

PARAMETRIC AND OPTIMAL DESIGN OF MODULAR MACHINE TOOLS

A Dissertation

Presented to

The Faculty of the Graduate School

University of Missouri – Columbia

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

By

Donald Harby

Dr. Yuyi Lin, Dissertation Supervisor

December 2007

The undersigned, appointed by the dean of the Graduate School, have examined
the dissertation entitled

PARAMETRIC AND OPTIMAL DESIGN OF MODULAR MACHINE
TOOLS

presented by Donald Harby,

a candidate for the degree of doctor of philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Yuyi Lin

Professor Douglas Smith

Professor Robert Winholtz

Professor A. Sherif El-Gizawy

Professor Luis Occena

 ii

ACKNOWLEDGMENTS

 The author is deeply indebted to his advisor, Dr. Yuyi Lin, for his

invaluable direction and assistance. He further extends many thanks to the

members of his doctoral committee, Dr. Douglas Smith, Dr. Sherif El-Gizawy, Dr.

Robert Winholtz, and Dr. Luis Occena, for their time and effort in reading the

manuscript and their many helpful suggestions.

 The author would also like to express his appreciation to Dr. Douglas

Smith, for the GAANN fellowship, without this support this project would not have

been possible. The author would also like to express his appreciation to Dr.

Robert Kallenbach for the use of the computer hardware and software and his

valuable input on the topic of Neural Networks.

Finally and most importantly, the author wishes to acknowledge the

support and encouragement of my parents, as well as my wife and children,

Denee, Weston, and Wyatt, for their loving support and personal sacrifices. The

author would like to dedicate this work to them.

 iii

TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF TABLES ... viii

CHAPTER 1 INTRODUCTION ... 1

1.1 Background, Motivation and Purpose .. 1

1.2 Literature Review .. 4

1.2.1 Discrete Optimization ... 4

1.2.2 Heuristic Discrete Optimization Methods in Mechanical Sturctures 6

1.2.3 Particle Swarm Optimization ... 8

1.2.4 Surrogate Modeling ... 10

1.2.5 Structural Optimization .. 12

1.3 Objective .. 15

CHAPTER 2 THEORETICAL BACKGROUND ... 17

2.1 Finite Element Analysis .. 17

2.2 High-Speed FEA Approximation .. 26

2.3 Basic NN Structure .. 27

2.4 NN Test .. 33

2.6 NN training ... 45

 iv

2.7 General Comments and Results from NN test ... 51

2.7 Optimization Algorithms ... 52

2.8 Branch and Bound Discrete Optimization .. 54

2.9 Hybrid Continuous Optimization ... 61

CHAPTER 3 DISCREET OPTIMIZATION OF MMT STRUCTURES 66

3.1 Application of DSO, FEA, and NN .. 66

3.2 Traditional Topology Optimization .. 74

3.3 Large Scale MMT Base Optimization ... 83

CHAPTER 4 CONCLUSTION AND FUTURE WORK .. 87

4.1 Conclusion ... 87

4.2 Future Research .. 88

REFERENCES ... 90

APPENDIX ... 98

Appendix A: MATLAB FEA Functions .. 98

Appendix B: MATLAB Program Used to Test FEA Approximation 102

Appendix C: MATLAB Program For DSO of Typical MMT Base Side.......... 116

Appendix D: MATLAB Program – Material Distribution Topology Optimization

 .. 131

Appendix E: MATLAB Program PSO of MMT Base 3D 136

Appendix F: MATLAB Program Used to Generate AutoLISP Program 149

Appendix G: Sample AutoLISP Code Generated from MATLAB 151

VITA ... 157

 v

LIST OF FIGURES

Figure 1 Typical MMT structure (ASME B5.43M) ... 2

Figure 2. Typical grounded structure ... 14

Figure 3. Standard steel S and C profiles .. 15

Figure 4. General Beam .. 18

Figure 5. ... 20

(a) The free-body diagram .. 20

(b) the first element ... 20

Figure 6. A typical neuron .. 28

Figure 7. Transfer functions ... 29

Figure 8. A typical 2 layer feed forward neural network 30

Figure 9. Neural network training flowchart ... 31

Figure 10. Typical radial bias neuron ... 32

Figure 11. Test cantilever beam .. 33

Figure 12. Simple beam nodal deflection. .. 35

Figure 13. Modified simple beam nodal deflection. .. 36

Figure 14. NN training with no previous weights and biases. 37

Figure 15. Training using previous weights and biases. 38

Figure 16 Side of typical MMT base structure ... 39

Figure 17. Training time with no previous weights and biases........................... 41

Figure 18. Modified structure topography .. 42

Figure 19. Time to retrain NN .. 44

 vi

Figure 20. Training history for traingda .. 47

Figure 21. Training history for trainrp ... 48

Figure 22. Training history for trainscg .. 49

Figure 23. Training history for trainlm .. 50

Figure 24. Structural Bracket Example .. 55

Figure 25. Branch and Bound Tree for the Structural Bracket Example 57

Figure 26. Tree for typical MMT base side .. 60

Figure 27. Branch and bound flowchart for MMT base side 60

Figure 28. Typical topology and cross section ... 61

Figure 29. Particle swarm optimizer flowchart ... 65

Figure 30. Parallel NN training and branch and bound 69

Figure 31. Optimal topology for first load condition .. 70

Figure 32. Optimal design for second load location ... 71

Figure 33. Optimal design for third load location ... 72

Figure 34. Optimal design for fourth load location ... 73

Figure 35. Optimal topology using material density method 74

Figure 36. Optimal topology using material distrubution method 79

Figure 37. Discrete optimization using NN with lateral load 81

Figure 38. Discrete optimization using the material density method and 25%

volume .. 82

Figure 39. Discrete optimization using the material density method and 30%

volume .. 82

 vii

Figure 40. Discrete optimization using the material density method and 40%

volume .. 82

Figure 41. Discrete optimization using the material density method and 50%

volume .. 83

Figure 42. The optimal topology with applied loads ... 85

Figure 43. Program generated 3D model .. 86

 viii

LIST OF TABLES

Table 1. Standard steel cross sections .. 14

Table 2. Simple cantilever beam example displacements and CPU times 34

Table 3. Modified simple cantilever beam example displacements and CPU

times ... 36

Table 4. Nodal displacement and CPU time ... 40

Table 5. Standard steel shapes .. 40

Table 6. Displacements and CPU times for structure with new topology 43

Table 7. Standard steel shapes .. 43

Table 8. Optimization results for first load condition .. 70

Table 9. Optimization results for second load condition ... 72

Table 10. Optimization results for third load condition .. 72

Table 11. Optimization results for forth load condition .. 73

Table 12. Element sections and CPU times for 3D MMT base 84

 1

CHAPTER 1

 INTRODUCTION

1.1 Background, Motivation and Purpose

 Current manufacturing enterprises are faced with more competition than

ever. To survive and flourish in the global market manufacturers are constantly

looking for ways to increase production rate and lower cost. Machine tools are

used in many modern manufacturing processes. Design and selection of

machine tools has a great impact on the productivity and cost of many

manufacturing processes. During the past several decades a significant amount

of research has been conducted in the area of machine tool design, with the goal

to develop more efficient and lower cost tools for manufacturing.

 Over the years machine tools designed for manufacturing have developed

into two classes. The first is general purpose machine tools designed for a large

range of operations. Examples of these are standard milling machines or lathes.

The design and operation of these standard machines is a very mature subject

and little research is left to be done. The other class of machine tools are those

designed for a very specific part of a process. These machine tools are

sometimes referred to as dedicated machine tools. These types of machine tools

are usually used in high speed or high volume production. The machining of

automotive engine blocks is an example. Many interesting areas of these

specific machine tools can be investigated and improved. This approach is

 2

generally very effective; however, it is not without disadvantages. If the product

design is changed even slightly, the machine tool may have to be scrapped and

a new machine tool designed and built. Another problem is that the lead-time to

design and build such a machine can be very long. An approach to overcome

these problems is to produce a re-configurable or modular machine tool (MMT).

Using this approach custom machine tools could be designed and built quickly

from existing modular components (Figure 1).

Figure 1. Typical MMT structure (ASME B5.43M)

There already exist standards for MMT components (ASME B.43M)[1]. Typically,

these MMT components are made of large steel castings or fabrications. Stress,

strain, deflection, and rigidity are not an issue with these components so very

little design effort is put into MMT components. A better approach would be to

 3

fabricate these components from stock pieces of standard steel shapes such as

standard steel C or L cross sections. Many standard MMT components could be

quickly assembled from a library of stock components. Due to the rapidly

increasing cost of steel in recent years it would cost much less than cast

components. Also, a significant reduction in cost could be realized by combining

modern optimization and analysis techniques. An automated method of selecting

elements and designing MMT could be developed. The idea of using an

inventory of standard steel cross-section components coupled with optimization

and analysis leads to a very interesting discrete structural optimization (DSO)

problem.

 With the fast advances of computer technology, much progress has been

made in DSO research. However, the roots of DSO come from the early non-

linear integer programming research initiatives of the US military, specifically, the

work of the Rand Corporation in the 1950’s and 60’s[2]. The conclusion of most

of this early work on integer and discrete optimization was that the problems

required exponential-time solutions or 2n operations to solve [3]. This led to the

idea that only small scale problems could be solved. With the rapid increase in

computer speed many new approaches to DSO have been proposed. Some of

these areas of research include partial enumeration, genetic algorithms (GA) and

simulated annealing (SA) [4, 5, 6, 7, 8, 9, and 10]. Many of these areas of DSO

are still very immature and should be areas of current research [11]. Many of

these techniques have less than exponential-time solutions.

 4

 Even if the difficulties of discrete optimization are overcome, many other

areas of DSO, as applied to MMT, need further investigation. Most of the current

research effort has been directed to truss structures or structures with pinned

joints. The stress, strain or displacement constraints in these types of models

can easily be solved using analytical methods. This is fine for most civil

engineering problems, i.e., bridges or buildings; however, for MMT this needs to

be extended to frame and 3D solid components. When the model is extended to

frame or 3D solid components, it is the current accepted practice to use finite

element analysis or methods (FEA or FEM). The use of FEA with DSO has one

major disadvantage in that they are often computationally costly. Because of the

large number of FEA calls in DSO, one of the most important potential areas of

research is finding faster FEA algorithms or alternatives to FEA [11].

1.2 Literature Review

 A review of the literature pertaining to discrete structural optimization as

related to this study can be divided into five sections; discrete optimization in

general, heuristic discrete optimization methods in mechanical structures, particle

swarm optimization, surrogate modeling, and structural optimization.

1.2.1 Discrete Optimization

 Discrete optimization has been an important area of research over the last

few decades. A wide variety of algorithms have been developed and applied to

 5

many areas of mathematics and engineering [12]. Even with extensive research

an efficient and general method of discrete optimization seems difficult to obtain.

 In the 1950’s and early 1960’s many methods were tested on discrete

optimization problems. It was generally accepted that most methods except full

enumeration failed to produce a global optimum. But, full enumeration was

impractical to solve anything but trial problems [13]. Land and Doig used non-

linear programming relaxation to determine bounds of a discrete problem. This

first general method for integer programming problems was found to be too

difficult to efficiently implement on computers [14]. Dakin then modified this

method to be efficiently implemented on computers [15]. Algorithms of this type,

those that obtain bounds from relaxation methods and then use the bounds to

prune, are generally referred to as branch and bound algorithms. Little et al. was

the first to use the branch and bound term when appling this type of algorithm to

the traveling salesman problem [16]. Edmonds developed a general purpose

branch and bound algorithm for discrete optimization and he proved it would

solve discrete problems in polynomial time [17]. Most of this early research was

focused on linear well behaved convex problems. Linear programming was the

most accepted relaxation method. However, some later work showed that the

branch and bound method could be extended to non-linear systems by using

non-linear relaxation methods [18]. Over the years other methods of discrete

optimization have been developed. Many of these methods rely on random or

heuristic searches. Roth developed a method of combining random and partial

 6

searches [19]. Initial random starting points are generated, then partial searches

were used to find the local optimum. The process is then repeated in an attempt

to find a global optimum. This method was tested successfully on large

problems with modest computational cost. A method that used common features

or details of many discrete optimization problems as a library of optimization

methods was developed by Goldstein and Lesk [20]. This method was adapted

to many problems, however, it was not as good as some heuristic methods. In a

general review of numerical optimization methods More et.al. found the bulk of

the research prior to 1979 had been based on relaxation methods of linear

programming [21]. They also concluded there was room for further research in

discrete optimization, especially using heuristic methods. Most of the previous

research on discrete optimization was based on branch and bound or random

search methods and had been oriented toward special problems and very few

general purpose methods existed [22]. In a recent survey of discrete

optimization Shcherbina concluded that there is doubt that general discrete

optimization problems could be solved efficiently and that the branch and bound

method may be the most practical [23].

1.2.2 Heuristic Discrete Optimization Methods in Mechanical Sturctures

 Over the years many methods have been developed to solve discrete

optimization problems in mechanical structures. One of the most popular

approaches in recent years has been the use of heuristic methods. These

 7

methods include not only genetic algorithms (GA) and simulated annealing (SA)

but a few lesser known approaches.

 The comparison of GA and SA to full enumeration and branch and bound

has been studied by several researchers. Balling used a SA method to optimize

steel frames using a set of standard discrete shapes [24]. This research used

realistic three dimensional test problems and the results were compared to a

modified linear branch and bound method. The results using the SA method

were shown to be similar to the branch and bound method. Kocer and Arora

compared full enumeration, SA, and GA on standard discrete prefabricated steel

sections [25]. The cross-section shape and steel grades were considered as

discrete variables. In this research the GA method found the optimal solution in

all cases and was the most efficient in terms of CPU time. Huang and Arora

compared GA, SA, and full enumeration and concluded, by the use of examples,

that GA and SA could be used to find the global optima [25].

 Although the GA and SA methods have received much of attention in

recent years with respect to discrete optimization they have a few areas with

unanswered questions. For instance, will they always produce global optima and

can they be implemented and tuned to solve discrete structural optimization

problems? Using a practical structural system and a GA based method Rajeev

and Krishnamoorthy efficiently solved a discrete variable problem with

constraints [26]. They showed that even though the GA is not well suited for

constrained problems a penalty-based transformation can be implemented. They

 8

also showed the GA method is suitable for a parallel computing environment.

Near optimal solutions in reasonable computing times were obtained on large

design space layout and sizing problems of steel roof trusses using a GA by

Koumousis et al. [27]. They also reported that no clear rules exist for tuning of

the GA parameters and the estimate of the parameters is delicate. Using the

uniform building code as constraints Camp et al. developed a GA based method

for optimizing two-dimensional steel frame structures [28]. The method was

tested on 30 designs. The method always produced structures satisfying the

code standards while minimizing the weight but the solution was not guaranteed

to be global. Lu and Kota successfully applied a GA method to a mixed discrete

topology and continuous sizing problem [29]. A new heuristic method based

loosely on the harmonics of music is the harmony search (HS) method. This

method is simple and mathematically less complex than the GA. Its convergence

capability was shown to be better than GA on discrete sizing variable problems

[30]. A common conclusion in the literature with respect to GA and SA is that

they both require considerable user insight and adjustment to the parameters to

get reasonable results [10].

1.2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a new huristic based method that

has generated much recent inerest. It is based on the self organizing behavior of

a group with no leaders such as a flock of birds or a school of fish [31 and 32].

 9

These groups of individuals have no knowledge of the behavior of the entire

group (global behavior). They only have knowledge about their local

environment, but they can converge and move as a group based on local

individual information. They are capable of complex behavior such as flocking,

homing, exploration, and herding [33, 34, and 35]. Bird flocking [35] and fish

schooling [36] behavior are two of the most studied areas. When applying these

methods to real world optimization problems an effective particle initialization

scheme must be used. Several methods of initiation are presented in the

literature [37, 38, 39, 40, and 41]. These methods are used mainly to ensure that

the search space is uniformly covered. PSO and evolutionary algorithms (EA)

such as GA and SA have many similarities, however, some literature suggests

they should be treated separately [32]. Both methods use a stochastic search

process. PSO does not use the concept of survival of the fittest. Unfit individuals

in the PSO do not die. Also, unlike GA and SA, PSO is not easy to implement for

discrete optimization problems.

 The concept of PSO was first introduced by Kennedy and Eberhart [42].

Using a PSO based on swarms or flocks, they optimized non-linear functions.

Kennedy and Eberhart also compared PSO to GA for non-linear function

optimization, neural network learning, and robot task learning [43]. They showed

that PSO is a very simple concept and it can be implemented with just a few lines

of code. Their implementation only used primitive math operations and was also

computationally inexpensive. Song and Gu studied the ability of PSO to find

 10

global solutions [44]. Even though PSO is effective, they found there is no

mathematical theory to support that it is a global optimizer. Langdon and Poli

compared and contrasted PSO with a non-standard Newton-raphson based

gradient method [45]. They found that a theoretical analysis of PSO is very

difficult and that we do not have a good mathematical understanding of why PSO

performs better or worse on a problem of a given type. Several researchers

found PSO to perform better in early iterations but that it is not competitive with

other methods when the number of iterations is increased [44, 45, and 47].

 In recent years the concept of PSO has been applied to various

engineering problems. Specifically, it has been applied to structural design

optimization problems. Ant colony optimization (ACO), a type of PSO, was

tested on steel frame optimization problems with discrete variables by Camp et al.

[48]. In this research they compared ACO to GA and they found it more effective

and less affected by poor initial solutions. Perez and Behdinan tested PSO on

several well-known structural test problems [49]. The PSO method found better

results on these test problems than any of the other optimization algorithms used

in previous research.

1.2.4 Surrogate Modeling

 Structural optimization, especially discrete structural optimization of

practical problems, requires low computational cost and accuracy for all of the

processes. By far the most computationally costly process is the FEA. The FEA

 11

for large-scale three-dimensional problems and eigenfrequency problems

becomes difficult to optimize practically.

 The current literature suggests approximation methods for such large

scale optimization models. Several different methods are reported in this

literature. These include Response Surface Modeling (RSM), Radial Bias,

Neural Network (NN), and Kriging [50-54, and 80].

 The kriging model is one of the most popular methods. This method was

originally developed for the mining industry to help model the location of minerals

and gems. Sakata et al. reported good results using kriging methods on large-

scale eigenfrequency problems [51]. The results were comparable with those

from a NN method. One of the most attractive aspects of kriging is that it has the

ability to estimate outputs in areas of the design space that have not been tested

with the FEA [52]. In other words, it is effective at extrapolation as well as

interpolation. The one draw back to kriging is that fitting the data and developing

the model is complex and costly, because it requires an optimization routine. [50

and 52].

 Low order polynomial approximations, also known as RSM, are often used

because they are easy to implement and software is readily available [50]. RMS

is often used when experimental data sets are available or when a combination

of experimental and numerical data sets is employed [53]. In [50] it was

concluded that radial bias and kriging methods performed better and were more

accurate on large problems compared to some of the other methods.

 12

 In this research radial bias and NN were considered to be similar. This is

because they are both modeled after biological systems and because they are in

the same Matlab toolbox and use the same Matlab functions. Most of the

literature found NN to have some of the best performance and most accurate

results [50]. The NN method was even used as a benchmark for other methods

[51]. The only drawbacks are the computational cost to train the network [50, 51,

54, and 55] and the necessity of a skilled operator to setup the network [55].

These drawbacks are easily overcome by using the latest Matlab NN toolbox.

The toolbox makes it easy to setup and train complex NN’s and the speed and

accuracy greatly outweigh the cost of training the network.

1.2.5 Structural Optimization

 Over the years three broad approaches to structural topology optimization

have evolved based on grounded structures [11]. One is based on material

homogenization [56] and one on material density [57]. The homogenization and

material density approaches have been the subject of research in recent years

and have few areas left to investigate when applied to DSO [56, 58, and 59].

These two techniques rely on the design space containing a fine mesh of

elements. Voids are created or elements removed through the optimization

process. A discrete structure will emerge from the optimization process.

However, it may be difficult to create a structure of standard set of structural

members using this process. Also, the structure created may not be optimal [11].

