v1.67,general. In Table 4.3 and Table 4.4, our
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Figure 4.14: The Correct Classification Rate of assigning the known folds for test
proteins in Table 4.2.

test proteins in ∆v2,known
v1

are selected from the known SCOP folds of v2, which also

maintain at least one protein chain and 10 proteins in v1, respectively. Figure 4.15

shows that E-Predict achieves 72% to 82% classification accuracies for the general

test sets of seven SCOP releases. According to Figure 4.11, there exists a large

number of SCOP folds with small sizes. When a newly-discovered protein belongs

to a small-size fold, there is a limited amount of database proteins available. In

machine learning, classifiers usually require sufficient database proteins to guarantee

the accuracy. Figure 4.16 demonstrates that E-Predict is able to achieve much higher

accuracies, 90% to 96%, for the general test sets of seven SCOP releases with more

than 10 database proteins. In the future, when newly-discovered protein structures

are categorized into those small-size SCOP folds, the accuracy of E-Predict could be

further improved.

The third experiment evaluates the accuracy of E-Predict on non-redundant test

sets, which are obtained from randomly sampling one protein chain among each SCOP

superfamily. In Table 4.3 and Table 4.4, a non-redundant test set ∆v2,known
v1,non−redundant is

defined by randomly selecting one protein from each SCOP superfamily of the general
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Figure 4.15: The Correct Classification Rate of assigning the known folds for various
SCOP releases using E-Predict on general and non-redundant test set in ∆v2,known

v1

which are selected from the known SCOP folds of v2 with at least one protein chain
in v1 (Table 4.3).

Figure 4.16: The Correct Classification Rate of assigning the known folds for various
SCOP releases using E-Predict on general and non-redundant test set in ∆v2,known

v1

which are selected from the known SCOP folds of v2 with at least 10 protein chains
in v1 (Table 4.4).
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Table 4.3: The number of proteins in a test set of general and non-redundant test
sets in ∆v2,known

v1
which are selected from the known SCOP folds of v2 with at least

one protein chain in v1.

test set the number of proteins test set the number of proteins
∆v1.57,known

v1.55,general 4192 ∆v1.57,known
v1.55,non−redundant 442

∆v1.59,known
v1.57,general 4047 ∆v1.59,known

v1.57,non−redundant 431
∆v1.61,known

v1.59,general 4547 ∆v1.61,known
v1.59,non−redundant 468

∆v1.63,known
v1.61,general 5226 ∆v1.63,known

v1.61,non−redundant 491
∆v1.65,known

v1.63,general 5445 ∆v1.65,known
v1.63,non−redundant 494

∆v1.67,known
v1.65,general 10521 ∆v1.67,known

v1.65,non−redundant 736
∆v1.69,known

v1.67,general 5604 ∆v1.69,known
v1.67,non−redundant 585

Table 4.4: The number of proteins in general and non-redundant test sets in ∆v2,known
v1

which are selected from the known SCOP folds of v2 with at least 10 protein chains
in v1.

test set the number of proteins test set the number of proteins
∆v1.57,known

v1.55,general 1832 ∆v1.57,known
v1.55,non−redundant 158

∆v1.59,known
v1.57,general 1901 ∆v1.59,known

v1.57,non−redundant 168
∆v1.61,known

v1.59,general 2136 ∆v1.61,known
v1.59,non−redundant 166

∆v1.63,known
v1.61,general 1947 ∆v1.63,known

v1.61,non−redundant 189
∆v1.65,known

v1.63,general 2062 ∆v1.65,known
v1.63,non−redundant 198

∆v1.67,known
v1.65,general 4735 ∆v1.67,known

v1.65,non−redundant 302
∆v1.69,known

v1.67,general 2298 ∆v1.69,known
v1.67,non−redundant 263

Table 4.5: The number of proteins in a test set of novel folds

test set the number of proteins test set the number of proteins
∆v1.59,novel

v1.57 94 ∆v1.65,novel
v1.63 48

∆v1.61,novel
v1.59 10 ∆v1.67,novel

v1.65 215
∆v1.63,novel

v1.61 190 ∆v1.69,novel
v1.67 86
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Table 4.6: The sequence redundancy in a set that contains 10 pairs of proteins, which
are randomly sampled from ∆v1.69,known

v1.67,non−redundant

pairs pdb id1 SF id1 pdb id2 SF id2 seq. identity seq. similarity
01 1osd A 55008 1uta A 110997 2.10% 3.50%
02 1ug8 A 82708 1vm0 A 82704 12.80% 26.80%
03 1v5n A 57889 1rq8 A 75471 13.60% 23.50%
04 1veu B 103196 1j3m A 103247 22.40% 34.20%
05 1tu1 B 55724 1smb A 55797 6.80% 10.80%
06 1thq A 56925 1xfs B 55961 18.10% 28.40%
07 1vki B 55826 1sk3 A 55846 17.70% 30.50%
08 1tf1 D 55781 1pp6 E 55676 10.30% 17.50%
09 1ucd A 55895 1vkw A 55469 9.00% 14.70%
10 1tt4 A 55931 1vkp A 55909 12.70% 21.80%

Avg. 12.55% Avg. 21.17%

test set ∆v2,known
v1,general. According to SCOP [19], proteins between two different SCOP

superfamilies have low sequence similarities, which suggest that test proteins in our

non-redundant sets should maintain low sequence similarities. Table 4.6 measures the

degree of sequence redundancy for 10 pairs of proteins, which are randomly sampled

from the non-redundant set ∆v1.69,known
v1.67,non−redundant with the average sequence identity and

sequence similarity equal to 12.55% and 21.17%, respectively. In addition, the exper-

iment using the non-redundant test sets avoids cases where some folds in the general

test sets predominate the classification accuracy with relatively more test proteins.

For example, there are 900 out of 1000 test proteins in a general test from the same

SCOP fold f1. The quantity of this fold may affect the accuracy significantly when

a majority of these 900 proteins are correctly classified. In Figure 4.15, E-Predict

presents a reduction of accuracies on several sets of non-redundant proteins in com-

parison with the general test sets in Table 4.3, which includes small-size folds. This

gap demonstrates that the impact of some SCOP folds with outnumbered proteins in

the general test sets improves the overall accuracy. Figure 4.16 shows that E-Predict

exhibits similar accuracies on seven sets of the non-redundant proteins in comparison

with the general test sets in Table 4.4, which have at least 10 database proteins. This

suggests that with a sufficient amount of database proteins, non-redundant proteins

can still be classified with a reasonably high accuracy.
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Figure 4.17: The Correct Classification Rates of recognizing the novel SCOP folds for
proteins in various SCOP releases.

Recognizing the Novel Folds for Newly-Discovered Proteins

We measure the accuracies of classifying six sets of proteins with the novel folds from

∆v1.59,novel
v1.57 to ∆v1.69,novel

v1.67 , which are listed in Table 4.5. We accumulate labeled proteins

from the prior SCOP releases to obtain more database proteins. For example, when

an experiment is conducted with test proteins from ∆v1.69,novel
v1.67 , our database proteins

are composed of new proteins from ∆v1.67
v1.55. We compare our E-Predict algorithm

with two prevalent classification methods, Nearest Neighbor search (NN) [77] and

C4.5 Decision Tree (DT) [99]. Figure 4.17 presents a plot of CCR against six test

sets ∆v1.59,novel
v1.57 to ∆v1.69,novel

v1.67 , which are listed in Table 4.5. From computational

results, E-Predict outperforms NN and C4.5 DT. There is a noticeable reduction in

accuracy when classifying proteins in ∆v1.67,novel
v1.65 . This is probably because the test

set, ∆v1.67,novel
v1.65 , is harder to be correctly predicted than the other sets. To address the

issue that accuracies may be biased by particular new structures, we conduct 10 fold

cross-validation that sequentially selects 10% of database protein data from ∆v1.69
v1.55

as a test set and the rest of 90% of database proteins as a training set for 10 times.

