DNA METHYLATION IN THE EARLY PORCINE EMBRYO

A Dissertation

presented to

the Faculty of the Graduate School

University of Missouri-Columbia

In Partial Fulfillment For the Degree

Doctor of Philosophy

by

AARON JAMES BONK

Dr. Randall S. Prather, Dissertation Supervisor

May 2007

The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled

DNA METHYLATION IN THE EARLY PORCINE EMBRYO

presented by Aaron J. Bonk,

a candidate for the degree of Doctor of Philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Randall S. Prather

Dr. Dennis Lubahn

Dr. Peter Sutovsky

Dr. Edmund B. Rucker III

Dr. Jon Green

ACKNOWLEDGEMENTS

I would like to thank Dr. Randy Prather for his intellectual, creative, and financial support through my years of working in his laboratory. In addition, I would like to acknowledge my appreciation for Dr. Prather's apparently endless patience without which project would not have been possible. I would also like to thank my committee members Dr. Jon Green, Dr. Peter Sutovsky, Dr. Edmund Rucker III, and Dr. Dennis Lubahn for their advice and guidance in this endeavor.

Immeasurable assistance has been supplied by my colleagues who made this work possible. The surgical expertise and general wisdom of Dr. Clifton Murphy were invaluable in completing this project. Somatic cell nuclear transfer blastocysts were produced by Dr. RongFeng Li, Dr. Liu, Dr. Hae-Tee Cheong, Dr. Im, and Dr. Laingxiue Lai. Dr. Kevin Day provided technical assistance regarding array technology in the early stages of this project. Microarray construction and analysis expertise was provided by Dr. Eric Antoniou. Bisulfite analysis was made possible with the dedicated assistance of Emily Fergason. Assistance with statistical analysis was provided by Dr. Bill Lamberson and Jin-Geol Kim. Technical and laboratory support was generously provided by Melissa Samuels, Kristin Whitworth, David Wax, Dr. Cansu Agca, Lisa Overman, and Lee Spate. Animal breeding and care was provided by August Rieke.

Finally, I would like to thank my wife Jennifer and my children Anna, Ava, and Henry for their understanding in the time and effort required to complete this project.

ii

DNA METHYLATION IN THE EARLY PORCINE EMBRYO

Aaron James Bonk

Dr. Randall S. Prather, Dissertation Supervisor

ABSTRACT

Reproductive technologies such as *in vitro* fertilization, intracytoplasmic sperm injection, parthenogenetic activation, and somatic cell nuclear transfer are powerful procedures in the production of animals for agriculture, basic research, and biomedical research. Research using these techniques has produced important insights into the basic mechanisms of gametogenesis, embryogenesis, and fetal development. Unfortunately, the production of live animals by using these *in vitro* technologies is very inefficient. One component contributing to this inefficiency is *in vitro* oocyte maturation and *in vitro* culture of early embryos and donor cells for somatic cell nuclear transfer has been shown to have detrimental effects on the epigenetic factor of cytosine methylation in cytosine-guanine dinucleotides. The purpose of this research is to study the dynamics of DNA methylation in porcine gametes, clonal cell lines, adult somatic cells, and early embryos produced by using *in vivo*, *in vitro*, parthenogenetic, and somatic cell nuclear transfer procedures. Differential Methylation Hybridization microarrays were used to study DNA methylation of the aforementioned groups. Bisulfite sequencing was used to confirm the microarray

iii

results. Additionally, the potential of the donor cells to direct development to the blastocyst stage was analyzed.

The CpG methylation remodeling that occurs in the development of the *in vivo* derived blastocyst does not occur in blastocysts produced by using *in vitro* techniques such as parthenogenesis, NT, and *in vitro* fertilization. Specifically, the methylation events that occur in the development of parthenogenetic and nuclear transfer blastocysts are more similar to the *in vivo*-produced blastocysts than the methylation remodeling events in the *in vitro*-produced blastocysts. These results suggest that the *in vitro*-matured oocytes used to produce embryos derived from *in vitro* fertilization, parthenogenesis, and somatic cell nuclear transfer are not capable of epigenetic remodeling required to direct the development of the early embryo.

The developmental potential and methylation profiles were analyzed in cultured clonal cells derived from primary preparations of porcine fetal fibroblast-like cells and for donor cells selected from kidney and mammary cells that were not cultured prior to somatic cell nuclear transfer. The methylation profiles of these donor cells were determined by using Differential Methylation Hybridization microarrays. A wide range of developmental potential was observed for donor cells regardless of whether the cells were in extended culture. Overall, similarities of the donor cell methylation profiles and the methylation profiles of the *in vivo*-derived embryos were inversely correlated to developmental potential. Specifically, donor cells from kidney tissues were found to have methylation profiles with the highest similarity to *in vivo*derived embryos and the blastocyst rate following nuclear transfer was found to result

iv

in the lowest blastocyst rate of all the donor cells. Conversely, the methylation profiles of the small mammary cells and the clonal cell lines A7 and A8 were found to be the most dissimilar to the in vivo blastocyst, yet these donor cells resulted in the highest rates of blastocyst development. The epigenetic condition of some donor cells is resistant to the detrimental effects of extended culture on donor cells, and there are subpopulations in somatic cells that show variable resistance to epigenetic remodeling following nuclear transfer.

In conclusion, these studies indicate aberrant epigenetic remodeling is a factor in the low efficiency of *in vitro* techniques of reproductive technologies. A surprising result of these studies is that methylation profiles of blastocysts produced by using somatic cell nuclear transfer and parthenogenesis are similar to that of *in vivo*produced blastocysts. An additional unexpected result was that donor cells with methylation profiles with the highest similarity to *in vivo*-produced blastocysts were found to have the lowest blastocyst rate. These results suggest that suboptimal *in vitro* maturation conditions of oocytes are important factors in the low development of embryos produced by using techniques such as *in vitro* fertilization, intracytoplasmic sperm injection, parthenogenetic activation, and somatic cell nuclear transfer. An extension of this rationale is that the methylation profiles of *in vivo*-matured oocytes or very early *in vivo*-produced embryos may be the optimal target for the methylation profile of donor cells that are capable of efficiently directing embryonic development after nuclear transfer.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii

CHAPTER

Ι	INTRODUCTION	1
II	REVIEW OF THE LITERATURE	2
	DNA Methylation and Genomic Organization	3
	Methods to Determine Methylation Status	5
	DNA Methyltransferases	8
	DNA Demethylation	9
	DNA Methylation and Transcription	10
	DNA Methylation and Imprinting	11
	DNA Methylation and Development	12
	Effects of In Vitro Culture on DNA Methylation	15
	DNA Methylation and Somatic Cell Nuclear Transfer Derived Embryos	.17
	Summary and Research Directions	22

III	ABERRANT DNA METHYLATION IN PORCINE <i>IN VITRO-</i> , PARTHENOGENETIC-, AND NUCLEAR TRANSFER- PRODUCED BLASTOCYSTS	
	Abstract	36
	Introduction	37
	Materials and Methods	40
	Results	51
	Discussion	56
IV	CORRELATION OF DEVELOPMENTAL DIFFERENCES TO THE METHYLATION PROFILES OF NUCLEAR TRANSFER DONOR CELLS	
	Abstract	103
	Introduction	104
	Materials and Methods	106
	Results	115
	Discussion	119
V.	Summary	138
APPE	NDIX	141
BIBLI	IOGRAPHY	310
VITA		

LIST OF FIGURES

Figure		Page
2.1	Addition of methyl groups to the carbon 5 of cytosine of the CpG dinucleotide	26
2.2	Repression of transcription mediated by CpG methylation	27
2.3	Maternal and paternal methylation in murine germ cells, zygote, and early embryo	35
3.1	Methylation profiles of porcine sperm (Sp), germinal vesicle oocytes (Oo), parthenogenetic- (P), nuclear transfer- (N), <i>in vitro</i> - (VT), and <i>in vivo</i> -(VV) produced blastocysts generated by using PDMH analysis	67
3.2	Methylation status of the Clone HH A7 in the liver (A), sperm (B), and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	69
3.3	Methylation status of the Clone WW G4 in the liver (A), sperm (Band <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	70
3.4	Methylation status of the Clone X G2 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	71
3.5	Methylation status of the Clone B G2 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	72
3.6	Methylation status of <i>in vivo</i> -produced embryos measured by using microarray and bisulfite sequencing analysis.	74
3.7	Methylation status of sperm measured by microarray and bisulfite sequencing analysis	75

3.8	Methylation status of the Clone CC C1 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing	76
3.9	Methylation status of the Clone EE A11 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing	77
3.10	Methylation status of the Clone EEE D4 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing	78
3.11	Methylation status of the Clone K D3 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing	79
3.12	Methylation status of the Clone L E8 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	80
3.13	Methylation status of the Clone L E8 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	81
3.14	Methylation status of the Clone O D10 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	82
3.15	Methylation status of the Clone QQ E4 in the liver (A), sperm (B) and <i>in vivo</i> -produced blastocyst (C) detected by using bisulfite sequencing.	83
3.16	Bisulfite sequencing and BLAST analysis of WW G4 (myeloid leukemia factor 1)	85
3.17	Methylation profile of CPG WW G4 (myeloid leukemia factor 1) measured by using DMH microarrays	86
3.18	Spots grouped by similarity in the methylation status in the sperm, GV oocyte and blastocysts by using Self Organizing Map Analysis.	87

3.19	Sperm, GV oocytes, and <i>in vitro</i> -produced blastocysts had the highest similarity to each other by using hierarchical clustering analysis	99
3.20	BLAST analysis identified multiple sequences as similar to sequence from the clone QQ A61	00
4.1	Clonal cell lines cultured (A2-A8) and trypsinized (A2'A8')12	4
4.2	Somatic donor cells from mammary (A) and kidney (B) tissues1	25
4.3	Hierarchical clustering of the methylation profiles of the clonal donor cells (A2, A7, and A8,), somatic cells (kidney (K), Mammary-Large (ML), and Mammary-Small (MS)), and <i>in vivo</i> -produced1	29
4.4	Methylation status of the Clone B G2 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing	30
4.5	Methylation status of the Clone HH A7 in the liver (A) and clonal cell line A7 (B) detected by using bisulfite sequencing	31
4.6	Methylation status of the Clone K D3 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing	32
4.7	Methylation status of the Clone S E3 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing.	33
4.8	Methylation status of the Clone X G2 in the liver (A) and clonal cell line A7 (B) detected by using bisulfite sequencing	34
4.9	Methylation status of CpG sites of five regions were analyzed by using PDMH microarrays and bisulfite modification PCR sequencing13	36

4.10	Clones with similar methylation profiles in the donor cells and the <i>in vivo</i> blastocysts were clustered by using Self-Organizing Map analysis	137
A.1	Self Organizing Map analysis of the significantly different (P<0.05) spots (n=1532) in the methylation profiles of sperm, GV oocyte and blastocysts. Hierarchical clustering using the Pearson Centered metric in the TIGR Multiple Array Viewer	295
A.2	Bootstrap analysis with replacement after 1000 iterations by using spots that were significantly different (P<0.01) using the Pearson Correlation metric in the TIGR Multiple Array Viewer	303
A.3	Hierarchical support tree including bootstrap analysis with replacement after 1000 iterations by using spots that were significantly different (P<0.01) between the donor cells and <i>in vivo</i> -produced blastocysts.	304
A.4	Clones with similar methylation profiles in the donor cells and the <i>in vivo</i> -produced blastocysts were clustered by using Self Organizing Map analysis	305

LIST OF TABLES

Table		Page
2.1	DNA methyltransferases	25
2.2	Imprinted human and mouse genes	
2.3	Imprinted genes in the pig	
3.1	Bisulfite modification specific primers	66
3.2	Microarray reference/sample ratios±standard error of microarray clones identifies the methylation status of the selected clones	68
3.3	Methylation status of B G2, HH A7, WW G4, and X G2 for <i>in vivo</i> -produced blastocysts analyzed by using microarray and bisulfite sequencing analysis	
3.4	Minimal methylation was detected by using bisulfite sequen in 8 of the 12 clones selected for bisulfite sequencing	-
3.5	BLAST analysis of spots that were hypermethylated in the <i>in vivo</i> -produced blastocysts relative to the liver	
3.6	BLAST analysis of spots that were hypermethylated in the <i>in vivo</i> -produced blastocysts relative to the liver	94
3.7	Differential methylation in sperm and oocytes samples as measured by using PDMH microarray analysis.	101
3.8	Differential methylation in the <i>in vivo</i> -produced blastocyst, and GV oocyte as measured by using PDMH microarray an	1
4.1	Bisulfite modification specific primers	126
4.2	<i>In vitro</i> development of SCNT-produced embryos derived fi porcine fetal fibroblast-like clonal cell lines.	
4.3	<i>In vitro</i> development of SCNT-produced embryos derived f porcine adult mammary and kidney tissue	

4.4	Methylation status of CpG sites of five regions were analyzed by using PDMH microarrays and bisulfite modification PCR Sequencing.	.135
A.1	PDMH analysis identified spots (n=921) with significant differences (P< 0.01) in the methylation in the gametes and blastocysts.	141
A.2	Sequenced clones exhibiting similar methylation profiles in the gametes and blastocysts as determined by Self Organizing Map analysis	.296
A.3	Sequenced clones exhibiting similar methylation profiles in the gametes and blastocysts as determined by Self Organizing Map analysis	306

LIST OF ABBREVIATIONS

AI	Artificial Insemination
ANOVA	Analysis of Variance
BSA	Bovine Serum Albumin
BWS	Beckwith-Weidman Syndrome
COBRA	Combined Bisulfite Restriction Analysis
COC	Cumulus Oocyte Complex
DMEM	Dubelcco's Modified Eagle Medium
DMH	Differential Methylation Hybridization
DNMT	DNA methyltransferase
DTT	Dithiothreitol
EGF	Epidermal Growth Factor

ESC	Embryonic Stem Cells
FCS	Fetal Calf Serum
FSH	Follicle Stimulating Hormone
GV	Germinal Vesicle
HBSS	Hank's Balanced Salt Solution
IAP	Intracisternal A Particles
ICM	Inner Cell Mass
ISCNT	Interspecies Somatic Cell Nuclear Transfer
IVM	In Vitro-Matured
LH	Lutenizing Hormone
MS-PCR	Methylation Specific-Polymerase Chain Reaction
mSOF	Modified Synthetic Oviduct Fluid
mTBM	Modified Tris-buffered Medium
LOS	Large Offspring Syndrome
NHP	Non-Human Primates
PBS	Phosphate Buffered Saline
PCGIL	Porcine CpG Island Library
PDMH	Porcine Differential Methylation Hybridization
PFF	Porcine Fetal Fibroblast-like
PCR	Polymerase Chain Reaction
PGC	
	Primordial Germ Cell

RT	Room Temperature
SAM	S-Adenosyl-Methionine
SCNT	Somatic Cell Nuclear Transfer
SDS	Sodium Dodecyl Sulfate
STE	Sodium Chloride/Tris/EDTA
TCM199	Tissue Culture Medium 199
TE	Trophectoderm
ZP	Zona Pellucida

CHAPTER I

INTRODUCTION

Chromatin structure and gene expression are affected by the epigenetic modification of cytosine methylation at the dinucleotide pair of cytosine and guanosine. Hypermethylation of CpG dinucleotides often occurs at regions of heterochromatin. Also, hypermethylation of the promoter and first exon of genes can occur in a tissue specific manner resulting in differential gene expression. The tissue specific methylation is thought to be partially responsible for the morphological differences in the various cells and tissues of the adult body. A global demethylation event of the maternal and paternal genomes occurs immediately after fertilization and continues through the blastocyst stage. In the mouse, remethylation or reprogramming of the genome occurs around the time of implantation and is maintained in somatic tissues. These tissue-dependent and differentially methylated regions are also an important epigenetic mechanism of differentiation from the single cell type of the early embryo's inner cell mass to the numerous somatic cell types which comprise the adult organism. The purpose of this research is to study the dynamics of DNA methylation in porcine gametes and early embryos produced by using *in vivo*, *in vitro*, parthenogenetic, and somatic cell nuclear transfer procedures. Our hypothesis is that the methylation profiles of *in vitro*-produced blastocysts will be more similar to the methylation profile of in vivo-produced blastocysts than to the methylation profiles of

blastocysts produced by parthenogenesis or somatic cell nuclear transfer. An additional purpose of this research is to assess the methylation status of clonal cell lines and adult somatic cells with respect to developmental potential following nuclear transfer. Our hypothesis is that the donor cells with the highest blastocyst rates after somatic cell nuclear transfer will have methylation profiles that are more similar to the methylation profiles of the *in vivo*-produced blastocysts compared to the methylation profiles of the donor cells with the lowest blastocyst rates after somatic cell nuclear transfer.

CHAPTER II

REVIEW OF THE LITERATURE

Nucleic acid methylation can be found in higher plants, fungi, bacteria, and mammals with the methylation of different sites indicative of differences in the functional role of methylation in each of the groups. Bacterial DNA methylation occurs primarily at adenine and cytosine and acts to prevent endonucleases from cleaving endogenous DNA. Conversely, bacterial endonucleases cleave exogenous bacterial and viral DNA that does not have the methylation patterns at the adenine and cytosine nucleotides. In eukaryote species, DNA methylation is primarily found at the CpG dinucleotide. CpG methylation has generally been thought to be a mechanism for transcriptional regulation (Bird, 2002). Examples of this include genomic imprinting and X chromosome inactivation (Li, 2002). Recently, DNA methylation has been shown to have a role in tissue specific expression (Futscher et al., 2002) thereby demonstrating a mechanism for programming the epigenome in a manner specific to the cell type. Specifically, hypermethylation of the promoter region of the autosomal gene SERPINB5 was correlated with down-regulated expression in bone marrow, liver, kidney, heart, skin fibroblasts, and lymphocytes. Conversely, hypomethylation correlated with up-regulated expression in airway epithelium, mammary epithelium, skin keratinocytes, oral keratinocytes, and prostate keratinocytes. Methylation of DNA is the prominent type of epigenetic marking. Epigenetic reprogramming is an inheritable modification that has a substantial effect on development but that does not result from a change in the DNA sequence (Russo et al., 1996).

DNA Methylation and Genomic Organization

The CpG dinucleotides are not randomly distributed in the genome. Instead CpG dinucleotides are found at a much lower frequency than expected. In part this is due to the spontaneous deamination of methylated cytosines to thymine while unmethylated cytosines are transformed into uracil (Jones and Baylin, 2002). A substitution reaction occurs when uracil is recognized as an extraneous base. Thymine is recognized as a common base and a substitution does not occur. Both of these reactions decrease the frequency of the cPg dinucleotides in the genome.