 13

These two methods are very well suited to cast, molded, or formed parts that

may take on any size or shape.

These methods generally use structural compliance as a constraint.

Cheng and Jiang showed compliance is generally continuous over the feasible

design domain in truss or frame topology problems and it should be considered

as a global constraint. They also showed that stress and buckling constraints are

discontinuous and are local (element) constraints for the same problems [82].

Using the idea of global and local constraints Cheng showed that stress or

buckling constraint truss or frame topology problems are discrete and the

solutions are generally different than compliance constraint problems [83].

 The third approach to structural optimization is the grounded structure

method. In this method a structure is made that includes all possible structural

components (Figure 2). It should be noted that for some discrete optimization

problems Figure 2 would not be considered fully grounded. This is because all

possible nodes are not connected with members. In this example only

connecting members of two discrete lengths are considered. Using these two

lengths all possible combinations are shown in the figure. In this entire study a

library of standard length members were considered.

The literature on discrete structural optimization generally refers to this as

an incomplete grounded structure as opposed to a complete grounded structure

where every possible node is connected [82 and 83].

 14

Figure 2. Typical grounded structure

Members are removed or added through the optimization process [9 and 11].

One problem is as the size of the structure increases the number of possible

combinations increases exponentially. Many discrete optimization approaches

have been proposed to solve these types of problems such as branch and bound,

penalty function, Lagrange relaxation, sequential linearization, integer

programming, SA, and GA [10] and [56]. Many of these techniques require the

objective function to be monotonic. The design variables need to be continuous.

When using standard steel cross sections that is rarely the case. For example,

Table 1 and Figure 3 show standard S and C steel shapes:

Table 1. Standard steel cross sections

Area (sq.

in.)
Moment of Inertia Shape

1.67 2.52 S3x5.7

2.21 2.93 S3x7.5

1.47 1.85 C3x5

1.76 2.07 C3x6

1.59 3.85 C4x5.4

 15

Figure 3. Standard steel S and C profiles

There is no consistent relationship between cross sectional area and moment of

inertia, as one increases the other may decrease or increase. Some of the

techniques applicable to discrete design variables, such as GA and SA, may

produce a feasible solution, but the search on the discrete subspace mixed with

continuous design variable (e.g., the length of each structural member) will make

the search for a global solution slow and tedious.

1.3 Objective

 In this research DSO methodologies were applied to MMT systems.

Sizing and topology discrete numerical optimization is combined with FEA and

high-speed FEA approximations to extend the size and type of MMT design

problems that can be solved.

For this study optimal topology of a discrete structure, such as a truss or

frame, is the optimal connection of elements between a set of given fixed nodes,

including loading and support nodes. Also, in this study optimal structural sizing

 16

is the optimization of the cross-sectional area and shape of the individual

connection members. The structure’s material, mode position, loads, and load

positions were assumed to be given.

The specific objectives of this research were:

1. Develop an effective method of high-speed FEA approximation

2. Develop a discrete algorithm that will simultaneously optimize size, shape,

and topology of MMT components

3. Compare the results, in terms of computing speed and accuracy, with current

design optimization methods

 17

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Finite Element Analysis

FEA is currently one of the most accepted methods for finding the

displacement, stress, strain, or natural frequency of complex structures. There

are many commercially available FEA software packages. However, there are

several advantages to developing a simple FEA routine. First, most commercial

packages are general purpose and have unnecessary overhead. This includes

graphical interfaces and many types of general elements. This overhead has an

effect on the computational speed, especially when applied to optimization

problems that require repeated FEA calls. The second advantage is the cost.

Many commercial FEA packages are expensive. Not only is the initial cost high

but the developed code cannot be distributed. For example, the code could be

included in a group of online tools for educational or industrial users [60, 61 and

62]. Finally, other properties that could be useful in the optimization process can

be calculated inside the FEA routine such as gradient, Jacobian, or Hessian [57,

63 and 81].

In this research all of the MMT components are assumed to have rigid

connections, such as welded or tightly bolted joints. Therefore, only beam type

elements are needed in the FEA. The generalized beam is shown in Figure 4.

 18

Figure 4. General Beam

The following uses an energy approach to set up the beam FEA element. The

extended Hamilton’s principle is:

 
2

1

0)(
t

t
nc dtWVT )1(

where T is kinetic energy, V is strain energy and Wnc is the non-conservative

work. Then the following are the variation of the kinetic energy, elastic energy,

and non-conservative work for a beam element [64 and 81]:

The kinetic energy:

  
2

1

2

1

2

1 00

2

2

1 t

t

LLt

t

t

t
dxdtwwAdtdxwATdt  

   
2

1

2

10 0

t

t

L L t

t
dxwwAwdxdtwA  )2(

Where t is the time, L is the beam length,  is the mass desity, w is the transvers

displacement, and A is the cross sectional area.

 19

The elastic energy:

dtdAdxEdAdxdtdtV
t

t A

Lt

t A

Lt

t      
2

1

2

1

2

1 0

2

0 2

1

2

1


    
2

1

2

1 00

2

2

1 t

t

Lt

t

L

dxdtwwEIdtdxwEI )3(

Where E is Young’s Modulus and I is the area moment of inertia.

The non-conservative work:

  
2

1

2

1 0

t

t

Lt

t
nc dtwdxfdtW )4(

Where f is the transversely distributed external force.

Substituting equations 2, 3, and 4 into the Hamilton’s extended equation (1) and

integrating by parts gives the result:

   
2

1

2

1 00

t

t

L
iv

t

t

L

wdxdtEIwwdxdtwA  

  
2

1

2

1

2

1 000

t

t

Lt

t

Lt

t

L
dtwdxfdtwwEIdtwwEI )5(

Setting the coefficient of w to zero yields the equation of motion:

fEIwwA iv )6(

The boundary conditions have to specify: w or wEI  ; w or wEI  at 0x or L .

 Figure 5(a) shows the free-body diagram of a cantilevered beam modeled

using three two-node beam elements, where iw and i are the nodal

 20

displacements and slopes of each node, il is the elemental length of the ith

element, and)1(

1Q and)1(

2Q are the reaction force and moment acting on the first

node. As shown in Figure 5(b), each element has four unknown nodal

displacements. The displacement),(txw within each element can be assumed

to be:

3

3

2

210),(xCxCxCCtx )7(

where x is a local coordinate with ilx 0 for the ith element.

Figure 5. (a) The free-body diagram; (b) the first element.

1w

1

)1(

1Q
)1(

2Q

f

1l

2w

2
3w

3
4

4w

2l
3l

1w

1

2w
2

1l

(a)

(b)

 21

For the first element:

01),0(Cwtw 

11),0(Ctwx )8(

3

3

2

2102),(lClClCCwtlw 

2

3212 32),(lClCCtlwx  

Solving for iC in terms of iw and i , and then substituting the results into

equation (7) yields:

13

3

2

2

13

3

2

2

)2()231(),(
l

x

l

x

l

x
lw

l

x

l

x
txw 

 23

3

2

2

23

3

2

2

)()23(
l

x

l

x
lw

l

x

l

x
)9(

Equation (9) can be rewritten as:

24231211)()()()(),( xNwxNxNwxNtxw 

 }{}{}{}{)1()1(wNNw TT  ,   T
www 2211

)1()10(

Where)4,3,2,1(iN i are known as the shape functions (Hermite cubic or spline

interpolation functions) given by:

3

3

2

2

1 231
l

x

l

x
N  ,)2(

3

3

2

2

2
l

x

l

x

l

x
lN 

3

3

2

2

3 23
l

x

l

x
N  ,)(

3

3

2

2

4
l

x

l

x
lN )11(

 22

It follows from equations (10) and (2) that:

dtdxwAwdxwAwdxwAwwdxdtwATdt
t

t

l l lt

t

Lt

t      



 

2

1

1 2 32

1

2

1 0 0 00
 

         dtdxwNANw
t

t

l TT

  





2

1

1

0

)1()1()12(

                   



 

2

1

2 3

0 0

)3()3()2()2(
t

t

l l TTTT
dtdxwNANwdxwNANw  

            dtwmwwmwwmw
t

t

TTT

 
2

1

]][][][[)3()3()3()2()2()2()1()1()1( 

Where the elemental mass matrix is:

    dxNANm
Tl

i i

 0

)(][, 3,2,1i)13(

If  and A are constants then:

 




























22

22

)(

422313

221561354

313422

135422156

420

iiii

ii

iiii

ii

ii

llll

ll

llll

ll

Al
m


)14(

The global (structural) mass matrix][M can be obtained by assembling the

elemental mass matrices using the continuity of displacement and slope at each

node as:

 23











































)3(

44

)3(

43

)3(

42

)3(

41

)3(

34

)3(

33

)3(

32

)3(

31

)3(

24

)3(

23

)3(

22

)2(

44

)3(

21

)2(

43

)2(

42

)2(

41

)3(

14

)3(

13

)3(

12

)2(

34

)3(

11

)2(

33

)2(

32

)2(

31

)2(

24

)2(

23

)2(

22

)1(

44

)2(

21

)1(

43

)1(

42

)1(

41

)2(

14

)2(

13

)2(

12

)1(

34

)2(

11

)1(

33

)1(

32

)1(

31

)1(

24

)1(

23

)1(

22

)1(

21

)1(

14

)1(

13

)1(

12

)1(

11

0000

0000

00

00

00

00

0000

0000

][

mmmm

mmmm

mmmmmmmm

mmmmmmmm

mmmmmmmm

mmmmmmmm

mmmm

mmmm

M)15(

Similarly, it follows from equations (10) and (3) that:

  
2

1

2

1 0

t

t

Lt

t
dxdtwwEIVdt )16(

 dtdxwEIwdxwEIwdxwEIw
t

t

l l l

    



 

2

1

1 2 3

0 0 0


         dtdxwNEINw
t

t

l T

xxxx

T

  





2

1

1

0

)1()1(

                 dtdxwNEINwdxwNEINw
t

t

l T

xxxx

Tl T

xxxx

T

  



 

2

1

32

0

)3()3(

0

)2()2(

            dtwkwwkwwkw
t

t

TTT

 
2

1

]][][][[)3()3()3()2()2()2()1()1()1(

Where the elemental stiffness matrix     dxNEINk
T

xx

l

xx

i i

 0

)(][)3,2,1(i . If E

and I are constant, one can obtain:

 




























22

22

3

)(

4626

612612

2646

612612

iiii

ii

iiii

ii

i

i

llll

ll

llll

ll

l

EI
k)17(

 24

The global stiffness matrix][K is obtained by assembling the elemental stiffness

matrices as:











































)3(

44

)3(

43

)3(

42

)3(

41

)3(

34

)3(

33

)3(

32

)3(

31

)3(

24

)3(

23

)3(

22

)2(

44

)3(

21

)2(

43

)2(

42

)2(

41

)3(

14

)3(

13

)3(

12

)2(

34

)3(

11

)2(

33

)2(

32

)2(

31

)2(

24

)2(

23

)2(

22

)1(

44

)2(

21

)1(

43

)1(

42

)1(

41

)2(

14

)2(

13

)2(

12

)1(

34

)2(

11

)1(

33

)1(

32

)1(

31

)1(

24

)1(

23

)1(

22

)1(

21

)1(

14

)1(

13

)1(

12

)1(

11

0000

0000

00

00

00

00

0000

0000

][

kkkk

kkkk

kkkkkkkk

kkkkkkkk

kkkkkkkk

kkkkkkkk

kkkk

kkkk

K)18(

The variation of non-conservative work, ncW , due to a distributed external force

f is given by:

dtwdxfwdxfwdxfdtwdxfdtW
t

t

lllt

t

Lt

t
nc    



 

2

1

3212

1

2

1 0000


             dtFwFwFw
t

t

TTT

 
2

1

)3()3()2()2()1()1()19(

where the elemental force vector due to the distributed load is   
ili dxNfF

0

)(
. If

f is constant,  )(iF for the ith element is given by:

 
T

iiiii flflflfl
F










122122

22

)(
)20(

Then the global force vector due to the distributed load of this three-element

beam model is given by:

 
T

flflflflflflflflflflflfl
F










122121222121222122

2

33

2

3

2

232

2

2

2

121

2

11)21(

 25

The equation of motion for this finite element model is given

}{}{}]{[}]{[}]{[QFwKwCwM  )22(

where  Q represents the global force vector due to concentrated loads on the

beam. For this three-element beam model:

   TQQQ 000000)1(

2

)1(

1)23(

and [C] is the damping matrix.

Assuming the system has no loads, external forces or damping the equation (22)

can be reduced to:

0}]{[}]{[ wKwM )24(

Assuming the displacement vector can be represented in the form:

tew }{}{ )25(

Then

tew  }{}{ 2 )26(

where {} is the modal shape and  is one of the natural frequencies.

Substituting (25) and (26) into equation (24) leads to:

}0{}]){[]([2  MK )27(

or in the generalized eigen-problem form:

}]{[}]{[ MK )28(

where the eigenvalues  are the square of the resonate frequencies of the

structure and the eigenvetors {} are the modal displacements. Directly

 26

following the references [57] and [65] the complete system of force displacement

equiations can be written, in matrix form, as:

0}{}{}]{[ QFwK)29(

 This example was limited to 2 degrees of freedom per node to save space.

It is very easy to extend this example to more degrees of freedom. The FEA

developed for this research used 2 node beam elements with 6 degrees of

freedom per node. Also, the developed FEA code included the coordinate

transformations so that three dimensional structures could be analyzed. For a

complete treatment of the coordinate transformation see references [57, 65, 66,

and 67].

2.2 High-Speed FEA Approximation

 Currently, the most common practice for finding the deflection, stress,

and/or natural frequency of a complex structure is to use FEA. When applied to

DSO problems some major problems arise. As a structure’s complexity

increases, the size of the global matrices in the FEA increases. As the numbers

of discrete members are added to the structure, the matrices become less sparse.

Also, since the design variable space is now discontinuous, derivative based

search algorithms have to search each and every discrete subspace. The large

non-sparse matrices increase the computation effort of the problem. One

solution is to approximate the FEA with some faster algorithm. The FEA has

multiple inputs such as node locations, material, and geometric properties of the

 27

elements. The outputs are the nodal displacements and/or modal frequencies

(Eigenvalues). The relationship between the input and output is non-linear.

Currently, one of the most researched and effective methods of approximating a

non-linear system of multiple inputs and outputs, such as the structural analysis

problems with load as input and displacement or stress as output, is through the

use of an artificial neural network (ANN or NN) [68 and 69]. It is an obvious idea

to apply NN to FEA, however, very little research has been done [11 and 70].

The previous works suggested very different NN architectures. One suggested a

radial bias network [11], while the other had better results with a multi-layer feed

forward architecture [70]. This work [68 and 70] has shown a major decrease in

computational effort.

2.3 Basic NN Structure

The NN is simply a very large network of simple elements that are

modeled roughly after a living creature’s nervous system. One of the most

attractive aspects of a NN is the fact that the elements are arranged in a parallel

fashion. This leads to a parallel implementation in computer systems that in turn

lead to very fast computations. As in biological systems, the simplest elements

are called neurons.

 28

Figure 6. A typical neuron

Figure 6 shows a typical neuron where the sum of the weighted input and bias

are transferred through the function f. The weight and bias become the design

variables that are adjusted so that the neuron can be trained.

 Many transfer functions are available with the Matlab NN toolbox [69].

Three of the most commonly used functions are the sigmoid, hyperbolic tangent,

and linear functions. The following is a brief description of these functions.

Sigmoid function (LOGSIG):

ne
nf




1

1
)()30(

 29

Hyperbolic tangent function (TANSIG):

1
1

2
)(

2





 ne
nf)31(

Linear function (PURELIN):

nnf )()32(

Figure 7. Transfer functions

 30

 Figure 7 shows the transfer functions. The TANSIG and LOGSIG are the

so called “squashing” functions because they force the outputs to 0 to 1 or -1 to 1

respectively.

Figure 8. A typical 2 layer feed forward neural network

Figure 8 shows a typical network of neurons. Note how the structure is

inherently parallel in nature. Even though the neurons and structure are very

simple, if the numbers of neurons in the internal layers are large enough, the

network can be trained to represent complex non-linear systems. These large

NN’s are good at approximating practically any non-linear function [69]. The

number of inputs and outputs a NN can have is only limited by the computer

 31

memory available. Therefore, a standard feed-forward NN of sufficient size

should be able to approximate most FEA models.

 Normally the NN is trained to approximate a function so that a set of inputs

leads to a set of target outputs. In the case of approximating an FEA structural

model, the inputs would be the material and geometric properties (shape), node

locations, number and location of discreet components (topology), applied loads,

and boundary conditions. The outputs would be nodal displacements and/or

natural frequencies.

Figure 9. Neural network training flowchart

 32

The training of a NN, as shown in Figure 9, is simply a large optimization problem

that uses the weight and bias as the design variables. Most practical NN

problems require many sets of inputs and targets to train. The literature

suggests an alternative to a feed-forward network [11 and 70]. A radial bias

network is the type that is very effective at non-linear approximations. They

generally require more neurons than a feed-forward network but train in much

less time [14].

Figure 10. Typical radial bias neuron

The typical radial bias neuron is shown in Figure 10. The distance between the

weight and input is multiplied by the bias and then sent to the radial bias function.

In practice the system will have multiple inputs so the distance between the

inputs and weights is their vector dot product. To train the radial bias network the

training routine will create as many neurons as there are inputs. The weights

 33

and bias are then optimized. If the error goal is not met, more neurons are

added. Generally the number of neurons is much larger that the equivalent feed

forward network.

2.4 NN Test

 The effectiveness of the use of NN’s as a FEA approximator was tested

using a simple cantilever beam. A prismatic beam 36” long with a height of 1”

and a width of 0.5” was selected. The beam was fixed on one end and a set of

forces were applied to the other (Figure 11).

Figure 11. Test cantilever beam

The set of forces were randomly selected in the range of 10lbs. to 250lbs. The

beam was discretized in to 10 equal elements with two nodes apiece for a total of

11 nodes. The displacements at each node were calculated using the elastic

equation:

PxEIy '')33(

 34

1"x0.5"x36" Simple Cantilever Beam with 90lbs load

Node Number 1 2 3 4 5 6 7 8 9 10 CPU Time

Exact -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1577 -0.1971 -0.2381 -0.2799 0.0001

NN -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1578 -0.1971 -0.2381 -0.2799 0.0042

FEA -0.0041 -0.0157 -0.0340 -0.0582 -0.0875 -0.1209 -0.1577 -0.1971 -0.2381 -0.2799 0.0470

Integrating equation (27) twice and appling the boundary conditions:

)23(
6

323 LxLx
EI

P
y )34(

The displacements were also obtained using the FEA routine developed in the

previous section. The applied loads (inputs) and FEA results (outputs) were

used to train a standard feed-forward NN. The NN was then tested with an input

of 90lbs. Table 2 and Figure 11 show the results compared to the anaylitical and

FEA solutions. It also shows the average CPU times.

 Table 2. Simple cantilever beam example displacements and CPU times

 35

Figure 12. Simple beam nodal deflection.

The test was then repeated. This time the beam was changed to 1.75”

high by 0.25” wide. The previously “learned” weights and biases were used as a

starting point. The results are shown in Figure 13 and Table 3. Again, the FEA,

NN, and the analytical solutions are the same. However, there is a large

reduction in CPU time for the NN compared to the FEA. This reduction in CPU

time would justify the use of the NN but not on a simple FEA problem like this.

The NN training outweights any gains. However, retraining the already learned

network to a new but similar problem is very fast. Figure 14 shows the training

 36

progress from the first problem and Figure 15 shows the retraining of the second.

The number of cycles for optimizing the weights and biases was reduced by a

factor of over 300. The reduction in CPU time and the fast training of similar

problems makes this NN approach suited for DSO of the MMT components.

Table 3. Modified simple cantilever beam example displacements and CPU
times

1.75"x0.25"x36" Simple Cantilever Beam with 90lbs load

Node Number 1 2 3 4 5 6 7 8 9 10 CPU Time

Exact -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0888 -0.1045 0.0001

NN -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0889 -0.1045 0.0042

FEA -0.0015 -0.0059 -0.0127 -0.0217 -0.0326 -0.0451 -0.0589 -0.0735 -0.0888 -0.1045 0.0470

Figure 13. Modified simple beam nodal deflection.