In the 10 fold experiment, our approach achieves 89.27% accuracy of the novel fold

recognitions.
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Figure 4.18: The protein chain sizes against the average response time of classifying
test proteins.

Efficiency

For efficiency, we measure the average response time of the entire classification pro-

cess, including the feature extraction, the nearest neighbor search on an M-tree [93],

and the computation of the SCOP folds by the E-Predict algorithm. The classifica-

tion process performs one-against-all structural comparisons by scanning the entire

SCOP database. Our system runs on a Fedora-Core Linux system with Dual Xeon

IV 2.4GHz processors and 2GB RAM. A large-scale test set is chosen from the SCOP

v1.69 release with 51911 protein chains which have more than 20 amino acids. Fig-

ure 4.18 shows the average response time of fold classifications for various protein

chain sizes. When the protein size increases, the E-Predict algorithm demands more

computational resources to extract features from larger distance matrices. When

the protein chain size reaches a certain threshold, the Linux system may swap huge

distance matrices into the virtual memory resulting in a significant I/O time. This

effect is reflected in Figure 4.18 with long computation times for the protein chain

size larger than 1099 amino acids, where more memory is required to prevent page

swapping. On average, classifying a newly-discovered protein to a SCOP fold takes
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3.5 seconds. In our test set, the longest protein chain, comprised of 1409 amino acids,

completes the classification process in 17.4 seconds.

4.2.4 Discussions

We have developed an automatic SCOP fold classification system that is able to assign

the known SCOP folds and recognize the novel folds for newly-discovered proteins. For

the known fold assignments, the algorithm transforms protein structures into three-

dimensional feature vectors and constructs an M-tree to index these feature vectors for

fast retrievals. The E-Predict algorithm is then applied to classify newly-discovered

proteins in the known SCOP folds. For the novel fold recognitions, the algorithm

utilizes three relevant features that are related to structural similarity of proteins.

This research can help accelerate the classification process of the SCOP database and

benefit the biomedical research community through its study of biochemical functions

with similar protein three-dimensional structures.

Our approach yields better accuracy and efficiency compared to the structure

alignment algorithms. The accuracy is achieved by analyzing the ranked SCOP folds

associated with the nearest neighbor proteins using the E-Predict algorithm. In addi-

tion, using an M-tree [93] results in fast searches for the nearest neighbor proteins. In

the following subsections, we compare our performance with the structural alignment

algorithms in terms of efficiency and accuracy.

Performance in Efficiency

Since structural alignment algorithms usually apply dynamic programming techniques

to align each pair of amino acids in two proteins, they demand a huge amount of com-

putational resources. Instead of aligning amino acids, our E-Predict model transforms

relevant protein structure information into high-level features. Similar protein struc-

tures are then retrieved from a high-dimensional feature space by means of searching

the nearest neighbors in the M-tree. Our approach is able to return the classification

result in seconds. Since performing the structural alignment algorithms with multiple

pairwise alignments of a newly-discovered structure against the known protein struc-

tures from the SCOP database is known to be computationally expensive [10], the
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response times for the structural alignment algorithms are not plotted in Figure 4.18.

The Accuracy of Assigning Newly-Discovered Proteins to Known Folds

For the assignment of proteins to the known SCOP folds, the E-Predict algorithm

mainly contributes to the accuracy. Traditional structural alignment methods usu-

ally apply heuristics to reduce computational efforts of aligning a large combina-

tion of amino acids in two proteins. Different heuristics could return diverse results

from the same set of proteins since these algorithms might be trapped in local opti-

mal solutions. Even though a consensus method that combines classification results

of multiple structural alignment algorithms outperforms each individual structural

alignment approach [1], it is computationally expensive. Instead of performing struc-

tural alignments, our model maps both known proteins from the SCOP database and

newly-discovered protein structures into three-dimensional feature vectors. With a

search of nearest neighbors for a newly-discovered structure t in the high-dimensional

feature space, multiple candidate folds can be considered, which are associated with

the nearest neighbor proteins in the vicinity of t. One way to assign a SCOP fold

to t is to choose the fold of the nearest neighbor protein in the high-dimensional

feature space. Since it is possible that hundreds of folds are partially overlapped in

the high-dimensional feature space, the nearest neighbor of t may be an outlier that

deviates from the majority of proteins in its fold. To avoid selecting an outlier, we

apply the E Measure metric that considers the ranks of at least two nearest neighbor

proteins for each fold. The algorithm rewards a SCOP fold in which proteins are

highly ranked and penalizes a fold with proteins in the lower ranks. Hence, when the

SCOP fold includes only a single highly ranked protein with the other proteins from

this fold ranked much lower, the algorithm is able to avoid assigning this fold to t

based on the penalty of low ranking. From computational results, E Measure has a

vital impact on the classification accuracy.

Misclassifications of Assigning Newly-Discovered Proteins to Known Folds

Within the framework of ProteinDBS [79,106,107], our model, E-Predict, transforms

a three-dimensional protein structure into a three-dimensional feature vector that
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represents the geometric properties of folded proteins. Applying these features to

measure the structural similarity of proteins, E-Predict outperforms several classi-

fication methods that apply the structural alignment algorithm using the test set

in Table 4.2. E-Predict also yields reasonably high accuracy for several test sets

in Table 4.4 with sufficient database proteins. However, misclassifications still exist.

The limited amount of three-dimensional database proteins available for training con-

tributes to the classification errors. As more database protein data becomes available

in small-size SCOP folds, a higher classification accuracy is expected. The second

reason for misclassifications is due to the overlapping of folds in the high-dimensional

feature space. To further separate overlapping folds, our system needs more relevant

features to detect the protein three-dimensional folding with sufficient discriminating

power. Another possible reason for misclassifications is that SCOP may categorize

a partial segment of a PDB protein chain (substructure) into a domain. Since our

approach measures the global similarity of distance matrices for classification, users

need to submit the portion of the protein chain identified in the SCOP domain to

ensure a correct classification. In Figure 4.19, we measure the correlation between

the classification accuracy and a structure variation value defined in Equation 4.10,

S, for a query protein t and the best matched protein of t in our classified SCOP

fold. When S is smaller than 6, we expect the E-Predict algorithm to maintain above

90% classification accuracy. This statistic is obtained from the classification of 41262

testing proteins.

The Accuracy of Recognizing Novel Folds for Newly-Discovered Proteins

Since no protein has been labeled with the novel folds in our three-dimensional

database proteins, the novel fold recognition becomes a challenging problem. To

address this issue, we introduce three features: E Measure evaluation score, struc-

tural variation value, and Euclidean distance measurement. These features measure

structural similarities between a newly-discovered protein and the nearest neighbor

protein in a candidate known fold suggested by the E-Predict algorithm. Then, our

method applies the E-Predict algorithm as a classifier to identify meaningful patterns

from database proteins, which have been obtained by the aggregation of proteins
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Figure 4.19: Correct Classification Rates of classifying test proteins against structural
variation values.

in several prior SCOP releases. Computational results show that using these three

features benefits the classification accuracy.

