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CHAPTER 1 

 INTRODUCTION 

 

1.1  Background, Motivation and Purpose 

 Current manufacturing enterprises are faced with more competition than 

ever.  To survive and flourish in the global market manufacturers are constantly 

looking for ways to increase production rate and lower cost.  Machine tools are 

used in many modern manufacturing processes.  Design and selection of 

machine tools has a great impact on the productivity and cost of many 

manufacturing processes.  During the past several decades a significant amount 

of research has been conducted in the area of machine tool design, with the goal 

to develop more efficient and lower cost tools for manufacturing.   

 Over the years machine tools designed for manufacturing have developed 

into two classes.  The first is general purpose machine tools designed for a large 

range of operations.  Examples of these are standard milling machines or lathes.  

The design and operation of these standard machines is a very mature subject 

and little research is left to be done.  The other class of machine tools are those 

designed for a very specific part of a process.  These machine tools are 

sometimes referred to as dedicated machine tools.  These types of machine tools 

are usually used in high speed or high volume production. The machining of 

automotive engine blocks is an example.  Many interesting areas of these 

specific machine tools can be investigated and improved.  This approach is 
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generally very effective; however, it is not without disadvantages.  If the product 

design is changed even slightly, the machine tool may have to be scrapped and 

a new machine tool designed and built.  Another problem is that the lead-time to 

design and build such a machine can be very long.  An approach to overcome 

these problems is to produce a re-configurable or modular machine tool (MMT).  

Using this approach custom machine tools could be designed and built quickly 

from existing modular components (Figure 1). 

 

Figure 1.  Typical MMT structure (ASME B5.43M) 

 

There already exist standards for MMT components (ASME B.43M)[1].  Typically, 

these MMT components are made of large steel castings or fabrications.  Stress, 

strain, deflection, and rigidity are not an issue with these components so very 

little design effort is put into MMT components.  A better approach would be to 
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fabricate these components from stock pieces of standard steel shapes such as 

standard steel C or L cross sections.  Many standard MMT components could be 

quickly assembled from a library of stock components.  Due to the rapidly 

increasing cost of steel in recent years it would cost much less than cast 

components.  Also, a significant reduction in cost could be realized by combining 

modern optimization and analysis techniques.  An automated method of selecting 

elements and designing MMT could be developed.  The idea of using an 

inventory of standard steel cross-section components coupled with optimization 

and analysis leads to a very interesting discrete structural optimization (DSO) 

problem. 

 With the fast advances of computer technology, much progress has been 

made in DSO research.  However, the roots of DSO come from the early non-

linear integer programming research initiatives of the US military, specifically, the 

work of the Rand Corporation in the 1950’s and 60’s[2].  The conclusion of most 

of this early work on integer and discrete optimization was that the problems 

required exponential-time solutions or 2n operations to solve [3].  This led to the 

idea that only small scale problems could be solved.  With the rapid increase in 

computer speed many new approaches to DSO have been proposed.  Some of 

these areas of research include partial enumeration, genetic algorithms (GA) and 

simulated annealing (SA) [4, 5, 6, 7, 8, 9, and 10].  Many of these areas of DSO 

are still very immature and should be areas of current research [11].  Many of 

these techniques have less than exponential-time solutions.   



 4 

 Even if the difficulties of discrete optimization are overcome, many other 

areas of DSO, as applied to MMT, need further investigation.  Most of the current 

research effort has been directed to truss structures or structures with pinned 

joints.  The stress, strain or displacement constraints in these types of models 

can easily be solved using analytical methods.  This is fine for most civil 

engineering problems, i.e., bridges or buildings; however, for MMT this needs to 

be extended to frame and 3D solid components.  When the model is extended to 

frame or 3D solid components, it is the current accepted practice to use finite 

element analysis or methods (FEA or FEM).  The use of FEA with DSO has one 

major disadvantage in that they are often computationally costly.  Because of the 

large number of FEA calls in DSO, one of the most important potential areas of 

research is finding faster FEA algorithms or alternatives to FEA [11]. 

 

1.2 Literature Review 

 A review of the literature pertaining to discrete structural optimization as 

related to this study can be divided into five sections; discrete optimization in 

general, heuristic discrete optimization methods in mechanical structures, particle 

swarm optimization, surrogate modeling, and structural optimization. 

 

1.2.1 Discrete Optimization 

 Discrete optimization has been an important area of research over the last 

few decades.  A wide variety of algorithms have been developed and applied to 
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many areas of mathematics and engineering [12].  Even with extensive research 

an efficient and general method of discrete optimization seems difficult to obtain.  

 In the 1950’s and early 1960’s many methods were tested on discrete 

optimization problems.  It was generally accepted that most methods except full 

enumeration failed to produce a global optimum.  But, full enumeration was 

impractical to solve anything but trial problems [13].  Land and Doig used non-

linear programming relaxation to determine bounds of a discrete problem.  This 

first general method for integer programming problems was found to be too 

difficult to efficiently implement on computers [14].  Dakin then modified this 

method to be efficiently implemented on computers [15].  Algorithms of this type, 

those that obtain bounds from relaxation methods and then use the bounds to 

prune, are generally referred to as branch and bound algorithms.  Little et al. was 

the first to use the branch and bound term when appling this type of algorithm to 

the traveling salesman problem [16].  Edmonds developed a general purpose 

branch and bound algorithm for discrete optimization and he proved it would 

solve discrete problems in polynomial time [17].  Most of this early research was 

focused on linear well behaved convex problems.  Linear programming was the 

most accepted relaxation method.  However, some later work showed that the 

branch and bound method could be extended to non-linear systems by using 

non-linear relaxation methods [18].  Over the years other methods of discrete 

optimization have been developed.  Many of these methods rely on random or 

heuristic searches.  Roth developed a method of combining random and partial 
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searches [19].  Initial random starting points are generated, then partial searches 

were used to find the local optimum.  The process is then repeated in an attempt 

to find a global optimum.   This method was tested successfully on large 

problems with modest computational cost.  A method that used common features 

or details of many discrete optimization problems as a library of optimization 

methods was developed by Goldstein and Lesk [20].  This method was adapted 

to many problems, however, it was not as good as some heuristic methods.  In a 

general review of numerical optimization methods More et.al. found the bulk of 

the research prior to 1979 had been based on relaxation methods of linear 

programming [21].  They also concluded there was room for further research in 

discrete optimization, especially using heuristic methods.  Most of the previous 

research on discrete optimization was based on branch and bound or random 

search methods and had been oriented toward special problems and very few 

general purpose methods existed [22].  In a recent survey of discrete 

optimization Shcherbina concluded that there is doubt that general discrete 

optimization problems could be solved efficiently and that the branch and bound 

method may be the most practical [23]. 

 

1.2.2 Heuristic Discrete Optimization Methods in Mechanical Sturctures 

 Over the years many methods have been developed to solve discrete 

optimization problems in mechanical structures.  One of the most popular 

approaches in recent years has been the use of heuristic methods.  These 
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methods include not only genetic algorithms (GA) and simulated annealing (SA) 

but a few lesser known approaches. 

 The comparison of GA and SA to full enumeration and branch and bound 

has been studied by several researchers.  Balling used a SA method to optimize 

steel frames using a set of standard discrete shapes [24].  This research used 

realistic three dimensional test problems and the results were compared to a 

modified linear branch and bound method.  The results using the SA method 

were shown to be similar to the branch and bound method.  Kocer and Arora 

compared full enumeration, SA, and GA on standard discrete prefabricated steel 

sections [25].  The cross-section shape and steel grades were considered as 

discrete variables.  In this research the GA method found the optimal solution in 

all cases and was the most efficient in terms of CPU time.  Huang and Arora 

compared GA, SA, and full enumeration and concluded, by the use of examples, 

that GA and SA could be used to find the global optima [25]. 

 Although the GA and SA methods have received much of attention in 

recent years with respect to discrete optimization they have a few areas with 

unanswered questions.  For instance, will they always produce global optima and 

can they be implemented and tuned to solve discrete structural optimization 

problems?  Using a practical structural system and a GA based method Rajeev 

and Krishnamoorthy efficiently solved a discrete variable problem with 

constraints [26].  They showed that even though the GA is not well suited for 

constrained problems a penalty-based transformation can be implemented.  They 
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also showed the GA method is suitable for a parallel computing environment.  

Near optimal solutions in reasonable computing times were obtained on large 

design space layout and sizing problems of steel roof trusses using a GA by 

Koumousis et al. [27].  They also reported that no clear rules exist for tuning of 

the GA parameters and the estimate of the parameters is delicate.  Using the 

uniform building code as constraints Camp et al. developed a GA based method 

for optimizing two-dimensional steel frame structures [28].  The method was 

tested on 30 designs.  The method always produced structures satisfying the 

code standards while minimizing the weight but the solution was not guaranteed 

to be global.   Lu and Kota successfully applied a GA method to a mixed discrete 

topology and continuous sizing problem [29].   A new heuristic method based 

loosely on the harmonics of music is the harmony search (HS) method.  This 

method is simple and mathematically less complex than the GA.  Its convergence 

capability was shown to be better than GA on discrete sizing variable problems 

[30].  A common conclusion in the literature with respect to GA and SA is that 

they both require considerable user insight and adjustment to the parameters to 

get reasonable results [10]. 

 

1.2.3  Particle Swarm Optimization 

Particle swarm optimization (PSO) is a new huristic based method that 

has generated much recent inerest.  It is based on the self organizing behavior of 

a group with no leaders such as a flock of birds or a school of fish [31 and 32].  



 9 

These groups of individuals have no knowledge of the behavior of the entire 

group (global behavior).  They only have knowledge about their local 

environment, but they can converge and move as a group based on local 

individual information.  They are capable of complex behavior such as flocking, 

homing, exploration, and herding [33, 34, and 35].  Bird flocking [35] and fish 

schooling [36] behavior are two of the most studied areas.  When applying these 

methods to real world optimization problems an effective particle initialization 

scheme must be used.  Several methods of initiation are presented in the 

literature [37, 38, 39, 40, and 41].  These methods are used mainly to ensure that 

the search space is uniformly covered.  PSO and evolutionary algorithms (EA) 

such as GA and SA have many similarities, however, some literature suggests 

they should be treated separately [32].  Both methods use a stochastic search 

process.  PSO does not use the concept of survival of the fittest.  Unfit individuals 

in the PSO do not die.  Also, unlike GA and SA, PSO is not easy to implement for 

discrete optimization problems.   

 The concept of PSO was first introduced by Kennedy and Eberhart [42].  

Using a PSO based on swarms or flocks, they optimized non-linear functions.  

Kennedy and Eberhart also compared PSO to GA for non-linear function 

optimization, neural network learning, and robot task learning [43].  They showed 

that PSO is a very simple concept and it can be implemented with just a few lines 

of code.  Their implementation only used primitive math operations and was also 

computationally inexpensive.  Song and Gu studied the ability of PSO to find 
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global solutions [44].  Even though PSO is effective, they found there is no 

mathematical theory to support that it is a global optimizer.  Langdon and Poli 

compared and contrasted PSO with a non-standard Newton-raphson based 

gradient method [45].  They found that a theoretical analysis of PSO is very 

difficult and that we do not have a good mathematical understanding of why PSO 

performs better or worse on a problem of a given type.  Several researchers 

found PSO to perform better in early iterations but that it is not competitive with 

other methods when the number of iterations is increased [44, 45, and 47]. 

 In recent years the concept of PSO has been applied to various 

engineering problems.  Specifically, it has been applied to structural design 

optimization problems.  Ant colony optimization (ACO), a type of PSO, was 

tested on steel frame optimization problems with discrete variables by Camp et al. 

[48].  In this research they compared ACO to GA and they found it more effective 

and less affected by poor initial solutions.  Perez and Behdinan tested PSO on 

several well-known structural test problems [49].  The PSO method found better 

results on these test problems than any of the other optimization algorithms used 

in previous research.   

 

1.2.4  Surrogate Modeling 
 
 Structural optimization, especially discrete structural optimization of 

practical problems, requires low computational cost and accuracy for all of the 

processes.  By far the most computationally costly process is the FEA.  The FEA 
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for large-scale three-dimensional problems and eigenfrequency problems 

becomes difficult to optimize practically. 

 The current literature suggests approximation methods for such large 

scale optimization models.  Several different methods are reported in this 

literature.  These include Response Surface Modeling (RSM), Radial Bias, 

Neural Network (NN), and Kriging [50-54, and 80]. 

 The kriging model is one of the most popular methods.  This method was 

originally developed for the mining industry to help model the location of minerals 

and gems.  Sakata et al. reported good results using kriging methods on large-

scale eigenfrequency problems [51].  The results were comparable with those 

from a NN method.  One of the most attractive aspects of kriging is that it has the 

ability to estimate outputs in areas of the design space that have not been tested 

with the FEA [52].  In other words, it is effective at extrapolation as well as 

interpolation.  The one draw back to kriging is that fitting the data and developing 

the model is complex and costly, because it requires an optimization routine. [50 

and 52].   

 Low order polynomial approximations, also known as RSM, are often used 

because they are easy to implement and software is readily available [50].  RMS 

is often used when experimental data sets are available or when a combination 

of experimental and numerical data sets is employed [53].  In [50] it was 

concluded that radial bias and kriging methods performed better and were more 

accurate on large problems compared to some of the other methods.   
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 In this research radial bias and NN were considered to be similar. This is 

because they are both modeled after biological systems and because they are in 

the same Matlab toolbox and use the same Matlab functions.  Most of the 

literature found NN to have some of the best performance and most accurate 

results [50].  The NN method was even used as a benchmark for other methods 

[51].  The only drawbacks are the computational cost to train the network [50, 51, 

54, and 55] and the necessity of a skilled operator to setup the network [55].  

These drawbacks are easily overcome by using the latest Matlab NN toolbox.  

The toolbox makes it easy to setup and train complex NN’s and the speed and 

accuracy greatly outweigh the cost of training the network.  

 

1.2.5  Structural Optimization 

 Over the years three broad approaches to structural topology optimization 

have evolved based on grounded structures [11].  One is based on material 

homogenization [56] and one on material density [57].  The homogenization and 

material density approaches have been the subject of research in recent years 

and have few areas left to investigate when applied to DSO [56, 58, and 59].  

These two techniques rely on the design space containing a fine mesh of 

elements.  Voids are created or elements removed through the optimization 

process.  A discrete structure will emerge from the optimization process.  

However, it may be difficult to create a structure of standard set of structural 

members using this process.  Also, the structure created may not be optimal [11].  
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These two methods are very well suited to cast, molded, or formed parts that 

may take on any size or shape. 

These methods generally use structural compliance as a constraint.  

Cheng and Jiang showed compliance is generally continuous over the feasible 

design domain in truss or frame topology problems and it should be considered 

as a global constraint.  They also showed that stress and buckling constraints are 

discontinuous and are local (element) constraints for the same problems [82].  

Using the idea of global and local constraints Cheng showed that stress or 

buckling constraint truss or frame topology problems are discrete and the 

solutions are generally different than compliance constraint problems [83]. 

 The third approach to structural optimization is the grounded structure 

method.  In this method a structure is made that includes all possible structural 

components (Figure 2).  It should be noted that for some discrete optimization 

problems Figure 2 would not be considered fully grounded.  This is because all 

possible nodes are not connected with members.  In this example only 

connecting members of two discrete lengths are considered.  Using these two 

lengths all possible combinations are shown in the figure.  In this entire study a 

library of standard length members were considered. 

The literature on discrete structural optimization generally refers to this as 

an incomplete grounded structure as opposed to a complete grounded structure 

where every possible node is connected [82 and 83]. 
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Figure 2.  Typical grounded structure 

 

Members are removed or added through the optimization process [9 and 11].  

One problem is as the size of the structure increases the number of possible 

combinations increases exponentially.  Many discrete optimization approaches 

have been proposed to solve these types of problems such as branch and bound, 

penalty function, Lagrange relaxation, sequential linearization, integer 

programming, SA, and GA [10] and [56].  Many of these techniques require the 

objective function to be monotonic.  The design variables need to be continuous.  

When using standard steel cross sections that is rarely the case.  For example, 

Table 1 and Figure 3 show standard S and C steel shapes: 

Table 1.  Standard steel cross sections 
 

Area (sq. 

in.) 
Moment of Inertia Shape 

1.67 2.52 S3x5.7 

2.21 2.93 S3x7.5 

1.47 1.85 C3x5 

1.76 2.07 C3x6 

1.59 3.85 C4x5.4 
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Figure 3.  Standard steel S and C profiles 

There is no consistent relationship between cross sectional area and moment of 

inertia, as one increases the other may decrease or increase.  Some of the 

techniques applicable to discrete design variables, such as GA and SA, may 

produce a feasible solution, but the search on the discrete subspace mixed with 

continuous design variable (e.g., the length of each structural member) will make 

the search for a global solution slow and tedious. 

   

1.3  Objective 

 In this research DSO methodologies were applied to MMT systems.  

Sizing and topology discrete numerical optimization is combined with FEA and 

high-speed FEA approximations to extend the size and type of MMT design 

problems that can be solved.   

