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ADVANCED ANALYSIS AND DESIGN OF

POLYMER SHEET EXTRUSION

Qi Wang

Dr. Douglas E. Smith, Dissertation Supervisor

ABSTRACT

A manufacturing process design methodology is presented which can be used to

improve the production of polymer components manufactured via the extrusion. The

design methodology employs polymer process modeling, design sensitivity analysis,

and numerical optimization. Specifically, this research investigates the optimization-

based design methodology of polymer extrusion including the analysis of Generalized

Newtonian Fluid (GNF) models, the adjustable features of die designs under multi-

ple operating conditions, fluid-structure interaction, and non-isothermal analysis for

fully-coupled nonlinear steady-state temperature and pressure systems. The main

objective of this research is to develop the design methodologies of polymer extrusion

and their applicability in efficiently modeling and simulating polymer processing and

industrial die designs.

An example of industrial extrusion die and various polymers (LDPE, PP, LLDPE)

are provided to exemplify the polymer processing design methodology. From the

result of this research, it is shown that the proposed methodologies can be effectively

used to design polymer extrusion dies in which the die cavity geometry is computed

to minimize the pressure drop while delivering a uniform exit velocity and a uniform

temperature.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Polymer extrusion has been widely embraced in industry as a useful manufacturing

method for converting polymeric raw materials into finished products. In this pro-

cess, the molten stream of polymer flowing through dies or into cold molds is cooled

to form the solid-product shape. The field of polymer processing has been tradition-

ally and consistently analyzed in terms of the prevailing processing methods, that

is, extrusion, injection molding, blow molding, calendering, mixing and dispersion,

rotational molding, and so on. Among them, extrusion is the most popular tool since

a vast array of thermoplastics are processed by means of extrusion. In the process

of extrusion, a polymer melt is pushed through the die that continuously shapes the

melt into a desired form. This process renders the die design to be of high importance.

A well-designed extrusion die can deliver a polymer melt through the die uni-

formly. However, it is difficult to design and optimize the die shapes due to the

complexity of flow distributions with regard to die geometry, temperature, shear his-

tory, and viscoelastic effects. Traditional design methods of extrusion dies are based

on experimental trial-and-error procedures, relying essentially on the designer expe-

rience and usually being very time, material and equipment consuming [1,2]. Thanks

to the development of software packages for the mathematical modeling of the flow of

polymer melts, this trial-and-error procedure is being progressively transformed from
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an empirical to a numerical based operation.

To design extrusion dies with a numerical based methodology, an appropriate sim-

ulation method is required for polymer melt flow analysis. Both non-Newtonian and

shear-thinning properties of polymer melts in particular, as well as the non-isothermal

nature of the flow, significantly affect the melt extrusion process. Moreover, the non-

Newtonian and non-isothermal effects interact and reinforce each other [3]. Thus it is

important to choose a flow model which accurately predicts the flow condition during

the polymer extrusion process.

The applications of the finite element method along with an optimization algo-

rithm have been used to design polymer extrusion dies [4–7]. In these approaches,

numerical simulations are used to analyze isothermal flow of polymer melts, and opti-

mization is used to compute the die cavity geometry capable of giving a near-uniform

exit velocity. Once design variables and performance measures are defined, the min-

imum of the cost function may be determined through optimization algorithm to

systematically search for the optimal design parameters. Additionally, design sen-

sitivity is calculated to quantify the relationships between the design variables and

performance measures [5–7]. Sensitivity analysis and optimization bring a new look

at design problem and can lead to more realistic and accurate results. Application of

these numerical techniques to die design are possible, even though rheological behavior

of polymer melt complicates the calculation. In this research, the design optimization

problem is solved by combining polymer process modeling, numerical optimization,

and design sensitivity analysis. Simulations that are employed in the optimization
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design process are based on the generalized Hele-Shaw flow model to provide a means

for including die cavity geometries with arbitrary in-plane features.

Most sheet extrusion dies include adjustable features such as a choker bar or

flexible lips to improve the quality of the final product by altering the melt flow within

the die cavity, especially when variability (e.g., temperature or material properties)

in operating conditions is encountered. Furthermore, the extrusion of very viscous

polymers at high flow rate through dies with thin internal flow channels can result

in high internal pressures. As a result, high pressures acting on the surfaces of the

channel may significantly distort the die body. The distortion of the die body can

have a significant effect on the flow distribution in the die and the melt velocity over

the die exit. The die designs that neglect die body deformation, therefore, may not

perform as desired.

Polymer melt temperature variation in extrusion dies can, in principle, be impor-

tant, through its influence on viscosity, and hence on pressure drop and flow distri-

bution [8]. This research attempts to provide an efficient method to analyze the melt

flow heat transfer problem. The finite element simulation of the coupled pressure and

temperature problem is developed based on Hele-shaw flow approximation and en-

ergy equation. The resulting computer simulations can provide detailed temperature

fields of polymer melt in the die cavity, which may help the engineer with the design

process and gain a better understanding of the thermal effect of polymer melt.
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1.2 Background Overview

The analysis and design of the polymer extrusion process used to produce thin sheets

and films have received much attention over the last few decades. While significant

advances have been made, complex constitutive relations and demanding performance

criteria continue to present a challenge to the successful design and operation of a

sheeting die. Of particular interest is the design of a die cavity geometry having a

minimum inlet pressure while delivering a thin layer of polymer melt with a uniform

velocity over the entire width of the die exit.

A proper design of an extrusion die is of critical importance to ensure the manufac-

ture of high-quality products. There have been many technical articles dealing with

the design and operation of various extrusion dies. Among them, the most widely

used designs are those of the coat-hanger die, T-type die and fishtail die [9–14]. The

common idea behind these efforts is to design a die which can deliver uniform poly-

mer melt flow at the die exit. In these approaches, dies with uniform exit velocity

distributions are obtained, however, pressure drop is not considered. In addition, the

ability of the die to accommodate variations in material properties is not considered.

Flow characteristics for traditional dies have been approximated using closed-form,

one-dimensional flow analysis [14]. The approaches are based on one-dimensional

or two-dimensional lubrication approximation [12], i.e. the mass and momentum

conservation equations are employed to obtain average flow rates inside the die. The
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work by Wang [15] presented a three-dimensional method for flow distribution in coat-

hanger dies where the velocity and pressure fields could be completely determined.

Huang et al. [16] concentrated on a comprehensive analysis of polymer melt flow in

a coat-hanger die by means of three-dimensional (3D) computational fluid dynamics

(CFD) techniques, they then compared the results with the analytical design method

and concluded that the expense of running a full 3D analysis is not justified when

compared to the simple analytical method. Indeed, the three-dimensional method is

more realistic than two-dimensional lubrication approach, but it requires significant

computational effort, and requires a trial-and-error procedure to select a proper die

geometry. Wen and Liu [17] extended these approaches by combining one and two-

dimensional lubrication approximation, and three-dimensional simulation so that the

detailed flow field inside the extrusion dies can be determined and the overall flow

uniformity can be adjusted to a satisfactory level.

In the design of extrusion dies, flow material properties are also considered. Pan

and Wu [13] tried to make die design available to slowly reacting materials, they used

the conventional lubrication approximation on die design to simulate the motion of

slowly reacting materials in the die. But this research is still held at the stage of one-

dimensional lubrication approximation analysis on die design. Lo [18] developed an

efficient method for the design of streamlined extrusion dies based on the prescribed

strain rate variation, Lo considered strain rate variation as an important factor to

extrusion process when materials flow through the die, however, this work was limited

to providing a prediction of die shape, it did not resolve die design problems.
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Most of the previous work in die design has employed power-law fluid model or

Newtonian fluid model for its simplicity [9,11,12,18]. Although the power-law model is

well-known and widely used in engineering work, it does not always provide accurate

computation of viscosity, particularly when shear rates are low. Other researchers

have used Cross model to simulate extrusion flow [19, 20]. Liu et al. [12] reviewed

die design methods for Newtonian and power-law fluids and extend die design to

accommodate the Ellis and modified Bingham fluid models. The resulting closed-

form die design equations provide a computationally efficient approach for defining

sheeting die cavity geometries, but assume a constant wall shear rate and are limited

to a finite set of geometric configurations. In addition, the generalized Hele-Shaw

approximation model is commonly applied to the compression and injection molding

process [9, 21], and this model is also widely used in the extrusion die designs to

represent the fluid flow [17,22].

The flow of polymer melt in sheeting dies has also been simulated using three-

dimensional flow equations and numerical approaches such as the finite element

method to solve for the pressure, velocities, and temperatures in the polymer melt

[23–25]. Various Generalized Newtonian Fluid (GNF) models (see e.g., Tadmor and

Gogos [3] or Bird, et al., [26]) have been included in these simulations which have

been shown to compare well with experimental results by Dooley [23]. These simula-

tions have assumed isothermal flow, which is justified in part by the work of Pittman

and Sander [8]. Also considered are coextrusion [24], wall slip [25], and die swell [27].
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A three-dimensional temperature formulation, combined with the generalized Hele-

Shaw flow model has been used by Arpin et al. [28], and provided temperature profiles

across the slit gap. Simplifying assumptions such as constant temperature and unidi-

rectional fully-developed flow that serve as a basis for the one-dimensional techniques

described above are avoided. Instead, a complete description of the melt flow is ob-

tained for arbitrary die cavity geometries that are not restricted to simple T, fish-tail,

or coat-hanger shapes.

Sensitivity analysis and optimization have brought opportunity for the develop-

ment of new approaches for extrusion die design. Traditional design methods focus

on the optimal design of die shape, and computation of design parameters [29]. To

employ mathematical programming methods in design problems, one needs to cal-

culate the design sensitivities or the performance measures with respect to design

variables [22, 30]. Maniatty and Chen [31] determined the sensitivity of the process

power requirement and of the internal state variable to the process geometry, and

applied numerical algorithm for computing shape sensitivity parameters in steady-

state metal forming process. Mihelič and Štok [32] used the Lagrange incremental

elastic-plastic finite element formulation in modeling the material flow and considered

the optimization approach in an extrusion process. Ulysse [30] used analytical sen-

sitivities and a mathematical programming technique to determine optimal bearing

length to achieve a uniform die exit flow. He also included temperature predictions

and introduced thermal effects in the analytical sensitivity formulations. Other ap-

proaches solve optimization problems to generate die cavities which produce a desired
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net shape including the effect of die swell [33].

Smith [22] presented a general numerical approach for the sensitivity analysis of

non-linear steady-state systems, and approximated flow model for a generalized Hele-

Shaw flow. Other researchers presented the problems of die shape design through the

use of sensitivity field calculation [29]. These problems are posed as an optimization

problem with respect to a finite number of algebraic design parameters [29]. Design

parameters in these approaches included inlet gate location, part wall thickness, cool-

ing channel location, and other process related parameters such as melt temperature,

mold temperature, and cooling channel temperature. For example, the work by Zhao

and Wright [34] used cubic spline curves to represent the shape of two-dimensional

dies. The control points or coefficients were considered as design variables.

The finite difference method is perhaps the simplest approach to evaluate de-

sign sensitivity analysis [35]. It may, however, suffer from round-off and trunca-

tion errors. Alternatively, numerically efficient and accurate ways to compute sen-

sitivity derivatives include the direct differentiation method and adjoint variable

method [22,29,30,34].

Recently, numerical optimization methods have been combined with three-

dimensional melt flow simulations which provide a powerful technique for designing

die cavities [2, 36]. Na and Lee [37] applied optimization solution of the inverse for-

mulation, in conjunction with a 3D flow simulation using the finite element method,

to achieve optimum geometry design of coat-hanger dies. Application of design re-

sponse analysis combined with a zero-order optimization algorithm to coat-hanger

8



die design was also performed by Wang [38]. This type of design methodology allows

for a more general definition of the die cavity and may include other important per-

formance metrics such as die pressure drop. Unfortunately, the computational effort

required to obtain the more accurate three-dimensional solutions can be excessive

when used in an iterative design procedure, particularly when applied to detailed

industrial designs.

Two-dimensional (often referred to as 21
2

D) simulations provide a computation-

ally efficient alternative to three-dimensional methods while avoiding many of the

simplifying assumptions and geometric restrictions of existing one-dimensional de-

sign equations (see e.g., [17, 22, 39–41]). Sartor [39] was perhaps the first to combine

numerical optimization with a two-dimensional flow network analysis to iteratively

solve the die design problem using a power-law fluid model. Smith, et al., [22,40,41]

developed a finite element simulation based on the Hele-Shaw flow approximation [21]

similar to that used in injection molding simulations [42] to compute optimal die cav-

ity geometries. Constraints were defined to measure the die’s exit velocity variation

and design sensitivity expressions were developed which greatly reduce the computa-

tional effort required in the design optimization calculations. Unfortunately, these de-

signs were also limited to isothermal Newtonian and power-law fluids. Non-isothermal

flows in coat-hanger dies have been investigated in some studies [28, 43, 44]. Sander

and Pittman [45] and Gifford [46] also performed die body deflection analysis coupled

with the melt flow analysis.

In the field of optimization for die design, most approaches only address a single

9



material or one operating condition. Since extrusion dies are very expensive to build,

it will be more economical to construct dies that process multiple materials or oper-

ating conditions. Smith [41] is the first to apply the optimal die design to multiple

operating conditions where die geometries that apply to multiple materials are com-

puted simultaneously. In addition, Smith and Wang [5] recently extended the earlier

optimization approaches to include various generalized Newtonian fluid models in-

cluding the Carreau-Yasuda fluid model, and they addressed variability in die design

by including an adjustable choker bar in the melt flow analysis and design [6]. In both

of their articles, constraint functions were defined to measure the die’s exit velocity

variation, and design sensitivity expressions were developed that greatly reduced the

computational effort required in the design optimization calculation.

Polymer sheeting die design methodologies are presented in this research which

integrates finite element flow simulations, numerical optimization, and design sensitiv-

ity analysis to compute die cavity geometries capable of meeting various demanding

performance criteria. The main objective of this research is to develop the design

methodologies of polymer extrusion and their applicability in efficiently modeling

and simulating polymer processing and die designs.

1.3 Research Objective

This research is intended to enhance polymer processing analysis by incorporating

it into a design methodology based on numerical analysis, optimization, and de-

sign sensitivity analysis. The principal objectives of this thesis are to formulate
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efficient and accurate design sensitivity analysis methods for polymer processing,

to develop polymer processing analysis methods that best facilitate the sensitivity

analysis methodology, and to combine these analyses with nonlinear programming

to optimize the polymer processes. More specifically, this research investigates the

optimization-based design methodology of polymer extrusion including the analysis

of Generalized Newtonian Fluid (GNF) models, the adjustable features of die de-

signs under multiple operating conditions, fluid-structure interaction, and coupled

Hele-Shaw approximation and energy equation for non-isothermal analysis.

To realize these objectives, polymer melt flow computations and design sensitiv-

ity analyses are performed using the generalized Hele-Shaw flow approximation with

power-law, Carreau-Yasuda, Cross, Ellis, and Bingham fluid models. The effect of the

adjustable features of die cavity is incorporated in the design approach to improve

the quality of the final product. The coupling effects between polymer melt fluid

analysis and 3D finite element simulation for die structure are incorporated into the

die design optimization to compute the optimal die cavity geometry. Additionally,

temperature dependent constitutive fluid models are considered in this research to

make die designs more realistic. Non-isothermal purely-viscous fluids through thin,

slowly-varying thickness cavities are analyzed in which the lubrication approximation

may be applied. The non-isothermal condition coupled with Hele-Shaw flow approx-

imation is also incorporated in the design methodology by solving incompressible

and steady-state energy equations. Industrial relevant examples will be presented to

demonstrate the effectiveness of the proposed methodologies.
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The research fulfilling these goals is presented in the next four chapters. In each

chapter, analysis and design sensitivity analysis methods for polymer processes are

presented followed by example optimizations of particular processes.

In chapter 2, the generalized Hele-Shaw flow approximation and various gener-

alized Newtonian fluid models are described where numerical methods such as the

finite element method and Newton-Raphson method are used to calculate the pres-

sure solution, flow viscosity, and flow conductance. The design methodology given

in this chapter is applied to polymer sheeting die design and addresses the need for

developing dies capable of performing well under multiple operating conditions. The

adjustable features of the die cavity can be modified in an optimal manner consistent

with the overall design objectives [4–6].

Chapter 3 presents an optimization-based design methodology that integrates a

simulation of the polymer melt flow and extrusion die cavity deformation to compute

a die cavity geometry capable of giving a near-uniform exit flow rate. In this approach,

the flow analysis, which is simplified with the Hele-Shaw approximation, is coupled

to a 3D finite element structural simulation for the die deformation. In addition,

shape optimization of a polymer sheeting die is performed by the incorporation of the

coupled analyses in our constrained optimization algorithm [7,47,48].

The final technical developments appear in chapter 4 where the non-isothermal

flow analysis is investigated by incorporating the fully-coupled system equations, both

2.5D Hele-Shaw approximation and 3D energy equation, into the design sensitivity

analysis for polymer process optimization. To reflect the non-isothermal influence on
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the rheological behavior of polymer melt, the temperature-shifting function [44] is in-

troduced to represent the polymer melt viscosity equation. A coupled computational

algorithm to determine the temperature filed of polymer melt in the die cavity is pre-

sented which uses the pressure and velocity fields from the the Hele-Shaw fluid flow

analysis. The SUPG finite element method [49] and the adjoint method [50] are devel-

oped in a manner which facilitates design sensitivity analysis. The design sensitivity

analysis is particularized for this fully-coupled system where detailed derivations are

given to illustrate the computational procedures.

Finally, conclusions and recommendations are made in chapter 5. The major

accomplishments of this thesis are summarized, and future research to enhance the

current design methodology is proposed.
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CHAPTER 2

OPTIMAL DESIGN OF DIES WITH

ADJUSTABLE FEATURES

It is common for materials processing operations to have adjustable features that may

be used to improve the quality of the final product when variability in operating condi-

tions is encountered. This chapter considers the polymer sheeting die design problem

where variability in operating temperature or material properties, for example, re-

quires that the die be designed to perform well under multiple operating conditions.

An optimization procedure is presented where the design variables parametrize both

stationary and adjustable model variables. In this approach, adjustable features of

the die cavity are modified in an optimal manner consistent with the overall design ob-

jectives. The computational design approach incorporates finite element simulations

based on the Generalized Hele-Shaw approximation to evaluate the die’s performance

measures, and includes a gradient-based optimization algorithm and analytical de-

sign sensitivities to update the die’s geometry. Examples are provided to illustrate

the design methodology where die cavities are designed to accommodate multiple

materials, multiple flow rates, and various temperatures. This research demonstrates

that improved tooling designs may be computed with an optimization-based process

design approach that incorporates the effect of adjustable features.
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2.1 Background

Polymer extrusion is an important manufacturing process used to produce a vast

array of commercial plastic products. For example, flat polymer sheets, plastic tubes,

window channels, and other complex shapes of fixed cross section are produced by this

continuous forming process. A primary objective in the design of a polymer extrusion

die is to determine the optimal flow channel geometry that forms a desired cross

section from a continuous molten polymer stream. To ensure that the desired cross

section is obtained, sheeting dies are designed to deliver a uniform flow rate across

the die exit. Most sheet extrusion dies include adjustable features such as a choker

bar or flexible die lips which provide a means to accommodate process variations by

altering the melt flow within the die cavity. Analysis and numerical simulations have

been performed to evaluate the melt flow within a sheeting die, and design methods

have been employed to compute optimal die cavity geometries. Unfortunately, a die

design method that anticipates the use of adjustable features when computing the

optimal die cavity geometry has received little attention.

