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Chapter 1

Introduction

1 Historical Background and Statement of the

Problem.

It is well known that according to general relativity (GR) gravity alters prop-

agation of electromagnetic waves. Among the classical tests of the theory are

deflection of optical and radio waves from distant sources in gravitational field of

the sun [1] and gravity-induced delay in time of propagation of radar signals sent

towards a planet or a satellite so that they pass near the sun and returned to the

Earth [2]. Recent measurements of these effects placed tight constraints on the

post-Newtonian parameter γ which takes different values in different theories of

gravity, showing that with the accuracy of 10−3 percent1 this parameter should

equal unity - the value it takes in GR [5, 6]. However, the classical experiments

mentioned above deal only with propagation of electromagnetic waves in the

static, spherically symmetric field of the sun. Among the experiments in time-

dependent fields of the solar system bodies one can mention recent measurement

of deflection of radio waves in the time-dependent field of moving Jupiter [7, 8]

and proposed detection of spacetime perturbations due to solar oscillations by the

1Doppler tracking measurements using Cassini spacecraft [3]. VLBI measurements of de-
flection of radio waves have reached .02 percent [4] (see also review [6]).
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space-based detector of gravitational waves LISA [9, 10]. In these experiments

electromagnetic waves propagate in the near zone of the source of gravitational

field.

Astronomical measurements also seem to provide good opportunities for ob-

serving relativistic effects when electromagnetic waves propagate in gravitational

wave fields. A priori one could hope to observe

• the effects due to a single localized source of gravitational waves, such as

a binary star, when the line of sight to a distant source of electromagnetic

radiation passes close to the source of gravitational waves;

• the effects due to stochastic background of gravitational waves produced

by a large number of localized sources2.

In the two situations pointed out above the potentially observable relativistic ef-

fects include variations in the apparent position and brightness of the light source

due to bending (focusing) of light rays by time-dependent field of gravitational

waves, variations in the time of arrival of pulsar impulses due to gravitational

(Shapiro) time delay, time-dependent gravitational Doppler shift, and rotation

of the polarization plane (Skrotskii effect). One may notice that in the case with

localized sources of gravitational waves astronomic techniques seem to have an

obvious advantage over the gravitational wave detectors [10, 12, 13]: electromag-

netic signals from distant astronomical sources may propagate in the vicinity of

the sources of gravitational radiation where the amplitude of the waves is signifi-

cantly higher than near the Earth. Closer studies, however, have shown that the

above-mentioned astrometric, photometric, and timing effects due to interaction

of light and gravitational waves are smaller than one could a priory expect and

unobservable with present techniques.

2Stochastic background of gravitational waves of various wavelengths also arises in cosmo-
logical models (see [11] and references therein).
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In 1966 Zipoy [14] (see also [15]) considered propagation of light in time-

dependent field of a single source of gravity, influence of a plane-gravitational-

wave impulse on a beam of light, and various effects due to stochastic background

of cosmological gravitational waves. He showed that in the case when a localized

source of gravitational radiation is located close to the line of sight, the contribu-

tions to the effect of scintillation due to gravitational waves are negligible because

of the transverse character of gravitational radiation and the largest contribu-

tions come from the near-zone Newtonian fields. The estimates for variations of

intensity of the beam due to a binary close to the line of sight or due to a single

pulse of plane gravitational waves from a distant source both yielded very small

results3. For jitter in position of the source due to stochastic background of grav-

itational waves it was shown that the effect does not increase with the distance

travelled within gravitational waves4. The estimated intensity fluctuations due

to the stochastic background, under favorable model assumptions, were found to

be of the order of a thousandth of a percent.

In 1978 Sazhin [17] first suggested that pulsar timing observations may be

used to detect gravitational waves from a binary system close to the line of sight

towards the pulsar. For the known pairs ”binary system - pulsar” the effect

was found to be several orders of magnitude below the observational threshold

due to large impact parameters. In 1993 Sazhin and Saphonova [18] estimated

the probability of observation of the effect when both the binary and the pulsar

belong to the same globular cluster. Probability was found to be quite high,

reaching .97 for one cluster. However, it seems that the effect calculated in these

works is due to near-zone, quasi-static gravitational field. Since, as it was clearly

shown in [14] and later works discussed below, the effect due to gravitational

3The parameters of the binary system were taken to be quite modest, however: masses of
the components m = M� = 2× 1033 g., orbital period T = 10 y., impact parameter d = 1 l.y.

4The same result was soon obtained by Bertotti and Trevese [16] in the physical optics
approximation. It was pointed out that the reason for ”locality” of the effect is transversal
character of the gravitational waves.
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waves is negligibly small for this configuration. Thus, measurement of the effect

discussed would not serve as evidence for existence of gravitational radiation.

In 1993-1994 there appeared several papers [19–22] which, contrary to the

results of the early works [14, 15], erroneously claimed that there might exist

significant photometric [19], or astrometric [20–22] effects due to gravitational

waves from localized sources located close to the line of sight towards the source

of light.

In 1998 Damour and Esposito-Farèse [23] considered light deflection and time

delay effects due to complete time-dependent, retarded, quadrupolar field which

is given as a sum of terms having different fall-off properties that correspond to

near-zone (falling off as 1/r3 with the distance from the source), intermediate-

zone (1/r2) and wave (1/r) fields. The source of light and observer were formally

assumed to be separated by infinite distance with the source of gravitational field

located close to the line of sight. In agreement with the results of [14, 15] it was

shown that in the considered configuration the wavelike 1/r and the intermediate-

zone 1/r2 pieces of the field give no contribution to the effects. It was also shown

that the leading time-dependent effects of time delay and light deflection are

caused by the near-zone, quasi-static piece of the field and fall off with the

impact parameter d as 1/d2 and 1/d3 respectively.

Recently Kopeikin [24, 25] developed an elegant formalism for integration

of equations of light geodesics in the field of a localized source possessing con-

stant mass and spin and time-dependent quadrupole moment. The formalism

allows one to obtain analytical solutions to the equations for arbitrary relative

positions of the source of light, observer, and the gravitating system. In [25]

analytical expressions were obtained for light ray trajectory and observable ef-

fects of time delay and deflection of light. The observable effects were also ana-

lyzed in gravitational-lens approximation (small impact parameter case discussed

above) and in the plane-gravitational-wave approximation. In the gravitational-
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lens approximation the results of [25] were in complete agreement with those

of [14, 15, 23].

It seemed that the formalism developed in [24, 25] could be successfully ap-

plied for solution of a more general problem of propagation of light in the field

of a localized source of arbitrary multipolarity. To extend the results of [25]

for localized sources possessing time-dependent multipole moments of arbitrary

order was the motivation of this work. The exact statement of the problem is as

follows. We consider propagation of electromagnetic signals through the time-

dependent gravitational field of an isolated system emitting gravitational waves

such as, for example, a binary star. Gravitational field is assumed to be weak

along the light ray, and linear approximation of GR is used [26, 27]. However,

we do not place any restriction on internal velocities of matter in the system

which makes our formalism applicable to sources, such as supernovae, with fast

internal motions. Our consideration is not limited to systems of specific type,

but rather, following [25], we derive general formulae which can be used for arbi-

trary source characterized by its time-dependent multipole moments of arbitrary

order. We assume the wavelength of light to be much smaller than the charac-

teristic wavelength of the gravitational waves and work in the geometrical optics

approximation. The relative positions of the source of light, the isolated system,

and the observer are not restricted, which makes our formalism quite general

and applicable for most practical situations. With the assumptions made we

obtain an analytical solution to the equations of propagation of light (which

in geometrical optics are the equations of null geodesics) giving linear in met-

ric perturbations corrections to the Newtonian trajectory. We also consider the

relativistic effects of time delay and deflection angle in case of arbitrary dispo-

sition of the source of light, gravitating system, and the observer. Making use

of the formalism developed in [28] and [29], we also consider propagation of the

polarization properties along the light ray and obtain analytical expressions for

5



the angle of gravity-induced rotation of the polarization plane - the effect first

discussed in 1957 by G. V. Skrotskii [30, 31].

This work is essentially a generalization of [25] for the case when the isolated

system possesses multipole moments of arbitrary order. We also generalize the

results of [29] for Skrotskii effect for sources possessing higher order multipole

moments (the results of [29] for isolated system emitting gravitational waves were

obtained again in spin-dipole mass-quadrupole approximation). The results of

the dissertation have been published in papers [32] and [33].

The structure of the thesis is as follows. In Section 2 of this chapter we intro-

duce notations used throughout. In Chapter 2 the expressions for metric tensor

perturbations are specified and the choice of coordinate system is discussed. It is

argued that ADM-harmonic coordinates constructed in Section 3 of that chap-

ter possess the properties that allow analytical integration of the equations of

light propagation and simplify interpretation of observable effects. In Chapter

3 we provide a derivation of the laws of geometrical optics in curved space-time

from the Maxwell’s equations and give the equations for trajectory of photons

and propagation of polarization properties of light in the form these equations

will be used in the following chapters. Chapter 4 is devoted to the problem of

integration of the equations. Analytical solutions are obtained for trajectory of

photons and the angle of gravity-induced rotation of the polarization plane of

light. In Chapter 5 we give the expressions for the observable relativistic effects

of time delay and bending of light. The expressions for the effect of rotation of

polarization plane are essentially given in Section 3 of Chapter 4. Chapter 6 con-

siders two special cases of arrangement of light source, observer, and the source of

gravity: the gravitational-lens and the plane-wave approximations. Asymptotic

expressions for observable effects are derived and discussed in each case. Finally,

in Chapter 7 we summarize the main results of this work. Appendix A gives

the expressions for metric perturbations in terms of light-ray variables ξ and τ ,
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introduced in Chapter 4. Appendix B contains expressions for gauge functions

and gauge-dependent terms from the equations for trajectory of light rays and

equation for rotation of the polarization plane.

2 Notations and Conventions

Metric tensor on the space-time manifold is denoted by gαβ and its perturbation

hαβ = gαβ−ηαβ. The determinant of the metric tensor is negative and is denoted

as g = det||gαβ||. The four-dimensional fully antisymmetric Levi-Civita symbol

εαβγδ is defined in accordance with the convention ε0123 = +1. In the present

paper we use a geometrodynamic system of units [26, 27] such that c = G = 1

where c is the fundamental speed and G is the universal gravitational constant.

Space-time is assumed to be asymptotically-flat and covered by a single coordi-

nate system (x0, x1, x2, x3) = (t, x, y, z) , where t and (x, y, z) are time and space

coordinates respectively. This coordinate system is reduced at infinity to the

Minkowskian coordinates. We shall also use the spherical coordinates (r, θ, φ)

related to (x, y, z) by the standard transformation

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (2.1)

Greek (spacetime) indices range from 0 to 3, and Latin (space) indices run from

1 to 3. If not specifically stated the opposite, the indices are raised and lowered

by means of the Minkowski metric ηαβ ≡ diag(−1, 1, 1, 1). Regarding this rule

the following conventions for coordinates hold: xi = xi and x0 = −x0. We also

adopt notations, δij ≡ diag(1, 1, 1), for the Kroneker symbol (a unit matrix),

and, εijk, for the fully antisymmetric 3-dimensional symbol of Levi-Civita with

convention ε123 = +1.

Repeated indices are summed over in accordance with the Einstein’s rule

[26, 27]. In the linearized approximation of general relativity used in this work

there is no difference between spatial vectors and co-vectors as well as between
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upper and lower space indices. Therefore, for a dot product of two space vectors

we have

AiBi = AiBi ≡ A1B1 + A2B2 + A3B3 . (2.2)

In what follows, we shall commonly use spatial multi-index notations for Carte-

sian three-dimensional tensors [35], that is

IAl ≡ Ia1...al . (2.3)

Tensor product of l identical spatial vectors ki will be denoted as a three-

dimensional tensor having l indices

ka1...kal ≡ ka1...al . (2.4)

Full symmetrization with respect to a group of spatial indices of a Cartesian

tensor will be distinguished with round brackets put around the indices

Q(a1...al) ≡
1

l!