The CpG dinucleotides are found in normal numbers in areas called CpG islands (Antequera, 2003). The original criteria for a CpG Island was that a DNA sequence must be longer than 200 base pairs and must have a G+C content \geq 50% and a CpG observed/expected (o/e) ratio ≥ 0.6 (Gardiner-Garden and Frommer, 1987). Recently, more stringent criteria was developed for regions of DNA greater than 500 bp where the G+C content and CpG o/e ratio were increased to 55% and 0.65, respectively (Takai and Jones, 2002). This alternative criterion was implemented to exclude Alu repeats. Please note that the o/e CpG ratio of less than one seems to be counterintuitive since CpG islands are thought to be regions with a high concentration of CpG dinucleotides. The expected occurrence of CpG islands is based on the random occurrence of CpG dinucleotides. The actual number of CpG dinucleotides was shown to be 0.83% in mouse genome sequences (Zhao and Zhang, 2006) instead of the expected frequency of 6.25% (1/16). Conversely, the frequency of CpG dinucleotides was shown to be 6.89% in CpG islands. Accordingly, the Takai and Jones (2002) criteria for o/e CpG ratio ≥ 0.65 in CpG islands would include regions where the frequency of CpG dinucleotides is greater than 4.0625% (i.e. 6.25% x 0.65 =4.0625%).

The CpG islands are generally located in the promoter region of housekeeping genes and in the first exon (Bird, 2002; Wang and Leung, 2004). Genes associated with CpG islands are generally found to be transcriptionally active when the CpG islands are unmethylated and transcriptionally inactive when the CpG islands are methylated (Roberson et al., 2002).

Methods to Determine Methylation Status

Early techniques to identify CpG methylation involved the use of methylation sensitive restriction enzymes and Southern blotting (Bird and Southern, 1978) or methylation sensitive restriction enzymes and PCR mediated by using ligated adaptors (Singer-Sam et al., 1990a; Singer-Sam et al., 1990b). Restriction landmark genomic scanning (RLGS) is a technique by which global CpG methylation is analyzed by using two-dimensional gel electrophoresis and methylation sensitive restriction enzymes (Plass et al., 1999; Costello et al., 2000; Kremenskoy et al., 2003). Each RLGS can display up to 2,000 end-labeled rare cutting restriction sites. The resulting RLGS spots can be cloned and sequenced by using standard procedures (Costello et al., 1997).

Current technologies for determining DNA methylation have primarily taken advantage of the ability of sodium bisulfite to deaminate unmethylated cytosines to create uracil (Frommer et al., 1992). The nascently created uracils are then represented as thymidines in subsequent PCR amplifications. Bisulfite does not react with 5-methyl cytosine (Wang et al., 1980). Methylation specific PCR (MS-PCR) utilizes primers designed specifically for bisulfite treated and untreated DNA. An extension of this approach, combined bisulfite restriction analysis (COBRA), involves the addition of endonuclease restriction digestion at a recognition site that includes CpG dinucleotides of the PCR amplification product. The aforementioned techniques are capable of identifying changes in methylation status at a limited number of CpG sites. Specifically, only the methylation status of the CpG sites at the primers or in the restriction endonuclease recognition sites are analyzed.

Bisulfite treatment combined with sequencing identifies the methylation status at any CpG dinucleotides that are between primers that flank the region of interest. The most common application of this approach is to treat the DNA with sodium bisulfite, create a plasmid library, and sequence individual clones from the library. The methylation status of every CpG site present in the cloned amplicon can be determined. While this approach provides a measure of the methylation at each CpG dinucleotide, it is a very labor intensive procedure. Pyrophosphate sequencing is a procedure whereby the methylation status of CpG dinucleotides is identified as the nascent DNA strand is extended (Ronaghi, 2001). Briefly, DNA is treated with sodium bisulfite to convert unmethylated cytosines to thymidines in subsequent sequencing reactions. A biotinvlated primer is designed to anneal to a particular strand thereby allowing for the isolation of only that strand by using a streptavidin column. The DNA is extended by using a DNA polymerase and the relative amount of cytosines or thymidines at a specific position are quantified. Quantification of the cytosine or thymidine is mediated by luminescence produced by the release pyrophosphate resulting from the integration of the specific dinucleotide. Pyrophosophate is converted to ATP thereby providing energy for the bioluminescent luciferase reaction. This technique provides a rapid, quantitative analysis of the methylation status at multiple CpG sites of about 200 base reads (Ronaghi, 2001).

Microarrays analysis of methylation has the advantage of quickly analyzing a large number of regions. Unfortunately, the resolution and sensitivity of microarraybased methylation analysis is much lower than bisulfite sequencing analysis and pyrosequencing. Methylation analysis can be grouped into two broad categories including those that require bisulfite treatment of the DNA prior to analysis and those that require restriction enzyme digestion of the DNA prior to analysis (van Steensel and Henikoff, 2003). The PCR amplification for the bisulfite treated samples, and PCR amplification or size fractionation for the restriction enzyme digested samples is required to generate the labeled product that will hybridize to the microarrays. Microarray analysis of bisulfite treated DNA requires microarrays that have paired oligonucleotides (19-23 nucleotides in length) that differ at a methylatable position thereby allowing for the discrimination of single base differences in methylation (Adjoran et al., 2002; Gitan et al., 2002). Methylation analysis of restriction enzyme digested DNA is compatible with DNA microarrays that have any regions of overlap on the array (Novik et al., 2002; Wei et al., 2002). The resolution depends on the size of the PCR product that was spotted on the microarray (0.5 to 3kb). Methylation changes associated with breast cancer were originally studied with restriction enzyme treatment of the DNA samples (Huang et al., 1999). More recent methylation microarray studies have also examined methylation in ovarian cancer (Wei et al., 2002; Shi et al., 2003).

DNA Methyltransferases

The addition of a methyl group is accomplished through the activities of enzymes called DNA methyltransferases (**DNMT**s) (Table 2.1). Cytosine methylation involves the transfer of a methyl group from the cofactor S–adenosyl-methionine (**SAM**) to the 5'-carbon of the cytosine pyrimidine ring (Figure 2.1). The first mammalian methyltransferase to be cloned in mice was DNMT1 (Bestor et al., 1988) and serves as a maintenance methyltransferase acting principally on hemimethylated DNA. An oocyte specific isoform of DNMT1 is DNMT10 which is missing the final 118 amino acids of the N-terminus (Carlson et al., 1992; Mertineit et al., 1998). Establishing normal imprints does not require DNMT10 (Howell et al., 2001).

The DNMT2 contains all the conserved methyltransferase motifs and is widely expressed in different tissues (Okano et al., 1998). Targeted deletion of Dnmt2 has demonstrated it is not essential for global *de novo* methylation or for maintenance methylation in embryonic stem cells (ESC). Recently DNMT2 has been shown to methylate small RNAs instead of DNA (Goll et al., 2006). Specifically, DNMT2 methylates cytosine 38 in the anticodon loop of tRNA^{Asp}.

The DNMT3A and DNMT3B are primarily involved with *de novo* methylation. Mutations in DNMT3A and DNMT3B are lethal at the postnatal and embryonic stages, respectively (Okana et al., 1999). The offspring with the DNMT3A -/- genotype appear phenotypically normal but die at about 4 weeks after birth. Also, DNM3B -/- embryos appeared to develop normally before E9.5, but these embryos died before E11.5.

The DNMT3L isoform does not appear to be capable of methyltransferase activity (Aapola et al., 1999; Hata et al., 1999; Bourc'his et al., 2001). Despite the lack of methyltransferase activity, DNMT3L may play a role as a regulator or a cofactor for other methyltransferases in *de novo* methylation. Heterozygous progeny of *Dnmt31 -/-* females did not develop past 9.5 postcoitum. Interestingly, these fetuses exhibited biallelic expression of the imprinted genes *Snrpn*, *Necdin*, *Zfo127*, *Kcnq1ot1*, and *Peg3*. The DNMT3L isoform appears to be involved with maternally repressed imprinted genes but not paternally repressed genes (Bourc'his et al., 2001).

DNA Demethylation

After fertilization, the paternal genome undergoes active demethylation, presumably by enzymatic demethylation, and the maternal genome undergoes passive demethylation. Removal of the methyl group from 5-methylcytosine by from methyl binding domain protein 2 (MBD2) has been suggested (Bhattacharya et al., 1999) but paternal demethylation occurs normally in the 1-cell embryos derived (MBD2) null crosses (Hendrich et al., 2001). Although MBD2 has been identified as a demethylase (Bhattacharya et al., 1999) other labs have not been able to replicate these results. The MBD4 isoform is also suggested as a demethylase because of its role in DNA repair (Wu et al., 2003) but the active demethylation of the paternal genome seemed to occur as expected in MDB4 null fertilized oocytes (Santos and Dean, 2004). Therefore, the best evidence for the existence of a demethylase enzyme is the rapid demethylation of the paternal genome immediately after fertilization (Reik and Walter, 2001).

DNA Methylation and Transcription

The traditional view that methylation represses transcription may be a function of the density of the methylated cytosines (Hsieh, 1997) or that the position of the methylated cytosines is more important (Chen et al., 2001). Methylated cytosines may repress transcription by interfering with the binding of trans-acting factors (Bell and Fensfeld, 2000). An alternative explanation is that methylation sensitive binding proteins have a role in repressing transcription. Transcriptional repressors that act via DNA methylation include the methyl binding proteins (MECP2 and MBD 1-3), a family of 4 proteins that share the common motif of a methyl binding domain (Hendrich and Bird, 1998; Hendrich et al., 2001). The methyl binding is present in MBD4 domain but does not act to repress transcription.

The chromatin structure of methylated DNA is further modified by the recruitment of another transcription corepressor. A corepressor mSin3A interacts with MECP2 that forms a complex with histone deacetylases (Nan et al., 1998). Histone deacetylases remove the acetyl groups from the amino terminal lysine residues of at least histone proteins H3 and H4 (Grunstein, 1997). The generalized configurations of the aforementioned mechanisms of transcriptional inhibition are shown in Figure 2.2 (Klose and Bird, 2006).

DNA Methylation and Imprinting

Genomic imprinting is a system unique to higher plants, marsupials, and eutherian mammals. Imprinting is an epigenetic mechanism whereby certain genes are expressed in a parent-of-origin-dependent manner. In 1984, imprinting was first suggested as a potential mechanism to explain differences between the maternal and paternal genomes (McGrath and Solter, 1984; Surani et al., 1984). Both groups showed that embryos with either two maternal or two paternal pronuclei did not develop to term.

The current number of imprinted genes is 106 for the mouse, 54 for humans, and 3 for pigs. Table 2.2 show the genes that are currently known to be imprinted in the mouse and human (www.otago.ac.nz/IGC) 22/12/05). Three genes have been identified in the pig as being expressed in an imprinted manner. These genes include IGF2 (Jeon et al., 1999; Nezer et al., 1999; Nezer et al., 2003), IGF2AS (Braunschweig et al., 2004), and IGF2R/M6PR (Killian et al., 2001) (Table 2.3). The three imprinted pig sequences have also been found to be imprinted in the mouse and humans. Recently, Luedi at al (2005) used a machine learning approach to identify 600 (2.5%) potentially imprinted genes from 23,788 annotated autosomal mouse genes.

DNA Methylation and Development

Two stages of DNA remodeling have been identified in germ cell development and in the development of preimplantation embryos (Morrison et al., 2005). Figure 2.3 shows the maternal and paternal genome methylation levels in murine gametes and early embryo. In the mouse, demethylation of the primordial germ cells (PGCs) occurs at 10.5 to 12.5 days of gestation, about the time these cells populate the gonads (Hajkova et al., 2002; Lee et al., 2002). Imprinted as well as nonimprinted sequences are demethylated around this time but some repetitive sequences such as intracisternal A particles (IAP) sequences resist demethylation (Lane et al., 2002). Remethylation of the male germ line appears to begin at E15 to E16 and later. Female germ cells re-establish methylation of imprinted and non-imprinted regions during early postnatal development until Metaphase II (Lucifero et al., 2004). Female germ cells appear to acquire imprints at the diplotene stage of prophase I (Kono et al., 1996; Bao et al., 2000; Lucifero et al., 2002; Obata and Kono, 2002) including the paternally expressed gene Snrpn (Lucifero et al., 2002). Conversely, the maternal methylation for IGF2r, Peg I, and Peg3 is established in metaphase II oocytes (Lucifero et al., 2002).

In the mouse, a second global demethylation event of the maternal and paternal genomes occurs immediately after fertilization and continues through the blastocyst stage. The male pronucleus undergoes active demethylation within 4 hours after fertilization (Mayer et al., 2000; Santos et al., 2002). The ooplasm of porcine *in vivo*-produced 1-cell embryos has been reported to demethylate the paternal genomes of polyspermic embryos with two and four paternal pronuclei (Fulka et al., 2006). Conversely, the paternal pronucleus does not appear to undergo active, global demethylation immediately after fertilization in sheep (Wilmut et al., 2002) or in the rabbit (Beaujean et al., 2004; Shi et al., 2004). While global and rapid demethylation does not occur, demethylation of the centromeric satellite DNA *Rsat IIE* and the promoter region of the single copy gene surfactant protein A appears to undergo passive demethylation until the blastocyst stage *of in vivo*-produced embryos (Chen et al., 2004). A contrasting pattern was observed in somatic cell nuclear transfer (**SCNT**)-produced embryos where the promoter region of the surfactant protein A gene was rapidly demethylated until the 8-/16-cell stage, followed by remethylation of the sequence to the blastocyst stage. The *Rsat IIE* sequence appeared to be relatively unchanged throughout early development.

The maternal genome undergoes passive demethylation until the blastocyst stage (Rougier and Pequignot et al., 1998). Passive demethylation of the maternal genome occurs progressively as the embryo develops from the zygote to the 8-cell stage in the mouse embryo. Each cellular division results in the production of a nascent strand of DNA that is not remethylated. The failure to remethylate the nascent strand is possibly due to the exclusion of Dnmt1o from the nucleus until the 8-cell stage (Howell et al., 2001). The step-wise reduction in methylation continues until the morula stage (Santos et al., 2002). Methylation of imprinted regions may be mediated by histone modifications (Yang et al., 2003). Specifically, inactive alleles with methylated imprint control regions have been shown to have methylation of lysine 9

on histone H3 while H3 and H4 are hypoacetylated. In contrast, the unmethylated, active allele is hyperacetylated at histone H3 and H4 and methylated at lysine 4 of histone H3.

The demethylation dynamics of the sperm genome has been shown to be directed by the quality and source of the ooplasm of the recipient oocyte. There also may be some species-specificity since Chen et al. (Chen et al., 2006) found that pig–to-rabbit and rabbit-to-pig interspecies somatic cell nuclear transfer (**ISCNT**) resulted in the differential demethylation of repetitive sequences. Specifically, the methylation level of the rabbit repetitive sequence *Rsat IIE* was significantly lower (P<0.05) in the 1-cell embryo produced from rabbit to pig ISCNT than in the rabbit donor cells. The methylation levels of *Rsat IIE* was previously shown to be unchanged after rabbit to rabbit SCNT (Chen et al., 2004). Conversely, pig to rabbit ISCNT resulted in an increase in the methylation level of porcine satellite I sequence to 83.9% at 1-cell stage embryo from 66.3% methylation in the porcine cumulus cells that were used as donor cells (Chen et al., 2006).

Remethylation or reprogramming of the genome appears to occur around the time of implantation in the mouse and is maintained in somatic tissues. *De novo* remethylation is differentially applied in the cells of the inner cell mass (ICM) and trophectoderm (TE) (Dean et al., 2001; Santos et al., 2002). The TE, which contributes to the extraembryonic tissues including the placenta, is hypomethylated relative to the cells of the ICM which develop into the fetus and eventually into the adult organism.

Studies of methylation levels in the maternal and paternal genomes and of the early embryo have primarily consisted of 5-methyl cytosine immunofluorescence (Dean et al., 2001; Beaujean et al., 2004; Fulka et al., 2004). Accordingly, studies of this nature yield qualitative results rather than precise, quantitative estimates of methylation levels. Other studies have identified methylation levels at specific sequences and it is not possible to extrapolate the results of these studies as representative of all changes in methylation. Restriction landmark genomic scanning (RLGS), where methylation sensitive restriction enzymes are used to identify differential methylation, was used to identify the methylation status in murine ESCs, embryoid bodies, fetal tissue, teratomas, and adult kidney and brain tissues (Kremenskoy et al., 2003). A panel of 259 differentially methylated regions was identified as differentially methylated in at least one of these cell types or tissues. Based on the methylation status at these 259 sites, the methylation status was shown to be 51.4% in ES cells, 40.2% in fetal tissues, and 53.7% and 48.6% in the kidney and brain tissues, respectively.

Effects of In Vitro Culture on DNA Methylation

Khosla et al. (Khosla et al., 2001) showed that the inclusion of fetal calf serum (**FCS**) in the culture medium of preimplantation embryos can influence methylation and expression of imprinted genes, thereby resulting in developmental abnormalities. Fetuses cultured in the chemically defined media M16+FCS as early embryos showed decreased growth and transcriptional abnormalities. Specifically, at Day 14 the

fetuses had significantly lower weights than the control fetuses (P<0.001). The fetuses that were initially cultured in M16+FCS also had decreased expression of the imprinted genes *H19*, *IGF2*, *Grb7*.

Culture of *in vivo* produced bovine embryos in modified synthetic medium without serum or cumulus cell coculture (mSOF) resulted in placentas of day 70 fetuses that were abnormal compared to the *in vitro*-produced embryos cultured in medium with serum and cumulus cell co-culture and in vivo-produced conceptuses (Miles et al., 2005). Specifically, placentas from the mSOF group were heavier, had the least placental fluid, had fewer placentomes, and had the lowest placental efficiency (fetal weight/placental weight). Fewer placentomes suggests a smaller interface between the placenta and the uterus since the number of placentomes is determined by the number of caruncles in the uterus. In the mouse, aberrant placental imprinting and expression was observed following in vitro culture in Whitten's medium (Mann et al., 2004). The normally silent paternal allele of H19 was transcriptionally active in 65% of the cultured blastocysts presumably due to hypomethylation. Additionally, there was aberrant expression of silent alleles for H19, Ascl2, Peg3, and Xist in placental tissues but normal expression was retained in the embryo. Whitten's medium does not contain FCS. Therefore, the aberrant methylation observed after *in vitro* culture may result by an alternative mechanism than that induced by FCS.

Assisted reproductive techniques, which inherently use *in vitro* culture procedures, have been implicated in a 9-fold increase in the development of

Beckwith-Wiedmann Syndrome (**BWS**) over the general population (Halliday et al., 2004). Prenatal and postnatal overgrowth due to aberrant imprinting on 11p15.5 in BWS (DeBaun et al., 2003). Specifically, BWS is associated with aberrant methylation of IGF2, H19 and LIT1 genes.

Studies to date on the effect of *in vitro* culture on DNA methylation show that a specific cell culture medium may cause aberrant methylation and transcription. Most studies have examined imprinted genes probably as a result of the familiarity and prior knowledge of these genes. The results of these studies also show that the effect of a specific medium or component of the medium is species-specific with respect to the effect on methylation status and transcription. Further, global effects have not been identified regarding a specific medium, or component of the medium, for all genomes or even a specific gene or region across genomes. Therefore, extrapolation of *in vitro* culture effects on methylation, based on previous research, is highly speculative and should be done with extreme caution.