While applicable to a single operating condition, the previous die design ap-

proaches do not consider the possibility of variations that may occur during the

polymer extrusion process. Deviations in temperature or humidity during the manu-

facturing process, for example, may alter the flow characteristics in the die which can

cause undesirable results in the final product. Similar effects are seen due to variations

in the incoming polymer materials. Since it is not practical to build an individual

sheeting die for each production variation, adjustable features such as choker bars and
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adjustable die lips are included in sheeting dies to better accommodate changes in

the melt properties (see e.g., Michaeli [14]). Wu et al. [51] provided design equations

based on one-dimensional flow to prescribe various choker bar shapes for a single die

cavity, and Bates et al. [52] optimized restrictor geometries for single operating condi-

tions. Otherwise, little effort has been made to incorporate the effect of the adjustable

features when designing sheeting dies under multiple operating conditions.

This research presents a simulation-based optimal design approach similar to that

given by Smith et al. [22]. In this study, however, the objective is to determine a

single sheeting die cavity geometry that will best accommodate multiple operating

conditions that may exist due to variations in temperature, material, and/or flow

rate. To realize this objective, a simulation-based approach is presented below that

incorporates nonlinear finite element analysis which models the non-Newtonian flow of

polymer melt within an extrusion die cavity. The method uses numerical optimization

where design sensitivities are evaluated with the adjoint variable method.

2.2 Polymer Sheeting Die Design Approach

As in other manufacturing processes, polymer extrusion dies are designed such that

adjustments can be made during their operation to improve the quality of the final

product. A sheet extrusion die cavity typically consists of a region where the geometry

is fixed once the die is machined, as illustrated in figure 2.1. In addition, there is a

region or regions in the die that can be adjusted by the operator to accommodate

variability during production. A choker bar and/or flexible die lips are used to provide

16



a means to adjust the flow of polymer melt as required to maintain a uniform exit

flow rate for the sheet being produced.

die entrance 

fixed die cavity 

regions

Pin

y

x

adjustable die cavity 
region

die exit 

Pout = 0 

Figure 2.1: Coat hanger die geometry with fixed and adjustable (i.e., choker bar)
regions

This chapter considers an optimization-based approach to design polymer extru-

sion dies where the die cavity geometry is computed to give improved performance.

In this approach, two types of model variables are employed in the die geometry

parametrization, both of which are defined by design variables in the optimization

problem:

• Stationary model variables: These variables define the geometry of an extru-

sion die that is fixed once the die is machined. It is assumed that these model

variables, and the corresponding die geometry, cannot be adjusted to accom-

modate manufacturing variability. In the die design example, stationary model
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variables describe the fixed die cavity regions in figure 2.1.

• Adjustable model variables: These variables define regions in the die or machine

settings that can be adjusted during production by an operator or, perhaps, an

automatic control device, to improve the quality of the final product. It is

assumed that these design variables are adjusted in an optimal manner to ac-

commodate manufacturing variability. In the die design example, adjustable

variables describe the choker bar settings and inlet pressure for each flow con-

dition as shown in figure 2.1.

The design approach described below is developed to compute a die cavity geome-

try for a single polymer sheeting die, given that there is a region of the die that can be

adjusted to accommodate variability during production. An optimization problem is

defined consisting of an objective function and constraints that are based on multiple

isothermal melt flow simulations in terms of the design variable vector φ as

Determine φ

To minimize f(φ) =
∑Nf

q=1 P q
in

Subject to gq
1(φ) = 1

L

∫
lexit

(
v̄q(φ)

vq
a(φ)

− 1
)2

dx ≤ εq
1

gq
2(φ) =

(
vq

a(φ)

vq
p
− 1

)2

≤ εq
2

φL
i ≤ φi ≤ φU

i

(2.1)
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The non-linear constrained optimization is to minimize the sum of the inlet pres-

sures P q
in, q = 1, 2 . . . Nf where Nf is the number of operating or flow conditions con-

sidered in the design problem. This cost function represents the sum of the pressure

drops through the die (cf. figure 2.1) since Pout is fixed at 0 for each flow condition.

The constraint functions gq
1 and gq

2, q = 1, 2 . . . Nf , are, respectively, a measure of the

exit velocity variation and die flow rate for the qth flow conditions. In the above, v̄q

is the y component of the gap-wise average velocity (see figure 2.1) and vq
a is the qth

average exit velocity computed from

vq
a(φ) =

1

L

∫

lexit

v̄q(φ) dx (2.2)

A zero value of gq
1 indicates that the computed exit velocity v̄q(φ) equals the qth

average exit velocity vq
a over the entire width of the exit, i.e., the exit velocity is

everywhere uniform. In a similar manner, a zero value of gq
2 indicates that the qth

average exit velocity vq
a equals the prescribed gap-wise average exit velocity vq

p, i.e.,

the die is delivering the desired flow rate. The small tolerances εq
1 and εq

2 are included

on the exit velocity variation and the exit flow rate condition, respectively, so that the

criteria for satisfying these two constraints for each flow condition q can be adjusted

independently.

In the optimization problem above, φ is the design variable vector with real com-

ponents φi, i = 1, 2 . . . N , limited by upper and lower bounds φU
i and φL

i , respectively,

where N is the total number of design variables. Ns stationary design variables φs
j ,

j = 1, 2 . . . Ns, are included in φ which describe the geometry of the fixed die cavity

region shown in figure 2.1. In addition, Nq adjustable model variables are defined,
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and associated with each of the Nf flow conditions which are defined in terms of the

design variables φq
k, k = 1, 2 . . . Nq. These include parameters that define the choker

bar position and die inlet pressures P q
in in our die design examples. Therefore, the

total number of design variables in φ is N = Ns + NfNq.

The solution to the design optimization problem in equation 2.1 gives a single

sheet extrusion die geometry that yields a uniform exit velocity with a prescribed

flow rate over a range of operating conditions. This formulation assumes that an

operator, or perhaps an automatic control device, may make adjustments for each

flow condition considered in order to facilitate the optimal die flow operation. Note

that the design calculations considered in this chapter address flow within the die

itself, and do not take into account downstream effects such as die swell which are

known to change the shape of the polymer stream once it exits the die cavity. A

different approach will be given in chapter 3 to handle die lip expansion caused by

extrusion pressure.

2.3 Polymer Melt Flow Modeling and Simulation

To optimize the die cavity geometry of a sheeting die such as that appearing in figure

2.1, a die flow simulation is required. The Hele-Shaw flow model [21] is developed from

the principles of conservation of mass, momentum and energy, where assumptions are

made to reduce computational time and data requirements. The polymer melt is

modelled as a Generalized Newtonian Fluid, and therefore is assumed to be inelastic

and incompressible. In addition, inertial, body and surface tension forces in the fluid
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are assumed to be negligible. Moreover, the pressure does not vary significantly in

the direction normal to the plane of flow, and the velocity in the direction normal

to the plane of flow is negligible compared with the in-plane velocities (see e.g.,

figure 2.1). The die cavity thickness is assumed to be small compared to its in-plane

dimensions and has little in-plane variation and all flow conditions are assumed to be

symmetric with respect to the cavity mid-plane. This model is widely employed in

injection and compression molding [21], and has also been applied to sheet extrusion

dies [17,22,39,41,52,53].

2.3.1 Governing Equations

Based on these assumptions, the mass and momentum conservation equations reduce

to a single differential equation [21]

∇ · S ∇P = 0 (2.3)

where P is the pressure field over the flow cavity domain Ω in two-dimensions, and

∇ is the gradient operator in the x-y plane. The boundary conditions in the plane of

flow are P = P p on ∂Ωp and S(∇P · n) = qp on ∂Ωq, where qp is the prescribed flow

rate. Hence, the boundary of the flow domain ∂Ω is divided into two complimentary

sub-domains: ∂Ωp and ∂Ωq. S is the flow conductance defined as an integral through

the cavity thickness as [21]

S =

∫ h

0

z2

η(γ̇(z))
dz (2.4)

where the integration is performed from the die cavity mid-plane (z = 0) to its top

surface (z = h). In equation 2.4, the viscosity η is a function of the strain rate
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magnitude γ̇ which is computed in this analysis at a distance z from the flow domain

midplane as

γ̇ =
z

η
‖∇P‖ (2.5)

where ‖∇P‖ is the magnitude of the pressure gradient in the plane of flow.

A residual R for the boundary value problem described in equation 2.3 is obtained

via the method of weighted residuals (see e.g., [54]) in the usual manner as [53]

R(P ) =

∫

Ω

∇w · S(P )∇P da−
∫

∂Ωq

w qP ds (2.6)

where w is an arbitrary weighting function. The pressure field P that satisfies equation

2.6 is the solution to equation 2.3 if w vanishes on ∂Ωp, and P satisfies the boundary

conditions on ∂Ωp [22]. When non-Newtonian fluids are considered, S in equation 2.4

becomes a function of the pressure field, and equation 2.6 is non-linear in P , requiring

iterative methods to compute a solution. In this research, the non-linear residual

2.6 is solved via the Newton-Raphson method since it exhibits terminal quadrature

convergence and is conducive to the design sensitivity analysis to follow. The tangent

operator ∂R
∂P

operating on the increment [∆P ] is obtained by differentiating equation

2.6 with respect to P as

∂R(P )

∂P
[∆P ] =

∫

Ω

∇w ·
[
S(P )∇[∆P ] +

∂S(P )

∂P
[∆P ]∇P

]
da (2.7)

where we have assumed that qP in equation 2.6 is not a function of the pressure P .

Note that equations 2.6 and 2.7 may include any Generalized Newtonian Fluid model

in which the material model enters the computations through S and ∂S
∂P

.
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2.3.2 Model Solution

The isoparametric finite element method (see e.g. [54]) is used to discretize the above

equations when the two-dimensional flow domain Ω in equations 2.6 and 2.7 is di-

vided into multiple finite element domains. The die cavity half-height h enters the

calculations through the integral in equation 2.4. In the finite element analysis, the

melt pressure field P and residual R in equation 2.6 become the nodal pressure vector

P and residual vector R, respectively (see e.g. [22,53]). In a similar manner, the tan-

gent operator ∂R
∂P

in equation 2.7 becomes the tangent matrix ∂R
∂P

. Once the residual

R and tangent matrix ∂R
∂P

are computed, the nodal pressures can be evaluated using

Newton-Raphson iteration as

∂R(Pi)

∂P
[∆P] = −R(Pi) (2.8)

where nodal pressures are updated as Pi+1 = Pi + ∆P. Iterations are repeated until

convergence is reached. Once the pressure solution is computed, the gap-wise average

velocity vector v̄ is evaluated from

v̄ = −S

h
∇P (2.9)

2.3.3 Generalized Newtonian Fluids

The Generalized Newtonian Fluid (GNF) model is widely used to represent the purely

viscous non-Newtonian behavior of polymer melt flow (see e.g., [3,26]) where the shear

stress tensor τ is proportional to the strain-rate tensor γ̇ as

τ = η(γ̇)γ̇ (2.10)
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Expressions for several GNF models are given in table 2.1, where model parameters

are described in the literature (see e.g., [3, 42]).

• Power-law fluid model

When an isothermal power-law fluid model is employed, the viscosity η = mγ̇n−1

from table 2.1 may be substituted into equation 2.5 to obtain an explicit expression

for η as a function of z. This result may be combined with equation 2.4 to evaluate

the flow conductance S as [22]

S(P ) =
h

1
n

+2

m
1
n ( 1

n
+ 2)

‖∇P‖ 1
n
−1 (2.11)

Consequently, the term ∂S
∂P

acting on the increment [∆P ] in the tangent operator ∂R
∂P

in equation 2.7 is obtained by differentiating equation 2.11 with respect to P as [22]

∂S

∂P
[∆P ] =

S( 1
n
− 1)

‖∇P‖2
∇P ·∇[∆P ] (2.12)

where we note that an analytical expression for S(P ) and ∂S
∂P

are possible since m

and n are independent of z for homogeneous isothermal flow. Note that equations

2.11 and 2.12 reduce to S = h3

3µ
and ∂S

∂P
= 0, respectively, for a Newtonian fluid with

viscosity µ.

• Ellis fluid model

Since the power-law fluid model does not capture the near-constant viscosity at

low strain rates, other more realistic GNF models such as the Ellis, Carreau-Yasuda,

and Cross models are often used. These more complicated models can be used to
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provide a better representation of the entire viscosity curve, combing a near-constant

viscosity for low shear rates, a power-law at high shear rates, and a smooth transition

in between. Figure 2.2 shows shear stress-viscosity curve for the Ellis model. The

viscosity function of an isothermal Ellis fluid is given as (see table 2.1)

η =
η0

1 +
(

τ
τ1/2

)α−1 (2.13)

where η0 is the zero shear viscosity, τ1/2 is the value of shear stress at η = η0/2

and (α − 1) is the slope of the curve log[(η0/η) − 1] verse log(τ/τ1/2) [55]. The

flow conductance S for Ellis fluid can be obtained by substituting equation 2.13 into

equation 2.4 as

S(P ) =
h3

3η0

+
hα+2

η0 τα−1
1/2

(
1

α + 2

)
‖∇P‖α−1 (2.14)

The derivative ∂S
∂P

in equation 2.7 is obtained by differentiating equation 2.14 with

respect to P as

∂S

∂P
[∆P ] =

(
α− 1

α + 2

)
τ 1−α
1/2

η0

hα+2

‖∇P‖3−α
∇P ·∇[∆P ] (2.15)

• Carreau-Yasuda, Cross, and Bingham fluid model

When Carreau-Yasuda, Cross, and Bingham fluid models are employed, the sim-

plicity of the analytical expression described above is lost since the viscosity η cannot

be written as a function of ‖∇P‖ in the generalized Hele-Shaw analysis. As a result,

an analytical expression for the flow conductance S in 2.4 does not exist. Therefore,
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Figure 2.2: Viscosity versus shear stress and temperature for low density polyethylene
(LDPE)

Gauss Quadrature (see e.g., [54]) is employed to numerically integrate equation 2.4

as

S =
NG∑
i=1

ci
zi

η(zi)2
(2.16)

where NG is the number of integration points (NG = 8 in this analysis), ci are

Gauss weighting factors, and the viscosity η is evaluated at selected zi locations using

equation 2.5 and the selected GNF viscosity formula from table 2.1.

Similarly, an analytical expression for the derivative ∂S
∂P

in equation 2.7, such as

that shown in equation 2.12 for the power-law fluid, does not exist for the Carreau-

Yasuda, Cross, and Bingham fluid models. Since the domain of integration in equation
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2.4 does not depend on P , we may differentiate its integrand to give

∂S

∂P
[∆P ] = −

∫ h

0

z2

η2

∂η

∂P
[∆P ] dz (2.17)

The viscosity derivative ∂η
∂P

is evaluated by differentiating equation 2.5 and the se-

lected viscosity formula in table 2.1 with respect to the pressure P , which yields

∂η

∂P
[∆P ] = β

∇P ·∇[∆P ]

‖∇P‖2
(2.18)

where the viscosity derivative factor β is defined for each of the GNF models consid-

ered in this study in table 2.2.

To numerically evaluate the integrals in equations 2.4 and 2.17, the viscosity η

must be evaluated at selected z locations in a manner similar to that shown in equa-

tion 2.16. Unfortunately, when equation 2.5 is substituted into any of the viscosity

equations given in table 2.1, a nonlinear equation in η is obtained which must be

solved numerically via an iterative procedure such as the Newton-Raphson method.

To illustrate the resulting viscosity calculation procedure, we consider the Carreau-

Yasuda viscosity model given in table 2.1 as an example. A residual expression r(η)

based on the viscosity η as well as its first derivative r′(η) = dr(η)
dη

are defined, respec-

tively, as

r(η) =
η − η∞

η0

− (1− η∞
η0

)[1 + (λγ̇)a]
(n−1)

a (2.19)

r′(η) =
1

η0

+
(n− 1)(η − η∞)(λγ̇)a

η η0 (1 + (λγ̇)a)
(2.20)

where γ̇ is computed for a given ∇P at each height z from equation 2.5. It is desired

that r(η) = 0, so that at iteration i, the viscosity is updated via the Newton-Raphson

method as ηi+1 = ηi − r(ηi)
r′(ηi)

where iterations continue until convergence is achieved.

27



Table 2.1: Viscosity expressions for common generalized Newtonian fluids

Fluid model Viscosity η
Power-law [3] m γ̇n−1

Carreau-Yasuda∗ [3] η∞ + (η0 − η∞)[1 + (λ γ̇)a](n−1)/a

Ellis [3] η0

1+

(
τ

τ1/2

)α−1

Cross [42] η0

1+( η0 γ̇
τ∗ )

1−n

Bingham [3]

{ ∞ for τ < τy

µ0 + τy

γ̇
for τ ≥ τy

∗Reduce to the Carreau fluid model for a = 2 and η∞ = 0

Table 2.2: Expressions for β for common generalized Newtonian fluids

Fluid model β in equation 2.18 and 2.38
Power-law [3] n−1

n
η

Carreau-Yasuda [3] (n−1) (λ γ̇)a (η−η∞)
η+(λ γ̇)a (η∞+n(η−η∞))

η

Ellis [3] −
[
(α− 1)

(
τ

τ1/2

)α−1
]

η2

η0

Cross [42] − η2 (1−n) ( η0 γ̇
τ∗ )

1−n

η (1−n) ( η0 γ̇
τ∗ )

1−n−η0

Bingham [3] − τy η

µ0 γ̇
for τ ≥ τy
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Once the viscosity η is computed at all of the specified z locations, the flow

conductance S and its derivative ∂S
∂P

may be obtained via numerical integration of

equations 2.4 and 2.17, respectively. The residual R and tangent operator ∂R
∂P

can

then be evaluated from equations 2.6 and 2.7, respectively.

2.4 Design Sensitivity Analysis (DSA)

Gradient-based optimization methods (see e.g., [56]) are commonly used to solve

design problems such as that given in equation 2.1. In these problems, a significant

advantage is derived from the efficient computation of the design sensitivities. Design

sensitivities are simply the derivatives of the performance measures (such as the

objective function or a constraint) with respect to the design parameters. Design

sensitivities quantify the first-order effect of an input parameter on a desired response.

In this work, a design sensitivity of interest is the derivative of the exit velocity

constraint g1 and g2 with respect to a parameter that describes the shape of the die

cavity. Design sensitivities are often used in “what if” studies, and serve as a key

input for numerical optimization algorithms [56].

Computing design sensitivities of the cost and constraint functions with respect

to design variables is relatively straight forward when the functions are explicit in φ

(such as the objective function f in equation 2.1). In our design approach, however,

the constraints are dependent on the pressure field obtained through a nonlinear fi-

nite element solution which is implicit in φ through equation 2.3. Design sensitivities

are often evaluated by the finite difference method which are easily computed once a
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simulation procedure is defined for evaluating the performance measures of interest.