∑
σ

Qσ(1)...σ(l) , (2.5)

where σ is the set of all permutations of (1, 2, ..., l) which makes Qa1...al fully

symmetrical in a1 . . . al.

It is convenient to introduce a special notation for symmetric trace-free (STF)

Cartesian tensors by making use of angular brackets around STF indices. The

explicit expression of the STF part of a tensor Qa1...al is [35]

Q<a1...al> ≡
[l/2]∑

k=0

alkδ(a1a2 · · · δa2k−1a2k
Sa2k+1...al)b1b1...bkbk , (2.6)

where [l/2] is the integer part of l/2,

Sa1...al ≡ Q(a1...al) (2.7)

and numerical coefficients

alk =
(−1)k

(2k)!!

l!

(2l − 1)!!

(2l − 2k − 1)!!

(l − 2k)!
. (2.8)
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We also assume that for any integer l ≥ 0

l! ≡ l(l − 1) . . . 2 · 1 , 0! ≡ 1 , (2.9)

and

l!! ≡ l(l − 2)(l − 4) . . . (2 or1) , 0!! ≡ 1 . (2.10)

One has, for example,

T<abc> ≡ T(abc) − 1

5
δabT(cjj) − 1

5
δbcT(ajj) − 1

5
δacT(bjj) . (2.11)

Cartesian tensors of the mass-type I<Al> and spin-type multipoles S<Al> entirely

describing gravitational field outside of an isolated astronomical system are al-

ways STF objects that can be checked by inspection of the definition following

from the multipolar decomposition of the metric tensor perturbation hαβ [35].

For this reason, to avoid appearance of too complicated index notations we shall

omit in the following text the angular brackets around indices of these (and only

these) tensors, that is we adopt: IAl ≡ I<Al> and SAl ≡ S<Al>.

We shall also use transverse (T) and transverse-traceless (TT) Cartesian ten-

sors in our calculations [27, 35]. These objects are defined by making use of the

operator of projection Pjk onto the plane orthogonal to a unit vector kj:

Pjk ≡ δjk − kjk. (2.12)

Thus, one has [35]

QT
a1...al

≡ Pa1b1Pa2b2 ...PalblQb1...bl , (2.13)

QTT
a1...al

≡
[l/2]∑

k=0

blkP(a1a2 · · · Pa2k−1a2k
Wa2k+1...al)b1b1...bkbk , (2.14)

where again [l/2] is the integer part of l/2,

Wa1...al ≡ QT
(a1...al)

(2.15)
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and numerical coefficients

blk =
(−1)k

4k
l(l − k − 1)!!

k!(l − 2k)!
. (2.16)

For instance,

QTT
ab ≡

1

2
(PaiPbjQij + PbiPajQij)− 1

2
Pab (PjkQjk) . (2.17)

Polynomial coefficients will be used in some of our equations and they are

defined by

Cl(p1, . . . , pn) ≡ l!

p1! . . . pn!
, (2.18)

where l and pi are positive integers such that
∑n

i=1 pi = l. We introduce a

Heaviside unit step function H(p− q) such that on the set of whole numbers

H(p− q) =

{
0, if p ≤ q,

1, if p > q.
(2.19)

For any differentiable function f = f(t,x) one uses notations: f,0 = ∂f/∂t

and f,i = ∂f/∂xi for its partial derivatives. In general, comma standing after

the function denotes a partial derivative with respect to a corresponding coordi-

nate: f,α≡ ∂f(x)/∂xα. Overdot denotes a total derivative with respect to time

ḟ ≡ df/dt = ∂f/∂t + ẋi∂f/∂xi usually taken in this paper along the light ray

trajectory x(t). Sometimes the partial derivatives with respect to space coordi-

nate xi will be also denoted as ∂i ≡ ∂/∂xi, and the partial time derivative will

be denoted as ∂t ≡ ∂/∂t. Covariant derivative with respect to the coordinate xα

will be denoted as ∇α.

We shall use special notations for integrals with respect to time and for those

taken along the light-ray trajectory. Specifically, the time integrals from a func-

tion F (t,x), where x is not specified, are denoted as

F (−1)(t,x) ≡
t∫

−∞

F (τ,x)dτ , F (−2)(t,x) ≡
t∫

−∞

F (−1)(τ,x)dτ . (2.20)
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Time integrals from the function F (t,x) taken along the light ray so that spatial

coordinate x is a function of time x ≡ x(t), are denoted as

F [−1](t, r) ≡
t∫

−∞

F (τ, r(τ))dτ, F [−2](t, r) ≡
t∫

−∞

F [−1](τ, r(τ))dτ .

(2.21)

Integrals in equations (2.20) represent functions of time and space coordinates.

Integrals in equations (2.21) are defined on the light-ray trajectory and are func-

tions of time only.

Multiple time derivative from function F (t,x) is denoted by

F (p)(t,x) =
∂pF (t,x)

∂tp
, (2.22)

so that its action on the time integrals eliminates integration in the sense that

F (p)(t,x) =
∂p+1F (−1)(t,x)

∂tp+1
=
∂p+2F (−2)(t,x)

∂tp+2
, (2.23)

and

F [p](t,x) =
dp+1F [−1](t,x)

dtp+1
=
dp+2F [−2](t,x)

dtp+2
. (2.24)

Spatial vectors will be denoted by bold italic letters, for instance Ai ≡ A,

ki ≡ k, etc. The Euclidean dot product between two spatial vectors a and b

is denoted with dot between them: aibi = a · b. The Euclidean wedge (cross)

product between two vectors is denoted with symbol ×, that is εijka
jbk = (a×b)i.

Other particular notations will be introduced as they appear in the text.
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Chapter 2

Metric Tensor and Coordinate
Systems

1 Metric Tensor

We assume that the gravitational field is weak along the light ray and work in

the linear approximation of GR. Thus, the metric tensor can be expressed as the

sum of the Minkowski metric and a small perturbation, hαβ � 1, linear in the

universal gravitational constant G:

gαβ = ηαβ + hαβ. (1.1)

We consider propagation of light in the space-time around an isolated gravitating

system. The most general expressions for metric perturbations in this case were
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given in [35] and read

hcan.
00 =

2M
r

+ 2
∞∑

l=2

(−1)l

l!

[IAl(t− r)
r

]

,Al

, (1.2)

hcan.
0i =− 2εipqSpNq

r2
− 4

∞∑

l=2

(−1)ll

(l + 1)!

[
εipqSpAl−1

(t− r)
r

]

,qAl−1

(1.3)

+ 4
∞∑

l=2

(−1)l

l!

[
İiAl−1

(t− r)
r

]

,Al−1

,

hcan.
ij =δijh

can.
00 + qcan.

ij , (1.4)

qcan.
ij =4

∞∑

l=2

(−1)l

l!

[
ÏijAl−2

(t− r)
r

]

,Al−2

−8
∞∑

l=2

(−1)ll

(l + 1)!

[
εpq(iṠj)pAl−2

(t− r)
r

]

,qAl−2

.

(1.5)

Here M and Si are the total mass and angular momentum of the system, IAl
and SAl are two independent sets of mass-type and spin-type multipole moments,

and N i = xi/r is a unit vector directed from the origin of the coordinate system

to the field point. Since the origin of the coordinate system has been chosen at

the center of mass, the expansions (1.2) – (1.5) do not depend on the mass-type

linear multipole moment Ii.
The expressions for metric (1.2)-(1.5) are given in a special coordinate system

[35] which belongs to the class of harmonic coordinates [27, 34]. In what follows

we shall call this coordinate system canonical harmonic. Metric perturbations

in a different coordinate system can be obtained by means of an infinitesimal

coordinate transformation

x′α = xα − wα (1.6)

from the canonical harmonic coordinates xα to coordinates x′α where wα are

gauge functions. Then in the new coordinate system x′α one has [27]

hαβ = hcan.αβ + wα,β + wβ,α . (1.7)

We shall use the freedom in choosing the functions wα to simplify the problem

of integration of the equations of light propagation and analysis of observable
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effects. It turns out that to this end two coordinate systems possess useful

properties. These are the harmonic and the Arnowitt-Deser-Misner coordinates

which will be considered in the following two sections. Here we would like to

note that if gauge functions wα satisfy the homogeneous wave equation

wα = 0, (1.8)

the transformation (1.6) preserves the harmonic gauge conditions which can be

formulated as xα = 0.

The most general solution of the equation (1.8) reads [35]

w0 =
∞∑

l=0

[WAl(t− r)
r

]

,Al

, (1.9)

wi =
∞∑

l=0

[XAl(t− r)
r

]

,iAl

(1.10)

+
∞∑

l=1

{[YiAl−1
(t− r)
r

]

,Al−1

+

[
εipq
ZqAl−1

(t− r)
r

]

,pAl−1

}
,

where WAl , XAl , YiAl−1
, and ZqAl−1

are four sets of STF multipole moments

depending on the retarded time.

2 The Harmonic Coordinate System

The harmonic coordinate system, analogous to the Lorentz gauge in electrody-

namics, is defined in linear approximation by the conditions

2hαβ,β − h,α = 0 (2.1)

where h ≡ hαα. The linearized Einstein field equations in harmonic coordinates

reduce to wave equations for metric perturbations hαβ.

The metric tensor perturbations in harmonic coordinates possess a property

that can be used to simplify the problem of analytical integration of the equations
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of light propagation. Specifically, the method of integration of equations of light

geodesics, developed in [24] and [25] and used in this work (Ch. 4), requires that

the metric perturbations be functions of the retarded time (compare Eqs. (1.2)-

(1.5)). Not all coordinate systems possess this property. For instance, metric

perturbations in the canonical ADM coordinate system, considered in the next

section, contain terms that depend on instantaneous time, not allowing to use

the method of integration mentioned above.

3 The Arnowitt-Deser-Misner Coordinate Sys-

tem

The Arnowitt-Deser-Misner (ADM) gauge conditions in the linear approximation

read [36]

2h0i,i − hii,0 = 0 , 3hij,j − hjj,i = 0 . (3.1)

For comparison, the harmonic gauge conditions (2.1) in the linear approximation

have the form

2h0i,i − hii,0 = h00,0 , 2hij,j − hjj,i = −h00,i . (3.2)

The ADM coordinates have the property that test particles perturbed by grav-

itational waves stay at rest with respect to the coordinate grid. (Thus, ADM

coordinate system is not inertial.) This property can be used to simplify analysis

of observable effects. For example, when considering detection of a photon by an

observer in the field of a gravitational wave one normally has to solve both the

equations of motion of the photon and the observer. Using ADM coordinates

allows to exclude the problem of motion of the observer.

The disadvantage of using the ADM coordinates for analysis of the effects

in propagation of light through gravitational field of an isolated source is that,

as it was mentioned above, the ADM metric perturbations may contain terms
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that depend on ”instantaneous” time [25]. This does not allow one to apply

the method of integration of the equations of light propagation mentioned above

(Ch. 4).

Fortunately, the classes of ADM and harmonic coordinates overlap. In [25]

an ADM-harmonic coordinate system, satisfying both ADM and harmonic gauge

conditions in linear approximation, was constructed for isolated system with

constant mass and angular momentum and time-dependent quadrupole moment.

We generalized this result for the case when the localized source possesses full

multipole structure (1.2)-(1.5). The gauge functions

w0 =
∞∑

l=2

(−1)l

l!

[
I(−1)
Al

(t− r)
r

]

,Al

, (3.3)

wi =
∞∑

l=2

(−1)l

l!

[
I(−2)
Al

(t− r)
r

]

,iAl

− 4
∞∑

l=2

(−1)l

l!

[IiAl−1
(t− r)
r

]

,Al−1

(3.4)

+ 4
∞∑

l=2

(−1)ll

(l + 1)!