For this study optimal topology of a discrete structure, such as a truss or 

frame, is the optimal connection of elements between a set of given fixed nodes, 

including loading and support nodes.  Also, in this study optimal structural sizing 



 16 

is the optimization of the cross-sectional area and shape of the individual 

connection members.  The structure’s material, mode position, loads, and load 

positions were assumed to be given. 

The specific objectives of this research were: 

1.  Develop an effective method of high-speed FEA approximation 

2.  Develop a discrete algorithm that will simultaneously optimize size, shape, 

and topology of MMT components 

3.  Compare the results, in terms of computing speed and accuracy, with current 

design optimization methods 
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CHAPTER 2  

THEORETICAL BACKGROUND 

 

2.1  Finite Element Analysis 

FEA is currently one of the most accepted methods for finding the 

displacement, stress, strain, or natural frequency of complex structures.  There 

are many commercially available FEA software packages.  However, there are 

several advantages to developing a simple FEA routine.  First, most commercial 

packages are general purpose and have unnecessary overhead.  This includes 

graphical interfaces and many types of general elements.  This overhead has an 

effect on the computational speed, especially when applied to optimization 

problems that require repeated FEA calls.  The second advantage is the cost.   

Many commercial FEA packages are expensive.   Not only is the initial cost high 

but the developed code cannot be distributed.  For example, the code could be 

included in a group of online tools for educational or industrial users [60, 61 and 

62].  Finally, other properties that could be useful in the optimization process can 

be calculated inside the FEA routine such as gradient, Jacobian, or Hessian [57, 

63 and 81]. 

In this research all of the MMT components are assumed to have rigid 

connections, such as welded or tightly bolted joints.  Therefore, only beam type 

elements are needed in the FEA.  The generalized beam is shown in Figure 4.   
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Figure 4.  General Beam 

The following uses an energy approach to set up the beam FEA element.  The 

extended Hamilton’s principle is: 
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Where t is the time, L is the beam length,  is the mass desity, w is the transvers 

displacement, and A is the cross sectional area. 
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The elastic energy: 
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Where E is Young’s Modulus and I is the area moment of inertia. 

The non-conservative work:                                     
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Where f is the transversely distributed external force. 

Substituting equations 2, 3, and 4 into the Hamilton’s extended equation (1) and 

integrating by parts gives the result: 
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Setting the coefficient of w  to zero yields the equation of motion: 

fEIwwA iv                                                                                           )6(  

 

The boundary conditions have to specify: w  or wEI  ; w  or wEI   at 0x  or L . 

 Figure 5(a) shows the free-body diagram of a cantilevered beam modeled 

using three two-node beam elements, where iw  and i  are the nodal 
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displacements and slopes of each node, il  is the elemental length of the ith  

element, and )1(

1Q  and )1(

2Q  are the reaction force and moment acting on the first 

node. As shown in Figure 5(b), each element has four unknown nodal 

displacements.  The displacement ),( txw  within each element can be assumed 

to be: 

3

3

2

210),( xCxCxCCtx                                                                      )7(  

where x  is a local coordinate with ilx 0  for the ith  element. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 5. (a) The free-body diagram; (b) the first element. 
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For the first element: 

01),0( Cwtw   

11),0( Ctwx                                                                                        )8(   
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Solving for iC  in terms of iw  and i , and then substituting the results into 

equation (7) yields: 
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Equation (9) can be rewritten as: 

24231211 )()()()(),(  xNwxNxNwxNtxw       

           }{}{}{}{ )1()1( wNNw TT   ,   T
www 2211

)1(                     )10(  

Where )4,3,2,1( iN i  are known as the shape functions (Hermite cubic or spline 

interpolation functions) given by: 
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It follows from equations (10) and (2) that: 
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Where the elemental mass matrix is: 
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If   and A  are constants then: 
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The global (structural) mass matrix ][M  can be obtained by assembling the 

elemental mass matrices using the continuity of displacement and slope at each 

node as: 
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Similarly, it follows from equations (10) and (3) that: 
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Where the elemental stiffness matrix     dxNEINk
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The global stiffness matrix ][K  is obtained by assembling the elemental stiffness 

matrices as: 
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The variation of non-conservative work, ncW , due to a distributed external force 

f  is given by: 

dtwdxfwdxfwdxfdtwdxfdtW
t

t

lllt

t

Lt

t
nc    



 

2

1

3212

1

2

1 0000
  

                  dtFwFwFw
t

t

TTT

 
2

1

)3()3()2()2()1()1(                            )19(  

where the elemental force vector due to the distributed load is   
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Then the global force vector due to the distributed load of this three-element 

beam model is given by: 
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The equation of motion for this finite element model is given 

}{}{}]{[}]{[}]{[ QFwKwCwM                                                             )22(  

where  Q  represents the global force vector due to concentrated loads on the 

beam. For this three-element beam model: 

   TQQQ 000000)1(

2

)1(

1                                                        )23(  

and [C] is the damping matrix. 

Assuming the system has no loads, external forces or damping the equation (22) 

can be reduced to: 

0}]{[}]{[  wKwM                                                                                     )24(  

Assuming the displacement vector can be represented in the form: 

tew }{}{                  )25(  

Then 

tew  }{}{ 2                 )26(  

where {} is the modal shape and  is one of the natural frequencies.  

Substituting (25) and (26) into equation (24) leads to: 

}0{}]){[]([ 2  MK               )27(  

or in the generalized eigen-problem form: 

}]{[}]{[  MK                )28(  

where the eigenvalues  are the square of the resonate frequencies of the 

structure and the eigenvetors {} are the modal displacements.  Directly 
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following the references [57] and [65] the complete system of force displacement 

equiations can be written, in matrix form, as: 

0}{}{}]{[  QFwK              )29(  

 This example was limited to 2 degrees of freedom per node to save space.  

It is very easy to extend this example to more degrees of freedom.  The FEA 

developed for this research used 2 node beam elements with 6 degrees of 

freedom per node.  Also, the developed FEA code included the coordinate 

transformations so that three dimensional structures could be analyzed.  For a 

complete treatment of the coordinate transformation see references [57, 65, 66, 

and 67]. 

 

2.2  High-Speed FEA Approximation 

 Currently, the most common practice for finding the deflection, stress, 

and/or natural frequency of a complex structure is to use FEA.  When applied to 

DSO problems some major problems arise.  As a structure’s complexity 

increases, the size of the global matrices in the FEA increases.  As the numbers 

of discrete members are added to the structure, the matrices become less sparse.  

Also, since the design variable space is now discontinuous, derivative based 

search algorithms have to search each and every discrete subspace.  The large 

non-sparse matrices increase the computation effort of the problem.  One 

solution is to approximate the FEA with some faster algorithm.  The FEA has 

multiple inputs such as node locations, material, and geometric properties of the 
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elements.  The outputs are the nodal displacements and/or modal frequencies 

(Eigenvalues).  The relationship between the input and output is non-linear.  

Currently, one of the most researched and effective methods of approximating a 

non-linear system of multiple inputs and outputs, such as the structural analysis 

problems with load as input and displacement or stress as output, is through the 

use of an artificial neural network (ANN or NN) [68 and 69].  It is an obvious idea 

to apply NN to FEA, however, very little research has been done [11 and 70].  

The previous works suggested very different NN architectures.  One suggested a 

radial bias network [11], while the other had better results with a multi-layer feed 

forward architecture [70].  This work [68 and 70] has shown a major decrease in 

computational effort. 

 

2.3  Basic NN Structure 

The NN is simply a very large network of simple elements that are 

modeled roughly after a living creature’s nervous system.  One of the most 

attractive aspects of a NN is the fact that the elements are arranged in a parallel 

fashion.  This leads to a parallel implementation in computer systems that in turn 

lead to very fast computations.  As in biological systems, the simplest elements 

are called neurons. 
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Figure 6.  A typical neuron 
 

Figure 6 shows a typical neuron where the sum of the weighted input and bias 

are transferred through the function f.  The weight and bias become the design 

variables that are adjusted so that the neuron can be trained.   

 Many transfer functions are available with the Matlab NN toolbox [69].  

Three of the most commonly used functions are the sigmoid, hyperbolic tangent, 

and linear functions.  The following is a brief description of these functions. 

Sigmoid function (LOGSIG): 
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Hyperbolic tangent function (TANSIG): 
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Linear function (PURELIN): 
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Figure 7.  Transfer functions 
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 Figure 7 shows the transfer functions.  The TANSIG and LOGSIG are the 

so called “squashing” functions because they force the outputs to 0 to 1 or -1 to 1 

respectively. 

 

 

 

Figure 8.  A typical 2 layer feed forward neural network 
 

Figure 8 shows a typical network of neurons.  Note how the structure is 

inherently parallel in nature.  Even though the neurons and structure are very 

simple, if the numbers of neurons in the internal layers are large enough, the 

network can be trained to represent complex non-linear systems.  These large 

NN’s are good at approximating practically any non-linear function [69].  The 

number of inputs and outputs a NN can have is only limited by the computer 
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memory available. Therefore, a standard feed-forward NN of sufficient size 

should be able to approximate most FEA models.  

 Normally the NN is trained to approximate a function so that a set of inputs 

leads to a set of target outputs.  In the case of approximating an FEA structural 

model, the inputs would be the material and geometric properties (shape), node 

locations, number and location of discreet components (topology), applied loads, 

and boundary conditions.  The outputs would be nodal displacements and/or 

natural frequencies. 

 

 

Figure 9.  Neural network training flowchart 
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The training of a NN, as shown in Figure 9, is simply a large optimization problem 

that uses the weight and bias as the design variables.  Most practical NN 

problems require many sets of inputs and targets to train.  The literature 

suggests an alternative to a feed-forward network [11 and 70].  A radial bias 

network is the type that is very effective at non-linear approximations.  They 

generally require more neurons than a feed-forward network but train in much 

less time [14].   

 

 

Figure 10.  Typical radial bias neuron 
 

The typical radial bias neuron is shown in Figure 10.  The distance between the 

weight and input is multiplied by the bias and then sent to the radial bias function.  

In practice the system will have multiple inputs so the distance between the 

inputs and weights is their vector dot product.  To train the radial bias network the 

training routine will create as many neurons as there are inputs.  The weights 
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and bias are then optimized.  If the error goal is not met, more neurons are 

added.  Generally the number of neurons is much larger that the equivalent feed 

forward network.   

 

2.4  NN Test  

 The effectiveness of the use of NN’s as a FEA approximator was tested 

using a simple cantilever beam.  A prismatic beam 36” long with a height of 1” 

and a width of 0.5” was selected.  The beam was fixed on one end and a set of 

forces were applied to the other (Figure 11).   

 
Figure 11.  Test cantilever beam 

 
 

The set of forces were randomly selected in the range of 10lbs. to 250lbs.  The 

beam was discretized in to 10 equal elements with two nodes apiece for a total of 

11 nodes.  The displacements at each node were calculated using the elastic 

equation:   

PxEIy ''            )33(  
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1"x0.5"x36" Simple Cantilever Beam with 90lbs load

Node Number 1 2 3 4 5 6 7 8 9 10 CPU Time

Exact -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1577 -0.1971 -0.2381 -0.2799 0.0001

NN -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1578 -0.1971 -0.2381 -0.2799 0.0042

FEA -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1577 -0.1971 -0.2381 -0.2799 0.0470

Integrating equation (27) twice and appling the boundary conditions: 

)23(
6

323 LxLx
EI

P
y           )34(  

The displacements were also obtained using the FEA routine developed in the 

previous section.  The applied loads (inputs) and FEA results (outputs) were 

used to train a standard feed-forward NN.  The NN was  then tested with an input 

of 90lbs.  Table 2 and Figure 11 show the results compared to the anaylitical and 

FEA solutions.  It also shows the average CPU times.  

 

 Table 2.  Simple cantilever beam example displacements and CPU times 
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Figure  12.  Simple beam nodal deflection. 
 

The test was then repeated.  This time the beam was changed to 1.75” 

high by 0.25” wide.  The previously “learned” weights and biases were used as a 

starting point.  The results are shown in Figure 13 and Table 3.  Again, the FEA, 

NN, and the analytical solutions are the same.  However, there is a large 

reduction in CPU time for the NN compared to the FEA.  This reduction in CPU 

time would justify the use of the NN but not on a simple FEA problem like this.  

The NN training outweights any gains.  However, retraining the already learned 

network to a new but similar problem is very fast.  Figure 14 shows the training 
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progress from the first problem and Figure 15 shows the retraining of the second.  

The number of cycles for optimizing the weights and biases was reduced by a 

factor of over 300.  The reduction in CPU time and the fast training of similar 

problems makes this NN approach suited for DSO of the MMT components. 

 

Table 3.  Modified simple cantilever beam example displacements and CPU 
times

1.75"x0.25"x36" Simple Cantilever Beam with 90lbs load

Node Number 1 2 3 4 5 6 7 8 9 10 CPU Time

Exact -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0888 -0.1045 0.0001

NN -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0889 -0.1045 0.0042

FEA -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0888 -0.1045 0.0470

 
 
 

 

Figure 13.  Modified simple beam nodal deflection. 
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Figure 14.  NN training with no previous weights and biases. 
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Figure 15.  Training using previous weights and biases. 

 

To test the effectiveness of a feed forward NN an FEA model of the side of 

a typical MMT base, shown in Figure 16, was created.  The model was selected 

as 12” high by 36” long and  nonsymmetrical coupled loads of -100lbs and 700lbs 

were applied.  A training input set of 250 was created by randomly selecting the L 

shaped cross sections (angle beam), in the range of 0.5 in2 to 2.0 in2, of the six 

members.  The target set of nodal deflections was then created by running FEA 

on the 250 inputs.  A feed forward NN was created and trained using the set of 
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random cross sections as inputs and the FEA nodal displacements as targets.  

To validate the effectiveness of the NN, a set of four cross sections properties 

were randomly selected from the available standard steel shapes.  This set was 

used to test the NN ability to approximate the FEA and to compare the CPU time 

required for the calculations.  These results are shown in Tables 4.  Table 5 

shows the standard steel element cross sections used for validating the NN. 

 

Figure 16.  Side view of a typical MMT base component 
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Table 4.  Nodal displacement and CPU time 

 
 

Table 5.  Standard steel shapes  
 

 

Test Number 1

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0027 -0.0040 -0.0345 -0.0538 -0.0001 -0.0001 0.0075

FEA Displacements 0.0000 -0.0031 -0.0050 -0.0376 -0.0570 -0.0014 0.0000 0.0700

Difference 0.0000 0.0005 0.0010 0.0031 0.0032 0.0013 0.0001 0.0625

Test Number 2

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0010 -0.0024 -0.0035 -0.0034 -0.0013 0.0000 0.0050

FEA Displacements 0.0000 -0.0014 -0.0028 -0.0040 -0.0039 -0.0016 0.0000 0.0603

Difference 0.0000 0.0003 0.0005 0.0005 0.0004 0.0003 0.0000 0.0553

Test Number 3

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0012 -0.0031 -0.0059 -0.0065 -0.0015 0.0000 0.0050

FEA Displacements 0.0000 -0.0014 -0.0034 -0.0063 -0.0068 -0.0017 0.0001 0.0625

Difference 0.0000 0.0002 0.0003 0.0004 0.0004 0.0002 0.0000 0.0575

Test Number 4

node 1 2 3 4 5 6 7 CPU time

NN Displacements -0.0001 -0.0059 -0.0096 -0.0117 -0.0109 -0.0042 0.0000 0.0050

FEA Displacements -0.0002 -0.0059 -0.0095 -0.0118 -0.0110 -0.0040 0.0002 0.0600

Difference 0.0001 0.0000 0.0001 0.0001 0.0001 0.0002 0.0001 0.0550

Test Number Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

1 L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L1x1x1/4 L2x2x1/2 L2x2x1/2

2 L2x2x1/2 L2x2x1/2 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4

3 L1x1x1/4 L2x2x1/2 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4

4 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4
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Figure 17.  Training time with no previous weights and biases 

 

One interesting aspect of the NN is the ability to quickly learn new functions that 

are close to the original.  The topology in the previous model was slightly 

modified as shone in Figure 18.   
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Figure 18.  Modified structure topology 

 

The same loads were applied and a new set of random training input data was 

generated.  New NN’s were created using the previous learned weights and 

biases.  These new NN’s were trained using the new topology and the maximum 

deflections;  the calculation times are shown in Table 6.  The randomly selected 

standard steel element cross sectional shapes are shown in Table 7. 
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Table 6.  Displacements and CPU times for structure with new topology 

 

Table 7.  Standard steel shapes  
Test Number Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

1 L1x1x1/4 L1x1x1/4 L2x2x1/2 L2x2x1/2 L1x1x1/4 L1x1x1/4

2 L2x2x1/2 L2x2x1/2 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8

3 L1x1x1/4 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L1x1x1/4 L2x2x1/2

4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8  

Test Number 1

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0003 -0.0006 -0.0047 -0.0071 -0.0026 0.0000 0.0075

FEA Displacements 0.0000 0.0003 -0.0005 -0.0044 -0.0065 -0.0022 0.0000 0.0678

Difference 0.0000 0.0000 0.0001 0.0004 0.0006 0.0004 0.0000 0.0603

Test Number 2

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0002 -0.0009 -0.0024 -0.0029 -0.0011 0.0000 0.0050

FEA Displacements 0.0001 -0.0004 -0.0013 -0.0026 -0.0029 -0.0011 0.0000 0.0600

Difference 0.0000 0.0003 0.0004 0.0002 0.0000 0.0000 0.0000 0.0550

Test Number 3

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0001 -0.0012 -0.0069 -0.0111 -0.0063 -0.0001 0.0050

FEA Displacements 0.0000 0.0001 -0.0014 -0.0070 -0.0108 -0.0060 -0.0002 0.0625

Difference 0.0000 0.0000 0.0002 0.0001 0.0004 0.0003 0.0000 0.0575

Test Number 4

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0001 -0.0010 -0.0049 -0.0069 -0.0025 0.0000 0.0050

FEA Displacements 0.0000 0.0001 -0.0009 -0.0047 -0.0067 -0.0024 0.0000 0.0603

Difference 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000 0.0553
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Figure 19.  Time to retrain NN 

 A couple of interesting observations can be made from these results.  First, 

the feed-forward NN was effective at approximating the FEA.  The largest 

displacement error in this test was 0.001 inches and most of the errors were less 

than 0.0005 inches.  This is much less than the displacement constraint used 

when the optimization of the MMT components.  Second, the NN had order of 

magnitude reductions in computation times.  The radial bias method failed to 

converge with this problem.  The feed forward NN had better results and faster 

training times.  Also, with the feed forward NN major reductions in training times 

can be realized by using information from previous networks.   
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2.5  NN training  

 Many methods to train NN’s are included in the Matlab NN toolbox.  Some 

of these algorithms are not useful for practical problems and the best method for 

fastest training is dependent on the problem [69].  The best training algorithm for 

a given problem depends on many factors, such as the size of the training set, 

the complexity of the problem, the size of the network, and the type of the 

problem (pattern recognition of function approximation) [69].  The easiest and 

fastest way to determine the best and fastest converging algorithm is by trial-and-

error.  Four of the most common high-performance algorithms were tested.   