 37

Figure 14. NN training with no previous weights and biases.

 38

Figure 15. Training using previous weights and biases.

To test the effectiveness of a feed forward NN an FEA model of the side of

a typical MMT base, shown in Figure 16, was created. The model was selected

as 12” high by 36” long and nonsymmetrical coupled loads of -100lbs and 700lbs

were applied. A training input set of 250 was created by randomly selecting the L

shaped cross sections (angle beam), in the range of 0.5 in2 to 2.0 in2, of the six

members. The target set of nodal deflections was then created by running FEA

on the 250 inputs. A feed forward NN was created and trained using the set of

 39

random cross sections as inputs and the FEA nodal displacements as targets.

To validate the effectiveness of the NN, a set of four cross sections properties

were randomly selected from the available standard steel shapes. This set was

used to test the NN ability to approximate the FEA and to compare the CPU time

required for the calculations. These results are shown in Tables 4. Table 5

shows the standard steel element cross sections used for validating the NN.

Figure 16. Side view of a typical MMT base component

 40

Table 4. Nodal displacement and CPU time

Table 5. Standard steel shapes

Test Number 1

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0027 -0.0040 -0.0345 -0.0538 -0.0001 -0.0001 0.0075

FEA Displacements 0.0000 -0.0031 -0.0050 -0.0376 -0.0570 -0.0014 0.0000 0.0700

Difference 0.0000 0.0005 0.0010 0.0031 0.0032 0.0013 0.0001 0.0625

Test Number 2

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0010 -0.0024 -0.0035 -0.0034 -0.0013 0.0000 0.0050

FEA Displacements 0.0000 -0.0014 -0.0028 -0.0040 -0.0039 -0.0016 0.0000 0.0603

Difference 0.0000 0.0003 0.0005 0.0005 0.0004 0.0003 0.0000 0.0553

Test Number 3

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0012 -0.0031 -0.0059 -0.0065 -0.0015 0.0000 0.0050

FEA Displacements 0.0000 -0.0014 -0.0034 -0.0063 -0.0068 -0.0017 0.0001 0.0625

Difference 0.0000 0.0002 0.0003 0.0004 0.0004 0.0002 0.0000 0.0575

Test Number 4

node 1 2 3 4 5 6 7 CPU time

NN Displacements -0.0001 -0.0059 -0.0096 -0.0117 -0.0109 -0.0042 0.0000 0.0050

FEA Displacements -0.0002 -0.0059 -0.0095 -0.0118 -0.0110 -0.0040 0.0002 0.0600

Difference 0.0001 0.0000 0.0001 0.0001 0.0001 0.0002 0.0001 0.0550

Test Number Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

1 L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L1x1x1/4 L2x2x1/2 L2x2x1/2

2 L2x2x1/2 L2x2x1/2 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4

3 L1x1x1/4 L2x2x1/2 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4

4 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4

 41

Figure 17. Training time with no previous weights and biases

One interesting aspect of the NN is the ability to quickly learn new functions that

are close to the original. The topology in the previous model was slightly

modified as shone in Figure 18.

 42

Figure 18. Modified structure topology

The same loads were applied and a new set of random training input data was

generated. New NN’s were created using the previous learned weights and

biases. These new NN’s were trained using the new topology and the maximum

deflections; the calculation times are shown in Table 6. The randomly selected

standard steel element cross sectional shapes are shown in Table 7.

 43

Table 6. Displacements and CPU times for structure with new topology

Table 7. Standard steel shapes
Test Number Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

1 L1x1x1/4 L1x1x1/4 L2x2x1/2 L2x2x1/2 L1x1x1/4 L1x1x1/4

2 L2x2x1/2 L2x2x1/2 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8

3 L1x1x1/4 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L1x1x1/4 L2x2x1/2

4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8

Test Number 1

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0003 -0.0006 -0.0047 -0.0071 -0.0026 0.0000 0.0075

FEA Displacements 0.0000 0.0003 -0.0005 -0.0044 -0.0065 -0.0022 0.0000 0.0678

Difference 0.0000 0.0000 0.0001 0.0004 0.0006 0.0004 0.0000 0.0603

Test Number 2

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 -0.0002 -0.0009 -0.0024 -0.0029 -0.0011 0.0000 0.0050

FEA Displacements 0.0001 -0.0004 -0.0013 -0.0026 -0.0029 -0.0011 0.0000 0.0600

Difference 0.0000 0.0003 0.0004 0.0002 0.0000 0.0000 0.0000 0.0550

Test Number 3

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0001 -0.0012 -0.0069 -0.0111 -0.0063 -0.0001 0.0050

FEA Displacements 0.0000 0.0001 -0.0014 -0.0070 -0.0108 -0.0060 -0.0002 0.0625

Difference 0.0000 0.0000 0.0002 0.0001 0.0004 0.0003 0.0000 0.0575

Test Number 4

node 1 2 3 4 5 6 7 CPU time

NN Displacements 0.0000 0.0001 -0.0010 -0.0049 -0.0069 -0.0025 0.0000 0.0050

FEA Displacements 0.0000 0.0001 -0.0009 -0.0047 -0.0067 -0.0024 0.0000 0.0603

Difference 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000 0.0553

 44

Figure 19. Time to retrain NN

 A couple of interesting observations can be made from these results. First,

the feed-forward NN was effective at approximating the FEA. The largest

displacement error in this test was 0.001 inches and most of the errors were less

than 0.0005 inches. This is much less than the displacement constraint used

when the optimization of the MMT components. Second, the NN had order of

magnitude reductions in computation times. The radial bias method failed to

converge with this problem. The feed forward NN had better results and faster

training times. Also, with the feed forward NN major reductions in training times

can be realized by using information from previous networks.

 45

2.5 NN training

 Many methods to train NN’s are included in the Matlab NN toolbox. Some

of these algorithms are not useful for practical problems and the best method for

fastest training is dependent on the problem [69]. The best training algorithm for

a given problem depends on many factors, such as the size of the training set,

the complexity of the problem, the size of the network, and the type of the

problem (pattern recognition of function approximation) [69]. The easiest and

fastest way to determine the best and fastest converging algorithm is by trial-and-

error. Four of the most common high-performance algorithms were tested.

 The four algorithms tested were the Matlab functions traingda, trainrp,

trainscg, and trainlm. The first method was the steepest gradient descent with a

variable step size (TRAINGDA). The second was the resilient back-propagation

(TRAINRP) method. All of the networks in this research were used to

approximate non-linear systems. This requires the use of “squashing” functions.

Squashing functions take an infinite input and output with a range of -1 to 1. As

the input gets very large or very small, their derivative goes to zero. This has a

major impact on the steepest descent gradient based methods. The gradient

may be very small while the network is training. This in turn causes very small

changes in the weights and biases even though they are far from converging.

The trainrp uses only the sign of the gradient, not the magnitude. It uses a

separate variable for the step magnitude. This variable increases if the sign of

 46

the gradient stays the same from step to step or decreases if the sign changes.

This leads to faster learning and tends to reduce oscillations around the solution.

The third algorithm tested performs a search along the conjugate gradient

instead of the steepest descent direction (TRAINSCG). This usually produces

faster convergence. The last algorithm tested used a modified Newton method

(TRAINLM) that has a variable step size and direction. The TRAINLM function

generally has the ability to train to a lower error level.

Figures 20, 21, 22, and 23 show the progress of training the networks

derived from the structure shown in Figure 16 using the different algorithms. For

the networks in this research the TRAINRP seemed to have the best

performance when the error was higher. The TRAINLM had the best

performance when training to a lower error. In all the proceeding tests and

programs the TRAINRP was used for initial training then TRAINLM was used to

reach a lower error.

 47

Figure 20. Training history for traingda

 48

Figure 21. Training history for trainrp

 49

Figure 22. Training history for trainscg

 50

Figure 23. Training history for trainlm

 51

2.6 General comments and results from NN test

The NN is not a cure all for computationally inefficient problems. It is,

however, proven very useful in optimal MMT design. The following are some

brief comments on NN.

 The steps to create and use a NN:

1. Develop the network structure. This must be large enough and have

enough hidden layers to represent the problem. There is no theoretical

method to determine the correct structure. It is generally done through

trial and error.

2. Train the network. This is a large scale optimization problem.

Accepted optimization techniques can be applied.

3. Simulate the network. New inputs are given to the network. What was

learned in the training is recalled and new outputs are produced.

 NN structures are inherently parallel. This leads to easy implementation

to parallel computers and processors which leads to fast computations.

However, this research was developed on a single computer and

processor.

 Training is just a large scale optimization process. The weights and

biases of the NN are adjusted (design variables) thereby minimizing the

error between a known target and the output of the NN.

 52

 The NN method can be a very effective universal approximation for FEA.

However, the structure and the transfer functions must be carefully chosen.

The number of nodes must be sufficiently large and the use of some non-

linear transfer functions is required.

 For this research feed-forward NN gave better results than the radial bias

networks.

 NN based FEA approximations are better at interpolation than

extrapolation.

 NN calculations are much faster than FEA calculations. Generally, they

are at least an order of magnitude faster. As the size of the of the problem

increases, the NN calculations increase linearly while the FEA calculations

increase exponentially.

Even though the use of NN approximation of FEA leads to faster calculations,

FEA calculations should not simply be replaced with NN. The real advantage is

to use the inherent “memory” properties of the NN along with the computational

efficiencies to utilize previous designs. In other words, as new components are

developed the optimal designs are captured in the NN and will influence future

designs.

2.7 Optimization Algorithms

 In this study the stated problem of optimizing MMT structures is

completely discrete in nature. According to the literature review, most of the

 53

previous work focused on GA, SA, or branch and bound methods for completely

discrete problems. Also, guaranteeing that the GA or SA produced a global

optimum is difficult. No clear mathematical proof exists to prove a global

optimum is achieved. Branch and bound, on the other hand, is a global

optimization algorithm. It may not be the most efficient, but at least it operates in

polynomial time on general problems.

 For this research a branch and bound method was used as the primary

optimization algorithm. The branch and bound method has some other added

properties that help meet the objectives of this project. It was shown previously

that for practical real-world problems the FEA models would get large and an

approximation is needed. The problem is when to use the FEA and when to

switch to the approximation method? The branch and bound method has a clear

point to make the switch. When the variables are relaxed the FEA is used and a

neural network training set is generated. When the branches are fathomed with

discrete variables the approximation is used. This has the advantage that most

of the design space will be covered when the FEA is used and the training set is

developed. A very robust NN approximator is developed using this method

because the NN is generally better at interpolation than at extrapolation.

 Applying the branch and bound method to the MMT optimization problem

is not without challenges. Typically, the branch and bound method is used with a

linear programming or gradient descent for the relaxation method [13]. However,

these methods are not effective on non-convex or discontinuous problems [13].

 54

The discrete MMT problem is both non-convex and discontinuous. For this study

a robust continuous optimization algorithm is required for the relaxation.

Generally, the literature suggests a GA or SA based algorithm to overcome these

problems [4 and 13]. However the literature also suggest these algorithms may

be difficult to tune and implement. In recent years many researchers have

successfully applied PSO to these types of discontinuous problems. The PSO

has the advantages of being simple and easy to implement. It has also been

shown to converge rapidly but it is difficult to specify the stopping criteria. For

this reason a hybrid approach was chosen by using a PSO to quickly converge

toward the best solution then switch to a fast gradient based method to converge

on the solution. This PSO method had the added benefit of finding solutions

distributed over the entire design space. This generally improved the training

performance of the neural network.

2.8 Branch and Bound Discrete Optimization

 A review of the current literature revealed that exhaustive enumeration is

only possible for trivial problems [4 and 13]. Partial enumeration or heuristic

methods are required for practical problems. One problem with heuristic

methods is that it is very difficult to prove they will produce a global optimum on

practical problems. The partial enumeration methods, specifically the branch and

bound, method over-comes these problems [71]. It will produce a global

optimum and in most cases it will operate in polynomial time.

 55

 The branch and bound method is based on the fact that the relaxed

continuous solution is always better than the discrete solution. Using this fact,

bounds can be created and large groups of potential discrete solution can be

eliminated. The algorithm creates a tree structure with branches by

systematically fixing and relaxing discrete variables. This creates a structure with

nodes connected by links. Following the best path through the links and nodes is

called fathoming. The use of the branch and bound method is best described

with an example.

 Consider the structural bracket shown in Figure 24. Assume the goal is to

minimize the total amount of material in the structure and elements 1 and 2 can

only be made of standard steel round bar stock. Also, assume the end of

element 2 can assume only the two locations shown in the figure. The questions

are: What is the optimal layout of element 2? What are the optimal cross

sections of both elements? The bracket must not deflect more than 0.010” when

it is supporting 30lbs.

Figure 24. Structural Bracket Example

 56

The formal optimization problem can then be stated as:

Minimize: 232

1

22
321)

2
)()(144()

2
(24),,(

x
x

x
xxxf  

]24,12[1 x

]25.1,0.1,5.0[2 x

]25.1,75.0,125.0[3 x

Subject to: 010.0

Where:  is the maximum nodal deflection

 X2 is the diameter of element 1 cross section

 X3 is the diameter of element 2 cross section

 The first variable x1 is fixed and partial solutions are found. In this case x1

only has two discrete possibilities. So, x1 is fixed to these two values and the

other variables are relaxed. In this example, a sequential quadratic programming

method was used to find the optimal solutions. As shown in Figure 25, this

produces two branches or partial solutions from node 0.

 This method of fixing and relaxing variables is continued by following the

path of the best solution until the tree is completely fathomed. Then, the partial

solutions that are worse than the best fathomed solution are pruned or cut. This

will leave only active or pruned partial solutions. An active partial solution is one

that is not pruned but has not been fathomed. This is continued until all

branches have been fathomed or pruned.

 57

Figure 25. Branch and Bound Tree for the Structural Bracket Example

Structural Bracket Example

Start Node 0:

Root node where all variables are relaxed.

Node 1 & 2:

Discrete variable x1 is assigned to each permissible discrete value. This

creates two paths or branches. The optimal solution is found for each

node by relaxing the other variables. Node 1 has the best solution so it

will be fathomed.

Completion of Node 1:

 58

Node 1 is expanded by setting the discrete variable x2 to its permissible

discrete values. This creates branches to nodes 3, 4, and 5. Node 3 has

the best solution so it will be fathomed.

Completion of Node 3:

Node 3 is expanded by setting the discrete variable x3 to its permissible

discrete values. This creates branches to nodes 6, 7, and 8. Node 6 fails

to produce a solution because it does not meet the displacement

constraint. Node 7 produces the best solution. Since all the discrete

variables at node 7 are assigned discrete values the solution at node 7 is

considered the current best discrete solution. All of the nodes with

solutions greater than node 7 are pruned.

All of the nodes have been pruned or fathomed. Therefor, node 7 is the global

discrete optimal solution.

 This example shows that the branch and bound method is effective in

finding the global optimum of a typical discrete structural optimization problem.

In this example a non-linear relaxation method was applied. Also, the algorithm

used the non-equality constraint as an effective pruning mechanism.

The MMT optimization problems of this study were solved using the

branch and bound method by fixing one variable at a time then relaxing the other

variables. Fixing one variable at a time broke the problem into branches. These

branches were then solved as continuous optimization problems. The

continuous branches were then compared to discrete solutions and were

 59

normally cut after a few iterations. This method was based on the fact that the

continuous solution of each branch was always more optimal than the discrete

solution. Also, the use of gradient-based methods provided continuous solutions

with very little computational load.

For the MMT DSO problems branches were the topology of the structure.

Another discrete design variable is the different shape of cross-sections of each

structural members. The member’s geometric properties were then relaxed and

the continuous problem was solved. Figure 26 of the 2D problem of a typical

side of a MMT base shows the typical branches. Figure 27 shows the overall

flow of the branch and bound program as applied to the MMT DSO.

 60

Figure 26. Tree for typical MMT base side

Figure 27. Branch and bound flowchart for MMT base side

 61

For this research all of the members were assumed to have stock equal or

unequal leg L cross-sections. This assumption leads to three design variables

for each member (L1, L2, and t in Figure 28). Figure 28 also shows a typical

branch topology; in this example there are 6 elements with 3 design variables or

18 continuous variables for this branch.

Figure 28. Typical topology and cross section

 It was determined from testing examples that many of relaxed continuous

optimization problems in this branch and bound structure were non-convex,

discontinuous, or had many local minimums. Many of these branches had long

convergent times when the variables were relaxed. It was obvious that some

non-gradient methods were needed.

2.9 Hybrid continuous optimization

 Conventional gradient-based optimization methods are very fast in solving

smooth convex problems. However, for piecewise continuous, non-differentiable,

or problems with many local minimums, they may become inefficient. In these

 62

problems it was easy to see that each element was continuous but when

assembled, it became piecewise continuous with many local minimums.

 The most effective way to solve this type of non-smooth problem was to

use a non-gradient based method. The most accepted non-gradient based

methods include SA, GA, and pattern search algorithms [4 and 72]. These

methods all have the problem that though they are assumed to be global

algorithms, they may be slow to reach the required accuracy and global optimal.

 One method reported to overcome this problem was to employ a hybrid

approach that used both gradient and non-gradient based methods [72]. For

problems like this with many smooth areas or local minimums, a SA, GA, or

pattern search method was used to quickly get to the best smooth area then a

fast gradient based method was used to find the accurate solution.

 SA, GA, and pattern search methods can be difficult to implement and

tune for a given problem [72]. Particle swarm optimization (PSO) is one of the

methods to overcome parameter tuning difficulty. It is loosely based on animal

swarming behavior by bees, birds, or fish. Compared to the other methods, it is

easy to implement and has few parameters to tune [73].

 PSO simulates the behaviors of feeding schools of fish or flocks of birds.

The idea is simple. The swarm randomly heads out into a search area. The

swarm then moves in the general direction toward the individual with the most

food (best solution). The swarm moves together in general but individuals still

 63

have some small random area to explore. After a very short time the swarm will

converge in the area with the most food (best solution).

 The algorithm for a PSO is not difficult to develop, implement, and tune

[34]. First, the PSO is initialized with a group particle. The size of the swarm is

the first parameter. Normally this is set to 25 to 50 particles [73]. This is arbitrary

and dependent on the size of the search space. Second, the particles are

randomly distributed across the design space and the solution (fitness) for each

particle is found. The two best fitness values are stored. One is the value of the

best particle called “pbest”; the other is what will become the overall or global

best called “gbest”. After “pbest” and “gbest” are found, a velocity is found that

will move all the particles in the general direction of the best solution.

[])[](*()*1[][] locationpbestrandcVV 

 [])[](*()*2 locationgbestrandc )35(

where:

rand() is a vector of random numbers from 0 to 1

c1 and c2 are learning factors normally set to 2

location[] is the location of the particles in the design space

Location is a commonly used term in the PSO literature. It refers to the

current values of the design variables in the design domain [31]. Then, for every

iteration the location of the particles are updated:

[][][] Vlocationlocation )36(

 64

 The new velocity and locations are computed for each iteration. The

algorithm is continued until the maximum number of iterations is reached or the

change in “pbest” reaches a set minimum.

Compared to other optimization methods, the PSO tends to converge

quickly on the solution but may take many iterations to reach a desired minimum

error [73]. For this research a PSO with 50 particles was used and after 4

iterations it was assumed to be close to the global solution. The results of the

PSO were then used as the initial values for the standard Matlab gradient based

constrained nonlinear optimization function. The Matlab function quickly

convereged on a feasible solution. In this research the Matlab fmincon function

using the sequential quadratic programming algorithm option was used

exclusively. Figure 28 shows the flow diagram for the algorithm used to optimize

each branch of the problem. The current literature suggest there is no

mathematical proof to show the swarm has found a global solution. However, it

suggests that a large swarm (greater than 20 particles) will find the area of the

global solution, for most problems, in very few iterations [31].