Misclassifications of Recognizing Novel Folds for Newly-Discovered Pro-
teins

To recognize the novel folds for newly-discovered protein structures, our classification

model exploits three relevant features. With the assumption that protein structures

in the novel folds usually present low structural similarities to proteins in the known

folds, a high E Measure evaluation score, a high Euclidean distance, and a high

structural variation value are expected for newly-discovered protein structures from

the novel folds. Due to noise in database proteins and imperfect features, a few

proteins in the novel folds may have a low structural variation value, a low E Measure

score, or a low Euclidean distance measurement. Even though our approach presents

an improved accuracy over NN and C4.5 DT, there is still a need to discover more

relevant features for better recognition performance.
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Chapter 5

Efficient Local Protein Structure
Retrieval and Classification

Given a protein of interest, proteins with similar three-dimensional substructure cores

can be identified by searching protein databases. Conceptually, retrieving protein

substructures can be considered as an application in the field of information retrieval

(IR) [104]. In practice, a user can submit a set of terms to an IR system, which then

efficiently retrieves semantically meaningful documents to the user by constructing

indexing tree structures. For an IR system, types, orders, and locations of terms make

up the basic semantics of a document. Applying these concepts of IR, types, orders,

and topological relationships of protein substructure units can be utilized to assist

human inspections of protein folds. Figure 5.1 outlines the principal components of

our approach, which extends the traditional IR model. In the upper right panel of the

figure, database proteins are preprocessed off-line into substructure units, which are

in turn mapped into terms. Those mapped terms are then indexed by an M-tree [93]

and organized in an inverted-protein index as shown on the upper middle panel of the

architecture; these indexing structures provide fast online retrieval. On the upper left

panel, the algorithm converts a query protein structure into terms, which are then

used to search against the online index. As shown on the lower panel, using the search

results for terms, the system then consecutively applies term- and chain-alignment

algorithms to compute similarities between the query protein and database proteins.

It then returns ranked protein folds to the users.
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Figure 5.1: The process of protein substructure retrieval consists of four parts: off-line
preprocessing of all database proteins, index building & loading, query processing of
unknown structure, and online ranking.

5.1 Off-line Pre-processing: Global Substructure

Representative Generation

In order to make the term mapping process efficient, we index only representative

substructure units (terms), each of which represents a cluster of structurally similar

substructure units within a pre-set rmsd threshold. A representative unit is a concep-

tual analogue to a stemmed word, which addresses all variations of terms sharing the

same root of words. To obtain a complete set of global substructure representatives,

the algorithm first parses each non-redundant protein chain in the SCOP database

and identifies two major protein secondary structures, Helix (H) and Sheet (E). The

identification of Helix and Sheet segments is conducted by sequentially matching

protein amino acid residues with the H and E templates of Spatial ARangement

of backbone Fragments (SARF) [27]. Secondly, the algorithm further decomposes

identified secondary structures into multiple substructure units. Our unit of protein

65



substructure, ui = Ko
i ⊕Kc

j , is defined as two non-overlapping segments of k amino

acid residues, including an opening k-mer (Ko
i ) and a closing k-mer (Kc

j ), where i

and j are the starting residues of these two k-mers and j − i ≥ k. Since protein

secondary structure elements Helix (H) and Sheet (E) usually contain at least five

amino acid residues [108], k is set to 5 in order to cover most of the protein secondary

structures. For those identified secondary structures with more than k amino acid

residues, sliding opening and closing k-mers by one residue at a time produces a large

amount of substructure units. To reduce the search space, both opening and closing

k-mers are shifted every Ngap amino acids. In our implementation, Ngap is set to 3.

Our computational model represents each amino acid residue of a protein chain

through a three-dimensional coordinate of Cα atom. A substructure unit with m

amino acids has a 3m-D feature vector. Superimposing two vectors of substruc-

ture units u1 and u2, Kabsch procedure [109] measures their root mean square de-

viation (rmsd) by optimizing the rotation and translation matrices. With a cut-

off rmsd threshold of η, two substructure units are considered to be similar when

Kabsch(u1, u2) ≤ η; otherwise, they are considered to be dissimilar. In our im-

plementation, η is set to 3.0 Å. Once similar substructures can be systematically

identified, the algorithm builds an indexing tree structure and obtains a collection of

protein substructure representatives. To efficiently index a large set of representative

substructure units, we chose an M-tree [93] that uses the Kabsch procedure as a met-

ric function to measure the similarity distance between two protein substructure units

in rmsd. Basically, M-tree indexing is scalable for conducting a fast range search,

which then retrieves all indexed elements within a given distance of a query vector in

a multi-dimensional feature space.

Algorithm 2 shows the pseudo code of generating substructure representatives.

There are two primitive operations: M search and M insert. In brief, M search con-

ducts a range search that returns existing substructure representatives located within

the hyper-sphere of a radius ηÅ, centered at a query substructure ui. M insert in-

serts a substructure unit i into the M-tree index and assigns a new identifier to the

substructure unit ui. The algorithm starts with an empty M-tree. Between lines 2

and 6, the inner for-loop adds a new substructure unit ui into the M-tree that in-
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Algorithm 2 Representative Generation

Require: Ω, Mtree = NIL, η
1: for each database protein P ∈ Ω do
2: for each substructure unit ui ∈ P do
3: if M search(ui,Mtree, η) = � then
4: M insert (ui,Mtree)
5: end if
6: end for
7: end for

dexes current representatives. If ui is structurally similar to any existing substructure

representatives in the tree, it is then considered as a duplicate substructure unit. In

this case, no new representative will be created and inserted into the tree. On the

other hand, when there is no existing representative located within ηÅ radius, ui will

be considered as a substructure representative and inserted into the tree with a new

identifier. All pairs of representatives in the tree should be at least ηÅ apart. This

process is applied to parse all protein chain structures in the database, Ω, and grow

a global M-tree, which serves as a dictionary of all substructure representatives. To

simplify our presentation, we interchangeably use substructure representatives and

terms in this dissertation.

5.2 Off-line Pre-processing: Term Mapping

The major purpose of creating the global M-tree is to translate three-dimensional

protein structures into a series of terms, which make fast substructure retrieval pos-

sible. As discussed previously, each protein, P , can be decomposed into a sequential

set of na substructure units, SP = {u1, u2, ..., una}. One intuitive way of translating a

protein three-dimensional structure into terms is to directly search each substructure

unit, ui, against the global M-tree. A range search for a substructure unit, ui, within

a radius, ηÅ, returns a set of matched global substructure representatives rG’s within

the range. From the search result, the term identifiers of rG’s are then assigned to ui.

Searching in the global M-tree, na substructure units of P are mapped into a list of

nb terms, f : SP → T = {t1, t2, ..., tnb
}, where nb ≥ na. Since the range search needs

to iteratively execute the computational expensive Kabsch procedure for thousands
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Figure 5.2: Two-layer term mapping: local mapping is to map an individual protein
into a series of representative substructures that are indexed in a local M-tree; global
mapping aggregates local M-trees from all database proteins for on-line classification
and retrieval.

of substructure units from each protein, the efficiency of term mapping process needs

to be improved.

To tackle the efficiency issue, we introduce a two-layer term mapping mechanism.

The first layer constructs a local M-tree index in terms of applying lines 2-6 of Al-

gorithm 2 for a single database protein, P . The purpose is to generate a set of
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local substructure representatives for P . Instead of directly querying thousands of

substructure units against the global M-tree in the second layer, the algorithm uses

only hundreds of local substructure representatives. We will refer to Figure 5.2 to

discuss examples of the term mapping processing in this section. The algorithm of

the first layer maps similar substructure units, such as u1, u3, and u5, from P to a

local substructure representative, rL
1 . Each representative in the local M-tree is then

queried against the global M-tree in the second layer by a range search. The term

identifiers of global substructure representatives in the search result are indirectly

assigned to the protein substructure units via the local representative. For example,

term ID’s 1, 2, and 5 are returned to the local representative, rL
1 ; these three term

IDs are then assigned to substructure units u1, u3, and u5 of protein P . Following the

same procedure, all na substructure units in the protein P are converted into a list

of terms. Normally, the size of a local M-tree is much less than the size of a global

M-tree. Therefore, the efficiency of term mapping is greatly increased.