 The four algorithms tested were the Matlab functions traingda, trainrp, 

trainscg, and trainlm.  The first method was the steepest gradient descent with a 

variable step size (TRAINGDA).  The second was the resilient back-propagation 

(TRAINRP) method.  All of the networks in this research were used to 

approximate non-linear systems.  This requires the use of “squashing” functions.  

Squashing functions take an infinite input and output with a range of -1 to 1.  As 

the input gets very large or very small, their derivative goes to zero.  This has a 

major impact on the steepest descent gradient based methods.  The gradient 

may be very small while the network is training.  This in turn causes very small 

changes in the weights and biases even though they are far from converging.  

The trainrp uses only the sign of the gradient, not the magnitude.  It uses a 

separate variable for the step magnitude.  This variable increases if the sign of 
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the gradient stays the same from step to step or decreases if the sign changes.  

This leads to faster learning and tends to reduce oscillations around the solution.  

The third algorithm tested performs a search along the conjugate gradient 

instead of the steepest descent direction (TRAINSCG).  This usually produces 

faster convergence.  The last algorithm tested used a modified Newton method 

(TRAINLM) that has a variable step size and direction.  The TRAINLM function 

generally has the ability to train to a lower error level. 

Figures 20, 21, 22, and 23 show the progress of training the networks 

derived from the structure shown in Figure 16 using the different algorithms.  For 

the networks in this research the TRAINRP seemed to have the best 

performance when the error was higher.  The TRAINLM had the best 

performance when training to a lower error.  In all the proceeding tests and 

programs the TRAINRP was used for initial training then TRAINLM was used to 

reach a lower error. 
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Figure 20.  Training history for traingda 
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Figure 21.  Training history for trainrp 
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Figure 22.  Training history for trainscg 
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Figure 23.  Training history for trainlm 
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2.6  General comments and results from NN test 

The NN is not a cure all for computationally inefficient problems.  It is, 

however, proven very useful in optimal MMT design.  The following are some 

brief comments on NN. 

 The steps to create and use a NN: 

1.  Develop the network structure.  This must be large enough and have 

enough hidden layers to represent the problem.  There is no theoretical 

method to determine the correct structure.  It is generally done through 

trial and error. 

2.  Train the network.  This is a large scale optimization problem.  

Accepted optimization techniques can be applied.   

3.  Simulate the network.  New inputs are given to the network.  What was 

learned in the training is recalled and new outputs are produced. 

 NN structures are inherently parallel.  This leads to easy implementation 

to parallel computers and processors which leads to fast computations.  

However, this research was developed on a single computer and 

processor. 

 Training is just a large scale optimization process.  The weights and 

biases of the NN are adjusted (design variables) thereby minimizing the 

error between a known target and the output of the NN.   
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 The NN method can be a very effective universal approximation for FEA.  

However, the structure and the transfer functions must be carefully chosen.  

The number of nodes must be sufficiently large and the use of some non-

linear transfer functions is required. 

 For this research feed-forward NN gave better results than the radial bias 

networks.   

 NN based FEA approximations are better at interpolation than 

extrapolation.   

 NN calculations are much faster than FEA calculations.  Generally, they 

are at least an order of magnitude faster.  As the size of the of the problem 

increases, the NN calculations increase linearly while the FEA calculations 

increase exponentially.   

Even though the use of NN approximation of FEA leads to faster calculations, 

FEA calculations should not simply be replaced with NN.  The real advantage is 

to use the inherent “memory” properties of the NN along with the computational 

efficiencies to utilize previous designs.  In other words, as new components are 

developed the optimal designs are captured in the NN and will influence future 

designs. 

 

2.7  Optimization Algorithms 

 In this study the stated problem of optimizing MMT structures is 

completely discrete in nature.  According to the literature review, most of the 
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previous work focused on GA, SA, or branch and bound methods for completely 

discrete problems.  Also, guaranteeing that the GA or SA produced a global 

optimum is difficult.  No clear mathematical proof exists to prove a global 

optimum is achieved.  Branch and bound, on the other hand, is a global 

optimization algorithm.  It may not be the most efficient, but at least it operates in 

polynomial time on general problems.  

 For this research a branch and bound method was used as the primary 

optimization algorithm.  The branch and bound method has some other added 

properties that help meet the objectives of this project.  It was shown previously 

that for practical real-world problems the FEA models would get large and an 

approximation is needed.  The problem is when to use the FEA and when to 

switch to the approximation method?  The branch and bound method has a clear 

point to make the switch.  When the variables are relaxed the FEA is used and a 

neural network training set is generated.  When the branches are fathomed with 

discrete variables the approximation is used.  This has the advantage that most 

of the design space will be covered when the FEA is used and the training set is 

developed.  A very robust NN approximator is developed using this method 

because the NN is generally better at interpolation than at extrapolation. 

 Applying the branch and bound method to the MMT optimization problem 

is not without challenges.  Typically, the branch and bound method is used with a 

linear programming or gradient descent for the relaxation method [13].  However, 

these methods are not effective on non-convex or discontinuous problems [13].  
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The discrete MMT problem is both non-convex and discontinuous.  For this study 

a robust continuous optimization algorithm is required for the relaxation.  

Generally, the literature suggests a GA or SA based algorithm to overcome these 

problems [4 and 13].  However the literature also suggest these algorithms may 

be difficult to tune and implement.  In recent years many researchers have 

successfully applied PSO to these types of discontinuous problems.  The PSO 

has the advantages of being simple and easy to implement.  It has also been 

shown to converge rapidly but it is difficult to specify the stopping criteria.  For 

this reason a hybrid approach was chosen by using a PSO to quickly converge 

toward the best solution then switch to a fast gradient based method to converge 

on the solution.  This PSO method had the added benefit of finding solutions 

distributed over the entire design space.  This generally improved the training 

performance of the neural network. 

 

2.8  Branch and Bound Discrete Optimization 

 A review of the current literature revealed that exhaustive enumeration is 

only possible for trivial problems [4 and 13].  Partial enumeration or heuristic 

methods are required for practical problems.  One problem with heuristic 

methods is that it is very difficult to prove they will produce a global optimum on 

practical problems.  The partial enumeration methods, specifically the branch and 

bound, method over-comes these problems [71].  It will produce a global 

optimum and in most cases it will operate in polynomial time. 
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 The branch and bound method is based on the fact that the relaxed 

continuous solution is always better than the discrete solution.  Using this fact, 

bounds can be created and large groups of potential discrete solution can be 

eliminated.  The algorithm creates a tree structure with branches by 

systematically fixing and relaxing discrete variables.  This creates a structure with 

nodes connected by links.  Following the best path through the links and nodes is 

called fathoming.  The use of the branch and bound method is best described 

with an example. 

 Consider the structural bracket shown in Figure 24.  Assume the goal is to 

minimize the total amount of material in the structure and elements 1 and 2 can 

only be made of standard steel round bar stock.  Also, assume the end of 

element 2 can assume only the two locations shown in the figure.  The questions 

are: What is the optimal layout of element 2?  What are the optimal cross 

sections of both elements?  The bracket must not deflect more than 0.010” when 

it is supporting 30lbs.   

 

 

Figure 24.  Structural Bracket Example 
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The formal optimization problem can then be stated as: 

Minimize:  232

1

22
321 )

2
)()(144()
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(24),,(

x
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x
xxxf    

 ]24,12[1 x  

 ]25.1,0.1,5.0[2 x  

 ]25.1,75.0,125.0[3 x  

Subject to: 010.0  

Where:  is the maximum nodal deflection 

  X2 is the diameter of element 1 cross section 

  X3 is the diameter of element 2 cross section 

 The first variable x1 is fixed and partial solutions are found.  In this case x1 

only has two discrete possibilities.  So, x1 is fixed to these two values and the 

other variables are relaxed.  In this example, a sequential quadratic programming 

method was used to find the optimal solutions.  As shown in Figure 25, this 

produces two branches or partial solutions from node 0. 

 This method of fixing and relaxing variables is continued by following the 

path of the best solution until the tree is completely fathomed.  Then, the partial 

solutions that are worse than the best fathomed solution are pruned or cut.  This 

will leave only active or pruned partial solutions.  An active partial solution is one 

that is not pruned but has not been fathomed.  This is continued until all 

branches have been fathomed or pruned. 
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Figure 25.  Branch and Bound Tree for the Structural Bracket Example 

 

Structural Bracket Example 

Start Node 0:  

Root node where all variables are relaxed. 

Node 1 & 2:   

Discrete variable x1 is assigned to each permissible discrete value.  This 

creates two paths or branches.  The optimal solution is found for each 

node by relaxing the other variables.  Node 1 has the best solution so it 

will be fathomed.  

Completion of Node 1: 
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Node 1 is expanded by setting the discrete variable x2 to its permissible 

discrete values.  This creates branches to nodes 3, 4, and 5.  Node 3 has 

the best solution so it will be fathomed. 

Completion of Node 3: 

Node 3 is expanded by setting the discrete variable x3 to its permissible 

discrete values.  This creates branches to nodes 6, 7, and 8.  Node 6 fails 

to produce a solution because it does not meet the displacement 

constraint.  Node 7 produces the best solution.  Since all the discrete 

variables at node 7 are assigned discrete values the solution at node 7 is 

considered the current best discrete solution.  All of the nodes with 

solutions greater than node 7 are pruned. 

All of the nodes have been pruned or fathomed.  Therefor, node 7 is the global 

discrete optimal solution. 

 This example shows that the branch and bound method is effective in 

finding the global optimum of a typical discrete structural optimization problem.  

In this example a non-linear relaxation method was applied.  Also, the algorithm 

used the non-equality constraint as an effective pruning mechanism. 

The MMT optimization problems of this study were solved using the 

branch and bound method by fixing one variable at a time then relaxing the other 

variables.  Fixing one variable at a time broke the problem into branches.  These 

branches were then solved as continuous optimization problems.  The 

continuous branches were then compared to discrete solutions and were 
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normally cut after a few iterations.  This method was based on the fact that the 

continuous solution of each branch was always more optimal than the discrete 

solution.  Also, the use of gradient-based methods provided continuous solutions 

with very little computational load.  

For the MMT DSO problems branches were the topology of the structure.  

Another discrete design variable is the different shape of cross-sections of each 

structural members.  The member’s geometric properties were then relaxed and 

the continuous problem was solved.   Figure 26 of the 2D problem of a typical 

side of a MMT base shows the typical branches.  Figure 27 shows the overall 

flow of the branch and bound program as applied to the MMT DSO. 
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Figure 26.  Tree for typical MMT base side 

 

Figure 27.  Branch and bound flowchart for MMT base side 
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For this research all of the members were assumed to have stock equal or 

unequal leg L cross-sections.  This assumption leads to three design variables 

for each member (L1, L2, and t in Figure 28).  Figure 28 also shows a typical 

branch topology; in this example there are 6 elements with 3 design variables or 

18 continuous variables for this branch. 

 

Figure 28.  Typical topology and cross section 

 It was determined from testing examples that many of relaxed continuous 

optimization problems in this branch and bound structure were non-convex, 

discontinuous, or had many local minimums.  Many of these branches had long 

convergent times when the variables were relaxed.  It was obvious that some 

non-gradient methods were needed. 

 

2.9  Hybrid continuous optimization 
 
 Conventional gradient-based optimization methods are very fast in solving 

smooth convex problems.  However, for piecewise continuous, non-differentiable, 

or problems with many local minimums, they may become inefficient.  In these 
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problems it was easy to see that each element was continuous but when 

assembled, it became piecewise continuous with many local minimums.   

 The most effective way to solve this type of non-smooth problem was to 

use a non-gradient based method.  The most accepted non-gradient based 

methods include SA, GA, and pattern search algorithms [4 and 72].  These 

methods all have the problem that though they are assumed to be global 

algorithms, they may be slow to reach the required accuracy and global optimal. 

 One method reported to overcome this problem was to employ a hybrid 

approach that used both gradient and non-gradient based methods [72].  For 

problems like this with many smooth areas or local minimums, a SA, GA, or 

pattern search method was used to quickly get to the best smooth area then a 

fast gradient based method was used to find the accurate solution.   

 SA, GA, and pattern search methods can be difficult to implement and 

tune for a given problem [72].  Particle swarm optimization (PSO) is one of the 

methods to overcome parameter tuning difficulty.  It is loosely based on animal 

swarming behavior by bees, birds, or fish.  Compared to the other methods, it is 

easy to implement and has few parameters to tune [73].  

 PSO simulates the behaviors of feeding schools of fish or flocks of birds.  

The idea is simple.  The swarm randomly heads out into a search area.  The 

swarm then moves in the general direction toward the individual with the most 

food (best solution).  The swarm moves together in general but individuals still 
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have some small random area to explore.  After a very short time the swarm will 

converge in the area with the most food (best solution). 

 The algorithm for a PSO is not difficult to develop, implement, and tune 

[34].  First, the PSO is initialized with a group particle.  The size of the swarm is 

the first parameter.  Normally this is set to 25 to 50 particles [73].  This is arbitrary 

and dependent on the size of the search space.  Second, the particles are 

randomly distributed across the design space and the solution (fitness) for each 

particle is found.  The two best fitness values are stored.  One is the value of the 

best particle called “pbest”; the other is what will become the overall or global 

best called “gbest”.  After “pbest” and “gbest” are found, a velocity is found that 

will move all the particles in the general direction of the best solution. 

[])[](*()*1[][] locationpbestrandcVV    

              [])[](*()*2 locationgbestrandc                                                    )35(  

where: 

rand() is a vector of random numbers from 0 to 1 

c1 and c2 are learning factors normally set to 2 

location[ ] is the location of the particles in the design space 

Location is a commonly used term in the PSO literature.  It refers to the 

current values of the design variables in the design domain [31].  Then, for every 

iteration the location of the particles are updated: 

[][][] Vlocationlocation          )36(  
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 The new velocity and locations are computed for each iteration.  The 

algorithm is continued until the maximum number of iterations is reached or the 

change in “pbest” reaches a set minimum. 

Compared to other optimization methods, the PSO tends to converge 

quickly on the solution but may take many iterations to reach a desired minimum 

error [73].  For this research a PSO with 50 particles was used and after 4 

iterations it was assumed to be close to the global solution.  The results of the 

PSO were then used as the initial values for the standard Matlab gradient based 

constrained nonlinear optimization function.   The Matlab function quickly 

convereged on a feasible solution.  In this research the Matlab fmincon function 

using the sequential quadratic programming algorithm option was used 

exclusively.  Figure 28 shows the flow diagram for the algorithm used to optimize 

each branch of the problem.  The current literature suggest there is no 

mathematical proof to show the swarm has found a global solution.  However, it 

suggests that a large swarm (greater than 20 particles) will find the area of the 

global solution, for most problems, in very few iterations [31]. 
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Figure 29.  Particle swarm optimizer flowchart 
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CHAPTER 3  

DISCREET OPTIMIZATION OF MMT STRUCTURES 

 

3.1  Application of DSO, FEA, and NN 

 The side of a typical MMT base component was selected to test the 

combination of DSO using a branch and bound algorithm while using a parallel 

training NN method.  A structure like the one in Figure 16 was developed.  A fully 

grounded structure was considered.  Throughout the design process elements 

were added and removed and the cross section of the elements were changed.  