DNA Methylation and Somatic Cell Nuclear Transfer Derived Embryos

The precise causes of the phenotypic abnormalities observed in cloned animals are not known but are thought to be related to epigenetic defects because the offspring of cloned animals appear to be normal (Tamashiro et al., 2002; Zhang et al., 2004). The first transgenic pig produced in the Prather lab was produced by *in vitro* maturation (**IVM**), *in vitro* fertilization (**IVF**), and *in vitro* culture to the blastocyst stage before surgical embryo transfer to a surrogate recipient (Cabot et al., 2001). This animal was born with a flexor tendon contracture commonly observed in offspring produced by using *in vitro* techniques such as IVF and somatic cell nuclear transfer (**SCNT**). Of the 4 clones produced by SCNT using donor cells from this gilt, only one had a flexor tendon contracture (Park et al., 2001). Conversely, none of the 24 offspring produced from the original transgenic animal had the flexor tendon contracture (Prather et al., 2003) suggesting that the cause of the abnormalities may have been epigenetic and epigenomic remodeling of the germ line repaired the defects introduced during the initial *in vitro* culture of the reconstructed embryo.

Martin et al. (2007) showed Day 14 SCNT embryos to have more nucleoli and a higher mitotic index than Day 14 *in vivo*-produced embryos and manipulation control embryos. Also, the SCNT embryos developed more slowly than *in vivo*produced embryos. Additional research is needed to determine if these morphological changes are related to aberrant DNA methylation or if these changes are a means of compensating for the detrimental effects of the SCNT procedure. For an SCNT embryo to produce viable offspring requires DNA remodeling and transcriptional reprogramming that approximates the *in vivo*-produced embryo. Normally, these processes occur under *in vivo* conditions and operate on the genomic and epigenomic substrates of the sperm and oocyte instead of a differentiated somatic cell.

A number of obstacles decrease the efficiency of the SCNT procedure to produce offspring. The obligatory step of culturing the donor cells prior to the SNCT procedure is a likely opportunity to introduce aberrant methylation changes. SCNT and *in vitro* culture of livestock embryos is associated with pre- and post-natal loss

due to large offspring syndrome (LOS). Specifically, decreased gene expression due to epigenetic changes in M6P/IGF2R is linked to LOS (Young et al., 2001). *In vitro* culture has been shown to disrupt imprinting in preimplantation embryos resulting in biallelic expression of the H19 gene, which normally is expressed from the maternal allele (Sasaki et al., 1995; Doherty et al., 2000). A subsequent study demonstrated that imprinted expression of *Ascl2*, *Snrpn*, *Peg3* and *Xist* is largely retained in mouse embryos recovered at E9.5, but these genes were transcriptionally active in the normally silent allele (Mann et al., 2004). Conversely, biallelic expression was detected in placental tissues for these genes. The authors suggest that the mechanisms that maintain imprinting may operate with greater fidelity in the embryo than in tissues that originate in the trophectoderm.

The inefficiency of the epigenetic reprogramming is further demonstrated by the analysis of transcription and methylation status of imprinted genes in the preimplantation stage mouse cloned embryo (Mann et al., 2003). Only 4% of the SCNT derived embryos reproduced the expression of the imprinted genes *H19*, *Meg3*, *Igf2r*, *Ascl2*, and *Snrpn* similar to in *vivo* derived blastocysts. The cloned embryos were also found to have substantial loss of allele-specific DNA methylation at the imprinting control regions of the *Snrpn* and *H19* genes.

Abnormal DNA methylation and transcription in most cloned embryos is likely a function of the aberrant regulation of DNA methyltransferases during the early stages of development (Chung et al., 2003). Specifically, cloned preimplantation mouse embryos were found to have DNMT1s, the somatic form of Dnmt1, present in

the cytoplasm of all the blastomeres beginning at the 8-cell stage. A posttranscriptional mechanism normally prevents the appearance of DNMT1s until after implantation (Carlson et al., 1992; Mertineit et al., 1998; Ratnam et al., 2002). Also, Dnmt1o primarily remained in the cytoplasm rather than translocating to the nucleus of the eight-cell stage embryo as occurs with *in vivo*-produced embryos (Chung et al., 2003).

The dynamics of methylation remodeling in the early pig embryo and cloned offspring has been studied for several sequences. IVF and SCNT blastocysts show gradual demethylation of centromeric satellite and Pre-1 in the development to the blastocyst (Kang et al., 2001). The demethylation of these sequences was also shown to be similar to the *in vivo*-produced blastocysts. Pre-1 and centromeric satellite sequences were found to have similar methylation levels in healthy cloned pigs and control pigs (Archer et al., 2003). In contrast, the high methylation levels of these sequences is maintained in the development of bovine SCNT-produced embryos through the blastocyst stage (Kang et al., 2001). Additionally, 5-methylcytosine immunofluorescence procedures have shown that porcine paternal and maternal genomes are demethylated during preimplantation development (Dean et al., 2001).

The SCNT procedure involves damaging the zona pellucida (**ZP**) by piercing it with a glass pipette to enucleate the oocyte. Simerly et al. (2003) reported that in non-human primates (**NHP**s), the initial enucleation step which removed the metaphase II spindle-chromosome complex also resulted in a depletion of microtubule motors and centrosome proteins. The resulting SCNT-produced embryos

showed misaligned chromosomes on multipolar spindles and aberrant microtubule patterns. Reconstructed embryos appeared to undergo normal preimplantation development but no pregnancies developed after embryo transfer. The problems observed in NHPs related to enucleation have not been shown to be a critical factor in other species. Although the offspring of many species have been produced by using the same enucleation process, it remains likely that some developmentally important proteins are also removed.

Fusion of donor cell and oocyte membranes is accomplished with application of an electrical pulse. This electrical pulse concurrently induces artificial activation of the oocyte that would have been induced by the fertilizing sperm under *in vivo* conditions. These steps introduce proteins and RNA from the donor cell as well as culture medium that may be detrimental to the development of the reconstructed embryo. For development to proceed, the reconstructed embryo must recapitulate the steps involved in chromatin remodeling of the donor karyoplast that normally occurs with the sperm and oocyte genomes after fertilization. Of course, a critical difference is that the donor karyoplast lacks the chromatin remodeling that is normally performed during gametogenesis. Furthermore, the donor karyoplasts have epigenetic markings that accompany differentiation. Heyman et al. (Heyman et al., 2002) demonstrated the importance of the relative stage of donor cell differentiation by comparing the survival to term of SCNT-produced embryos to the control group of *in* vitro-produced embryos. Embryos reconstructed by using adult fibroblasts or fetal fibroblasts resulted in calves born in 6.8% and 15% of the pregnancies that were

established, respectively. Conversely, the number of calves born from established pregnancies with reconstructed embryos when blastomeres from day 6 *in vivo-* or *in vitro-*produced morula served as donor cells (34.3%) and the control group of *in vitro-*produced embryos (49%) was significantly higher (P<0.01). This study supports the idea that the donor cell age and the degree of differentiation is inversely correlated to developmental competency.

The genetic background of the embryonic donor cells has also been shown to be critical in the viability of the reconstructed embryo (Rideout III and Yanagimachi et al., 2000). SCNT-produced embryos using F1 (129SvJaexC57BL/6) ESCs resulted in development of 7 of 34 (21%) embryos to healthy adults. In contrast, 8 of 76 (11 %) SCNT-produced embryos using inbred 129 donor ESCs developed to term but all died within the first day after birth. These results demonstrate the importance of the genetic background of the donor cells in producing viable offspring by using SCNT.

Summary and Research Directions

The study of methylation and DNA started in 1948 when 5-methylcytosine was first identified (Hotchkiss, 1948) thereby introducing the idea of the fifth base. Since then CpG methylation has been shown to be an integral component of gametogenesis, early embryo development, organogenesis, cancer, DNA stability, and cellular senescence. Recent studies in SCNT have demonstrated the relevance of CpG methylation in the development of reconstructed embryos to the ultimate objective of producing healthy, live offspring.

A commonly held view had been that differentiated somatic cells cannot be remodeled and reprogrammed to an undifferentiated state whereby a completely new cell type will result. This theory was disproven by the successful production of fertile offspring from mature murine B and T cells by using a two-step cloning procedure (Hochedlinger and Jaenisch, 2002). It should be noted that the blastocyst rate using these terminally differentiated cells was about 10 times lower when compared to the blastocyst rate when using a heterogeneous populations of donor cells of cumulus cells and fibroblasts (Wakayama et al., 2001). The source of donor cells for most SCNT studies has been a primary culture of somatic cells, often derived from decapitated and eviscerated fetal tissue. From the multitude of cell types present in the initial cell culture results in a population of cells with morphology that is predominantly fibroblast-like. While the morphology of these cells appears to be substantially different than embryonic stem cells, the argument has been made that these cells, while differentiated to some extent, are not fully differentiated and therefore may be a form of stem cells which are more readily reprogrammed to guide the development of the early embryo.

Accordingly, isolating these putative stem cells would enable the production of cloned offspring at a much more efficient level than can be currently achieved. Donor cell selection by using the criteria of morphology and expression is limited in that these characteristics may not be valid indicators of cellular differentiation. Instead, analyses of the mechanisms that direct development and differentiation need to be included in the donor cell selection process. Specifically, the methylation status

prior to the SCNT is likely a critical factor in identifying donor cells that are amenable to epigenetic remodeling and have high potential in directing embryonic development. Analyzing the global epigenetic status of donor cells by using methylation microarrays will be instrumental in further increasing the efficiency of producing live offspring via SCNT.

Gene	Function	Mouse Mutant Phenotype	Reference
		Aberrant X-linked expression,	
		Lethal to Embryo E8.5,	Lei et al., 1996
Dnmt1	Maintenance DNMT	Loss of imprints	Li, 2002
	Oocyte specific, imprint		
	maintenance at the 8-cell	Loss of parental imprints,	
Dnmt1o	stage	Dnmt1o +/- embryo lethal	Howell et al., 2001
		N/A	Goll et al., 2006
Dnmt2	tRNA ^{Asp} methylation	Normal	Okano et al., 1998
		Aberrant spermatogenesis,	
Dnmt3a	De novo DNMT	Offspring die at 4 weeks	Okano et al., 1999
		Embryo lethal at E14.5-18.5,	
		Hypomethylated centromeric	
Dnmt3b	De novo DNMT	minor satellite DNA	Okano et al., 1999
		Infertility, Imprint loss,	Bourc'his et al., 2001
Dnmt31	Regulation of methylation	Dnmt31 +/- embryo lethal	Hata et al., 2002

Table 2.1. DNA Methyltransferases

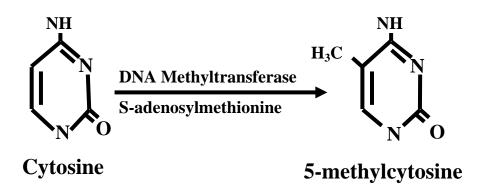


Figure 2.1 Addition of methyl groups to the carbon 5 of cytosine of the CpG dinucleotide

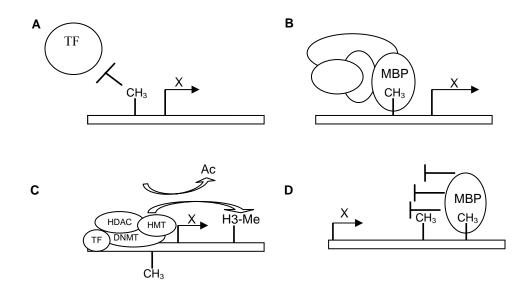


Figure 2.2. Repression of transcription mediated by CpG methylation. A) DNA methylation inhibits transcription factors (TF) from binding to DNA. B) Methyl-CpG-binding proteins (MBPs) binds to methylated DNA and recruits co-repressor molecules to inhibit transcription. C) DNA methyltransferases (DNMTs) associate with histone methyltransferase (HMT) and histone deacetylase (HDAC) thereby mediating transcriptional inhibition and chromatin modification. D) DNA methylation in the gene can inhibit transcriptional elongation (Klose and Bird, 2006).

Table 2.2 Table 2.2 Imprinted human and mouse genes. Abbreviations- AS, antisense transcript; miRNA, microRNAs; misc RNA, RNA of unknown function. CD, conflicting data; I, reported to be imprinted; NI, reported to be not imprinted; NO, no orthologue known; NR, no reports of imprinting status; M, maternal; P, paternal; PD, provisional data; (b) Noncoding RNAs only; (c) Imprinting is isoform dependent; (d) ZIM2 and COPG2 are reported to be oppositely imprinted in human and mouse. (Adapted from www.otago.ac.nz/IGC) 22/12/05)

Chromosome Human	Transcriptional Unit	Functional	Imprint		Expressed	Protein Name or	RNA(b)
(Mouse)	Human(Mouse)	Component	Huma	n Mouse	Allele	Description	Description
1p36 (4 E2)	TP73 (Trp73)		I	NR	М	Tumour related protein	
1p31	DIRAS3		I	NO	Р	Ras homolog	
2p15 (11 A3)	COMMD1 (Commd1)		NI	1	Μ	Copper metabolism gene Murr1	
	(U2af1-rs1)		NO	1	Р	U2 small nuclear RNP auxiliary factor	
4q13 (5 E1)	(Mkrn1-ps1)		NO	I	Р		Pseudogene
4q22 (6 C1)	NAP1L5 (Nap1l5)		NR	1	Р	Nucleosome assembly protein	
6q24 (10 A1)	HYMAI (Hymai)		I	NR	Р		misc RNA
6q24 (10 A1)	PLAGL1 (PlagI1)		I	I	Ρ	Zinc finger protein	
6q25 (17 A1)	IGF2R (lgf2r)		NI	1	м	Insulin-like growth factor receptor 2	
<i>i</i>	(Air)		NO	1	Р	·	lgf2r AS
	SLC22A2 (Slc22a2)		NR	I	М	Organic cation transporter	
	SLC22A3 (Slc22a3)		NR	1	М	Organic cation transporter	
7p12 (11 A1)	GRB10 (Grb10)		I	1	P/M (c)	Growth factor receptor-bound protein	
7q21 (6 A1)	CALCR (Calcr)		PD	1	М	Calcitonin receptor	
	SGCE (Sgce)		I	1	Р	Sarcoglycan, epsilon	
	PEG10 (Peg10)		I	I	Р	Retroviral gag pol homologue	
	PPP1R9A (Ppp1r9a)		1	1	М	Protein phosphatase inhibitor	
	PON1 (Pon1)		PD	NI	Р	Paraoxonase 1	
	PON3 (Pon3)		NR	PD	М	Paraoxonase 3	

Table 2.2 (continued)

1 4010 2.2 (continucu)	1	1	r	-		1
	PON2 (Pon2)		NR	PD	М	Paraoxonase 2	
						Ankyrin repeat	
	$\Delta CD4 (Ach4)$		NR		NA	and SOCS	
	ASB4 (Asb4)		INK		M	box	
	DLX5 (Dlx5)		1	1	М	Homeo box- containing	
7q32						Carboxypeptid	
(6 A3)	CPA4 (Cpa4)		Ι	NR	М	ase	
						Alpha/beta	
						hydrolase fold	
	MEST (Mest)		1	1	P	family	
	MESTIT1			NO	Р		MEST AS
	COPG2IT1						00000.40
	(Copgas2)			1	Р		COPG2 AS
						Coatomer	
						protein complex	
	COPG2 (Copg2)		CD	I	P(M) (d)	subunit	
8q24	(Deg12)		NO				
(15 D3)	(Peg13)		NO		P	Our all here is a	misc RNA
10q22 (10 B4)	STOX1		PD	NR	М	Storkhead box	
(10 0 1)	CTNNA3					Catenin, alpha	
	(Catna3)		PD	NR	М	3	
10q25			NO		Р	Inculie I	
(19 D2)	(Ins1)	NO: (NO	CD		Insulin I	
10q26 (7 F3)	INPP5F (Inpp5f)	V2 isoform only	NR	1	Р	Inositol phosphatase	
11p15		5,				p	
(7 F5)	H19 (H19)		Ι	1	М		misc RNA
						Insulin-like	
			.	Ι.		growth factor	
	IGF2 (Igf2)				P P	2	
	IGF2AS (Igf2as)			1	P	la e uliz	IGF2 AS
	INS (Ins2)		Ι	1	۲ ۲	Insulin	
						HLH	
	ASCL2 (Ascl2)		CD	1	М	transcription factor	
				·		Tetraspanin	
	PHEMX (Phemx)		NI	I	М	superfamily	
						Transmembra	
	CD81 (Cd81)		NI	1	М	ne 4 superfamily	
						Tumor suppressing	
	TSSC4 (Tssc4)		NI	1	М	candidate	
						Ca2+-	
	TRPM5 (Trpm5)		PD	NI	Р	activated cation channel	
						Voltage-gated potassium	
	KCNQ1 (Kcnq1)		I	I	М	channel	

Table 2.2 (continued)

	KCNQ1OT1				Р		KCNQ1 AS
	(Kcnq1ot1)		1	NO	M		KUNQT AS
	KCNQ1DN CDKN1C (Cdkn1c)		1		M	BWRT protein Cyclin- dependent kinase inhibitor	
	SLC22A1LS		PD	NO	м	SLC22A1LS putative protein	
	(Msuit1, AF313042)		NO	1	м		misc RNA
	SLC22A18 (Slc22a18)		I	1	М	Organic cation transporter	
	PHLDA2 (Phlda2)		1	1	м	Pleckstrin homology-like domain	
	NAP1L4 (Nap1l4)		NR	1	м	Nucleosome assembly protein	
	(Tnfrsf23)		NO	1	М	TNF receptor superfamily	
	OSBPL5 (Osbpl5)		1	1	м	Oxysterol binding protein-like 5	
	ZNF215		PD	NO	м	Zinc finger protein	
11p13 (2 E)	WT1-Alt transcript (Wt1)		I	NR	0	Zinc finger protein	
11p13 (2 E)	WT1AS (Wt1as)		Ι	NR	Р		WT1 AS
11q23 (9 A5)	SDHD (Sdhd)		CD	NR	Р	Succinate dehydrogenase, subunit	
12q13 (15 F1)	SLC38A4 (Slc38a4)		NR	1	Р	Amino acid transporter	
12q21 (10 C3)	DCN (Dcn)		NR	I	М	Proteoglycan	
13q14 (14 D2)	HTR2A (Htr2a)		CD	1	М	Serotonin receptor	
14q32 (12 F1)	DLK1 (Dlk1)		I	1	Р	Delta-like 1 homolog	
	DLK1 downstream transcripts		NR	1	Р		misc RNA
	MEG3 (Gtl2)		I	I	М		misc RNA
	miR-337		NR	I	М		miRNA
	LOC388015 (Rtl1)		NR	1	Р	Retrotransposon- like 1	
	Anti-PEG11 (anti-Rtl1)	anti-Rtl1	NR	1	М		Rtl1-AS
		miR-431	NR	I	М		miRNA
		miR-433	NR	PD	М		miRNA
		miR-127	NR	1	М		miRNA