 65

Figure 29. Particle swarm optimizer flowchart

 66

CHAPTER 3

DISCREET OPTIMIZATION OF MMT STRUCTURES

3.1 Application of DSO, FEA, and NN

 The side of a typical MMT base component was selected to test the

combination of DSO using a branch and bound algorithm while using a parallel

training NN method. A structure like the one in Figure 16 was developed. A fully

grounded structure was considered. Throughout the design process elements

were added and removed and the cross section of the elements were changed.

This created a discrete topology and size problem. It was a discrete topology

problem because the elements could be located at any of the discrete node

locations. Also, removing or adding the elements was considered. The discrete

sizing was used because the material properties and cross sections of all the

elements were selected from the standard steel cross sections in Table 1. The

formal optimization problem can be stated as:

Minimize: 



eN

i

iii LAW
1

)37(

Subject to:

Displacement

01
m ax




 ik 3,2,1;,1  kNNi)38(

 67

Frequency (Eigenvalues)

01 
dist


)39(

Von Mises Stress

01
yield

i




 NEi ,1)40(

Euler Buckling

01 
bi

i




 NEi ,1)41(

Where: NE = total number of elements

 NN = total number of nodes(joints)

 Subscript k refers to the three coordinate directions

 ik is the nodal displacement

 max is the maximum allowable nodal displacement

  is the first natural frequency of the structure

 dist is the disturbance frequency caused by the machining

 σi is the Von Mises stress

 σyield is the yield stress of the material

σbi = -(CA)/L2

Where C is a constant. For example, a tubular member with a ratio

of diameter to wall thickness of 10 is C=3.966 [85]

 68

For typical machine tool design the displacement (rigidity) constraint is very small

and therefore critical. The stress and buckling are far from critical so they can be

removed from the optimization problem. For this MMT model, only the

displacement and eigenvalues were considered for constraints.

 Using only two internal elements and limiting the elements to four

standard cross sections produces over 450 thousand discrete combinations.

Using full enumeration and testing, each combination with FEA would require

approximately five days of computational time. These computing time

calculations are based on CPU times from a computer with a 2.33GHz Intel Core

2 Duo processor and 1Gbyte of RAM. Although this is not completely impractical,

if just a few more members or cross sections are considered the problem

becomes impractical and the idea of optimizing a complete MMT component is

unobtainable. However, if NN approximation and branch and bound techniques

are applied even complete MMT components can become practical. Figure 30

shows the general flow chart for the program. This research used only an

interpretive computer language (Matlab). Considerably faster computing times

could be realized using a compiler language such as FORTRAN or C thus

leading too larger scale problems. It is assumed that similar reductions in CPU

times would be realized using the methods developed in this research when

implemented with compiled code.

 69

Figure 30. Parallel NN training and branch and bound

 A program was developed to test this method on a side of a simple MMT

base component like the one shown in Figure 16. Subprograms for the FEA and

 70

NN were developed using Matlab. Even though only one computer was used in

these tests the subprograms were used in a parallel method as shown in the flow

diagram. These could easily be implemented on separate processors for large

scale problems. The method was compared to the standard branch and bound

method using only FEA.

Table 8. Optimization results for first load condition

Figure 31. Optimal topology with element numbers for first load condition

Table 8 and Figure 31 show the results of both methods. Both methods have the

same topography and material cross sections. However, the NN approach used

Total CPU Volume

Member 1 2 3 4 5 Time (s) in^3

FEA L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 14.415 45.5156

NN L3/4x3/4x1/8 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L1x1x1/4 1.162 45.5156

 71

much less CPU time. This is a significant reduction in time and this reduction

should get larger as the problem gets larger. The reduction in time will increase

for two reasons. First, the FEA computations will be longer. Second, since the

NN is trained for all the topologies, the time to remesh the FEA will be eliminated.

The test was then repeated with the loads applied in different locations to

simulate the MMT doing some common type of machining operation. Figure 32,

33, and 34 show the resulting optimal configurations. Table 9, 10, and 11 list the

results.

Figure 32. Optimal design for second load location

 72

Table 9. Optimization results for second load condition

Figure 33. Optimal design for third load location

Table 10. Optimization results for third load condition

Total CPU Volume

Member 1 2 3 4 5 Time (s) in^3

FEA L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L2x2x1/2 L1x1x1/4 58.773 92.6745

NN L1x1x1/4 L3/4x3/4x1/8 L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 4.618 75.5262

Total CPU Volume

Member 1 2 3 4 5 Time (s) in^3

FEA L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 30.04 61.5469

NN L1x1x1/4 L2x2x1/2 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 2.444 61.5469

 73

Figure 34. Optimal design for fourth load location

Table 11. Optimization results for forth load condition

Total CPU Volume

Member 1 2 3 4 5 Time (s) in^3

FEA L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 14.23 50.625

NN L1x1x1/4 L1x1x1/4 L3/4x3/4x1/8 L3/4x3/4x1/8 L3/4x3/4x1/8 1.202 50.625

 74

3.2 Traditional Topology Optimization

 The more traditional methods of topology optimization are well researched

and many examples of programming code can be found in the literature [75].

Examples of running code can even be found on the internet [74]. Designs can

be submitted and the topology takes shape real-time. Using this online code the

typical MMT base-side developed previously was tested.

Figure 35. Optimal topology using material density method

Figure 35 shows some typical results from these tests. When compared to the

branch and bound method used previously very different results were obtained.

This is because the online program is very limited in the number and types of

forces and boundary conditions that could be applied.

 Several commercial software packages exist for solving topology

optimization problems. These programs are closely tied to commercial FEA

packages and have the same drawbacks as the commercial FEA packages. For

 75

this research a very robust simple topology optimization routine was utilized.

This was done by adding to and modifying Matlab code that was developed by

others for public research and education projects [75]. The developers of this

code included a simple but effective FEA routine that is built into the topology

optimization code. The code was modified to accept the initial and boundary

conditions and the applied loads for the two-diminsional MMT base side.

 This code was based on the solid isotropic material with penalization

(SIMP) approach [76]. In this approach the objective is to minimize the

compliance of the system. The formal optimization problem can be stated as:

Minimize:

KUUxc T)()42(

or in terms of the elements:





N

e

ee

T

e

p

e ukuxxc
1

)()()43(

Subject to:

f
V

xV

o


)(

FKU 

10  x To avoid singularity x is greater than and not equal to 0.

Where:

euandU are the global and elemental displacements

F is the global force vector

 76

ekandK are the global and elemental stiffness matrices

x is the design variable (relative density)

N is the design domain

p is the penalization constant

)(xV is the material volume

oV is the design domain volume

f is the prescribed volume fraction

 The FEA for this problem was discretized into square elements with nodes

at each corner. The nodes had 2 degrees of freedom. The elemental stiffness

matrix was derived using the method previously described.

 The optimization part of the code used a heuristic updating method that

directly follows the literature [56, 75 and 77]. The design variables were

formulated as:






























n

eee

e

e

n

ee

m

e

n

ee

e

n

ee

e

new

e

Bxmxif

mx

mxBxxxif

Bx

mxxBxif

mxx

x

),1min(

),1min(

),,1min(),max(

),,max(

),max(

min

min

min

)44(

Where:

m is the move limit

n is the damping coefficient and is set to 0.5

 77

eB is the optimality condition

e

e

e

x

V

x

c

B













)45(

Where:

 is the Lagrangian multiplier

ex

c




 is the sensitivity of the objective function, and

ee

T

e

p

e

e

ukuxp
x

c 1)(



)46(

 One major problem existed with implementing this approach. The

existence of a solution was not ensured and the results were sensitive to how

refined the domain was discreetized. Spatial zones of oscillation occured

frequently. This is commonly called the checker-boarding phenomenon [56, 77,

78, and 79]. A filter method that was adapted from digital image processing was

shown to reduce or eliminate these problems [75]. Directly following the

literature the mesh-independent filter is [74 and 75]:


 










 N

f f

ffN

f

fe
e x

c
xH

Hx

N

x

c

1

1

ˆ

ˆ

1

)47(

Where:

  NerfedistNffedistrH f ,,1,),(|),,(minmin 

 78

The new mesh-independent filtered sensitivities (47) are used in place of the

original sensitivities (46).

 This code was tested on the typical MMT base-side. Figure 36 shows the

results with the same loads and boundary conditions from the previous test

applied.

Figure 36.(a) Load Case 1

Figure 36.(b) Load Case 2

 79

Figure 36.(c) Load Case 3

Figure 36.(d) Load Case 4

Figure 36. Optimal topology using material distrubution method

These results show very different topologies than the ones from the

branch and bound method. There are several reasons for the differences. First,

the branch and bound method used a constrained optimization method with very

small constraints on the displacement (x, y and rotation around z for the nodes

along the top edge of the structure) and natural frequency and the material

volume was minimized. The material distribution method minimized the

compliance of the structure and the material volume was an equality constraint.

 80

Sankaranarayanan et al. compared topology optimization of trusses for minimum

weight using a method with stress and displacement constraints to a method

using a minimum compliance constraint. They showed for some truss problems

the stress and displacement constraint method produced different and generally

better results [84]. Second, the branch and bound includes the inherent

constraints that the members must be terminated at discrete nodes. Finally, the

literature suggests the material distribution method may not be the most effective

for layout problems like this if the prescribed fraction of material volume is too low

compared to the design domain volume [75 and 76]. For this code and this

problem, it was found that it failed to converge with prescribed volumes less than

approximately 25 percent. It was also found through experimentation that the

online code failed to converge with prescribed volumes less than approximately

25 percent. However, feasible optimal designs were found that had less than 10

percent of the actual design domain using the branch and bound method. Some

topologies were found to have less than 4 percent. Actually, for most structural

steel designs, using standard shapes and minimizing the amount of steel used,

this material distribution method may not be effective because the space frame

or truss would generally include less than 25 percent of the total volume. This

method would be better suited for plastic molded, cast metal, or formed sheet

metal designs where the material volume is a greater percent of the total design

space and rib or reinforcing member location would be total a continuous varible.

 81

 The test was repeated. This time a lateral force was add along with the

vertical force to simulate a typical milling operation. The results from the branch

and bound method using NN is shown in figure 37. Figure 38 through 41 show

the results from the material density method with varying amounts of percent

material. As expected with lower amounts of material (25% to 30%) the method

tends to converge slowly on a solution. With larger amounts of material the

results are close to the branch and bound method and the topologies are similar.

Figure 37. Discrete optimization using NN with lateral load

 82

Figure 38. Discrete optimization using the material density method and 25%
volume

Figure 39. Discrete optimization using the material density method and 30%
volume

Figure 40. Discrete optimization using the material density method and 40%
volume

 83

Figure 41. Discrete optimization using the material density method and 50%
volume

3.3 Large Scale MMT Base Optimization

 The use of the branch and bound DSO routine was tested on a typical

MMT base. This included using a hybrid continous optimization approach for

each branch. This combined a traditional gradient based method with the PSO

method. The inputs and results from each branch or topology were saved and

later used for the NN training. After the initial NN was trained for the first

topology the weights and biases were saved for future training. Nonsymmetrical

multiple loads were applied to simulate a typical machining operation. A

common MMT base size of 36”x12”x12” was selected. A set of 3 standard L

channel steel shapes that ranged in flange size from ¾” to 2” and in flange

thickness from 1/8” to ½” were selected as the discrete set. Table 12 shows the

DSO results along with the CPU times.

 84

Table 12. Element sections and CPU times for 3D MMT base

Element Standard

Number Steel L Shape

1 L3/4x3/4x1/8

2 L2x2x1/2

3 L3/4x3/4x1/8

4 L2x2x1/2

5 L2x2x1/2

6 L3/4x3/4x1/8

7 L2x2x1/2

8 L3/4x3/4x1/8

9 L2x2x1/2

10 L1x1x1/4

11 L1x1x1/4

12 L2x2x1/2

13 L1x1x1/4

14 L2x2x1/2

CPU Time 6h 19min.

One result that should be noted from this test is that the NN training for

this large scale problem was approxiamately 5 minutes. This is insignificant

compared to the over 6 hours it took to solve this 3 dimensional large-scale

problem. Given the number of function calls required to solve this problem using

the NN approach and the average time for the FEA of this structure, the problem

would take approximately 150 hours to solve just using FEA. This is not

imposible, but it is impractical and was not completed for this case. The code for

this project was developed entirely on an interpretative based computer language.

If it was developed or converted to a compiled language such as FORTRAN

much lower CPU times could be realized. However, the relative reduction in

times is a good indication of how effective this approach is on practical industrial

problems. The final optimal topology with the applied loads is shown in Figure 42.

To help visualize the results and topology a Matlab function was developed that

 85

created an AutoLISP program. This AutoLISP program was then run in AutoCAD

to produce a detail 3D drawing of the final design (Figure 43). This is useful in

not only seeing the topology but the orientation of the cross sections of the steel

shapes.

Figure 42. The optimal topology with applied loads

 86

Figure 43. Program generated 3D model

 87

CHAPTER 4

CONCLUSTION AND FUTURE WORK

4.1 Conclusion

 A unique and novel method of discrete optimization has been developed

for the design of MMT components. A branch and bound method was used that

included a method that was parallel in nature to generate the data needed to

train a feed-forward NN. The continous optimization of the individual branches

used a hybrid method that combined particle swarm and traditional gradient base

optimization. This hybrid method proved effective in optimizing the piecewise

continous branches while at the same time generating data that became useful

for training the NN. The feed-forward NN was then shown to be effective at not

only approximating the FEA but also the inherent memory of the network became

useful for approximating similar disigns. The method was tested on a large scale

3D problem and it was shown that using only the FEA the problem becomes

impractical but implementing the NN along with the FEA makes it feasible. The

overall results from this research can be summarized as follows:

 The use of a feed-forward NN was very effective as a FEA approximator.

 The NN was effective at approximating more than just the FEA, for

example, multiple meshings of the FEA, multiple topologies, and

eigenfrequencies.

 88

 The hybrid approach was required for the continouis part of the branch

and bound method because of all the local minimums. This also helped

generate the training data for the NN.

 The traditional material distribution methods of topological optimization are

not suited to this type of discrete structural optimization problem because

the amount of material volume compared to the total design space volume

is very small.

 The method was successful on a large-scale structure that would be

impractical using other methods.

4.2 Future Research

 In this problem the FEA was limited to linear elastic members. This

method of using NN approximation should be very effective on non-linear

elements. Fluid mechanics, heat transfer, and impact problems are just a few of

the FEA problems that when applied to large-scale optimization problems are

computationally expensive. The NN’s in these cases could be taught whole

families of similar problems with many of the pre and post processing operations

included in the NN.

 All of the joints in this research were considered to be fixed and solid.

Refering to Figure 42 it can be seen that some of the joints would be impossible

to connect. This is because the optimization routine considered the orientation of

the cross sections. Also, a completely fixed solid joint is not practical. A

 89

complete study of the joints should be considered. A method of quickly building

and recycling of MMT components will require a complete and detail design of

the joints.

 The NN structure is very significant in the success of the structure

optimization. In this study, large NN structures were used. This structure was

large enough to handle any of the topologies and parameters. However, the

structure was almost always larger than required. Further studies should include

an adaptive type of NN structure.

 The whole branch and bound process and the NN method is inherently

parallel. It would take very little effort to convert the code used in this research to

run over a network on multiple computers. Each continous branch or topology

could be optimized on a separate computer. Then, as each branch finished each

computer could start training individual NN’s. The NN’s could then easily be

implemented on multiple computers. Further research on very large scale

nonlinear optimization could be realized using many computers over a network or

the internet.

 90

REFERENCES

1. The American Society of Mechanical Engineers, Modular Machine Tool
Standards, ASME B5.43M – 1979.

2. J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, “History of

Mathematical Programming”, Stichting Mathermatisch Centrum, 1991.

3. L. Fortnow, S. Homer, A Short History of Computation Complexity, The

History of mathematical Logic, North-Holland, Amsterdam, 2002/2003.

4. Venkataraman, P., Applied Optimization with Matlab Programming, John

Wiley & Sons, Inc, New York, 2002

5. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering

Design with Applications, McGraw-Hill, 1984.

6. Chapman, C.D. and Jakiela, M.J., “Genetic Algoritm-Based Structural

Topology Design with Compliance and Topology Simplification
Considerations”, J. of Mechanical Design, v.118, pp.89-98, 1996.

7. Reddy, G.M. and Cagan,J., “An improved Shape Annealing Algorithm for

Truss Topology Generation”, J. of Mechanical Design, V.117, pp.315-
321,1995.

8. Shea, K., Cagan, J. and Fenves, S.J.,”A Shape Annealing Approach to

Optimal Truss Design With Dynamic Grouping of Members”, J. of
Mechanical Design, v.119, pp.388-394, 1997.

9. Lu, K. and Kota, S., “Topology and Dimensional Synthesis of Compliant

Mechanisms Using Discrete Optimization”, J. of Mechanical Design, v.128,
pp.1080-1091, 2006.

10. Thanedar, P.B. and Vanderplaats, G.N., “Survey of Discreete Variable

Optimization for Structural Design”, J. of Structural Engineering, v.121,
issue 2, pp. 3001-3006, 1995.

11. Gutkowski, W., Discrete Structural Optimization, International Center for

Mechanical Sciences, Springer Wien, New York, 1997.

12. Parker, R. G., and R. L. Rardin, Discrete Optimization, Academic Press,

Boston, 1988.

 91

13. Foulds, L. R., Optimization Techiques An Introduction, Springer-Verlag,
New York, 1981.

14. Land, A and A. Doig, “An Automatic Method of Solving Discrete

Programming Problems”, Econometrica 28:497-520, 1960.

15. Dakin, R. S., “A Tree Search Algorithm for Mixed Integer Programming

Problems”, Computer J. 8:250-255, 1965.

16. Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel, “An Algorithm

for the Traveling Salesman Problem”, Operations Research, 11:972-989,
1963.

17. Edmonds, J.,”Optimum Branchings”, Journal of Research of the National

Bureau of Standards, B71:233-240, 1967.

18. Gupta, O. K. and A. Ravindran, “Nonlinear Integer Programming and

Discrete Optimization”, Journal of Mechanical Design, 105:106-164, 1983.

19. Roth R. H., “An Approach to Solving Linear Discrete Optimization

Problems”, Journal of the Ass. for Computing Machinery, Vol. 17, No. 2,
pp. 303-313, 1970.

20. Goldstein, A. J. and A. B. Lesk, “Common Feature Techniques for

Discrete Optimization”, Proceedings of the 13th Conference on Design
Automation IEEE, pp. 232-244, San Francisco, CA, 1976.

21. More, J. J., R. A. Tapia, and M. H. Wright, “Optimization”, Program

Directions for Computational Mathematics - DOE, 1979.

22. Sergienko, I. V., “Trends in the Development of Methods of Discrete

Optimization and Their Software Base”, Cybernetics, vol. 18 no. 6 pp. 754-
764, 1982.

23. Shcherbina, O. A., “Tree Decomposition and Discrete Optimization

Problems: A Survey”, Translated from Kibernetika I Sistemnyi Analiz, No.
4 pp. 102-118, 2007.

24. Balling, R. J., “Optimal Steel Frame Design by Simulated Annealing”,

Journal of Structural Engineering, vol. 106 no. 6 pp. 1780-1795, 1991.

 92

25. Kocer, F. Y. and J. S. Arora, “Standardization of Steel Pole Design Using
Discrete Optimization”, Journal of Structural Engineering, vol. 123 no. 3 pp.
345-349, 1997.

26. Rajeev, S. and C. S. Krishnamoorthy, “Discrete Optimization of Structures

Using Genetic Algorithms”, Journal of Structural Engineering, vol. 118 no.
5 pp. 1233-1250, 1992.

27. Koumousis, V. K. and P. G. Georgiou, “Genetic Algorithms in Discrete

Optimization of Steel Truss Roofs”, Journal of Computing in Civil
Engineering, vol. 8 no. 3 pp. 309-325. 1994.

28. Camp, C., S. Pezeshk, and G. Cao, “Optimized Design of Two-

Dimensional Structures Using a Genetic Algorithm”, Journal of Structural
Engineering, vol. 124 no. 5 pp. 551-559. 1998.