5.3 M-tree and Inverted-Protein Indices

Protein substructure units, representatives and terms are organized in a global M-

tree index and an inverted-protein index. As shown in the second layer of Figure 5.2,

the M-tree index stores global substructure representatives in the leaf nodes. Let

L < −→vi , ti > denote the data structure of leaf nodes in the M-tree index, where −→vi de-

notes the 30-D coordinate features of a global substructure representative ri and ti is

the global term identifier of ri. The internal node of an M-tree is composed of several

elements such as pointers linked to child nodes, feature vectors of a prototype element

and the radius range of covered sub-trees that allow a query substructure to identify

similar representatives in leaf nodes. Another data structure constructed for fast on-

line retrieval, the inverted-protein index, is subject to structural topology constraints.

This index supports a two-layer linkage: associating a global term identifier ti with a

set of database proteins that have ti, Ωti = {P1, P2, ..., Pn}; referencing each protein

Pj ∈ Ωti to a set of protein substructure units in Pj, Λ
Pj

ti = {uPj

ti,1, u
Pj

ti,2, ..., u
Pj

ti,n}, that

maintains sequential occurrences of ti. The element, uPi
ti,m, denotes three-dimensional

coordinates of the protein substructure unit for the mth occurrence of ti in Pj.

69



5.4 Query Processing: Local Substructure Repre-

sentative Generation and Term Mapping

During on-line retrieval, the query process applies similar two-layer term mapping

procedures as discussed in Section 5.2. Instead of conducting a range search to the

global M-tree for each local substructure representative, this query process searches

only the nearest neighbor from the global M-tree to reduce number of query terms,

which will be submitted to a computationally expensive, on-line ranking procedure.

5.5 Online Ranking

Once protein structures are converted into terms, it is intuitive to apply existing

IR algorithms that use ”bag of words” or ”syntactic characterization” approaches.

However, such IR approaches will result in retrieving proteins that do not preserve

structural topology. That means, terms could be matched without considering the

order of occurrences. Therefore, in addition to utilizing terms for retrieval, our algo-

rithm also performs substructure alignments to measures structural similarity with

topological constraints.

5.5.1 Term-to-Term Alignment

Assuming that a term t is assigned to a test protein X, the algorithm first sequentially

identifies all occurrences of t in X, ΛX
t = {tX1 , tX2 , ..., tXm}, where tXi denotes the three-

dimensional coordinates of protein substructure unit for the ith occurrence of t in X.

The algorithm then accesses to the inverted-protein index, as discussed in Section 5.3,

to find all database proteins that are also linked with t. Such a database protein Y can

be represented by an ordered sequence of all occurrences of t, ΛY
t = {tY1 , tY2 , ..., tYn },

where tYj is the three-dimensional coordinates of the protein substructure unit for

the jth t in Y . Our method employs a customized dynamic programming technique

for finding the longest substructure alignment (LSA) and measuring the structural

similarity between ΛX
t and ΛY

t . The algorithm first creates two data structures: (1)

an aligned coordinate set Θ that keeps all pairwised three-dimensional coordinates

of aligned substructures of t between X and Y and (2) an alignment length matrix
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Figure 5.3: An example of aligning substructure units of a term t in two sets of protein
substructure units ΛX

t and ΛY
t using the LSA algorithm.

z2n×2m with dummy columns and rows between two consecutive occurrence of t in

both X and Y as shown in Figure 5.3. The first row and column are initialized by

filling zeros. There are two types of cells in the matrix, namely term-term and dummy

cells. The term-term cell has co-occurrence of terms from both X and Y , while the

dummy cell has existence of either a dummy row (−) or a dummy column (−). The

rationale of inserting dummy elements is to pass alignment results of previous elements

to be accessed by the later elements. The“if statement” at line 7 in Algorithm 3

distinguishes these two type of cells. Lines 8 to 14 deal with term-term cells for

alignment growth and lines 16 to 30 handle dummy cells for updating alignment

length.

Let z[2i, 2j] be the alignment length for {tX1 , tX2 , ..., tXi } and {tY1 , tY2 , ..., tYj }, where

i ≤ m and j ≤ n. All aligned substructures between these two subsets are kept

in Θ(i, j) with an rmsd value, which is measured from those aligned substructures

from both proteins. From lines 8 to 14, z[2i, 2j] is increased by one when the three-

dimensional coordinates of Θ(i − 1, j − 1) ∪ {tXi , tYj } can be superimposed within

an rmsd threshold (γ). Otherwise, z[2i, 2j] is assigned to 1. Figure 5.3 shows an
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Algorithm 3 Longest Substructure Alignment (LSA)

1: for i = 1 to 2m do
2: for j = 1 to 2n do
3: if i = 1 or j = 1 then
4: Θ[i, j] = ∅
5: z[i, j] = 0
6: else
7: if i%2 = 0 and j%2 = 0 then
8: if RMSD(Θ[i− 1, j − 1] ∪ {tXi/2, t

Y
j/2}) ≤ γ then

9: Θ[i, j] = Θ[i− 1, j − 1] ∪ {tXi/2, t
Y
j/2}

10: z[i, j] = z[i− 1, j − 1] + 1
11: else
12: Θ[i, j] = {tXi/2, t

Y
j/2}

13: z[i, j] = 1
14: end if
15: else
16: if z[i− 1, j] < z[i, j − 1] then
17: Θ[i, j] = Θ[i, j − 1]
18: z[i, j] = z[i, j − 1]
19: else if z[i− 1, j] > z[i, j − 1] then
20: Θ[i, j] = Θ[i− 1, j]
21: z[i, j] = z[i− 1, j]
22: else
23: if RMSD(Θ[i− 1, j]) < RMSD(Θ[i, j − 1]) then
24: Θ[i, j] = Θ[i− 1, j]
25: z[i, j] = z[i− 1, j]
26: else
27: Θ[i, j] = Θ[i, j − 1]
28: z[i, j] = z[i, j − 1]
29: end if
30: end if
31: end if
32: end if
33: end for
34: end for

72



example to explain the alignment process. Since the first element {tX1 , tY1 } in ΛX
t and

ΛY
t are able to be aligned within an rmsd threshold, the alignment length z[2, 2] is

equal to 1. Another alignment result, z[4, 4] = 2, is due to the fact that two protein

substructures, {tX1 , tY1 } and {tX2 , tY2 }, can be superimposed within an rmsd threshold.

When adding a new substructure in the current alignment results in a large rmsd

that exceeds γ, the algorithm assigns 1 to the cell, such as z[6, 6] in Figure 5.3.

From lines 16 to 30 of Algorithm 3, the dummy elements z[2i− 1, :] or z[:, 2j − 1]

propagate alignment results from the previous stage by taking the maximal values

from three neighbors as depicted in cell z[4, 5] of Figure 5.3. For a dummy element

z[2i − 1, 2j], the three neighbors are z[2i − 2, 2j] (↓), z[2i − 1, 2j − 1] (→), and

z[2i− 2, 2j − 1] (↘). If two neighbors have the same alignment length, which is the

maximum among three neighbors, such as z[5, 5] in the figure, z[i− 1, j] = z[i, j − 1],

the one with a smaller rmsd value will be chosen. In the process of aligning ΛX
t

and ΛY
t , we define a scoring function in Equation (5.1) to evaluate the quality of

alignment z[i, j] based on the alignment length z[i, j] and an rmsd value. Adding the

rmsd value with additional 1.0 to avoid the singular condition.

score(2i, 2j) =
z[2i, 2j]

rmsd+ 1.0
(5.1)

According to a statistic shown in Figure 5.4, the alignment result for each term

with the highest score usually exhibits reasonably good accuracy in fold classification

but cannot guarantee the best performance in classification accuracy. The alignment

results from lower ranks still have a chance to hit the highest score of structural

similarity. To provide a better accuracy in protein fold classification, the top k results

of a term-to-term alignment are utilized to determine the global rotation matrix and

translation vector. Since the execution time is expected to be linearly increased with

k, our current setting of k is 5 with 93.74% of coverage.