· · · · · · · · · · · · · · · · · · ·	(ontinueu)			1			
		miR-434	NR	PD	М		miRNA
		miR-432	NR	PD	М		miRNA
		miR-136	NR	I	М		miRNA
		MEG8					
	MEG8 (Rian)	(Rian)	NR	1	М		snoRNA host
		miR-370	NR	1	М		miRNA
		(MBII-78)	NO	1	М		snoRNA
		(MBII-19)	NO	I	М		snoRNA
		14q(0)	NR	1	М		snoRNA
		14q(l) (MBII-48)	NR	1	м		snoRNA
		(MBII-49)	NO	1	М		snoRNA
		(MBII-426)	NO	1	М		snoRNA
		14q(II) (MBII-343)	NR		М		snoRNA
	(Mira)						miRNA host
	(Mirg)	(Mirg)	NR	1	M		
		miR-411	NR	1	M		miRNA
		miR-380	NR	1	M		miRNA
		miR-376b	NR	 	M		miRNA
		miR-376	NR	<u> </u>	M		miRNA
		miR-134	NR		M		miRNA
		miR-154	NR	1	M		miRNA
		miR-410	NR	1	М		miRNA
	DIO3 (Dio3)		NR	1	Р	Deiodinase, iodothyronine type III	
15q11-q12 (7B5)	(Peg12)		NO	I	Р	Gsk-3-binding protein family	
	MKRN3 (Mkrn3)		I	I	Р	Makorin, ring finger protein	
	ZNF127AS		NR		Р		
	(Zfp127as)		INR	1	P		MKRN3 AS
	MAGEL2 (Magel2)		I	Ι	Р	MAGE-like protein	
	NDN (Ndn)		I	1	Р	Necdin, neuronal growth suppressor	
	(AK014392)		NR	PD	Р		Ndn AS
	(Pec2)		NR	I	P		LINE-rich intergenic
	(Pec3)		NR	I	Р		LINE-rich intergenic
	(Nccr)		NR	1	Р		miRNA host
	SNURF-SNRPN	SNURF (Snurf)	I	I	Р	SNRPN upstream reading frame	

T 11 00	(¹)	
Table 2.21	(continued)	
1 4010 2.2	commuca	

		SNRPN (Snrpn)	1		Р	Small nuclear ribonucleo- protein	
		HBII-436	1	1	P		snoRNA
		HBII-13	1	1	P		snoRNA
		HBII-437	1	NO	Р		snoRNA
		HBII-438A	1	NO	Р		snoRNA
		PWCR1					
		(Pwcr1)			P		snoRNA
		HBII-52			P P		snoRNA
		HBII-438B	1	NO I	P		snoRNA
	UBE3A (Ube3a)	UBE3A-AS			M	Ubiquitin protein ligase	UBE3A AS
	ATP10A		-	1		ATPase,	
	(Atp10a)		I	CD	М	Class V	
	GABRB3 (Gabrb3)		CD	NI	Р	Gamma- aminobutyric acid recep to r	
	GABRA5 (Gabra5)		CD	NI	Р	Gamma- aminobutyric acid receptor	
	GABRG3 (Gabrg3)		CD	NI	Р	Gamma- aminobutyric acid receptor	
15q21 (2 E5)	GATM (Gatm)		NR	1	м	Glycine amidinotrans- ferase	
15q24 (9 E3)	(4930524O08Rik , A19)		NO	I	Р		misc RNA
	RASGRF1 (Rasgrf1)		NR	1	P	Guanine nucleotide exchange factor	
18q11 (18A2- B2)	IMPACT (Impact)		NI	I	Р	Imprinted and ancient	
18q21	TCEB3C		1	NO	М	Transcription elongation factor	
19q13 (7 A2- B1)	IMP01/ITUP1		1	NR	Р		imprinted transcript variant1
	PEG3 (Peg3)		I	I	Р	Zinc-finger protein	
	(Zim1)		NO	I	М	Zinc-finger protein	
	ZIM2 (Zim2) I I P(M)d		I	I	P(M)d	Zinc-finger protein	
	USP29 (Usp29)		NR	1	P	Ubiquitin- specific protease	

Table 2.2 (continued)

14010 2.2 (0	ZIM3 (Zim3)		NR	I	М	Zinc-finger protein (human)	No ORF (mouse)
	ZNF264 (Zfp264)		NR	1	Р	Zinc-finger protein (human)	No ORF (mouse)
20q11 (2 H1)	NNAT (Nnat)		I	I	Р	Neuronatin	
20q13 (2 H3)	L3MBTL (L3mbtl)		ı	NI	Р	Polycomb group	
20q13 (2 E1- H3)	GNAS (Gnas)	NESP55	I	I	М	Neuroendocrine secretory protein 55	
		GNASXL	I	I	Р	Large isoform of GS-a	
		(F7)	NO	PD	М	Hypothetical protein (Mm.358828)	
		Exon-1A	I	I	Р		misc RNA
		GS-alpha	1	1	м	Stimulatory G- protein, alpha subunit	
	SANG (Nespas)		I	I	Р		GNAS AS
(A7)	(Xlr3b)		NO	1	М	X linked lymphocyte regulated	
	(Xlr4b)		NO	1	М	X linked lymphocyte regulated	
	(Xlr4c)		NO	1	М	X linked lymphocyte regulated	
Xq13 (X D)	XIST (Xist)		NI	1	Р		XIST
	TSIX (Tsix)		NI	I	М		XIST AS

Table 2.3. Imprinted genes in the pig. These genes are also imprinted in the human and mouse genomes

Gene	Expressed Allele	Chromosome	References
IGF2-AS	Paternal	2	(Braunschweig et al., 2004)
IGF2	Paternal	2	(Jeon et al., 1999; Nezer et al., 1999; N
IGF2R/M6PR	Maternal	Unknown	(Killian et al., 2001)

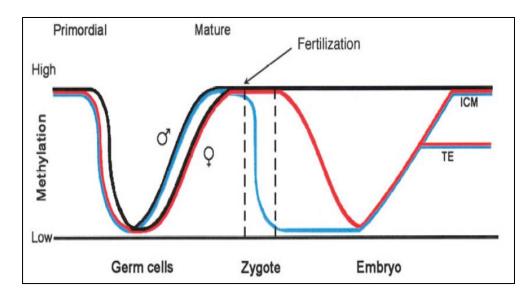


Figure 2.3. Maternal and paternal methylation in murine germ cells, zygote, and early embryo (Dean et al., 2005). Methylation remodeling of the maternal and paternal genomes occur in the development of the germ cells. Immediately after fertilization the paternal genome is demethylated, presumably by an active demethylation mechanism while the maternal genome undergoes passive demethylation to the morula stage when both genomes are remethylated. The methylation status of imprinted genes are shown as a solid black line.

CHAPTER III

ABERRANT DNA METHYLATION IN PORCINE *IN VITRO*-, PARTHENOGENETIC-, AND SOMATIC CELL NUCLEAR TRANSFER-PRODUCED BLASTOCYSTS

ABSTRACT

Early embryonic development in the pig requires DNA methylation remodeling of the maternal and paternal genomes. Aberrant remodeling is detrimental to development and can result in physiological and anatomic abnormalities in the developing fetus and offspring. *In vitro* techniques such as early embryo culture and SCNT have been shown to result in epigenetic and transcriptional profiles that deviate from *in vivo*-produced embryos. Here, we attempted to develop and validate a microarray-based approach to characterize on a global scale the CpG methylation profiles of porcine sperm, germinal vesicle-stage oocytes, and parthenogenetic-, SCNT-, *in vitro*- , and *in vivo*-produced blastocysts. Our results demonstrate that the parthenogenetic-, nuclear transfer-, and *in vitro*-produced blastocysts fail to undergo the methylation remodeling similar to *in vivo*-produced blastocysts. The relative methylation in the gamete and blastocyst samples were analyzed by using GeneSpring 7.2 showed that 18.5% (921/4992) of the DNA clones were found to be significantly different (P<0.01) in at least one of the samples. Furthermore, for the different blastocyst groups, the methylation profile of the *in vitro*-produced blastocysts was the least similar to the methylation profile of the *in vivo*-produced blastocysts compared to the parthenogenetic- and SCNT-produced blastocysts. The microarray results were validated by using bisulfite sequencing for 12 of the genomic regions in liver, sperm, and *in vivo*-produced blastocysts. Four of the regions analyzed by using bisulfite sequencing showed high methylation in at least one of the samples and the bisulfite sequencing analysis was consistent with 87.5% of these regions with high methylation The remaining 8 regions had low methylation (>10%) and the bisulfite sequencing analysis was consistent with 75.0% of the samples (8/12) of these regions with low methylation. These results suggest that a generalized change in global methylation is not responsible for the low developmental potential of blastocysts produced by using *in vitro* techniques. Instead, the appropriate methylation of a relatively small number of genomic regions in the early embryo may enable early development to occur.

INTRODUCTION

Epigenetic remodeling of the paternal and maternal genomes is necessary for the development of the early embryo. Remodeling of the maternal and paternal genomes occurs immediately after fertilization and continues through the blastocyst stage. In most species, the male pronucleus undergoes active demethylation within 4 hours after fertilization (Mayer et al., 2000; Santos et al., 2002). Conversely, the

paternal pronucleus does not appear to undergo active, global demethylation immediately after fertilization in sheep (Wilmut et al., 2002) or in the rabbit (Beaujean et al., 2004; Shi et al., 2004). The maternal genome undergoes passive demethylation until the blastocyst stage (Rougier and Pequignot et al., 1998). Remethylation or remodeling of the genome appears to occur around the time of implantation in the mouse and is maintained in somatic tissues. *De novo* remethylation is differentially applied in the cells of the inner cell mass (ICM) and trophectoderm (TE) (Dean et al., 2001; Santos et al., 2002). The TE, which contributes to the extraembryonic tissues and the placenta, is hypomethylated relative to the cells of the ICM which develop in to the fetus and, eventually, the adult organism.

Alternative techniques of embryo production, such as *in vitro* fertilization and nuclear transfer, are very inefficient and sometimes result in offspring with severe abnormalities (Carter et al., 2002). The precise causes of the phenotypic abnormalities observed in cloned animals are not known but are thought to be related to epigenetic defects because the offspring of cloned animals appear to be normal (Conway, 1996; Tamashiro et al., 2002; Zhang et al., 2004). For somatic cell nuclear transfer to produce viable offspring requires that DNA remodeling and transcriptional reprogramming approximate that of the *in vivo*-produced embryo. The inefficiency of the epigenetic reprogramming is demonstrated by the analysis of transcription and methylation status of imprinted genes in the preimplantation stage mouse cloned embryo (Mann et al., 2003). Only 4% of the SCNT derived embryos reproduced the

expression of the imprinted genes *H19*, *Meg3*, *Igf2r*, *Ascl2*, and *Snrpn* relative to *in vivo*-derived blastocysts. The cloned embryos were also found to have substantial loss of allele-specific DNA methylation at the imprinting control regions of the *Snrpn* and *H19* genes.

The dynamics of methylation remodeling in the early pig embryo and cloned offspring have been studied for several sequences. The IVF and SCNT blastocysts show gradual demethylation of centromeric satellite and Pre-1 in the development to the blastocyst (Kang et al., 2001). The demethylation of these sequences was also shown to be similar to the *in vivo*-produced blastocysts. Pre-1 and centromeric satellite sequences were found to have similar methylation levels in healthy cloned pigs and control pigs (Archer et al., 2003).

In this study we used a global microarray-based approach, Porcine Differential Methylation Hybridization (**PDMH**), based on a similar tool that has been developed for humans (Huang et al., 1999), to analyze the CpG methylation in porcine gametes, and parthenogenetic-, somatic cell nuclear transfer-, *in vitro*-, and *in vivo*- produced blastocysts. The specific question we were interested in was is there a difference in the global methylation profiles in the parthenogenetic-, SCNT-, *in vitro*-, and *in vivo*- produced blastocysts that explain the developmental differences of these samples? Our hypothesis was that the blastocysts with the highest development rates (*in vitro*-produced blastocysts) would be most similar to the *in vivo*-produced blastocysts and that the blastocysts with the lowest development rates

(parthenogenetic- and SCNT-produced blastocysts) would be least similar to *in vivo*-produced blastocysts.

Our results indicate the remodeling of *in vitro*-produced blastocysts shared the least similarity to the *in vivo*-produced blastocysts despite having higher developmental potential after embryo transfer to a recipient. The parthenogeneticand SCNT-produced blastocysts exhibited methylation profiles that were more similar to *in vivo*-produced blastocysts.

MATERIALS AND METHODS

Oocyte procurement and in vitro maturation

Cumulus-oocyte-complexes (**COCs**) were aspirated from ovaries from prepubertal gilts that were collected from a local abattoir. Germinal vesicle (**GV**) stage oocytes were collected for PDMH analysis or matured in vitro prior to in vitro fertilization. For PDMH analysis, COCs with numerous layers of intact cumulus cells were vortexed in 0.1% (w/v) hyaluronidase in Hepes-buffered saline for at least 5 minutes to remove the cumulus cells. Denuded GV-stage oocytes were rinsed three times in phosphate buffered saline containing 3 mg/ml Bovine Serum Albumin (**BSA**) (Fraction V) before the removal of the zona pellucida by incubation in 5 mg/ml pronase. The zona free GV-stage oocytes were rinsed three times in DEPC-treated phosphate buffered saline (PBS) and flash frozen in liquid nitrogen prior to storage at -80°C. For in vitro fertilization the COCs were incubated in Tissue Culture Medium 199 (**TCM199**) (Gibco BRL, Grand Islands, NY) containing 0.14% (w/v) PVA, 10 ng/ml (w/v) epidermal growth Factor (**EGF**), 0.57 mM (w/v) cysteine, 0.5 μ g/ml (w/v) porcine follicle stimulating hormone (**FSH**) and 0.5 μ g/ml (w/v) porcine lutenizing hormone (**LH**) (Abeydeera et al., 1998). The maturation media was pre-equilibrated in 5% CO₂ in air at 39°C in a humidified atmosphere overnight. COCs were matured for 40 to 44 hours in 5% CO₂ in air at 39°C prior to the removal of the cumulus cells by vortexing for three minutes in Hepes-buffered medium with 0.1% (w/v) hyaluronidase. Denuded oocytes were washed and held in modified Trisbuffered medium (**mTBM**) prior to fertilization (Abeydeera and Day, 1997).

In vitro fertilization and embryo culture

Thirty-five oocytes were delivered to 50μ l of mTBM under oil and held in 5% CO₂ in air at 39°C. Freshly collected semen for IVF was diluted 3:1 in Androhep Enduraguard semen extender (Minitub, Verona, WI). The extended semen was washed in Dubelcco's PBS (GibcoBRL) with PVA/TL-Hepes/0.1% (w/v) BSA and centrifuged for 4 minutes at 1900 xg. This wash was repeated two more times and the sperm pellet was resuspended in 100 µl of mTBM. Fresh, extended sperm were diluted to 4 x10⁴ per ml. The diluted sperm were preincubated for 2 hours in 5% CO₂ in air at 39°C. Fifty µl of the diluted sperm was added to the oocytes and incubated for 5 hours in 5% CO₂ in air at 39°C. The presumptive zygotes were then washed three times and incubated in PZM3 embryo culture medium (Yoshioka et al., 2002) in 5% CO₂ at 39°C. The blastocysts were removed after 6 days of culture and the zonae

pellucidae of the blastocysts were removed as described. The zona free blastocysts were rinsed 3 times in DEPC-treated PBS and flash frozen in liquid nitrogen prior to storage at -80°C.

Parthenogenetic embryo production

Cumulus cells were removed from in vitro matured oocytes by vortexing for three minutes in Hepes-buffered medium with 0.1% (w/v) hyaluronidase. IVM oocytes were equilibrated in activation medium composed of 0.3 M mannitol, 0.5 mM Hepes, 0.01% (w/v) BSA, 0.1 mM CaCl₂, and 0.1 mM MgCl₂ for 5 minutes and delivered to an activation chamber with electrodes 1 mm apart containing activation medium. Two 30- μ sec electrical pulses of 1.2 kV/cm were conveyed by using a BTX Electro-cell manipulator (BTX San Diego, CA). The activated oocytes were cultured in PZM3 in 5% CO₂ in air at 39°C (Lai and Prather, 2002; Lai and Prather, 2003).

Nuclear transfer embryo production

Reconstructed embryos were produced by using somatic cell nuclear transfer techniques as previously described (Lai et al., 2001). Porcine fetal fibroblast-like (**PFF**) cultures were established from a day 30 porcine conceptus. PFFs were cultured in Dubelcco's Modified Eagle Medium (**DMEM**) containing 15% (v/v) fetal calf serum (**FCS**), 100 IU/ml penicillin and 100 μ g/ml streptomycin in 5% CO₂ in air at 39°C. PFFs were harvested with the addition of Hank's Balanced Salt Solution (**HBSS**) with 0.1% (w/v) trypsin and 0.02% (w/v) EDTA.

In vivo embryo collection

The use of animals was conducted in accordance with protocols approved by the University of Missouri Animal Care and Use Committee. Crossbred Landrace gilts were bred on Day 0 of estrus by using artificial insemination (**AI**). Blastocysts were flushed on Day 6 according to previously published procedures (Machaty et al., 1998). Zonae pellucidae were removed from the blastocysts as described and frozen in pools of 5 to 14 blastocysts.

Porcine Differential Methylation Hybridization

Differential methylation hybridization analysis was conducted based on a technique developed for global scanning of methylation changes in the human genome (Huang et al., 1999). Porcine CpG island clones (approximately 8,000) from a Porcine CpG Island Library (**PCGIL**) (United Kingdom Human Genome Mapping Project, Hinxton, Cambridge, United Kingdom) were cultured in 96-well plates. The cloned insert was amplified by polymerase chain reaction (**PCR**) using the library specific primers 3558 (5'- CGG CCG CCT GCA GGT CGA CCT TAA) and 3559 (5'- AAC GCG TTG GGA GCT CTC CCT TAA). The PCR amplification was performed in a 10 µl reaction containing 1X Deep Vent DNA Polymerase Buffer, 10% DMSO, 400 pM of each primer, 100 pm each dATP, dTTP, dCTP, and dGTP , and 0.018 units Deep Vent Polymerase (New England Biolabs, Beverly, MA). The PCR program consisted of a denaturation step at 98°C for 4 minutes followed by 30

cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds and extension for 72°C for 1 minute. A final extension at 72°C completed the program. PCR products were stored at -20°C until needed. Restriction digestion with Bstu I was performed using 1.5µl of the PCR reaction in 1X NEB 2 and 0.4 units Bstu I at 60°C for at least 1 hour. The digested and undigested PCR products were run on a 1.5% 0.5X TBE agarose gel. *Bstu I* positive clones where the PCR product was cut, indicating the presence of a Bstu I site (CGCG) in the insert, were reracked and recultured in 96-well plates. Plates with all Bstu I positive clones were PCR amplified in a 50µl reaction and purified in Millipore 96-well PCR Purification plates in preparation for printing. The purified PCR products were dried and resuspended in 10µl 50% DMSO (v/v) 1% CHAPS (w/v) (Rickman et al., 2003). The resuspended PCR products were printed on Gold Seal glass microscope slides (Fisher Scientific, Hampton, NH) that were coated with 0.02% (v/v) poly-L-lysine (Sigma, St. Louis, MO) in 0.5X PBS (Eisen and Brown, 1999). The slides were stored for 3 weeks at room temperature under desiccation before printing with a pick and place robot. The printed slides were crosslinked at 120 mJ/cm² for 20s (Spectrolinker; Spectronics Corp., Westbury, NY) prior to blocking in 0.018% succinic anhydride (Sigma, St. Louis, MO) and 0.043 M sodium borate (Sigma, St. Louis, MO) in 1-methyl-2pyrrolidinone (Sigma, St. Louis, MO) (Eisen and Brown, 1999). The slides were stored under desiccation and at room temperature until hybridization. Spotting buffer only (50% DMSO/1% CHAPS) and a whole CpG island library amplification (192 spots for each) served as the negative and positive controls, respectively. The whole

CpG island library amplification was generated by PCR as a means of providing a general positive control on the microarray slides. A scraping of the frozen CpG island library was collected, amplified by using the PCR program shown above and purified by the methods described herein. A total of 384 control spots and 4,992 test spots were printed on the microarray.