29. Lu, K. and S. Kota, “Topology and Dimensional Synthesis of Compliant

Mechanisms Using Discrete Optimization”, Journal of Mechanical Design,
128:1080-1091, 2006.

30. Lee, K. S. and Z. W. Geem, “A new Structural Optimization Method for

Structures with Discrete Sizing Variables”, Computers and Structures, vol.
82 issue 9-10 pp. 781-798, 2004.

31. Clerc, M, Particle Swarm Optimization, ISTE Ltd., Newport Beach, CA,

2006.

32. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence,

John Wiley & Sons, West Sussex, England, 2005.

33. Bayazit, O. B., J-M. Lien, and N.M. Amato, “Roadmap-Based Flocking for

Complex Environments“, Proceedings of the 10th Pacific Conference on
Computer Science and Applications, pp. 104-113, 2002.

34. Mataric, M. J., “Interaction and Intelligent Behavior”, PhD Dissertation,

Department of Electrical and Computer Engineering, MIT, 1994.

35. Reynolds, C. W., “Flocks, Herds, and Schools: A Distributed Behavioral

Model”, Computer Graphics, vol. 21 no. 4 pp. 25-34, 1987.

36. Partridge, B. L., “The Structure and Function of Fish Schools”, Scientific

American, 246:114-123, 1982.

 93

37. Parsopoulos, K. E. and M. N. Vrahatis, “Particle Swarm Optimizer in Noisy
and Continuously Changing Environments”, Proccedings of the IASTED
International Conference on Artificial Intelligence and Soft Computing, pp.
289-294, 2001.

38. Brits, R., “Niching Strategies for Particle Swarm Optimization”, Master

Thesis, Department of Computer Science, University of Pretoria South
Africa, 2002.

39. Brits, R., A. P. Engelbrecht, and F. Van den Bergh. „A Niching Particle

Swarm Optimizer“, Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning, pp.692-696, 2002.

40. Brits, R., A. P. Engelbrecht, and F. Van den Bergh, “Solving Systems of

Unconstrained Equations using Particle Swarm Optimization”,
Proceedings of the IEEE Conference on Systems, Man, and Cybernetics,
3:102-107, 2002.

41. Parsopoulos, K. E. and M. N. Vrahatis. "Initializing the Particle Swarm

Optimizer using the Nonlinear Simplex Method”, Advances in Intelligent
Systems, Fuzzy Systems, Evolutionary computation, pp. 216-221, 2002.

42. Kennedy, J. and R. Eberhart, “Particle Swarm Optimization”, Proceedings

of the IEEE International Joint Conference on Neural Networks, pp. 1942-
1948, 1995.

43. Kennedy, J. and R. Eberhart, “A New Optimizer Using Particle Swarm

Theory”, 6th International Symposium on Micro Machine and Human
Science, pp. 39-43, 1995.

44. Song, M-P. and G-C. Gu, “Research on Particle Swarm Optimization: A

Review” Proceedings of the 2004 Interenational Conference on Machine
Learning and Cybernetics, 4:2236-2241, 2004.

45. Langdon, W. B. and R. Poli, “Evolving Problems to Learn About Particle

Swarm Optimizers and Other Search Algorithms”, IEEE Transactions on
Evolutionary Computation, vol. 11 no. 5 pp.561-578, 2007.

46. Angeline, P., “Evolutionary Optimization Versus Particle Swarm

Optimization: Philosophy and performance difference”, Proceedings of the
Evolutionary Programming Conference, San Diego, 1998.

 94

47. Li, L. J., Z. B. Huang, F. Liu, and Q. H. Wu, “A Heuristic Particle Swarm
Optimizer for Optimization of Pin Connected Structures”, Computers and
Structures, 85:340-349, 2007.

48. Camp, C. V., B. J. Bichon, and S. P. Stovall, “Design of Steel Frames

Using Ant Colony Optimization”, Journal of Structural Engineering, vol.
131 no. 3 pp. 369-379, 2005.

49. Perez, R. E. and K. Behdinan, “Particle Swarm Approach for Structural

Design Optimization”, Computers and Structures, 85:1579-1588, 2007.
50. Jansson, N., W.D. Wakeman, J.-A.E. Manson, Optimization of Hybrid

Thermoplastic Composite Structures Using Surrogate Models and Genetic
Algorithms, Composite Structures, 80 21-31, Elsevier 2007

51. Sakata, S., F. Ashida, M. Zako, Structural Optimization Using Kriging

Approximation, Comput. Methods Appl. Mech. Engrg. 192, 923-939,
Elsevier 2003.

52. Shao, T., S. Krishnamurty,” Surrogate Model Updating Using Clustering in

a Genetic Algorithm Setup”, ASME 2006 international Design Engineering
Technical Conferences & Computers and Information in Engineering
Conference,DETC2006-99491, Philadelphia, PA, 2006.

53. Rikards, R., H. Abramovich, J. Auzins, A. Korjakins, O. Ozolinsh, K.

Kalnins, T. Green, “Surrogate Models for Optimum Design of Stiffened
Composite Shells”, Composite Structures, 63, 243-251, 2004.

54. Bisangi, C., L. Lanzi, “Post-buckling optimization of composite stiffened

panels using Neural Networks”, Compos. Struct., 58, 237-247, 2002.

55. Carpenter, W.C., J.F.M. Barthelemy, A Comparison of Polynomial

Approximations and Artificial Neural Nets as Response Surfaces, A
Collection of Technical Papers, The 33rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Dallas, TX,
1992.

56. Bendsoe, M.P., Optimization of Structural Topology, Shape, and Material,

Springer-Verlag, Berlin, Germany, 1995.

57. Huebner, K., Dewhirst, D., Smith, D., and Byrom, T., The Finite

Element Methods for Engineers, John Wiley & Sons, Inc., New York,
2001.

 95

58. Liang, Q.Q., Performance-based Optimization of Structures, Spon Press,
New York, 2005.

59. Rozvany, G.I.N., Topology Optimization in Structural Mechanics, Springer

Wien, New York, 1997.

60. Lin, Y., Zhang, Y., and Harby, D., “Development of a Digital Case Library

for Mechanical Design Education”, Proceedings of Capstone Design
Forum, Seoul, Korea, 2003.

61. Lin, Y., Harby, D., Jang, D., and Zheng, W., “Teaching Capstone

Design in the Globalization Environment”, Proceedings ASEE
Annual Conference and Exposition, Salt Lake City, UT,2004.

62. Lin, Y. and Harby, D., “Web-based Tools and Course Materials for

Teaching Capstone Design internationally”, Proceedings ASEE Annual
Conference and Exposition, Chicago, IL,2006.

63 Smith, D., Class Notes MAE401, University of Missouri -Columbia,

2005.

64. Pai, P. F.,Class Notes MAE7208, University of Missouri-Columbia,

2004.

65. Reddy, J.N., An Introduction to the Finite Element Method , McGraw-

Hill, 1993.

66. Zienkiewicz, O.C., and Taylor, R. L., The Finite Element Method,

vol. 1 Basic Formulation and Linear Problems, McGraw-Hill, 1989.

67. Zienkiewicz, O.C., and Taylor, R. L., The Finite Element Method,

vol. 2 Solid and Fluid Mechanics, Dynamics and Non-linearity,
McGraw-Hill, 1989.

68. Harby, D., “Real-time Statistical Process Controller”, M.S. Thesis,

University of Missouri – Columbia, MO 2000.

69. Demuth, H., Beale, M., and Hagan, M., Neural Network Toolbox User’s

Guide, The MathWorks, Inc., Natick, MA, 2006.

70. Liu, Y., “Efficient Methods for Structural Analysis of Built-up Wings”, PhD

Dissertation, Virginia Polytechnic Institute and State University, 2000.

 96

71. Nemhauser, G. L. and L. A. Wolsey, Integer and Combinational
Optimization, John Wiley & Sons, New York, 1988.

72. Doherty, D., M. A. Freeman, and R. Kumar, “Optimization with MATLAB

and the Genetic Algorithm and Direct Search Toolbox”, Matlab Digest,
http://www.mathworks.com , 2004.

73. Hu, X., “Particle Swarm Optimization: Tutorial”,

http://www.swarmintelligence.org/tutorials.php, 2006.

74. Sigmund, O, http:/www.topopt.dtu.dk,2007.

75. Sigmund, O., “A 99 line topology optimization code written in Matlab”,

Struct Multidisc Optim 21, 120-127, Springer-Verlag 2001.

76. Bendsoe, M.P., “Optimal shape design as a material distribution problem”,

Struct. Optim. 1, 193-202, 1989.

77. Bendsoe, M.P., “Generating Optimal Topologies in Structural Design

Using a Homogenization Method”, Computer methods in applied
mechanics and engineering, 71, 197-224, 1988.

78. Sigmund, O., Petersson, J., “Numerical instabilities in topology

optimization: a survey on procedures dealing with checkerboards, mesh-
dependencies”, Struct Multidisc Optim, 16, 68-75, Springer – Berlin, 1998.

79. Beckers, M., “Topology optimization using a dual method with discrete

variables”, Structural Optimization, 17, 14-24, Springer-Verlag 1999.

80. Sasena, M., P. Papalambros, and P. Goovaerts, “Global Optimization of

Problems with Disconnected Feasible Regions Via Surrogate Modeling”,
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, AIAA2002-5573, Atlanta, GA, 2002.

81. Pai, P. F., Geometrically Exact Structural Analysis (GESA) User’s Guide,

Mechanical and Aerospace Engineering Department, University of Missouri,
Columbia, 2004.

82. Cheng, G. D., Z. Jiang, “Study on topology Optimization with Stress

Constraints”, Eng. Opt., 20:129-148, 1992.

83. Cheng, G. D., “Some Aspects of Truss Topology Optimization”, Structural

Optimization, vol. 10, issue 3-4, pp. 173-179, 1995.

http://www.swarmintelligence.org/tutorials.php

 97

84. Sankaranarayanan, S., R. T. Haftka, and R. K. Kapania, “Truss
Optimization with Simultaneous Analysis and Design”, AIAA Journal, vol.
32, no. 2, pp. 420-424, 1994.

85. Beer, F. P, and Johnston, Jr., E. R., Mechanics of Material, McGraw-Hill,

New York, 1981.

 98

APPENDIX
Appendix A: MATLAB FEA Functions
function [x, ielem]=mymesh()
global X b h d enac num_ele
% this function generates the mesh for a typical
%MMT base structure
% %uncomment the following for testing
% b=36;
% h=12;
% d=12;

j=0;
for i=1:enac+1
 x(i,1)=j;
 x(i,2)=h;
 x(i,3)=0;
 x(i+enac+1,1)=j;
 x(i+enac+1,2)=0;
 x(i+enac+1,3)=0;
 x(i+(enac+1)*2,1)=j;
 x(i+(enac+1)*2,2)=h;
 x(i+(enac+1)*2,3)=d;
 x(i+(enac+1)*3,1)=j;
 x(i+(enac+1)*3,2)=0;
 x(i+(enac+1)*3,3)=d;
 j=j+(b/enac);
end
for i=1:enac
 ielem(i,1)=i;
 ielem(i,2)=i+1;
 ielem(i+enac,1)=i+enac+1;
 ielem(i+enac,2)=i+enac+2;
 ielem(i+enac*2,1)=i+enac*2+2;
 ielem(i+enac*2,2)=i+enac*2+3;
 ielem(i+enac*3,1)=i+enac*3+3;
 ielem(i+enac*3,2)=i+enac*3+4;
end
tot_ele=enac*4;
cn1=1; cn2=enac+1; cn3=enac+2; cn4=(enac+1)*2; cn5=2*enac+3;
cn6=(enac+1)*3; cn7=3*enac+4; cn8=(enac+1)*4;
ielem(tot_ele+1,:)=[cn1 cn3];
ielem(tot_ele+2,:)=[cn2 cn4];
ielem(tot_ele+3,:)=[cn5 cn7];

 99

ielem(tot_ele+4,:)=[cn6 cn8];
ielem(tot_ele+5,:)=[cn1 cn5];
ielem(tot_ele+6,:)=[cn3 cn7];
ielem(tot_ele+7,:)=[cn2 cn6];
ielem(tot_ele+8,:)=[cn4 cn8];

% add stiffners that are not part of the optimization
ielem(tot_ele+9,:)=[4 25];
ielem(tot_ele+10,:)=[11 18];

%extra elements
if num_ele==1
 ielem(tot_ele+11,:)=[round(enac/b*X(1,1))+1 round(enac/b*X(2,1))+8];
end

if num_ele == 2
 ielem(tot_ele+11,:)=[round(enac/b*X(1,1))+1 round(enac/b*X(2,1))+8];
 ielem(tot_ele+12,:)=[round(enac/b*X(3,1))+15 round(enac/b*X(4,1))+22];
 %************************ add two ielem for extra elements
End

function eleprop=myeleprop(L)
global enac num_ele

vl=size(L,1);
L2=L(1:vl/2)*1.25+0.75;
t=L(vl/2+1:vl)*.375+.125;

%set up the element properties
for i=1:enac
 eleprop(i,:)=Lsection(L2(1),t(1));
 eleprop(i+enac,:)=Lsection(L2(2),t(2));
 eleprop(i+enac*2,:)=Lsection(L2(3),t(3));
 eleprop(i+enac*3,:)=Lsection(L2(4),t(4));
end
tot_ele=enac*4;
eleprop(tot_ele+1,:)=Lsection(L2(5),t(5));
eleprop(tot_ele+2,:)=Lsection(L2(6),t(6));
eleprop(tot_ele+3,:)=Lsection(L2(7),t(7));
eleprop(tot_ele+4,:)=Lsection(L2(8),t(8));
eleprop(tot_ele+5,:)=Lsection(L2(9),t(9));
eleprop(tot_ele+6,:)=Lsection(L2(10),t(10));

 100

eleprop(tot_ele+7,:)=Lsection(L2(11),t(11));
eleprop(tot_ele+8,:)=Lsection(L2(12),t(12));

% add stiffners that are not part of the optimization
eleprop(tot_ele+9,:)=Lsection(2.0,0.5);
eleprop(tot_ele+10,:)=Lsection(2.0,0.5);

%extra elements
if num_ele==1
 eleprop(tot_ele+11,:)=Lsection(L2(13),t(13));
end

if num_ele == 2
 eleprop(tot_ele+11,:)=Lsection(L2(13),t(13));
 eleprop(tot_ele+12,:)=Lsection(L2(14),t(14));
end
% end extra elements

function y = mymass(rho,A,x1,y1,z1,x2,y2,z2)
% This fuction creates the elemental mass matrix
% This uses the lumped masses
L = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1));
w1 = rho*A*L/2;
w2 = (rho*A*L^3)/24;
kprime = [w1 0 0 0 0 0 0 0 0 0 0 0 ;
 0 w1 0 0 0 0 0 0 0 0 0 0 ;
 0 0 w1 0 0 0 0 0 0 0 0 0 ;
 0 0 0 w2 0 0 0 0 0 0 0 0 ;
 0 0 0 0 w2 0 0 0 0 0 0 0 ;
 0 0 0 0 0 w2 0 0 0 0 0 0 ;
 0 0 0 0 0 0 w1 0 0 0 0 0 ;
 0 0 0 0 0 0 0 w1 0 0 0 0 ;
 0 0 0 0 0 0 0 0 w1 0 0 0 ;
 0 0 0 0 0 0 0 0 0 w2 0 0 ;
 0 0 0 0 0 0 0 0 0 0 w2 0 ;
 0 0 0 0 0 0 0 0 0 0 0 w2];
if x1 == x2 & y1 == y2
 if z2 > z1
 Lambda = [0 0 1 ; 0 1 0 ; -1 0 0];
 else
 Lambda = [0 0 -1 ; 0 1 0 ; 1 0 0];
 end
else

 101

 CXx = (x2-x1)/L;
 CYx = (y2-y1)/L;
 CZx = (z2-z1)/L;
 D = sqrt(CXx*CXx + CYx*CYx);
 CXy = -CYx/D;
 CYy = CXx/D;
 CZy = 0;
 CXz = -CXx*CZx/D;
 CYz = -CYx*CZx/D;
 CZz = D;
 Lambda = [CXx CYx CZx ; CXy CYy CZy ; CXz CYz CZz];
end
R = [Lambda zeros(3) zeros(3) zeros(3) ;
 zeros(3) Lambda zeros(3) zeros(3) ;
 zeros(3) zeros(3) Lambda zeros(3) ;
 zeros(3) zeros(3) zeros(3) Lambda];
y = R'*kprime*R;

function y = mystiff(E,G,A,Iy,Iz,J,x1,y1,z1,x2,y2,z2)
%this function creates the elemental stiffness matrix
L = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1));
w1 = E*A/L;
w2 = 12*E*Iz/(L*L*L);
w3 = 6*E*Iz/(L*L);
w4 = 4*E*Iz/L;
w5 = 2*E*Iz/L;
w6 = 12*E*Iy/(L*L*L);
w7 = 6*E*Iy/(L*L);
w8 = 4*E*Iy/L;
w9 = 2*E*Iy/L;
w10 = G*J/L;
kprime = [w1 0 0 0 0 0 -w1 0 0 0 0 0 ;
 0 w2 0 0 0 w3 0 -w2 0 0 0 w3 ;
 0 0 w6 0 -w7 0 0 0 -w6 0 -w7 0 ;
 0 0 0 w10 0 0 0 0 0 -w10 0 0 ;
 0 0 -w7 0 w8 0 0 0 w7 0 w9 0 ;
 0 w3 0 0 0 w4 0 -w3 0 0 0 w5 ;
 -w1 0 0 0 0 0 w1 0 0 0 0 0 ;
 0 -w2 0 0 0 -w3 0 w2 0 0 0 -w3 ;
 0 0 -w6 0 w7 0 0 0 w6 0 w7 0 ;
 0 0 0 -w10 0 0 0 0 0 w10 0 0 ;
 0 0 -w7 0 w9 0 0 0 w7 0 w8 0 ;
 0 w3 0 0 0 w5 0 -w3 0 0 0 w4];

 102

if x1 == x2 & y1 == y2
 if z2 > z1
 Lambda = [0 0 1 ; 0 1 0 ; -1 0 0];
 else
 Lambda = [0 0 -1 ; 0 1 0 ; 1 0 0];
 end
else
 CXx = (x2-x1)/L;
 CYx = (y2-y1)/L;
 CZx = (z2-z1)/L;
 D = sqrt(CXx*CXx + CYx*CYx);
 CXy = -CYx/D;
 CYy = CXx/D;
 CZy = 0;
 CXz = -CXx*CZx/D;
 CYz = -CYx*CZx/D;
 CZz = D;
 Lambda = [CXx CYx CZx ; CXy CYy CZy ; CXz CYz CZz];
end
R = [Lambda zeros(3) zeros(3) zeros(3) ;
 zeros(3) Lambda zeros(3) zeros(3) ;
 zeros(3) zeros(3) Lambda zeros(3) ;
 zeros(3) zeros(3) zeros(3) Lambda];
y = R'*kprime*R;

function y = myassemble(K,k,i,j)
% this function assembles the M or K matrix into the global matrix
for i1=1:6
 for i2=1:6
 K(6*i-(6-i1),6*i-(6-i2))=K(6*i-(6-i1),6*i-(6-i2))+k(i1,i2);
 K(6*i-(6-i1),6*j-(6-i2))=K(6*i-(6-i1),6*j-(6-i2))+k(i1,i2+6);
 K(6*j-(6-i1),6*i-(6-i2))=K(6*j-(6-i1),6*i-(6-i2))+k(i1+6,i2);
 K(6*j-(6-i1),6*j-(6-i2))=K(6*j-(6-i1),6*j-(6-i2))+k(i1+6,i2+6);
 end
end
y = K;

Appendix B: MATLAB Program Used to Test FEA Approximation

clear all
close all

% Set up all the constants

 103

p=10; %force in grams
l=36; %length in meters
b=.5; %width in meters
h=1; %height in meters
I=1/3*b*h^3; %elastic equation
E=30e6; % modulus in pascals