[
εibaS(−1)

bAl−1
(t− r)

r

]

,aAl−1

bring the metric perturbations hαβ to a remarkably simple form:

h00 =
2M
r

, (3.5)

h0i = −2εipqSpNq

r2
, (3.6)

hij = δijh00 + hTTij , (3.7)

hTTij = Pijklq
can.
kl . (3.8)

Metric perturbations (3.5)-(3.8) satisfy both the harmonic and ADM gauge con-

ditions in the first post-Minkovskian approximation. In (3.8) the TT-projection

differential operator Pijkl applied to symmetric tensors depending on both time
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and spatial coordinates is given by

Pijkl = (δik −∆−1∂i∂k)(δjl −∆−1∂j∂l)− (3.9)

1

2
(δij −∆−1∂i∂j)(δkl −∆−1∂k∂l) ,

where ∆ and ∆−1 denote the Laplacian and the inverse Laplacian respectively.

The ADM-harmonic coordinates combine the advantages of both coordinate

systems and will be used in what follows for analysis of observable effects in prop-

agation of electromagnetic signals through time-dependent gravitational field of

a localized source.
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Chapter 3

Equations for Propagation of
Electromagnetic Signals

1 Geometrical Optics in Curved Spacetime

In this section, following [29] and [27] (§22.5), we provide a derivation of the main

laws of geometrical optics in curved spacetime from the Maxwell’s equations.

In absence of sources the Maxwell’s equations for the electromagnetic field

tensor Fαβ in curved spacetime take the well known form [26, 27]:

∇αFβγ +∇βFγα +∇γFαβ = 0 , (1.1)

∇βF
αβ = 0 , (1.2)

where ∇α denotes a covariant derivative. The wave equation for Fαβ can be

derived from (1.1) and (1.2) and in vacuum (Rαβ = 0, where Rαβ is the Ricci

tensor) it assumes the form

gFαβ +RαβµνF
µν = 0 , (1.3)

where g ≡ ∇α∇α and Rαβγδ is the Riemann curvature tensor of the spacetime.

The solution to the Maxwell’s equations corresponding to a high frequency

wave is given by

Fαβ = Re{Aαβ exp(iϕ)} , (1.4)

18



where Aαβ is the complex amplitude and ϕ is the phase. The complex amplitude

is a slowly varying function of position and time, while the phase rapidly changes

with time and position.

The criterion for applicability of the geometrical optics approximation in

curved spacetime is formulated in [27] as follows: let R be the characteristic

radius of curvature of the spacetime through which the electromagnetic wave

propagates and L – the characteristic length, over which the amplitude, wave-

length, and polarization of the electromagnetic wave change significantly. Ge-

ometrical optics approximation can be applied whenever the wavelength of the

electromagnetic radiation satisfies the following two conditions: 1)λ � R; and

2)λ� L. Then a small parameter ε ≡ λ/min{L,R} can be introduced, and the

expansion of the electromagnetic field of a wave (1.4) in powers of ε is assumed

to have the form

Fαβ =
(
aαβ + εbαβ + ε2cαβ + ...

)
exp

(
iϕ

ε

)
. (1.5)

For critical discussion of this procedure see [38] and [40]. Substituting this ex-

pansion into (1.1), taking into account the definition of the electromagnetic wave

vector lα ≡ ∂ϕ/∂xα and rearranging the terms with the same powers of ε lead

to the chain of equations

lα aβγ + lβ aγα + lγ aαβ = 0 , (1.6)

∇α aβγ +∇β aγα +∇γ aαβ =− i (lα bβγ + lβ bγα + lγ bαβ) , (1.7)

where the effects of curvature have been neglected. Another chain of equations

is obtained by substituting (1.5) into (1.2):

lβ a
αβ = 0 , (1.8)

∇β a
αβ + ilβ b

αβ = 0 . (1.9)

The equation (1.8) shows that in the lowest-order approximation (terms of order

1/ε) the amplitude of the electromagnetic field tensor is orthogonal to the wave
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vector in the four-dimensional sense. Contracting (1.6) with lα and accounting

for (1.8) implies that lα is a null vector

lαl
α = 0. (1.10)

Taking a covariant derivative from the equality (1.10) and using the fact that

∇[αlβ] = 0 (since lα ≡ ∇αϕ) we obtain that lα satisfies the geodesic equation

lβ∇βl
α = 0 , (1.11)

showing that the wave vector is parallel transported along itself. Equations (1.10)

and (1.11) combined constitute an important result of the geometrical optics: in

the lowest order approximation light rays are null geodesics.

Substituting (1.4) into (1.3) and considering terms of the order 1/ε one can

obtain the law of propagation for the amplitude of the electromagnetic tensor

Dλaαβ + ϑaαβ = 0 , (1.12)

where Dλ ≡ lα∇α and ϑ ≡ (1/2)∇αl
α is the expansion of the null congruence lα.

2 Equations for Trajectory of a Photon

It was shown in the previous section that in the lowest order approximation

of geometrical optics light rays, or trajectories of photons, are represented by

null geodesics of the spacetime under consideration. In what follows we shall

consider propagation of photons in a spacetime around an isolated gravitating

system, with the metric of the spacetime defined by (1.7). We shall assume

that the wavelength of the electromagnetic radiation is much smaller than the

characteristic wavelength of the gravitational waves emitted by the gravitating

system, so that the conditions for validity of geometrical optics approximation

are satisfied.
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Let us consider propagation of photons, subject to the initial-boundary con-

ditions

x(t0) = x0,
dx(−∞)

dt
= k , (2.1)

which specify the spacial velocity of photons at the past null infinity by a unit

spacial vector k and the positions of the photons at some initial instant of time

t0.

Taking into account that lα = dxα/dλ, where λ is an affine parameter along

the photon’s trajectory, we can rewrite the equations of geodesics (1.11) in terms

of coordinates of the photon

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 , (2.2)

where

Γαβγ =
1

2
gαµ (∂γgµβ + ∂βgµγ − ∂µgβγ) (2.3)

are the Christoffel symbols. Combining the four equations (2.2), we obtain the

equations for spacial position of the photon as a function of the coordinate time:

ẍi(t) = − (Γiαβ − Γ0
αβẋ

i
)
ẋαẋβ . (2.4)

Substituting (2.3) into (2.4), taking into account that ẋi = ki+O(h), and keeping

only linear in metric perturbations terms we can rewrite the equations (2.4) in

the form

ẍi(t) =
1

2
h00,i − h0i,0 − 1

2
h00,0k

i − hik,0kk − (h0i,k − h0k,i)k
k (2.5)

− h00,kk
kki −

(
hik,j − 1

2
hkj,i

)
kkkj +

(
1

2
hkj,0 − h0k,j

)
kkkjki .

In Chapter 4 we will integrate these equations analytically in the spacetime with

metric given by Eq. (1.7), Ch. 2 around a localized system.
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3 Equations for Propagation of Polarization Prop-

erties

In this section, following [28] and [29], we introduce the relativistic description

of polarized electromagnetic radiation and give the equation (derived in [29]) for

gravity-induced rotation of the polarization plane (Skrotskii effect).

To describe polarization properties of electromagnetic radiation one has to

specify local reference frames along the light rays. At each point of spacetime we

introduce a complex null tetrad (lα, nα,mα,mα) associated with a congruence of

light rays [41, 42]. All the vectors of the tetrad are lightlike. The vectors lα and

nα are real; vectors mα and mα are complex and complex conjugate with respect

to each other. The tetrad is normalized in such a way that the only nonvanishing

products among the vectors are lαn
α = −1 and mαm

α = 1.

It is obvious that such field of complex null tetrads is not uniquely deter-

mined by the congruence of null rays and the normalization conditions. The

transformations

l′α = Alα , (3.1)

n′α = A−1
(
nα +Bmα +Bmα +BBlα

)
,

m′α = e−iΘ
(
mα +Blα

)
,

m′α = eiΘ (mα +Blα) ,

where A and Θ are real and B is a complex parameter, preserve the direction of

the vector lα and the normalization conditions [42]. The transformations (3.1)

form a four-parameter subgroup of the Lorentz group. In addition to the complex

null tetrad we introduce at each point in spacetime an orthonormal reference

tetrad eα(β) defined as follows. Suppose at each point of spacetime there is an

observer moving with four-velocity uα. Let two of the vectors of the observer’s
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local reference frame be

eα(0) = uα , eα(3) = (−lαuα)−1
[
lα + (lβu

β)uα
]
. (3.2)

With such orientation of the reference frame the observer will see the electro-

magnetic wave propagating in the +z direction. Spacelike unit vectors eα(1) and

eα(2) are orthogonal to each other as well as to both eα(0) and eα(3) and thus are

specified up to a spacial rotation.

The relationship between the vectors of the complex null tetrad and the frame

eα(β) is given by

lα = −(lγu
γ)
(
eα(0) + eα(3)

)
, (3.3)

nα = −1

2
(lγu

γ)
(
eα(0) − eα(3)

)
, (3.4)

mα =
1√
2

(
eα(1) + ieα(2)

)
, (3.5)

mα =
1√
2

(
eα(1) − ieα(2)

)
. (3.6)

Vectors eα (1) and eα (2) and corresponding to them mα and mα play an important

role in description of polarization properties of electromagnetic radiation since

they form a basis in the polarization plane.

The tensor of the electromagnetic field can be represented as

Fαβ = Re(Fαβ) , (3.7)

where Fαβ is the complex field. The complex field can be expressed as

Fαβ = Φl[αmβ] + Ψl[βmα] (3.8)

where Φ and Ψ are complex scalar functions.

The electric and magnetic fields in the rest frame of an observer moving with

four-velocity uα are defined as

Eα = F αβuβ , Hα = (−1/2)εαβγδFγδuβ . (3.9)
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We also define the complex electric field as

Eα = Fαβuβ . (3.10)

Polarization properties of light are completely characterized by the polarization

tensor [26] (coherency matrix in [44])

Jαβ = 〈EαEβ〉 , (3.11)

where the angular brackets notify an ensemble average equivalent to averaging

over many periods of the wave.

The electromagnetic Stokes parameters are defined with respect to two of the

observer’s tetrad vectors eα(1) and eα(2) as follows [28]

S0 = Jαβ

[
eα(1)e

β
(1) + eα(2)e

β
(2)

]
, (3.12)

S1 = Jαβ

[
eα(1)e

β
(1) − eα(2)e

β
(2)

]
, (3.13)

S2 = Jαβ

[
eα(1)e

β
(2) + eα(2)e

β
(1)

]
, (3.14)

S3 = iJαβ

[
eα(1)e

β
(2) − eα(2)e

β
(1)

]
. (3.15)

It is worth noting that both the Stokes parameters and the components of the

polarization tensor of an electromagnetic wave can be determined from measure-

ments of intensities of the wave after it passes through devices that transmit

radiation of certain polarization only [44].

Using the definition of the polarization tensor (3.11) we can also rewrite the

expressions for the Stokes parameters in terms of the electric field components

S0 =< |E(1)|2 + |E(2)|2 > , (3.16)

S1 =< |E(1)|2 − |E(2)|2 > , (3.17)

S2 =< E(1)E (2) + E (1)E(2) > , (3.18)

S3 = i < E(1)E (2) − E (1)E(2) > , (3.19)
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where E(n) = Eαeα(n) for n = 1, 2. The Stokes parameters can be expressed in

terms of the complex functions Φ and Ψ as well, since

Eα = − l
αuα
2

(Φ mα + Ψ mα) (3.20)

and therefore

E(1) = − l
αuα√

8
(Φ + Ψ) , E(2) = −i l

αuα√
8

(Φ + Ψ) . (3.21)

To determine how the polarization properties of light vary along the ray we

should specify the law of propagation for the tetrad vectors. The vectors of both

the null tetrad and the tetrad eα(β) are postulated to be parallelly transported

along the light rays. We specify the tetrads at the point of observation and thus

specify them at every point along the ray. Thus, the equations for propagation

of the tetrad vectors read

dmα

dλ
+ Γαβγ l

βmγ = 0 , (3.22)

dmα

dλ
+ Γαβγ l

βmγ = 0 , (3.23)

deα(µ)

dλ
+ Γαβγ l

β eγ(µ) = 0 , (3.24)

and the same laws hold for vectors lα and nα of the null tetrad.