DNA Isolation

DNA was three replicates of each of the sample types. DNA was isolated from the pooled blastocysts and GV oocytes by adding H₂O to a final volume of 25 µl and incubating at 98°C for 15 minutes. DNA from motile sperm was isolated by gently layering the extended semen on a 60%/80% Percoll gradient and centrifuging for 600xg for 10 minutes. The sperm pellet was removed and resuspended in PBS with 0.1% BSA. Contaminating somatic cells were eliminated by incubating the sperm pellet in PBS/0.8% (w/v) Triton X-100/0.8% (w/v) SDS for 10 minutes at room temperature (**RT**). The sperm pellet was rinsed three times in 10mM Tris (pH 8.0)/1mM EDTA/100 mM NaCl (**STE**) and resuspended in 700µl STE followed with the addition of 70µl 20% (w/v) sodium dodecyl sulfate (**SDS**), 25 µl 1M dithiothreitol (**DTT**), and 5µl 20mg/ml proteinase K and incubated at 56°C overnight. The DNA was purified with phenol chloroform, precipitated with EtoH, and resuspended in 10mM Tris/1mM EDTA (**TE**).

Amplicon Generation, Labeling and Hybridization

Amplicons were produced by digesting DNA from liver (reference), GV-stage oocytes, sperm, or blastocysts with the restriction enzyme Mse I (50 units) in 1X NEB 2, 1X BSA at 37°C overnight as recommended by the supplier (New England Biolabs, Beverly, MA). The restricted DNA was ligated to PCR linkers produced by mixing oligomers (H-24, 5'-AGG CAA CTG TGC TAT CCG AGG GAT and H-12, 5'-TAA TCC CTC GGA), heating to 65°C, and cooling to room temperature. DNA was then digested with the methylation sensitive restriction enzyme *BstuI* (NEB) as recommended. The intact DNA fragments were amplified by PCR using Biolase Taq in a 50 ul reaction with H-24 as the linker specific primer. The PCR products were labeled with amino allyl-dUTP using the BioPrime labeling system with modifications. The PCR products were purified with a Qiagen PCR Purification Kit and resuspended in 29 μ l H₂O, mixed with 1X BioPrime buffer (with random octamers), dNTPs (2:3 amino allyl-dUTP:dTTP, dATP, dGTP, dCTP), 40 units Klenow, and incubated for 60 minutes at 37°C. Amino allyl-dUTP incorporated PCR products were purified with the Qiaquick columns using PB buffer, (phosphate washing buffer: 5mM KPO₄, 80% EtoH, pH 8.0) and phosphate elution buffer (4 mM KPO₄, pH 8.5). The samples were dried and resuspended in 0.1 M sodium carbonate buffer (pH 9.0) and mixed with Cy3 for the oocyte, sperm and blastocyst samples or mixed with Cy5 for the liver reference samples. The samples were incubated for 60 minutes at room temperature in the dark. The labeling reactions were purified with Qiaquick columns by using PB buffer, PE buffer, and EB buffer. The labeling

efficiency was then analyzed spectrophotometrically by using the Nanodrop ND-1000 (Nanodrop, Wilmington, DE). Comparable amounts of labeled test sample and liver reference sample were mixed together based on the amount of DNA and the rate of incorporation of the Cy 3 and Cy5 dyes, respectively. The combined samples were dried and resuspended in 26 μ l hybridization buffer (50% formamide, 5X SSC, 0.1% SDS). The samples were denatured at 95°C for 3 minutes and immediately transferred to ice before being applied to a microarray slide with a coverslip. The microarray was incubated at 42°C for 8 to 12 hours before removing the coverslip in Wash I (1X SSC/0.2% (v/v) SDS), and washing in Wash II (1X SSC/0.2% (w/v) SDS), Wash IV (0.1X SSC), and Wash V (H₂O). The slides were immediately centrifuged for five minutes at 1,500xg and scanned with an Axon 4000B scanner.

Microarray Analysis

Microarray images were analyzed with GenePix 4.0. Spots with at least 25% of the pixels possessing intensities greater than one standard deviation higher than the background in either the Cy3 or Cy5 channel were further analyzed with Gene Spring version 7.2. The LOWESS normalized data was analyzed by Analysis of Variance (**ANOVA**) using the Benjamini and Hochberg False Discovery Rate for multiple testing. A P value less than 0.01 was considered significant. Clones (n=106) were initially selected for sequencing based on the presence or absence of a significant difference between the *in vivo*-produced blastocysts and the other samples. The

sequence of the selected clones was determined by amplifying the clone from the appropriate well of the *BstuI* positive clones 96-well plates by PCR using library specific 3558 and 3559 primers. The same cycling protocol used to amplify the insert. The PCR products were purified and sequenced by using the library specific primer 3558. Sequencing was performed at the University of Missouri-Columbia DNA Core facility on an ABI 3730 96-capillary DNA Analyzer with Applied Biosystems Big Dye Terminator cycle sequencing chemistry. Sequence homology was determined by using the National Center for Biotechnology Information nucleotide-nucleotide Basic Local Alignment Search tool. The clonal sequences were identified as homologous when a single gene was exclusively or predominantly identified (n= 41). The scores of these regions ranged from 58 to 910 with an average score (bits) of 178.

Bisulfite Sequencing

Clones were selected for bisulfite analysis because of potential biological significance to embryogenesis (e.g. transcription factors, WNT8B) and repeated detection of the same region in multiple spots in the microarray analysis (e.g. PPOX). In order to ascertain the analytical capacity of the microarray analysis procedures, additional spots were selected based on the presence or absence of a significant difference between the *in vivo*-produced blastocysts and the other biological samples based on the microarray results. This provided an independent method to verify the microarray data. Sperm and liver DNA (1 μ g) were treated with sodium bisulfite by using the EZ DNA Methylation Kit (Zymo Research, Orange, CA) according to the

vendors recommendations. In addition, DNA from fifty day 6 *in vivo*-produced blastocysts was treated with bisulfite by using the EZ DNA Methylation-Gold Kit (Zymo Research, Orange, CA) according to the vendor's recommendations. Primers were designed for bisulfite treated DNA by using the MethPrimer software (Li and Dahiya, 2002). Primer sequences are shown in Table 3.1. PCR was performed as shown below:

H_2O	32.5 µl
DNTP	1.3 µl
10X Buffer (TagGold)	5 µl
MgCl ₂	5 µl
Forward Primer (10 µM)	2 µl
Reverse Primer (10 µM)	2 µl
DNA (Bisulfite treated)	2 µl
AmpliTaq Gold (5u/µl)	<u>0.25</u> μl
Total	50 µl

The PCR program consisted of a denaturation step at 98°C for three minutes followed by fifty cycles of denaturation at 95°C for 15 seconds, annealing at 55°C for 30 seconds and extension for 72°C for 30 seconds. A final extension of 72°C for 5 minutes completed the program.

The PCR reaction was purified by using the Qiaquick columns as described by the vendor. The PCR products were cloned by using the pGEM T-Easy Kit (Promega, Madison, WI) according to the vendor's recommendations. The vectors were transformed in to DH10B cells (Invitrogen) and grown on LB/IPTG/X-Gal/Ampicillin agar plates. Recombinant colonies were selected for sequencing based on the blue/white screening criteria. The cytosines of the CpG sites were identified as methylated or unmethylated if a C or T was present in the sequence, respectively. The percent methylation was calculated for the respective sequence and the methylation status of the microarrays and bisulfite sequencing were compared. A ratio of liver: donor cell methylation was calculated by using the following formula:

$$Rm = (100 - M_S)/(100 - M_L)$$

Where: M_S is the average % CpG methylation for a sequence in the sample

M_L is the average % CpG methylation for a sequence in the liver reference

The use of this formula provides a means to calculate a ratio that indicates the relative levels of methylation in a given sequence when one of the samples lacks methylated CpG dinucleotides. The ratios produced from the microarray and bisulfite analysis were classified as consistent when the bisulfite analysis-produced ratio indicated the sample was hypomethylated (>1) or hypermethylated (<1) and matched the hypermethylation status of the microarray-produced data. From the microarray-produced ratio was <0.75 and the sample were classified as hypomethylated when the ratio was

>1.25. The threshold of hypermethylation and hypomethylation for the microarray results was identified as the smallest deviation from 1 for those regions which were validated by using bisulfite analysis. Specifically, the microarray results for CPG X G2 of the sperm sample was 1.251. Accordingly, microarray results were classified as hypomethylated when the microarray ratio was >1.25 and the sample was classified as hypermethylated when the microarray ratio was <0.75.

RESULTS

Differential Methylation in the GV Oocyte, Sperm, and Blastocysts

The relative methylation in the gamete and blastocyst samples were analyzed by using GeneSpring 7.2 revealed that 18.5% (921/4,992) of the clones were found to be significantly different (P<0.01) in at least one of the samples (Fig. 3.1). A complete listing of the clones that were significantly different is shown in Table A.1. Genomic clones were selected to be sequenced based on the relationship between the ratios for the sperm and *in vivo*-produced blastocysts. These samples were selected based on the ample supply of sperm DNA and the reliability of the methylation status of the *in vivo*-produced blastocysts. Of the 104 clones that were successfully sequenced, relevant annotation was available for only 33 of the clones. One sequence was represented twice and another represented three times. Thus, there was little redundancy on the array and most (97.1%: 101/104) of the clones were unique. These sequences were deposited in GenBank (DQ915200-DQ915250).

Validation of the Microarray Analysis by using Bisulfite Sequencing

In order to validate the microarray data, clones (n=12) were selected when the ratios of the sperm and *in vivo*-produced blastocysts were similar and when the ratios were significantly different (Table 3.2). For the selected clones, the methylation status of the *in vivo*-produced blastocysts relative to the liver reference samples was identified as hypomethylated for 6/12 (50.0%), equivalent for 2/12 (16.66%), and hypermethylated for 4/12 (33.33%) of the samples. ANOVA showed there was a significant difference between the *in vivo*-produced blastocysts and the other samples in 32/60 (53.33%) of the comparisons (Table 3.2).

Bisulfite sequencing indicated high levels of methylation for the clones HH A7, WW G4, X G2, and B G2 (Figures 3.2 to 3.5) in liver, sperm or *in vitro*-produced blastocysts. The percent methylation levels of cytosines in the CpG dinucleotides is shown in Table 3.3A for the clones B G2, HH A7, WW G4, and X G2 for the *in vivo*-produced blastocysts. The microarray values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and the sperm and *in vivo*-produced blastocyst samples (Cy3) (Table 3.3B). The Bisulfite (Ref/Sample) values represent the relative methylation levels in the liver and *in vivo*-produced blastocyst at selected regions of the specified clones. The Bisulfite (Ref/Sample) values were calculated from the equation shown in the Materials and Methods section. The methylation status, determined by microarray analysis and bisulfite sequencing, of these four regions of the *in vivo*-produced blastocysts is

shown in Figure 3.6. The methylation status, determined by microarray analysis and bisulfite sequencing, of these four regions of the sperm is shown in Figure 3.7. The reference/sample ratios were consistent with the microarray data in 87.5% (7/8) of the regions that were tested (Figures 3.6 and 3.7).

The remaining eight regions showed very little methylation (<10%) in the liver, sperm, and *in vivo*-produced blastocyst samples (Figures 3.8 to 3.15). The low levels of methylated CpGs were consistent with the microarray data in 56.25% of the samples (9/16) (Table 3.4). Table 3.4A shows the percent methylation for the clones CC C1, EEE D4, EE A11, K D3, L E8, O D10, QQ E4, and S E3 in the liver (Reference), sperm, and *in vivo*-produced blastocyst samples. The microarray values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and in the sperm and *in vivo*-produced blastocyst samples (Cy3) (Table 3.4B). The Bisulfite (Ref/Sample) values represent the relative methylation levels in the liver and *in vivo*-produced blastocysts at selected regions of the specified clones. The Bisulfite (Ref/Sample) values were calculated from the equation shown in the Materials and Methods section.

Figure 3.16 shows a typical arrangement of the location of a CpG island relative to the start of a gene. A differentially methylated CpG island was identified 184 bases upstream of the start of the myeloid leukemia factor 1 gene (WW G4). The methylation profile of WW G4 (myeloid leukemia factor 1 (MLF1) was measured by using PDMH microarrays. This region was hypomethylated in all samples relative to the reference sample except for the SCNT-produced blastocysts where the region was

hypermethylated (Figure 3.17). Regions near the start site of the gene were also identified for QQ E4 and EEE D4.

Analysis Based on Methylation Profiles

Figure 3.18 shows two of the groups that were similar in the methylation status in the sperm, GV oocyte and blastocysts by using Self Organizing Map Analysis. BLAST analyses of clones that are hypomethylated relative to the liver in the *in vivo*-produced sequenced clones are shown in Table 3.5. An ANOVA identified a significant difference between the in vivo-produced blastocysts versus the other samples with 134/185 (72.43%) of the samples. BLAST analyses of clones that are hypomethylated relative to the liver in the *in vivo*-produced sequenced clones shown are shown in Table 3.6. An ANOVA identified a significant difference between the *in* vivo-produced blastocysts versus the other samples with 97/165 (58.78%) of the samples. The complete Self Organizing Map Analysis is shown in the Appendix in Figure A.1. The BLAST analysis for the clones shown in Figure A.1 is shown in Table A.2. Figure 3.19 shows a condition tree based on the similarity of the methylation profiles of the sperm, GV oocyte, and blastocysts for the clones where there was a significant difference (P>0.01) in the methylation status in at least one of the samples. The *in vivo*-produced blastocysts clustered with 2 of the 3 SCNTproduced blastocyst replicates while the GV oocyte, sperm, and in vitro-produced blastocysts clustered together based on similarity of the methylation profiles. The parthenogenetic blastocysts did not cluster consistently with the other groups.

Additional validation of the hierarchical clustering was performed by using alternate clustering procedure (Figure A.2) The TIGR Multiple Array Viewer software used to do the hierarchical clustering and the bootstrap analysis does not include the same correlation analysis that is used by the GeneSpring software. Specifically, the Standard Correlation used in the GeneSpring software is commonly referred to as Pearson correlation around zero. The TIGR Multiple Array Viewer does not contain this correlation procedure so the Pearson Correlation analysis was substituted. Therefore, caution should be used in attempting to extrapolate the bootstrapping results to the clustering generated by using GeneSpring. The strongest support, based on both clustering procedures, is shown for the clustering of the SCNT-, parthenogenetic-, and *in vivo*-produced blastocysts.

Identification of Putatively Imprinted Genes

Imprinted genes are thought to be resistant to the passive and active demethylation events that occur immediately after fertilization. The methylation status of imprinted genes is subsequently maintained from the gamete to the somatic cells. ANOVA of the sperm and GV oocyte samples identified 28 genes where the methylation status was significantly different (p<0.05) as measured by PDMH microarray analysis (Table 3.7). The normalized *in vivo*-produced blastocyst and sperm ratios (reference/sample) and the normalized *in vivo*-produced blastocyst and oocyte ratios (reference/sample) were analyzed by using ANOVA (Table 3.8). The methylation status was maintained in the development from the GV oocyte to the *in*

vivo-produced blastocyst for 11 regions. Specifically, these regions were all hypomethylated in the GV oocyte and in the *in vivo*-produced blastocyst. The methylation status was maintained in the development from the sperm to the *in vivo*produced blastocyst for 6 regions. In contrast to the GV oocyte where all the putatively imprinted regions were all hypomethylated, 50% (3/6) of the putatively imprinted regions in the sperm were hypomethylated and 50% (3/6) were hypermethylated.

DISCUSSION

Our study shows that the epigenetic remodeling of blastocysts produced by the *in vitro* techniques of parthenogenesis, SCNT, and IVF is incomplete relative to the *in vivo*-produced blastocyst. An unexpected result of this study identified less similarity in hypermethylation of *in vitro*-produced blastocysts compared to the *in vivo*-produced blastocysts than the hypermethylation of parthenogenetic- and *in vitro*produced blastocysts. Although unexpected, these results are consistent with a recent study that showed that the bovine SCNT-produced blastocysts expression was more similar to *in vivo*-produced blastocysts than the expression patterns of *in vivo*produced blastocysts and *in vitro*-produced blastocysts (Smith et al., 2005). Also, previous research (Whitworth et al., 2005) has shown that 1696 cDNAs were differentially detected between *in vitro*- and *in vivo*-produced blastocysts. These results are consistent with the differential methylation detected by using microarray analysis in this study. Further research is needed to demonstrate that the differential expression observed by Whitworth et al., (2005) is caused by differential methylation.

The development rate of *in vitro*-produced blastocysts is comparable to parthenogenetic-produced blastocysts and much higher than SCNT-produced blastocysts. Producing offspring by embryo transfer is more efficient using *in vitro*produced blastocysts compared to using SCNT-produced blastocysts. This suggests that other factors, other than the lack of hypermethylation detected in *in vitro*produced blastocysts, relative to the other blastocysts, are responsible for the decreased developmental potential.

Clones were organized according to similar methylation profiles in the gametes and blastocysts by Self Organizing Map analysis. A BLAST analysis identified sequence homology with 10 clones that were hypermethylated relative to the liver in the *in vivo*-produced blastocysts relative to the other samples including glutamate decarboxylase (GAD2), DEAD box (DDX10), Wnt8B (WNT8B), sine oculis homeobox homolog 6 (SIX6), cyclic AMP transcriptional regulator protein (ATF2), protoporphyrin oxidase (PPOX), Zinc finger, CSL domain (ZCSL2), histones H2B.1 and H2A (HIST2H2BE), prostate antigen PARIS-1 (TBC1D2), and splicing factor 3a, subunit 3 (SF3A3) (Table 3.5). The regions analyzed correspond primarily to areas immediately around the start site of the gene. Accordingly, down-regulated expression of these genes is expected based on the premise that hypermethylation interferes with the assembly and binding of transcription factors. A BLAST analysis identified sequence homology with clones that were hypomethylated

in the *in vivo*-produced blastocysts relative to the other samples including aryl hydrocarbon receptor nuclear translocator (ARNT), Coatomer zeta-1 (Zeta-1 COP), myeloid leukemia factor 1 (MLF1), serine/threonine protein kinase Kp78 (MARK3), malignant T cell amplified sequence 1 (MCTS1), methyltransferase-like (LOC533379), FRG1 (FRG1), and forkhead box protein J2 (FOXJ2) (Table 3.6) . Hypomethylation of regulatory regions associated with these genes would be expected to result in up-regulated expression.