Unfortunately, finite difference derivatives have been shown to be inaccurate, inef-

ficient, and unacceptable [57] for nonlinear problems such as that described in this

work. Indeed, if the finite difference perturbation is too small then round-off errors

result, and if it is too large then truncation errors occur. Also, N additional nonlin-

ear finite element analyses are required, one for each design derivative, which can be

computationally prohibitive. The accuracy may be improved with higher order finite

difference formulas, but these are rarely used in design problems due to the increased

computational expense.

2.4.1 The Adjoint Variable Method

This study computes the design sensitivities using the adjoint variable method (see

e.g., [57,58]) which provides a more efficient and accurate means for obtaining gradi-

ents when compared to finite difference approaches. To compute design sensitivities

for the sheeting die design problem with the adjoint variable method, a general im-

plicit cost or constraint function is expressed as

F (φ) = G(Pq(φ),φ), q = 1, 2, . . . Nf (2.21)

where Pq is the vector of nodal pressures in the finite element analysis of the qth

operating condition. In addition, the residual vector evaluated from equation 2.6

may be written for the qth flow condition following discretization as

Rq(Pq(φ), φ) = 0 (2.22)
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Lagrange multipliers λq are introduced for each flow condition which are used to

define an augmented function F̂ from equations 2.21 and 2.22 as

F̂ (φ) = G(Pq(φ),φ)−
Nf∑
q=1

λq · Rq(Pq(φ),φ) (2.23)

where we note that the qth residual Rq includes only the qth pressure solution vector

Pq. Note that F̂ (φ) = F (φ) since all designs φ must satisfy the descritized residual

equations Rq = 0 for all q = 1, 2 . . . Nf in equation 2.22. Differentiation of F̂ with

respect to the ith design variable φi and some rearranging gives

dF̂

dφi

=
∂G

∂φi

−
Nf∑
q=1

λq · ∂Rq

∂φi

+

Nf∑
q=1

{[
∂G

∂Pq − λq · ∂Rq

∂Pq

]
dPq

dφi

}
(2.24)

where we note that dF
dφi

= dF̂
dφi

since Rq = 0 for all flow conditions q. Additional

analyses for computing the implicit response derivatives dPq

dφi
in equation 2.24 are

avoided by defining each adjoint vector λq to eliminate the coefficients of the dPq

dφi
.

The resulting adjoint problems are

[
∂Rq

∂Pq

]T

λq =

{
∂G

∂Pq

}T

q = 1, 2, . . . Nf (2.25)

where ∂G
∂Pq is the qth adjoint load and ()T indicates matrix transpose. Note that

the original analysis is nonlinear, whereas the adjoint analysis is linear. Once the

λq are evaluated, the unknown implicit response derivatives dPq

dφi
are eliminated from

equation 2.24 which reduces to

dF̂

dφi

=
∂G

∂φi

−
Nf∑
q=1

λq · ∂Rq

∂φi

(2.26)

In the above, ∂G
∂Pq is the adjoint load associated with the performance measure

of interest. The adjoint variable method is computationally efficient since it only
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requires the evaluation of one linear adjoint problem defined by equation 2.25 for each

implicit objective and constraint function. Furthermore, it employs the transpose of

the tangent matrix
[

∂Rq

∂Pq

]T
from equation 2.8 used in the Newton-Raphson iteration

for the pressure solution, which significantly reduces the computational effort.

Since the constraints gq
1 and gq

2 in equation 2.1 are not explicitly dependent on

the design variables considered in this study, ∂G
∂φi

= 0 for all φi, i = 1 . . . N . However,

these constraints do depend on φ through the pressure solution. Therefore, gq
1 and

gq
2 are differentiated with respect to the pressure vector P to, respectively, obtain the

right-hand-side of equation 2.25 as

∂gq
1

∂P
=

1

L

∫

lexit

2

(
v̄q

vq
a
− 1

)[
∂v̄q

∂P

1

vq
a
− v̄q

(vq
a)2

∂vq
a

∂P

]
dx (2.27)

∂gq
2

∂P
= 2

(
vq

a

vq
p
− 1

)(
1

vq
p

∂vq
a

∂P

)
(2.28)

It should be noted that the integral of equation 2.27 is defined over the entire length

along the die exit. The derivatives ∂v̄q

∂P
and ∂vq

a

∂P
are, respectively, computed by differ-

entiating equation 2.9 as

∂v̄q

∂P
[∆P ] =

1

h

[
∂S

∂P
[∆P ]‖∇P‖+

S

‖∇P‖ ∇P ·∇[∆P ]

]
(2.29)

and equation 2.2 as

∂vq
a

∂P
[∆P ] =

1

L

∫

lexit

∂v̄q

∂P
[∆P ] dx (2.30)

Following finite element discretization, ∂v̄q

∂P
and ∂vq

a

∂P
are obtained from equations 2.29

and 2.30, respectively. By substituting ∂v̄q

∂P
and ∂vq

a

∂P
in equations 2.27 and 2.28, the

derivatives
∂gq

1

∂P
and

∂gq
2

∂P
are obtained.
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To compute the design derivatives ∂Rq

∂φi
in equation 2.26, the pressure and height

design variables are considered separately. In the case of φi = P q
in, the design deriva-

tive ∂Rq

∂φi
is computed using the tangent matrix ∂Rq

∂Pq as

∂Rq

∂P q
in

=
∂Rq

∂Pq

∂Pq

∂P q
in

(2.31)

where ∂Pq

∂P q
in

is a zero vector with unity in the components associated with P q
in, q =

1, 2, . . . Nf where Nf is the number of operating or flow conditions considered in the

design problem. Therefore, only those nodes associated with inlet pressure P q
in need

to be considered when computing equation 2.31. Note that ∂R
∂Pin

is identical for any

Generalized Newtonian Fluid model.

When φi defines a cavity half-height, equation 2.6 is differentiated with respect to

φi as

∂Rq

∂φi

=

∫

Ω

∇w · ∂S

∂φi

∇P da (2.32)

which may be evaluated with the finite element method to obtain an expression

for ∂Rq

∂φi
. Here we assume qP in equation 2.6 is not a function of the half-height

parameter. Note that the evaluation of ∂R
∂φi

in equation 2.32 applies to any viscosity

model described in table 2.1 as described below.

Once the terms
∂gq

1

∂P
,

∂gq
2

∂P
, and ∂Rq

∂φi
are computed, the adjoint variable vector λq

is obtained with equation 2.25 and the design sensitivity DF̂
Dφi

follows from equation

2.26. In these computations, we must evaluate ∂S
∂P

and ∂S
∂φi

which depend on the

fluid viscosity model. The finite element expression ∂S
∂P

can be derived from equation

2.17. In the ensuing section, we evaluate ∂S
∂φi

for various GNF models, i.e., power-law,

33



Carreau-Yasuda, Ellis, Cross, and Bingham fluid.

2.4.2 DSA for Generalized Newtonian Fluids

• Power-law fluid model

For an isothermal power-law fluid, the flow conductance S in equation 2.11 is an

explicit function of the half-height h(φ) so that the design derivative ∂S
∂φi

in equation

2.32 may be computed from

∂S

∂φi

=
( 1

n
+ 2)S

h

∂h

∂φi

(2.33)

where S from equation 2.11 is employed to simplify the final expression. Note that

equation 2.33 reduces to ∂S
∂φi

= 3S
h

∂h
∂φi

for a Newtonian fluid.

In the examples to follow, we define the cavity half-height h(x, y) over each element

as h(x, y) = N
n
h where N contains the element interpolation functions and

n
h is the

nodal half-height vector. When a nodal half-height hJ is defined by the design variable

φi, the height sensitivity ∂h
∂φi

with respect to that nodal half-height design variable at

node J , i.e., φi = hJ , is

∂h

∂φi

= N
∂

n
h

∂hJ
=

ne∑
I=1

N IδIJ = NJ (2.34)

where N I is the I-th component of the interpolation function matrix N and δIJ is

the Kronecker delta (δIJ = 1 for I = J and δIJ = 0 for I 6= J). Here we only consider

ne elements that contain the J-th node.

• Ellis fluid model
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In a similar manner, we compute the design derivative ∂S
∂φi

for Ellis fluid model as

∂S

∂φi

=
h2

η0

∂h

∂φi

+
hα+1

η0 τα−1
1/2

1

‖∇P‖1−α

∂h

∂φi

(2.35)

where ∂h
∂φi

is given in equation 2.34.

• Carreau-Yasuda, Cross, and Bingham fluid model

When any of the other GNF models, i.e., Carreau-Yasuda, Cross, and Bingham

fluid model, are employed, the derivative ∂S
∂φi

cannot be obtained analytically since an

explicit expression for S does not exist. Therefore, the flow conductance sensitivity

must be calculated numerically. The flow conductance S of equation 2.4 may be

rewritten to express its dependence on φ as

S(φ) =

∫ h(φ)

0

z(φ)2

η(φ)
dz (2.36)

Since the upper integration limit is a function of φ, we employ the domain

parametrization method from [59] to the fixed domain r ∈ [−1, 1] using z = h
2
(r + 1)

to compute ∂S
∂φi

. The design derivative of S is obtained from equation 2.36 following

mathematical manipulation as

∂S

∂φi

=
3h

4

∂h

∂φi

S − h2

4

∫ h

0

∂η

∂φi

z2

η2
dz (2.37)

where the integral is evaluated with Gauss Quadrature to be consistent with the

numerical procedure described for equation 2.16 when evaluating S in equation 2.4.

Differentiating the viscosity η with respect to the design variable φi for a Generalized

Newtonian Fluid yields

∂η

∂φi

= β
1

h

∂h

∂φi

(2.38)
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where the viscosity derivative factor β for each Generalized Newtonian Fluid is given

in table 2.2. Note that β is identical to that used in equation 2.18 when computing

∂η
∂P

.

Therefore, ∂Rq

∂φi
for a Generalized Newtonian Fluid is computed from the discretiza-

tion of equation 2.32 using equations 2.37 and 2.38. The design sensitivity of gq
1 and

gq
2 in equation 2.1 then follows from equation 2.26 using equations 2.27 and 2.28,

respectively.

2.5 Example Sheeting Die Designs

To illustrate the polymer sheeting die design methodology described above, a single

sheeting cavity die with adjustable features is determined to accommodate the flow of

polymer melt at multiple operating conditions. The specific die geometry used in this

study is shown in figure 2.3 which is symmetric about the die’s centerline (i.e., x = 0),

and is similar to that presented by Gifford [25]. It consists of four main regions: the

manifold, preland, secondary manifold, and land. The purpose of the manifold is to

distribute the polymer melt uniformly across the die, and the preland and secondary

manifold act as a resistance to flow which promotes velocity uniformity at the die

exit while raising the pressure drop through the die. The land defines the thickness

of the polymer melt immediately exiting the die.

The inlet and outlet die half-heights in figure 2.3 are fixed at 19.05 mm and

2.0 mm, respectively. The total inlet and exit widths are 101.6 mm and 1016 mm,

respectively, making the die exit aspect ratio 254 : 1. The overall die length (in the
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Figure 2.3: Coat hanger die cavity geometry

y direction in figure 2.3), is 330 mm which includes the 137 mm long inlet channel.

The land, secondary manifold, and preland lengths along the die centerline are 25.4

mm, 50.8 mm, and 50.8 mm, respectively. The centerline length of the preland is

25.4 mm. There is a flow channel along the top of the die in the manifold region

which has a uniform half-height in the y direction and a centerline length of 15.2 mm.

The manifold also includes a region with a centerline length of 50.8 mm with a half-

height that decreases linearly in the y direction between the flow channel and the die

preland. Additional dimensions that define our die cavity geometry appear in table

2.1 of Gifford [25]. For illustrative purposes, the die geometry in figure 2.3 represents

the entire flow domain, however, all of the calculations to follow are performed with

a half-symmetry model in x ≥ 0 (not shown) having 976 nodes and 1369 elements.

In this design problem, the half-height in the preland and manifold areas shown

in figure 2.3 are defined by Ns = 4 stationary design variables. The half-height in the

preland area is defined in terms of the design φ as the quadratic function of x given
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as

h(x) = φs
1 + (φs

2 − φs
1)

(x

L

)2

(2.39)

where L = 508 mm is the die half-width. Note that the design variables φs
1 and φs

2

in equation 2.39 are the preland half-height at x = 0 and x = L, respectively. In

addition, the die cavity half-height in the manifold flow channel along the top of the

die is defined by the Lagrange interpolating polynomial in x as

h(x) =
(x− L/2)(x− L)

L2/2
h0 +

(x)(x− L)

−L2/4
φs

3 +
(x)(x− L/2)

L2/2
φs

4 (2.40)

where h0 = 19.05 mm is the flow channel half-height at the die cavity centerline.

Note that equation 2.40 is written such that φs
3 and φs

4 are the flow channel half-

heights at x = L/2 and x = L, respectively. All stationary half-heights are bound by

1.0 ≤ φs
j ≤ 19.05 mm, j = 1, 2, . . . Ns, which restricts the die gap to be less than that

of the inlet channel.

Each of the flow conditions in the die design problem described above has Nq = 4

adjustable model variables for all flow conditions q that are included in the design

variable vector φ. The inlet pressure for each flow condition is defined by the design

as P q
in = φq

1. Inlet pressure design variables for all designs considered in this study

are bounded by 1.0 ≤ P q
in ≤ 20.0 MPa. In addition, the secondary manifold region

in figure 2.3 is treated as a choker bar where the die cavity half-height h(x, y) can be

adjusted independently for each flow condition. To accomplish this in the optimiza-

tion problem, the die cavity half-height hq in the secondary manifold for the qth flow
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condition is defined as

hq(x) = φq
2 + (−7.0 φq

2 + 8.0 φq
3 − φq

4)
(x

L

)2

+ (6.0 φq
2 − 8.0 φq

3 + 2.0 φq
4)

(x

L

)3

(2.41)

which describes a cubic polynomial in x in terms of the design parameters φq
k, k =

1, 2, . . . Nq where dhq

dx(0)
= 0 is imposed. In equation 2.41, the design variables φq

2, φq
3,

and φq
4 are the die cavity half-height at x = 0, x = L/2, and x = L, respectively.

All adjustable half-height design variables are bound by 0.0001 ≤ φq
k ≤ 5.0 mm,

k = 1, 2, . . . Nq, in the die optimizations below.

Example calculations that illustrate the usefulness of the die design approach

are provided below. While studies exist such that experimentally validate polymer

processing simulation methods similar to those described above (see e.g., Hieber and

Shen [21] and Dooley [23]), testing to support our die design methodology is not

included in this work. Experiments to illustrate the accuracy of the computed die

cavities given below would increase confidence in these results, but are beyond the

scope of the current study. The examples below use the Ellis model, however, other

GNF models appearing in table 2.1 could have been included with little additional

effort (see e.g., [5–7]).

2.5.1 Multi-Temperature Die Design

The first example considers the optimal design of the sheeting die shown in figure

2.3 using the design parametrization described above. The design optimization is

performed to solve equation 2.1 for the flow of LDPE at three temperatures, 473K,
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Table 2.3: Ellis material properties for Low Density Polyethylene (LDPE) and
Polypropylene (PP)

Polymer melt Temperature (K) α τ1/2

(
N
m2

)
η0

(
N ·s
m2

)
LDPE 473 2.23 12000 1700
LDPE 453 2.22 9060 3200
LDPE 433 2.56 15200 6300

PP 473 2.49 7170 2500
PP 463 2.50 7190 3200
PP 453 2.72 9570 4210

453K, and 433K, such that Nf = 3. Material properties for the Ellis fluid model

used in this example are given in table 2.3. The resulting optimization problem

contains N = 16 design variables and a total of six constraints. The prescribed

gap-wise average velocity is vq
p = 500 mm/s and constraint tolerances are defined as

εq
1 = 0.0001 and εq

2 = 0.00005 for all flow conditions q = 1, 2, 3.

New designs are computed using the Design Optimization Tools (DOT) modified

method of feasible directions algorithm [60] in ten optimization iterations, requiring

40 functions and ten design sensitivity evaluations. The latter are obtained via the

adjoint variable method using equations 2.25 and 2.26. Design variables and perfor-

mance measures given in equation 2.1 appear in tables 2.4 and 2.5 which show the

initial and optimal design values. Die cavity half-heights over the flow domain appear

in figure 2.4.

Values of the objective function appearing in table 2.4 show that the optimization

reduced the average pressure drop through the die, as expected. Upon comparing

values of the stationary model variables given in table 2.4, it can be seen that the
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Table 2.4: Objective function and stationary model variable values for LDPE multiple
operating condition optimization

Die design Initial Optimal
Objective function f 7.5 7.381
Preland half-height at x = 0, φs

1 (mm) 3.048 2.865
Preland half-height at x = L, φs

2 (mm) 3.048 3.043
Manifold half-height at x = L/2, φs

3 (mm) 12.05 13.04
Manifold half-height at x = L, φs

4 (mm) 5.080 5.219

Half-height (mm) 

Figure 2.4: Initial die cavity half-heights for multiple operating condition optimiza-
tions

reduction in pressure drops were accomplished, in part, by increasing the cross sec-

tion of the flow channel in the manifold and decreasing the gap thickness in the

preland. Changes in the adjustable model variables also contributed to the improved

performance as summarized in table 2.5. For example, the die entrance pressures are

adjusted for each flow condition so that the desired die flow rate is achieved. Note

that as the melt temperature decreases, the viscosity increases, and so does the re-

quired die entrance pressure. Table 2.5 also shows that the cavity thickness in the

secondary manifold (i.e., that defined by the choker bar design variables) decreases

slightly near the die center, and increases near the die’s outer edge. In all cases, the
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Table 2.5: Adjustable model variables and exit velocity constraint values for LDPE
multiple operating condition optimization

Flow condition q 1 2 3
melt temperature 473K 453K 433K
Die design Initial Optimal Initial Optimal Initial Optimal

Design variables
φq

1 = P q
in (MPa) 7.5 6.147 7.5 7.021 7.5 8.976

φq
2 (mm) 2.0 1.920 2.0 1.969 2.0 2.053

φq
3 (mm) 2.0 1.899 2.0 1.959 2.0 2.074

φq
4 (mm) 2.0 2.020 2.0 2.086 2.0 2.303

Constraints
gq
1 × 104 59.9 0.166 64.0 0.224 120 0.653

gq
2 × 104 4140 0.311 304 0.207 1790 0.500

Exit velocities (mm/s)
Average 821.7 502.8 587.2 502.3 288.3 496.5
Minimum 684.3 500.3 485.9 497.3 221.6 487.4
Maximum 880.9 506.4 631.1 504.9 318.9 501.4

optimization procedure reduces the exit velocity variations and die flow rate devia-

tions as measured by gq
1 and gq

2, respectively, in equation 2.1 to within the prescribed

tolerances εq
1 and εq

2. For example, g
(2)
1 is reduced by 99.65% (from 64.0 × 10−4 to

0.224 × 10−4) and g
(1)
2 is reduced by 99.9925% (from 4140 × 10−4 to 0.311 × 10−4)

in the optimization. The uniformity in exit velocity for all of the flow conditions

is further evidenced by the reduction in the difference between the maximum and

minimum exit velocities given in table 2.5. Note also that the optimal average exit

velocity changes significantly for all of the flow conditions which achieve results that

are near the prescribed flow rate vq
p = 500 mm/s for all q = 1, 2, 3.