This created a discrete topology and size problem.  It was a discrete topology 

problem because the elements could be located at any of the discrete node 

locations.  Also, removing or adding the elements was considered.  The discrete 

sizing was used because the material properties and cross sections of all the 

elements were selected from the standard steel cross sections in Table 1.  The 

formal optimization problem can be stated as: 

Minimize: 



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iii LAW
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Frequency (Eigenvalues) 
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Where: NE = total number of elements 

  NN = total number of nodes(joints) 

  Subscript k refers to the three coordinate directions 

  ik is the nodal displacement 

  max is the maximum allowable nodal displacement 

   is the first natural frequency of the structure 

  dist is the disturbance frequency caused by the machining 

  σi is the Von Mises stress 

  σyield is the yield stress of the material 

σbi = -(CA)/L2   

Where C is a constant.  For example, a tubular member with a ratio 

of diameter to wall thickness of 10 is C=3.966 [85] 
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For typical machine tool design the displacement (rigidity) constraint is very small 

and therefore critical.  The stress and buckling are far from critical so they can be 

removed from the optimization problem.  For this MMT model, only the 

displacement and eigenvalues were considered for constraints. 

 Using only two internal elements and limiting the elements to four 

standard cross sections produces over 450 thousand discrete combinations.  

Using full enumeration and testing, each combination with FEA would require 

approximately five days of computational time.  These computing time 

calculations are based on CPU times from a computer with a 2.33GHz Intel Core 

2 Duo processor and 1Gbyte of RAM.  Although this is not completely impractical, 

if just a few more members or cross sections are considered the problem 

becomes impractical and the idea of optimizing a complete MMT component is 

unobtainable.  However, if NN approximation and branch and bound techniques 

are applied even complete MMT components can become practical.  Figure 30 

shows the general flow chart for the program. This research used only an 

interpretive computer language (Matlab).  Considerably faster computing times 

could be realized using a compiler language such as FORTRAN or C thus 

leading too larger scale problems.  It is assumed that similar reductions in CPU 

times would be realized using the methods developed in this research when 

implemented with compiled code. 
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Figure 30.  Parallel NN training and branch and bound 

 

 A program was developed to test this method on a side of a simple MMT 

base component like the one shown in Figure 16.  Subprograms for the FEA and 
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NN were developed using Matlab.  Even though only one computer was used in 

these tests the subprograms were used in a parallel method as shown in the flow 

diagram.  These could easily be implemented on separate processors for large 

scale problems.  The method was compared to the standard branch and bound 

method using only FEA.    

Table 8.  Optimization results for first load condition 

 

 

 

Figure 31.  Optimal topology with element numbers for first load condition 

Table 8 and Figure 31 show the results of both methods.  Both methods have the 

same topography and material cross sections.  However, the NN approach used 

Total CPU Volume

Member 1 2 3 4 5  Time (s) in^3

FEA L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 14.415 45.5156

NN L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 1.162 45.5156
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much less CPU time.  This is a significant reduction in time and this reduction 

should get larger as the problem gets larger.  The reduction in time will increase 

for two reasons.  First, the FEA computations will be longer.  Second, since the 

NN is trained for all the topologies, the time to remesh the FEA will be eliminated.   

The test was then repeated with the loads applied in different locations to 

simulate the MMT doing some common type of machining operation.  Figure 32, 

33, and 34 show the resulting optimal configurations.  Table 9, 10, and 11 list the 

results. 

 

Figure 32.  Optimal design for second load location 
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Table 9.  Optimization results for second load condition 

 

 

Figure 33.  Optimal design for third load location 

Table 10.  Optimization results for third load condition 

Total CPU Volume

Member 1 2 3 4 5  Time (s) in^3

FEA L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L2x2x1/2 L1x1x1/4 58.773 92.6745

NN L1x1x1/4 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 4.618 75.5262

Total CPU Volume

Member 1 2 3 4 5  Time (s) in^3

FEA L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 30.04 61.5469

NN L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 2.444 61.5469
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Figure 34.  Optimal design for fourth load location 

 

Table 11.  Optimization results for forth load condition 

 

Total CPU Volume

Member 1 2 3 4 5  Time (s) in^3

FEA L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 14.23 50.625

NN L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 1.202 50.625
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3.2  Traditional Topology Optimization 

 The more traditional methods of topology optimization are well researched 

and many examples of programming code can be found in the literature [75].  

Examples of running code can even be found on the internet [74].  Designs can 

be submitted and the topology takes shape real-time.  Using this online code the 

typical MMT base-side developed previously was tested. 

 

Figure 35.  Optimal topology using material density method 

Figure 35 shows some typical results from these tests.  When compared to the 

branch and bound method used previously very different results were obtained.   

This is because the online program is very limited in the number and types of 

forces and boundary conditions that could be applied. 

 Several commercial software packages exist for solving topology 

optimization problems.  These programs are closely tied to commercial FEA 

packages and have the same drawbacks as the commercial FEA packages.  For 
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this research a very robust simple topology optimization routine was utilized.  

This was done by adding to and modifying Matlab code that was developed by 

others for public research and education projects [75].  The developers of this 

code included a simple but effective FEA routine that is built into the topology 

optimization code.  The code was modified to accept the initial and boundary 

conditions and the applied loads for the two-diminsional MMT base side.  

 This code was based on the solid isotropic material with penalization 

(SIMP) approach [76].  In this approach the objective is to minimize the 

compliance of the system.  The formal optimization problem can be stated as: 

Minimize: 

KUUxc T)(                                                                                                     )42(  

or in terms of the elements: 
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10  x     To avoid singularity x is greater than and not equal to 0. 

Where: 

euandU are the global and elemental displacements 

F  is the global force vector 
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ekandK are the global and elemental stiffness matrices 

x         is the design variable (relative density) 

N  is the design domain 

p  is the penalization constant 

)(xV  is the material volume 

oV  is the design domain volume 

f  is the prescribed volume fraction 

 The FEA for this problem was discretized into square elements with nodes 

at each corner.  The nodes had 2 degrees of freedom.  The elemental stiffness 

matrix was derived using the method previously described. 

 The optimization part of the code used a heuristic updating method that 

directly follows the literature [56, 75 and 77].  The design variables were 

formulated as: 
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Where: 

m  is the move limit 

n  is the damping coefficient and is set to 0.5 
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eB  is the optimality condition 
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  is the Lagrangian multiplier 
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 One major problem existed with implementing this approach.  The 

existence of a solution was not ensured and the results were sensitive to how 

refined the domain was discreetized.   Spatial zones of oscillation occured 

frequently.  This is commonly called the checker-boarding phenomenon [56, 77, 

78, and 79].  A filter method that was adapted from digital image processing was 

shown to reduce or eliminate these problems [75].  Directly following the 

literature the mesh-independent filter is [74 and 75]: 
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The new mesh-independent filtered sensitivities (47) are used in place of the 

original sensitivities (46). 

 This code was tested on the typical MMT base-side.  Figure 36 shows the 

results with the same loads and boundary conditions from the previous test 

applied. 

 

Figure 36.(a)  Load Case 1 

 

Figure 36.(b)  Load Case 2 
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Figure 36.(c)  Load Case 3 

 

Figure 36.(d)  Load Case 4 

Figure 36.  Optimal topology using material distrubution method 

 

These results show very different topologies than the ones from the 

branch and bound method.  There are several reasons for the differences.  First, 

the branch and bound method used a constrained optimization method with very 

small constraints on the displacement (x, y and rotation around z for the nodes 

along the top edge of the structure) and natural frequency and the material 

volume was minimized.  The material distribution method minimized the 

compliance of the structure and the material volume was an equality constraint.  
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Sankaranarayanan et al. compared topology optimization of trusses for minimum 

weight using a method with stress and displacement constraints to a method 

using a minimum compliance constraint.  They showed for some truss problems 

the stress and displacement constraint method produced different and generally 

better results [84].  Second, the branch and bound includes the inherent 

constraints that the members must be terminated at discrete nodes.  Finally, the 

literature suggests the material distribution method may not be the most effective 

for layout problems like this if the prescribed fraction of material volume is too low 

compared to the design domain volume [75 and 76].  For this code and this 

problem, it was found that it failed to converge with prescribed volumes less than 

approximately 25 percent.  It was also found through experimentation that the 

online code failed to converge with prescribed volumes less than approximately 

25 percent.  However, feasible optimal designs were found that had less than 10 

percent of the actual design domain using the branch and bound method.  Some 

topologies were found to have less than 4 percent.  Actually, for most structural 

steel designs, using standard shapes and minimizing the amount of steel used, 

this material distribution method may not be effective because the space frame 

or truss would generally include less than 25 percent of the total volume.  This 

method would be better suited for plastic molded, cast metal, or formed sheet 

metal designs where the material volume is a greater percent of the total design 

space and rib or reinforcing member location would be total a continuous varible. 
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 The test was repeated.  This time a lateral force was add along with the 

vertical force to simulate a typical milling operation.  The results from the branch 

and bound method using NN is shown in figure 37.  Figure 38 through 41 show 

the results from the material density method with varying amounts of percent 

material.  As expected with lower amounts of material (25% to 30%) the method 

tends to converge slowly on a solution.  With larger amounts of material the 

results are close to the branch and bound method and the topologies are similar. 

 

Figure 37.  Discrete optimization using NN with lateral load 
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Figure 38.  Discrete optimization using the material density method and 25% 
volume 

 

 

Figure 39.  Discrete optimization using the material density method and 30% 
volume 

 

 

Figure 40.  Discrete optimization using the material density method and 40% 
volume 
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Figure 41.  Discrete optimization using the material density method and 50% 
volume 

 

3.3  Large Scale MMT Base Optimization 

 The use of the branch and bound DSO routine was tested on a typical 

MMT base.  This included using a hybrid continous optimization approach for 

each branch.  This combined a traditional gradient based method with the PSO 

method.  The inputs and results from each branch or topology were saved and 

later used for the NN training.  After the initial NN was trained for the first 

topology the weights and biases were saved for future training.  Nonsymmetrical 

multiple loads were applied to simulate a typical machining operation.  A 

common MMT base size of 36”x12”x12” was selected.  A set of 3 standard L 

channel steel shapes that ranged in flange size from ¾” to 2” and in flange 

thickness from 1/8” to ½” were selected as the discrete set.   Table 12 shows the 

DSO results along with the CPU times. 
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Table 12.  Element sections and CPU times for 3D MMT base 

Element Standard

Number Steel L Shape

1 L3/4x3/4x1/8

2 L2x2x1/2

3 L3/4x3/4x1/8

4 L2x2x1/2

5 L2x2x1/2

6 L3/4x3/4x1/8

7 L2x2x1/2

8 L3/4x3/4x1/8

9 L2x2x1/2

10 L1x1x1/4

11 L1x1x1/4

12 L2x2x1/2

13 L1x1x1/4

14 L2x2x1/2

CPU Time 6h 19min.  

One result that should be noted from this test is that the NN training for 

this large scale problem was approxiamately 5 minutes.  This is insignificant 

compared to the over 6 hours it took to solve this 3 dimensional large-scale 

problem.  Given the number of function calls required to solve this problem using 

the NN approach and the average time for the FEA of this structure, the problem 

would take approximately 150 hours to solve just using FEA.  This is not 

imposible, but it is impractical and was not completed for this case.  The code for 

this project was developed entirely on an interpretative based computer language.  

If it was developed or converted to a compiled language such as FORTRAN 

much lower CPU times could be realized.  However, the relative reduction in 

times is a good indication of how effective this approach is on practical industrial 

problems.  The final optimal topology with the applied loads is shown in Figure 42.  

To help visualize the results and topology a Matlab function was developed that 
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created an AutoLISP program.  This AutoLISP program was then run in AutoCAD 

to produce a detail 3D drawing of the final design (Figure 43).  This is useful in 

not only seeing the topology but the orientation of the cross sections of the steel 

shapes. 

 

Figure 42.  The optimal topology with applied loads 
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Figure 43.  Program generated 3D model 
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CHAPTER 4  

CONCLUSTION AND FUTURE WORK 

 

4.1  Conclusion 

 A unique and novel method of discrete optimization has been developed 

for the design of MMT components.  A branch and bound method was used that 

included a method that was parallel in nature to generate the data needed to 

train a feed-forward NN.  The continous optimization of the individual branches 

used a hybrid method that combined particle swarm and traditional gradient base 

optimization.  This hybrid method proved effective in optimizing the piecewise 

continous branches while at the same time generating data that became useful 

for training the NN.  The feed-forward NN was then shown to be effective at not 

only approximating the FEA but also the inherent memory of the network became 

useful for approximating similar disigns.  The method was tested on a large scale 

3D problem and it was shown that using only the FEA the problem becomes 

impractical but implementing the NN along with the FEA makes it feasible.  The 

overall results from this research can be summarized as follows: 

 The use of a feed-forward NN was very effective as a FEA approximator. 

 The NN was effective at approximating more than just the FEA, for 

example, multiple meshings of the FEA, multiple topologies, and 

eigenfrequencies. 
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 The hybrid approach was required for the continouis part of the branch 

and bound method because of all the local minimums.  This also helped 

generate the training data for the NN. 

 The traditional material distribution methods of topological optimization are 

not suited to this type of discrete structural optimization problem because 

the amount of material volume compared to the total design space volume 

is very small.  

 The method was successful on a large-scale structure that would be 

impractical using other methods. 

 

4.2  Future Research 

 In this problem the FEA was limited to linear elastic members.  This 

method of using NN approximation should be very effective on non-linear 

elements.  Fluid mechanics, heat transfer, and impact problems are just a few of 

the FEA problems that when applied to large-scale optimization problems are 

computationally expensive.  The NN’s in these cases could be taught whole 

families of similar problems with many of the pre and post processing operations 

included in the NN. 

 All of the joints in this research were considered to be fixed and solid.  

Refering to Figure 42 it can be seen that some of the joints would be impossible 

to connect.  This is because the optimization routine considered the orientation of 

the cross sections.  Also, a completely fixed solid joint is not practical.  A 
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complete study of the joints should be considered.  A method of quickly building 

and recycling of MMT components will require a complete and detail design of 

the joints. 

 The NN structure is very significant in the success of the structure 

optimization.  In this study, large NN structures were used.  This structure was 

large enough to handle any of the topologies and parameters.  However, the 

structure was almost always larger than required.  Further studies should include 

an adaptive type of NN structure.   

 The whole branch and bound process and the NN method is inherently 

parallel.  It would take very little effort to convert the code used in this research to 

run over a network on multiple computers.  Each continous branch or topology 

could be optimized on a separate computer.  Then, as each branch finished each 

computer could start training individual NN’s.  The NN’s could then easily be 

implemented on multiple computers.  Further research on very large scale 

nonlinear optimization could be realized using many computers over a network or 

the internet. 
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APPENDIX 
Appendix A:  MATLAB FEA Functions 
function [x, ielem]=mymesh() 
global X b h d enac num_ele 
% this function generates the mesh for a typical 
%MMT base structure  
% %uncomment the following for testing 
% b=36; 
% h=12; 
% d=12; 
 
j=0; 
for i=1:enac+1 
    x(i,1)=j; 
    x(i,2)=h; 
    x(i,3)=0; 
    x(i+enac+1,1)=j; 
    x(i+enac+1,2)=0; 
    x(i+enac+1,3)=0; 
    x(i+(enac+1)*2,1)=j; 
    x(i+(enac+1)*2,2)=h; 
    x(i+(enac+1)*2,3)=d; 
    x(i+(enac+1)*3,1)=j; 
    x(i+(enac+1)*3,2)=0; 
    x(i+(enac+1)*3,3)=d; 
    j=j+(b/enac); 
end 
for i=1:enac 
    ielem(i,1)=i; 
    ielem(i,2)=i+1; 
    ielem(i+enac,1)=i+enac+1; 
    ielem(i+enac,2)=i+enac+2; 
    ielem(i+enac*2,1)=i+enac*2+2; 
    ielem(i+enac*2,2)=i+enac*2+3; 
    ielem(i+enac*3,1)=i+enac*3+3; 
    ielem(i+enac*3,2)=i+enac*3+4; 
end 
tot_ele=enac*4; 
cn1=1; cn2=enac+1; cn3=enac+2; cn4=(enac+1)*2; cn5=2*enac+3; 
cn6=(enac+1)*3; cn7=3*enac+4; cn8=(enac+1)*4; 
ielem(tot_ele+1,:)=[cn1 cn3]; 
ielem(tot_ele+2,:)=[cn2 cn4]; 
ielem(tot_ele+3,:)=[cn5 cn7]; 
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ielem(tot_ele+4,:)=[cn6 cn8]; 
ielem(tot_ele+5,:)=[cn1 cn5]; 
ielem(tot_ele+6,:)=[cn3 cn7]; 
ielem(tot_ele+7,:)=[cn2 cn6]; 
ielem(tot_ele+8,:)=[cn4 cn8]; 
 
% add stiffners that are not part of the optimization  
ielem(tot_ele+9,:)=[4 25]; 
ielem(tot_ele+10,:)=[11 18]; 
 