% Generate some data to train the NN
ii=0;
while p<=250
tx=0;
for j=1:10
 tx=tx+(l/10);
 x(j)=tx;
 y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2);
end
ii=ii+1;
P(ii)=p;
p=p+20;
T(:,ii)=y';
end

% build and train the NN
minP=min(P');
maxP=max(P');
PR=[minP',maxP'];
layer1=round(4*size(P,1));
layer2=round(2*size(T,1));
outlayer=size(T,1);
% ************ build NN and train ******************
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm');
net.trainParam.goal=1e-10;
net.trainParam.show=100;
net.trainParam.epochs=1000;
[net, tr]=train(net,P,T);

%test the NN by entering a new load
p=input('input any load between 20-250 \n');

% Get the deflections from the elastic equation
cpu0=cputime;

 104

for i=1:10000
 tx=0;
for j=1:10
 tx=tx+(l/10);
 x(j)=tx;
 y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2);
end
end
cpu_exact=(cputime-cpu0)/10000;

%Get the deflections from the NN
cpu0=cputime;
for i=1:100
ny=sim(net,p);
end
cpu_NN=(cputime-cpu0)/100;

%Get the deflection from FEA
cpu0=cputime;
yFEA=myfea('beam1dtest',p,I);
cpu_FEA=cputime-cpu0;

%plot the results
plot(x,y,'bx-',x,ny,'r+-',x,yFEA(2:11),'ko-')
legend('Exact','NN','FEA')
ylabel('deflection')

disp([' Exact ' ' NN ' ' FEA']);
disp([y' ny yFEA(2:11)']);
disp('CPU usage');
disp([cpu_exact cpu_NN cpu_FEA]);

clear all
close all

% Set up all the constants
p=10; %force in grams
l=36; %length in meters
b=.5; %width in meters
h=1; %height in meters
I=1/3*b*h^3; %elastic equation
E=30e6; % modulus in pascals

 105

%pretrain NN
% Generate some data to train the NN
p=10;
ii=0;
while p<=250
tx=0;
for j=1:10
 tx=tx+(l/10);
 x(j)=tx;
 y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2);
end
ii=ii+1;
P(ii)=p;
p=p+20;
T(:,ii)=y';
end

% build and train the NN
minP=min(P');
maxP=max(P');
PR=[minP',maxP'];
layer1=round(4*size(P,1));
layer2=round(2*size(T,1));
outlayer=size(T,1);
% ************ build NN and train ******************
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm');
net.trainParam.goal=1e-10;
net.trainParam.show=100;
net.trainParam.epochs=1000;
disp([' base ' ' height'])
disp([b h])
[net, tr]=train(net,P,T);
% save the weights and bias for later
 w1=net.IW{1,1};
 w2=net.LW{2,1};
 b1=net.b{1,1};
 b2=net.b{2,1};
 save pw1.txt w1 -ascii;
 save pw2.txt w2 -ascii;
 save pb1.txt b1 -ascii;
 save pb2.txt b2 -ascii;
pause

 106

% Generate some data to train the NN
b=.5; %width in meters
h=1.2; %height in meters
I=1/3*b*h^3; %elastic equation
p=10;
ii=0;
while p<=250
tx=0;
for j=1:10
 tx=tx+(l/10);
 x(j)=tx;
 y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2);
end
ii=ii+1;
P(ii)=p;
p=p+20;
T(:,ii)=y';
end

% build and train the NN
minP=min(P');
maxP=max(P');
PR=[minP',maxP'];
layer1=round(4*size(P,1));
layer2=round(2*size(T,1));
outlayer=size(T,1);
% ************ build NN and train ******************
net = newff(PR,[layer1 outlayer],{'tansig','purelin'},'trainlm');
net.trainParam.goal=1e-10;
net.trainParam.show=100;
net.trainParam.epochs=1000;
% load prevous NN weights and bias
 load -ascii pw1.txt;net.IW{1,1}=pw1;
 load -ascii pw2.txt;net.LW{2,1}=pw2;
 load -ascii pb1.txt;net.b{1,1}=pb1;
 load -ascii pb2.txt;net.b{2,1}=pb2;
disp([' base ' ' height'])
disp([b h])
 [net, tr]=train(net,P,T);

%test the NN by entering a new load
p=input('input any load between 20-250 \n');

 107

% Get the deflections from the elastic equation
cpu0=cputime;

for i=1:10000
 tx=0;
for j=1:10
 tx=tx+(l/10);
 x(j)=tx;
 y(j)=(p/(6*E*I))*(tx^3-3*l*tx^2);
end
end
cpu_exact=(cputime-cpu0)/10000;

%Get the deflections from the NN
cpu0=cputime;
for i=1:100
ny=sim(net,p);
end
cpu_NN=(cputime-cpu0)/100;

%Get the deflection from FEA
cpu0=cputime;
yFEA=myfea('beam1dtest',p,I);
cpu_FEA=cputime-cpu0;

%plot the results
%figure(2)
plot(x,y,'bx-',x,ny,'r+-',x,yFEA(2:11),'ko-')
legend('Exact','NN','FEA')
ylabel('deflection')

disp([' Exact ' ' NN ' ' FEA']);
disp([y' ny yFEA(2:11)']);
disp('CPU usage');
disp([cpu_exact cpu_NN cpu_FEA]);

function fea_def = myfea(filename,pforce,newI)
% This code is from Dr. Smith's class
% This is the main program that controls the execution of the various
% finite element computations. Global arrays are defined and sizes of
% arrays are set, as required. The is executed by typing:
%

 108

% >> myfea('filename')
%
% at the MATLAB prompt where 'filename' refers to the input file named
% filename.txt in the current directory. This program calls all of the
% functions needed to run a finite element simulation. It also contains
% the calculations that invert the global reduced stiffness matrix and
% performs the back substitution step that computes the unknown nodal
% degrees-of-freedom. Reaction loads are then computed.
%
% define global arrays
%yFEA is the solution
global ielem iprops eprops elname iforce force idisp disp
global kff kpf kpp uf up pf pp yFEA
global x utot estress efor etype shear moment xplot
%
%close all graphs
close all
%
% assign input filename
filename = [filename '.txt'];
%
% read input file
[nnode,nel,nforce,ndisp,etype,ndof,nenode]=fea_input(filename);
%
%print input values to screen
%[nnode nel nforce ndisp etype ndof nenode]

%
% initialize equation numbers for dofs
ieqn = initialize(nnode,ndisp,idisp,ndof);
%
% initialize global matrices;
utot=zeros(nnode*ndof,1);
ptot=zeros(nnode*ndof,1);
kff = zeros(nnode*ndof-ndisp);
kpf = zeros(ndisp,nnode*ndof-ndisp);
kpp = zeros(ndisp,ndisp);
uf = zeros(nnode*ndof-ndisp,1);
up = disp';
pf = zeros(nnode*ndof-ndisp,1);
pp = zeros(ndisp,1);
estress = zeros(nel,1);
efor = zeros(nel,1);

 109

eprops(1,2)=newI;
%
% compute and assemble element stiffness matrix and draw geometry
% figure(1)
% title('Model')
% xlabel('X'), ylabel('Y'), zlabel('Z')
% hold('on')
% grid('on')
XYZ=zeros(nel,3);
for i = 1:nel;
 icode = 2;
 XYZ(1,:)=x(ielem(i,1),:);
 XYZ(2,:)=x(ielem(i,2),:);
 %plot3(XYZ(:,1),XYZ(:,2),XYZ(:,3),'k')
 [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i);
 assemkp(eldat,ieleqn,ndof,nenode,icode);
end
%
% compute and assemble element load vector
for i = 1:nel;
 icode = 1;
 [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i);
 assemkp(eldat,ieleqn,ndof,nenode,icode);
end
%
% apply nodal forces
force=-pforce;
for i = 1:nforce;
 num = iforce(i,1)*ndof + iforce(i,2) - ndof;
 pf(ieqn(num)) = pf(ieqn(num)) + force(i);
end
%
% solve system of equations
uf = kff\(pf - kpf'*up);
%
% compute nodal reactions
pp = kpp*up + kpf*uf;
%
% complete global displacement and force vector
%
for i = 1:nnode*ndof;
 if (ieqn(i) < 0);

 110

 utot(i,1) = up(-ieqn(i));
 ptot(i,1) = pp(-ieqn(i));
 else
 utot(i,1) = uf(ieqn(i));
 ptot(i,1) = pf(ieqn(i));
 end
end
%
%postprocess
for i = 1:nel
 icode = 0;
 [eldat,ieleqn] = feval(elname,eprops(iprops(i),:),ielem(i,1:2),ieqn,icode,i);
 shear(i)=(eldat(1)-eldat(3))/2;
 moment(i)=(-eldat(2)+eldat(4))/2;
 xplot(i)=(x(i)+x(i+1))/2;
end
fea_output(etype,utot,ptot,nnode);
fea_def=yFEA;

function ieqn = initialize(nnode,ndisp,idisp,ndof)
%
% This function is used to count the number of equations in the model and
% assign element equation numbers. Equation numbers increase from zero for
% free dofs and decrease from zero for prescribed dofs.
%
%set total degrees of freedom
ndoftot = nnode*ndof;
%
% initialize ieqn
ieqn = zeros(1,ndoftot);
%
% identify fixed degrees of freedom
ifixed = 0;
for i = 1:ndisp;
 ifixed = ifixed + 1;
 num = idisp(i,1)*ndof + idisp(i,2) - ndof;
 ieqn(num) = -ifixed;
end
%
% identify free degrees of freedom
ifree = 0;
for i = 1:ndoftot;
 if ieqn(i) == 0;

 111

 ifree = ifree + 1;
 ieqn(i) = ifree;
 end
end

function [nnode,nel,nforce,ndisp,etype,ndof,nenode] = fea_input(filename)
%
% This function reads the input file filename.txt in the current directory.
% It starts by reading the number of nodes, elements, applied loads,
% prescribed displacements and element type. It then reads nodal data,
% element data, load data, prescribed displacement data and finally, the
% element properties. The number of nodal dofs, nodes per element, and
% number of element properties are also assigned for each element type.
%
%define global arrays
global ielem iprops eprops elname iforce force idisp disp
global x knl DV DVid
%
% open input file
fid = fopen(filename,'r');
%
% read number of nodes, elements, applied forces and prescribed displacements,
and element type
nnode = fscanf(fid,'%d',1);
nel = fscanf(fid,'%d',1);
nforce = fscanf(fid,'%d',1);
ndisp = fscanf(fid,'%d',1);
etype = fscanf(fid,'%d',1);
%[nnode nel nforce ndisp etype ndof nenode]
% set properties related to element properties
% set knl to non-linear default
knl = 0;
switch etype
case 1
 ndof = 1;
 nenode = 2;
 neprops = 1;
 elname = 'spring1d';
case 2
 ndof = 2;
 nenode = 2;
 neprops = 2;
 elname = 'truss2d';

 112

case 3
 knl = 1;
 ndof =1;
 nenode = 2;
 neprops = 3;
 elname = 'spring1d_nl';
case 4
 ndof = 2;
 nenode = 2;
 neprops = 3;
 elname = 'beam1d';
end
%
% read nodal data
x = zeros(nnode,3);
for j = 1:nnode;
 dummy = fscanf(fid,'%d',1);
 x(j,1:3) = fscanf(fid,'%g',3)';
end
%
% read element data
ielem = zeros(nel,nenode);
iprops = zeros(1,nel);
for j = 1:nel;
 fscanf(fid,'%d',1);
 iprops(j) = fscanf(fid,'%d',1);
 ielem(j,1:nenode);
 ielem(j,1:nenode) = fscanf(fid,'%d',nenode)';
end
%
% read applied loads
iforce = zeros(nforce,2);
force = zeros(1,nforce);
for j = 1:nforce;
 iforce(j,1:2) = fscanf(fid,'%d',2)';
 force(j) = fscanf(fid,'%g',1);
end
%
% read applied displacements
idisp = zeros(ndisp,2);
disp = zeros(1,ndisp);
for j = 1:ndisp
 idisp(j,1:2) = fscanf(fid,'%d',2)';

 113

 disp(j) = fscanf(fid,'%g',1);
end
%
% read element properties
nprops = max(iprops);
eprops = zeros(nprops,neprops);
for j = 1:nprops;
 fscanf(fid,'%d',1);
 eprops(j,1:neprops) = fscanf(fid,'%g',neprops)';
end
%
% design sensitivity analysis
DV=fscanf(fid,'%d',1);
for j=1:DV;
 DVid(j,1:2)=fscanf(fid,'%d',1);
end
%

function fea_output(etype,utot,ptot,nnode)
%
% This function is used to output finite element results to the
% MATLAB window or, perhaps, to a file (not included here).
%
% print the following to the screen
% calculates system compliance for springs
% prints element force and stress for rods
global efor estress shear moment xplot x yFEA
switch etype
case 1,3
syscomp=dot(utot,ptot)
case 2
efor
estress
case 4
 X=zeros(nnode,1);
 %disp(sprintf('number of nodes: %i',nnode));
 for i=1:nnode;
 deflection(i)=utot(i*2-1);
 slope(i)=utot(i*2);
 X(i)=x(i,1);
 if i==(nnode+1)/2
 %disp(sprintf('theta 2=%0.4g ',slope(i)));
 end

 114

 end

 %disp(sprintf('max deflection=%0.4g',(max(abs(deflection)))));

yFEA=deflection;
 % figure(2)
% title('Moment')
% hold('on')
% plot(xplot,moment,'b')
% figure(3)
% title('Shear')
% hold('on')
% plot(xplot,shear,'g')
% figure(4)
% title('deflection')
% hold('on')
% plot(X,deflection,'r')
End

function [eldat,ieleqn] = beam1d(eprop,lnodes,ieqn,icode,i)
%
% This function computes the element load vector (case 1) and
% element stiffness matrix (case 2) for a 1-D beam element. Note
% that the element load vector is zero. It starts by forming the
% element equation numbers that are required to assemble the global
% matrices.
global x utot estress efor
%
%determine length, sin, and cos
i1x=x(lnodes(1),:);
i2x=x(lnodes(2),:);
L=abs(i2x(1)-i1x(1));
k=[6 3*L -6 3*L;3*L 2*L^2 -3*L L^2;-6 -3*L 6 -3*L;3*L L^2 -3*L 2*L^2];
nenode = 2;
ndof = 2;
jj = 0;
for j1 = 1:nenode;
 for j2 = 1:ndof;
 jj = jj + 1;
 numj = lnodes(j1)*ndof + j2 - ndof;
 idof(jj,1)=numj;
 ieleqn(jj) = ieqn(numj);
 if icode==0

 115

 euv(jj)=utot(numj);
 end
 end
end
%
% evaluate element matrices
uloc=utot(idof(:,1));
switch icode
case 0
 %postprocess: moment and shear
 eldat = ((eprop(1)*eprop(2)*2)/L^3)*k*uloc-(eprop(3)*L/2)*[1;L/6;1;-L/6];

case 1
 % compute element load vector
 eldat = (eprop(3)*L/2)*[1;L/6;1;-L/6];
case 2
 % compute element stiffness matrix
 eldat = ((eprop(1)*eprop(2)*2)/L^3)*k;
end

 116

Appendix C: MATLAB Program For DSO of Typical MMT Base Side

%*********Continous Constrained Optimization
% for typical 2D MMT Base Side
% this program generates all of the branches
% and finds the continous optimal solution
% for each branch and save them to a file
%--
clear all
close all
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD
nn_save=0;
nu_sol=0;
nu_fea=1;
b=36;
h=12;
d=12;
X=zeros(4,3);
X(2,2)=h; X(4,2)=h;
X(3,3)=d; X(4,3)=d;

LOAD=[2 2 75; 3 2 -700];

enac=6; % number of elements across the top
% set the number of extra elements
num_ele=0;

%set optimazation options
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
options =
optimset('LargeScale','off','DiffMaxChange',1,'DiffMinChange',0.005,'Diagnostics',
'off','Display','off','TolFun',2.0,'TolCon',0.01,'TolX',0.1);

%% optimize with no extra elements
LB = zeros(8,1);
UB = ones(8,1);
%test worst case for feasible solution
if mynonlin_cons_2d(UB) <= 0
 clear P T;
 global P T

 117

 P=zeros(100,13);
 T=zeros(100,7);
 nu_fea=1;
 nn_save=1;
 nu_sol=nu_sol+1
 mynonlin_cons_2d(UB);
 mynonlin_cons_2d(LB);
 x0=mypso2d(LB);
 x0=x0';
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
 [fx, fval, exitflag, output, lambda] =
fmincon('obj_2d',x0,[],[],[],[],LB,UB,'mynonlin_cons_2d',options);
 xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)];
 save(strcat('X',num2str(nu_sol)),'X','-ascii');
 save(strcat('P',num2str(nu_sol)),'P','-ascii');
 save(strcat('T',num2str(nu_sol)),'T','-ascii');
 sol(nu_sol)=fval;

 nn_save=0;
end
%% end no extra elements

%% optimize with one extra elements
% set the number of extra elements
num_ele=1;
clear x0 UB LB;
LB = zeros(10,1);
UB = ones(10,1);
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0;
for xi=1:(enac+1)
 X(1,1)=0;
 for xj=1:(enac+1)

 %test worst case for feasible solution

 if mynonlin_cons_2d(UB) <= 0
 clear P T;
 global P T
 P=zeros(100,13);
 T=zeros(100,7);
 nu_fea=1;

 118

 nn_save=1;
 nu_sol=nu_sol+1
 mynonlin_cons_2d(UB);
 mynonlin_cons_2d(LB);
 x0=mypso2d(LB);
 x0=x0';

 %x0=LB+.5;
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
 [fx, fval, exitflag, output, lambda] =
fmincon('obj_2d',x0,[],[],[],[],LB,UB,'mynonlin_cons_2d',options);

 xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)];
 save(strcat('X',num2str(nu_sol)),'X','-ascii');
 save(strcat('P',num2str(nu_sol)),'P','-ascii');
 save(strcat('T',num2str(nu_sol)),'T','-ascii');
 sol(nu_sol)=fval;

 nn_save=0;
 end

 X(1,1)=X(1,1)+b/enac;
 end
 X(2,1)=X(2,1)+b/enac;
end
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0;
%save the solutions
save sol.txt sol -ascii;

function pbest=mypso2d(L)
% this function uses particle swarm to optimize the
%continous branch of a typical MMT Base Side
% this is the 2D version
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD
%pass the following to the function once it works
wmax=0.9;
wmin=0.4;
itmax=8;
errmax=.0001;
 c1=2;
 c2=2;

 119

 N=50;
 D=size(L,1);

i=1:itmax;
W=wmax-((wmax-wmin)/itmax)*i;

% Initialization of positions
a=0;
b=1;
x=a+(b-a)*rand(N,D,1);

for i=1:N
 F(i,1)=myext_penalty2d(x(i,:)');
end

[C,I]=min(abs(F(:,1)));
pB=C;
gB=pB;
XX(1,1)=I;
gbest(1,:)=x(I,:);
pbest=gbest;
for i=1:N
 V=c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:));
 x(i,:)=x(i,:)+V;
end

jj=0;
while jj<itmax

 for i=1:N
 x(i,:)=myclamped(x(i,:),0,1);

 F(i,1)=myext_penalty2d(x(i,:)');
 end
 [C,I]=min(abs(F(:,1)));
 gbest(1,:)=x(I,:);
 gB=C;

 for i=1:N
 V=W(jj+1)*c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:));
 x(i,:)=x(i,:)+V;
 end

 120

 if gB<pB
 pB=gB;
 pbest=gbest;

 end
 jj=jj+1;
 %sol(jj,1:(D+1))=[pB pbest'];
end

function [c, ceq] = mynonlin_cons_2d(L)
% this function take cross sectional data L2 and t
% and returns the deflection and 1st natural freq of the
% structure
%
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD
%remove the following after testing
b=36;
h=12;
d=12;
enac=6;

nenode=2;% nenode = number of nodes/element
ndof=6;% ndof=number of degrees of freedom/node

%mesh the model
[x, ielem]=mymesh2d;
%get element properties
eleprop=myeleprop2d(L);