Die half-heights are presented in figure 2.4 for the initial die cavity design which

illustrates the decrease in half-height from the die entrance to its exit as described

above. Changes in the die cavity half-heights during the optimization are illustrated

42



in figure 2.5 for flow condition q = 2 (i.e., LDPE at 453K). The flow channel in

the manifold region of the optimal design is slightly elevated over that in the initial

design and the preland decreases in height near the die center. Note that half-height

changes are also seen in the choker bar region, however, this particular plot reflects

the adjustable model variables associated with the q = 2 flow condition only. The

choker bar heights for the optimal design are different for the other flow conditions, as

described below. To better quantify the change to the die cavity geometry, manifold,

and preland heights are plotted for the initial and optimal designs in figure 2.6.

Half-height h (%)

Figure 2.5: Percent change in die cavity half-height between initial and optimal de-
signs for LDPE multiple operating temperature optimization [half-height shown for
q = 2 (i.e., LDPE at 453K)]

Half-heights in the secondary manifold (i.e., choker bar) that are defined by the

adjustable model variables are shown for each flow condition in figure 2.7. Note that

a greater restriction is placed on the higher temperature, lower viscosity material

to retard its flow. These choker bar half-height plots also illustrate that a uniform

exit velocity for the intermediate temperature flow (i.e., 453K) is achieved with a

choker bar shape that increases the half-height near the center of the die. Die exit
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Table 2.6: Melt flow conditions for multiple temperature, material, and flow rate die
design

q 1 2 3 4 5 6 7 8
vq

p (mm/s) 300 300 300 300 700 700 700 700
Material LDPE LDPE PP PP LDPE LDPE PP PP
Temperature (K) 473 433 463 453 473 433 463 453

velocities are plotted for the initial and optimal designs in figure 2.8. Note that the

exit velocities for the initial design are far from the desired average, and exhibits

a significantly higher velocity along the centerline of the die than at its edge. As

expected, the lower temperature material exits with the lowest velocity. The optimal

results are much improved, and illustrate how well all of the flow conditions are able

to meet the desired exit velocity over the entire width of the die.

2.5.2 Multi-Material, Temperature, and Flow Rate Die De-
sign

This example considers the design of a sheeting die that performs well using multiple

materials, temperatures, and flow rates. Both LDPE and PP (see e.g., table 2.3) are

considered where the Nf = 8 flow conditions are defined in table 2.6. The resulting

optimization problem contains N = 36 (i.e., Ns = 4 and Nq = 4) design variables

and a total of 16 constraints, two for each of the Nf flow conditions. Constraint

tolerances in equation 2.1 are defined as εq
1 = 0.0001 and εq

2 = 0.00005 for all of the

flow conditions.

In this example, new designs are computed using the DOT modified method of

feasible directions algorithm [60] in 12 optimization iterations, requiring 46 function
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Table 2.7: Objective function and stationary model variable values for LDPE and PP
multiple temperature and flow rate die optimization

Die design Initial Optimal
Objective function f 5.000 5.363
Preland half-height at x = 0, φs

1 (mm) 3.048 3.242
Preland half-height at x = L, φs

2 (mm) 3.048 3.123
Manifold half-height at x = L/2, φs

3 (mm) 12.05 15.95
Manifold half-height at x = L, φs

4 (mm) 5.080 5.500

and 12 gradient evaluations. Design variables and performance measures given in

equation 2.1 appear in tables 2.7 and 2.8 which show the initial and optimal design

variable values. Half-height and exit velocity plots are omitted in this example for

conciseness.

Overall, the inlet pressures are increased from initial values of P = 5.0 MPa,

q = 1, 2, . . . 8 as shown in table 2.7 to accommodate the exit velocity constraints. The

stationary variables that describe the cavity half-heights, also given in table 2.7, show

that the optimization increases the half-height in both the flow channel (manifold) and

the preland regions. The preland half-height is nearly uniform across the die width,

increasing slightly toward the outer edge of the die. Note that a uniform preland

is more typical in industrial applications and that this half-height distribution is in

contrast to the previous example which resulted in a significant decrease in the preland

height near the die center. Table 2.8 gives values for the adjustable model variables,

constraints gq
1 and gq

2 in equation 2.1, and exit velocities for all of the flow conditions

considered in this example. Note that the initial values of the adjustable model

variables are the same as those used in the previous die design example which are given
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Table 2.8: Adjustable model variable, constraint and exit velocity values for
LDPE and PP multiple temperature and flow rate die optimization (ini=initial and
opt=optimal)

Flow condition q 1 2 3 4 5 6 7 8
Design variables (optimal design)

φq
1 = P q

in (MPa) 4.196 6.395 3.622 4.071 5.871 8.467 4.883 5.398
φq

2 (mm) 2.083 2.281 2.004 2.038 2.250 2.489 2.121 2.150
φq

3 (mm) 2.066 2.279 2.001 2.039 2.240 2.494 2.122 2.154
φq

4 (mm) 2.130 2.407 2.116 2.161 2.290 2.679 2.227 2.313
Constraints

gq
1 × 104 (ini) 49.0 97.5 118.0 165.0 49.0 97.5 118.0 165.0

(opt) 0.546 0.688 0.584 0.608 0.844 0.867 0.733 0.495
gq
2 × 104 (ini) 312.0 4.05E3 7.24E3 1.34E3 2.46E3 7.13E3 427.0 1.72E3

(opt) 0.211 0.287 0.422 0.597 0.163 0.0496 0.348 0.0399
Exit velocities (mm/s)

Average (ini) 353.0 109.1 555.3 409.6 353.0 109.1 555.3 409.6
(opt) 302.0 299.4 301.7 302.3 697.2 699.6 697.1 704.7

Minimum (ini) 299.2 86.1 427.7 299.4 299.2 86.1 427.7 299.4
(opt) 298.8 287.2 299.2 295.6 675.3 668.9 670.3 676.4

Maximum (ini) 375.7 119.4 613.6 461.6 375.7 119.4 613.6 461.6
(opt) 304.3 303.2 304.0 304.8 705.9 707.2 705.4 713.9
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in table 2.3. In all flow conditions, the exit velocity constraints are reduced to values

below the imposed acceptable tolerance in the design optimizations. For example,

table 2.8 shows that g
(2)
1 is reduced by 99.3% (from 97.5× 10−4 to 0.688× 10−4) and

g
(2)
2 is reduced by 99.99% (from 4050 × 10−4 to 0.287 × 10−4) in the optimization.

Further evidence of the success of the optimization may be seen upon inspection of

the exit velocities in table 2.8. For example, the average exit velocity approaches 300

mm/s for q = 1, 2, 3, 4, and 700 mm/s for q = 5, 6, 7, 8. Minimum and maximum

exit velocities are also given which indicate the uniformity of exit flow for all flow

conditions in the optimal design.

2.6 Summary

This chapter presents an optimization problem and solution procedure that may be

used for materials processing design problems where adjustable parameters are em-

ployed to accommodate manufacturing variations. The practical application of this

approach requires that the design engineer identify specific design variables that may

be defined as part of the process or tooling specification, and those that may be mod-

ified during production to accommodate variability in process inputs. The example

given here requires a finite element model be developed to evaluate the flow of poly-

mer melt in a sheet extrusion die where model inputs are defined by design variables.

Adjustments to the model are then prescribed by an optimization algorithm which

solves the user defined design problem.

The design methodology given here is applied to polymer sheeting die design and
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addresses the need for developing dies capable of performing well under multiple op-

erating conditions. Various Generalized Newtonian Fluid models are included in the

flow simulations and sensitivity analyses required for the optimization calculations.

A viscosity derivative factor is derived which facilitates both the Newton-Raphson

iteration procedure and our design sensitivity computations. The adjoint variable

method is employed to compute design sensitivities for our numerical optimizations.

The results show that a single sheeting die cavity geometry can be obtained that has

improved performance when processing different materials operating over a range of

melt flow temperatures, and melt flow rates.
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LDPE multiple operating temperature optimization
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CHAPTER 3

FLUID-STRUCTURE INTERACTION

In this chapter, a polymer sheeting die design methodology is presented which inte-

grates the simulation of polymer melt flow and die cavity deformation with numerical

optimization to compute die cavity geometry capable of giving a near-uniform exit

flow rate. In this research, both polymer melt flow and sheeting die deformation are

analyzed with a general purpose finite element program. The approach includes a

user-defined element that is used to evaluate the purely viscous non-Newtonian flow

in a flat die. The flow analysis, which is simplified with the Hele-Shaw approximation,

is coupled with a three-dimensional finite element simulation for die deformation. In

addition, an optimal sheeting die cavity geometry is determined by the incorporation

of the coupled analyses in our constrained optimization algorithm. A sample problem

is discussed to illustrate the die design methodology [7, 47,48].

3.1 Background

The analysis and design of the polymer extrusion process have received much attention

over the last few decades, but only a few attempts have appeared in the literature

that analyze the die deformation [45,46]. It is well known that high internal pressures

within the viscous polymer melt flow, acting over the large area of the die flow channel

surface, exert forces high enough to bring about significant deformation of the die

body, opening up the die, particularly towards the lips and near the center line.
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This effect (commonly referred to as “clamshelling”) can seriously affect melt flow

distribution and therefore die performance. As a result, die designs that neglect die

body deformation may not perform as desired.

The primary focus of most sheet or slit die designs is the development of a uniform

velocity across the width of the die exit. Various design approaches have been applied

to T-dies, fish-tail dies, and coat-hanger dies in which the cross-section geometry of

the distribution manifold is defined over the width of the die to yield a uniform exit

velocity [11, 12]. However, in none of the these works was the analysis of the melt

flow and pressure field coupled with die body deflection. The closet approach to this

seems to have been done by Helmy [61], who used analytical methods, calculating the

pressure field and applying this as a distributed load to a beam representing the die

body. However, there was no feed back of the modified slit geometry to the pressure

field calculation, and this was therefore not a fully coupled analysis.

It is well understood that die body deformation has a strong effect on the de-

sign and operation of extrusion dies, but surprisingly, it has received relatively little

attention in the literature. Previous work includes a 1D flow analysis and a deforma-

tion analysis, but ignored the effect that the melt pressure has on the deformation of

die body [61, 62]. More recently, Sander and Pittman [45] developed a fully coupled

approach, using a 2.5D Hele-Shaw flow simulation to calculate melt pressure and a

2D thick plate analysis for die deflection. The predicted results agreed closely with

experimental data for a die with a relatively simple internal flow channel and die

body geometry. However, Sander and Pittman avoided the full 3D analysis and more
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complex die geometry “because of their high computational demands” [45]. A 3D

flow analysis coupled with a full 3D die deformation analysis appears in Gifford’s

work [46]. Unfortunately, this earlier approach required specialized software to eval-

uate the polymer flow within the die and to include the effect of die deformations.

Furthermore, the computational efforts required to obtain the more accurate 3D solu-

tions can be excessive when used in an iterative design procedures, particularly when

applied to detailed industrial designs.

This research considers an optimization-based approach for designing polymer ex-

trusion dies in which the die cavity geometry is computed to minimize the die inlet

pressure (Pin) while delivering a uniform exit flow rate. The proposed approach en-

hances previous design methodologies by incorporating the flow analysis and 3D die

deformation analysis in the optimization-based design methodology. Die deforma-

tion is analyzed in this approach with the general purpose finite element program

ABAQUS [63] which is also used to solve the generalized Hele-Shaw flow equation for

an isothermal Carreau-Yasuda fluid to obtain the pressure field on the internal sur-

face of the die body. Upon the completion of the coupled fluid-structure interaction

analysis, Sequential Quadratic Programming (SQP) in Design Optimization Tools

(DOT) [60] is used to solve the optimization problems. An example of a coat-hanger

die is provided to demonstrate the proposed methodology.
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3.2 Melt Flow Governing Equation

The Hele-Shaw flow model may be derived from the principles of conservation of mass,

momentum and energy to provide a simplified governing equation for non-Newtonian

and inelastic flows in thin cavities [42]. In this analysis, inertial, body and surface

tension forces in the fluid are assumed to be negligible. Moreover, the pressure does

not vary significantly in the direction normal to the plane of flow, and the die cavity

thickness is assumed to be small in comparison with its in-plane dimensions and

has little in-plane variation, and all flow conditions are assumed to be symmetric

with respect to the cavity mid-plane. The Hele-Shaw model is widely employed in

injection and compression molding [21], and has also been applied to sheet extrusion

dies [5, 17,22,39,41,52,53].

On the basis of these assumptions, the mass and momentum conservation equa-

tions reduce to a single differential equation [21]

∇ · S ∇P = 0 (3.1)

as shown in equation 2.3. This study employs the Carreau-Yasuda fluid model to

define the non-Newtonian dependence of η on γ̇. The Carreau-Yasuda model exhibits

near-Newtonian behavior at low strain rates, and captures the power-law decay in η

as the strain rate increases. It can be written as follows [3]

η = η∞ + (η0 − η∞) [1 + (λγ̇)a](n−1)/a (3.2)

where η0 is the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, λ is

a time constant, n is the power-law index, and a is an empirically derived material
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constant. η∞ = 0 and a = 2 are typical for polymer melt [64]. The flow conductance

S (see e.g., equation 2.4) cannot be evaluated analytically when the Carreau-Yasuda

fluid model is employed. The analysis is further complicated because η, defined in

equation 3.2, is a function of γ̇ through equation 2.5 in the generalized Hele-Shaw

formulation. To solve the example to follow, we evaluate S in equation 2.4 numerically

with an eight-point Gaussian Quadrature, for which η, defined through equations 2.5

and 3.2, is computed at a given value of z with a local Newton-Raphson iteration, as

described elsewhere [5].

The residual, R, for the boundary value problem described in equation 3.1 is

obtained via the method of weighted residuals [54] in the usual manner (see e.g., [53])

as

R(P ) =

∫

Ω

∇w · S(P )∇P dΩ (3.3)

where w is an arbitrary weighting function and we have assumed that there is no

prescribed flow rate on the boundary of the 2D flow domain, Ω. The tangent operator,

∂R
∂P

, acting on the increment, [4P ], is obtained by the differentiation of equation 3.3

with respect to P as

∂R(P )

∂P
[∆P ] =

∫

Ω

∇w ·
[
S(P )∇[∆P ] +

∂S(P )

∂P
[∆P ]∇P

]
dΩ (3.4)

where equation 2.4 is differentiated to obtain

∂S

∂P
[∆P ] = −

∫ h

0

z2

η2

∂η

∂P
[∆P ] dz (3.5)

Furthermore, equations 2.5 and 3.2 are differentiated with respect to P , and following

some mathematical manipulations, we obtain ∂η
∂P

appearing in equation 3.5 (cf. table
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2.2)

∂η

∂P
[∆P ] =

[
(n− 1)(λγ̇)2 (η − η∞)

η + (λγ̇)2 (η∞ + n (η − η∞))

]
η
∇P ·∇[∆P ]

‖∇P‖2
(3.6)

The isoparametric finite element method (see e.g., [54]) may be used to discretize

the residual and tangent operator in equations 3.3 and 3.4, respectively, and related

terms from equations 3.5 and 3.6. The detailed derivations are given in chapters 2.3.1

and 2.3.2, and are ignored here for conciseness. Once the residual and tangent matrix

are evaluated with the finite element method, the nodal pressure vector increment,

∆P, is computed at iteration I with the Newton-Raphson method via equation 2.8.

The nodal pressures are updated as PI+1 = PI + ∆P. Iterations are repeated until

convergence is reached. Once the pressure solution is obtained, the gap-wise average

velocity, v̄, is computed from equation 2.9.

In this work, equations 3.3 and 3.4 are discretized with the Galerkin finite element

method and then solved with the general purpose finite element program ABAQUS

with a user-defined element (UEL) [63]. The pressure P within the die cavity is

computed at each node with Newton Raphson iterations.

3.3 Coupled Analysis with Fluid-Structure Inter-

action

It is clear that for a proper simulation of the die design, it is necessary to couple the

analysis of the flow distribution and pressure field in the die cavity with the analysis

of the die body deformation. Indeed, the high internal pressure within the melt flow

causes die deformation, which, in turn, alters the pressure field. Figure 3.1 illustrates
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the iterative computational methodology used to solve the coupled fluid-structure

analysis. The coupled analysis loop starts with the initialization of pressures and

nodal heights. These values are included in an input file of a user-defined element

subroutine (UEL) to calculate the nodal pressure solution. To better serve the 3D

simulation in the finite element program, the nodal pressures are translated into

surface pressures. The resulting surface pressures are then interpolated onto the

mesh surface of the die’s internal channel, and the linear elastic deformation of the

die is calculated, corresponding to those pressure loads.

The deformation caused by the melt pressure forces the die channel to open;

thus, the new and deformed heights of the flow channel are generated. The newly

generated heights are then interpolated back to the Hele-Shaw model to recalculate

the pressure solution. As the die flow channel opens, the change in pressure in the die

between iterations will decrease, reducing the tendency of further deformation [46].

The iterative loop presented here normally takes three or four iterations to converge in

our example, as shown in figure 3.2. To reduce the computational time, an automatic

algorithm is developed in this work to compute the coupled pressure solutions and

die deformation, and the overall simulation based on this automatic algorithm can

run on a personal computer with only a few minutes of calculation.
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Figure 3.1: Computational procedure for the coupled fluid-structure analysis
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3.4 Coat Hanger Die Flow and Deformation Ex-

ample

The sheeting die design considered in this research is derived from the coat hanger

die, which is commonly used in industrial applications and widely studied and tested

experimentally [4, 5, 53]. The specific die geometry used in this study is shown in

figure 2.3; it is symmetric about the die’s centerline (i.e., x = 0) and is similar to

that presented elsewhere by Gifford [25]. It consists of four major regions, as shown

in figure 2.3: the manifold, preland, secondary manifold, and the land. The purpose

of the manifold is to distribute the polymer melt uniformly across the die. The

secondary manifold and the land each have a uniform cavity half-height and act as a

resistance to the flow, which provides better flow uniformity [64].

The land defines the thickness of the polymer melt immediately exiting the die.

The dimensions that define our die cavity geometry are taken from table 1 of Gifford

[25], except for the land gap, which is fixed at 1.6 mm (i.e., die exit half-height

hexit = 0.8 mm) for the initial design in this research. The total die exit width is 1016

mm, which results in an exit width-to-height aspect ratio of 635. The die inlet gap

and width are 19.05 and 101.6 mm, respectively, and the total die length (including

the inlet channel) is 330 mm which includes the 137 mm long inlet channel. The

land, secondary manifold, and preland lengths along the die centerline are 25.4, 50.8

and 50.8 mm, respectively. There is a flow channel along the top of the die in the

manifold region, which has a uniform half-height in the y-direction and a centerline

length of 15.2 mm. The manifold also includes a region having a centerline length of
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50.8 mm with a half-height that decreases linearly in the y-direction between the flow

channel and the die preland. For illustration, the finite element mesh in figure 3.3

represents the entire flow domain, in which the flow channel is modeled with three-

node triangular elements; however, all of the calculations to follow are performed with

a half-symmetry model in x ≥ 0 (not shown) having 853 nodes and 1558 elements.