 
%extra elements 
if num_ele==1 
    ielem(tot_ele+11,:)=[round(enac/b*X(1,1))+1 round(enac/b*X(2,1))+8]; 
end 
 
if num_ele == 2 
    ielem(tot_ele+11,:)=[round(enac/b*X(1,1))+1 round(enac/b*X(2,1))+8]; 
    ielem(tot_ele+12,:)=[round(enac/b*X(3,1))+15 round(enac/b*X(4,1))+22]; 
    %************************ add two ielem for extra elements 
End 
 
function eleprop=myeleprop(L) 
global enac num_ele 
 
vl=size(L,1); 
L2=L(1:vl/2)*1.25+0.75; 
t=L(vl/2+1:vl)*.375+.125; 
 
%set up the element properties 
for i=1:enac 
    eleprop(i,:)=Lsection(L2(1),t(1)); 
    eleprop(i+enac,:)=Lsection(L2(2),t(2)); 
    eleprop(i+enac*2,:)=Lsection(L2(3),t(3)); 
    eleprop(i+enac*3,:)=Lsection(L2(4),t(4)); 
end 
tot_ele=enac*4; 
eleprop(tot_ele+1,:)=Lsection(L2(5),t(5)); 
eleprop(tot_ele+2,:)=Lsection(L2(6),t(6)); 
eleprop(tot_ele+3,:)=Lsection(L2(7),t(7)); 
eleprop(tot_ele+4,:)=Lsection(L2(8),t(8)); 
eleprop(tot_ele+5,:)=Lsection(L2(9),t(9)); 
eleprop(tot_ele+6,:)=Lsection(L2(10),t(10)); 
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eleprop(tot_ele+7,:)=Lsection(L2(11),t(11)); 
eleprop(tot_ele+8,:)=Lsection(L2(12),t(12)); 
 
% add stiffners that are not part of the optimization  
eleprop(tot_ele+9,:)=Lsection(2.0,0.5); 
eleprop(tot_ele+10,:)=Lsection(2.0,0.5); 
 
%extra elements 
if num_ele==1 
    eleprop(tot_ele+11,:)=Lsection(L2(13),t(13)); 
end 
 
if num_ele == 2 
    eleprop(tot_ele+11,:)=Lsection(L2(13),t(13)); 
    eleprop(tot_ele+12,:)=Lsection(L2(14),t(14)); 
end 
% end extra elements 
 
function y = mymass(rho,A,x1,y1,z1,x2,y2,z2) 
% This fuction creates the elemental mass matrix 
% This uses the lumped masses 
L = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1)); 
w1 = rho*A*L/2; 
w2 = (rho*A*L^3)/24; 
kprime = [w1 0 0 0 0 0 0 0 0 0 0 0 ; 
   0 w1 0 0 0 0 0 0 0 0 0 0 ; 
   0 0 w1 0 0 0 0 0 0 0 0 0 ; 
   0 0 0 w2 0 0 0 0 0 0 0 0 ; 
   0 0 0 0 w2 0 0 0 0 0 0 0 ; 
   0 0 0 0 0 w2 0 0 0 0 0 0 ; 
   0 0 0 0 0 0 w1 0 0 0 0 0 ; 
   0 0 0 0 0 0 0 w1 0 0 0 0 ; 
   0 0 0 0 0 0 0 0 w1 0 0 0 ; 
   0 0 0 0 0 0 0 0 0 w2 0 0 ; 
   0 0 0 0 0 0 0 0 0 0 w2 0 ; 
   0 0 0 0 0 0 0 0 0 0 0 w2]; 
if x1 == x2 & y1 == y2 
   if z2 > z1 
      Lambda = [0 0 1 ; 0 1 0 ; -1 0 0]; 
   else 
      Lambda = [0 0 -1 ; 0 1 0 ; 1 0 0]; 
   end 
else 



 101 

   CXx = (x2-x1)/L; 
 CYx = (y2-y1)/L; 
 CZx = (z2-z1)/L; 
 D = sqrt(CXx*CXx + CYx*CYx); 
 CXy = -CYx/D; 
 CYy = CXx/D; 
 CZy = 0; 
 CXz = -CXx*CZx/D; 
 CYz = -CYx*CZx/D; 
 CZz = D; 
 Lambda = [CXx CYx CZx ; CXy CYy CZy ; CXz CYz CZz]; 
end 
R = [Lambda zeros(3) zeros(3) zeros(3) ;  
   zeros(3) Lambda zeros(3) zeros(3) ; 
   zeros(3) zeros(3) Lambda zeros(3) ; 
   zeros(3) zeros(3) zeros(3) Lambda]; 
y = R'*kprime*R;    
 
function y = mystiff(E,G,A,Iy,Iz,J,x1,y1,z1,x2,y2,z2) 
%this function creates the elemental stiffness matrix 
L = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1)); 
w1 = E*A/L; 
w2 = 12*E*Iz/(L*L*L); 
w3 = 6*E*Iz/(L*L); 
w4 = 4*E*Iz/L; 
w5 = 2*E*Iz/L; 
w6 = 12*E*Iy/(L*L*L); 
w7 = 6*E*Iy/(L*L); 
w8 = 4*E*Iy/L; 
w9 = 2*E*Iy/L; 
w10 = G*J/L; 
kprime = [w1 0 0 0 0 0 -w1 0 0 0 0 0 ; 
   0 w2 0 0 0 w3 0 -w2 0 0 0 w3 ; 
   0 0 w6 0 -w7 0 0 0 -w6 0 -w7 0 ; 
   0 0 0 w10 0 0 0 0 0 -w10 0 0 ; 
   0 0 -w7 0 w8 0 0 0 w7 0 w9 0 ; 
   0 w3 0 0 0 w4 0 -w3 0 0 0 w5 ; 
   -w1 0 0 0 0 0 w1 0 0 0 0 0 ; 
   0 -w2 0 0 0 -w3 0 w2 0 0 0 -w3 ; 
   0 0 -w6 0 w7 0 0 0 w6 0 w7 0 ; 
   0 0 0 -w10 0 0 0 0 0 w10 0 0 ; 
   0 0 -w7 0 w9 0 0 0 w7 0 w8 0 ; 
   0 w3 0 0 0 w5 0 -w3 0 0 0 w4]; 
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if x1 == x2 & y1 == y2 
   if z2 > z1 
      Lambda = [0 0 1 ; 0 1 0 ; -1 0 0]; 
   else 
      Lambda = [0 0 -1 ; 0 1 0 ; 1 0 0]; 
   end 
else 
   CXx = (x2-x1)/L; 
 CYx = (y2-y1)/L; 
 CZx = (z2-z1)/L; 
 D = sqrt(CXx*CXx + CYx*CYx); 
 CXy = -CYx/D; 
 CYy = CXx/D; 
 CZy = 0; 
 CXz = -CXx*CZx/D; 
 CYz = -CYx*CZx/D; 
 CZz = D; 
 Lambda = [CXx CYx CZx ; CXy CYy CZy ; CXz CYz CZz]; 
end 
R = [Lambda zeros(3) zeros(3) zeros(3) ;  
   zeros(3) Lambda zeros(3) zeros(3) ; 
   zeros(3) zeros(3) Lambda zeros(3) ; 
   zeros(3) zeros(3) zeros(3) Lambda]; 
y = R'*kprime*R;    
 
function y = myassemble(K,k,i,j) 
% this function assembles the M or K matrix into the global matrix 
for i1=1:6 
    for i2=1:6 
        K(6*i-(6-i1),6*i-(6-i2))=K(6*i-(6-i1),6*i-(6-i2))+k(i1,i2); 
        K(6*i-(6-i1),6*j-(6-i2))=K(6*i-(6-i1),6*j-(6-i2))+k(i1,i2+6); 
        K(6*j-(6-i1),6*i-(6-i2))=K(6*j-(6-i1),6*i-(6-i2))+k(i1+6,i2); 
        K(6*j-(6-i1),6*j-(6-i2))=K(6*j-(6-i1),6*j-(6-i2))+k(i1+6,i2+6); 
    end 
end 
y = K; 
 
Appendix B:  MATLAB Program Used to Test FEA Approximation 
 
clear all 
close all 
 
% Set up all the constants 



 103 

p=10; %force in grams 
l=36; %length in meters 
b=.5; %width in meters 
h=1;  %height in meters 
I=1/3*b*h^3; %elastic equation 
E=30e6; % modulus in pascals 
 
% Generate some data to train the NN 
ii=0; 
while p<=250 
tx=0; 
for j=1:10 
    tx=tx+(l/10); 
    x(j)=tx; 
    y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2); 
end 
ii=ii+1; 
P(ii)=p; 
p=p+20; 
T(:,ii)=y'; 
end 
 
% build and train the NN 
minP=min(P'); 
maxP=max(P'); 
PR=[minP',maxP']; 
layer1=round(4*size(P,1)); 
layer2=round(2*size(T,1)); 
outlayer=size(T,1); 
% ************ build NN and train ****************** 
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm'); 
net.trainParam.goal=1e-10; 
net.trainParam.show=100; 
net.trainParam.epochs=1000; 
[net, tr]=train(net,P,T); 
 
 
%test the NN by entering a new load 
p=input('input any load between 20-250 \n'); 
 
% Get the deflections from the elastic equation 
cpu0=cputime; 
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for i=1:10000 
    tx=0; 
for j=1:10 
    tx=tx+(l/10); 
    x(j)=tx; 
    y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2); 
end 
end 
cpu_exact=(cputime-cpu0)/10000; 
 
%Get the deflections from the NN 
cpu0=cputime; 
for i=1:100 
ny=sim(net,p); 
end 
cpu_NN=(cputime-cpu0)/100; 
 
%Get the deflection from FEA 
cpu0=cputime; 
yFEA=myfea('beam1dtest',p,I); 
cpu_FEA=cputime-cpu0; 
 
%plot the results 
plot(x,y,'bx-',x,ny,'r+-',x,yFEA(2:11),'ko-') 
legend('Exact','NN','FEA') 
ylabel('deflection') 
 
disp(['    Exact    ' '   NN    ' '  FEA']); 
disp([y' ny yFEA(2:11)']); 
disp('CPU usage'); 
disp([cpu_exact cpu_NN cpu_FEA]); 
 
clear all 
close all 
 
% Set up all the constants 
p=10; %force in grams 
l=36; %length in meters 
b=.5; %width in meters 
h=1;  %height in meters 
I=1/3*b*h^3; %elastic equation 
E=30e6; % modulus in pascals 
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%pretrain NN 
% Generate some data to train the NN 
p=10; 
ii=0; 
while p<=250 
tx=0; 
for j=1:10 
    tx=tx+(l/10); 
    x(j)=tx; 
    y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2); 
end 
ii=ii+1; 
P(ii)=p; 
p=p+20; 
T(:,ii)=y'; 
end 
 
% build and train the NN 
minP=min(P'); 
maxP=max(P'); 
PR=[minP',maxP']; 
layer1=round(4*size(P,1)); 
layer2=round(2*size(T,1)); 
outlayer=size(T,1); 
% ************ build NN and train ****************** 
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm'); 
net.trainParam.goal=1e-10; 
net.trainParam.show=100; 
net.trainParam.epochs=1000; 
disp(['     base ' '     height']) 
disp([b  h]) 
[net, tr]=train(net,P,T); 
% save the weights and bias for later 
    w1=net.IW{1,1}; 
    w2=net.LW{2,1}; 
    b1=net.b{1,1}; 
    b2=net.b{2,1}; 
    save pw1.txt w1 -ascii; 
    save pw2.txt w2 -ascii; 
    save pb1.txt b1 -ascii; 
    save pb2.txt b2 -ascii; 
pause 
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% Generate some data to train the NN 
b=.5; %width in meters 
h=1.2;  %height in meters 
I=1/3*b*h^3; %elastic equation 
p=10; 
ii=0; 
while p<=250 
tx=0; 
for j=1:10 
    tx=tx+(l/10); 
    x(j)=tx; 
    y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2); 
end 
ii=ii+1; 
P(ii)=p; 
p=p+20; 
T(:,ii)=y'; 
end 
 
% build and train the NN 
minP=min(P'); 
maxP=max(P'); 
PR=[minP',maxP']; 
layer1=round(4*size(P,1)); 
layer2=round(2*size(T,1)); 
outlayer=size(T,1); 
% ************ build NN and train ****************** 
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm'); 
net.trainParam.goal=1e-10; 
net.trainParam.show=100; 
net.trainParam.epochs=1000; 
% load prevous NN weights and bias 
    load -ascii pw1.txt;net.IW{1,1}=pw1; 
    load -ascii pw2.txt;net.LW{2,1}=pw2; 
    load -ascii pb1.txt;net.b{1,1}=pb1; 
    load -ascii pb2.txt;net.b{2,1}=pb2; 
disp(['     base ' '     height']) 
disp([b  h]) 
    [net, tr]=train(net,P,T); 
  
     
%test the NN by entering a new load 
p=input('input any load between 20-250 \n'); 
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% Get the deflections from the elastic equation 
cpu0=cputime; 
 
for i=1:10000 
    tx=0; 
for j=1:10 
    tx=tx+(l/10); 
    x(j)=tx; 
    y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2); 
end 
end 
cpu_exact=(cputime-cpu0)/10000; 
 
%Get the deflections from the NN 
cpu0=cputime; 
for i=1:100 
ny=sim(net,p); 
end 
cpu_NN=(cputime-cpu0)/100; 
 
%Get the deflection from FEA 
cpu0=cputime; 
yFEA=myfea('beam1dtest',p,I); 
cpu_FEA=cputime-cpu0; 
 
%plot the results 
%figure(2) 
plot(x,y,'bx-',x,ny,'r+-',x,yFEA(2:11),'ko-') 
legend('Exact','NN','FEA') 
ylabel('deflection') 
 
disp(['    Exact    ' '   NN    ' '  FEA']); 
disp([y' ny yFEA(2:11)']); 
disp('CPU usage'); 
disp([cpu_exact cpu_NN cpu_FEA]); 
 
function fea_def = myfea(filename,pforce,newI) 
% This code is from Dr. Smith's class  
% This is the main program that controls the execution of the various 
% finite element computations. Global arrays are defined and sizes of 
% arrays are set, as required. The is executed by typing: 
% 



 108 

% >> myfea('filename') 
% 
% at the MATLAB prompt where 'filename' refers to the input file named 
% filename.txt in the current directory. This program calls all of the 
% functions needed to run a finite element simulation. It also contains 
% the calculations that invert the global reduced stiffness matrix and 
% performs the back substitution step that computes the unknown nodal 
% degrees-of-freedom. Reaction loads are then computed. 
% 
% define global arrays 
%yFEA is the solution 
global ielem iprops eprops elname iforce force idisp disp 
global kff kpf kpp uf up pf pp yFEA 
global x utot estress efor etype shear moment xplot 
% 
%close all graphs 
close all 
% 
% assign input filename 
filename = [filename '.txt']; 
% 
% read input file 
[nnode,nel,nforce,ndisp,etype,ndof,nenode]=fea_input(filename); 
% 
%print input values to screen 
%[nnode nel nforce ndisp etype ndof nenode] 
    