The low ratings of the Bootstrapping analysis appear to be a function of the replicate variation. This variation does not affect the reliability of the data when the replicates are averaged as determined by the validation by using bisulfite sequencing. Whereas microarray analysis is generally viewed as a screening tool, bisulfite sequencing is generally viewed as the gold standard in identifying CpG methylation. In this study, when hypermethylation was observed in the bisulfite sequencing reactions, in either the reference or the sample, the microarray analysis was usually (87.5%) consistent with these results. Conversely, differential methylation was identified by the microarray analysis for sequences that were shown to have low levels of methylation by using bisulfite sequencing. These results indicate that PDMH is a valid technique in detecting methylation when the regions are highly methylated (>10%). Furthermore, only 4.17% (1/24) of the samples failed to identify high levels of methylation where the microarray data was not consistent with the bisulfite sequencing. If the PDMH

analysis was a random artifact then about 25% of the bisulfite and microarray results are expected to be contradictory.

It is important to note that the bisulfite sequencing procedure does not test the entire sequence that was used in the microarray. Instead, only about 170 base pairs are assayed with bisulfite analysis whereas the average sequence on the microarray is expected to be about 500 base pairs. When multiple genes are identified from the BLAST analysis of a sequenced clone, there is a region or regions that is/are common to all the identified genes in addition to the unique sequences which define the respective gene. Figure 3.20 shows an example of when multiple genes are identified from a single sequence (QQ A6). BLAST analysis identified: 1) sequences on porcine chromosomes 6, 7, 11, and 17, 2) mRNA expressed in various tissues including liver, thymus, trachea, uterus, and ovary and 3) porcine genes including CKM, ASIP, and KIT. Hypermethylation of any of these similar regions will result in cross-hybridization in the microarray analysis but the methylation may not be detected by using bisulfite sequencing of the original sequence.

Correlation analysis of the methylation profiles produced by the microarrays showed that the sperm and GV oocyte were most similar. Regions with consistent methylation in the liver, oocyte, sperm, and *in vivo*-produced blastocyst are putatively imprinted. Imprinted regions are thought to be resistant to the active and passive demethylation processes in early embryonic development and also resistant to tissue specific epigenetic remodeling. The methylation profile of the *in vitro*-produced

blastocysts clustered with the sperm and GV oocyte instead of with the other blastocysts. This clustering pattern suggests there was incomplete methylation remodeling in the *in vitro*-produced blastocysts relative to the other blastocysts.

Twelve regions were analyzed by using bisulfite analysis to validate the microarray results. The reference/sample ratios were consistent with the microarray data in 87.5% (7/8) of the regions that were tested where high methylation levels were detected. When low levels of methylation were observed, the bisulfite analysis results were consistent with the microarray data in 66.67% of the samples (8/12). Overall, the bisulfite analysis results validated the microarray results for 70.83% (17/24) of the regions that were tested.

Microarray analysis identified differential methylation for 16 regions but these regions were shown to be essentially unmethylated by using bisulfite analysis. In contrast, most (7/8) of the other microarray results were validated by using bisulfite analysis. Furthermore, of the 24 regions that were analyzed, there were no regions where the microarray results and the bisulfite sequencing results were contradictory. Specifically, none of the regions were identified as hypomethylated by using bisulfite sequencing, and visa versa. These results suggest there was cross-reactivity in the microarray hybridization whereby differential methylation was identified but bisulfite sequencing showed the sample and the reference to be essentially unmethylated. Amplification of repeated sequences would explain the observed cross-reactivity but sequencing did not generally identify repeated sequences.

There are two possible explanations for the differences between the two techniques. First, the detection procedure used to validate the microarray results in this study (bisulfite sequencing) may not have been sufficient to detect rare, highly methylated strands. The PCR based approach to target production of the microarray analysis could have amplified a low abundance strand to produce a detectable signal after hybridization with the PDMH microarrays. The second explanation is that the low quantity of template DNA available from the blastocysts necessitated the high number of cycles in the amplification step. Additional optimization of the target production or hybridization could minimize this potentially confounding effect.

The hypomethylation detected in the *in vivo*-produced blastocysts distinguishes the methylation profiles from the other samples that were tested. Differential methylation of the embryonic and extraembryonic cells in the early embryo has been detected in the mouse (Santos et al., 2002; Dean et al., 2005). Hypomethylation of the trophectoderm relative to the inner cell mass may indicate a regulatory mechanism for the expression of genes that are critical in implantation. The pig is similar to most other mammals in that the genomes are demethylated during preimplantation development (Dean et al., 2001; Kang et al., 2001). Defects in DNA remodeling and subsequent transcriptional abnormalities in SCNT- and *in vitro*produced blastocysts, especially of the cells that give rise to the placenta, would account for the high pregnancy loss that occurs around day 25-45 of development in the pig (Lai and Prather, 2003). In this study, the *in vivo*-produced blastocysts were different from the other blastocysts in that there was no time in culture. For example, previous studies have shown that epigenetic changes caused by *in vitro* preimplantation culture results in biallelic expression of the imprinted gene H19 (Sasaki et al., 1995; Doherty et al., 2000). Aberrant expression of the imprinted genes H19, Ascl2, Snrpn, and Xist was observed while the ICM retained the correct expression (Mann et al., 2004). The authors suggest that the epigenetic remodeling and reprogramming of trophoblast may be more sensitive to the disruptive effect of the culture media than the ICM.

Although the maintenance of imprinted porcine genes was not analyzed in this study, we identified 16 putatively imprinted genes by using PDMH microarray analysis. Ten regions in the GV oocyte and 6 regions in the sperm were found to maintain the hypomethylation or hypermethylation status in the development from the gamete to the *in vivo*-produced blastocyst. Bisulfite analysis or pyrosequencing is needed to confirm the identification of these regions as imprinted. *In vitro* culture has been shown to cause aberrant methylation of imprinted genes (Khosla et al., 2001; Mann et al., 2004). Monitoring the methylation status of imprinted genes in cells or embryos cultured *in vitro* will be important in the identification of *in vitro* culture conditions which support the development of IVF and SCNT embryos.

Our results show that the CpG methylation remodeling is abnormal in blastocysts produced by using *in vitro* techniques. Specifically, there appears to be fewer hypomethylated regions in parthenogenetic-, SCNT-, and *in vitro*-produced blastocysts. Additionally, blastocysts produced by *in vitro* fertilization also appear to lack the methylation events that occur in parthenogenetic-, SCNT- and *in vivo*-

produced blastocysts. Although the methylation profile of the *in vitro*-produced blastocysts is less similar to the *in vivo*-produced blastocyst than those of the parthenogenetic- and SCNT-produced blastocysts, blastocysts produced by *in vitro* fertilization have greater developmental potential to produce offspring after embryo transfer.

Recently, the transcriptional expression patterns of bovine SCNT- and *in vivo*produced blastocysts were shown to have greater similarity to each other than the similarity of the expression patterns shared by in vitro- and in vivo-produced blastocysts (Smith et al., 2005). Expression microarray analysis was used to analyze the gene expression profiles of SCNT donor cells, and of individual bovine SCNTproduced blastocysts and blastocysts produced by using AI procedures. Hierarchical clustering analysis showed that the AI- and SCNT-produced blastocysts were more similar to each other than to the *in vitro* fertilization-produced blastocysts. Similar observations have been made in the activation of rRNA synthesis for embryos produced in vitro- and SCNT-produced (Bjerregaard et al., 2006). Asynchronous rRNA transcription was observed in the *in vitro*-produced blastocysts from the 4-cell stage through the blastocyst stage. Conversely, the cells in SCNT-produced embryos that developed to the 16-cell stage and the blastocyst stage were shown to be transcriptionally active. The activation of rRNA transcription observed in SCNTproduced blastocysts is consistent with the activation of rRNA transcription for in vivo-produced blastocysts. The similarity of transcriptional activity in blastocysts produced by SCNT and *in vivo* procedures is surprising given the low developmental

competence of the SCNT-produced blastocysts after embryo transfer. These results suggest that developmental potential may be controlled by a relatively small number of genes since analogous transcriptional activity in the blastocysts produced by SCNT and *in vivo* procedures do not result in analogous developmental potential.

In conclusion, adaptation of PDMH microarrays enabled the global analysis of differential methylation of the pig genome. While we did not have the resources to sequence each clone on the array we were able to demonstrate the utility of the tool and to justify additional sequencing. The genomic regions that were identified will be useful as markers for understanding the changes in DNA methylation during pig embryogenesis. The use of this tool has permitted us to conclude that the CpG methylation remodeling that occurs in the development of the *in vivo*-derived blastocyst does not occur in blastocysts produced by using *in vitro* techniques such as parthenogenesis, SCNT, and *in vitro* fertilization. Specifically, the methylation events that occur in the development of parthenogenetic and SCNT-produced blastocysts are more similar to the *in vivo*-produced blastocysts than the methylation remodeling events in the *in vitro*-produced blastocysts. Recently, the use of *in vitro* matured oocytes has been shown to result in incomplete demethylation of the paternal genome following *in vitro* fertilization (Gioia et al., 2005). In this study, the parthenogenetic-, SCNT-, and *in vitro*-produced blastocysts were all produced by using *in vitro*matured oocytes, but only the in vitro-produced blastocysts failed to replicate the hypermethylation of specific regions found in the *in vivo*-produced blastocysts. These results suggest that DNA methylation in sperm may be resistant to epigenetic

remodeling directed by *in vitro*-matured oocytes. Conversely, *in vitro*-produced oocytes appear to be able to direct the remethylation in the parthenogenetic- and SCNT-produced blastocyst. This type of analysis will be instrumental in identifying factors that are critical in the efficient production of embryos by using *in vitro* techniques. Examples of these factors includes oocyte maturation media, embryo culture media, and also in the selection of donor cells used in SCNT. Identifying the specific effects of aberrant methylation, as it relates to transcriptional reprogramming, is necessary to fully understand how incorrect genomic remodeling can interfere with the development of the early embryo. Additional research is needed to identify the specific aberrant methylation events that have a direct influence on the developmental deficits observed when producing offspring by using *in vitro* fertilization and SCNT.

CPG Clone	Position	5'3'
B G2	LEFT	TTT TAT TAA TGG GAG GTA GAA TTA G
B G2	RIGHT	TAA AAA CAA AAT TCT CCC AAC CTC
CC C1	LEFT	TTT GAA ATT AGG GTT GTA AGG TAG GT
CC C1	RIGHT	CCA CCC TCT AAC AAA AAA CTC TTA C
EE A11	RIGHT	AAAAATAACTCTAACCAAAATAAAC
EE A11	LEFT	TTTTAGTTAATAGGGAGGTAGTGTA
EEE D4	LEFT	GGT ATT GTA GAA AGT GGG TTT GAG T
EEE D4	RIGHT	AAAAATAATATAAAAACCA AAA ATA ACA C
HH A7	LEFT	GTT AAA GTT TGG AGT AAA AGG TG
HH A7	RIGHT	AAT TTA AAA CCC CAT ATT AAA ACC
K D3	LEFT	AAT AAT AAA GTT TTA GGA GGG ATT T
K D3	RIGHT	ATA CTA CCC AAC CCA AAC AAA AAA
LE8	LEFT	GGG TTT TAT TTT GTT TTT TTA AG
LE8	RIGHT	TAT CAC TAA AAA TCA ATC CCC AAA A
O D10	LEFT	GTA GAA GGT AGA TGA TTT TTT TT
O D10	RIGHT	TAA AAC AAA TTT TTC AAA CCC AAA C
QQ E4	RIGHT	ACAAAACTAAAACATCTCTTTACCTAAAAT
QQ E4	LEFT	GTTTGGATTGGGTTTTTTGAT
S E3	RIGHT	AAA AAA AAT AAC AAT TCC ACC ACC
S E3	LEFT	GTT TAT GGG GAA GTT TAG GGT AGA G
WW G4	LEFT	GGT TTT TTA GTT TTT TAT TTG TTT AG
WW G4	RIGHT	AACTAAATCTTACCCTACTTTCTA TAA ATA
X G2	RIGHT	TAA ACA CTA ACC CAA AAA AAC CTT C
X G2	LEFT	GTT TGG TAG GGG AGT TTG TAG AGT

Table 3.1. Bisulfite Modification Specific Primers

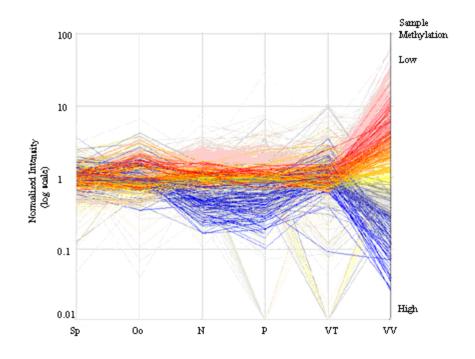


Figure 3.1. Methylation profiles of porcine sperm (Sp), germinal vesicle oocytes (Oo), parthenogenetic- (P), nuclear transfer- (N), *in vitro*- (VT), and *in vivo*-(VV) produced blastocysts generated by using PDMH analysis. This graph shows the Reference/ Sample ratios for the 921 clones that were significantly different (P<0.01) in at least one of the sample groups. A Reference/Sample ratio greater than 1 indicates that the reference is hypermethylated relative to the sample and a Reference/Sample ratio less than one indicates that the reference is hypomethylated relative to the sample. Each line represents the methylation status of a single clone at the different stages listed on the X axis. The *in vivo*-produced blastocysts have more genes that are hypomethylated relative to the reference as compared to the other samples. Extensive hypermethylation is measured in the parthenogenetic-, SCNT-, and *in vivo*-produced blastocysts but not in the *in vitro*-produced blastocysts. The clones are colored by the Reference/Sample ratios in the *in vivo*-produced blastocysts sample. Table 3.2. Microarray reference/sample ratios= standard error of microarray clones identifies the methylation status of the selected clones. A ratio greater than one indicates the region is hypomethylated in the test sample relative to the reference sample. A ratio less than one indicate the region is hypermethylated in the test sample relative to the reference sample. These clones were selected to validate the microarray results by using bisulfite sequencing. A significant difference was detected by using ANOVA between the in vivo-produced blastocysts and the other samples (^a - P<0.05, ^b- P<0.01, ^c-P<0.001, ^d -P<0.0001). There was a significant difference between the *in* vivo-produced blastocysts versus the other samples in 32/60 (53.33%) of the samples. The absence of a standard error indicates data was available for 1 of the 6 replicates. n.d.- no data.

	Sperm	Oocyte	Parth. blast.	SCNT blast.	In vitro blast.	In vivo blast.
B G2	0.960±0.172 ^c	1.043±0.181 c	0.992±0.203 ^c	1.748±0.241 b	0.878±0.187 [°]	21.520±11.047
CC C1	2.055±0.545 b	1.145±0.607	0.354±0.455	0.324±0.293	n.d.	0.375±0.565
EE A11	1.262±0.208 c	0.867±0.201 b	0.560±0.243 b	0.476±0.240 ^a	1.232±0.199 ^c	0.173±0.354
EEE D4	1.074±0.191 c	2.825±0.223 b	3.381±0.484 ^a	2.544±0.710 ^a	1.463±0.235 b	32.965±20.055
HH A7	0.619±0.427 c	2.033±0.773 ^a	2.539±2.283 ^a	0.354±0.677	4.885±1.886 b	0.558±0.673
K D3	0.593±0.214 ^c	0.411±0.548 ^a	1.674±0.501	1.432±0.291	3.364	2.806±1.259
L E8	1.033±0.229 ^a	0.804±0.253	0.485±0.242	0.552±0.242	0.721±0.446	0.464±0.450
O D10	1.105±0.175 d	1.068±0.188 [°]	1.178±0.214 ^c	1.546±0.239 ^b	0.990±0.196 ^b	6.897±0.966
QQ E4	0.462±0.271	0.179±0.320	3.438±1.776	0.965±0.401	n.d.	1.135±0.716
S E3	0.910±0.290	1.691±0.721	1.235±0.574	0.833±0.318	n.d.	0.859±0.578
WW G4	1.506±0.413 b	2.378±0.943	2.054±1.158	0.218±1.187	3.959±0.976	5.927±2.425
X G2	1.251±0.203 ^b	1.203±0.185 ^b	1.240±0.328	2.129±0.313	0.938±0.322 ^b	3.596±0.692

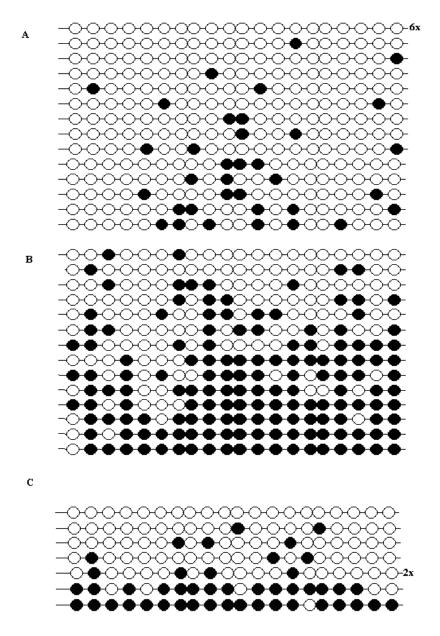


Figure 3.2. Methylation status of the Clone HH A7 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypermethylated in the sperm relative to the *in vivo*-produced blastocysts and the liver samples.



Figure 3.3. Methylation status of the Clone WW G4 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence . This region was hypermethylated in the liver sample relative to the sperm and *in vivo*-produced blastocysts.

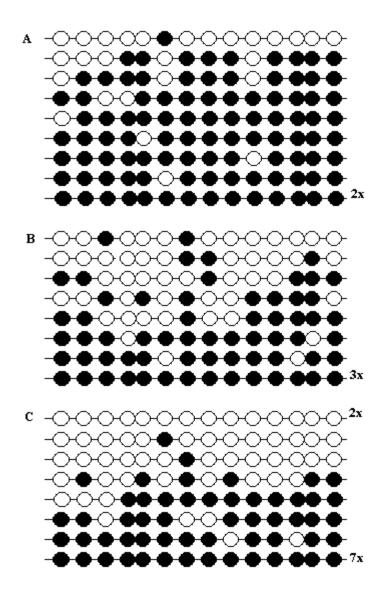


Figure 3.4. Methylation status of the Clone X G2 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. Higher methylation levels were observed for this region in the liver samples relative to the sperm and *in vivo*-produced blastocysts.

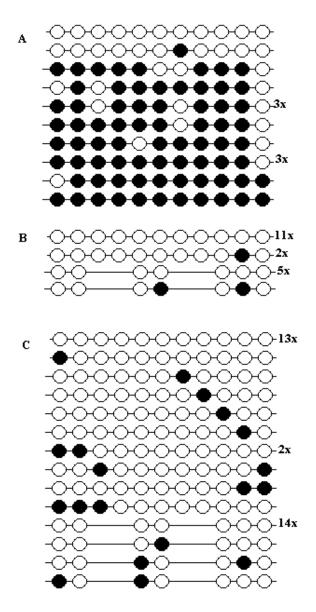


Figure 3.5. Methylation status of the Clone B G2 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The liver epigenome at this site is hypermethylated relative to the sperm and *in vivo*-produced blastocyst DNA. Also, internal regions of this clone identify an alternate sequence in the sperm and *in vivo*-produced blastocyst. This alternate sequence may be an allele with two modified regions.