The flow of low density polyethylene (LDPE) at 2700C is selected at which material

constant η0 = 800 Pa-s, η∞ = 0, λ = 0.02129 s, n = 0.45958, and a = 2 are taken

from Gifford [46]. The die inlet pressure Pin is defined as 10 MPa, whereas the outlet

is defined as zero pressure along die exit. The cavity thickness is defined at each

node. The die body geometry is determined by the parameters listed in table 1 of

Gifford [46]. The die is assumed to be constructed of carbon steel with a Young’s

modulus of 2.068 × 1011 Pa and a Poisson’s ratio of 0.3. Figure 3.4 shows the finite

element mesh of one half of the die body with 109, 060 elements containing 24, 072

nodes. The coat hanger die used here has two planes of symmetry. Therefore, we only

consider one quadrant of the die in the structural analysis. The boundary conditions

in the plane of flow are P = Pin and P = 0 at the die inlet and exit, respectively. The

boundary conditions for the die body structural model are defined as Uy = 0 on the

entire back side face (i.e., the side where the flow inlet is located, as shown in figure

3.4), Ux = 0 on the x = 0 face and Uy = 0 on the y = 0 face.

Figure 3.5 shows the deformed die body geometry after the convergence is reached.

Because of the plane of symmetry, only a quarter of the die body geometry is shown

in figure 3.5. The highest deformation occurs at the center position of the die exit,
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Figure 3.3: Finite element mesh of polymer melt flow domain
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at which the die cavity half-height h is increased by 23.6% from 0.8 mm to 0.989

mm. The pressure distributions in the die for the undeformed and deformed die

body are shown in figures 3.6(a) and 3.6(b), respectively. As expected, when the die

deformation is included in the simulation, the pressure distribution across the die will

change such that the pressure decreases in the die as the die flow channel opens up.

Additionally, pressure isobars along the die exit region for the undeformed die body

are more uniform than those for the deformed die body. This is because the largest

deformation occurs at the center position of the die exit, causing the lower pressure

at the center and higher pressure at the edge of the die exit.
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Figure 3.4: Half symmetry of finite element mesh of the undeformed die body
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Figure 3.6: Pressure distribution in the die cavity
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3.5 Sheeting Die Design Optimization

In the die design optimization problem considered in this study, the pressure drop

across the die and the die exit flow rate variation define the success of a given die

design. These criteria are chosen because the pressure drop determines the extruder

size and power requirements, and die exit flow rate variation influences the sheet

thickness uniformity. The goal of minimizing the inlet pressure Pin can be realized by

the variation of the thickness distribution in the die cavity, while placing a constraint

on die exit flow rate variation and limiting the slope of die cavity surface in the

manifold region. The nonlinear constrained die design optimization problem can be

stated in terms of the design variable vector, φ, as

Determine φ

Such that g1(φ) = 1
L

∫
lexit

(
q(x,φ)

qP
− 1

)2

dx ≤ ε

g2(φ) = Max
(

dh(x)
dx

)
≤ 0

φL
i ≤ φi ≤ φU

i

(3.7)

where lexit denotes the die exit edge. Pin is minimized. This cost function represents

the pressure drop through the die because we fix the outlet pressure (Pout) at 0.

Constraint function g1 measures the exit flow rate variation and is imposed to obtain

a uniform exit flow rate within the tolerance, ε. In g1, q(x, φ) is the exit flow rate per

unit of width, and qP is the desired exit flow rate per unit of width. When q(x, φ)

equals qP across the entire die exit, the die is operating at the desired total flow rate,
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Q, which is determined as

Q = 2

∫

lexit

q(x, φ)dx (3.8)

In the manifold region of the die cavity, the half-height parameter, h(x), is arbitrary,

so the constraint function g2 is imposed to restrict the slope of h in the x direction to

less than zero. In the aforementioned optimization problem, φ is the design variable

vector with real components φi (i = 1, 2, . . . N , where N is the total number of design

variables), limited by upper and lower bounds φU
i and φL

i , respectively. In addition,

the die cavity half-height h in the flow channel is constrained to decrease along the

centerline of the die.

3.6 Coat Hanger Die Design Example

In this example, the sheeting die design problem described above has N = 7 design

variables that are included in the design variable vector φ. Pin is defined by the

design as Pin = φ1 and is bounded by 1.0 MPa ≤ Pin ≤ 20 MPa. In addition, the

half-heights in the preland, manifold and secondary manifold regions shown in figure

2.3 are defined by the remaining 6 design variables. The half-height in the preland

region is defined as a constant, φ2. h in the manifold flow channel along the top of

the die is defined by the Lagrange interpolating polynomial in x as

h(x) =
(x− L/2)(x− L)

L2/2
h0 +

x(x− L)

−L2/4
φ3 +

x(x− L/2)

L2/2
φ4 (3.9)

where L = 508 mm is the die half-width and h0 is the die half-height at x = 0.

Design variables φ3 and φ4 in equation 3.9 are the manifold half-heights at x = L/2
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and x = L, respectively. The slope of h in the manifold region of the die cavity is

evaluated from equation 3.9 as

dh(x)

dx
=

2x− 1.5L

L2/2
h0 +

2x− L

−L2/4
φ3 +

2x− L/2

L2/2
φ4 (3.10)

which is constrained by g2 in equation 3.7. h in the secondary manifold region is

defined by a cubic polynomial as

h(x) = φ5 + (−7.0φ5 + 8.0φ6 − φ7)
(x

L

)2

+ (6.0φ5 − 8.0φ6 + 2.0φ7)
(x

L

)3

(3.11)

where dh
dx

= 0 is imposed at x = 0. In equation 3.11, the design variables φ5,

φ6, and φ7 are the secondary manifold half-height at x = 0, x = L/2, and x = L,

respectively. The secondary manifold region can be treated as a choker bar for which

h(x, y) can be adjusted independently; this assumes that an operator, or perhaps an

automatic control device, can make an adjustment for flow condition considered to

facilitate the optimal die flow operation. All half-height design variables are bounded

by 1.0 mm ≤ φk ≤ 19.05 mm (k = 2, 3 . . . N) in the die optimization problem. The

desired exit flow rate per unit of width is q = 350 mm2/s for the flow condition

considered in equation 3.7. Also, the exit flow rate tolerance for constraint g1 in

equation 3.7 is defined as ε = 0.0015.

The computational procedure of die design optimization is shown in figure 3.7,

which includes the coupled fluid-structure interaction in the die design problem.

Starting with initial values of the design variables, the computer program calcu-

lates the pressure and dies cavity half-height in a coupled analysis. The values of the
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deformed die cavity half-heights are compared with the previous values until conver-

gence is reached. Upon completion of the coupled fluid-structure analysis loop, a new

design variable, φ, is computed using the DOT SQP algorithm [60]. The design sen-

sitivity is evaluated via the forward finite-difference method (see e.g., [54,65] for the

mathematical equation of finite-difference method), and is computed in DOT with a

user-defined parameter for ∆φi.

3.7 Results and Discussion

A new design has been computed with the DOT SQP algorithm [60] in 19 optimization

iterations with gradients computed via the forward finite difference approximation.

The optimization results for the die design are summarized in table 3.1. The optimal

history for the inlet pressure Pin appears in figure 3.8(a), and the value of constraint

g1 in equation 3.7 is shown in figure 3.8(b) at each optimization iteration. In these

calculations, the pressure drop decreases from 10 to 6.57 MPa, a 34.3% reduction,

whereas the exit flow rate constraint, g1, is reduced considerably from its initial value

of 1.34 to its optimal value of 0.00013, which is well below the tolerance ε. Changes

in the design variables are also shown in table 3.1. The uniformity in exit flow rate

is evidenced by the reduction in the difference between the maximum and minimum

gap-wise exit velocity values. Moreover, the optimal average exit flow rate per unit

width is near the desired value of 350 mm2/s.

The pressure distributions in the mid-plane of the initial and optimal designs are

shown in figure 3.9(a,b), respectively. When the die deformation is included in the
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Figure 3.7: Computational procedure of die design optimization
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Table 3.1: Initial and optimal design variable and performance measure values

Die Design Initial Optimal
Design Variables

φ1= Pin (MPa) 10.0 6.57
φ2 (mm) 3.2 12.64
φ3 (mm) 12.05 18.23
φ4 (mm) 5.2 17.32
φ5 (mm) 3.0 3.08
φ6 (mm) 3.5 3.75
φ7 (mm) 4.0 12.23

Constraint
g1 1.34 0.00013

Exit Flow Rate per Unit Width (mm2/s)
qexit (ave) 736.0 347.3
qexit (max) 853.6 364.2
qexit (min) 452.2 290.5
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design simulation, the die pressure decreases as the die channel opens up. Since the

half-heights along the die exit are no longer uniform because of the gap opening, the

pressure isobars will not be parallel to the die exit. As expected, the isobars just inside

the die exit of the initial design are more parallel than those of the optimal design,

as shown in figure 3.9(a,b), respectively. The die cavity half-heights are presented in

figure 3.10(a) for the initial design and in figure 3.10(b) for the optimal design. The

gap thickness in the manifold and preland regions of the optimal design are increased

in comparison with that of the initial design. The half-height changes can also be

seen in the secondary manifold region (i.e., choker bar).

Die exit flow rates are illustrated for the initial and optimal designs in figure 3.11,

in which the distance along the die exit is normalized with the exit width. The exit

flow rates for the initial design are far from the desired value and show a significantly

higher flow rate along the centerline of the die than at its edge. The optimal die

design provides a more uniform exit flow rate, which illustrates how well the design

approach is able to meet the desired flow rate over the entire width of the die. Figure

3.12 shows the die exit flow rate and velocity distribution for the optimal design and

is provided here to illustrate the influence of die deformation on the uniformity of

the flow distribution. The exit flow rate is the product of the die exit half-height

and velocity. For the uniform exit flow rate, the exit velocity will decrease as the

half-height increases. The die exit half-height, which is initially uniform across the

die exit, increases more in the center, resulting in a lower velocity than that at the

die’s outer edge. Compared with the exit velocity distribution, the flow rate is more
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(a) initial pressure distribution 

(MPa) 

(MPa) 

(b) optimal pressure distribution 

Figure 10  Pressure distribution in the die cavity. 

Figure 3.9: Pressure distribution in the die cavity
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(a) initial half-height distribution                                                                                

                                                                                  

(b) optimal half-height distribution 

Figure 3.10: Die cavity half-height distributions
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uniform. As can be seen in the plot, the optimal design generates a nearly uniform

flow rate distribution at the die exit.

3.8 Summary

An optimization-based polymer sheeting die design methodology has been described

that couples an isothermal Hele-Shaw pressure field/flow analysis with die deforma-

tion analysis, taking into account the interaction of internal pressure, flow distribu-

tion, and die deformation. The performance measures in the optimization have been

evaluated with a coupled flow analysis and 3D simulation of die deformation. In

this approach, sheeting dies are analyzed with a general purpose finite element pro-

gram, in which a user element program is developed to evaluate the purely viscous

non-Newtonian flow in a die. An automatic algorithm to calculate the coupled pres-

sure and die deformation has been presented, and a sheeting die design optimization

problem has illustrated the design approach.
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CHAPTER 4

NON-ISOTHERMAL ANALYSIS:

FULLY-COUPLED NONLINEAR

STEADY-STATE TEMPERATURE AND

PRESSURE SYSTEMS

The simulation of the extrusion and mold filling processes for molten polymers has

received considerable attention in the literature [21]. Despite inherent difficulties as-

sociated with non-Newtonian, non-isothermal and transient fluid flow, considerable

progress has been made during the last decade. A detailed formulation is presented

in this work for simulating the extrusion in thin cavities. The modelling incorporates

the generalized Hele-Shaw flow approximation for an inelastic, non-Newtonian fluid

under non-isothermal conditions. A hybrid numerical scheme is employed in which

the pressure solution of 2.5D Hele-Shaw flow is fully coupled with a non-linear 3D

energy equation for the calculation of temperature. An iterative procedure is pro-

vided to calculate the coupled Hele-Shaw flow approximation and energy equation.

In addition, the design sensitivities for fully coupled nonlinear steady-state temper-

ature and pressure systems are derived. To demonstrate the methodology, a sheet

extrusion die is designed by incorporating the fully coupled systems in a constrained

optimization algorithm to simultaneously minimize the exit velocity variation and the

exit temperature variation.
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4.1 Background

In recent years, numerous theoretical computations have been developed for the anal-

ysis and design of injection and extrusion processes, based on numerical solutions of

equations governing flow and heat transfer in two or three dimensions [44, 66–68].

Among these efforts, many studies have been devoted to use finite difference, finite

volume, or finite element methods to model complex die geometry more realistically,

and to incorporate thermal effects.

Arpin et al. [44] developed a 2D non-isothermal flow model based on a modified

FAN method and used the Biot number to allow thermal resistance at the melt-metal

interface. They compared the simulation results using two different thermal boundary

conditions: an isothermal wall and an adiabatic wall. Indeed, the assumption of a

uniform wall temperature appears in other publications as well. One would expect the

die wall temperature to vary with position, as a result of thermal interaction between

the melt and the die body. The treatment of uniform die wall temperature, however,

are only simplification, rather than limitation, of the non-isothermal analysis in die

design.

A complete thermal analysis would require a three-dimensional numerical simu-

lation of the conjugate problem of flow and heat transfer in the melt, coupled with

conduction in the die body, and taking into account electrical heating and surface

heat losses [8]. While this is certainly possible, it is somewhat impractical, because
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of the substantial computational demands. Although the flow of the molten poly-

mer in a die is in most cases three-dimensional, it can sometimes be treated as a

two-dimensional one, particularly when the flow channel is narrow, that is when the

dimension normal to the plane of the flow (the channel depth) is small in comparison

with the other two dimensions. As justified by Pittman and Sander [8], if the circum-

stances in which melt temperature variations are dependent in terms of predictions of

pressure drop and flow distribution are not significant, then a computational econom-

ical two-dimensional isothermal analysis, based on Hele-Shaw flow, will be adequate.

If thermal effects must be taken into account, then one would like to access the for-

mulation of non-isothermal Hele-Shaw flow analysis, for example, the assumption of

a uniform channel wall temperature. In the non-isothermal analysis, one would also

like to know more about temperature fields in the die body, taking into account the

interactions with the flowing melt, with a view to optimizing the location of heaters

and control thermocouples, and achieving a design that minimizes melt temperature

inhomogeneities [8, 62].

More recently, the finite element method and the Newton-Raphson solution al-

gorithm are combined to solve the momentum, mass and energy conservation equa-

tions for coupled thermal and fluid flow problem. Sensitivity analyses have been

presented for numerous thermal problems. Haftka [69] and Meric [70] described sen-

sitivity analysis for linear thermal systems, while Tortorelli and co-workers [71, 72]

and Dems [73,74] described an adjoint method for non-linear thermal systems. Direct

differentiation approaches for transient, non-linear thermal systems are also presented
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in references [73–75]. Sensitivity analyses have also been presented for coupled fluid

flow systems. Smith [9, 22, 76] have considered sensitivity analysis for steady-state

nonlinear weakly coupled systems and evaluated the material residence time in poly-

mer melts. Michaleris et al. [77] developed a systematic approach for the design

of weakly coupled thermoelastoplastic systems and used Newton-Raphson iteration

method in the solution process. Wang, Tortorelli and Dantzig [78] presented a sys-

tematic approach for computing explicit design sensitivity for transient laminar flows,

coupled with the solution of the energy equation.

The present research attempts to provide new insights in these areas using finite

element simulations of the coupled melt flow and die body heat transfer problem. The

analysis based on 2.5D Hele-Shaw flow evaluates the pressure distribution in the poly-

mer melt which is used to calculate the velocity field. We then substitute the pressure

and velocity solutions into the 3D energy equation to compute the melt temperature.

Thus, a fully coupled analysis exists between these analyses since the viscosity is

temperature dependent and thermal energy is generated via viscous heating. The

analysis and sensitivity analysis for fully coupled thermal and flow systems are de-

rived. The tangent operators of the Newton-Raphson solution processes are used to

compute sensitivities accurately and efficiently via the adjoint method. The analysis

and sensitivity analysis are incorporated into a numerical optimization algorithm to

design a polymer sheeting die.
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4.2 Modeling and Simulation

4.2.1 Governing Equation

The Hele-Shaw flow in a thin cavity with arbitrary in-plane dimensions for an inelastic

non-Newtonian fluid under non-isothermal conditions is governed by conservation

equations of mass, momentum, and energy, i.e. [55, 59],

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (4.1)

ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= −∂P

∂x
+

(
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)
+ fx

ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= −∂P

∂y
+

(
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

)
+ fy (4.2)

ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −∂P

∂z
+

(
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z

)
+ fz

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= k

[
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

]
+ ηγ̇2 (4.3)

where ρ, cp and k are density, specific heat and thermal conductivity, respectively.

P is the pressure, and f is the body force. The viscous stresses in the momentum

equation 4.2 are defined in index notation as [55]

τij = ηγ̇ij (4.4)

where γ̇ is the magnitude of the rate of deformation tensor given as

γ̇ =
√

(γ̇ij γ̇ij)/2 (4.5)

where repeated indicies imply summation in the usual manner, and

γ̇ij = vi,j + vj,i (4.6)
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To reflect the non-isothermal influence on the rheological behavior of polymer

melt, the temperature-shifting function is introduced. The non-isothermal constitu-

tive equation used here can be expressed as

η = m exp

[
E

R

(
1

T
− 1

T0

)]
γ̇n−1 (4.7)

for non-isothermal power-law fluid model. In the above, E/R is Arrhenius factors. m

and n are the consistency index and power-law index, respectively, at the reference

temperature T0.

It is noted that these model equations are based on the following assumptions,

(i) viscoelastic effects and inertial, body and surface tension forces are ignored; (ii)

uniform pressure and negligible velocity in the direction of die cavity thickness; (iii)

thermal convection in the gap-wise direction is ignored; (iv) the following physical

properties are considered constant: density, conductivity and specific heat. In addi-

tion to the above assumptions, the Peclet number is employed to evaluate the influence

of heat convection and conduction to temperature field. The Peclet number is the

ratio of heat convection to heat conduction, and is given by

Pe =
vD

α
(4.8)

where v is the velocity, D is the characteristic dimension, and α is the thermal diffu-

sivity. In our problem, Pe = 2.3× 105, which means conduction in x and y-direction

can be neglected relative to convection. Since the conduction terms ∂2T
∂x2 and ∂2T

∂y2

are negligible in the energy equation 4.3, their presence may not affect the tempera-

ture solution. We still keep these two terms in the energy equation to facilitate the
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computation of residual that follows.

It is worth noting that, in the Cartesian coordinate system as shown in figure

4.1, the center line is at z = 0 and the top and bottom surfaces of the die cavity are

at z = +h and z = −h, respectively, such that the total die cavity thickness is 2h.