5.5.2 Chain-to-Chain Alignment

Once a test protein chain has been rotated, translated, and superimposed on the other

chain in the database, our algorithm applies a dynamic programming technique, which
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Figure 5.4: A statistic investigates the number of hits (histogram) against the ranking
of top k term-to-term alignments using protein set (8) in Table 5.1.

is different from the LSA at term level, to find the longest chain alignment at amino

acid level. Let X = {x1, x2, ..., xnX
} be a test protein with nX amino acid residues

and Y = {y1, y2, ..., ynY
} be a database protein with nY residues. In our global chain

alignment, xi is aligned with yj under the condition that their Euclidean distance of

Cα atoms, dist(xi, yj), is less than γ Å. Let θ[i, j] denote the alignment length for

two subsets of amino acid residues {x1, x2, ..., xi} and {y1, y2, ..., yj}. The procedure

that iteratively finds the longest chain alignment is described as follows:

θ[i, j] =


0 , if i = 0 or j = 0
θ[i− 1, j − 1] + 1 , if dist(xi, yj) ≤ γ
max(θ[i− 1, j], θ[i, j − 1]) , if dist(xi, yj) > γ

From the alignment result, the longest alignment length NA and the rmsd value

are used to compute the structure similarity between a test protein X and a database

protein Y that contains nY amino acid residues. The scoring function of the chain

alignment is defined in the following equation.

score(X, Y ) =
N2

A

nY

NA

rmsd+ 1.0
(5.2)
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The longer alignment length NA means that a larger substructure core may exist

between X and Y . In our current implementation, NA is highly weighted by taking a

square in the first ratio of Equation 5.2. Since a longer protein may potentially result

in a longer alignment than a small protein, our scoring function is normalized by nY .

Also, the structural variation of aligned amino acid residues is penalized based on the

rmsd value. The algorithm ranks all database proteins with matched terms based on

this final score.

5.6 Computational Results

In this section, we investigate both the efficiency and accuracy for SCOP fold classifi-

cation and structure retrieval (aka ”GoogleTM for Protein 3D Structures”). Our pro-

posed IPSA algorithm is compared with two well-recognized protein structure align-

ment algorithms, DALI (DaliLite v.2.4.2) and CE (v.1.0.0), using Non-Redundant

Protein Data.

5.6.1 Non-Redundant Protein Data

With proteins from the Protein Data Bank (PDB) [18], SCOP manually classifies

structurally similar proteins into folds. Since structural similarity could be captured

using sequence alignment tools, classifying redundant proteins which have high se-

quence similarities is basically considered to be a trivial case of fold classification.

Therefore, we use only non-redundant protein data for performance evaluation.

Given two consecutive SCOP database releases v1 and v2 (v1 ⊂ v2), ∆v2
v1

= v2− v1

denotes a set of newly-discovered proteins in v2 that have not been identified in v1.

Since there may exist redundant proteins in the SCOP database, our non-redundant

test set is obtained from ∆v2
v1

by excluding redundant proteins. To remove redundant

proteins, PDBselect [110] samples a set of PDB proteins with low sequence similarity.

In the latest release (March, 2006), denoted as Υ, there are 3080 chains with 459963

amino acid residues. All proteins in the PDBselect should meet the criteria that ensure

less than 25% sequence similarity. Our database protein testbed combines two non-

redundant sets, ΓG = ΓG
1 ∪ ΓG

2 , where ΓG
1 = v1 ∩Υ is collected by intersecting SCOP

database v1 and Υ; ΓG
2 is designed to completely cover the entire SCOP fold space,
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Table 5.1: The number of non-redundant proteins in a test set of general and non-
redundant test sets in ∆v2,known

v1
.

Sets Test proteins Database proteins
0 150 proteins from ∆v1.69

v1.67 2802 proteins from SCOP v1.67
1 475 proteins from ∆v1.57

v1.55 1472 proteins from SCOP v1.55
2 450 proteins from ∆v1.59

v1.57 1653 proteins from SCOP v1.57
3 501 proteins from ∆v1.61

v1.59 1797 proteins from SCOP v1.59
4 523 proteins from ∆v1.63

v1.61 1950 proteins from SCOP v1.61
5 539 proteins from ∆v1.65

v1.63 2167 proteins from SCOP v1.63
6 836 proteins from ∆v1.67

v1.65 2355 proteins from SCOP v1.65
7 640 proteins from ∆v1.69

v1.67 2767 proteins from SCOP v1.67
8 607 proteins from ∆v1.71

v1.69 3015 proteins from SCOP v1.69

avoiding the case that some folds are absent from ΓG
1 . According to [19], proteins

from different superfamilies should maintain low sequence similarities. Our non-

redundant set ΓG
2 includes one protein from each SCOP superfamily that is not in ΓG

1 .

Similarly, our test protein data is merged from two non-redundant sets, ΓT = ΓT
1 ∪ΓT

2 ,

where ΓT
1 = ∆v2

v1
∩Υ and ΓT

2 includes one protein from each of SCOP superfamily in

∆v2
v1
− ΓG

1 . Due to the time complexity of DALI algorithm, we evaluate the efficiency

and accuracy of SCOP fold classification and retrieval using 150 randomly selected

non-redundant test proteins of the protein data set (0) listed in Table 5.1 on a single

server. A comprehensive evaluation of fold accuracy is conducted using the protein

data sets (1)-(8) listed in Table 5.1.

5.6.2 Efficiency

This experiment compares the efficiency of our algorithm, IPSA, with two well-

recognized structure alignment methods, DALI and CE, using the test and database

proteins from the protein set (0) in Table 5.1. To classify proteins into folds, DALI

and CE conduct one-against-all structural alignments between a test protein and

database proteins in the testbed. DALI and CE use a Z-score to rank database pro-

teins. We measure the average response time to evaluate the efficiency of SCOP fold

classification and structure retrieval. The experiments are conducted on a Linux Fe-

dora server with dual Intel Xeon IV 2.4GHz processors and 2GB RAM. Figure 5.5

shows that the response time of the IPSA algorithm has a significant improvement
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Figure 5.5: The average response time of IPSA, CE, and DALI for SCOP fold classi-
fication.

in efficiency over both DALI and CE; it is 2.78 times faster than CE and 37.66 times

faster than DALI.

5.6.3 Accuracy - SCOP Fold Classification

SCOP fold classification categorizes a test protein into a specific fold. In our ex-

periment, the test protein is classified into the same fold as the top ranked database

protein. To evaluate the accuracy of SCOP fold classification, we use a general metric,

Correct Classification Rate (CCR), which is defined as follows:

Figures 5.6 (a) and (b) present the CCR performance comparison among IPSA,

DALI and CE using the protein sets (0) and (8) listed in Table 5.1. Intuitively,

the optimal accuracy of SCOP fold classification is 100% CCR. Our classification

results for the two sets show that IPSA exhibits 90.00% and 87.15% CCR. These

accuracies are comparable with those of DALI: 89.33% and 88.47% CCR. Also, IPSA

outperforms CE in both two protein data sets for the SCOP fold classification by at

least 8.67%.
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(a) (b)

Figure 5.6: The plots of CCR for IPSA, DALI, and CE when performing SCOP fold
classification using (a) the protein set (0) in Table 5.1, (b) the protein set (8) in
Table 5.1.

CCR =
The number of correctly classified proteins

The total number of test proteins
(5.3)

We also conduct a full-scaled evaluation on the non-redundant protein data from

several SCOP releases. Figures 5.7 shows the CCR performance comparison of IPSA

using seven non-redundant protein sets listed in Table 5.1. Consistently, IPSA main-

tains reliable classification accuracies, which range from 84.57% to 88.15%.