% 
% initialize equation numbers for dofs 
ieqn = initialize(nnode,ndisp,idisp,ndof); 
% 
% initialize global matrices; 
utot=zeros(nnode*ndof,1); 
ptot=zeros(nnode*ndof,1); 
kff = zeros(nnode*ndof-ndisp); 
kpf = zeros(ndisp,nnode*ndof-ndisp); 
kpp = zeros(ndisp,ndisp); 
uf = zeros(nnode*ndof-ndisp,1); 
up = disp'; 
pf = zeros(nnode*ndof-ndisp,1); 
pp = zeros(ndisp,1); 
estress = zeros(nel,1); 
efor = zeros(nel,1); 
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eprops(1,2)=newI; 
% 
% compute and assemble element stiffness matrix and draw geometry 
%  figure(1) 
%  title('Model') 
%  xlabel('X'), ylabel('Y'), zlabel('Z') 
%  hold('on') 
%  grid('on') 
XYZ=zeros(nel,3); 
for i = 1:nel; 
    icode = 2; 
    XYZ(1,:)=x(ielem(i,1),:); 
    XYZ(2,:)=x(ielem(i,2),:); 
    %plot3(XYZ(:,1),XYZ(:,2),XYZ(:,3),'k') 
    [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i); 
    assemkp(eldat,ieleqn,ndof,nenode,icode); 
end 
% 
% compute and assemble element load vector 
for i = 1:nel; 
    icode = 1; 
    [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i); 
    assemkp(eldat,ieleqn,ndof,nenode,icode); 
end 
% 
% apply nodal forces 
force=-pforce; 
for i = 1:nforce; 
    num = iforce(i,1)*ndof + iforce(i,2) - ndof; 
    pf(ieqn(num)) = pf(ieqn(num)) + force(i); 
end 
% 
% solve system of equations 
uf = kff\(pf - kpf'*up); 
% 
% compute nodal reactions 
pp = kpp*up + kpf*uf; 
% 
% complete global displacement and force vector 
% 
for i = 1:nnode*ndof; 
    if (ieqn(i) < 0); 
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        utot(i,1) = up(-ieqn(i)); 
        ptot(i,1) = pp(-ieqn(i)); 
    else 
        utot(i,1) = uf(ieqn(i)); 
        ptot(i,1) = pf(ieqn(i)); 
    end 
end 
% 
%postprocess 
for i = 1:nel 
    icode = 0; 
    [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i); 
    shear(i)=(eldat(1)-eldat(3))/2; 
    moment(i)=(-eldat(2)+eldat(4))/2; 
    xplot(i)=(x(i)+x(i+1))/2; 
end 
fea_output(etype,utot,ptot,nnode); 
fea_def=yFEA; 
 
function ieqn = initialize(nnode,ndisp,idisp,ndof) 
% 
% This function is used to count the number of equations in the model and 
% assign element equation numbers. Equation numbers increase from zero for 
% free dofs and decrease from zero for prescribed dofs. 
% 
%set total degrees of freedom 
ndoftot = nnode*ndof; 
% 
% initialize ieqn 
ieqn = zeros(1,ndoftot); 
% 
% identify fixed degrees of freedom 
ifixed = 0; 
for i = 1:ndisp; 
    ifixed = ifixed + 1; 
    num = idisp(i,1)*ndof + idisp(i,2) - ndof; 
    ieqn(num) = -ifixed; 
end 
% 
% identify free degrees of freedom 
ifree = 0; 
for i = 1:ndoftot; 
    if ieqn(i) == 0; 
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        ifree = ifree + 1; 
        ieqn(i) = ifree; 
    end 
end 
 
function [nnode,nel,nforce,ndisp,etype,ndof,nenode] = fea_input(filename) 
% 
% This function reads the input file filename.txt in the current directory. 
% It starts by reading the number of nodes, elements, applied loads,  
% prescribed displacements and element type. It then reads nodal data, 
% element data, load data, prescribed displacement data and finally, the 
% element properties. The number of nodal dofs, nodes per element, and  
% number of element properties are also assigned for each element type. 
% 
%define global arrays 
global ielem iprops eprops elname iforce force idisp disp 
global x knl DV DVid 
% 
% open input file 
fid = fopen(filename,'r'); 
% 
% read number of nodes, elements, applied forces and prescribed displacements, 
and element type 
nnode = fscanf(fid,'%d',1); 
nel = fscanf(fid,'%d',1); 
nforce = fscanf(fid,'%d',1); 
ndisp = fscanf(fid,'%d',1); 
etype = fscanf(fid,'%d',1); 
%[nnode nel nforce ndisp etype ndof nenode] 
% set properties related to element properties 
% set knl to non-linear default 
knl = 0; 
switch etype 
case 1 
    ndof = 1; 
    nenode = 2; 
    neprops = 1; 
    elname = 'spring1d'; 
case 2 
    ndof = 2; 
    nenode = 2; 
    neprops = 2; 
    elname = 'truss2d'; 
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case 3 
    knl = 1; 
    ndof =1; 
    nenode = 2; 
    neprops = 3; 
    elname = 'spring1d_nl'; 
case 4 
    ndof = 2; 
    nenode = 2; 
    neprops = 3; 
    elname = 'beam1d'; 
end 
% 
% read nodal data 
x = zeros(nnode,3); 
for j = 1:nnode; 
    dummy = fscanf(fid,'%d',1); 
    x(j,1:3) = fscanf(fid,'%g',3)'; 
end 
% 
% read element data 
ielem = zeros(nel,nenode); 
iprops = zeros(1,nel); 
for j = 1:nel; 
    fscanf(fid,'%d',1); 
    iprops(j) = fscanf(fid,'%d',1); 
    ielem(j,1:nenode); 
    ielem(j,1:nenode) = fscanf(fid,'%d',nenode)'; 
end 
% 
% read applied loads 
iforce = zeros(nforce,2); 
force = zeros(1,nforce); 
for j = 1:nforce; 
    iforce(j,1:2) = fscanf(fid,'%d',2)'; 
    force(j) = fscanf(fid,'%g',1); 
end 
% 
% read applied displacements 
idisp = zeros(ndisp,2); 
disp = zeros(1,ndisp); 
for j = 1:ndisp 
    idisp(j,1:2) = fscanf(fid,'%d',2)'; 
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    disp(j) = fscanf(fid,'%g',1); 
end 
% 
% read element properties 
nprops = max(iprops); 
eprops = zeros(nprops,neprops); 
for j = 1:nprops; 
    fscanf(fid,'%d',1); 
    eprops(j,1:neprops) = fscanf(fid,'%g',neprops)'; 
end 
% 
% design sensitivity analysis 
DV=fscanf(fid,'%d',1); 
for j=1:DV; 
    DVid(j,1:2)=fscanf(fid,'%d',1); 
end 
% 
 
function fea_output(etype,utot,ptot,nnode) 
% 
% This function is used to output finite element results to the 
% MATLAB window or, perhaps, to a file (not included here). 
% 
% print the following to the screen 
% calculates system compliance for  springs 
% prints element force and stress for rods 
global efor estress shear moment xplot x yFEA 
switch etype 
case 1,3 
syscomp=dot(utot,ptot) 
case 2 
efor 
estress 
case 4 
    X=zeros(nnode,1); 
    %disp(sprintf('number of nodes: %i',nnode)); 
    for i=1:nnode; 
        deflection(i)=utot(i*2-1); 
        slope(i)=utot(i*2); 
        X(i)=x(i,1); 
        if i==(nnode+1)/2 
            %disp(sprintf('theta 2=%0.4g ',slope(i))); 
        end 
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    end 
     
   %disp(sprintf('max deflection=%0.4g',(max(abs(deflection))))); 
 
yFEA=deflection; 
   %     figure(2) 
%     title('Moment') 
%     hold('on') 
%     plot(xplot,moment,'b') 
%     figure(3) 
%     title('Shear') 
%     hold('on') 
%     plot(xplot,shear,'g') 
%    figure(4) 
%    title('deflection') 
%    hold('on') 
%     plot(X,deflection,'r') 
End 
 
function [eldat,ieleqn] = beam1d(eprop,lnodes,ieqn,icode,i) 
% 
% This function computes the element load vector (case 1) and 
% element stiffness matrix (case 2) for a 1-D beam element. Note 
% that the element load vector is zero. It starts by forming the 
% element equation numbers that are required to assemble the global 
% matrices. 
global x utot estress efor 
% 
%determine length, sin, and cos 
i1x=x(lnodes(1),:); 
i2x=x(lnodes(2),:); 
L=abs(i2x(1)-i1x(1)); 
k=[6 3*L -6 3*L;3*L 2*L^2 -3*L L^2;-6 -3*L 6 -3*L;3*L L^2 -3*L 2*L^2]; 
nenode = 2; 
ndof = 2; 
jj = 0; 
for j1 = 1:nenode; 
     for j2 = 1:ndof; 
            jj = jj + 1; 
            numj = lnodes(j1)*ndof + j2 - ndof; 
            idof(jj,1)=numj; 
            ieleqn(jj) = ieqn(numj); 
            if icode==0 
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                euv(jj)=utot(numj); 
            end 
        end 
end 
% 
% evaluate element matrices 
uloc=utot(idof(:,1)); 
switch icode 
case 0 
    %postprocess: moment and shear 
    eldat = ((eprop(1)*eprop(2)*2)/L^3)*k*uloc-(eprop(3)*L/2)*[1;L/6;1;-L/6]; 
      
case 1 
    % compute element load vector 
    eldat = (eprop(3)*L/2)*[1;L/6;1;-L/6]; 
case 2 
    % compute element stiffness matrix 
       eldat = ((eprop(1)*eprop(2)*2)/L^3)*k; 
end 
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Appendix C:  MATLAB Program For DSO of Typical MMT Base Side 
 
%*********Continous  Constrained Optimization 
% for typical 2D MMT Base Side 
% this program generates all of the branches 
% and finds the continous optimal solution 
% for each branch and save them to a file 
%---------------------------------------------- 
clear all 
close all 
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD 
nn_save=0; 
nu_sol=0; 
nu_fea=1; 
b=36; 
h=12; 
d=12; 
X=zeros(4,3); 
X(2,2)=h; X(4,2)=h; 
X(3,3)=d; X(4,3)=d; 
 
LOAD=[2 2 75; 3 2 -700]; 
 
enac=6; % number of elements across the top 
% set the number of extra elements 
num_ele=0; 
 
%set optimazation options 
% options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
options = 
optimset('LargeScale','off','DiffMaxChange',1,'DiffMinChange',0.005,'Diagnostics',
'off','Display','off','TolFun',2.0,'TolCon',0.01,'TolX',0.1); 
 
%% optimize with no extra elements 
LB = zeros(8,1); 
UB = ones(8,1); 
%test worst case for feasible solution 
if mynonlin_cons_2d(UB) <= 0 
                     clear P T; 
                     global P T 
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                     P=zeros(100,13); 
                     T=zeros(100,7); 
                     nu_fea=1; 
                     nn_save=1; 
                     nu_sol=nu_sol+1 
                     mynonlin_cons_2d(UB); 
                     mynonlin_cons_2d(LB); 
                     x0=mypso2d(LB); 
                     x0=x0'; 
%                         options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
                         [fx, fval, exitflag, output, lambda] = 
fmincon('obj_2d',x0,[],[],[],[],LB,UB,'mynonlin_cons_2d',options); 
                   xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)]; 
                   save(strcat('X',num2str(nu_sol)),'X','-ascii'); 
                   save(strcat('P',num2str(nu_sol)),'P','-ascii'); 
                   save(strcat('T',num2str(nu_sol)),'T','-ascii'); 
                   sol(nu_sol)=fval;  
                          
                         nn_save=0; 
end 
%% end no extra elements 
 
%% optimize with one extra elements 
% set the number of extra elements 
num_ele=1; 
clear x0 UB LB; 
LB = zeros(10,1); 
UB = ones(10,1); 
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0; 
for xi=1:(enac+1) 
   X(1,1)=0; 
    for xj=1:(enac+1)  
     
        %test worst case for feasible solution 
       
        if mynonlin_cons_2d(UB) <= 0 
                     clear P T; 
                     global P T 
                     P=zeros(100,13); 
                     T=zeros(100,7); 
                     nu_fea=1; 



 118 

                     nn_save=1; 
                     nu_sol=nu_sol+1 
                     mynonlin_cons_2d(UB); 
                     mynonlin_cons_2d(LB); 
                     x0=mypso2d(LB); 
                     x0=x0'; 
                      
                             %x0=LB+.5; 
%                         options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
                         [fx, fval, exitflag, output, lambda] = 
fmincon('obj_2d',x0,[],[],[],[],LB,UB,'mynonlin_cons_2d',options); 
                                                 
                   xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)]; 
                   save(strcat('X',num2str(nu_sol)),'X','-ascii'); 
                   save(strcat('P',num2str(nu_sol)),'P','-ascii'); 
                   save(strcat('T',num2str(nu_sol)),'T','-ascii'); 
                   sol(nu_sol)=fval;  
                      
        nn_save=0;  
        end 
 
        X(1,1)=X(1,1)+b/enac; 
    end 
     X(2,1)=X(2,1)+b/enac; 
end 
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0; 
%save the solutions 
save sol.txt sol -ascii; 
 
function pbest=mypso2d(L) 
% this function uses particle swarm to optimize the  
%continous branch of a typical MMT Base Side 
% this is the 2D version 
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD 
%pass the following to the function once it works 
wmax=0.9; 
wmin=0.4; 
itmax=8; 
errmax=.0001; 
 c1=2; 
 c2=2; 
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 N=50; 
 D=size(L,1); 
 
i=1:itmax; 
W=wmax-((wmax-wmin)/itmax)*i; 
 
% Initialization of positions 
a=0; 
b=1; 
x=a+(b-a)*rand(N,D,1); 
 
for i=1:N 
    F(i,1)=myext_penalty2d(x(i,:)'); 
end 
 
[C,I]=min(abs(F(:,1))); 
pB=C; 
gB=pB; 
XX(1,1)=I; 
gbest(1,:)=x(I,:); 
pbest=gbest; 
for i=1:N 
    V=c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:)); 
    x(i,:)=x(i,:)+V; 
end 
 
jj=0; 
while jj<itmax 
     
    for i=1:N 
        x(i,:)=myclamped(x(i,:),0,1); 
         
        F(i,1)=myext_penalty2d(x(i,:)'); 
    end 
    [C,I]=min(abs(F(:,1))); 
    gbest(1,:)=x(I,:); 
    gB=C; 
    
     
    for i=1:N 
        V=W(jj+1)*c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:)); 
        x(i,:)=x(i,:)+V; 
    end 
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     if gB<pB 
        pB=gB; 
        pbest=gbest; 
        
    end 
    jj=jj+1; 
    %sol(jj,1:(D+1))=[pB pbest']; 
end 
    
function [c, ceq] = mynonlin_cons_2d(L) 
% this function take cross sectional data L2 and t  
% and returns the deflection and 1st natural freq of the  
% structure 
% 
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD 
%remove the following after testing 
b=36; 
h=12; 
d=12; 
enac=6; 
 
nenode=2;% nenode = number of nodes/element 
ndof=6;% ndof=number of degrees of freedom/node 
 
%mesh the model 
[x, ielem]=mymesh2d; 
%get element properties 
eleprop=myeleprop2d(L); 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
% 
%set BC and loads 
BC=zeros(nnode,ndof); %zero=free 1=fixed 
BC([enac+2 (enac+1)*2],1:6)=1; 
%BC([enac+2 tot_ele+2],1:6)=1; 
 BC(1:nnode,3:5)=1; 
  
 
 
F(1:nnode*ndof)=0; 
 
XYZ=zeros(nel,3); 
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K=zeros(nnode*ndof,nnode*ndof); 
M=zeros(nnode*ndof,nnode*ndof); 
 
%element and cs data for book example delete for final 
% use the Lsection program to replace 
% Set up all the constants 
E=30e6; 
G=11.5e6; 
rho=0.286; 
 
%get element stiffness matrices then put in global stiffness matrix 
% set the lumped mass matrix 
for i = 1:nel; 
    A=eleprop(i,1); 
    Iy=eleprop(i,2); 
    Iz=eleprop(i,3); 
    J=eleprop(i,4); 
    
k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3)); 
    
m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3)); 
    M=myassemble(M,m,ielem(i,1),ielem(i,2)); 
    K=myassemble(K,k,ielem(i,1),ielem(i,2)); 
end 
 
% compute and assemble element load vector force vector 
i2=1;i3=1; 
for i = 1:nnode;%loop thru each node 
    for i1=1:ndof;%loop thru each dof in the node 
    if BC(i,i1) == 0; 
        %set up book keeping for partition 
        bk(i3)=i2; 
        i3=i3+1; 
    end 
    i2=i2+1; 
    end 
end 
% Insert forces into global force vector 
for i=1:size(LOAD,1); 
    F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3); 
end 
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%partition the system of eq. 
m=zeros(size(bk,2),size(bk,2)); 
k=zeros(size(bk,2),size(bk,2)); 
f(1:size(bk,2))=0; 
for i=1:size(bk,2); 
    for i1=1:size(bk,2); 
        m(i,i1)=M(bk(i),bk(i1)); 
        k(i,i1)=K(bk(i),bk(i1)); 
    end 
    f(i)=F(bk(i)); 
end 
% 
 
%solve for 1st natural frequency 
w=eig(k,m); 
w1=sqrt(abs(w(1))); 
 
%solve for displacements 
u=k\f'; 
 
%Setup Global Nodal Displacement Vector 
U(1:nnode*ndof)=0; 
for i=1:size(bk,2); 
    U(bk(i))=u(i); 
end 
 
%calculate the global nodal force vector 
F=K*U'; 
 
%set max deflection and natural freq. 
md=0.005;mf=40; 
% nonlinear inequality constraints returned as vector c 
 
for i=1:(enac+1) 
    ydisp(i)=U((i-1)*6+2); 
%     ydisp(i+(enac+1))=U(((i+(2*enac+3))-2)*6+2); 
end 
 
if nn_save==1 
    temp=zeros(13,1); 
    temp(2:size(L,1)+1,1)=L; 
    temp(1,1)=num_ele; 
    P(nu_fea,:)=temp'; 
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    T(nu_fea,:)=ydisp; 
    nu_fea=nu_fea+1; 
    clear temp; 
end 
c=max(abs(ydisp))-md; 
 
% nonlinear equality constraints returned as vector ceq 
ceq = []; % there are no nonlinear equality  
    % constraints in this problem 
                 
function [c, ceq] = myext_penalty2d(L) 
% this function take cross sectional data L2 and t  
% and returns the deflection and natural freq of the  
% structure 
%******** This uses external penalty function  
%********** used for the PSO because it is  
%*********  unconstrained  
% 
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD 
%remove the following after testing 
b=36; 
h=12; 
d=12; 
enac=6; 
 
volume=obj_2d(L); 
 
nenode=2;% nenode = number of nodes/element 
ndof=6;% ndof=number of degrees of freedom/node 
 
vl=size(L,1); 
L2=L(1:vl/2)*1.25+0.75; 
t=L(vl/2+1:vl)*.375+.125; 
 
 
%mesh the model 
[x, ielem]=mymesh2d; 
%get element properties 
eleprop=myeleprop2d(L); 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
% 
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%set BC and loads 
BC=zeros(nnode,ndof); %zero=free 1=fixed 
BC([enac+2 (enac+1)*2],1:6)=1; 
 BC(1:nnode,3:5)=1; 
  