For the thermal boundary conditions, we may have a constant temperature profile

at the die entrance and a constant wall temperature Tw. Consistent with the above

governing equations, appropriate boundary conditions in the z-direction are given by

vx = vy = 0 at z = h

∂vx

∂z
=

∂vy

∂z
=

∂T

∂z
= 0 at z = 0

T = Tw at z = h and x = xsidewall (4.9)

The mass, momentum and energy equations may be simplified according to the

above assumptions for the steady-state problem as

∂vx

∂x
+

∂vy

∂y
= 0 (4.10)

∂P

∂x
=

∂

∂z

(
η
∂vx

∂z

)

∂P

∂y
=

∂

∂z

(
η
∂vy

∂z

)
(4.11)

∂P

∂z
= 0

ρcp

(
vx

∂T

∂x
+ vy

∂T

∂y

)
= k∇2T + ηγ̇2 (4.12)

Based on the Hele-Shaw model assumption for generalized Newtonian fluids, the

continuity equation and momentum equation reduce to a differential equation, called

Hele-Shaw approximation equation, in pressure P , as shown in equation 2.3.
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Figure 4.1: One quadrant of coat hanger sheeting die
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In the following, a hybrid scheme is employed to solve the coupled energy equation

4.12 and Hele-Shaw approximation equation 2.3. Coupling occurs due to the presence

of the velocity v and a shear rate dependent heat source in the energy equation and

the inclusion of thermal dependent viscosity in the Hele-Shaw equation.

4.2.2 Model Solution

The solution of the above coupled equations generally require an iterative procedure.

A Newtonian-Raphson iteration is used in which the global residual is defined as

R(P, T ) =

{
RP (P, T )
RT (P, T )

}
= 0 (4.13)

The residual R as in equation 4.13, is deemed the global system. Note that the

RP and RT are the local residuals of pressure and temperature, respectively, and

they may be obtained by employing the method of Weighted Residuals and Gauss’s

Divergence theorem over the two dimensional flow domain Ω2 and three dimensional

temperature domain Ω3, respectively, as [5]

RP (P, T ) =

∫

Ω2

∇w · S(P )∇P dΩ2 −
∫

∂Ωq
2

w qP ds (4.14)

and

RT (P, T ) =

∫

Ω3

ũ ρ cp b ∇P ·∇T dΩ3 +

∫

Ω3

∇w k ∇T dΩ3 −
∫

Ω3

w η γ̇2dΩ3 (4.15)

where

b = −
∫ h

z

z

η
dz (4.16)

The boundary conditions in the 2D plane of flow domain are P = P p on ∂Ωp
2

and S(∇P · n) = qp on ∂Ωq
2 where qp is the prescribed flow rate, n is the outward
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unit normal to the boundary ∂Ω2. The Streamline Upwind Petrov-Galerkin (SUPG)

method proposed by Brooks and Hughes [49] is employed to compute the residual

RT . It is seen from equation 4.15 that the streamline upwind modification does not

affect the weighting of the diffusion and viscous dissipation terms. The SUPG method

provides a physically realistic and spatially stable alternative to the Galerkin finite

element, and numerous examples demonstrate the effectiveness of the SUPG method

in convection dominated flow analyses [49, 79–81]. Details of the SUPG method are

provided elsewhere, see e.g., [49, 81]. Here, the discussion is limited to the details

required for the residual calculation.

In the SUPG method, the weighting function ũ(P ; w) of equation 4.15 is given

as [79]

ũ(P ; w) = w +
α de(P )

2‖v(P )‖ ∇ · (w v(P )) (4.17)

where w is the standard Galerkin weighting function [81], de is the characteristic

element length, and α is a scaling parameter analogous to an artificial diffusivity.

Here we emphasize the dependence of ũ on the pressure field P . The weighting

function ũ adds a highly anisotropic artificial diffusion which attains its maximum

value in the flow direction and is zero in the direction normal to the flow direction [81].

We choose the characteristic element length de as the element length in the velocity

direction and hence it is also a function of the pressure field (since v is a function

of P (cf. equation 2.9)). See appendix A for the evaluation of de for isoparametric

elements.

90



4.2.3 Finite Element Discretization

The isoparametric Streamline Upwind Petrov-Galerkin (SUPG) method is also used

to discretize equation 4.12 over the 3D flow domain Ω3. The flow domain Ω3 in equa-

tion 4.12 is divided into multiple finite element domain Ω3k. The domain discretiza-

tion provides a means for the purpose of numerically evaluating the integral in the

expression above. As is common in finite element methods, we use Gauss-Legendre

Quadrature to numerically evaluate the required integrals.

In each element domain Ωk, the pressure P , temperature T and weighting function

ũ are defined as

P (x, y) = NP(ξ, η)
n
P (4.18)

T (x, y, z) = NT(ξ, η, ζ)
n
T (4.19)

ũ(x, y, z) = NT(ξ, η, ζ)
n
u (4.20)

where NP(ξ, η) and NT(ξ, η, ζ) are the element interpolation(shape) function matrix

for pressure and temperature, respectively.
n
P is the element nodal pressure vector,

n
T is the element nodal temperature vector, and

n
u is a vector of SUPG nodal weights.

The transformation between the reference domain and actual domain is characterized

by the Jacobian matrix J as

J(ξ) =
∂N

∂ξ

n
X (4.21)

where ∂N
∂ξ

denotes differentiation with respect to the reference coordinate in the parent

element.
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It can be shown that the gradient ∇P and ∇T in equation 4.15 are computed as

∇P = BP
2

n
P

∇T = BT
3

n
T (4.22)

where the element gradient matrices are

BP
2 = J−T

2

∂NP

∂ξ

BT
3 = J−T

3

∂NT

∂ξ
(4.23)

Here we use BP
2 and BT

3 in the 2D pressure and 3D temperature solution, respectively.

For conciseness, B2 and B3 are used in the rest of this chapter. Similarly, J2 and J3

are Jacobian matrices of 2D pressure and 3D temperature solution, respectively. The

area dΩ2 in each element domain may be expressed in terms of the reference area

dΩ2k, as

dΩ2 = J2 dΩ2k (4.24)

where J2 = det(J2).

Substituting the above finite element expression in the residual equation 4.14, we

obtain

RP(P,T) =

∫

Ω2k

[BT
2 S(P,T)B2

n
P ] J2 dΩ2k −

∫

∂Ω2k

NT qP j2 dsk (4.25)

where j2 = J2 ‖J−T
2 nk‖ which is called the surface area metric and nk is the outward

unit normal vector to the reference element boundary.
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Similarly, the residual RT(P,T) may be evaluated with the finite element method

as

RT(P,T) =

∫

Ω3k

NT ρcp bB3

n
P ·B3

n
TJ3dΩ3k+

∫

Ω3k

(
αde

2‖v‖B
T
3 v

)
ρcp bB3

n
P ·B3

n
TJ3dΩ3k

+

∫

Ω3k

BT
3 k B3

n
TJ3dΩ3k−

∫

Ω3k

NT η γ̇2 J3dΩ3k (4.26)

By means of Gauss-Legendre Quadrature, we evaluate the above integral with ap-

propriate location and weights. A Newtonian-Raphson iteration is used, as shown in

figure 4.2, to compute the coupled pressure and temperature solutions. Starting with

initial values of pressure and temperature, the Hele-Shaw approximation equation for

die cavity pressure is solved using the Newton-Raphson iteration method. The re-

sulting pressure and velocity solutions are then substituted into the energy equation

and the Newton-Raphson method is used again to compute the melt temperature.

The newly generated temperature solutions are compared to the previous values and

the coupled analysis repeats until the convergence is reached. In this analysis, the

coupled pressure and temperature solutions take 9 iterations to converge.

Suppose we have an existing guess for the solutions of the above, say PI and

TI, which do not satisfy equation 4.13. The objective then, is to determine the

appropriate changes, i.e. the ∆P and ∆T, which when added to the current solution

guess, will satisfy the above equation. To this end, we perform a first-order Taylor

series expansion about the current solution which gives [50]

∂ RP(P,T)

∂P
∆P = −RP(P,T)

∂ RT(P,T)

∂T
∆T = −RT(P,T) (4.27)
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Figure 4.2: Computational procedure of the coupled pressure and temperature solu-
tion

here we assume that ∂RP (P,T )
∂P

≈ wT ∂ RP(P,T)
∂P

, so that the tangent stiffness matrix

∂ RP(P,T)
∂P

and ∂ RT(P,T)
∂T

in equation 4.27 may be evaluated with the finite element

method as

∂ RP(P,T)

∂P
=

∫

Ω2k

[
BT

2 S(P,T)B2 + BT
2 B2

n
P

∂S(P,T)

∂P

]
J2 dΩ2k (4.28)

and
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∂ RT(P,T)

∂T
=

∫

Ω3k

NT ρ cp
∂b

∂T
B3

n
P ·B3

n
T J3 dΩ3k

+

∫

Ω3k

NT ρ cp bB3

n
P ·B3 J3 dΩ3k

−
∫

Ω3k

(
α de

2‖v‖2

∂‖v‖
∂T

BT
3 v

)
ρ cp bB3

n
P ·B3

n
T J3 dΩ3k

+

∫

Ω3k

(
α

2‖v‖
∂de

∂T
BT

3 v

)
ρ cp bB3

n
P ·B3

n
T J3 dΩ3k

+

∫

Ω3k

(
α de

2‖v‖ BT
3

∂v

∂T

)
ρ cp bB3

n
P ·B3

n
T J3 dΩ3k

+

∫

Ω3k

(
α de

2‖v‖ BT
3 v

)
ρ cp

∂b

∂T
B3

n
P ·B3

n
T J3 dΩ3k

+

∫

Ω3k

(
α de

2‖v‖ BT
3 v

)
ρ cp bB3

n
P ·B3 J3 dΩ3k

+

∫

Ω3k

BT
3 k B3 J3 dΩ3k

+

∫

Ω3k

NT γ̇2 ∂η

∂T
J3 dΩ3k (4.29)

The above may be solved for the incremental response ∆P and ∆T by inverting

the global tangent stiffness matrix. The responses are then updated according to

PI+1 = PI + ∆P (4.30)

TI+1 = TI + ∆T (4.31)

The global residual is again evaluated, and if it is not sufficiently small, the process

is repeated. It should be noted that when the power-law viscosity equation 4.7 is

inserted into equation 2.4, the flow conductance S may not be obtained analytically

when the temperature is not uniform in the z-direction. Instead, a numerical solution

is required to compute S for the non-isothermal power-law fluid. Compared with

Tortorelli [50], solving equation 4.27 is expected to be computationally more efficient
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than the equivalent computation in Tortorelli since we replace a single large system in

P and T with two separate smaller systems, one for P and another for T. However,

the overall computation burden is also influenced by the numbers of iterations which

are expected to be less in the full Newton-Raphson method in Tortorelli [50].

The numerical integration formula, known as Gauss-Legendre Quadrature, is used

to solve the integral equation 2.4 for S. Since all of the Gauss-Legendre rules in this

research use limits of integration ±1 [82], we transform the integral with z = h
2
(r+1).

Such that

S =

∫ 1

−1

[h
2
(r + 1)]2

η
(
h

2
) dr (4.32)

The Gauss numerical integration formula gives

S =
NG∑
i=1

Wi

[h
2
(ri + 1)]2

η(ri)
(
h

2
) (4.33)

where NG is the number of Gauss points. Wi and ri are called Gauss weights and

abscissas, respectively. Since the domain of integration in equation 2.4 does not

depend on P , we may differentiate its integrand to give

∂S

∂P
[∆P ] = −

∫ h

0

z2

η2

∂η

∂P
[∆P ] dz (4.34)

where equations 2.5 and 4.7 are employed to obtain

∂η

∂P
[∆P ] = (1− 1

n
) η

∇P ·∇[∆P ]

‖∇P‖2
(4.35)

for a power-law fluid.

The Gauss-Legendre rule is adopted again to solve for the term ∂S
∂P

as

∂S

∂P
[∆P ] = −

NG∑
i=1

Wi

[h
2
(ri + 1)]2

η2

∂η

∂P
[∆P ] (

h

2
) (4.36)
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where we may substitute equation 4.35 into equation 4.36.

The derivative ∂b
∂T

in equation 4.29 is given as

∂ b

∂T
=

∫ h

z

z

η2

∂η

∂T
dz (4.37)

where

∂η

∂T
= −NT E

R

1

n
η

1

T2 (4.38)

The derivations of derivatives ∂de

∂T
and ∂‖v‖

∂T
are given in appendix A.

4.3 Optimization Problem Statement

As we have described before, the pressure drop across the die and exit velocity distri-

bution are related to the success of die design. Pressure drop determines the extruder

size and power requirements, and die exit velocity variation influences the sheet thick-

ness uniformity [9]. The goal of minimizing the inlet pressure can be realized by vary-

ing the thickness distribution in the die cavity, while placing the constraints on die

exit velocity and temperature variation and limiting the slope of die cavity surface.

The die design optimization problem used here is

min
φ∈<N

f(φ) = Pin

Such that g1(φ) = 1
L

∫
lexit

(
v̄(φ)

v̄a(φ)
− 1

)2

dx ≤ ε1

g2(φ) =
(

v̄a(φ)

v̄p
− 1

)2

≤ ε2

g3(φ) = 1
L

∫
lexit

(
T (φ)

Ta(φ)
− 1

)2

dx ≤ ε3

gK
4 (φ) =

‖∇hK(φ)‖
‖∇hp‖

− 1 ≤ 0

(4.39)

97



The non-linear constrained optimization is to minimize the inlet pressures Pin.

Design parameters are denoted by φ = {Pin, h
I}, I = 1, 2 . . . N − 1, where hI are

the N − 1 nodal half-height design variables and N is the total number of design

variables. The optimization approach considered here can also be used to determine

a sheeting die cavity geometry that will accommodate multiple operating conditions

(see e.g., [65]), including multiple temperatures and multiple flow materials.

The constraint function g1, measure the exit velocity variation and are imposed

to obtain a uniform exit velocity to within the tolerance ε1. v̄(φ) is the computed

exit velocity, v̄a(φ) is the average velocity at the die exit, and lexit denotes the die

exit edge. A zero value of g1 indicates the computed velocity v̄(φ) equals the average

velocity v̄a(φ) over the entire width of the die exit.

The average velocity at die exit is written as

v̄a =
1

L

∫

lexit

v̄(x) dx (4.40)

where L is the total length along the die exit.

The constraint function g2 is imposed to define the flow rate through the die.

In our example, the die exit has a uniform height hexit that does not change as a

function of design. Therefore, when the average exit velocity v̄a equals the prescribed

exit velocity v̄p, the die is operating at the desired total flow rate Q given as

Q = 2hexit

∫

lexit

v̄p dx (4.41)
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In the optimization problem in equation 4.39, the inlet pressure Pin may vary with

the design to achieve a desired flow rate [41]. This formulation provides a means to

independently enforce exit velocity uniformity with g1 and total flow rate with g2,

thus allowing more control over the design than that given by Smith [22].

A good extrusion die must distribute the polymer melt in the flow channel such

that the material exits from the die with a uniform velocity and temperature [44]. The

constraint function g3, therefore, is employed to obtain a uniform exit temperature.

Here, g3 becomes zero when the temperature T along the centerline of die exit equals

the average temperature Ta over the die exit. The average exit temperature Ta is not

prescribed a priori, but is instead calculated from the temperature field as

Ta =
1

L

∫

lexit

T (x) dx (4.42)

In the die cavity, the half-height parameter h(x, y) is arbitrary, so that constraints

gK
4 , K = 1, 2, . . . Ns, are imposed to restrict the slope of h to within the prescribed

value ‖∇hp‖. Here, Ns is the number of elements in the finite element model that

have a limit on ∇h.

It is important to note that the objective function f(φ) and constraint gK
4 are

explicitly dependent on the design parameters, while the constraints g1, g2 and g3

are explicitly dependent on the design parameters and implicitly dependent on the

design parameters through the pressure and temperature field equations. The implicit

dependence complicates the design sensitivity analysis. In the following sections, we

present an analytical approach to sensitivity analysis and its implementation with

the finite element method.
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Before illustrating the design sensitivity analysis and optimization, we compute

the temperature distribution along the center line of die exit to choose the appropriate

value of the SUPG weighting parameter α. We investigate the effect of α on the tem-

perature field using the finite element model shown in figure 4.3. The non-isothermal

power-law fluid is used in the analysis and the inlet pressure is 15 MPa.

Figure 4.4 illustrates the temperature distribution along the center line of die exit

for α equal to 0.5, 1.0, 3.0, 7.0, 10.0 and 20.0. Note that the SUPG weighting function

ũ reduces to the Galerkin weighting function when α = 0. If no upwinding is applied

or weighting parameter α is small, as shown in figure 4.4(a), the exit temperature

distribution lacks spatially stability. As α increases, the stability in the solution

increases. For α = 7.0, a spatially smooth temperature distribution is obtained

especially in the center area along die exit as illustrated in figure 4.4(d). However,

a large value of α may overcompensate convection term (cf. equation 4.15), causing

unstable temperature distribution as illustrated in figure 4.4(e,f). Therefore, α = 7.0

is used in the following analysis.

4.4 Design Sensitivity Analysis for Fully-Coupled

Nonlinear System

Since the objective function f(φ) and constraint gK
4 (φ) in equation 4.39 are explicitly

defined on the design φ, the calculation of design sensitivities is straightforward. For

the objective function f(φ) in equation 4.39, the design sensitivities may be computed
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Figure 4.3: Coat hanger sheeting die finite element mesh
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Figure 4.4: Coat hanger sheeting die exit temperature distribution along the center-
line as a function of α
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from

Df(φ)

Dφi

=

{
1 for φi = Pin

0 otherwise
(4.43)

Following the same procedure, we obtain the sensitivity for the constraint g4

Dg4(φ)

Dφi

=

{
0 for φi = Pin

1

‖∇h‖‖∇hp‖
∇h ·∇ otherwise (4.44)

In the analysis to follow, equation 4.44 is evaluated with the finite element method

as

Dg4(φ)

Dφi

=

{
0 for φi = Pin

1

‖∇hp‖
(

n
h

T
BTB

n
h)−

1
2

n
h

T
BTB otherwise

(4.45)

where we use ∇h = B
n
h .

The constraint functions g1(φ), g2(φ) and g3(φ) in equation 4.39 are not defined

explicitly in terms of design parameters above. Instead, these functions are implicitly

defined through the pressure solution computed in equation 2.3 and the temperature

solution. To evaluate the implicit sensitivities, we consider a general performance

measure

F (φ) = G(P(φ),T(φ),φ) (4.46)

where F , which may represent the objective function or any one of the constraints, is

defined through the function G which is both explicitly dependent on φ and implicit

dependent on φ through the solution of P and T. Assuming sufficient smoothness,

the design sensitivity of F with respect to the design parameter φi may be calculated

from

DF

Dφi

=
∂G

∂P

DP

Dφi

+
∂G

∂T

DT

Dφi

+
∂G

∂φi

(4.47)
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where the chain-rule is applied to obtain this result. The explicit derivative ∂G
∂P

, ∂G
∂T

and

∂G
∂φi

are readily available once the objective and constraint functions are defined [41].