It follows from (1.12), (3.10) and (3.24) that the complex amplitude of the

electric field propagates along the ray according to the law

DλEα + ϑEα = 0 . (3.25)

For the complex amplitudes Φ and Ψ one has

DλΦ + ϑΦ = 0 , and DλΨ + ϑΨ = 0 . (3.26)

Finally, from the equations (3.16) - (3.19) it follows that the Stokes parameters

propagate according to the law

DλSα + 2ϑSα = 0 , (3.27)
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where α = 0, 1, 2, 3. We would like to note that despite suggestive notation the

Stokes parameters do not form a four-vector, because they do not behave as a

vector under coordinate system transformations.

Any stationary or time-dependent axisymmetric gravitational field in general

causes a relativistic effect of rotation of the polarization plane of an electromag-

netic wave [29]. This effect was first discussed by Skrotskii [30] and afterwards

by many researchers (see, for example, [39] and references therein). Recently the

effect was studied in [29] where authors derived an expression for the angle of ro-

tation of the polarization plane of an electromagnetic wave propagating through

a weak gravitational field described by metric perturbations hαβ. Here we give

this expression without derivation which can be found in [29] or in [33]. If φ is

the angle characterizing the orientation of the polarization ellipse, then one has

dφ

dt
=

1

2
kαkjεjp̂q̂∂qhαp̂ , (3.28)

where the hat over the spatial indices denotes the projection onto the plane

orthogonal to the propagation of light ray, for instance, Aî ≡ P i
jA

j. In the

following chapter we shall integrate this equation analytically to obtain the angle

of the rotation of the polarization plane for an electromagnetic signal propagating

in gravitational field of an isolated system.
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Chapter 4

Solution to the Equations of
Propagation of Electromagnetic
Signals

1 Method of Analytical Integration of the Equa-

tions of Propagation of Electromagnetic Sig-

nals

In this section we describe the method of analytical integration of equations of

light geodesics in the field of a localized source developed by Kopeikin at al. in

the series of publications [24], [25] and [33]. In subsequent sections this method

will be applied to find solutions to the equation of geodesics and Skrotskii effect

(Eqs. (2.5) and (3.28) of Chap. 3) in the spacetime with metric given by Eq.

(1.7), Chap. 2.

We introduce new variables τ and ξi as follows:

τ ≡ kix
i , ξi ≡ P i

jx
j , (1.1)

where P i
j is the operator of projection onto the plane perpendicular to ki. Con-

sidering the unperturbed trajectory of the photon: xiN = ki(t− t0) + x0, we see

that the variable τ , characterizing the position of the photon, is proportional to
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time

τ ≡ kix
i
N = t− t∗, (1.2)

where t∗ ≡ kix
i
0 − t0 is the time of the closest approach of the electromagnetic

signal to the origin of the coordinate system. Since t∗ is a constant for a particular

ray, one has dτ = dt. This allows to change to the variable τ when calculating

integrals along the unperturbed ray. Vector ξi is the vector from the origin of

the coordinate system to the point of the closest approach. In terms of the new

variables the unperturbed trajectory can be written as

xiN(τ) = kiτ + ξi . (1.3)

Since the vectors ki and ξi are orthogonal to each other, the distance from the

origin of the coordinate system to the point on unperturbed trajectory with

coordinates τ and ξi can be expressed as

rN =
√
τ 2 + d2 , (1.4)

where d = |ξ| is the impact parameter of the unperturbed light-ray trajectory

with respect to the origin of the coordinate system.

We introduce the operators of differentiation with respect to τ and ξi

∂̂τ ≡ ∂

∂τ
, ∂̂i ≡ P j

i

∂

∂ξj
. (1.5)

Then for any smooth function F (t, xi) the following relationships are valid be-

tween the derivatives in the old and new variables taken on the unperturbed

trajectory

[(
∂

∂xi
+ ki

∂

∂t

)
F (t , x)

]

x=x0+k(t−t0)

=

(
∂

∂ξi
+ ki

∂

∂τ

)
F (t∗ + τ , ξ + kτ) ,

(1.6)[
∂

∂t
F (t , x)

]

x=x0+k(t−t0)

=
∂

∂t∗
F (t∗ + τ , ξ + kτ). (1.7)
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In the left-hand sides of the equations (1.6) and (1.7) one has to first calculate the

derivatives and only after that substitute the unperturbed trajectory x = x0 +

k(t−t0), while in the right-hand sides one has to first substitute the unperturbed

trajectory, parametrized by the variables τ and ξi, and then differentiate. Using

the equation (1.7) in (1.6) one can obtain an expression for spacial derivative:
[
∂F (t,x)

∂xi

]

x=x0+k(t−t0)

=

(
∂

∂ξi
+ ki

∂

∂τ
− ki ∂

∂t∗

)
F (t∗ + τ , ξ + kτ) . (1.8)

Equations (1.7) and (1.8) can be used for changing over to the variables τ and ξi

in the equations of light propagation. A useful property of the variables τ and ξi

is that when one calculates integrals along the light rays the following formulae

are valid
∫

∂

∂τ
F (τ, ξ) dτ =F (τ, ξ) + C(ξ) , (1.9)

∫
∂

∂ξi
F (τ, ξ) dτ =

∂

∂ξi

∫
F (τ, ξ) dτ , (1.10)

where C(ξ) is a function of ξ. Equation (1.9) shows that the terms represented

by partial derivatives with respect to τ can be immediately integrated. Equation

(1.10) states that one can change the order of integration and differentiation

which crucially simplifies the problem of integration of the equations as it is

shown below.

Let us consider the geodesic equations (2.5), Ch. 3. All terms in the right-

hand sides of the equations are proportional to the first-order partial derivatives

of the metric perturbations hαβ with respect to time or spacial coordinates.

The metric perturbations, given by the equations (1.7), Ch. 2, consist of the

canonical and gauge-dependent parts. The canonical part (Eqns. (1.2)-(1.5) of

Ch. 2) is given by a linear combination of different-order partial derivatives with

respect to spacial variables of functions [F (t− r)/r] (where F (t − r) stands for

a mass- or spin-type multipole moment). If one changes the variables to τ and
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ξi in the geodesic equations (2.5), Ch. 3, integrates and then changes the order

of differentiation and integration in the right-hand sides of the equations, the

only two types of integrals that will appear in the solutions (not counting the

gauge-dependent terms) will be the integrals of the type [F (t − r)/r][−1] and

[F (t − r)/r][−2]. The gauge-dependent terms, after changing the variables to τ

and ξi, will appear in the equations of geodesics under the second-order partial

derivative with respect to τ and thus can be immediately integrated (cf. Eq.

(1.10)). A similar consideration can be made for the equation (3.28), Ch. 3,

describing Skrotskii effect.

As it follows from the consideration above, the problem of integration of the

equations of light propagation reduces to evaluation of integrals [F (t− r)/r][−1]

and [F (t− r)/r][−2] where F (t− r) denotes multipole moments of different type

and order of the gravitating system.

Let us first consider the contributions to the relativistic effects in propagation

of light due to mass-monopole and spin-dipole terms. We neglect the loss of

energy and angular momentum due to gravitational radiation so that the total

mass and angular momentum of the system are considered to be conserved. Then

the contributions under consideration can be expressed in terms of integrals

[1/r][−1],
[
∂̂i(1/r)

][−1]

,
[
∂̂ia(1/r)

][−1]

,
[
∂̂i(1/r)

][−2]

and
[
∂̂ia(1/r)

][−2]

which can

be evaluated.

The relativistic corrections to the light ray path and the relativistic effect

of rotation of the polarization plane due to higher-order multipole moments

(starting with the mass- and spin-quadrupole) are expressed in terms of inte-

grals [F (t− r)/r][−1] and [F (t− r)/r][−2] along the unperturbed light ray, where

F (t− r) denotes a multipole moment. To evaluate these integrals we introduce

the new variable [25]

y ≡ s− t∗ = τ − r(τ) = τ −
√
d2 + τ 2 . (1.11)
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Then the following relationships hold:

τ =
y2 − d2

2y
,

√
d2 + τ 2 = −1

2

d2 + y2

y
, dτ =

1

2

d2 + y2

y2
dy. (1.12)

Making use of the new variable y and the equations (1.12) we can express the

integrals under discussion as follows

[
F (t− r)

r

][−1]

=−
y∫

−∞

F (t∗ + ζ)

ζ
dζ , (1.13)

[
F (t− r)

r

][−2]

=− 1

2

y∫

−∞

η∫

−∞

F (t∗ + ζ)

ζ
dζdη − d2

2

y∫

−∞

1

η2

η∫

−∞

F (t∗ + ζ)

ζ
dζdη ,

(1.14)

where ζ and η are the new variables of integration and t∗ is the time of the closest

approach of the photon to the origin of the coordinate system. It is worth to

note that t∗ depends on the choice of coordinate system, which can be arbitrary

in our formalism.

An important property of the integrals (1.13) and (1.14), expressed in terms

of the variable y, is that they depend on τ and ξi only through the upper limits

of integration (since y ≡ τ −√d2 + τ 2) and the square of the impact parameter

in the prefactor of the second integral in (1.14).

Differentiating (1.13) with respect to ξi and τ yields

∂̂i

{[
F (t− r)

r

][−1]
}

= −F (t∗ + y)

y
∂̂iy = −F (t∗ + y) ∂̂i ln(−y) =

ξi

yr
F (t− r) ,

(1.15)

∂̂τ

{[
F (t− r)

r

][−1]
}

= −F (t∗ + y)

y
∂̂τy = −F (t∗ + y)

y

(
1− τ

r

)
=
F (t− r)

r
.

(1.16)

The last result also follows from the equation (1.10). Thus, the derivatives of the

integral [F (t− r)/r][−1] with respect to either ξi or τ can be expressed in terms
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of the integrand. Differentiating (1.14) with respect to ξi multiple times yields

∂̂k

{[
F (t− r)

r

][−2]
}

=ξk





1

y

[
F (t− r)

r

][−1]

−
y∫

−∞

1

η2

η∫

−∞

F (t∗ + ζ)

ζ
dζdη



 ,

(1.17)

∂̂jk

{[
F (t− r)

r

][−2]
}

=
ξkξj

y2

F (t− r)
r

+ (1.18)

P jk





1

y

[
F (t− r)

r

][−1]

−
y∫

−∞

1

η2

η∫

−∞

F (t∗ + ζ)

ζ
dζdη



 ,

∂̂ijk

{[
F (t− r)

r

][−2]
}

=
1

y

{(
P ij +

ξij

yr

)
∂̂k + P jk∂̂i + ξj ∂̂ik

}[
F (t− r)

r

][−1]

,

(1.19)

In the last expression all terms contain at least a first order derivative of the

integral [F (t − r)/r][−1] with respect to ξi. As it was shown above (Eq. (1.15))

integration is eliminated in this case. Thus, the third and higher-order derivatives

of [F (t − r)/r][−2] with respect to ξi can be expressed in terms of F (t− r) and

one does not have to perform integration. Explicitly evaluating the derivatives

in (1.19) using (1.15) one gets

∂̂ijk

{[
F (t− r)

r

][−2]
}

=
P ijξk + P jkξi + P ikξj

y2r
F (t− r) (1.20)

+
ξiξjξk

y2r2

[(
2

y
− 1

r

)
F (t− r)− Ḟ (t− r)

]
.

