CRITICAL STUDY OF PARALLEL PROGRAMMING FRAMEWORKS FOR DISTRIBUTED APPLICATIONS

Ruidong Gu
Dr. Michela Becchi, Thesis Supervisor

ABSTRACT

Parallel programming frameworks such as the Message Passing Interface (MPI), Partitioned Global Address Space (PGAS) languages, Charm++, Legion and High Performance Parallel X (HPX) have been used in several scientific domains – such as bioinformatics, physics, chemistry, and others – to implement distributed applications.

This thesis presents a critical study of established and new parallel programming frameworks, including MPI, PGAS-based languages (OpenSHMEM, Chapel, X10, UPC), Charm++, Legion, HPX, and Inter-node Virtual Memory (IVM) – a programming system designed and developed at University of Missouri. I first investigate the main features of these programming systems. I then analyze how these features affect programmability and performance on heterogeneous clusters and for benchmark applications exhibiting different computation and communication patterns. Finally, I develop a benchmark suite where each application is encoded using several programming systems (MPI, Charm++, IVM and OpenSHMEM). The goal of this study is two-fold: first, I want to provide programmers with guidance on the selection of the programming framework which is best suited for their application and cluster setup; second, I aim to provide guidelines for further development of existing and new parallel programming frameworks for distributed systems.