The difficulty in evaluating DF
Dφi

arises from the presences of the implicit response

sensitivities DP
Dφi

and DT
Dφi

, which are defined through the Hele-Shaw governing equation

2.3 and energy equation 4.12, respectively. Therefore, the derivatives DP
Dφi

and DT
Dφi

must be evaluated using the direct differentiation method or eliminated from equation

4.47 with the adjoint variable method. See [54, 65] for the details about the direct

differentiation method and the adjoint variable method. In this research the number

of design variables far exceeds the number of implicit response functions, so that the

adjoint variable method will be employed (see e.g., [54])

4.4.1 The Adjoint Variable Method

In the adjoint variable method, we eliminate the implicit response derivative DP
Dφi

and

DT
Dφi

from equation 4.47 by defining and solving the appropriate adjoint problem. This

is accomplished via the Lagrange multiplier method [54]. Equation 4.46 and residual

equations 4.25, and 4.26 are combined to form the augmented performance measure

F̂ as

F̂ (φ) = G(P(φ),T(φ),φ)− λ ·R(P(φ),T(φ), φ) (4.48)

where λ = {λP,λT} is the adjoint variable vector which is an arbitrary vector with

a length equal to the number of free degrees of freedom in the finite element problem

[54]. λP is the adjoint variable vector for pressure solution, and λT is the adjoint

variable vector for temperature solution. The residual term R(P(φ),T(φ),φ) is

104



defined as

R(P(φ),T(φ),φ) =

{
RP (P(φ),T(φ),φ)
RT (P(φ),T(φ), φ)

}
= 0 (4.49)

Here, F̂ (φ) = F (φ) since the augmented term is identically zero. The augmented

function is next differentiated with respect to the design variable φi gives

DF̂

Dφi

=
∂G

∂P

DP

Dφi

+
∂G

∂T

DT

Dφi

+
∂G

∂φi

−λP ·
{

∂RP

∂P

DP

Dφi

+
∂RP

∂T

DT

Dφi

+
∂RP

∂φi

}

−λT ·
{

∂RT

∂P

DP

Dφi

+
∂RT

∂T

DT

Dφi

+
∂RT

∂φi

}
(4.50)

Rearranging equation 4.50 yields

DF̂

Dφi

=
∂G

∂φi

− λP ∂RP

∂φi

− λT ∂RT

∂φi

+
DP

Dφi

·
{(

∂G

∂P

)T

−
[
∂RP

∂P

]T

λP −
[
∂RT

∂P

]T

λT

}

+
DT

Dφi

·
{(

∂G

∂T

)T

−
[
∂RP

∂T

]T

λP −
[
∂RT

∂T

]T

λT

}
(4.51)

where ( )T denotes the matrix transpose. To eliminate DP
Dφi

and DT
Dφi

from equation

4.51, we equate the coefficients of DP
Dφi

and DT
Dφi

to zero. The adjoint variable vector

{λP,λT}, therefore, may be computed by solving the adjoint problem

{
∂RT

∂T
− ∂RT

∂P

[
∂RP

∂P

]−1
∂RP

∂T

}T

λT =

(
∂G

∂T

)T

−
[
∂RP

∂T

]T [
∂RP

∂P

]−T(
∂G

∂P

)T

(4.52)

λP =

[
∂RP

∂P

]−T
{(

∂G

∂P

)T

−
[
∂RT

∂P

]T

λT

}
(4.53)

The derivation here for λP and λT is similar to that given in Tortorelli [50]. We

first assemble

{
∂RT

∂T
− ∂RT

∂P

[
∂RP

∂P

]−1
∂RP

∂T

}T

and solve for λT via the equation 4.52,
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and then assemble

{(
∂G
∂P

)T −
[

∂RT

∂P

]T

λT

}
and solve for λP via the equation 4.53. It

is noted that, while the solutions for P and T as described in figure 4.2 varies from

the full Newton-Raphson method in Tortorelli [50], the adjoint sensitivity problem in

equations 4.52 and 4.53 are the same.

Once the adjoint variable vector {λP, λT} is computed, the unknown derivative

DP
Dφi

and DT
Dφi

are eliminated from the sensitivity calculation and we may evaluate DF̂
Dφi

from the equation 4.51 as

DF̂

Dφi

=
∂G

∂φi

− λP ∂RP

∂φi

− λT ∂RT

∂φi

(4.54)

Recall that ∂RP

∂P
and ∂RT

∂T
are the transpose of the inverted tangent stiffness which

are evaluated from equations 4.28 and 4.29. The adjoint variable method requires

the evaluation of one adjoint problem for each objective and constraint function,

thus this method is efficient because it involves only an adjoint load vector assembly

and its back substitution into the inverted tangent stiffness for each performance

measure [9]. The calculation of ∂G
∂P

, ∂G
∂T

, ∂RP

∂T
, ∂RT

∂P
, ∂RP

∂φi
and ∂RT

∂φi
for the die design

problem in equations 4.52, 4.53, and 4.54 will be given in the following section.

As an indispensable validation test, finite-difference gradient is calculated and

compared against the gradient computed via the adjoint method. The finite-difference

check proceeds as follows: The i-th component of the gradient DF̂
Dφi

is compared with

the following finite-difference gradient

dF (φ)

d φi

=
F (φ + ∆φi)− F (φ)

∆φi

(4.55)
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and the comparison is performed for each objective and constraint function. Com-

parison results are summarized in table 4.1.

Table 4.1: Gradient check via finite-difference method

constraint function adjoint finite-difference
constraint g1 5.6084E-003 1.3107E-003
constraint g2 3.1535E-001 1.3427E-002
constraint g3 4.2013E-006 7.7609E-006

4.4.2 Sensitivity Calculations

The derivatives of constraint g1, g2 and g3 in equation 4.39 with respect to the residual

vector P are evaluated, respectively, from

∂g1

∂P
=

1

L

∫

lexit

2

(
v̄

v̄a

− 1

)[
∂v̄

∂P

1

v̄a

− v̄

v̄2
a

∂v̄a

∂P

]
dx (4.56)

∂g2

∂P
= 2

(
v̄a

v̄p

− 1

)(
1

v̄p

∂v̄a

∂P

)
(4.57)

∂g3

∂P
= 0 (4.58)

where the arguments are omitted for conciseness and it is assumed that pressures and

velocities are associated with the appropriate flow conditions.

Equations 4.56 and 4.57 require two derivatives with respect to P, i.e., ∂v̄
∂P

and

∂v̄a

∂P
. Differentiating equation v̄ = −S

h
∇P with respect to P , we obtain

∂v̄

∂P
[∆P ] =

1

h

[
∂S

∂P
[∆P ]‖∇P‖+

S

‖∇P‖ ∇P ·∇[∆P ]

]
(4.59)

which is evaluated in the finite element model as

∂v̄

∂P
=

1

h

[
∂S

∂P
‖∇P‖+

S

‖∇P‖
n
P

T
BTB

]
(4.60)
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The derivative ∂v̄a

∂P
is evaluated by differentiating equation 4.40

∂v̄a

∂P
=

1

L

∫

lexit

∂v̄(x)

∂P
dx (4.61)

By substituting ∂v̄
∂P

and ∂v̄a

∂P
in equations 4.56 and 4.57, the derivatives ∂g1

∂P
and ∂g2

∂P

are obtained. It should be noted that the integral of equation 4.56 is defined over the

entire length along the die exit. Gauss-Legendre quadrature is used to evaluate the

integrals along the die exit in equations 4.56 and 4.61.

Similarly, the derivatives of constraint g1, g2 and g3 in equation 4.39 with respect

to the residual vector T are evaluated, respectively, from

∂g1

∂T
=

1

L

∫

lexit

2

(
v̄

v̄a

− 1

)[
∂v̄

∂T

1

v̄a

− v̄

v̄2
a

∂v̄a

∂T

]
dx (4.62)

∂g2

∂T
= 2

(
v̄a

v̄p

− 1

)(
1

v̄p

∂v̄a

∂T

)
(4.63)

∂g3

∂T
=

1

L

∫

lexit

2

(
T

Ta

− 1

)[
∂T

∂T

1

Ta

− T

T 2
a

∂Ta

∂T

]
(4.64)

Equations 4.62 and 4.63 require two derivatives with respect to T, i.e., ∂v̄
∂T

and

∂v̄a

∂T
. Differentiating equation v̄ = −S

h
∇P with respect to T, we obtain

∂v̄

∂T
[∆P ] =

1

h

∂S

∂T
[∆P ]‖∇P‖ (4.65)

where ∂S
∂T

is written as

∂S

∂T
= −

∫ h

0

z2

η2

∂η

∂T
dz (4.66)

where ∂η
∂T

is given in equation 4.38.

The derivative ∂v̄a

∂T
is evaluated by differentiating equation 4.40

∂v̄a

∂T
=

1

L

∫

lexit

∂v̄(x)

∂T
dx (4.67)
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To evaluate ∂RP

∂T
and ∂RT

∂P
, the residual RP and RT of equations 4.14 and 4.15

are differentiated with respect to T and P , respectively. The linear operator ∂RP

∂T
is

defined such that ∂RP

∂T
≈ wT ∂RP

∂T
where

∂RP

∂T
=

∫

Ω2

∇w · ∂S

∂T
∇P dΩ2 (4.68)

where we assume qP is not a function of half-height parameter. Similarly,

∂RT

∂P
=

∫

Ω3

w ρ cp
∂b

∂P
∇P ·∇T dΩ3 +

∫

Ω3

w ρ cp b ∇∆P ·∇T dΩ3

+

∫

Ω3

(
α

2‖v‖
∂de

∂P
∇w · v

)
ρ cp b∇P ·∇T dΩ3

−
∫

Ω3

(
α de

2‖v‖2

∂‖v‖
∂P

∇w · v
)

ρ cp b ∇P ·∇T dΩ3

+

∫

Ω3

(
α de

2‖v‖∇w · ∂v

∂P

)
ρ cp b ∇P ·∇T dΩ3

+

∫

Ω3

(
α de

2‖v‖∇w · v
)

ρ cp
∂b

∂P
∇P ·∇T dΩ3

+

∫

Ω3

(
α de

2‖v‖∇w · v
)

ρ cp b ∇4P ·∇T dΩ3

+

∫

Ω3

w γ̇2 ∂η

∂P
dΩ3 − 2

∫

Ω3

w
η

‖∇P‖ γ̇2 ∂‖∇P‖
∂P

dΩ3 (4.69)

Equation 4.68 is evaluated in the finite element model as

∂RP

∂T
=

∫

Ω2k

BT
2

∂S

∂T
B2

n
P J2dΩ2k (4.70)

Equation 4.69 is evaluated in the finite element model as

∂RT

∂P
=

∫

Ω3k

NT ρ cp
∂b

∂P
B3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

NT ρ cp bB3 ·B3

n
T J3dΩ3k
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+

∫

Ω3k

(
α

2‖v‖
∂de

∂P
BT

3 v

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

−
∫

Ω3k

(
α de

2‖v‖2

∂‖v‖
∂P

BT
3 v

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3

∂v

∂P

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp

∂b

∂P
B3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp bB3 ·B3

n
T J3dΩ3k

+

∫

Ω3k

NT γ̇2 ∂η

∂P
J3dΩ3k

−2

∫

Ω3k

NT η

‖∇P‖ γ̇2 ∂‖∇P‖
∂P

J3dΩ3k (4.71)

Next, we calculate the terms ∂RP

∂φi
and ∂RT

∂φi
. In the case of φi = Pin, ∂RP

∂φi
and

∂RT

∂φi
are computed through the tangent stiffness ∂RP

∂P
and ∂RT

∂P
, respectively. The

evaluation forms are as follows

∂RP

∂Pin

=
∂RP

∂P

∂P

∂Pin

∂RT

∂Pin

=
∂RT

∂P

∂P

∂Pin

(4.72)

where ∂P
∂Pin

is a zero vector with unity in the components associated with Pin. There-

fore, only those nodes associated with inlet pressure Pin need to be considered when

computing equation 4.72.

In case of φi = hI , I = 1, 2 . . . N − 1, where hI are the N − 1 nodal half-height

design variables and N is the total number of design variables, the derivative ∂RP

∂φi
is

computed by differentiating equation 4.14 with respect to φi as

∂RP

∂φi

=

∫

Ω2

∇w · ∂S

∂φi

∇P dΩ2 (4.73)
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where we assume qP is not a function of half-height parameter. Equation 4.73 is

evaluated in the finite element model as

∂RP

∂φi

=

∫

Ω2k

BT
2

∂S

∂φi

B2

n
P J2dΩ2k (4.74)

Similarly, the derivative ∂RT

∂φi
is computed by differentiating equation 4.15 with

respect to φi, and evaluated in the finite element model as

∂RT

∂φi

=

∫

Ω3k

NT ρ cp
∂b

∂φi

B3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

NT ρ cp b
∂B3

∂φi

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

NT ρ cp bB3

n
P · ∂B3

∂φi

n
T J3dΩ3k

+

∫

Ω3k

NT ρ cp bB3

n
P ·B3

n
T

∂J3

∂φi

dΩ3k

+

∫

Ω3k

(
α

2‖v‖
∂de

∂φi

BT
3 v

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

−
∫

Ω3k

(
α de

2‖v‖2

∂‖v‖
∂φi

BT
3 v

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖
∂BT

3

∂φi

v

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3

∂v

∂φi

)
ρ cp bB3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp

∂b

∂φi

B3

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp b

∂B3

∂φi

n
P ·B3

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp bB3

n
P · ∂B3

∂φi

n
T J3dΩ3k

+

∫

Ω3k

(
α de

2‖v‖B
T
3 v

)
ρ cp bB3

n
P ·B3

n
T

∂J3

∂φi

dΩ3k

+

∫

Ω3k

∂BT
3

∂φi

k B3

n
TJ3dΩ3k +

∫

Ω3k

BT
3 k

∂B3

∂φi

n
TJ3dΩ3k

+

∫

Ω3k

BT
3 k B3

n
T

∂J3

∂φi

dΩ3k −
∫

Ω3k

NT η γ̇2 ∂J3

∂φi

dΩ3k
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+

∫

Ω3k

NT γ̇2 ∂η

∂φi

J3dΩ3k − 2

∫

Ω3k

NT γ̇2 η

h

∂h

∂φi

J3dΩ3k (4.75)

where

∂B3

∂φi

=
∂J−T

3

∂φi

∂N

∂ξ
(4.76)

The expressions for
∂J−T

3

∂φi
= −J−T

3
∂JT

3

∂φi
J−T

3 , ∂J3

∂φi
= J3 tr

(
∂J3

∂φi
J−1

3

)
and ∂J3

∂φi
= ∂N

∂ξ
∂

n
X

∂φi

from Tortorelli and Wang [50] are used to evaluate the above equation.

Note that, for the adjoint variable method, the adjoint analysis must be performed

for each implicit response functional, i.e., each objective function and constraint func-

tion. In the above, we must evaluate ∂S
∂φi

which depend on the fluid material model.

Non-isothermal fluid flow complicates the evaluation of flow conductance S since it

has no explicit formula when the temperature varies through the thickness of the die.

The derivative ∂S
∂φi

cannot be obtained analytically. Therefore, the flow conductance

sensitivity for non-isothermal power-law fluid must be calculated numerically.

Differentiating equation 4.32 with the limits of integration from −1 to 1, the

expression ∂S
∂φi

and its numerical solution can be written as

∂S

∂φi

=

∫ 1

−1

[
3z2

2η

∂h

∂φi

− hz2

2η2

∂η

∂φi

]
dr (4.77)

where we map the domain of integration such that z = h
2
(r + 1) to facilitate differ-

entiation. Equation 4.77 is evaluated numerically using Gauss-Legendre integration

as

∂S

∂φi

=
NG∑
i=1

Wi

[
3z2

2η

∂h

∂φi

− hz2

2η2

∂η

∂φi

]
(4.78)
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where Wi and ri are Gauss weights and abscissas, respectively. We use 8-point Gauss

quadrature, i.e. NG = 8 for Gauss-Legendre integration.

As can be seen in equation 4.77, in order to determine ∂S
∂φi

, the term ∂η
∂φi

is needed.

Differentiating the viscosity η from equation 4.7 with respect to the half-height design

variable φi and rearranging gives

∂η

∂φi

=
n− 1

n

η

h

∂h

∂φi

(4.79)

where the height sensitivity ∂h
∂φi

with respect to a nodal height design variable at an

arbitrary node k, i.e., φi = hk, is

∂h

∂φi

= N(ξ)
∂

n
h

∂hk
(4.80)

where we only consider those elements connected to the node k. Thus, the height

sensitivity becomes

∂h

∂φi

= N(ξ)
∂

n
h

∂hk
= Nk(ξ) (4.81)

Once the terms ∂G
∂P

, ∂G
∂T

, ∂RP

∂T
, ∂RT

∂P
, ∂RP

∂φi
and ∂RT

∂φi
are evaluated, the adjoint variable

vector {λP, λT} is computed with equations 4.52 and 4.53, and the design sensitivity

DF̂
Dφi

follows from the equation 4.54.

4.5 Die Design Example

The design sensitivity analysis discussed above is combined with optimization algo-

rithm [60] to design coat-hanger sheeting dies and sheeting dies with a general cavity

thickness distribution and in-plane shape. Of particular interest here is the die design
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for producing polymer sheets with large width-to-height ratios. In this die design,

the pressure drop across the die and the exit velocity and temperature distribution

are of fundamental importance. Die designs are obtained with a minimum pressure

drop and uniform exit velocity and temperature.

The coat-hanger design has a flow channel along its back edge that distributes

the polymer melt across the width of the die. The polymer melt leaves the flow

channel through a thin slit and passes through a region of uniform height to the die

exit. The die cavity geometry considered here follows that given in chapter 2 (see

e.g., figure 2.3). Part of manifold is considered as the design region, while the die

inlet, preland, secondary manifold and land each have uniform cavity half-height,

and act as a resistance to provide better fluid flow uniformity. The dimensions that

define our die cavity geometry are given in a paper of Gifford [46], except for the land

half-height, which is fixed at 1.2 mm in this study.

The finite element mesh of coat-hanger die cavity geometry appears in figure

4.5. The die cavity geometry is modeled with 4-node isoparametric quadrilateral

elements. Due to the symmetry and computational efficiency, we only consider the

half geometry in the calculation with 873 nodes and 799 elements. The design variable

φ from equation 4.39 defines the die cavity half-height in the manifold region through

425 nodal half-height design variables (bounded by 1.20mm ≤ hI ≤ 19.05mm in the

optimization), and die inlet pressure Pin (bounded by 1.0MPa ≤ Pin ≤ 20MPa in

the optimization). Therefore, a total of N = 426 design variables in the optimization

problem are given in equation 4.39.
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Figure 4.5: Finite element mesh of coat hanger die cavity geometry

115



The objective and constraint functions are given in equation 4.39 for design op-

timization considered below. Exit velocity tolerances for constraints g1 and g2 are

defined as ε1 = 0.01 and ε2 = 0.001, respectively. Exit temperature tolerance for con-

straint g3 is defined as ε3 = 0.0005. In addition, Ns = 425 height-gradient constraints

are defined as ‖∇hp‖ = 0.25. The sequential linear programming (SLP) algorithm in

Design Optimization Tools (DOT) [60] is used to solve the optimization problems.