5.6.4 Accuracy - SCOP Fold Retrieval

Our experiment utilizes the F-measure [105] to gauge the accuracy of SCOP fold

retrieval. With the retrieval results, the retrieved database proteins are relevant

when the SCOP fold labels of these proteins match the fold label of a query protein.

Otherwise, these proteins are irrelevant. If there are k database proteins with the

same fold as a query protein, an ideal retrieval should rank these proteins in the top k
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Figure 5.7: The plots of CCR for IPSA when performing SCOP fold classification
using the protein sets (1)-(7) in Table 5.1.

results. Precision and Recall, which have been discussed previously, are two standard

performance measurements for evaluating an information retrieval system. Given a

query protein, q, F-measure shown in the Equation (5.4) considers both Precision and

Recall for the ith relevant protein.

F (i, q) =
2× Precision(i)×Recall(i)
Precision(i) +Recall(i)

(5.4)

Since there may exist more than one relevant protein for a query protein q, in

Equation (5.5), we define a single measurement, FScore, which takes the average on

the sum of each individual F-measure. When relevant proteins are highly ranked, a

high FScore is expected.

FScore(q) =

∑nq

i=1 F (i, q)

nq

(5.5)

It is worth mentioning that FScore depends on the number of relevant proteins

in the database protein set and usually does not yield 100% for the optimal SCOP

fold retrieval. For example, given a query protein with fold name Long alpha-hairpin,
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(a) (b)

Figure 5.8: The plots of FNormalized
Score(q) for IPSA, DALI, and CE when performing SCOP

fold retrieval using (a) the protein set (0) in Table 5.1, (b) the protein set (8) in
Table 5.1.

all relevant database proteins are top ranked in an ideal retrieval. Assuming that

three proteins labeled with SCOP fold Long alpha-hairpin exist in the database

protein set, the pairs of (precision, recall) for three optimally retrieved proteins

are (Precision(1) = 1
1
, Recall(1) = 1

3
), (Precision(2) = 1

1
, Recall(2) = 2

3
) and

(Precision(3) = 1
1
, Recall(3) = 3

3
). FScore of the optimal retrieval is equal to 76.67%.

To present meaningful retrieval accuracies, FScore is further normalized by its optimal

retrieval score, FNormalized
Score(q) , which is defined in the following equation.

FNormalized
Score(q) =

∑nq

i=1 F (i, q)

2×∑nq

i=1
i

i+nq

(5.6)

Figures 5.8 (a) and (b) show the plots of FNormalized
Score(q) for IPSA, DALI and CE

using the protein sets (0) and (8) listed in Table 5.1. From the results, DALI presents

the best retrieval accuracies, 73.65% and 70.97% while IPSA has 71.01% and 68.85%

retrieval accuracies, exhibiting competing retrieval accuracies with DALI. In addition,

IPSA outperforms CE in both two protein data sets with retrieval accuracies that are
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Figure 5.9: The plots of FNormalized
Score(q) for IPSA when performing SCOP fold classifica-

tion using the protein sets (1)-(7) in Table 5.1.

better by at least 14.03%. We also conduct a full-scaled evaluation on the non-

redundant protein data from several SCOP releases. Figures 5.9 shows the retrieval

performance comparison of IPSA using seven non-redundant protein sets listed in

Table 5.1. IPSA presents consistent retrieval accuracies, which range from 67.88% to

71.94%.

5.7 Discussions

In this dissertation, our Index-based Protein Substructure Alignment (IPSA) algo-

rithm is proposed for efficient protein fold classification and retrieval. Our algorithm

generates protein substructure representatives from a set of database proteins using

M-tree indexing techniques. The algorithm then encodes each database protein as a

sequence of terms, which are organized by an inverted-protein index for fast retrieval.

Moreover, structural similarities are carefully captured by aligning substructures with

matched terms. Of the above processes, several issues are further investigated and
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Table 5.2: The accuracies of SCOP fold classification and retrieval using three sets of
representative protein substructures generated by a random order of insertions.

Sets Correct classification rate Normalized FScore

A 87.64% 69.01%
B 87.64% 68.89%
C 87.64% 68.84%

Default 87.15% 68.85%

discussed in this section.

The order of inserting substructure units into the M-tree, as described in Section

5.1 and Algorithm 2, will result in a different set of substructure representatives. Our

default setting is a pre-order insertion that sequentially checks substructure represen-

tatives by starting from the beginning of protein chains. To understand the impact

of different insertion orders, we conducted experiments on the protein set (8) listed in

Table 5.1 to evaluate the effect on accuracy of SCOP fold classification and structure

retrieval based on different orders of insertions. Table 5.2 shows the correct classi-

fication rate and normalized FScore using three sets of substructure representatives,

which are generated by a random order of insertions. By comparing the results in

Figures 5.6(b) and 5.8(b) – listed as a default data set in Table 5.2 – we conclude

that changing the order of inserting substructures does not significantly affect the

accuracy of classification and retrieval.

Our algorithm requires two predefined rmsd thresholds, η and γ, that determine

whether two protein substructures are similar or not during the processes of sub-

structure representative generations, term alignments and chain alignments. Due to

the fact that different protein data sets may depend on a specific setting of these

similarity thresholds to achieve the best accuracy, there exists difficulties in optimiz-

ing these rmsd thresholds. According to the SARF algorithm [27], the rmsd values

of similar protein structures are usually less than 3.2 Å. Therefore, η is defaulted

to 3.0 Å for the purpose of generating representative substructures and mapping

three-dimensional substructure units into one-dimensional terms. By empirical ob-

servations, which is shown in Figure 5.10 , another parameter, γ, is set to 4.5 Å as an

upper-bound rmsd threshold to align multiple matched substructure units and amino
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Figure 5.10: The plot of FNormalized
Score(q) for rmsd threshold of η using the protein set (8)

in Table 5.1.

acid residues between two proteins in both term and chain alignment processes.

From the computational results, IPSA is significantly faster than both CE and

DALI for protein fold classification and retrieval. The efficiency is mainly a result of

developing a unique two-layer indexing technique. M-tree indices play an important

role in the term mapping mechanism, which encodes protein structures into terms.

In our database, a global tree with 2371 substructure representatives is constructed

from 3015 database proteins of the protein set (8) listed in Table 5.1. The following

example demonstrates the advantage of using a local M-tree. A PDB protein 1t72 A

has 1661 substructure units. A local M-tree is built to generate 111 local substructure

representatives, each of which is searched into the global M-tree for obtaining global

terms. The algorithm then maps these 1681 substructure units into global terms

by querying the small, local M-tree without directly searching the large, global tree.

Another data structure, inverted-protein index, is developed to maintain global terms

for efficient term matching. Given a query protein structure with multiple terms, only

the database proteins with the matched terms will be retrieved for the substructure

alignments. However, DALI and CE still need to compare those proteins lacking
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Figure 5.11: The relationship between histogram of the best result and the occurrence
frequency of a term in a query protein

similar substructures by conducting one-against-all structural alignments.

One important feature of IPSA is to align protein substructure units between a

query protein and database proteins that share common terms. The Kabsch pro-

cedure computes the optimized rotation and translation matrices from the aligned

substructure units. The query protein is then transformed and superimposed on the

database protein in three-dimensional space. Finally, the structural similarity can be

computed from the superimposed amino acid residues. Because the algorithm iter-

atively conducts substructure alignment for each query term, the number of query

terms impacts efficiency. Originally, the term mapping of query protein was designed

to be consistent with the mapping procedure of database proteins. Each local sub-

structure representative of the query protein needs to be linked with multiple global

terms via a range search in the global M-tree. In reality, there exists a large number

of substructure units in database proteins that share terms with a query structure.

To reduce the number of query terms, IPSA associates each local substructure rep-

resentative of the query protein with only one global term by conducting a search of

the nearest neighbors in the global M-tree.