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
%
%set BC and loads
BC=zeros(nnode,ndof); %zero=free 1=fixed
BC([enac+2 (enac+1)*2],1:6)=1;
%BC([enac+2 tot_ele+2],1:6)=1;
 BC(1:nnode,3:5)=1;

F(1:nnode*ndof)=0;

XYZ=zeros(nel,3);

 121

K=zeros(nnode*ndof,nnode*ndof);
M=zeros(nnode*ndof,nnode*ndof);

%element and cs data for book example delete for final
% use the Lsection program to replace
% Set up all the constants
E=30e6;
G=11.5e6;
rho=0.286;

%get element stiffness matrices then put in global stiffness matrix
% set the lumped mass matrix
for i = 1:nel;
 A=eleprop(i,1);
 Iy=eleprop(i,2);
 Iz=eleprop(i,3);
 J=eleprop(i,4);

k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3));

m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3));
 M=myassemble(M,m,ielem(i,1),ielem(i,2));
 K=myassemble(K,k,ielem(i,1),ielem(i,2));
end

% compute and assemble element load vector force vector
i2=1;i3=1;
for i = 1:nnode;%loop thru each node
 for i1=1:ndof;%loop thru each dof in the node
 if BC(i,i1) == 0;
 %set up book keeping for partition
 bk(i3)=i2;
 i3=i3+1;
 end
 i2=i2+1;
 end
end
% Insert forces into global force vector
for i=1:size(LOAD,1);
 F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3);
end

 122

%partition the system of eq.
m=zeros(size(bk,2),size(bk,2));
k=zeros(size(bk,2),size(bk,2));
f(1:size(bk,2))=0;
for i=1:size(bk,2);
 for i1=1:size(bk,2);
 m(i,i1)=M(bk(i),bk(i1));
 k(i,i1)=K(bk(i),bk(i1));
 end
 f(i)=F(bk(i));
end
%

%solve for 1st natural frequency
w=eig(k,m);
w1=sqrt(abs(w(1)));

%solve for displacements
u=k\f';

%Setup Global Nodal Displacement Vector
U(1:nnode*ndof)=0;
for i=1:size(bk,2);
 U(bk(i))=u(i);
end

%calculate the global nodal force vector
F=K*U';

%set max deflection and natural freq.
md=0.005;mf=40;
% nonlinear inequality constraints returned as vector c

for i=1:(enac+1)
 ydisp(i)=U((i-1)*6+2);
% ydisp(i+(enac+1))=U(((i+(2*enac+3))-2)*6+2);
end

if nn_save==1
 temp=zeros(13,1);
 temp(2:size(L,1)+1,1)=L;
 temp(1,1)=num_ele;
 P(nu_fea,:)=temp';

 123

 T(nu_fea,:)=ydisp;
 nu_fea=nu_fea+1;
 clear temp;
end
c=max(abs(ydisp))-md;

% nonlinear equality constraints returned as vector ceq
ceq = []; % there are no nonlinear equality
 % constraints in this problem

function [c, ceq] = myext_penalty2d(L)
% this function take cross sectional data L2 and t
% and returns the deflection and natural freq of the
% structure
%******** This uses external penalty function
%********** used for the PSO because it is
%********* unconstrained
%
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD
%remove the following after testing
b=36;
h=12;
d=12;
enac=6;

volume=obj_2d(L);

nenode=2;% nenode = number of nodes/element
ndof=6;% ndof=number of degrees of freedom/node

vl=size(L,1);
L2=L(1:vl/2)*1.25+0.75;
t=L(vl/2+1:vl)*.375+.125;

%mesh the model
[x, ielem]=mymesh2d;
%get element properties
eleprop=myeleprop2d(L);

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
%

 124

%set BC and loads
BC=zeros(nnode,ndof); %zero=free 1=fixed
BC([enac+2 (enac+1)*2],1:6)=1;
 BC(1:nnode,3:5)=1;

F(1:nnode*ndof)=0;

XYZ=zeros(nel,3);
K=zeros(nnode*ndof,nnode*ndof);
M=zeros(nnode*ndof,nnode*ndof);

%element and cs data for book example delete for final
% use the Lsection program to replace
% Set up all the constants
E=30e6;
G=11.5e6;
rho=0.286;

%get element stiffness matrices then put in global stiffness matrix
% set the lumped mass matrix
for i = 1:nel;
 A=eleprop(i,1);
 Iy=eleprop(i,2);
 Iz=eleprop(i,3);
 J=eleprop(i,4);

k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3));

m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3));
 M=myassemble(M,m,ielem(i,1),ielem(i,2));
 K=myassemble(K,k,ielem(i,1),ielem(i,2));
end

% compute and assemble element load vector force vector
i2=1;i3=1;
for i = 1:nnode;%loop thru each node
 for i1=1:ndof;%loop thru each dof in the node
 if BC(i,i1) == 0;
 %set up book keeping for partition

 125

 bk(i3)=i2;
 i3=i3+1;
 end
 i2=i2+1;
 end
end
% Insert forces into global force vector
for i=1:size(LOAD,1);
 F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3);
end
%partition the system of eq.
m=zeros(size(bk,2),size(bk,2));
k=zeros(size(bk,2),size(bk,2));
f(1:size(bk,2))=0;
for i=1:size(bk,2);
 for i1=1:size(bk,2);
 m(i,i1)=M(bk(i),bk(i1));
 k(i,i1)=K(bk(i),bk(i1));
 end
 f(i)=F(bk(i));
end
%

%solve for 1st natural frequency
w=eig(k,m);
w1=sqrt(abs(w(1)));

%solve for displacements
u=k\f';

%Setup Global Nodal Displacement Vector
U(1:nnode*ndof)=0;
for i=1:size(bk,2);
 U(bk(i))=u(i);
end

%calculate the global nodal force vector
F=K*U';

%set max deflection and natural freq.
md=0.005;mf=40;
% nonlinear inequality constraints returned as vector c

 126

%Get the y disp for the top surface
for i=1:(enac+1)
 ydisp(i)=U((i-1)*6+2);

end

if nn_save==1
 temp=zeros(13,1);
 temp(2:size(L,1)+1,1)=L;
 temp(1,1)=num_ele;
 P(nu_fea,:)=temp';
 T(nu_fea,:)=ydisp;
 nu_fea=nu_fea+1;
 clear temp;
end
% external penaly function
c=volume + 5000*(max(abs(ydisp))-md)^2;

% nonlinear equality constraints returned as vector ceq
ceq = []; % there are no nonlinear equality
 % constraints in this problem

function = discrete_2d()
% this function loads the branch data from the continous optimization
% It test the best topos and cuts branches. Can either do NN or FEA
% If NN it can load previous weights and bias or generate new.
clear all
close all
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD
nn_save=0;

%** set hidden layer size factor
hls=1.5;
%*** get input from user
pretrain=input('pretrain NN? 1=yes 0=no');
useNN=input('use NN? 1=yes 0=no');

LOAD=[2 2 75; 3 2 -700];

nu_sol=0;
nu_fea=1;
enac=6; % number of elements across the top
% set the number of extra elements

 127

num_ele=1;

%load and sort the continuous sol. for each branch
load sol.txt -ascii;
[Y,I]=sort(sol);
sol_temp=10000;

j=1;
cpu_seconds=0;
while sol_temp>sol(j)
i=I(j);
p=load(strcat('P',num2str(i)),'-ascii');
t=load(strcat('T',num2str(i)),'-ascii');
topo=load(strcat('X',num2str(i)),'-ascii');
P=p';
T=t';
X=topo
clear t p topo;

if useNN == 1 %*** test if NN *****
% ************ build NN and train ******************
minP=min(P');
maxP=max(P');
PR=[minP',maxP'];
layer1=round(1.5*size(P,1));
layer2=round(layer1/2);
outlayer=size(T,1);
%net = newff(PR,[layer1 outlayer],{'logsig','tansig'},'traincgf');
net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp');
%net.trainParam.mem_reduc=4;
net.trainParam.goal=1e-6;
net.trainParam.show=100;
net.trainParam.epochs=2000;
if pretrain > 0
% load prevous NN weights and bias
 load -ascii pw1.txt;net.IW{1,1}=pw1;
 load -ascii pw2.txt;net.LW{2,1}=pw2;
 load -ascii pw3.txt;net.LW{3,2}=pw3;
 load -ascii pb1.txt;net.b{1,1}=pb1;
 load -ascii pb2.txt;net.b{2,1}=pb2;
 load -ascii pb3.txt;net.b{3,1}=pb3;
 net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainlm');

 128

 net.trainParam.goal=1e-10;
 net.trainParam.epochs=150;
 end %***** end pretrain *****
%**** train network ******
net=train(net,P,T);
pretrain=2;%***** use pretrained data for future test ***
%********** finish build and train the NN *****************

% save the weights and bias for later
 w1=net.IW{1,1};
 w2=net.LW{2,1};
 w3=net.LW{3,2};
 b1=net.b{1,1};
 b2=net.b{2,1};
 b3=net.b{3,1};
 save pw1.txt w1 -ascii;
 save pw2.txt w2 -ascii;
 save pw3.txt w3 -ascii;
 save pb1.txt b1 -ascii;
 save pb2.txt b2 -ascii;
 save pb3.txt b3 -ascii;
end %********* end NN test **********

%******* test each branch ************
k=0; cpu0=cputime;
for k1=1:3
 for k2=1:3
 for k3=1:3
 for k4=1:3
 for k5=1:3

 L=[k1; k2; k3; k4; k5];
 temp=zeros(13,1);
 dL=dlsection(L);
 temp(2:size(dL,1)+1,1)=dL;
 temp(1,1)=num_ele;
 if useNN == 1
 ydisp=sim(net,temp);

 else

 129

 ydisp = fea_2d_test(dL)';
 end
 k=k+1;

 if max(abs(ydisp))<=.009
 sol_temp1=obj_2d(dL);
 if sol_temp1<sol_temp
 sol_temp=sol_temp1;
 sol_dL=dL;
 dX=X;
 sol_disp=ydisp;

 end
 end

 end
 end
 end
 end
end
 j=j+1;
 cpu1=cputime;cpu_seconds=cpu_seconds+(cpu1-cpu0)
end %end the while
%plot final topo.
X=dX
[x, ielem]=mymesh2d;

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
figure(1)
 title('Model')
 xlabel('X'), ylabel('Y'), zlabel('Z')
 hold('on')
 grid('on')
XYZ=zeros(nel,3);

for i = 1:nel;
 XYZ(1,1:3)=x(ielem(i,1),1:3);
 XYZ(2,1:3)=x(ielem(i,2),1:3);
 plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k')
end
sol_temp

 130

sol_dL
k
 nload=size(LOAD,1); i11=0;
 for i1=1:nload
 if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1;
 elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1;
 elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1;
 end
 end
 if i11>=1,
 x=[1:i11];
 quiver3(LOAD(y,1)*6-6,[12; 12],[0; 0],load(x,1),load(x,2),load(x,3),'r')
 end
%% end one extra elements

 131

Appendix D: MATLAB Program – Material Distribution Topology
Optimization

%******* Modified by Donald Harby for testing typical MMT Base Sides 2D***
%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND,
JANUARY 2000 %%%
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY
OLE SIGMUND %%%
%******* Modified for MMT base 8-21-07 Donald Harby ***

function topo()
clear all
nelx=72;nely=24;volfrac=0.4;penal=2.5;rmin=1.1;

close all
hold off

% INITIALIZE
x(1:nely,1:nelx) = volfrac;

%**** Add fixed material and holes ***
% ****** passive holes active fixed material **
for ely=1:nely
 for elx=1:nelx
 active(ely,elx)=0;
 if elx<=2
 active(ely,elx)=1;
 x(ely,elx)=1;
 end
 if elx>=nelx-1
 active(ely,elx)=1;
 x(ely,elx)=1;
 end
 if ely<=2
 active(ely,elx)=1;
 x(ely,elx)=1;
 end
 if ely>=nely-1
 active(ely,elx)=1;
 x(ely,elx)=1;
 end
 end

 132

end
%********* end my passive or active

loop = 0;
change = 1.;
% START ITERATION
% while change > 0.01
while loop < 60
 loop = loop + 1;
 xold = x;
% FE-ANALYSIS
 [U]=FE(nelx,nely,x,penal);
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
 [KE] = lk;
 c = 0.;
 for ely = 1:nely
 for elx = 1:nelx
 n1 = (nely+1)*(elx-1)+ely;
 n2 = (nely+1)* elx +ely;
 dc(ely,elx)=0.;
 for i=1:2
 Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],i);
 c = c + x(ely,elx)^penal*Ue'*KE*Ue;
 dc(ely,elx) = dc(ely,elx)-penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;
 end
 end
 end
% FILTERING OF SENSITIVITIES
 [dc] = check(nelx,nely,rmin,x,dc);
% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
 [x] = OC(nelx,nely,x,volfrac,dc,active);
% PRINT RESULTS
 change = max(max(abs(x-xold)));
 disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
 ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
 ' ch.: ' sprintf('%6.3f',change)])
% PLOT DENSITIES
 colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);
end
%plot load vector
hold on
quiver3(72*2/6,0,0,0,10,0,'r')
quiver3(72*2/6-12,5,0,0,-1,0,.7,'g')

 133

%%%%%%%%%% OPTIMALITY CRITERIA
UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
function [xnew]=OC(nelx,nely,x,volfrac,dc,active)
l1 = 0; l2 = 100000; move = 0.2;
while (l2-l1 > 1e-4)
 lmid = 0.5*(l2+l1);
 xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
 xnew(find(active))=1.0;
 if sum(sum(xnew)) - volfrac*nelx*nely > 0;
 l1 = lmid;
 else
 l2 = lmid;
 end
end

%%%%%%%%%% MESH-INDEPENDENCY
FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
function [dcn]=check(nelx,nely,rmin,x,dc)
dcn=zeros(nely,nelx);
for i = 1:nelx
 for j = 1:nely
 sum=0.0;
 for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)
 for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)
 fac = rmin-sqrt((i-k)^2+(j-l)^2);
 sum = sum+max(0,fac);
 dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);
 end
 end
 dcn(j,i) = dcn(j,i)/(x(j,i)*sum);
 end
end
%%%%%%%%%% FE-
ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%
function [U]=FE(nelx,nely,x,penal)
[KE] = lk;
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));
F = sparse(2*(nely+1)*(nelx+1),2); U = zeros(2*(nely+1)*(nelx+1),2);
for elx = 1:nelx

 134

 for ely = 1:nely
 n1 = (nely+1)*(elx-1)+ely;
 n2 = (nely+1)* elx +ely;
 edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];
 K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;
 end
end
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
% F(2,1) = -1;
% fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

%**** my forces and BC Donald Harby
mid_x=round(2*nelx/6);
F(2*(mid_x)*(nely+1)+2,1)=-1;
F(2*(mid_x-12)*(nely+1)+2,2)=.25;
fixeddofs=[2*(nely+1)-1 2*(nely+1) 2*(nelx+1)*(nely+1)-1 2*(nelx+1)*(nely+1)];
%***************

alldofs = [1:2*(nely+1)*(nelx+1)];
freedofs = setdiff(alldofs,fixeddofs);
% SOLVING
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);
U(fixeddofs,:)= 0;
%%%%%%%%%% ELEMENT STIFFNESS
MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
function [KE]=lk
E = 1.;
nu = 0.3;
k=[1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...
 -1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];
KE = E/(1-nu^2)*[k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
 k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by Ole Sigmund, Department of Solid %

 135

% Mechanics, Technical University of Denmark, DK-2800 Lyngby,
Denmark. %
% Please sent your comments to the author: sigmund@fam.dtu.dk %
% %
% The code is intended for educational purposes and theoretical details %
% are discussed in the paper %
% "A 99 line topology optimization code written in Matlab" %
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %
% Vol 21, pp. 120--127. %
% %
% The code as well as a postscript version of the paper can be %
% downloaded from the web-site: http://www.topopt.dtu.dk %
% %
% Disclaimer: %
% The author reserves all rights but does not guaranty that the code is %
% free from errors. Furthermore, he shall not be liable in any event %
% caused by the use of the program. %
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 136

Appendix E: MATLAB Program PSO of MMT Base 3D

%*********Continous Constrained Optimization
% Test and generates the branches for the 3D case
% of a typical MMT Base structure
% Saves the data for NN testing
%--
clear all
close all
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD
LOAD=[5 2 100; 6 2 -1200;19 2 -1200;20 2 100];
nn_save=0;
nu_sol=0;
nu_fea=1;
b=36;
h=12;
d=12;
X=zeros(4,3);
X(2,2)=h; X(4,2)=h;
X(3,3)=d; X(4,3)=d;

enac=6; % number of elements across the top
% set the number of extra elements
num_ele=0;

%set optimazation options
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
options =
optimset('LargeScale','off','DiffMaxChange',1,'DiffMinChange',0.005,'Diagnostics',
'off','Display','off','TolFun',2.0,'TolCon',0.01,'TolX',0.1);

%% optimize with no extra elements
LB = zeros(24,1);
UB = ones(24,1);
%test worst case for feasible solution
if mynonlin_cons_1(UB) <= 0
 nn_save=1;
 nu_sol=nu_sol+1;
 disp('foo')
 % x0=mypso;

 137

 x0=LB+.5;
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
 [fx, fval, exitflag, output, lambda] =
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options);
 nn_save=0;
end
%% end no extra elements

%% optimize with one extra elements
% set the number of extra elements
num_ele=1;
clear x0 UB LB;
LB = zeros(26,1);
UB = ones(26,1);
for xi=1:(enac+1)
 X(1,1)=0;
 for xj=1:(enac+1)

 %test worst case for feasible solution

 if mynonlin_cons_1(UB) <= 0
 nn_save=1;
 nu_sol=nu_sol+1;
 disp('foo2')
 % x0=mypso;
 x0=LB+.5;
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
 %[fx, fval, exitflag, output, lambda] =
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options);

 nn_save=0;
 end

 X(1,1)=X(1,1)+b/enac;
 end
 X(2,1)=X(2,1)+b/enac;
end
X(1,1)=0;X(2,1)=0;
%% end one extra elements

 138

%% optimize with two extra elements
% set the number of extra elements
num_ele=2;
clear x0 UB LB;
LB = zeros(28,1);
UB = ones(28,1);
for xi=1:(enac+1)
 X(1,1)=0;
 for xj=1:(enac+1)
 X(3,1)=0;
 for xii=1:(enac+1)
 X(4,1)=0;
 for xjj=1:(enac+1)

 %test worst case for feasible solution

 if mynonlin_cons_1(UB) <= 0
 clear P T;
 global P T
 P=zeros(100,28);
 T=zeros(100,14);
 nu_fea=1;
 nn_save=1;
 nu_sol=nu_sol+1
 x0=mypso(LB);
 x0=x0';
 mynonlin_cons_1(UB);
 mynonlin_cons_1(LB);
 %x0=LB+.5;
% options =
optimset('LargeScale','off','DiffMaxChange',.5,'DiffMinChange',0.005,'Diagnostics'
,'off','Display','off','TolFun',0.1,'TolCon',0.01,'TolX',0.05);
 [fx, fval, exitflag, output, lambda] =
fmincon('obj_3d_1',x0,[],[],[],[],LB,UB,'mynonlin_cons_1',options);
 xtemp=[X(1,1) X(2,1) X(3,1) X(4,1)];
 save(strcat('X',num2str(nu_sol)),'X','-ascii');
 save(strcat('P',num2str(nu_sol)),'P','-ascii');
 save(strcat('T',num2str(nu_sol)),'T','-ascii');
 sol(nu_sol)=fval;
 nn_save=0;
 end

 139

 X(4,1)=X(4,1)+b/enac;
 end
 X(3,1)=X(3,1)+b/enac;
 end

 X(1,1)=X(1,1)+b/enac;
 end
 X(2,1)=X(2,1)+b/enac;
end
X(1,1)=0;X(2,1)=0;X(3,1)=0;X(4,1)=0;
%save the solutions
save sol.txt sol -ascii;

%plot final topo.
[x, ielem]=mymesh;