In the equations for trajectory of a photon and gravity-induced rotation of polar-

ization plane the integrals [F (t− r)/r][−1] and [F (t− r)/r][−2] are differentiated

with respect to τ and ξi and it can be shown that in all terms differentiation elim-

inates integration. In the following two sections the solutions are formally given

in terms of integrals [F (t− r)/r][−1] and [F (t− r)/r][−2], but one should bear in

mind that after performing differentiations using the formulae (1.9), (1.15) and

(1.19) one can express the integrals in terms of corresponding integrands.
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2 Solution to the Equations for Trajectory of a

Photon

Using the formulae (1.7) and (1.8) and rewriting the equation of geodesics (2.5),

Ch. 3, in terms of the variables τ and ξi one obtains

d2xi(τ)

dτ 2
=

1

2
kαkβ ∂̂ih

can.
αβ − ∂̂τ

(
kαhcan.

iα −
1

2
kikjkpqcan.

jp

)
− ∂̂ττ (wi− kiw0) , (2.1)

where in the right-hand side all functions are taken on the unperturbed light-

ray trajectory (before performing differentiation). The gauge functions wα have

not yet been specified which means that equations (2.1) are gauge-invariant.

Substituting into (2.1) the metric perturbations expressed in terms of τ and ξi

(Eqns. (0.1)-(0.9) of Appendix A) and integrating once with respect to τ one

obtains [33]

ẋi(τ) = ki + Ξ̇i(τ, ξ) , (2.2)

where

Ξ̇i(τ, ξ) = Ξ̇i

(G)
(τ, ξ) + Ξ̇i

(M)
(τ, ξ) + Ξ̇i

(S)
(τ, ξ) , (2.3)
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Ξ̇i

(G)
(τ, ξ) =∂̂τ

[
(ϕi − kiϕ0) + (wi − kiw0)

]
, (2.4)

Ξ̇i

(M)
(τ, ξ) =2M

[
∂̂i

1

r

][−1]

− ki2M
r

+ (2.5)

2∂̂i

∞∑

l=2

l∑
p=0

p∑
q=0

(−1)l+p−q

l!
Cl(l − p, p− q, q)H(2− q)×

(
1− p− q

l

)(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al>∂̂

q
τ

[
I(p−q)
Al

(t− r)
r

][−1]

−

2
∞∑

l=2

l−1∑
p=0

(−1)l+p

l!
Cl(l − p, p)

(
1− p

l

)
×

{(
1 +

p

l − 1

)
ki<a1...ap ∂̂ap+1...al>

[
I(p)
Al

(t− r)
r

]
−

2p

l − 1
k<a1...ap−1 ∂̂ap...al−1>

[
I(p)
iAl−1

(t− r)
r

]}
,

Ξ̇i

(S)
(τ, ξ) = 2kjεjbaSb

[
∂̂ia

1

r

][−1]

− 2∂̂a
εibaSb
r
− (2.6)

4kj ∂̂ia

∞∑

l=2

l−1∑
p=0

p∑
q=0

(−1)l+p−ql
(l + 1)!

Cl−1 (l − p− 1, p− q, q)H(2− q)×

(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al−1>∂̂

q
τ

[
εjbaS(p−q)

bAl−1
(t− r)

r

][−1]

+

4
(
∂̂a − ka∂̂t∗

) ∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1 (l − p− 1, p)×

(
1− p

l − 1

)
k<a1...ap ∂̂ap+1...al−1>

[
εibaS(p)

bAl−1
(t− r)

r

]
+

4kj

∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1 (l − p− 1, p)k<a1...ap ∂̂ap+1...al−1>


εjbal−1

S(p+1)

îbAl−2
(t− r)

r


 .

Here Ξ̇i

(G)
(τ, ξ) represents the gauge-dependent perturbations, Ξ̇i

(M)
(τ, ξ) and Ξ̇i

(S)
(τ, ξ)

are the perturbations due to the mass and spin multipole moments, correspond-
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ingly. The Heaviside function H(p − q) is defined by the expression (2.19), Ch.

1 and Cl(l− p, p− q, q) are the polynomial coefficients (2.18), Ch. 1 . The gauge

functions ϕα were introduced as follows: we collected in the equations (2.1) all

terms with the second and higher-order derivatives with respect to τ and equated

them to kiϕ0 − ϕi. By introducing the functions ϕα we singled out the terms

that can be immediately integrated. We do not separate kiϕ0 − ϕi into ϕ0 and

ϕi,since such separation is not unique while the functions kiϕ0 − ϕi are defined

uniquely (Eqns. (0.4)-(0.6) in Appendix B).

The gauge functions wα can be chosen arbitrarily. For the reasons discussed

in Section 2 we choose wα which make our coordinate system ADM-harmonic,

that is satisfying both ADM and harmonic gauge conditions. These functions

are given by the expressions (0.2) and (0.3) of Appendix B.

The second integration of (2.1) yields the expressions for trajectory of the

photon

xi(τ) = xiN + ∆ Ξi

(G)
+∆ Ξi

(M)
+∆ Ξi

(S)
, (2.7)

where

∆ Ξi

(G)
≡Ξi

(G)
(τ, ξ)− Ξi

(G)
(τ0, ξ) , (2.8)

∆ Ξi

(M)
≡ Ξi

(M)
(τ, ξ)− Ξi

(M)
(τ0, ξ) ,

∆ Ξi

(S)
≡Ξi

(S)
(τ, ξ)− Ξi

(S)
(τ0, ξ) .

The term

Ξi

(G)
(τ, ξ) = (ϕi − kiϕ0) + (wi − kiw0) , (2.9)

represents the gauge-dependent part of the trajectory’s perturbations, and the
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gauge-independent terms due to the mass and spin multipoles are given by

Ξi

(M)
(τ, ξ) =2M

[
∂̂i

1

r

][−2]

− 2Mki
[

1

r

][−1]

+ (2.10)

2∂̂i

∞∑

l=2

l∑
p=0

p∑
q=0

(−1)l+p−q

l!
Cl(l − p, p− q, q)H(2− q)×

(
1− p− q

l

)(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al>∂̂

q
τ

[
I(p−q)
Al

(t− r)
r

][−2]

−

2
∞∑

l=2

l−1∑
p=0

(−1)l+p

l!
Cl(l − p, p)

(
1− p

l

)
×

{(
1 +

p

l − 1

)
ki<a1...ap ∂̂ap+1...al>

[
I(p)
Al

(t− r)
r

][−1]

−

2p

l − 1
k<a1...ap−1 ∂̂ap...al−1>

[
I(p)
iAl−1

(t− r)
r

][−1]}
,
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Ξi

(S)
(τ, ξ) =2kjεjbaSb

[
∂̂ia

1

r

][−2]

− 2εibaSb
[
∂̂a

1

r

][−1]

− (2.11)

4kj ∂̂ia

∞∑

l=2

l−1∑
p=0

p∑
q=0

(−1)l+p−ql
(l + 1)!

Cl−1 (l − p− 1, p− q, q)H(2− q)×

(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al−1>∂̂

q
τ

[
εjbaS(p−q)

bAl−1
(t− r)

r

][−2]

+

4
(
∂̂a − ka∂̂t∗

) ∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1 (l − p− 1, p)×

(
1− p

l − 1

)
k<a1...ap ∂̂ap+1...al−1>

[
εibaS(p)

bAl−1
(t− r)

r

][−1]

+

4kj

∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1 (l − p− 1, p)×

k<a1...ap ∂̂ap+1...al−1>


εjbal−1

S(p+1)

îbAl−2
(t− r)

r




[−1]

.

3 Solution to the Equations for Rotation of the

Polarization Plane

We rewrite the equation (3.28) in terms of the variables τ and ξi using the

relationship (1.8) and substitute the metric perturbations, expressed in terms of

the variables τ and ξi (Eqns. (0.1)-(0.9) in Appendix A):

dφ

dτ
=

1

2
kαkjεjp̂q̂∂̂qh

can.
αp̂ +

1

2
kjεjp̂q̂∂̂qτw

p̂ . (3.1)

Integrating with respect to τ and changing the order of differentiation and inte-

gration yields

φ = φ(G) + φ(M) + φ(S) + φ0 , (3.2)

where φ0 is the constant angle characterizing the initial orientation of the polar-

ization ellipse in the plane formed by the vectors e(1) and e(2). The terms φ(G),
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φ(M) and φ(S) describe the contributions due to gauge-dependent terms and terms

depending on mass- and spin-type moments, correspondingly.

The gauge-dependent part of the Skrotskii effect can be obtained immediately,

since the gauge dependent terms appear in the equation (3.1) under the first-

order derivative with respect to τ (cf. Eq. (1.9)). The integration yields

φ(G) =
1

2
kjεjp̂q̂∂̂q

(
wp̂ + χp̂

)
, (3.3)

where the gauge functions wi and χi are given by the equations (3.4), Ch. 2

and (0.7), App. B. The gauge functions χi were introduced by collecting in the

equation (3.1) all terms that can be eliminated by a gauge transformation.

The Skrotskii effect due to the mass and spin multipoles of the isolated system

is given by

φ(M)(τ) =2
∞∑

l=2

l∑
p=0

(−1)l+p

l!
Cl(l − p, p) l − p

l − 1
(3.4)

× k<a1...ap ∂̂ap+1...al>j


εjb̂alI

(p)

b̂Al−1
(t− r)

r




[−1]

,

and

φ(S)(τ) =2
∞∑

l=1

l∑
p=0

(−1)l+pl

(l + 1)!
Cl(l − p, p)

(
1− p

l

)
(3.5)

×
[
1 +H(l − 1)

(
1− 2p

l − 1

)]
k<a1...ap ∂̂ap+1...al>

[
S(p+1)
Al

(t− r)
r

][−1]

.

Like in the equations for light-ray path (2.5)-(2.6) and (2.10)-(2.11) differentia-

tion eliminates integrals in the right-hand sides of the equations (3.4)-(3.5).
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Chapter 5

Observable Relativistic Effects

In this section we give the expressions for the observable relativistic effects of

time delay and gravitational deflection of light. The expressions for another

observable effect – rotation of the polarization plane were essentially given in

Section 3 of the previous chapter.

1 Time Delay

In [25] the following expression was obtained for the time of propagation of the

electromagnetic signals from emitter to the observer through the gravitational

field of an isolated source:

t− t0 =|x− x0|+ ∆(τ, τ0) , (1.1)

∆(τ, τ0) = ∆
(G)

(τ, τ0) + ∆
(M)

(τ, τ0) + ∆
(S)

(τ, τ0) , (1.2)
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where xα0 = (t0,x0) and xα = (t,x) are the coordinates of the points of emission
and observation of the signal, ∆

(G)
(τ, τ0), ∆

(M)
(τ, τ0) and ∆

(S)
(τ, τ0) are functions

describing the delay of the electromagnetic signal due to the gauge-dependent
terms, mass and spin multipoles of the gravitational field of the isolated system
correspondingly. These functions are expressed in terms of the perturbations of
the signal’s trajectory as

∆
(G)

(τ, τ0) =− ki
[
Ξi

(G)
(τ, ξ)− Ξi

(G)
(τ0, ξ)

]
, (1.3)

∆
(M)

(τ, τ0) =− ki
[

Ξi

(M)
(τ, ξ)− Ξi

(M)
(τ0, ξ)

]
, (1.4)

∆
(S)

(τ, τ0) =− ki
[
Ξi

(S)
(τ, ξ)− Ξi

(S)
(τ0, ξ)

]
. (1.5)

We note that the expressions give the effect with respect to the coordinate

time which has to be converted to the time measured by the observer. It is shown

in [25] that if the observer’s velocity is negligible with respect to the global ADM-

harmonic coordinate system, the relationship between the coordinate time and

proper time T of the observer is given by

T =

(
1− M

r

)
(t− ti) , (1.6)

where ti is the initial epoch of observation. In most cases the distance r is

much grater than M and coordinate time coincides with the proper time of the

observer. If observer is moving with respect to the global coordinate system, an

additional Lorentz transformation to the rest frame of the observer has to be

performed. This case is considered in [33].