 
 
F(1:nnode*ndof)=0; 
 
XYZ=zeros(nel,3); 
K=zeros(nnode*ndof,nnode*ndof); 
M=zeros(nnode*ndof,nnode*ndof); 
 
%element and cs data for book example delete for final 
% use the Lsection program to replace 
% Set up all the constants 
E=30e6; 
G=11.5e6; 
rho=0.286; 
 
%get element stiffness matrices then put in global stiffness matrix 
% set the lumped mass matrix 
for i = 1:nel; 
    A=eleprop(i,1); 
    Iy=eleprop(i,2); 
    Iz=eleprop(i,3); 
    J=eleprop(i,4); 
    
k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3)); 
    
m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3)); 
    M=myassemble(M,m,ielem(i,1),ielem(i,2)); 
    K=myassemble(K,k,ielem(i,1),ielem(i,2)); 
end 
 
% compute and assemble element load vector force vector 
i2=1;i3=1; 
for i = 1:nnode;%loop thru each node 
    for i1=1:ndof;%loop thru each dof in the node 
    if BC(i,i1) == 0; 
        %set up book keeping for partition 
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        bk(i3)=i2; 
        i3=i3+1; 
    end 
    i2=i2+1; 
    end 
end 
% Insert forces into global force vector 
for i=1:size(LOAD,1); 
    F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3); 
end 
%partition the system of eq. 
m=zeros(size(bk,2),size(bk,2)); 
k=zeros(size(bk,2),size(bk,2)); 
f(1:size(bk,2))=0; 
for i=1:size(bk,2); 
    for i1=1:size(bk,2); 
        m(i,i1)=M(bk(i),bk(i1)); 
        k(i,i1)=K(bk(i),bk(i1)); 
    end 
    f(i)=F(bk(i)); 
end 
% 
 
%solve for 1st natural frequency 
w=eig(k,m); 
w1=sqrt(abs(w(1))); 
 
%solve for displacements 
u=k\f'; 
 
%Setup Global Nodal Displacement Vector 
U(1:nnode*ndof)=0; 
for i=1:size(bk,2); 
    U(bk(i))=u(i); 
end 
 
%calculate the global nodal force vector 
F=K*U'; 
 
%set max deflection and natural freq. 
md=0.005;mf=40; 
% nonlinear inequality constraints returned as vector c 
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%Get the y disp for the top surface 
for i=1:(enac+1) 
    ydisp(i)=U((i-1)*6+2); 
     
end 
 
if nn_save==1 
    temp=zeros(13,1); 
    temp(2:size(L,1)+1,1)=L; 
    temp(1,1)=num_ele; 
    P(nu_fea,:)=temp'; 
    T(nu_fea,:)=ydisp; 
    nu_fea=nu_fea+1; 
    clear temp; 
end 
% external penaly function 
c=volume + 5000*(max(abs(ydisp))-md)^2; 
 
% nonlinear equality constraints returned as vector ceq 
ceq = []; % there are no nonlinear equality  
    % constraints in this problem 
 
function = discrete_2d() 
% this function loads the branch data from the continous optimization 
% It test the best topos and cuts branches.  Can either do NN or FEA 
% If NN it can load previous weights and bias or generate new. 
clear all 
close all 
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD 
nn_save=0; 
 
%** set hidden layer size factor 
hls=1.5; 
%*** get input from user 
pretrain=input('pretrain NN? 1=yes 0=no'); 
useNN=input('use NN? 1=yes 0=no'); 
 
LOAD=[2 2 75; 3 2 -700]; 
 
nu_sol=0; 
nu_fea=1; 
enac=6; % number of elements across the top 
% set the number of extra elements 
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num_ele=1; 
 
%load and sort the continuous sol. for each branch 
load sol.txt -ascii; 
[Y,I]=sort(sol); 
sol_temp=10000; 
 
j=1; 
cpu_seconds=0; 
while sol_temp>sol(j) 
i=I(j); 
p=load(strcat('P',num2str(i)),'-ascii'); 
t=load(strcat('T',num2str(i)),'-ascii'); 
topo=load(strcat('X',num2str(i)),'-ascii'); 
P=p'; 
T=t'; 
X=topo 
clear t p topo; 
 
 
if useNN == 1 %*** test if NN ***** 
% ************ build NN and train ****************** 
minP=min(P'); 
maxP=max(P'); 
PR=[minP',maxP']; 
layer1=round(1.5*size(P,1)); 
layer2=round(layer1/2); 
outlayer=size(T,1); 
%net = newff(PR,[layer1 outlayer],{'logsig','tansig'},'traincgf'); 
net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp'); 
%net.trainParam.mem_reduc=4; 
net.trainParam.goal=1e-6; 
net.trainParam.show=100; 
net.trainParam.epochs=2000; 
if pretrain > 0  
% load prevous NN weights and bias 
    load -ascii pw1.txt;net.IW{1,1}=pw1; 
    load -ascii pw2.txt;net.LW{2,1}=pw2; 
    load -ascii pw3.txt;net.LW{3,2}=pw3; 
    load -ascii pb1.txt;net.b{1,1}=pb1; 
    load -ascii pb2.txt;net.b{2,1}=pb2; 
    load -ascii pb3.txt;net.b{3,1}=pb3; 
    net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainlm'); 
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    net.trainParam.goal=1e-10; 
    net.trainParam.epochs=150; 
 end %***** end pretrain *****    
%**** train network ****** 
net=train(net,P,T); 
pretrain=2;%***** use pretrained data for future test *** 
%********** finish build and train the NN ***************** 
 
 
% save the weights and bias for later 
    w1=net.IW{1,1}; 
    w2=net.LW{2,1}; 
    w3=net.LW{3,2}; 
    b1=net.b{1,1}; 
    b2=net.b{2,1}; 
    b3=net.b{3,1}; 
    save pw1.txt w1 -ascii; 
    save pw2.txt w2 -ascii; 
    save pw3.txt w3 -ascii; 
    save pb1.txt b1 -ascii; 
    save pb2.txt b2 -ascii; 
    save pb3.txt b3 -ascii; 
end %********* end NN test ********** 
 
 
%******* test each branch ************ 
k=0; cpu0=cputime; 
for k1=1:3 
    for k2=1:3 
        for k3=1:3 
            for k4=1:3 
                for k5=1:3 
                     
                                                         
                                                        L=[k1; k2; k3; k4; k5]; 
                                                        temp=zeros(13,1); 
                                                        dL=dlsection(L); 
                                                        temp(2:size(dL,1)+1,1)=dL; 
                                                        temp(1,1)=num_ele; 
                                                        if useNN == 1 
                                                            ydisp=sim(net,temp); 
                                                            
                                                        else 
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                                                            ydisp = fea_2d_test(dL)'; 
                                                        end 
                                                        k=k+1; 
                                                         
                                                        if max(abs(ydisp))<=.009 
                                                            sol_temp1=obj_2d(dL); 
                                                            if sol_temp1<sol_temp 
                                                                sol_temp=sol_temp1; 
                                                                sol_dL=dL; 
                                                                dX=X; 
                                                                sol_disp=ydisp; 
                                                                  
                                                            end 
                                                        end 
                                                         
                                                         
                end 
            end 
        end 
    end 
end 
 j=j+1; 
  cpu1=cputime;cpu_seconds=cpu_seconds+(cpu1-cpu0) 
end %end the while 
%plot final topo. 
X=dX 
[x, ielem]=mymesh2d; 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
figure(1) 
 title('Model') 
 xlabel('X'), ylabel('Y'), zlabel('Z') 
 hold('on') 
 grid('on') 
XYZ=zeros(nel,3); 
 
for i = 1:nel; 
    XYZ(1,1:3)=x(ielem(i,1),1:3); 
    XYZ(2,1:3)=x(ielem(i,2),1:3); 
    plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k') 
end 
sol_temp 
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sol_dL 
k 
 nload=size(LOAD,1); i11=0; 
   for i1=1:nload 
       if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1; 
       elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1; 
       elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1; 
       end  
   end 
   if i11>=1,  
      x=[1:i11];  
      quiver3(LOAD(y,1)*6-6,[12; 12],[0; 0],load(x,1),load(x,2),load(x,3),'r')     
   end 
%% end one extra elements 
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Appendix D:  MATLAB Program – Material Distribution Topology 
Optimization 
 
%******* Modified by Donald Harby for testing typical MMT Base Sides 2D*** 
%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, 
JANUARY 2000 %%% 
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY 
OLE SIGMUND %%% 
%******* Modified for MMT base 8-21-07 Donald Harby *** 
 
function topo() 
clear all 
nelx=72;nely=24;volfrac=0.4;penal=2.5;rmin=1.1; 
 
close all 
hold off 
 
% INITIALIZE 
x(1:nely,1:nelx) = volfrac;  
 
%**** Add fixed material  and holes *** 
% ****** passive holes active fixed material ** 
for ely=1:nely 
    for elx=1:nelx 
        active(ely,elx)=0; 
        if elx<=2 
            active(ely,elx)=1; 
            x(ely,elx)=1; 
        end 
        if elx>=nelx-1 
            active(ely,elx)=1; 
            x(ely,elx)=1; 
        end 
        if ely<=2 
            active(ely,elx)=1; 
            x(ely,elx)=1; 
        end 
        if ely>=nely-1 
            active(ely,elx)=1; 
            x(ely,elx)=1; 
        end 
    end 
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end 
%********* end my passive or active  
 
loop = 0;  
change = 1.; 
% START ITERATION 
% while change > 0.01 
while loop < 60 
  loop = loop + 1; 
  xold = x; 
% FE-ANALYSIS 
  [U]=FE(nelx,nely,x,penal);          
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
  [KE] = lk; 
  c = 0.; 
  for ely = 1:nely 
    for elx = 1:nelx 
      n1 = (nely+1)*(elx-1)+ely;  
      n2 = (nely+1)* elx   +ely; 
      dc(ely,elx)=0.; 
        for i=1:2 
            Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],i); 
            c = c + x(ely,elx)^penal*Ue'*KE*Ue; 
            dc(ely,elx) = dc(ely,elx)-penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; 
        end 
    end 
  end 
% FILTERING OF SENSITIVITIES 
  [dc]   = check(nelx,nely,rmin,x,dc);     
% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD 
  [x]    = OC(nelx,nely,x,volfrac,dc,active);  
% PRINT RESULTS 
  change = max(max(abs(x-xold))); 
  disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ... 
       ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ... 
        ' ch.: ' sprintf('%6.3f',change )]) 
% PLOT DENSITIES   
  colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6); 
end  
%plot load vector 
hold on 
quiver3(72*2/6,0,0,0,10,0,'r') 
quiver3(72*2/6-12,5,0,0,-1,0,.7,'g') 
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%%%%%%%%%% OPTIMALITY CRITERIA 
UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
function [xnew]=OC(nelx,nely,x,volfrac,dc,active)   
l1 = 0; l2 = 100000; move = 0.2; 
while (l2-l1 > 1e-4) 
  lmid = 0.5*(l2+l1); 
  xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid))))); 
  xnew(find(active))=1.0; 
  if sum(sum(xnew)) - volfrac*nelx*nely > 0; 
    l1 = lmid; 
  else 
    l2 = lmid; 
  end 
end 
 
%%%%%%%%%% MESH-INDEPENDENCY 
FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
function [dcn]=check(nelx,nely,rmin,x,dc) 
dcn=zeros(nely,nelx); 
for i = 1:nelx 
  for j = 1:nely 
    sum=0.0;  
    for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) 
      for l = max(j-floor(rmin),1):min(j+floor(rmin),nely) 
        fac = rmin-sqrt((i-k)^2+(j-l)^2); 
        sum = sum+max(0,fac); 
        dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k); 
      end 
    end 
    dcn(j,i) = dcn(j,i)/(x(j,i)*sum); 
  end 
end 
%%%%%%%%%% FE-
ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
function [U]=FE(nelx,nely,x,penal) 
[KE] = lk;  
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 
F = sparse(2*(nely+1)*(nelx+1),2); U = zeros(2*(nely+1)*(nelx+1),2); 
for elx = 1:nelx 
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  for ely = 1:nely 
    n1 = (nely+1)*(elx-1)+ely;  
    n2 = (nely+1)* elx   +ely; 
    edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 
    K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; 
  end 
end 
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 
% F(2,1) = -1; 
% fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); 
 
%**** my forces and BC Donald Harby 
mid_x=round(2*nelx/6); 
F(2*(mid_x)*(nely+1)+2,1)=-1; 
F(2*(mid_x-12)*(nely+1)+2,2)=.25; 
fixeddofs=[2*(nely+1)-1 2*(nely+1) 2*(nelx+1)*(nely+1)-1 2*(nelx+1)*(nely+1)]; 
%*************** 
 
alldofs     = [1:2*(nely+1)*(nelx+1)]; 
freedofs    = setdiff(alldofs,fixeddofs); 
% SOLVING 
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       
U(fixeddofs,:)= 0; 
%%%%%%%%%% ELEMENT STIFFNESS 
MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
function [KE]=lk 
E = 1.;  
nu = 0.3; 
k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...  
   -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 
                  k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
                  k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
                  k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
                  k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 
                  k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
                  k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
                  k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This Matlab code was written by Ole Sigmund, Department of Solid         % 
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% Mechanics, Technical University of Denmark, DK-2800 Lyngby, 
Denmark.     % 
% Please sent your comments to the author: sigmund@fam.dtu.dk              % 
%                                                                          % 
% The code is intended for educational purposes and theoretical details    % 
% are discussed in the paper                                               % 
% "A 99 line topology optimization code written in Matlab"                 % 
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,    % 
% Vol 21, pp. 120--127.                                                    % 
%                                                                          % 
% The code as well as a postscript version of the paper can be             % 
% downloaded from the web-site: http://www.topopt.dtu.dk                   % 
%                                                                          % 
% Disclaimer:                                                              % 
% The author reserves all rights but does not guaranty that the code is    % 
% free from errors. Furthermore, he shall not be liable in any event       % 
% caused by the use of the program.                                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 136 

 
Appendix E:  MATLAB Program PSO of MMT Base 3D 
 
%*********Continous  Constrained Optimization 
% Test and generates the branches for the 3D case 
% of a typical MMT Base structure 
% Saves the data for NN testing 
%---------------------------------------------- 
clear all 
close all 
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD 
LOAD=[5 2 100; 6 2 -1200;19 2 -1200;20 2 100]; 
nn_save=0; 
nu_sol=0; 
nu_fea=1; 
b=36; 
h=12; 
d=12; 
X=zeros(4,3); 
X(2,2)=h; X(4,2)=h; 
X(3,3)=d; X(4,3)=d; 
 
enac=6; % number of elements across the top 
% set the number of extra elements 
num_ele=0; 
 
%set optimazation options 
% options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
options = 
optimset('LargeScale','off','DiffMaxChange',1,'DiffMinChange',0.005,'Diagnostics',
'off','Display','off','TolFun',2.0,'TolCon',0.01,'TolX',0.1); 
 
%% optimize with no extra elements 
LB = zeros(24,1); 
UB = ones(24,1); 
%test worst case for feasible solution 
if mynonlin_cons_1(UB) <= 0 
    nn_save=1; 
    nu_sol=nu_sol+1; 
    disp('foo') 
                 %           x0=mypso; 
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                             x0=LB+.5; 
%                         options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
                         [fx, fval, exitflag, output, lambda] = 
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options); 
                           nn_save=0; 
end 
%% end no extra elements 
 
%% optimize with one extra elements 
% set the number of extra elements 
num_ele=1; 
clear x0 UB LB; 
LB = zeros(26,1); 
UB = ones(26,1); 
for xi=1:(enac+1) 
   X(1,1)=0; 
    for xj=1:(enac+1)  
     
        %test worst case for feasible solution 
       
        if mynonlin_cons_1(UB) <= 0 
            nn_save=1; 
             nu_sol=nu_sol+1; 
             disp('foo2') 
                 %           x0=mypso; 
                             x0=LB+.5; 
%                         options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
                         %[fx, fval, exitflag, output, lambda] = 
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options); 
                      
        nn_save=0;  
        end 
 
        X(1,1)=X(1,1)+b/enac; 
    end 
     X(2,1)=X(2,1)+b/enac; 
end 
X(1,1)=0;X(2,1)=0; 
%% end one extra elements 
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%% optimize with two extra elements 
% set the number of extra elements 
num_ele=2; 
clear x0 UB LB; 
LB = zeros(28,1); 
UB = ones(28,1); 
for xi=1:(enac+1) 
   X(1,1)=0; 
    for xj=1:(enac+1) 
        X(3,1)=0; 
        for xii=1:(enac+1) 
            X(4,1)=0; 
            for xjj=1:(enac+1) 
     