Also, IPSA avoids aligning those large matrices in the process of term alignment

when the term has an extremely high frequency in either the query protein or a
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database protein. IPSA performs term alignment between a query protein and a

database protein for matched terms. If one term has a large number of occurrences

in two proteins, aligning this matrix is computationally complex. Moreover, aligning

the term has high frequencies of occurrences in two proteins cannot guarantee the

highest score of structural similarity. Testing from the protein set (8) in Table 5.1,

a statistic in Figure 5.11 shows the highest scores of structural similarity, which are

usually derived from aligning terms with less than 33 occurrences in a query protein.

Therefore, IPSA ignores terms that form large matrices whose product of the row size

and the column size is greater than 1000.

Testing on the Non-Redundant Protein Data Using Global Features

With the same sets of Non-Redundant Protein Data, this experiment compares the

discriminatory power between the use of our global features, which are extracted from

two-dimensional distance matrices, and local substructures of IPSA. Figure 5.13 and

5.14 show the classification accuracy, Correct Classification Rate, and the retrieval

accuracy, FNormalized
Score(q) , respectively. From the computational results, the use of local

substructures exhibits a better classification and retrieval accuracies than the global

features of distance matrix by at least 37.52% and 36.22%.

Equal Region Band Partition

In addition to the use of global features for the non-redundant protein data, we at-

tempted another strategy of image band partition, namely equal region band partition,

to extract local features. This approach partitions a distance image of the kth protein

backbone in the database, Dk, into bands, each of which has an equal area of band

region. As defined in Equation 5.7, Br
k denotes elements of the rth band in Dk, and

NB be the number of bands in a distance image.

Br
k = {Dk[i, j] | dn×

√
(r − 1)

2×NB

e ≤ (j − i) ≤ dn×
√

r

2×NB

e}

, where 0 ≤ i ≤ j ≤ n, r = 1, 2, ..., NB (5.7)

Figure 5.12 (b) shows equal region band partition of distance image for a protein

1qo4 A using the six band partition. Compared with our original partition strategy
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(a) (b)

Figure 5.12: Two partition strategies of band region in a distance matrix mapped
from a protein 1qo4 A using the six band partition: (a) original band partition (b)
equal region band partition.

shown in Figure 5.12 (a), the band of equal region is relatively smaller while the

band is close to the diagonal. Inversely, the band of equal region at the upper-right

distance image is comparably larger. Figure 5.13 and 5.14 show that our original

partition strategy exhibits a better classification and retrieval accuracies than equal

region band partition by at least 17.21% and 9.46%. This degradation of accuracy

may be a result of over partitioning the band regions that are close to the diagonal.
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Figure 5.13: The plots of CCR for SCOP fold classification using the protein sets
(1)-(7) in Table 5.1.

Figure 5.14: The plots of FNormalized
Score(q) for performing SCOP fold classification using

the protein sets (1)-(7) in Table 5.1.
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Chapter 6

Web-Based Systems

To share our research results with the research community, we have developed pub-

licly accessible web-based systems, which address efficient protein three-dimensional

structure retrieval and classification. ProteinDBS retrieves globally similar protein

tertiary structures in the Protein Data Bank (PDB). ProteinDBS-predict and IPSA

classify newly-discovered proteins into SCOP folds using global and local similarities,

respectively. All these systems share the same system architecture.

6.1 System Architecture

An important feature of our system is that it is able to support the parallel com-

putation. Several works study architectures of distributed Java database schemes,

namely Java Remote Method Invocation (Java RMI) [111–113]. Figure 6.1 shows

our system architecture on a conceptual level. Our system is constructed based on

Java RMI technique with three primary components, RMI Client, RMI Directory,

and Distributed Index Agents. These components handle a serious of tasks such as

online index organization, load balancing and retrieval.

Distributed Index Agent enables a distributed environment where online indices

such as EBS k-d tree, M-tree and inverted-protein indices separately reside in the

memory on multiple ProteinDBS-Zoo servers. Once users submit a PDB formatted

file to our system, Client Module extracts substructures or high-level features from

the data and sends it to a server that runs a RMI Directory service, which establishes

a connection between Client Module and Distributed Index Agent. Client-side virtual
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Figure 6.1: A distributed architecture of our protein three-dimensional structure
retrieval and classification systems

machines are able to remotely invoke server-side functions for tasks such as conducting

a range search of an M-tree and matching a query substructure in the inverted-protein

index. Retrieval results will be separately collected from the ProteinDBS-Zoo servers

and merged to the virtual machine of Client Module.

6.2 ProteinDBS

Protein Database Search Engine (ProteinDBS) [79, 106, 107] allows users to retrieve

globally similar protein structures in real-time level. ProteinDBS provides two in-

put options, query by PDB ID and query by three-dimensional coordinates of pro-

tein structures. Our on-line index, which is automatically updated from Protein

Data Bank (PDB) per week, maintains the latest known protein chain structures.

Users can submit their three-dimensional coordinates of newly-discovered structures

that follow PDB format. After passing a verification of file format, the uploaded

protein structure is mapped into a two-dimensional distance matrix. Several high-

level features are extracted from the matrix and are used to search into the on-
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Figure 6.2: The superimposition of query chain 1o7j A and result chain 1o7j B.

line index. In seconds, a set of similar protein structures is retrieved and returned

to the user. To visualize the quality of retrieval results, the system displays a

three-dimensional superimposition view of the query protein structure and the re-

trieved structure. A graphic package, namely KiNG (Kinemage, Next Generation)

(http://kinemage.biochem.duke.edu/software/king.php), is used for visualizing

the three-dimensional superimposition view of protein structures. Figure 6.2 shows

that the top result matches a query protein chain 1o7j A. It also shows that the

top 2nd retrieved protein chain, 1o7j B, is similar to the query protein. Our real-

time global protein structure retrieval system, ProteinDBS, is publicly accessible at

http://ProteinDBS.rnet.missouri.edu.

6.3 ProteinDBS-predict

We built a real-time system, ProteinDBS-predict, which supports fast classification

of newly-discovered proteins into a SCOP fold. Users can submit three-dimensional

coordinates of protein structures in PDB format. A list of candidate SCOP folds
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Figure 6.3: SCOP fold classification results visualization: The top left panel shows
a view of superimposing a query protein and a selected protein from the top-ranked
SCOP fold, Trypsin-like serine proteases. By clicking on a thumbnail image in the top
right panel, users can inspect other highly-ranked folds. The lower panel displays the
detailed information of the novel fold detection, the selected SCOP fold and protein
domain assignments.

is then quickly ranked and displayed to users. The classification is comprised of

two principal components: (1) Based on the ProteinDBS framework [79], protein

chains from current SCOP entries are transformed into vectors of 33 high-level fea-

tures. The E-Predict [114] algorithm then considers ranking information of each

known fold from a retrieval result of k nearest neighbors (k-NN), achieving higher

accuracy than the traditional k-NN classifier. (2) The evaluation score of E-Predict,

the structural variation value, and the Euclidean distance are computed to improve

the accuracy of detecting novel folds. In Figure 6.3, a three-dimensional super-

imposition view shows that a query protein structure 1yph and its nearest neigh-

bor protein from a SCOP fold, Trypsin-like serine proteases. Our real-time global

protein structure classification system, ProteinDBS-predict, is publicly accessible at

http://ProteinDBS.rnet.missouri.edu/E-Predict.php.
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Figure 6.4: A web interface of index-based protein substructure alignment (IPSA):
the user needs to enter a valid E-mail address and uploads a protein three-dimensional
coordinate file.