Table 3.3. Methylation status of B G2, HH A7, WW G4, and X G2 for in vivo-produced blastocysts analyzed by using microarray and bisulfite sequencing analysis. A) Shown here is the percent cytosine methylation at all the CpG dinucleotides that were analyzed by using bisulfite sequencing in the liver DNA, sperm DNA, and *in vivo*-produced blastocyst DNA for the regions analyzed by using bisulfite sequencing. B) Bisulfite analysis data and the microarray analysis data are in agreement for 87.5% (7/8) of the samples. The ratios produced from the microarray and bisulfite analysis were classified as consistent when the bisulfite analysisproduced ratio indicated the sample was hypomethylated (>1) or hypermethylated (<1) and matched the methylation status of the microarray-produced data. From the microarray-produced ratios, the samples were classified as hypermethylated when the ratio was < 0.75 and the sample was classified as hypomethylated when the ratio was >1.25. The ratios produced from bisulfite analysis data and the microarray analysis data are not in agreement for 12.5% (1/8) of the samples (shown in parentheses). The microarray values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and in vivo-derived blastocyst (Cy3) samples. The Bisulfite ratios (Ref/Sample) were calculated from the equation shown in the Materials and Methods section.

Α			
	В	Bisulfite Analysis	
CPG clone	Liver	Sperm	In vivo blast.
B G2	0.692	0.024	0.053
HH A7	0.092	0.543	0.313
WW G4	0.341	0.018	0.008
X G2	0.807	0.657	0.667

	Sperm	(Ref/Sample)	In vivo-produced Bl	ast (Ref/Sample)
CPG clone	Bisulfite	Microarray	Bisulfite	Microarray
B G2	(3.173)	(0.960)	3.078	21.520
HH A7	0.504	0.619	0.757	0.558
WW G4	1.490	1.506	1.505	5.927
X G2	1.778	1.251	1.728	3.596

-
D

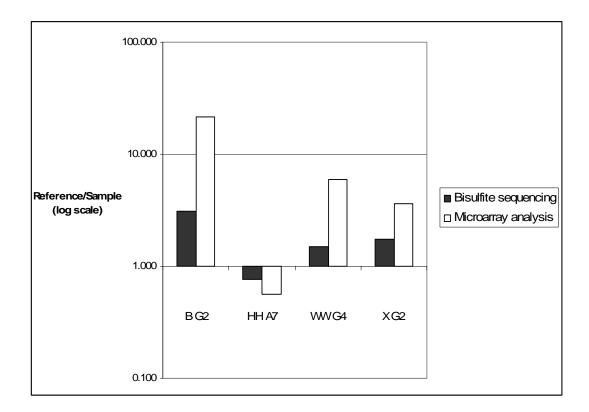


Figure 3.6. Methylation status of *in vivo*-produced blastocysts measured by using microarray and bisulfite analysis. Bisulfite analysis confirmed the microarray data at these four regions in the *in vivo*-produced blastocyst.

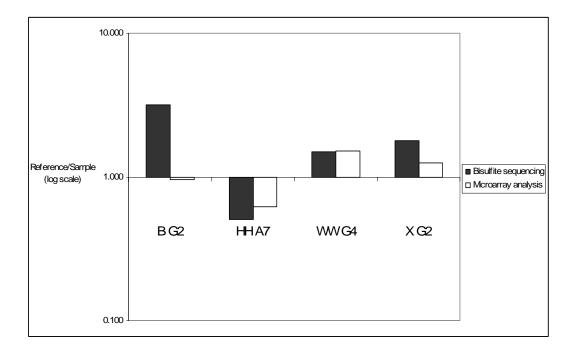


Figure 3.7. Methylation status of sperm measured by microarray and bisulfite sequencing analysis. The methylation status identified by using the PDMH microarrays was confirmed by bisulfite sequencing for all regions except for B G2.

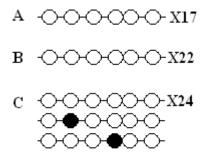


Figure 3.8. Methylation status of the Clone CC C1 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

Figure 3.9. Methylation status of the Clone EE A11 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

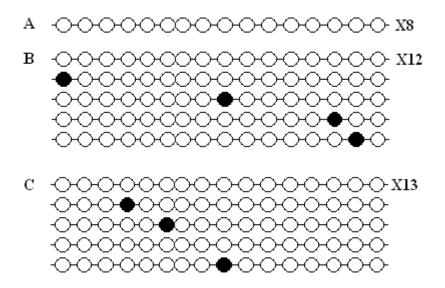


Figure 3.10. Methylation status of the Clone EEE D4 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

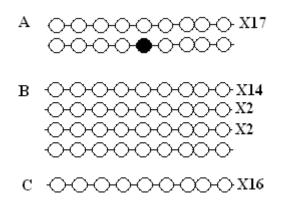


Figure 3.11. Methylation status of the Clone K D3 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

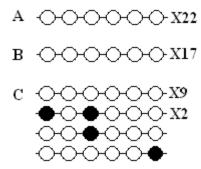


Figure 3.12. Methylation status of the Clone L E8 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and there were low levels of methylation (5.6%) in the *in vivo*-produced blastocysts.

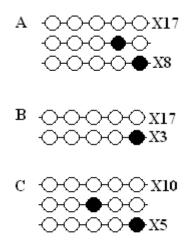


Figure 3.13. Methylation status of the Clone S E3 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

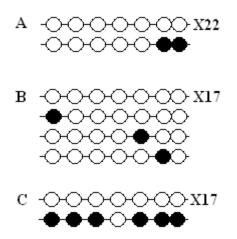


Figure 3.14. Methylation status of the Clone O D10 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. Low levels of methylation (<5%) was observed in this region in the sperm, liver, and *in vivo*-produced blastocysts.

Figure 3.15. Methylation status of the Clone QQ E4 in the liver (A), sperm (B) and *in vivo*-produced blastocyst (C) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. This region was hypomethylated in the liver, sperm and *in vivo*-produced blastocysts.

Table 3.4. Minimal methylation was detected by using bisulfite sequencing in 8 of the 12 clones selected for bisulfite sequencing. A) Shown here is the percent cytosine methylation at the CpG dinucleotides in the liver DNA, sperm DNA, and in vivo-produced blastocyst DNA for the regions analyzed by using bisulfite sequencing in clones CC C1, EEE D4, EE A11, K D3, L E8, O D10, QQ E4, and S E3. B) Bisulfite analysis data and the microarray analysis data are in agreement for 62.5% (10/16) of the samples (shown in bold type). The ratios produced from the microarray and bisulfite analysis were classified as consistent when the bisulfite analysisproduced ratio indicated the sample was hypomethylated (>1) or hypermethylated (<1) and matched the methylation status of the microarray-produced data. From the microarray-produced ratios, the samples were classified as hypermethylated when the ratio was < 0.75 and the sample was classified as hypomethylated when the ratio was >1.25. The ratios produced from bisulfite analysis data and the microarray analysis data are not in agreement for 43.75% (7/16) of the samples (shown in parentheses). The microarray values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and in vivo-derived blastocyst (Cy3) samples. The Bisulfite ratios (Ref/Sample) were calculated from the equation shown in the Materials and Method section.

A	A						
	Pe	ercent me	thylation				
	Liver	Sperm	IVP Blast				
CC C1	0.00	0.00	1.54				
EE A11	0.00	0.00	1.43				
EEE D4	0.00	1.56	1.10				
K D3	0.62	0.00	0.00				
L E8	0.00	0.00	7.14				
O D10	1.24	2.14	4.76				
QQ E4	0.00	0.00	2.22				
S E3	6.92	3.00	7.50				

1)	
к	
\mathbf{D}	

D					
Sperr	n (Ref/Sample)	IVP Blast (Ref/Sample)			
Bisulfite	PDMH microarray	Bisulfite	PDMH microarray		
(1.000)	(2.055)	0.985	0.375		
(1.000)	(1.262)	0.986	0.173		
0.984	1.074	(0.989)	(32.960)		
(1.006)	(0.593)	1.006	2.806		
1.000	1.033	(0.929)	(0.464)		
0.991	1.105	(0.964)	(6.897)		
(1.000)	(0.462)	0.978	1.135		
1.042	0.910	0.994	0.859		

Figure 3.16. Bisulfite sequencing and BLAST analysis of WW G4 (myeloid leukemia factor 1) Bisulfite sequencing and BLAST analysis of WW G4. The region 184 bases upstream of the start site of myeloid leukemia factor 1 (MLF1) is hypomethylated in the sperm and egg relative to the liver.

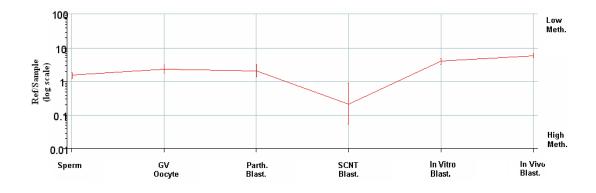


Figure 3.17. Methylation profile of WW G4 (myeloid leukemia factor 1) measured by using PDMH microarrays. The region was hypomethylated relative to the reference sample in all samples except for the SCNT-produced blastocysts where the region was hypermethylated. The region analyzed is 184 bases upstream of the start site of the myeloid leukemia factor 1 gene.

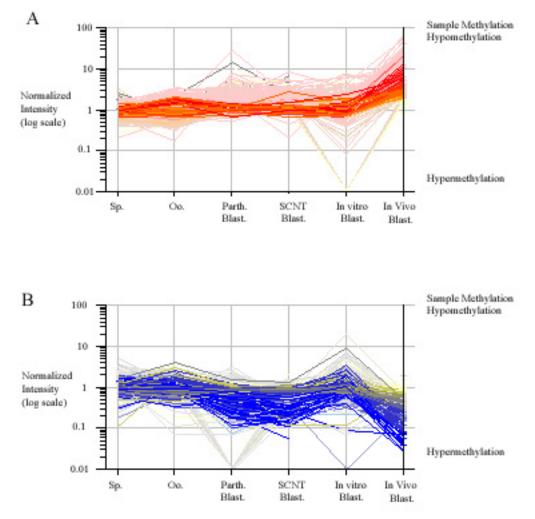


Figure 3.18. Clones grouped by similarity in the methylation status in the sperm, GV oocyte and blastocysts by using Self Organizing Map Analysis. A) The *in vivo*-produced blastocysts (In Vivo Blast) are hypomethylated relative to the sperm (Sp), GV oocytes (GV), SCNT-produced blastocysts (SCNT Blast), parthenogenetic-produced blastocysts (Parth Blast), and *in vitro*-produced blastocysts (In Vitro Blast). B) Extensive hypermethylation in the SCNT-produced blastocysts, parthenogenetic-produced blastocysts, and *in vivo*-produced blastocysts was not observed in the *in vitro*-produced blastocysts. BLAST analysis of the regions that were hypermethylated and hypomethylated in the *in vivo*-produced blastocysts relative to the liver are shown in Tables 3.5 and 3.6, respectively. Hypomethylated are shown in blue.

Table 3.5. BLAST analysis of clones that were hypomethylated in the *in vivo*-produced blastocysts relative to the liver. A significant difference was detected by using ANOVA between the *in vivo*-produced blastocysts and the other samples (^a - P<0.05, ^b- P<0.01, ^c-P<0.001, ^d -P<0.001). There was a significant difference between the *in vivo*-produced blastocysts versus the other samples with 134/185 (72.43%) of the samples. n.d.-no data.

Clone ID	AA A1	B G2	B G5	BBB A12	BBB H7
Annotation	S	SN	SN	Sus scrofa lutamate decarboxylase 2 (GAD2), mRNA	Multiple
Gene				GAD2	
IVF±SE	0.730±0.198 ^c	0.878±0.187 ^b	1.080±0.212 ^a	2.478±0.340 ^b	0.735±0.224 ^b
SCNT±SE	1.621±0.283 ^b	1.748±0.241 [¢]	1.383±0.235 ^a	2.515±0.546 ^d	1.240±0.248 [€]
Parth±SE	1.753±0.370 ^b	0.992±0.203 ^c	1.390±0.360 ^a	1.333±0.224 ^d	1.107±0.197 [€]
Sperm±SE	1.184±0.169 ^d	0.960±0.172 ^c	0.853±0.191 ^b	1.027±0.175 ^d	0.887±0.183 ^d
Oocyte±SE	3.084±0.695 ^b	1.043±0.181 ^c	1.872±0.209 ^a	1.259±0.210 ^d	0.887±0.183 ^d
IVP±SE	12.490±1.608	21.521±11.047	21.885±25.810	15.517±1.937	10.564±2.250

15.919±2.731	20.484±31.499	58.478±25.479	8.786±1.431	30.503±13.704	2.676±0.722	3.517±1.258
1.255±0.176 ^d	0.789±0.169 ^b	0.818±0.213 ^c	0.795±0.211 ^c	0.000±0.000	0.727±0.231 ^b	1.795±0.190
2.078±0.305 ^c	1.019±0.203 ^a	1.264±0.216 ^c	1.607±0.383 ^c	1.282±0.211 ^c	2.187±0.498	29.000±0.000
2.919±0.359 ^b	1.287±0.238 ^a	3.582±0.764 ^b	1.938±0.391 ^b	2.061±0.245 ^b	1.524±0.298	2.284±0.440
2.231±0.245 ^b	0.806±0.211 ^a	4.234±1.233 ^b	1.197±0.209 ^b	1.087±0.201 ^b	1.186±0.433	3.594
0.934±0.180 ^c	1.468±0.209 ^b	0.761±0.207 ^b	2.543±0.868 [°]	1.484±0.289 ^c	1.469±0.187 ^a	0.591±0.205
only Bac matches	Multiple	Multiple	Multiple	SN	SN	Multiple
EEE E3	EEE B9	EEE B7	D D6	D D10	D C10	CCC H7

Table 3.5 (continued)

24.933±27.214 4.001±0.781	1.082±0.173 ^b 1.287±0	1.043±0.198 ^b 2.041±0.298	1.425±0.251 ^a 2.057±0.391	1.043±0.198 ^a 1.940±0.479	1.125±0.187 ^b 1.953±0.201		Multiple NS	FE10 FF10
0.781	1.287±0.188 ^b	0.298	0.391	0.479	0.201			
6.205±5.827	0.835±0.240 ^a	1.986±0.314	2.356±0.373	2.604±1.120	0.862±0.296		only Bac matches	FF G1
1.745±1.198	0.836±0.245 ^a	1.371±1.820	1.465±0.296	0.000±0.000	1.587±0.676		PREDICTED: Canis familiaris similar-DEAD (Asp-Glu-Ala- Asn) hox	G G10
0.750±0.759	1.735±1.364	4.797±2.769 ^a	1.293±0.332	7.000±0.000	1.769±0.232 ^a	WNT8B	WNT8B gene	GGG D4
5.443±1.633	1.248±0.193 ^b	1.806±0.496	2.961±0.471	1.875±1.612	0.866±0.185		Multiple	II H10
27.565±10.203	0.793±0.173 ^d	1.334±0.207 ^c	1.809±0.390 ^b	0.690±0.200 ^b	0.793±0.237 ^d		Multiple	III D1

Table 3.5 (continued)

22.006±8.660	0.971±0.182 ^c	0.995±0.198 ^c	1.162±0.242 [°]	0.729±0.217 [°]	0.901±0.179 [°]		Bos taurus similar- Homeobox Protein SIX6 (Sine oculis homeobox homolog 6)	JJ B10
19.756±9.884	0.789±0.172 ^c	1.250±0.202 ^b	1.468±0.421 ^b	0.852±0.185 ^b	0.804±0.183 ^c		H.sapiens CpG island DNA	JJ D12
30.306±19.817	0.801±0.171 ^c	1.158±0.231 ^b	1.565±0.277 ^b	0.917±0.223 ^b	1.262±0.185 ^b		SN	JJ E10
2.837±0.464	1.005±0.171 ^c	1.034±0.211 ^b	1.353±0.241 ^a	0.604±0.509 ^a	1.370±0.183 ^b	ATF2	Human cyclic AMP transcriptional regulator binding protein (CRE-BP1)	K G10
11.712±1.302	1.196±0.169 ^d	1.187±0.221 ^d	1.610±0.245 ^d	1.176±0.190 ^d	0.647±0.187 ^d		SN	LL E4
2.848±0.427	1.709±0.204 ^a	1.221±0.553	2.106±0.820	1.522±0.315	0.786±0.183 ^a		SN	NN G9
26.245±27.961	0.993±0.257 ^b	1.191±0.201 ^b	1.244±0.257 ^a	1.152±0.181 ^a	1.008±0.263 ^b		Multiple	O D12

Table 3.5 (continued)

8.198±1.664	1.723±0.653	1.458±0.862	12.783±5.020	29.106±36.958	34.769±19.815	2.328±0.674
0.847±0.185 ^d	1.096±0.210	0.697±0.258	1.007±0.198 ^c	0.926±0.169 ^b	2.245±0.778 ^b	0.873±0.347 ^a
1.431±0.325 ^b	0.838±0.251 ^b	2.993±0.859	2.118±0.446 ^a	1.133±0.205 ^b	1.042±0.347 ^c	2.094±0.586
1.554±0.246 ^b	1.767±0.350	1.066±0.325	2.115±0.370 ^a	1.632±0.247 ^a	1.124±0.371 ^b	1.582±0.372
0.723±0.204 ^b	1.412±0.466	0.010±0.000	0.902±0.292 ^a	0.943±0.205 ^a	1.135±0.272 ^c	1.228±0.818
1.203±0.185 ^c	n.d.	0.882±0.182 ^b	1.526±0.381 ^b	1.014±0.185 ^b	n.d.	0.770±0.204
TBC1D2			HIST2H2BE		ZCSL2	
Homo sapiens prostate antigen PARIS-1 mRNA, complete cds	SN	SN	H. sapiens genes for histones H2B.1 and H2A	Multiple	PREDICTED: Bos Taurussimilar-zinc finger, CSL domain	Bos taurus similar- protoporphyrinogen oxidase,Last enzyme of heme synthesis
X F12	UU H3	UU C10	RR G5	QQ A6	P H5	P F6

Table 3.5 (continued)

X G2	XX H10	XX H12	Z D3
SN	SN	Homo sapiens splicing factor 3a, subunit 3, 60kDa (SF3A3), mRNA	SN
		SF3A3	
1.042±0.210 ^b	1.166±0.181 ^b	1.016±0.187 ^c	n.d.
0.938±0.322	0.961±0.213 ^a	0.775±0.194 ^b	0.812±0.255 ^b
2.129±0.313	2.382±0.781 ^a	1.642±0.405 ^b	1.485±0.253 ^b
1.240±0.328 ^a	1.450±0.245 ^b	1.089±0.213 ^b	1.226±0.205 ^c
1.251±0.203 ^b	0.979±0.178 ^c	1.102±0.169 ^c	0.877±0.189 ^c
3.596±0.692	15.403±5.999	30.199±16.716	22.118±9.730

Table 3.5 (continued)

Table 3.6. BLAST analysis of clones that were hypermethylated in the *in vivo*produced blastocysts relative to the liver. A significant difference was detected by using ANOVA between the *in vivo*-produced blastocysts and the other samples (^a -P<0.05, ^b- P<0.01, ^c-P<0.001, ^d -P<0.0001). There was a significant difference between the *in vivo*-produced blastocysts versus the other samples with 97/160 (58.78%) of the samples. n.d.- no data.