                %test worst case for feasible solution 
                 
                 if mynonlin_cons_1(UB) <= 0 
                      clear P T; 
                     global P T 
                     P=zeros(100,28); 
                     T=zeros(100,14); 
                     nu_fea=1; 
                     nn_save=1; 
                         nu_sol=nu_sol+1 
                          x0=mypso(LB); 
                          x0=x0'; 
                          mynonlin_cons_1(UB); 
                          mynonlin_cons_1(LB); 
                            %x0=LB+.5; 
%                         options = 
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05); 
                        [fx, fval, exitflag, output, lambda] = 
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options); 
                        xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)]; 
                        save(strcat('X',num2str(nu_sol)),'X','-ascii'); 
                        save(strcat('P',num2str(nu_sol)),'P','-ascii'); 
                        save(strcat('T',num2str(nu_sol)),'T','-ascii'); 
                        sol(nu_sol)=fval; 
                        nn_save=0; 
                 end 
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                X(4,1)=X(4,1)+b/enac; 
            end 
            X(3,1)=X(3,1)+b/enac; 
        end 
         
        X(1,1)=X(1,1)+b/enac; 
    end 
     X(2,1)=X(2,1)+b/enac; 
end 
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0; 
%save the solutions 
save sol.txt sol -ascii; 
 
 
 
 
%plot final topo. 
[x, ielem]=mymesh; 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
figure(1) 
 title('3D MMT BASE') 
 xlabel('X'), ylabel('Y'), zlabel('Z') 
 hold('on') 
 grid('on') 
XYZ=zeros(nel,3); 
 
for i = 1:nel; 
    XYZ(1,1:3)=x(ielem(i,1),1:3); 
    XYZ(2,1:3)=x(ielem(i,2),1:3); 
    plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k') 
end 
LOAD([1 4],3)=LOAD([1 4],3)*6; 
 nload=size(LOAD,1); i11=0; 
   for i1=1:nload 
       if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1; 
       elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1; 
       elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1; 
       end  
   end 
   if i11>=1,  
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      x=[1:i11];  
      quiver3([LOAD(1,1)*6-6;LOAD(2,1)*6-6;(LOAD(3,1)-15)*6;(LOAD(4,1)-
15)*6],[12; 12;12;12],[0; 0;12;12],load(x,1),load(x,2),load(x,3),'r')     
   end 
 
function pbest=mypso(L) 
% the pso for the 3D base 
global X b h d enac num_ele nn_save nu_sol P T nu_fea 
%pass the following to the function once it works 
wmax=0.9; 
wmin=0.4; 
itmax=4; 
errmax=.0001; 
 c1=1.5; 
 c2=1.5; 
 N=50; 
 D=size(L,1); 
  
% for i=1:itmax 
%  W(i)=wmax-((wmax-wmin)/itmax)*i; 
% end 
 
  
i=1:itmax; 
W=wmax-((wmax-wmin)/itmax)*i; 
 
% Initialization of positions 
a=0; 
b=1; 
x=a+(b-a)*rand(N,D,1); 
 
for i=1:N 
    F(i,1)=myext_penalty(x(i,:)'); 
end 
 
[C,I]=min(abs(F(:,1))); 
pB=C; 
gB=pB; 
XX(1,1)=I; 
gbest(1,:)=x(I,:); 
pbest=gbest; 
for i=1:N 
    V=c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:)); 
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    x(i,:)=x(i,:)+V; 
end 
 
jj=0; 
while jj<itmax 
     
    for i=1:N 
        x(i,:)=myclamped(x(i,:),0,1); 
         
        F(i,1)=myext_penalty(x(i,:)'); 
    end 
    [C,I]=min(abs(F(:,1))); 
    gbest(1,:)=x(I,:); 
    gB=C; 
    
     
    for i=1:N 
        V=W(jj+1)*c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:)); 
        x(i,:)=x(i,:)+V; 
    end 
     if gB<pB 
        pB=gB; 
        pbest=gbest; 
        
    end 
    jj=jj+1; 
    %sol(jj,1:(D+1))=[pB pbest']; 
end 
    
function [c, ceq] = mynonlin_cons_1(L) 
% this function take cross sectional data L2 and t  
% and returns the deflection and natural freq of the  
% structure 
% ******** this is for the 3D case ************ 
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD 
%remove the following after testing 
b=36; 
h=12; 
d=12; 
enac=6; 
 
nenode=2;% nenode = number of nodes/element 
ndof=6;% ndof=number of degrees of freedom/node 
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%mesh the model 
[x, ielem]=mymesh; 
%get element properties 
eleprop=myeleprop(L); 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
% 
%set BC and loads 
BC=zeros(nnode,ndof); %zero=free 1=fixed 
BC([enac+2 (enac+1)*2 3*enac+4 (enac+1)*4],1:6)=1; 
%BC([enac+2 tot_ele+2],1:6)=1; 
 BC(1:nnode,3:5)=1; 
 
 % LOAD is now global 
% LOAD=[4 2 75; 5 2 -700;18 2 -700;19 2 75]; 
F(1:nnode*ndof)=0; 
 
XYZ=zeros(nel,3); 
K=zeros(nnode*ndof,nnode*ndof); 
M=zeros(nnode*ndof,nnode*ndof); 
 
%element and cs data for book example delete for final 
% use the Lsection program to replace 
% Set up all the constants 
E=30e6; 
G=11.5e6; 
rho=0.286; 
 
%get element stiffness matrices then put in global stiffness matrix 
% set the lumped mass matrix 
for i = 1:nel; 
    A=eleprop(i,1); 
    Iy=eleprop(i,2); 
    Iz=eleprop(i,3); 
    J=eleprop(i,4); 
    
k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3)); 
    
m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3)); 
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    M=myassemble(M,m,ielem(i,1),ielem(i,2)); 
    K=myassemble(K,k,ielem(i,1),ielem(i,2)); 
end 
 
% compute and assemble element load vector force vector 
i2=1;i3=1; 
for i = 1:nnode;%loop thru each node 
    for i1=1:ndof;%loop thru each dof in the node 
    if BC(i,i1) == 0; 
        %set up book keeping for partition 
        bk(i3)=i2; 
        i3=i3+1; 
    end 
    i2=i2+1; 
    end 
end 
% Insert forces into global force vector 
for i=1:size(LOAD,1); 
    F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3); 
end 
%partition the system of eq. 
m=zeros(size(bk,2),size(bk,2)); 
k=zeros(size(bk,2),size(bk,2)); 
f(1:size(bk,2))=0; 
for i=1:size(bk,2); 
    for i1=1:size(bk,2); 
        m(i,i1)=M(bk(i),bk(i1)); 
        k(i,i1)=K(bk(i),bk(i1)); 
    end 
    f(i)=F(bk(i)); 
end 
% 
 
%solve for 1st natural frequency 
w=eig(k,m); 
w1=sqrt(abs(w(1))); 
 
%solve for displacements 
u=k\f'; 
 
%Setup Global Nodal Displacement Vector 
U(1:nnode*ndof)=0; 
for i=1:size(bk,2); 
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    U(bk(i))=u(i); 
end 
 
%calculate the global nodal force vector 
F=K*U'; 
 
%set max deflection and natural freq. 
md=0.005;mf=40; 
% nonlinear inequality constraints returned as vector c 
 
for i=1:(enac+1) 
    ydisp(i)=U((i-1)*6+2); 
    ydisp(i+(enac+1))=U(((i+(2*enac+3))-2)*6+2); 
end 
 
if nn_save==1 
    P(nu_fea,:)=L'; 
    T(nu_fea,:)=ydisp; 
    nu_fea=nu_fea+1; 
end 
 
c=max(abs(ydisp))-md; 
 
% nonlinear equality constraints returned as vector ceq 
ceq = []; % there are no nonlinear equality  
    % constraints in this problem 
                 
% This function test the best topo branches  
% Using discreet values for standard steel  
% members it can use NN or FEA  It can  
% train NN using prevous weights and bias  
% of generate new. 
%  ************** CAution!!! it will take 
% forever to solve using FEA weeks or months for  
% simple problems !!! use the NN 
clear all 
close all 
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD 
nn_save=0; 
LOAD=[5 2 100; 6 2 -1200;19 2 -1200;20 2 100]; 
 
%** set hidden layer size factor 
hls=1.5; 
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%*** get input from user 
pretrain=input('pretrain NN? 1=yes 0=no'); 
useNN=input('use NN? 1=yes 0=no'); 
 
nu_sol=0; 
nu_fea=1; 
enac=6; % number of elements across the top 
% set the number of extra elements 
num_ele=2; 
 
%load and sort the continuous sol. for each branch 
load sol.txt -ascii; 
[Y,I]=sort(sol); 
sol_temp=10000; 
 
j=1; 
cpu_seconds=0; 
while sol_temp>sol(j) 
i=I(j); 
p=load(strcat('P',num2str(i)),'-ascii'); 
t=load(strcat('T',num2str(i)),'-ascii'); 
topo=load(strcat('X',num2str(i)),'-ascii'); 
P=p'; 
T=t'; 
T=[T(2:6,:);T(9:13,:)]; 
X=topo 
clear t p topo; 
 
 
if useNN == 1 %*** test if NN ***** 
% ************ build NN and train ****************** 
minP=min(P'); 
maxP=max(P'); 
PR=[minP',maxP']; 
layer1=round(1.5*size(P,1)); 
layer2=round(layer1/2); 
outlayer=size(T,1); 
%net = newff(PR,[layer1 outlayer],{'logsig','tansig'},'traincgf'); 
net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp'); 
%net.trainParam.mem_reduc=4; 
net.trainParam.goal=1e-7; 
net.trainParam.show=100; 
net.trainParam.epochs=3000; 
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if pretrain > 0  
% load prevous NN weights and bias 
    load -ascii pw1.txt;net.IW{1,1}=pw1; 
    load -ascii pw2.txt;net.LW{2,1}=pw2; 
    load -ascii pw3.txt;net.LW{3,2}=pw3; 
    load -ascii pb1.txt;net.b{1,1}=pb1; 
    load -ascii pb2.txt;net.b{2,1}=pb2; 
    load -ascii pb3.txt;net.b{3,1}=pb3; 
    net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp'); 
    net.trainParam.goal=1e-10; 
    net.trainParam.epochs=2000; 
 end %***** end pretrain *****    
%**** train network ****** 
net=train(net,P,T); 
pretrain=2;%***** use pretrained data for future test *** 
%********** finish build and train the NN ***************** 
 
close all 
% save the weights and bias for later 
    w1=net.IW{1,1}; 
    w2=net.LW{2,1}; 
    w3=net.LW{3,2}; 
    b1=net.b{1,1}; 
    b2=net.b{2,1}; 
    b3=net.b{3,1}; 
    save pw1.txt w1 -ascii; 
    save pw2.txt w2 -ascii; 
    save pw3.txt w3 -ascii; 
    save pb1.txt b1 -ascii; 
    save pb2.txt b2 -ascii; 
    save pb3.txt b3 -ascii; 
end %********* end NN test ********** 
 
 
%******* test each branch ************ 
k=0; cpu0=cputime; 
for k1=1:3 
    for k2=1:3 
        for k3=1:3 
            for k4=1:3 
                for k5=1:3 
                    for k6=1:3 
                        for k7=1:3 
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                            for k8=1:3 
                                for k9=1:3 
                                    for k10=1:3 
                                        for k11=1:3 
                                            for k12=1:3 
                                                for k13=1:3 
                                                    for k14=1:3 
                     
                                                         
                                                        
L=[k1;k2;k3;k4;k5;k6;k7;k8;k9;k10;k11;k12;k13;k14]; 
                                                         
                                                        dL=dlsection(L); 
                                                        if useNN == 1 
                                                            %cpu01=cputime; 
                                                            ydisp=sim(net,dL); 
                                                            %cpu11=cputime;cpu_seconds=(cpu11-
cpu01) 
                                                            
                                                        else 
                                                            %cpu01=cputime; 
                                                            ydisp = fea_3d_test(dL)'; 
                                                            %cpu11=cputime;cpu_seconds=(cpu11-
cpu01) 
                                                        end 
                                                        k=k+1; 
                                                         
                                                        if max(abs(ydisp))<=.009 
                                                            sol_temp1=obj_2d(dL); 
                                                            if sol_temp1<sol_temp 
                                                                sol_temp=sol_temp1; 
                                                                sol_dL=dL; 
                                                                dX=X; 
                                                                sol_disp=ydisp; 
                                                                  
                                                            end 
                                                        end 
                                                    end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
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                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 j=j+1; 
  cpu1=cputime;cpu_seconds=cpu_seconds+(cpu1-cpu0) 
end %end the while 
%plot final topo. 
X=dX 
[x, ielem]=mymesh; 
 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
figure(1) 
 title('3D MMT BASE') 
 xlabel('X'), ylabel('Y'), zlabel('Z') 
 hold('on') 
 grid('on') 
XYZ=zeros(nel,3); 
 
for i = 1:nel; 
    XYZ(1,1:3)=x(ielem(i,1),1:3); 
    XYZ(2,1:3)=x(ielem(i,2),1:3); 
    plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k') 
end 
LOAD([1 4],3)=LOAD([1 4],3)*6; 
 nload=size(LOAD,1); i11=0; 
   for i1=1:nload 
       if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1; 
       elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1; 
       elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1; 
       end  
   end 
   if i11>=1,  
      x=[1:i11];  
      quiver3([LOAD(1,1)*6-6;LOAD(2,1)*6-6;(LOAD(3,1)-15)*6;(LOAD(4,1)-
15)*6],[12; 12;12;12],[0; 0;12;12],load(x,1),load(x,2),load(x,3),'r')     
   end 
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Appendix F:  MATLAB Program Used to Generate AutoLISP Program 
Lspgen.m 
 
global X b h d enac num_ele 
 
%uncomment the following for testing 
b=36; 
h=12; 
d=12; 
num_ele=2;enac=6; 
 
fid = fopen('exp.lsp','w'); 
X=[30 0 0;36 12 0;24 0 12;24 12 0]; 
cs=[3 1 3 1 3 1 3 1 3 2 2 3 2 3]; 
[x, ielem]=mymesh; 
nnode=size(x,1);% nnode=total number of nodes 
nel=size(ielem,1);% nel=total number of elements 
j=1;jj=1; 
for i=1:nel 
    if i<=(enac*4) 
       elecs=cs(j); 
       jj=jj+1; 
       if jj==enac+1; 
           jj=1; 
           j=j+1; 
       end 
   end 
   if i>(enac*4) 
       elecs=cs(j); 
       if ((i>(enac*4)+8) & (i<=(enac*4)+10)) 
           elecs=1; 
       else 
           j=j+1; 
       end 
   end 
     
    x1=x(ielem(i,1),:); 
    x2=x(ielem(i,2),:); 
    fprintf(fid,'(setq pt1 \047(%s) pt2 \047(%s))\n',num2str(x1),num2str(x2)); 
    fprintf(fid,'(command \"ucs\" \"n\" \"za\" pt1 pt2)\n'); 
    fprintf(fid,'(command \"insert\" \"%s\" \"0,0,0\" \"\" \"\" \"\")\n',num2str(elecs)); 
    fprintf(fid,'(vl-cmdf \"explode\" (entlast))\n'); 
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    fprintf(fid,'(vl-cmdf \"extrude\" (entlast) \"\" (distance pt1 pt2) \"\")\n'); 
    fprintf(fid,'(command \"ucs\" \"w\")\n\n'); 
end 
 fprintf(fid,'(command \"union\" \"all\" \"\")\n\n'); 
fclose(fid); 
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Appendix G:  Sample AutoLISP Code Generated from MATLAB 
Exp.lsp 
 
(setq pt1 '(0  12   0) pt2 '(6  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(6  12   0) pt2 '(12  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(12  12   0) pt2 '(18  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18  12   0) pt2 '(24  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(24  12   0) pt2 '(30  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(30  12   0) pt2 '(36  12   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
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(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(0  0  0) pt2 '(6  0  0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(6  0  0) pt2 '(12   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(12   0   0) pt2 '(18   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18   0   0) pt2 '(24   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(24   0   0) pt2 '(30   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(30   0   0) pt2 '(36   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
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(command "ucs" "w") 
 
(setq pt1 '(0  12  12) pt2 '(6  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(6  12  12) pt2 '(12  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(12  12  12) pt2 '(18  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18  12  12) pt2 '(24  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(24  12  12) pt2 '(30  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(30  12  12) pt2 '(36  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 



 154 

 
(setq pt1 '(0   0  12) pt2 '(6   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(6   0  12) pt2 '(12   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(12   0  12) pt2 '(18   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18   0  12) pt2 '(24   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(24   0  12) pt2 '(30   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(30   0  12) pt2 '(36   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
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(setq pt1 '(0  12   0) pt2 '(0  0  0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(36  12   0) pt2 '(36   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(0  12  12) pt2 '(0   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(36  12  12) pt2 '(36   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(0  12   0) pt2 '(0  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(0  0  0) pt2 '(0   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "2" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(36  12   0) pt2 '(36  12  12)) 
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(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "2" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(36   0   0) pt2 '(36   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18  12   0) pt2 '(18   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(18   0   0) pt2 '(18  12  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "1" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(30  12   0) pt2 '(36   0   0)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "2" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(setq pt1 '(24  12  12) pt2 '(24   0  12)) 
(command "ucs" "n" "za" pt1 pt2) 
(command "insert" "3" "0,0,0" "" "" "") 
(vl-cmdf "explode" (entlast)) 
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "") 
(command "ucs" "w") 
 
(command "union" "all" "") 
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