6.4 IPSA

We have also implemented a protein three-dimensional substructure retrieval system,

Index-based Protein Substructure Alignment (IPSA), which returns a set of known

SCOP folds by E-mail. Figure 6.4 shows that the users are required to leave their

E-mail addresses and submit three-dimensional protein coordinates that follow the

PDB format. Our system first converts a query protein structure into multiple 10-

mer substructures. By searching the online indices loaded in the ProteinDBS-Zoo

servers, the system then retrieves a list of protein structures that share similar local

substructures. A list of ranked SCOP folds will be delivered to the user’s E-mail

account. Our efficient local protein structure retrieval and classification system, IPSA,

is publicly accessible at http://ProteinDBS.rnet.missouri.edu/IPSA.php.
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Chapter 7

Conclusion

7.1 Summary of Completed Researches

7.1.1 Real-time Global Protein Structure Retrieval

Global protein structure retrieval aims to locate globally similar protein tertiary

structure from protein databases. In this dissertation, a real-time protein structure

retrieval system, ProteinDBS [79, 106, 107], has been developed to retrieve protein

tertiary structures from the Protein Data Bank (PDB) [18]. Our system first con-

verts a protein three-dimensional structure into a two-dimensional image of distance

matrix. A pixel value at position (x, y) of the image is obtained from a Euclidean

distance of the xth and yth amino acids. ProteinDBS then extracts several high-level

features from distance images using standard computer vision algorithms, such as

histograms [115] and textures [87–89]. Conceptually, each protein structure is rep-

resented by a multi-dimensional feature vector, which can be further indexed by an

advanced indexing structure, the EBS K-D tree [92]. The structural similarity of

proteins is measured based on Euclidean distances of the multi-dimensional feature

vectors. Smaller distances correspond to higher structural similarity. ProteinDBS is

able to retrieve globally similar protein structures from PDB in seconds. By search-

ing each query against 53356 protein chains, the running time usually takes less than

10 seconds, while maintaining 94.37% precision at 10% recall rate. Honorably, Pro-

teinDBS has been featured by science on September, 2004 [116].
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7.1.2 Real-time Global Protein Structure Classification

Global protein structure classification aims to categorize a newly-discovered protein

structure into possible protein domains or folds using the global similarity of protein

structures. Extending the framework of ProteinDBS, each protein is converted into

a 33-D feature vector. Structurally similar proteins are expected to be close to one

another in the multi-dimensional feature space.

Our automatic SCOP domain ranking and prediction algorithm transforms 33

features extracted from protein distance matrices into itemsets, which are then used

for mining association rules. The hidden structural patterns of each SCOP domain

can usually be detected in this knowledge discovery and data mining (KDD) process.

Our on-line rules are useful to suggest a small list of possible SCOP domains in

real-time. This can help speed up human curation. With 7702 database proteins

from 150 SCOP domains, our rule-based algorithm exhibits 92.42% precision with a

10% recall, 91.35% precision recalling 50%, and 79.77% precision recalling 90% of the

entire testing protein set. The average time of predicting a newly-discovered protein

to a SCOP domain takes 6.34 seconds.

Our real-time SCOP fold classification method, namely E-Predict [103], has been

developed to assign known SCOP folds and recognize novel folds for newly-discovered

proteins. The global similarity of protein structures is measured by a Euclidean dis-

tance of protein feature vectors. Our method constructs an on-line M-tree to index

feature vectors of database proteins. Once the indexing tree has returned a list of

database proteins that are close to a newly-discovered protein, E-Predict analyzes

the distribution of each retrieved SCOP fold and suggests the best ones based on

the scores of E-measure. From the computational results, E-Predict is able to as-

sign the known folds for newly-discovered proteins in the SCOP v1.69 release with

92.17% accuracy. This system also recognizes the novel folds with 89.27% accu-

racy using 10 fold cross-validation. The average response time for proteins with

500 and 1409 amino acids to complete the classification process is 4.1 and 17.4

seconds, respectively. Both ProteinDBS and E-Predict are publicly accessible at

http://ProteinDBS.rnet.missouri.edu.
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7.1.3 Efficient Local Protein Structure Retrieval and Classi-
fication

In addition to grouping globally similar proteins, the SCOP database also classifies lo-

cally similar structures into the same fold. In practice, the global structural similarity

cannot be used to classify locally similar proteins that share common substructures.

Measuring the local similarity of proteins usually needs intensive computation of

checking partially matched amino acid residues in proteins.

To address the efficiency, our proposed Index-based Protein Substructure Align-

ment (IPSA) algorithm first parses each protein three-dimensional structure into a set

of substructure units. A two-layer indexing tree is then built to map these substruc-

ture units into multiple terms, which are further indexed and loaded in the memory

for fast retrieval. For each term, the structural similarity of two proteins is obtained

from term-term and chain-chain alignments using dynamic programming techniques.

Comparing a newly-discovered protein with a set of non-redundant database proteins,

IPSA classifies the new protein to the same fold with the top structurally matched

database protein. From our computational results, our approach outperforms two

well-recognized protein structure comparison methods, DALI and CE, on 150 non-

redundant test proteins from SCOP release v1.69 with an efficiency improvement of

37.66 and 2.78 times speedup. Accuracy of fold classification and retrieval is mainly

evaluated on a complete set of 607 non-redundant proteins from the latest SCOP

release v1.71. IPSA is able to correctly classify newly-discovered proteins with an

87.15% accuracy, which is approximately equal to the 88.47% of DALI and better

than the 79.41% of CE. IPSA also has a retrieval accuracy of 68.85%, which is com-

parably accurate to 70.97% of DALI and significantly higher than 54.82% of CE.

IPSA is available at http://ProteinDBS.rnet.missouri.edu/IPSA.php.

7.2 Future Works

With our current framework of fast protein structure retrieval and classification, three

possible future works are identified, including (1) Real-time Protein Substructure

Classification and Retrieval, (2) Fast Protein Functional Site Identification and (3)
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Fast Prediction of Protein-Protein Interactions.

7.2.1 Real-time Protein Substructure Classification and Re-
trieval

Due to the increased performance of Graphic Processing Units (GPU), applications

on various fields such as signal and image processing, data mining, or geometric

computing have been developed in recent years [117]. The powerful graphic hardware

is able to concurrently distribute sub-processes of a task into multiple GPUs and

then aggregate partial results. This advantage of parallel computation is expected

to further streamline our IPSA algorithm. Since IPSA independently compares two

protein structures based on each query term mapped from a substructure unit, the

computation of all query terms can be completed by GPUs in parallel and returns

the highest similarity score. Therefore, a real-time protein substructure classification

and retrieval could be possibly reached in the near future.

7.2.2 Fast Protein Functional Site Identification

Surface regions of proteins such as active and binding sites usually have meaningful

functional properties. Due to the rapid growth of newly-discovered proteins with

unknown functions, predicting functionally important amino acid residues in pro-

teins has become an important research topic in Structural Bioinformatics. In or-

der to accurately identify functional residues, both amino acid sequences and local

three-dimensional structures of functional motifs are usually taken into considera-

tions [118–120]. Even though identification of functional residues based on compar-

ing sequence information has been well-established in recent research works [38,121],

more research effort is needed to improve the efficiency of protein three-dimensional

structure comparison. Fast local structure comparison is believed to have had a vital

impact on high-throughput protein functional site identification.

7.2.3 Fast Prediction of Protein-Protein Interactions

In a biological system, specific functions are usually invoked from complicated inter-

actions between multiple proteins. Being able to predict protein-protein interactions
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significantly benefits the study of protein function and drug design. Due to the

fact that high-throughput genomic techniques populate a large number of protein

sequences and structures, the prediction of protein-protein interactions is a challeng-

ing and difficult problem in Bioinformatics. Genomic sequence analysis has been

applied to infer whether proteins interact with one another [122]. Recent research

projects [123–125] study using three-dimensional structural information to support

the prediction of protein-protein interactions. The three-dimensional structural com-

parison based on the interfaces of interacting proteins is crucial to precisely predict

possible interactions in proteins. Again, this problem relies on fast three-dimensional

protein substructure comparisons for maintaining efficiency.
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