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
figure(1)
 title('3D MMT BASE')
 xlabel('X'), ylabel('Y'), zlabel('Z')
 hold('on')
 grid('on')
XYZ=zeros(nel,3);

for i = 1:nel;
 XYZ(1,1:3)=x(ielem(i,1),1:3);
 XYZ(2,1:3)=x(ielem(i,2),1:3);
 plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k')
end
LOAD([1 4],3)=LOAD([1 4],3)*6;
 nload=size(LOAD,1); i11=0;
 for i1=1:nload
 if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1;
 elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1;
 elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1;
 end
 end
 if i11>=1,

 140

 x=[1:i11];
 quiver3([LOAD(1,1)*6-6;LOAD(2,1)*6-6;(LOAD(3,1)-15)*6;(LOAD(4,1)-
15)*6],[12; 12;12;12],[0; 0;12;12],load(x,1),load(x,2),load(x,3),'r')
 end

function pbest=mypso(L)
% the pso for the 3D base
global X b h d enac num_ele nn_save nu_sol P T nu_fea
%pass the following to the function once it works
wmax=0.9;
wmin=0.4;
itmax=4;
errmax=.0001;
 c1=1.5;
 c2=1.5;
 N=50;
 D=size(L,1);

% for i=1:itmax
% W(i)=wmax-((wmax-wmin)/itmax)*i;
% end

i=1:itmax;
W=wmax-((wmax-wmin)/itmax)*i;

% Initialization of positions
a=0;
b=1;
x=a+(b-a)*rand(N,D,1);

for i=1:N
 F(i,1)=myext_penalty(x(i,:)');
end

[C,I]=min(abs(F(:,1)));
pB=C;
gB=pB;
XX(1,1)=I;
gbest(1,:)=x(I,:);
pbest=gbest;
for i=1:N
 V=c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:));

 141

 x(i,:)=x(i,:)+V;
end

jj=0;
while jj<itmax

 for i=1:N
 x(i,:)=myclamped(x(i,:),0,1);

 F(i,1)=myext_penalty(x(i,:)');
 end
 [C,I]=min(abs(F(:,1)));
 gbest(1,:)=x(I,:);
 gB=C;

 for i=1:N
 V=W(jj+1)*c1*rand*(pbest-x(i,:))+c2*rand*(gbest-x(i,:));
 x(i,:)=x(i,:)+V;
 end
 if gB<pB
 pB=gB;
 pbest=gbest;

 end
 jj=jj+1;
 %sol(jj,1:(D+1))=[pB pbest'];
end

function [c, ceq] = mynonlin_cons_1(L)
% this function take cross sectional data L2 and t
% and returns the deflection and natural freq of the
% structure
% ******** this is for the 3D case ************
global X b h d enac num_ele nn_save nu_sol P T nu_fea LOAD
%remove the following after testing
b=36;
h=12;
d=12;
enac=6;

nenode=2;% nenode = number of nodes/element
ndof=6;% ndof=number of degrees of freedom/node

 142

%mesh the model
[x, ielem]=mymesh;
%get element properties
eleprop=myeleprop(L);

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
%
%set BC and loads
BC=zeros(nnode,ndof); %zero=free 1=fixed
BC([enac+2 (enac+1)*2 3*enac+4 (enac+1)*4],1:6)=1;
%BC([enac+2 tot_ele+2],1:6)=1;
 BC(1:nnode,3:5)=1;

 % LOAD is now global
% LOAD=[4 2 75; 5 2 -700;18 2 -700;19 2 75];
F(1:nnode*ndof)=0;

XYZ=zeros(nel,3);
K=zeros(nnode*ndof,nnode*ndof);
M=zeros(nnode*ndof,nnode*ndof);

%element and cs data for book example delete for final
% use the Lsection program to replace
% Set up all the constants
E=30e6;
G=11.5e6;
rho=0.286;

%get element stiffness matrices then put in global stiffness matrix
% set the lumped mass matrix
for i = 1:nel;
 A=eleprop(i,1);
 Iy=eleprop(i,2);
 Iz=eleprop(i,3);
 J=eleprop(i,4);

k=mystiff(E,G,A,Iy,Iz,J,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),
x(ielem(i,2),2),x(ielem(i,2),3));

m=mymass(rho,A,x(ielem(i,1),1),x(ielem(i,1),2),x(ielem(i,1),3),x(ielem(i,2),1),x(iel
em(i,2),2),x(ielem(i,2),3));

 143

 M=myassemble(M,m,ielem(i,1),ielem(i,2));
 K=myassemble(K,k,ielem(i,1),ielem(i,2));
end

% compute and assemble element load vector force vector
i2=1;i3=1;
for i = 1:nnode;%loop thru each node
 for i1=1:ndof;%loop thru each dof in the node
 if BC(i,i1) == 0;
 %set up book keeping for partition
 bk(i3)=i2;
 i3=i3+1;
 end
 i2=i2+1;
 end
end
% Insert forces into global force vector
for i=1:size(LOAD,1);
 F((LOAD(i,1)-1)*6+LOAD(i,2))=LOAD(i,3);
end
%partition the system of eq.
m=zeros(size(bk,2),size(bk,2));
k=zeros(size(bk,2),size(bk,2));
f(1:size(bk,2))=0;
for i=1:size(bk,2);
 for i1=1:size(bk,2);
 m(i,i1)=M(bk(i),bk(i1));
 k(i,i1)=K(bk(i),bk(i1));
 end
 f(i)=F(bk(i));
end
%

%solve for 1st natural frequency
w=eig(k,m);
w1=sqrt(abs(w(1)));

%solve for displacements
u=k\f';

%Setup Global Nodal Displacement Vector
U(1:nnode*ndof)=0;
for i=1:size(bk,2);

 144

 U(bk(i))=u(i);
end

%calculate the global nodal force vector
F=K*U';

%set max deflection and natural freq.
md=0.005;mf=40;
% nonlinear inequality constraints returned as vector c

for i=1:(enac+1)
 ydisp(i)=U((i-1)*6+2);
 ydisp(i+(enac+1))=U(((i+(2*enac+3))-2)*6+2);
end

if nn_save==1
 P(nu_fea,:)=L';
 T(nu_fea,:)=ydisp;
 nu_fea=nu_fea+1;
end

c=max(abs(ydisp))-md;

% nonlinear equality constraints returned as vector ceq
ceq = []; % there are no nonlinear equality
 % constraints in this problem

% This function test the best topo branches
% Using discreet values for standard steel
% members it can use NN or FEA It can
% train NN using prevous weights and bias
% of generate new.
% ************** CAution!!! it will take
% forever to solve using FEA weeks or months for
% simple problems !!! use the NN
clear all
close all
global X b h d enac num_ele nn_save nu_sol nu_fea P T LOAD
nn_save=0;
LOAD=[5 2 100; 6 2 -1200;19 2 -1200;20 2 100];

%** set hidden layer size factor
hls=1.5;

 145

%*** get input from user
pretrain=input('pretrain NN? 1=yes 0=no');
useNN=input('use NN? 1=yes 0=no');

nu_sol=0;
nu_fea=1;
enac=6; % number of elements across the top
% set the number of extra elements
num_ele=2;

%load and sort the continuous sol. for each branch
load sol.txt -ascii;
[Y,I]=sort(sol);
sol_temp=10000;

j=1;
cpu_seconds=0;
while sol_temp>sol(j)
i=I(j);
p=load(strcat('P',num2str(i)),'-ascii');
t=load(strcat('T',num2str(i)),'-ascii');
topo=load(strcat('X',num2str(i)),'-ascii');
P=p';
T=t';
T=[T(2:6,:);T(9:13,:)];
X=topo
clear t p topo;

if useNN == 1 %*** test if NN *****
% ************ build NN and train ******************
minP=min(P');
maxP=max(P');
PR=[minP',maxP'];
layer1=round(1.5*size(P,1));
layer2=round(layer1/2);
outlayer=size(T,1);
%net = newff(PR,[layer1 outlayer],{'logsig','tansig'},'traincgf');
net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp');
%net.trainParam.mem_reduc=4;
net.trainParam.goal=1e-7;
net.trainParam.show=100;
net.trainParam.epochs=3000;

 146

if pretrain > 0
% load prevous NN weights and bias
 load -ascii pw1.txt;net.IW{1,1}=pw1;
 load -ascii pw2.txt;net.LW{2,1}=pw2;
 load -ascii pw3.txt;net.LW{3,2}=pw3;
 load -ascii pb1.txt;net.b{1,1}=pb1;
 load -ascii pb2.txt;net.b{2,1}=pb2;
 load -ascii pb3.txt;net.b{3,1}=pb3;
 net = newff(PR,[layer1 layer2 outlayer],{'tansig', 'logsig','purelin'},'trainrp');
 net.trainParam.goal=1e-10;
 net.trainParam.epochs=2000;
 end %***** end pretrain *****
%**** train network ******
net=train(net,P,T);
pretrain=2;%***** use pretrained data for future test ***
%********** finish build and train the NN *****************

close all
% save the weights and bias for later
 w1=net.IW{1,1};
 w2=net.LW{2,1};
 w3=net.LW{3,2};
 b1=net.b{1,1};
 b2=net.b{2,1};
 b3=net.b{3,1};
 save pw1.txt w1 -ascii;
 save pw2.txt w2 -ascii;
 save pw3.txt w3 -ascii;
 save pb1.txt b1 -ascii;
 save pb2.txt b2 -ascii;
 save pb3.txt b3 -ascii;
end %********* end NN test **********

%******* test each branch ************
k=0; cpu0=cputime;
for k1=1:3
 for k2=1:3
 for k3=1:3
 for k4=1:3
 for k5=1:3
 for k6=1:3
 for k7=1:3

 147

 for k8=1:3
 for k9=1:3
 for k10=1:3
 for k11=1:3
 for k12=1:3
 for k13=1:3
 for k14=1:3

L=[k1;k2;k3;k4;k5;k6;k7;k8;k9;k10;k11;k12;k13;k14];

 dL=dlsection(L);
 if useNN == 1
 %cpu01=cputime;
 ydisp=sim(net,dL);
 %cpu11=cputime;cpu_seconds=(cpu11-
cpu01)

 else
 %cpu01=cputime;
 ydisp = fea_3d_test(dL)';
 %cpu11=cputime;cpu_seconds=(cpu11-
cpu01)
 end
 k=k+1;

 if max(abs(ydisp))<=.009
 sol_temp1=obj_2d(dL);
 if sol_temp1<sol_temp
 sol_temp=sol_temp1;
 sol_dL=dL;
 dX=X;
 sol_disp=ydisp;

 end
 end
 end
 end
 end
 end
 end
 end

 148

 end
 end
 end
 end
 end
 end
 end
end
 j=j+1;
 cpu1=cputime;cpu_seconds=cpu_seconds+(cpu1-cpu0)
end %end the while
%plot final topo.
X=dX
[x, ielem]=mymesh;

nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
figure(1)
 title('3D MMT BASE')
 xlabel('X'), ylabel('Y'), zlabel('Z')
 hold('on')
 grid('on')
XYZ=zeros(nel,3);

for i = 1:nel;
 XYZ(1,1:3)=x(ielem(i,1),1:3);
 XYZ(2,1:3)=x(ielem(i,2),1:3);
 plot3(XYZ(1:2,1),XYZ(1:2,2),XYZ(1:2,3),'k')
end
LOAD([1 4],3)=LOAD([1 4],3)*6;
 nload=size(LOAD,1); i11=0;
 for i1=1:nload
 if LOAD(i1,2)==1, i11=i11+1; load(i11,1:3)=[LOAD(i1,3),0,0]; y(i11)=i1;
 elseif LOAD(i1,2)==2, i11=i11+1; load(i11,1:3)=[0,LOAD(i1,3),0]; y(i11)=i1;
 elseif LOAD(i1,2)==3, i11=i11+1; load(i11,1:3)=[0,0,LOAD(i1,3)]; y(i11)=i1;
 end
 end
 if i11>=1,
 x=[1:i11];
 quiver3([LOAD(1,1)*6-6;LOAD(2,1)*6-6;(LOAD(3,1)-15)*6;(LOAD(4,1)-
15)*6],[12; 12;12;12],[0; 0;12;12],load(x,1),load(x,2),load(x,3),'r')
 end

 149

Appendix F: MATLAB Program Used to Generate AutoLISP Program
Lspgen.m

global X b h d enac num_ele

%uncomment the following for testing
b=36;
h=12;
d=12;
num_ele=2;enac=6;

fid = fopen('exp.lsp','w');
X=[30 0 0;36 12 0;24 0 12;24 12 0];
cs=[3 1 3 1 3 1 3 1 3 2 2 3 2 3];
[x, ielem]=mymesh;
nnode=size(x,1);% nnode=total number of nodes
nel=size(ielem,1);% nel=total number of elements
j=1;jj=1;
for i=1:nel
 if i<=(enac*4)
 elecs=cs(j);
 jj=jj+1;
 if jj==enac+1;
 jj=1;
 j=j+1;
 end
 end
 if i>(enac*4)
 elecs=cs(j);
 if ((i>(enac*4)+8) & (i<=(enac*4)+10))
 elecs=1;
 else
 j=j+1;
 end
 end

 x1=x(ielem(i,1),:);
 x2=x(ielem(i,2),:);
 fprintf(fid,'(setq pt1 \047(%s) pt2 \047(%s))\n',num2str(x1),num2str(x2));
 fprintf(fid,'(command \"ucs\" \"n\" \"za\" pt1 pt2)\n');
 fprintf(fid,'(command \"insert\" \"%s\" \"0,0,0\" \"\" \"\" \"\")\n',num2str(elecs));
 fprintf(fid,'(vl-cmdf \"explode\" (entlast))\n');

 150

 fprintf(fid,'(vl-cmdf \"extrude\" (entlast) \"\" (distance pt1 pt2) \"\")\n');
 fprintf(fid,'(command \"ucs\" \"w\")\n\n');
end
 fprintf(fid,'(command \"union\" \"all\" \"\")\n\n');
fclose(fid);

 151

Appendix G: Sample AutoLISP Code Generated from MATLAB
Exp.lsp

(setq pt1 '(0 12 0) pt2 '(6 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(6 12 0) pt2 '(12 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(12 12 0) pt2 '(18 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 12 0) pt2 '(24 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(24 12 0) pt2 '(30 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(30 12 0) pt2 '(36 12 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))

 152

(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(0 0 0) pt2 '(6 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(6 0 0) pt2 '(12 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(12 0 0) pt2 '(18 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 0 0) pt2 '(24 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(24 0 0) pt2 '(30 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(30 0 0) pt2 '(36 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")

 153

(command "ucs" "w")

(setq pt1 '(0 12 12) pt2 '(6 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(6 12 12) pt2 '(12 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(12 12 12) pt2 '(18 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 12 12) pt2 '(24 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(24 12 12) pt2 '(30 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(30 12 12) pt2 '(36 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

 154

(setq pt1 '(0 0 12) pt2 '(6 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(6 0 12) pt2 '(12 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(12 0 12) pt2 '(18 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 0 12) pt2 '(24 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(24 0 12) pt2 '(30 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(30 0 12) pt2 '(36 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

 155

(setq pt1 '(0 12 0) pt2 '(0 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(36 12 0) pt2 '(36 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(0 12 12) pt2 '(0 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(36 12 12) pt2 '(36 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(0 12 0) pt2 '(0 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(0 0 0) pt2 '(0 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "2" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(36 12 0) pt2 '(36 12 12))

 156

(command "ucs" "n" "za" pt1 pt2)
(command "insert" "2" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(36 0 0) pt2 '(36 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 12 0) pt2 '(18 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(18 0 0) pt2 '(18 12 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "1" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(30 12 0) pt2 '(36 0 0))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "2" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(setq pt1 '(24 12 12) pt2 '(24 0 12))
(command "ucs" "n" "za" pt1 pt2)
(command "insert" "3" "0,0,0" "" "" "")
(vl-cmdf "explode" (entlast))
(vl-cmdf "extrude" (entlast) "" (distance pt1 pt2) "")
(command "ucs" "w")

(command "union" "all" "")

 157

VITA

Donald Harby was born on January 13, 1967, in St. Louis, MO. After graduating
from Wellsville-Middletown High School in Wellsville, MO in 1985, he received a
B.S. in Aeronautical Engineering from St. Louis University in 1991. He worked
as a carpenter and construction manager from 1991 to 1993.

In the fall of 1993, he worked as an electrical engineering technician for the
department of Agricultural Engineering at the University of Missouri – Columbia.
In 1993 he also started to pursue graduate studies in engineering at the
University of Missouri – Columbia. He received his M.S. degree in
Agricultural/Biological Engineering in 2002.

From 1995 to 1999 he worked as a mechanical design engineer for Midwayusa
and Battenfeld Technologies in Columbia, MO. He worked as an instructor for
Linn State Technical College from 1999 to 2006 at the advanced technology
center (ATC) in Mexico, MO. While at Linn State Technical College he helped
start the ATC and helped develop three new associate of applied science degree
programs.

In the fall of 2003, he entered in the Ph.D. program at the University of Missouri –
Columbia under Dr. Yuyi Lin. He received the GAANN fellowship in Mechanical
Engineering in 2003.

In the fall of 2006, he was appointed assistant professor at the University of
Central Missouri. He is currently program coordinator of all engineering
technology programs at the University of Central Missouri. In the spring of 2007
he was awarded, as principle investigator, a grant with a total budget of over
$750,000 from the Society of Manufacturing Engineers. The grant will be used to
create an advanced manufacturing research center at the University of Central
Missouri.

Accepted Publications:
Harby, D., Polastri, P., and Chakapoing, C., “A New Approach to Teaching
Programmable Logic Controllers” ASEE Annual Conference and
Exposition, June 2007, Honolulu, HI

Naylor, J.B., R.L. Kallenbach, D.W. Harby, and D.J. England., Automated
harvester reduces labor for sampling pastures. Abst. #26010 In Agronomy
Abstracts. ASA, 2006, Madison, WI.

Lin, Y., Harby, D., and Brown, D. “Dynamic Modeling and Experimental
Verification of Helical Spring with Variable Pitch”, 15th International

 158

Mechanisms and Machine Science Conference , Aug. 2006, Yin Chuan,
China

Lin, Y. and Harby, D. “Web-based Tools and Course Materials for Teaching
Capstone Design Internationally”, Proceedings ASEE Annual Conference and
Exposition, June 2006, Chicago, IL

Harby, D. and Lin, Y. “A New Approach to Modular Machine Tool Control System
Design”, 3rd SME Int. Conf. On Manufacturing Education, June 2005, San Luis
Obispo, CA

Lin, Y., Harby, D., Jang, D., and Ye, Z. “Capstone Design Education in
Globalization Environment”, 3rd SME Int. Conf. On Manufacturing Education,
June 2005, San Luis Obispo, CA

Lin, Y. and Harby, D. “Problems and Solutions in Internationalizing Capstone
Design”, Proceedings ASEE Annual Conference and Exposition, June 2005,
Portland, OE

Lin, Y., Harby, D., Cai, X., and Walker, M. “Experimental Study of
Dynamic Performance for Helical Spring with Variable Pitch”, 14th Chinese
National Mechanism Conference, July 2004, Chongqing, China

Lin, Y., Harby, D., Jang, D., and Zheng, W., “Teaching Capstone Design
in the Globalization Environment”, Proceedings ASEE Annual Conference
and Exposition, June 2004, Salt Lake City, UT

Lin, Y., Harby, D., Zhen, W., and Jang, D., “Internationalizing the
Capstone Design Course”, ASEE Proceedings 38 th Midwest Section
Meeting, Sept. 2003, Rolla, MO

Cai, X., Harby, D., and Lin, Y., “Design Perturbation for Improving
Manufacturability and Performance”, Proceeding of 20th Annual Conference of
Midwest Chinese American Science and Technology Association, 2003, St. Louis,
MO

Lin, Y., Zhang, Y., and Harby, D., “Development of a Digital Case Library for
Mechanical Design Education”, Proceedings of Capstone Design Forum, 2003,
Seoul, Korea

THESES
 “Implementation of a Real-Time Statistical Process Controller”, Masters
Thesis, Advisor, Professor Jinglu Tan