2 Deflection of Light

The expression for a unit observable vector si in the direction towards the source

of light calculated at the point of observation was derived in [25] and reads

si (τ, ξ) = Ki + αi (τ, ξ) + βi (τ, ξ)− βi (τ0, ξ) + γi (τ, ξ) , (2.1)
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where

K i =
xi − xi0
|x− x0| (2.2)

is the unit vector in the direction ”observer – source of light”, defined in the
global coordinate system;

αi (τ, ξ) =− P i
j Ξ̇j (2.3)

is the vector describing the angle of light deflection;

βi (τ, ξ) =

P i
j

[
Ξj

(M)
(τ, ξ) + Ξj

(S)
(τ, ξ)

]

|x− x0| (2.4)

is a relativistic correction, introduced by the relationship

ki =−Ki − βi (τ, ξ) + βi (τ0, ξ) . (2.5)

The term

γi (τ, ξ) =− 1

2
P ijkqhTTjq (t,x) (2.6)

appears as a result of transformation from the the global ADM-harmonic system

to the local frame of the observer and describes the perturbations of the observer’s

coordinate system due to the gravitational waves from the localized source. It was

assumed that the observer is at rest with respect to the global ADM-harmonic

system. In the case when the observer is moving one has to perform an additional

Lorentz transformation to the rest frame of the observer.

41



Chapter 6

Discussion

In this chapter we give the approximate expressions for the observable relativistic

effects of time delay, light deflection and gravitational rotation of the polarization

plane of electromagnetic waves for two practically interesting cases of arrange-

ment of the source of light, the observer and the gravitating system deflecting

the light rays. The first case is the gravitational-lens approximation when both

the source of light and the observer are located far away from the gravitating

system and the light ray passes close to the system (Fig. 6.1). In the second case

the source of light and observer are located in the wave zone of the gravitating

system and are separated by a distance much smaller than the distance from

either of these points to the system (Fig. 6.2). This case corresponds to the

approximation of plane gravitational waves.

1 Gravitational-Lens Approximation

1.1 Some useful asymptotic expansions

In the Gravitational-Lens Approximation the impact parameter d of the light

ray with respect to the barycenter of the astronomical system is much smaller

than the distances from the system to either the observer or the source of light

d� min[r, r0]. We assume that the system is located between the source of light
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Observer

O E

r

S

r
0

τ τ0

d Source of light

Source of gravitational waves
D

Figure 6.1: Relative configuration of observer (O), source of light (S), and a
localized source of gravitational waves (D). The source of gravitational waves
deflects light rays which are emitted at the moment t0 at the point S and received
at the moment t at the point O. The point E on the line OS corresponds to the
moment of the closest approach of light ray to the deflector D. Distances are
OS = R, DO = r, DS = r0, the impact parameter DE = d, OE = τ > 0,
ES = τ0 = τ − R < 0. The impact parameter d is small in comparison to all
other distances.

and observer so that τ0 < 0 (see Fig. 6.1). Then two small parameters ε ≡ d/r

and ε0 ≡ d/r0 can be introduced. We also introduce the parameter ελ ≡ d/λ,

where λ is the characteristic wavelength of the gravitational radiation emitted

by the astronomical system. When light ray propagates through the near zone

of the system (d � λ, see [27], [35]) this parameter is small. In the rest of this

section we give some asymptotic expansions in powers of the parameters ε, ε0,

and ελ which are useful for calculation of observable relativistic effects in the

gravitational-lens approximation.

The variables y and y0 can be expanded as follows:

y =
√
r2 − d2 − r = −εd

2
+ d

∞∑

k=2

Ckε2k−1 = −εd
2

+O(ε3) , (1.1)

y0 = −
√
r2

0 − d2 − r0 = −2r0 + ε0
d

2
− d

∞∑

k=2

Ckε2k−1
0 = −2r0 + ε0

d

2
+O(ε3

0) ,

(1.2)
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and

1

yr
= − 2

d2
− 1

d2

∞∑

k=1

Ckε2k = − 2

d2
+O(ε2) , (1.3)

1

y0r0

=
1

d2

∞∑

k=1

Ckε2k
0 = O(ε2

0) , (1.4)

where the numerical coefficient in the expansions is

Ck = (−1)k

1

2

(
1

2
− 1

)
· . . . ·

(
1

2
− k + 1

)

k!
=




−1/2, if k = 1;

−(2k − 3)!!

(2k)!!
, if k ≥ 2.

(1.5)

For the variables t and t0 one has

t = t∗ + r − εd
2

+ d

∞∑

k=2

Ckε2k−1 = t∗ + r − εd
2

+O(ε3) , (1.6)

t0 = t∗ − r0 + ε0
d

2
− d

∞∑

k=2

Ckε2k−1
0 = t∗ − r0 + ε0

d

2
+O(ε3

0) , (1.7)

where Ck is given by (1.5) and t∗ is the time of the closest approach of the light

ray to the barycenter of the isolated system.

Using (1.6) and (1.7) we can write down the post-Newtonian expansions for

functions of the retarded time t− r as follows:

F (t− r) =
∞∑
n=0

(−1)ndn

n!

(
ε

2
−
∞∑

k=2

Ckε2k−1

)n

F (n)(t∗)

= F (t∗)− εd
2
Ḟ (t∗) +O

(
ε2ε2

λ

)
, (1.8)

F (t0 − r0) =
∞∑
n=0

dn

n!

(
ε0

2
−
∞∑

k=2

Ckε2k−1
0

)n

F (n)(t∗ − 2r0)

= F (t∗ − 2r0) + ε0
d

2
Ḟ (t∗ − 2r0) +O

(
ε2

0ε
2
λ

)
. (1.9)

The asymptotic expansions of integrals of the stationary part of the metric have
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the form:

[−1]
[

1

r

]
=− 2 ln d+ ln2r +O(ε2), (1.10)

[−1]
[

1

r0

]
=− ln 2r0 +O(ε2

0), (1.11)

[−2]
[

1

r

]
=− r − 2r ln d+ r ln 2r − εd

2

[
1

2
− ln

d2

2r

]
+O(ε2), (1.12)

[−2]
[

1

r0

]
=− r0 + r0 ln 2r0 − ε0

d

2

[
1

2
+ ln 2r0

]
+O(ε2

0). (1.13)

The following estimates and expressions for derivatives of functions of retarded

time are useful in analysis of observable effects in the gravitational-lens approx-

imation:

∂̂<a1...al>
F (t− r)

r
=O

(
εmεnλ

F

dl+1

)
, (1.14)

where m ≥ 2, n ≥ 0 for any l;

∂̂<a1...al>
F (t0 − r0)

r0

=O

(
εmεnλ

F

dl+1

)
, (1.15)

where m ≥ 2, n ≥ 0 for any l;

∂̂lτ
F (t− r)

r
=O

(
εl+1 F

dl+1

)
+

l∑
n=1

n∑
m=1

O

(
εl−m+2j+1εmλ

F

dl+1

)
,

(1.16)
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where j(n,m) = min i1 with i1 satysfying the two equations m =
∑l

k=1 ik and

n =
∑l

k=1 kik (all ik are positive integers);

∂̂lτ
F (t0 − r0)

r0

=
l∑

m=0

O

(
εl−m+1εmλ

F

dl+1

)
; (1.17)

∂̂<a1...al>

[−1][F (t− r)
r

]
=− 2F (t− r)∂̂<a1...al> ln d+O

(
εελ

F

dl

)
; (1.18)

∂̂<a1...al>

[−1][F (t0 − r0)

r0

]
=O

(
εmεnλ

F

dl

)
, (1.19)

where m ≥ 2, n ≥ 0 for any l;

∂̂<a1...al>

[−2][F (t− r)
r

]
=− 2rF (t− r)∂̂<a1...al> ln d+O

(
ελ

F

dl−1

)
; (1.20)

∂̂<a1...al>

[−2][F (t0 − r0)

r0

]
= O

(
εmεnλ

F

dl−1

)
, (1.21)

where m ≥ 3 and n ≥ 0 for any l.

1.2 Asymptotic expressions for observable effects

In this section we give the approximate expressions for relativistic effects of time

delay, light deflection and rotation of the polarization plane in the gravitational-

lens approximation. In all expressions we write out explicitly only the terms of

the zeroth order with respect to the small parameters ε and ε0.

For the relativistic time delay (Eqs. (1.1) - (1.5), Ch. 5) one has

∆ (τ, τ0) = ∆
(M)

(τ, τ0) + ∆
(S)

(τ, τ0) , (1.22)
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where

∆
(M)

(τ, τ0) =− 4M ln d+ 2M ln(4rr0)− (1.23)

4
∞∑

l=2

l∑
p=0

(−1)l+p

l!
Cl(l − p, p)

(
1− p

l

)(
1− p

l − 1

)
×

∂̂pt∗IAl(t− r)k<a1...ap ∂̂ap+1...al> ln d+O(εελ),

∆
(S)

(τ, τ0) =− 4εibakiSb∂̂a ln d+ (1.24)

8εibaki∂̂a

∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1(l − p− 1, p)

(
1− p

l − 1

)
×

∂̂pt∗SbAl−1
(t− r)k<a1...ap ∂̂ap+1...al−1> ln d+O(εελ).

The observable unit vector in the direction ”observer - source of light” calcu-

lated at the point of observation is given by

si (τ, ξ) =Ki + αi (τ, ξ) + βi (τ, ξ) , (1.25)

where we have neglected the quantities βi (τ0, ξ) and γi (τ, ξ), since the angle

βi (τ, ξ) (Eq. (2.4), Ch. 5) is negligibly small at the point of emission of light

and γi (τ, ξ) is proportional to metric perturbations at the location of the observer

(Eq. (2.6), Ch. 5) and thus is negligibly small as well.

The vector αi (τ, ξ), characterizing the deflection of light, and the relativistic

correction βi (τ, ξ) are given by the expressions

αi (τ, ξ) =αi(M) (τ, ξ) + αi(S) (τ, ξ) , (1.26)
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where

αi(M) (τ, ξ) =4M∂̂i ln d (1.27)

+ 4∂̂i

∞∑

l=2

l∑
p=0

(−1)l+p

l!
Cl(l − p, p)

(
1− p

l

)(
1− p

l − 1

)
×

∂̂pt∗IAl(t− r)k<a1...ap ∂̂ap+1...al> ln d+O(εελ),

αi(S) (τ, ξ) =4εjbakjSb∂̂ia ln d− (1.28)

8εjbakj ∂̂ia

∞∑

l=2

l−1∑
p=0

(−1)l+pl

(l + 1)!
Cl−1(l − p− 1, p)

(
1− p

l − 1

)
×

∂̂pt∗SbAl−1
(t− r)k<a1...ap ∂̂ap+1...al−1> ln d+O(εελ),

and

βi (τ, ξ) =βi(M) (τ, ξ) + βi(S) (τ, ξ) , (1.29)

where

βi(M) (τ, ξ) =− r

R
αi(M) +O(εR), (1.30)

βi(S) (τ, ξ) =− r

R
αi(S) +O(εR). (1.31)

We note that using the expressions (1.8) and (1.9), we can rewrite (1.23), (1.24),

(1.27) and (1.28) expressing functions of retarded time (t − r) in terms of their

values at the moment of the closest approach of the photon and the gravitating

system t∗. This is accomplished simply by substituting the value t∗ instead of

(t− r) in the expressions (1.23), (1.24), (1.27) and (1.28) as the corrections will

be of the first order with respect to the parameter ε (see Eq. (1.8)). Thus in the

first approximation the relativistic effects depend only on the state of the light

deflecting system at the moment of the closest approach of the photon to the

barycenter of the system.