This example considers the optimal design of the die cavity geometry described

above using the non-isothermal power-law fluid model. The flow of linear low density

polyethylene (LLDPE) at 463K is selected where material constants m = 15320Pa-s,

n = 0.51, E/R = 2813K, and the reference temperature T0 = 463 K are taken from

Arpin [44].

Optimization results are summarized in table 4.2, where the optimal die cavity

design is obtained in 60 SLP design iterations. The pressure drop decreases from

15.0 MPa to 9.92 MPa. The optimization history for the inlet pressure appears in

figure 4.6 and values of the constraints g1, g2 and g3 in equation 4.39 are shown

in figure 4.7 at each optimization iteration. In these calculations, the exit velocity

variation constraint g1 is reduced considerably from its initial value of 43.0 × 10−3

to its optimal value of 6.81 × 10−3, the exit flow rate constraint g2 is reduced from

1130× 10−3 to 0.974× 10−3, which is well below the tolerance ε2. Similarly, the exit

temperature constraint g3 is decreased from 1.03× 10−3 to 0.441× 10−3 in the same

calculation. Figure 4.8 illustrates the gap-wise average exit velocity for the initial and

optimal die designs where the distance along the die exit is normalized by dividing
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by the exit width of 508mm. Note that the velocity for the optimal design is uniform

over most of the die exit at a value that is close to the target velocity of 100 mm/s,

with the exception of a slight reduction at the outer edge. The average exit velocity

va, and the maximum and minimum gap-wise average exit velocities are given in

table 4.2 to further emphasize the success of the optimization procedure. The exit

temperature variation for initial and optimal design is shown in figure 4.9. Compared

with the initial design, the optimal design generates a relatively uniform temperature

distribution at the die exit.

The pressure distribution of the initial and optimal designs are shown in figure

4.10(a,b), respectively. The isobars just inside the die exit of the optimal design are

more parallel than those of the initial design, as shown in figure 4.10(a,b). This indi-

cates that the exit velocity distribution of the optimal design should be more uniform

than that of the initial design which is, in fact, the case as illustrated in figure 4.8.

The goal in design of an extrusion die is to obtain a uniform thickness and tempera-

ture across the width at the exit. Figure 4.11 compares the temperature distributions

in the midplane of the die for the initial and optimal designs. The temperature dis-

tributions at the die exit in figures 4.11(a) and (b) are significantly different. The

temperature near the center of die exit in initial design is about 48 degrees higher

than that at the die outer edge. The difference in temperature can affect the final

thickness of the extruded sheet. It is noted that difference in temperature distribu-

tions of the optimal design is much more improved. The temperature at the die exit

center is about 35 degrees higher than that at the die outer edge, as shown in figure
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4.11(b). Additionally, when the highly viscous melt flows through the die inlet and

merges into the manifold region, the shear rate near the die wall of proximal end

of manifold are higher than those in the other regions of manifold [83]. As a result

of combined effect of high shear rate and viscous dissipation, the relatively higher

temperature occurs around the neck of the die.

The die cavity half-heights are presented in figure 4.12(a) for the initial design

and in figure 4.12(b) for the optimal design. The gap thickness in the manifold region

of the optimal design is decreased in comparison with that of the initial design, and

has a slight reduction in the area around the neck of the die inlet.
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Table 4.2: Optimization results summary

die design initial optimal
Pin (MPa) 15.0 9.92

constraint g1 (×10−3) 43.0 6.81
constraint g2 (×10−3) 1130 0.974
constraint g3 (×10−3) 1.03 0.441

va (mm/s) 206.4 96.8
vexit (mm/s) (max) 266.2 114.2

(min) 136.4 77.1
Ta (K) 478.7 480.1

Texit (K) (max) 500.6 498.0
(min) 453.0 453.0
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(MPa) 
(a) initial pressure distribution 

(MPa) 
(b) optimal pressure distribution 

Figure 4.10: Pressure distribution in the die cavity

124



(K) (a) initial temperature distribution 

(K) 
(b) optimal temperature distribution 

Figure 4.11: Temperature distribution in the die cavity mid-plane
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half-height (mm) 
                                    (a) initial half-height distribution 

                                              (b) optimal half-height distribution 

Figure 4.12: Die cavity half-height distribution
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4.6 Summary

A hybrid numerical scheme is employed in which the pressure solution of 2.5D Hele-

Shaw flow is fully coupled with a non-linear 3D energy equation for the calculation

of temperature. The analysis based on 2.5D Hele-Shaw flow evaluates the pressure

distribution in the polymer melt which is used to calculate the velocity field. We

then substitute the pressure and velocity solutions in to the 3D energy equation

to compute the melt temperature. The solution of fully coupled nonlinear steady-

state temperature and pressure systems is solved with the Newton-Raphson iteration

method. Analytical sensitivities are formulated with the adjoint variable method. The

analysis and sensitivity analysis are finally combined with numerical optimization

to form an optimum design algorithm. Examples are given in this chapter that

integrate the fully-coupled nonlinear steady-state pressure and temperature system

with numerical optimization to compute a die cavity geometry capable of giving a

nearly uniform exit flow velocity and temperature.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

There is a great diversity among modern industries associated with polymer pro-

cessing. The major processes for polymer processing can be categorized as follows:

extrusion, postdie processing, forming, and injection molding. Primarily, these pro-

cesses deal with the conversion of raw polymeric materials into finished products. As

justified by Tadmor and Gogos [3], polymer processing is defined as the “engineer-

ing activity concerned with operations carried out on polymeric materials or systems

to increase their utility”. Indeed, polymers and plastic materials are becoming in-

creasingly important due to their versatile property portfolio, performance and their

suitability for functionalization with special effects.

The modeling of polymer processing operations requires an accurate quantita-

tive understanding of material properties and behavior. In general, fluid dynamics,

heat transfer, mechanics and polymer science are necessary for the successful design,

operation, control, and analysis of these processes. Additionally, polymer processing

simulation is often complicated and involves complex constitutive models in nonlinear

coupled fluid flow analyses. The complexity of current polymer processing renders

traditional design approaches inefficient and inadequate, and opens a door for the

development of more advanced design methods.

This research presents design sensitivity analysis method with numerical simula-

tion in polymer manufacturing processes. The major accomplishments of this research
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are in polymer processing simulation, design sensitivity analysis, and numerical op-

timization as well as the integration of these to develop a design methodology for

polymer processing. The main contribution of this research follows:

• This research presents an efficient method for the design of polymer sheeting

dies based on the integration of finite element flow simulations, sensitivity anal-

ysis, and optimization. Simulations that are employed in the optimal design

process are based on the generalized Hele-Shaw flow model to provide a means

for including die cavity geometries with arbitrary in-plane features without the

computational burden characteristic of more complex three-dimensional simu-

lations.

• This research extends earlier optimization-based approaches to include vari-

ous GNF models, such as the power-law, Carreau-Yasuda, Cross, Ellis, and

Bingham, in the analyses and sensitivity analyses required for the optimization

calculations. A viscosity derivative factor (see e.g., tables 2.1 and 2.2) is de-

rived which facilitates both the Newton-Raphson iteration procedure and design

sensitivity optimization.

• This research presents an polymer extrusion design problem and solution pro-

cedure that may be used for materials processing design problems where ad-

justable parameters are employed to accommodate manufacturing variations.

The proposed approach is to determine a single sheeting die cavity geometry

that will best accommodate multiple operating conditions that may exist due
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to variations in temperature, material, and/or flow rate.

• This research is a first step in integrating a simulation of the polymer melt

flow and die cavity deformation with numerical optimization in the polymer

manufacturing processes. Both the polymer melt flow and sheeting die defor-

mation are analyzed with a general purpose finite element package ABAQUS.

The approach includes a user-defined element to evaluate the purely viscous

non-Newtonian flow in a flat die. The flow analysis based on Hele-Shaw approx-

imation is coupled to a three-dimensional finite element simulation for die defor-

mation. In addition, shape optimization of a polymer sheeting die is performed

by the incorporation of the coupled fluid-structure analyses in a constrained

optimization algorithm. This fluid-structure interaction algorithm provides a

powerful and convenient computational aid to the design engineers to analyze

the deflecting dies.

• This research enhances the current design methodology by including the most

realistic temperature dependent constitutive model in the design problem, and

incorporating the generalized Hele-Shaw flow approximation for an inelastic,

non-Newtonian fluid under non-isothermal conditions. A hybrid numerical al-

gorithm is employed in which the pressure solution of 2.5D Hele-Shaw model

is fully coupled with a non-linear 3D energy equation for the calculation of

temperature. The Newton-Raphson iteration is used in the solution process so
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that analytical design sensitivity formulation is efficiently derived via the ad-

joint method. Analysis and sensitivity analysis of this fully coupled system are

combined with numerical optimization to form an optimum design algorithm.

• Design sensitivities are evaluated using the streamline-upwind Petrov-Galerkin

(SUPG) finite element method where special emphasis is given to the SUPG

design dependent weighting functions.

• Examples in sheeting die design exemplify the design methodology. Sheeting

dies are designed to form the optimal flow channel geometry, reduce pressure

drop and generate a uniform exit velocity and exit temperature.

In the extrusion thermal analysis, the current research only considers the con-

stant wall temperature as the thermal boundary condition. Addition research would

enhance the current design methodology by considering the thermal interaction be-

tween the melt and the die body, e.g., the boundary condition representing heat loss

by convection and radiation.

The coupled fluid-structure interaction analysis in the chapter 3 employs the

isothermal Carreau-Yasuda model to represent the polymer melt behavior in the

design problem. Since polymer viscosities are temperature dependent, simulation

results, and thus optimal designs, would be more accurate if we also included the

non-isothermal analysis to perform fluid-structure interaction analysis, and to evalu-

ate the die body deformation.

Sensitivity analysis and optimization should also be applied to design short-fiber
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composite products and their manufacturing process. Here, the manufacturing pro-

cess determines the orientation of the fiber suspension which defines the product

strength, stiffness and thermal expansion coefficient distributions [9]. A numerical

optimization to design these products would include a flow simulation, a structural

analysis, and a fully-coupled sensitivity analysis similar to that developed in this re-

search. Since the rheological property of polymeric composites is frequently based

on the viscous behavior of rigid particles dispersed in a Newtonian fluid, the art of

mathematical modeling of constitutive equations proposed in this research may be

utilized to represent the rheological response of polymeric composites.

In the current research, analysis and sensitivity analysis capabilities are combined

with numerical optimization to form an optimum design algorithm. The Newton-

Raphson iteration is used in the solution process so that analytical design sensitivity

formulation may be derived via the adjoint variable method. The computation effort

involved in these processes is very large, both in terms of the calculation time and

CPU time. Therefore, efficient methods are needed to evaluate the sensitivity and

design optimization. Additionally, as larger models are optimized, more efficient

filling algorithms, possibly those using implicit time integration, should be developed

for the analysis and the sensitivity analysis. Finally, interfacing with commercial

analysis codes and industrial die models are encouraged so that the optimization

method presented in this research is more applicable to actual material processing

applications.
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APPENDIX A

CHARACTERISTIC ELEMENT LENGTH

The characteristic element length de, as shown in equation 4.17, is calculated along the

velocity or advection direction [84] (i.e., along v). Obtaining de for one-dimensional

elements is straightforward, however, derivation of de for two- and three-dimensional

elements may involve complex computation. Furthermore, to evaluate ∂RT

∂P
and ∂RT

∂φ
,

de must be differentiated with respect to the design and the pressure field, respectively

(cf. equations 4.71 and 4.75). Yu and Heinrich [85] proposed a simple algorithm to

calculate a characteristic element length and added perturbed shifting functions in

the weighted residuals formulation. This algorithm was later used by Swaminathan

and Voller [79]. The resulting value for de, however, does not produce the element

length along the velocity direction for an arbitrary v.

To evaluate de for an element with domain
e
D , we use the isoparametric finite

element mapping
e
χ to relate the body configuration

e
D to the reference configuration

e
D κ as shown in figure A.1. We evaluate de at the element centroid and at this location

the velocity vector v in
e
D is treated as an infinitesimal quantity so that when it is

projected onto the reference domain
e
D κ it transforms to

v0 = J−1 v (A.1)

where J is the Jacobian of the mapping
e
χ . The reference element length de in the

direction of v0 is calculated at the element centroid and is straightforward to evaluate
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since the reference domain
e
D κ is a square defined over −1 ≤ ξ1 ≤ 1 and −1 ≤ ξ2 ≤ 1

where ξ = {ξ1 ξ2}T . Finally, the stretch ratio ‖v‖
‖v0‖ transforms the reference element

length in the direction of v0 to the body element length de in the direction of v. Thus

we define

de =





2 ‖v‖
‖v0‖

√
1 +

(
v02

v01

)2

if v02 ≤ v01

2 ‖v‖
‖v0‖

√
1 +

(
v01

v02

)2

if v01 ≤ v02

(A.2)

where v0 = {v01 v02}T .

The element length de is evaluated via equation A.2 for bilinear elements. How-

ever, the calculation may be performed for higher order elements, as well. Note that

the value of de obtained via equation A.2 is exact for elements with a uniform Jaco-

bian throughout the domain
e
D , i.e., elements that are square, rectangular, or that

form parallelograms. For square or rectangular elements, equation A.2 reduces to

de =

{ ‖v‖
v1

∆x1 if v2 ≤ v1

‖v‖
v2

∆x2 if v1 ≤ v2

(A.3)

where ∆x1 and ∆x2 are the element lengths in the x1 and x2 directions, respectively,

and v = {v1 v2}T .

In the design problem, we rewrite equation A.2 to emphasize the dependence of

de on the pressure field P and the design φ as

de(P(φ), φ) =





2
‖v(P(φ),φ)‖
‖v0(P(φ),φ)‖

√
1+

(
v02(P(φ),φ)

v01(P(φ),φ)

)2

if v02(P(φ),φ)≤v01(P(φ),φ)

2
‖v(P(φ),φ)‖
‖v0(P(φ),φ)‖

√
1+

(
v01(P(φ),φ)

v02(P(φ),φ)

)2

if v01(P(φ),φ)≤v02(P(φ),φ)

(A.4)

Similarly, we note the dependence of v0 on P and φ as

v0(P(φ),φ) = J−1(φ)v(P(φ),φ) (A.5)
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Figure A.1: Element characteristic length
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We use the domain parameterization method of shape sensitivity analysis [50] to

isolate the explicit dependence of v on the design φ from the implicit dependence of v

on φ through the solution P. Note that in equations A.1 and A.5 we have projected v

from
e
D to

e
D κ to facilitate the analysis given above and sensitivity analysis presented

below.

The derivative ∂de

∂T
is required for the evaluation of ∂RT

∂T
(cf. equation 4.29) and is

defined such that ∂de

∂T
[4T ] ≈ ∂de

∂T
4T as

∂de

∂T
= de


 1

‖v‖
∂‖v‖
∂T

− 1

‖v0‖
∂‖v0‖
∂T

+

(
v02

v01

) 1
v01

∂v02

∂T
− v02

v2
01

∂v01

∂T

1 +
(

v02

v01

)2


 (A.6)

Note that the above derivation for ∂de

∂T
is valid when v02 ≤ v01. The derivation for

v01 ≤ v02 is similar and is not presented here for conciseness. The derivative ∂‖v‖
∂T

and

∂‖v0‖
∂T

are computed from

∂‖v‖
∂T

=
b

‖v‖
∂ b

∂T
‖∇P‖2 (A.7)

and

∂‖v0‖
∂T

=
‖v0‖

b

∂ b

∂T
(A.8)

where

b = −
∫ h

z

z

η
dz (A.9)

The ∂de

∂T
derivation contains the derivatives ∂v

∂T
and ∂v0

∂T
. The former derivative is

defined such that ∂v
∂T

[4T ] ≈ ∂v
∂T
4T which is obtained by differentiating equation 2.9

with respect to T and from equation A.1

∂ v0

∂T
= J−1 ∂ v

∂T
(A.10)
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Similarly, the derivative ∂de

∂P
is required for the evaluation of ∂RT

∂P
(cf. equation

4.71) and is defined such that ∂de

∂P
[4P ] ≈ ∂de

∂P
4P as

∂de

∂P
= de


 1

‖v‖
∂‖v‖
∂P

− 1

‖v0‖
∂‖v0‖
∂P

+

(
v02

v01

) 1
v01

∂v02

∂P
− v02

v2
01

∂v01

∂P

1 +
(

v02

v01

)2


 (A.11)

Note that the above derivation for ∂de

∂P
is valid when v02 ≤ v01. The derivation for

v01 ≤ v02 is similar and is not presented here for conciseness. The derivative ∂‖v‖
∂P

and

∂‖v0‖
∂P

are computed from

∂‖v‖
∂P

=
1

‖v‖
(

b
∂b

∂P
‖∇P‖2 + b2 ∇P ·∇4P

)
(A.12)

and

∂‖v0‖
∂P

=
1

b

∂b

∂P
‖v0‖+

b

‖v0‖ v0 J−1 ∇4P (A.13)

The ∂de

∂P
derivation contains the derivatives ∂v

∂P
and ∂v0

∂P
(cf. equation A.4). The

former derivative is defined such that ∂v
∂P

[4P ] ≈ ∂v
∂P
4P which is obtained by differ-

entiating equation 2.9 with respect to P and from equation A.1

∂ v0

∂P
= J−1 ∂ v

∂P
(A.14)

Finally, to obtain ∂de

∂φi
and thus ∂RT

∂φi
(cf. equation 4.75), we differentiate equation

A.4 with respect to φi as

∂de

∂φi

= de


 1

‖v‖
∂‖v‖
∂φi

− 1

‖v0‖
∂‖v0‖
∂φi

+

(
v02

v01

) 1
v01

∂v02

∂φi
− v02

v2
01

∂v01

∂φi

1 +
(

v02

v01

)2


 (A.15)

The above expression of ∂de

∂φi
applies to v02 ≤ v01. The derivation for v01 ≤ v02 can

be obtained in a similar way. The resulting derivative of ∂de

∂φi
requires the evaluation
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of ∂v
∂φi

and ∂v0

∂φi
. To evaluate ∂v

∂φi
we differentiate v with respect to the design variable

φi and to compute ∂v0

∂φi
we differentiate equation A.5 with respect to φi, i.e.,

∂v0

∂φi

=
∂ J−1

∂φi

v + J−1 ∂ v

∂φi

(A.16)

where we note that v0 depends on the element shape through J and on the velocity

v, which is an explicit function of design.
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[32] Mihelič, A. and Štok, B. Tool Design Optimization in Extrusion Processes.
Computers and Structures, 68:283–293, 1998.

[33] Legat, V. and J.M. Marchal. Die Design: An Implicit Formulation for the Inverse
Problem. International Journal for Numerical Methods in Fluids, 16:29–42, 1993.

[34] Zhao, G., E. Wright, and R.V. Grandhi. Sensitivity Analysis Based Preform Die
Shape Design for Net-Shape Forging. International Journal of Machine Tools
and Manufacture, 37(9):1251–1271, 1997.
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