It is important to note also that in the expressions for time delay and de-

flection angle (1.23), (1.24), (1.27), and (1.28) the terms in which the order of
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differentiation with respect to time p equals the order of the multipole moments

l cancel out. Cancellation also takes place for the terms with p = l − 1. The

terms with p = l and p = l − 1 are likely to describe the effects due to the

wave-zone 1/r and intermediate-zone 1/r2 fields (compare [23]), however we did

not check this by a calculation. Thus, it is likely that these fields do not con-

tribute to the leading-order terms1 of the expressions for observable effects in

gravitational-lens approximation. Due to the cancellation the leading terms in

the equations for time delay and deflection angle fall off with impact parameter

as 1/d2 and 1/d3 respectively for contributions due to multipole moments of all

orders starting with quadrupole. Such strong dependence on impact parameter

makes much more difficult any observation of time-dependent astrometric, tim-

ing or photometric effects in gravitational lensing (such as variations in apparent

positions or brightness of light sources or variations in time of arrival of pulsar

impulses) [23, 25, 29, 33]. After a series of erroneous papers [19–22], claiming that

in the alignment under consideration there may be observable time-dependent

effects due to interaction of electromagnetic and gravitational waves, suppres-

sion of the gravitational wave effects and the strong dependence on the impact

parameter was clearly shown in [23] and, independently, in [25] and [29]. In [23]

an estimate was also made for the fall-off properties of the terms generated by

higher-order multipole moments. The authors state that the contributions due

to higher-order moments will fall off with the impact parameter ”at least as fast

(and probably faster) than the quadrupolar one”. This agrees with the results

of our calculations stated above.

In the gravitational-lens approximation we can also reexpress our results for

time delay and deflection angle in terms of the gravitational-lens potential ψ

which is essentially the gravitational time delay in propagation of signals from

1Terms of order ε0.
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the source to the observer [23, 43]:

∆ (τ, τ0) =2M ln(4rr0)− 4ψ, (1.32)

αi (τ, ξ) =4∂̂iψ, (1.33)

where

ψ =

{
M+

∞∑

l=2

l∑
p=0

(−1)l+p

l!
Cl(l − p, p)

(
1− p

l

)(
1− p

l − 1

)
× (1.34)

∂̂pt∗IAl(t∗)k<a1...ap ∂̂ap+1...al>+

εjbakjSb∂̂a − 2εjbakj ∂̂a

∞∑

l=2

l∑
p=0

(−1)l+pl

(l + 1)!
Cl−1(l − p− 1, p)×

(
1− p

l − 1

)
∂̂pt∗SbAl−1

(t∗)k<a1...ap ∂̂ap+1...al−1>

}
ln d+O(εελ).

This expression takes into account multipole moments of all orders in the nonsta-

tionary case and presents a generalization of the corresponding results obtained

in [24], [23] and [25].

The expressions for the angle of rotation of the polarization plane of light in

the gravitational-lens approximation have the form

φ(M)(τ)− φ(M)(τ0) =− 4
∞∑

l=2

l∑
p=0

(−1)l+p

l!
Cl(l − p, p) l − p

l − 1
× (1.35)

∂̂pt∗εjb̂alIb̂Al−1
(t− r)k<a1...ap ∂̂ap+1...al>j ln d+O(εελ),

φ(S)(τ)− φ(S)(τ0) =− 4
∞∑

l=1

l∑
p=0

(−1)l+pl

(l + 1)!
Cl(l − p, p)

(
1− p

l

)
× (1.36)

[
1 +H(l − 1)

(
1− 2p

l − 1

)]
×

∂̂p+1
t∗ SAl(t− r)k<a1...ap ∂̂ap+1...al> ln d+O(εελ).
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2 Plane-Gravitational-Wave Approximation

2.1 Some useful asymptotic expansions

In the plane-gravitational-wave approximation we assume that both the source

of light and the observer are located in the wave zone of the astronomical system

emitting gravitational waves (min[r, r0]� λ, where λ is the characteristic wave-

length of the gravitational waves emitted by the system [27, 35]). In addition

we impose a restriction on the distance R between the source of light and the

observer: R � min[r, r0] (plane wave condition) (Fig. 6.2) and introduce the

small parameters δλ = λ/r, δ = R/r and δ0 = R/r0.

The relationship among r, r0 and R can be written as

r2
0 = r2 − 2rR cos θ +R2 = r2(1− 2δ cos θ + δ2), (2.1)

where θ is the angle between the directions ”observer – source of light” and

”observer – gravitating system” (Fig 6.2). From the Eq. (2.1) it follows that

r0 =r(1− δ cos θ +O(δ2)), (2.2)

1

r0

=
1

r
(1 + δ cos θ +O(δ2)). (2.3)

For the variables τ and τ0 we have

τ = r cos θ, τ0 = τ −R = r cos θ −R. (2.4)

The quantities d and y can be expressed as

d =r sin θ, (2.5)

y =τ − r = −r(1− cos θ). (2.6)

The instants of time (t− r) and (t0 − r0) are related by the equation

t0 − r0 = t− r −R(1− cos θ). (2.7)

51



d

0

O

D

E

τ0θ

S

Observer Source of light

Source of gravitational waves

R

r

r

Figure 6.2: Relative configuration of observer (O), source of light (S), and a
localized source of gravitational waves (D). The source of gravitational waves
deflects light rays which are emitted at the moment t0 at the point S and received
at the moment t at the point O. The point E on the line OS corresponds to the
moment of the closest approach of light ray to the deflector D. Distances are
OS = R, DO = r, DS = r0, the impact parameter DE = d, OE = τ = r cos θ,
ES = τ0 = τ − R. The distance R is much smaller than both r and r0. The
impact parameter d is, in general, not small in comparison to all other distances.
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Using Eq. (2.7) we can write down the relationship between the values of func-

tions of retarded time at the instants of emission and observation:

F (t0 − r0) = F (t− r)−R(1− cos θ)Ḟ (t− r) +O
(
(R/λ)2

)
. (2.8)

Let us now give several useful asymptotic expressions for the derivatives of func-

tions of retarded time

∂̂nτ
F (t− r)

r
=(1− cos θ)n∂̂nt∗

[
F (t− r)

r

]
+O(δ2), (2.9)

∂̂a1...an

F (t− r)
r

=(−1)n
ξa1...an

rn
∂̂nt∗

[
F (t− r)

r

]
+O(δ2), (2.10)

∂̂nτ

[−1][F (t− r)
r

]
=(1− cos θ)n−1∂̂n−1

t∗

[
F (t− r)

r

]
+O(δ2), (2.11)

∂̂a1...an

[−1][F (t− r)
r

]
=

(−1)n

1− cos θ

ξa1...an

rn
∂̂n−1
t∗

[
F (t− r)

r

]
+O(δ2). (2.12)

[−1]
{[

F (t− r)
r

]

,<Al>

}
=

l∑
p=0

p∑
q=0

(−1)p−qCl(l − p, p− q, q)× (2.13)

k<a1...ap ∂̂ap+1...al>∂̂
p−q
t∗ ∂̂qτ

[−1][F (t− r)
r

]
=

(−1)l

1− cos θ
[N<Al> − k<Al>]∂̂l−1

t∗
F (t− r)

r
+ (−1)lk<Al>∂̂

l
t∗

[−1][F (t− r)
r

]
+O(δλ) =

1

1− cos θ

[
(−1)F (t− r)

r

]

,<Al>

− (−1)l

1− cos θ
k<Al>∂̂

l−1
t∗

F (t− r)
r

+

(−1)lk<Al>∂̂
l
t∗

[−1][F (t− r)
r

]
+O(δλ),

where N i = xi/r. The last expression can be proved by induction. The ex-

pressions for functions taken at the instant of time (t0 − r0) can be obtained by

substitution t0, r0 and θ0 instead of t, r and θ respectively. Finally, the vector ξi

can be represented as follows:

ξi = r
(
N i − ki cos θ

)
. (2.14)
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2.2 Asymptotic expressions for observable effects.

In this section we give the expressions for the relativistic effects of time delay

bending of light and rotation of the polarization plane in the approximation

under consideration. We neglect all terms of order δ2, δ2
0 and δ2

λ.

The expression for time delay can be written as

∆ = ∆
(M)

(τ, τ0) + ∆
(S)

(τ, τ0) , (2.15)

where

∆
(M)

(τ, τ0) =2MR

r
+

2kij
1− cos θ

∞∑

l=2

(−1)l

l!





[
İijAl−2

(t− r)
r

]TT

,Al−2

(2.16)

−
[
İijAl−2

(t0 − r0)

r0

]TT

,Al−2



 ,

∆
(S)

(τ, τ0) =− 2
εibakiξaSb
1− cos θ

(
1

r
− 1

r0

)
(2.17)

− 4kij
1− cos θ

∞∑

l=2

(−1)ll

(l + 1)!





[
εba(iṠj)bAl−2

(t− r)
r

]TT

,aAl−2

−
[
εba(iṠj)bAl−2

(t0 − r0)

r0

]TT

,aAl−2



 .

Here the transverse-traceless part of the multipole moments tensors is taken with

respect to the direction N i. Taking into account the expressions (1.5), Ch. 2,

for metric perturbations hij we can rewrite (2.15) – (2.17) as follows:

∆ = ∆
(M)

(τ, τ0) + ∆
(S)

(τ, τ0) = 2MR

r
− 2

εibakiξaSb
1− cos θ

(
1

r
− 1

r0

)
(2.18)

− 1

2

kij
1− cos θ

(
(−1)hTTij (t− r)− (−1)hTTij (t0 − r0)

)
.

In a similar way we obtain the expressions for the observable direction towards

the source of light from the point of observation:

si (τ, ξ) = Ki + αi (τ, ξ) + γi (τ, ξ) , (2.19)
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where

αi (τ, ξ) =
1

2

kpq
1− cos θ

[
(cos θ − 2)ki +N i

]
hTTpq (t− r) + kqhTTip (t− r), (2.20)

γi (τ, ξ) =− 1

2
P ijkqhTTjq (t,x), (2.21)

and we neglected the corrections βi (τ, ξ) and βi (τ0, ξ0).

The expressions (2.18) - (2.20) were obtained in [25] in the spin-dipole mass-

quadrupole approximation. We have generalized the result of [25] for the case

when the source possesses multipole moments of arbitrary order.

In the case when the distance between the observer and the source of light

is much smaller than the wavelength of the gravitational radiation R � λ the

expression (2.18) deduces to a well known result

∆R

R
=

1

2
kijh

TT
ij (t− r) +O(δ2) +O

(
R

λ

)
, (2.22)

where ∆R = c∆ (τ, τ0).

For the angle of rotation of the polarization plane, in agreement with [29],

we obtain

φ(τ)− φ(τ0) =
1

2

(k×N)ikj

1− k ·N hTTij (t− r)− 1

2

(k×N0)ikj

1− k ·N0

hTTij (t0 − r0). (2.23)

The metric perturbations hij in this expression depend on multipole moments of

all orders. Thus (2.23) generalizes the result of [29], where the effect is calculated

in spin-dipole, mass-quadrupole approximation.
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Chapter 7

Summary and Conclusions

We obtained analytical expressions for trajectory of light rays (Eqns. (2.7)-(2.11)

of Ch. 4) in the time-dependent gravitational field of a localized source possessing

full multipole structure and corresponding analytical expressions for relativistic

effects of time delay, bending of light and rotation of the polarization plane (Ch.

4 and 5).

We showed that in the gravitational-lens approximation the leading time-

dependent contributions to the effects of time delay and deflection of light fall

off with the impact parameter as 1/d2 and 1/d3 respectively for contributions

due to multipole moments of all orders. Such strong dependence on the impact

parameter makes observation of time-dependent effects in gravitational lensing

much more difficult. Also it is likely, but was not proven by a calculation, that

the wave-like 1/r and the intermediate-zone 1/r2 fields do not contribute to the

leading-order terms in the observable effects of time delay and deflection of light.

This result would be in line with previous research, since in the considered con-

figuration the effects due to gravitational radiation are expected to be negligible

because of the transverse nature of gravitational waves [14, 23, 29].

We also obtained the expressions for observable effects of bending of light,

time delay and rotation of the polarization plane in the field of a plane gravita-

tional wave of arbitrary multipolarity.
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Appendix A

The Metric Tensor in Terms of
the Light-Ray Variables ξ and τ

The expressions for perturbations of the metric tensor (1.2) – (1.5), Ch. 2 in

variables ξ and τ have the following form

hcan.
00 =

2M
r

+ 2
∞∑

l=2

l∑
p=0

p∑
q=0

h
(M)

lpq
00 (t∗, τ, ξ) , (0.1)

hcan.
0i =− 2εibaSbNa

r2
+ 4

∞∑

l=2

l−1∑
p=0

p∑
q=0

[
h
(S)

lpq
0i (t∗, τ, ξ) + h

(M)

lpq
0i (t∗, τ, ξ)

]
, (0.2)

hcan.
ij =δijh

can.
00 + qcan.

ij , (0.3)

qcan.
ij =4

∞∑

l=2

l−2∑
p=0

p∑
q=0

q
(M)

lpq
ij (t∗, τ, ξ)− 8

∞∑

l=2

l−2∑
p=0

p∑
q=0

q
(S)

lpq
ij (t∗, τ, ξ) , (0.4)
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where

h
(M)

lpq
00 (t∗, τ, ξ) =

(−1)l+p−q

l!
Cl(l − p, p− q, q) (0.5)

k<a1...ap ∂̂ap+1...al>∂̂
q
τ

[
I(p−q)
Al

(t− r)
r

]
,

h
(M)

lpq
0i (t∗, τ, ξ) =

(−1)l+p−q

l!
Cl−1(l − p− 1, p− q, q) (0.6)

k<a1...ap ∂̂ap+1...al−1>∂̂
q
τ

[
I(p−q+1)
iAl−1

(t− r)
r

]
,

h
(S)

lpq
0i (t∗, τ, ξ) =

(−1)l+p−q l
(l + 1)!

Cl−1(l − p− 1, p− q, q) (0.7)

(∂̂a + ka∂̂τ − ka∂̂t∗)k<a1...ap ∂̂ap+1...al−1>∂̂
q
τ

[
εiabS(p−q)

bAl−1
(t− r)

r

]
,

q
(M)

lpq
ij (t∗, τ, ξ) =

(−1)l+p−q

l!
Cl−2(l − p− 2, p− q, q) (0.8)

k<a1...ap ∂̂ap+1...al−2>∂̂
q
τ

[
I(p−q+2)
ijAl−2

(t− r)
r

]
,

q
(S)

lpq
ij (t∗, τ, ξ) =

(−1)l+p−ql
(l + 1)!

Cl−2(l − p− 2, p− q, q) (0.9)

(∂̂a + ka∂̂τ − ka∂̂t∗)k<a1...ap ∂̂ap+1...al−2>∂̂
q
τ

[
εba(iS(p−q+1)

j)bAl−2
(t− r)

r

]
.

All quantities in the right side of expressions (0.5)–(0.9), which are explicitly

shown as functions of xi, r = |x| and t, must be understood as taken on the

unperturbed light-ray trajectory and expressed in terms of ξi, d = |ξ|, τ and

t∗ in accordance with the equations (1.2), (1.4), Ch. 4. For example, the ratio

I(p−q)
Al

(t− r)/r in equation (0.5) must be understood as

I(p−q)
Al

(t− r)
r

≡ I
(p−q)
Al

(t∗ + τ −√τ 2 + d2)√
τ 2 + d2

, (0.10)

and the same replacement rule applies to the other equations.
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Appendix B

Gauge Functions

Gauge functions wα generating the coordinate transformation from the canonical

harmonic coordinate system to the ADM-harmonic are given by the equations

(3.3), (3.4), Ch. 2. They transform the metric tensor as follows

hcan.
αβ = hαβ − ∂αwβ − ∂βwα , (0.1)

where hcan.
αβ is the canonical form of the metric tensor in harmonic coordinates

given by equations (1.2)–(1.5), Ch. 2 and hαβ is the metric tensor given in the

ADM-harmonic coordinates by equations (3.5)–(3.8), Ch. 2.

The gauge functions taken on the light-ray trajectory and expressed in terms

of the variables ξi and τ can be written in the form

w0 =
∞∑

l=2

l∑
p=0

p∑
q=0

∫ τ+t∗

−∞
du h

(M)

lpq
00 (u, τ, ξ), (0.2)

wi = (∂̂i + ki∂̂τ − ki∂̂t∗)
∞∑

l=2

l∑
p=0

p∑
q=0

∫ τ+t∗

−∞
dv

∫ v

−∞
du h

(M)

lpq
00 (u, τ, ξ) (0.3)

−4
∞∑

l=2

l−1∑
p=0

p∑
q=0

∫ τ+t∗

−∞
du

[
h

(M)

lpq
0i (u, τ, ξ) + h

(S)

lpq
0i (u, τ, ξ)

]
,

where h
(M)

lpq
00 (u, τ, ξ), h

(M)

lpq
0i (u, τ, ξ) and h

(S)

lpq
0i (u, τ, ξ) are defined by the Eqns. (0.5),

(0.6), App. A and (0.7) after making use of the substitution t∗ → u.
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Linear combination kiϕ0−ϕi of the gauge-dependent functions ϕα, introduced

in equation (2.4), Ch. 4, is given by the expressions

kiϕ0 − ϕi = (kiϕ0
(M) − ϕi(M)) + (kiϕ0

(S) − ϕi(S)) , (0.4)

kiϕ0
(M) − ϕi(M) = 2∂̂i

∞∑

l=2

l∑
p=2

p∑
q=2

(−1)l+p−q

l!
Cl(l − p, p− q, q)× (0.5)

(
1− p− q

l

)(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al>∂̂

q−2
τ

[
I(p−q)
Al

(t− r)
r

]
+

2
∞∑

l=2

l∑
p=1

p∑
q=1

(−1)l+p−q

l!
Cl(l − p, p− q, q)×

(
1− p− q

l

){(
1 +

p− q
l − 1

)
ki<a1...ap ∂̂ap+1...al>∂̂

q−1
τ

[
I(p−q)
Al

(t− r)
r

]
−

2
p− q
l − 1

k<a1...ap−1 ∂̂ap...al−1>∂̂
q−1
τ

[
I(p−q)
iAl−1

(t− r)
r

]}
,
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kiϕ0
(S) − ϕi(S) =2

εiabk
aSb
r

+ (0.6)

4kj ∂̂ia

∞∑

l=3

l−1∑
p=2

p∑
q=2

(−1)l+p−q l
(l + 1)!

Cl−1 (l − p− 1, p− q, q)×

(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al−1>∂̂

q−2
τ

[
εjabS(p−q)

bAl−1
(t− r)

r

]
−

4
(
∂̂a − ka∂̂t∗

) ∞∑

l=2

l−1∑
p=1

p∑
q=1

(−1)l+p−ql
(l + 1)!

Cl−1 (l − p− 1, p− q, q)×

(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al−1>∂̂

q−1
τ

[
εiabS(p−q)

bAl−1
(t− r)

r

]
−

4ka

∞∑

l=2

l−1∑
p=0

p∑
q=0

(−1)l+p−ql
(l + 1)!

Cl−1 (l − p− 1, p− q, q)×

(
1− p− q

l − 1

)
k<a1...ap ∂̂ap+1...al−1>∂̂

q
τ

[
εiabS(p−q)

bAl−1
(t− r)

r

]
+

4kj

∞∑

l=2

l−1∑
p=1

p∑
q=1

(−1)l+p−ql
(l + 1)!

Cl−1 (l − p− 1, p− q, q)×

k<a1...ap ∂̂ap+1...al−1>∂̂
q−1
τ


εjbal−1

S(p−q+1)

îbAl−2
(t− r)

r




Gauge-dependent term generated by equation (3.3), Ch. 4, for the rotation of

the plane of polarization of electromagnetic wave is a pure spatial vector χi

that can be decomposed in two linear parts corresponding to the mass and spin

multipoles:

χi = χi(M) + χi(S) , (0.7)
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where

χi(M) =4
∞∑

l=2

l−1∑
p=1

p∑
q=1

(−1)l+p−q

l!
Cl−1(l − p− 1, p− q, q)

(
1− p− q

l − 1

)
(0.8)

× k<a1...ap ∂̂ap+1...al−1>∂̂
q−1
τ

[
I(p−q+1)
iAl−1

(t− r)
r

]
,

χi(S) =− 4
∞∑

l=1

l−1∑
p=0

p∑
q=0

(−1)l+p−ql
(l + 1)!

Cl−1(l − p− 1, p− q, q) (0.9)

×
[
1− p− q

l − 1
H(l − 1)

] [
H(q)(∂̂a − ka∂̂t∗) + ka∂̂τ

]

× k<a1...ap ∂̂ap+1...al−1>∂̂
q−1
τ

[
εibaS(p−q)

bAl−1
(t− r)

r

]

+ 4
∞∑

l=3

l−1∑
p=1

p∑
q=1

(−1)l+p−ql
(l + 1)!

Cl−1(l − p− 1, p− q, q)
(

1− p

l

)(
1− q

p

)

× k<a1...ap ∂̂ap+1...al−1>a∂̂
q−1
τ

[
εbaal−1

S(p−q)
ibAl−2

(t− r)
r

]
.

62



Bibliography

[1] Einstein, A., 1915, ”Erklärung der Perihelbewegung des Merkur aus der all-

gemeinen Relativitätstheorie,” Sitzungber. Preuß. Akad. Wissensch., erster

Halbband, p.831

[2] Shapiro I. I., 1964, Phys.Rev. Lett. 13, 789

[3] Bertotti, B., Iess, L., and Tortora, P., September 2003, Nature, 425, 374

[4] Shapiro, S.S., Davis, J.L., Lebach, D.E., and Gregory, J.S., 2004, Phys. Rev.

Lett., 92, 121101

[5] Will, C. M., 1993, Theory and Experiment in Gravitational Physics (Cam-

bridge University Press: Cambridge)

[6] Will, C. M., ”The Confrontation between General Relativity and Experi-

ment”, Living Rev. Relativity 9, 2006, 3. URL (cited on July 22, 2007):

http://www.livingreviews.org/lrr-2006-3

[7] Kopeikin, S. M., 2001, Astrophys. J. Lett. 556, L1

[8] Fomalont, E. B. and Kopeikin, S. M., 2003, Astrophys. J. 598, 704

[9] Cutler, C., Lindblom, L., 1996, Phys. Rev. D 54, 1287

[10] Laser Interferometer Space Antenna, URL (cited on July 22)

(http://lisa.nasa.gov/)

63



[11] Thorne, K.S., Gravitational waves, in Kolb, E.W., and Peccei, R., eds.,

Particle and Nuclear Astrophysics and Cosmology in the Next Millennium,

Proceedings of the 1994 Snowmass Summer Study, Snowmass, Colorado,

June 29 - July 14, 1994, 160-184, (World Scientific, Singapore; River Edge,

U.S.A., 1995).

[12] Laser Interferometer Gravitational Wave Observatory, URL (cited on July

22, 2007), http://www.ligo.caltech.edu/

[13] A Gravitational Waves Antenna VIRGO, URL (cited on July 22, 2007),

http://www.virgo.infn.it/

[14] Zipoy, D.M., 1966, Phys. Rev. 142, 825

[15] Zipoy, D. M., Bertotti, B., 1968, Nuov. Cim. 56B, 195

[16] Bertotti, B., Trevese, D., 1972, Nuov. Cim. 7B, 240

[17] Sazhin M.V., 1978, Sov. Astron., 22, 36

[18] Sazhin, M.V., Saphonova, M.V., 1993, Astron. Astrophys. Space Sci., 208,

93

[19] Labeyrie, A., 1993, A&A, 268, 823

[20] Fakir, R., 1994, Astrophys. J., 426, 74

[21] Fakir, R., 1994, Phys. Rev. D , 50, 3795

[22] Durrer, R. 1994, Phys. Rev. Lett., 72, 3301
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