0.173±0.409	0.146±0.361	0.173±0.354	0.632±0.898	0.375±0.565	0.206±0.371	IVP blast±E
1.131±0.284	1.072±0.207	0.876±0.201 ^b	1.386±0.459	1.450±0.607	1.323±0.456 ^b	Oocyte±SE
1.608±0.580	1.469±0.277	1.262±0.208 ^c	0.782±0.374	2.055±0.545 ^b	1.904±0.388 ^c	Sperm±SE
0.338±0.355	0.315±0.245	0.560±0.243 ^b	1.345±0.585	0.345±0.455	0.343±0.292	Parth blast±SE
0.334±0.235	0.264±0.248	0.476±0.241 ^a	0.808±0.297	0.324±0.293	0.237±0.285	SCNT blast±SE
0.966±0.301	0.935±0.386 ^a	1.232±0.199 ^c	0.723±0.000	n.d.	1.060±0.696 ^a	IVF blast±SE
						Gene
Multiple	S	mRNA; CpG island cluster	Multiple	SN	S	Annotation
EE H2	EE A12	EE A11	CCC B6	CC C1	BLUE E3	Clone ID

Tab	le 3.	6 (co	ntinu	ed)
С	1	-	С	0

Tab	le 3.	6 (co	ntinu	ed)	1			
0.241±0.405	1.250±0.228 ^b	1.331±0.219 ^c	0.548±0.270 ^a	0.471±0.247	0.963±0.443 ^b	ARNT	Homo sapiens arylhydrocarbon receptor nuclear translocator	EE H8
0.441±0.353	0.743±0.184	0.888±0.218	0.872±0.210	0.992±0.244	0.864±0.181		Multiple immune components	FF E4
0.232±0.412	0.818±0.215 ^b	0.299±0.830	0.379±0.308	0.262±0.241	n.d	COPZ1	Canis amiliaris similar to Coatomer zeta-1 subunit	G B8
0.558±0.673	2.033±0.773 ^a	0.619±0.427	2.539±2.283 ^a	0.354±0.677	4.885±1.886 ^b	MLF1	Myeloid leukemia Factor 1	нн ат
0.464±0.450	0.804±0.253	1.033±0.229 ^a	0.485±0.242	0.552±0.242	0.721±0.446		CpG Island plus others	L E8
0.555±0.718	0.893±0.687	1.344±0.777	0.180±0.338	0.842±0.000	n.d.		NS	LL D3
1.335±0.465	0.974±0.252	1.001±0.272	1.512±0.285	1.144±0.377	0.816±0.334	MARK3	Homo sapiens serine/threonine protein kinase Kp78	N E12

Table 3.6 (conti	nuea)
------------------	-------

0.349±0.581	0.000±0.000	0.000±0.000	0.190±0.535	0.401±0.303	n.d.	Mus musculus RIKEN cDNA 2810429005 gene	NN F4
0.027±0.399	1.578±0.329 ^c	1.642±0.185 ^d	0.379±0.285 ^a	0.216±0.259 ^a	0.788±0.340 ^c	SN	PINK E2
0.041±0.349	0.807±0.207 ^c	0.955±0.174 ^d	0.546±0.238 ^c	0.366±0.251 ^b	0.804±0.190 ^d	SN	PINK E9
0.050±0.399	0.829±0.183 ^d	0.932±0.170 ^d	0.587±0.229 ^c	0.500±0.243 ^c	0.752±0.246 ^c	Multiple	PINK E10
0.091±0.405	0.972±0.239 ^b	0.964±0.261 ^c	0.186±0.320	0.193±0.238	0.961±0.000 ^a	NS	PP C2
0.208±0.406	1.110±0.179 ^b	1.188±0.170 ^c	0.884±0.213 ^b	0.695±0.237 ^a	1.478±0.209 ^b	NS	PP D6
0.135±0.401	1.205±0.428 ^b	1.268±0.187 ^d	0.567±0.327	0.315±0.243 ^a	1.187±0.319 ^c	Multiple	PP E2

<u>۵</u>	0.658+0.250 ^a	MCTS1 0.908±0.223 1.566±0.382 ^b	PREDICTED: Bos taurus PREDICTED: Canis similar to malignant T familiaris Similar to cell amplified sequence 1 Methyltransferase-like	PP E4 PP E5
a 0.583±0.245 a 0.686±0.223 a 0.686±0.223 a		PAX3	r Canis PREDICTED: Bos nilar to taurus similar to Paired box protein Pax-3	PP E6
0.402±0.308 ^a	0 0 1 5.0 000 8	1.095±0.000 ^b	red NS	PP G1
0.876±0.237 0.911±0.202 ^c	b b	FRG1 1.314±0.190 ^c	Homo sapiens FRG1 (FRG1) gene, complete cds (multiple)	PP H6
0.498±0.239 0.556±0.210 0.607±0.177 ^a		MARK3 0.632±0.248	Homo sapiens serine/threonine protein kinase Kp78 (ribosomal)	Q A2
0.298±0.235 ^b 0.425±0.231 ^c 1.092±0.225 ^c		FOXJ2 1.299±0.699 ^C	PREDICTED: Bos taurus similar to Forkhead box protein J2	Q H5

Table 3.6 (continued)

T-1-1-2 ((
Table 3.6 (continued)

0.642±0.366	0.740±0.258	0.632±0.176	0.738±0.234	0.663±0.234	2.111±0.912 ^a	NS	QQ D3
0.217±0.890	1.347±0.000	1.485±0.873	0.772±0.000	1.206±0.781	n.d.	NS	T A6
0.440±0.661	0.737±0.613	3.954±0.000 ^a	0.289±0.523	0.235±0.511	n.d.	790G17 on chromosome 1q21.1-21.3	TT G8
0.147±0.405	1.470±0.262 ^c	1.134±0.229 ^c	0.444±0.285 ^a	0.322±0.241 ^a	2.809±0.000 ^b	S	W E3
0.038±0.349	1.162±0.219 ^c	1.147±0.178 ^c	0.760±0.250 ^c	0.340±0.236 ^b	1.990±0.191 ^d	SN	W F1

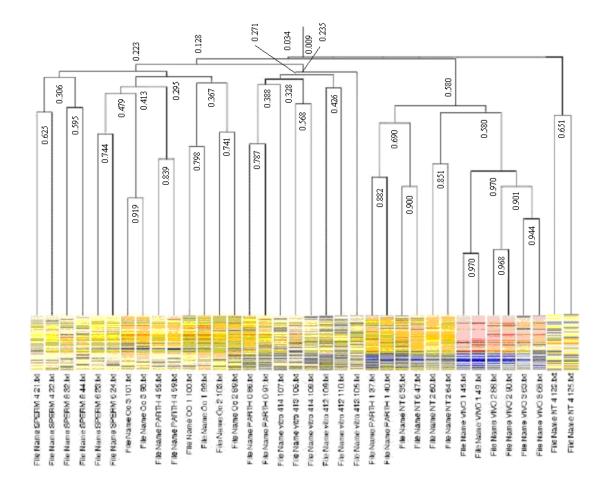


Figure 3.19. Sperm, GV oocytes, and *in vitro*-produced blastocysts had the highest similarity to each other by using hierarchical clustering analysis. The second group included SCNT-, and *in vivo*-produced blastocysts. Parthenogenetic-produced blastocysts did not cluster consistently with a specific sample or samples. This clustering pattern suggests that the methylation remodeling events of the SCNT-produced blastocysts more accurately mimics the remodeling of the *in vivo*-produced blastocysts. This condition tree only includes the data where there was at least one difference between the samples, thus the top branch shows a very low correlation.

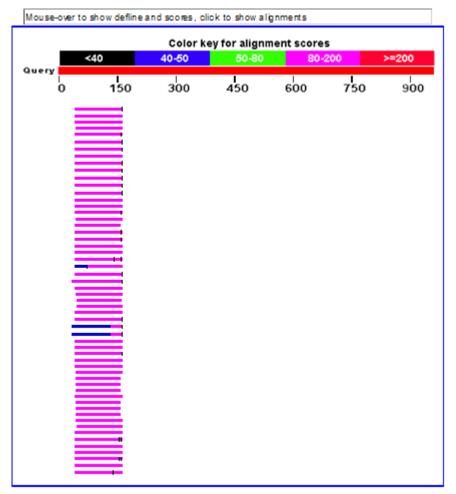


Figure 3.20. BLAST analysis identified multiple sequences as similar to sequence from the clone QQ A6. The multiple sequences identified includes sequences on porcine chromosomes 6, 7, 11, and 17 expressed in various tissues including the liver, thymus, trachea, uterus, and ovary including porcine genes including CKM, ASIP, and KIT. Hypermethylation of these genes may result in cross-hybridization in the microarray analysis but may not be detected by using bisulfite sequencing of the original sequence.

Table 3.7 Differential methylation in sperm and oocytes samples as measured by using PDMH microarray analysis. The normalized oocyte and sperm ratios (reference/sample) were analyzed by using ANOVA (p<0.05). A significant difference in methylation at the gamete stage identifies putatively imprinted genes.

Clone I.D.	P-value	OOCYTE±SE	SPERM±SE
B C3	0.040	1.937±0.188	1.0127±0.183
B G12	0.045	2.543±0.337	0.8317±0.197
B G7	0.037	0.555±0.265	1.156±0.257
BLUE D9	0.002	3.127±0.217	1.185±0.170
C B9	0.039	2.002±0.183	1.136±0.167
D E1	0.045	2.147±0.201	1.153±0.169
EE G10	0.039	1.457±0.229	0.560±0.180
EEE D4	0.006	2.825±0.223	1.074±0.191
F F3	0.045	0.935±0.236	2.500±0.244
III B12	0.012	1.097±0.236	0.403±0.232
JJ G10	0.037	0.805±0.186	1.060±0.173
NN E1	0.028	1.451±0.182	1.007±0.168
NN E2	0.039	0.664±0.185	0.870±0.167
NN G12	0.016	0.726±0.186	0.971±0.167
NN G6	0.005	1.474±0.187	0.759±0.173
NN G9	0.044	0.647±0.187	1.710±0.204
OO G8	0.028	0.664±0.210	0.927±0.167
PINK H4	0.001	2.644±0.191	1.164±0.170
PP D10	0.002	2.044±0.193	0.909±0.170
PP D9	0.039	1.155±0.187	0.738±0.194
PP G3	0.000	1.871±0.227	0.116±0.166
PP H3	0.044	0.592±0.184	0.790±0.170
RR G7	0.044	2.12±0.190	0.788±0.195
S G2	0.011	1.465±0.185	0.843±0.202
T G6	0.012	2.291±0.188	1.039±0.170
TT G10	0.005	2.012±0.192	1.053±0.173
X G12	0.012	0.634±0.210	0.893±0.16)
X G9	0.039	0.604±0.186	1.562±0.172

Table 3.8. Differential methylation in the *in vivo*-produced blastocyst, sperm and GV oocyte as measured by using PDMH microarray analysis. The normalized *in vivo*-produced blastocyst and sperm ratios (reference/sample) and the normalized *in vivo*-produced blastocyst and oocyte ratios (reference/sample) were analyzed by using ANOVA. A significant difference was detected between the in vivo-produced blastocysts versus sperm and the in vivo-produced blastocysts and the GV-stage oocytes (^a - P<0.05, ^b - P<0.01, ^c - P<0.001, ^d - P<0.001). Putatively imprinted regions, identified in bold, are identified where the methylation status is retained from the sperm or GV-stage oocyte to the IVP-blastocyst.

Clone I.D.	IVP-blast±SE	OOCYTE±SE	SPERM±SE
B C3	4.083±1.165	1.937±0.188	1.0127±0.183 ^b
B G12	61.107±18.174	2.543±0.337 ^d	0.8317±0.197 ^d
B G7	2.281±0.994	0.555±0.265 [°]	1.156±0.257 ^b
BLUE D9	0.777±0.386	3.127±0.217 ^c	1.185±0.170
C B9	9.65±36.328	2.002±0.183	1.136±0.167
D E1	3.245±0.642	2.147±0.201	1.153±0.169 ^b
EE G10	1.025±0.449	1.457±0.229 ^a	0.560±0.180 ^b
EEE D4	32.965±20.055	2.825±0.223 ^b	1.074±0.191 ^c
F F3	2.134±0.540	0.935±0.236 ^a	2.500±0.244
III B12	0.604±0.491	1.097±0.236	0.403±0.232
JJ G10	5.116±1.021	0.805±0.186 [°]	1.060±0.173 [°]
NN E1	10.196 ±9.584	1.451±0.182 ^a	1.007±0.168 ^b
NN E2	3.052±5.912	0.664±0.185	0.870±0.167
NN G12	3.275±3.677	0.726±0.186	0.971±0.167
NN G6	3.554±0.553	1.474±0.187 ^b	0.759±0.173 °
NN G9	2.848±0.427	0.647±0.187 ^c	1.710±0.204 ^a
OO G8	4.616±4.788	0.664±0.210 ^a	0.927±0.167
PINK H4	0.275±0.423	2.644±0.191 ^c	1.164±0.170 ^a
PP D10	2.710±0.403	2.044±0.193	0.909±0.170 [°]
PP D9	0.249±0.409	1.155±0.187 [♭]	0.738±0.194 ^a
PP G3	0.773±0.448	1.871±0.227	0.116±0.166 °
PP H3	0.599±0.040	0.592±0.184	0.790±0.170
RR G7	9.313±6.219	2.120±0.190 ^a	0.788±0.195 ^b
S G2	5.364±2.719	1.465±0.185 ^a	0.843±0.202 ^b
T G6	0.875±0.379	2.291±0.188 ^b	1.039±0.170
TT G10	3.032±0.713	2.012±0.192	1.053±0.173 ^b
X G12	1.383±0.610	0.634±0.210	0.893±0.169
X G9	5.713±1.560	0.604±0.186 ^c	1.562±0.172 ^b

CHAPTER IV

CORRELATION OF DEVELOPMENTAL DIFFERENCES TO THE METHYLATION PROFILES OF NUCLEAR TRANSFER DONOR CELLS

ABSTRACT

Methylation of DNA is the most commonly studied epigenetic mechanism of developmental competence and somatic cell nuclear transfer. Previous studies of epigenetics and the somatic cell nuclear transfer procedures have examined the effects of different culture media on donor cells and reconstructed embryos, and the methylation status of specific genes in the fetus or live offspring. Here, we used a microarray based approach to identify the methylation profiles of somatic cell nuclear transfer donor cells including three clonal porcine fetal fibroblast-like cell sublines and adult somatic cells selected from the kidney and mammary tissues. The methylation profiles of the donor cells were then analyzed with respect to the blastocyst rate after nuclear transfer. Clonal cell lines A2, A7, and A8 had blastocyst rates of $11.7\%^a$, $16.7\%^{ab}$, and $20\%^b$, respectively (^{ab} P<0.05). Adult somatic cells included kidney, mammary (large), and mammary(small) also had different blastocyst rates (^{ab} P<0.05) of $4.2\%^a$, $10.7\%^{ab}$, and $18.3\%^b$, respectively. For the clonal donor cells and for the adult somatic cell groups, the donor cells with the highest blastocyst

rates also had methylation profiles with the lowest similarity to the methylation profiles of the *in vivo*-produced blastocysts. Conversely, the donor cells with the lowest blastocyst rates had methylation profiles with the highest similarity to the methylation profiles of the *in vivo*-produced blastocysts. Our findings show there is an inverse correlation to the similarity of the methylation profiles of the donor cells and the *in vivo*-produced embryos and to the blastocyst rates following somatic cell nuclear transfer.

INTRODUCTION

Somatic cell nuclear transfer has successfully produced live animals in many mammalian species including mice, pigs, sheep, goats, rats, cats, dogs, and bovine. Many cells types have been used as donor cells to produce live, fertile offspring. The somatic donor cells could be classified as either: 1) blastomeres from the early embryo, 2) embryonic stem cells, 3) somatic stem cells, or 4) fully differentiated somatic cells. The use of blastomeres as donor cells were successfully used to generate the first mammalian clones in the mouse (McGrath and Solter, 1984), pig (Prather et al., 1989), sheep (Willadsen, 1986), and bovine(Robl et al., 1987). Embryonic stem cells have been successfully used as donor cells in the mouse (Wakayama et al., 1999; Humpherys et al., 2001). Higher rates of development have been reported when using ES cells as the donor cells compared to somatic donor cells (Zhou et al., 2001; Eggan et al., 2002). Conversely, the use of inbred 129 ES cells failed to produce any offspring that survived more than 1 day (Rideout III and Yanagimachi et al., 2000). Since ES cells have not been isolated from mammals other than mice cells, cultured somatic cells are the most common source of the donor karyoplasts in SCNT.

Adult somatic cells were first used as donor cells to produce the sheep, Dolly (Wilmut I. et al., 1997). Live offspring have been produced by using a donor cells from a wide variety of sources including fetal fibroblasts (Wilmut I. et al., 1997; Cibelli et al., 1998; Baguisi et al., 1999; Zhou et al., 2003), adult fibroblasts (Lanza et al., 2000; Galli et al., 2003), and adult cumulus cells (Polejaeva et al., 2000; Chesne et al., 2002). Recently, cloned mice were produced by using natural killer T (NKT) cells (Inoue et al., 2005). NKT cells were shown to have the same developmental potential as adult fibroblasts and cumulus cells (Wakayama et al., 2001) but greater than lymphocytes (Hochedlinger and Jaenisch, 2002). In general, the use of fetal and adult somatic cells in nuclear transfer is extremely inefficient in producing live offspring. These studies support the theory that the developmental potential is inversely correlated to the differentiation status of the donor cells (Hochedlinger et al., 2004). The highest developmental potential was observed when the donor nuclei are taken from the zygote and any additional development results in decreased developmental potential, presumably through a mechanism that increases resistance to epigenetic remodeling.

Previous studies have examined the methylation status and the expression of imprinted genes in the embryos and offspring derived by using SCNT. The specific

105

question we were interested in was to determine if the percent of development to the blastocyst of SCNT donor cells following nuclear transfer have methylation profiles, as determined by Porcine Differential Methylation Hybridization microarray analysis, that are more similar to the methylation profile of *in vivo*-produced blastocysts as compared to those that result in lower rates of development to the blastocyst stage. Our hypothesis is that there will be greater similarity between the methylation profiles of donor cells with high developmental potential and *in vivo*-produced blastocysts than between the methylation profiles of donor cells with low developmental potential and *in vivo*-produced blastocysts.

In this study, we examined the developmental potential of cultured clonal cells derived from a primary preparation of porcine fetal cells and of donor cells selected from kidney and mammary cells that were not cultured prior to SCNT. The methylation profiles of these donor cells were determined by using Porcine Differential Methylation Hybridization microarrays. The methylation profiles were then correlated to the developmental potential of the cells.

MATERIALS AND METHODS

Oocyte procurement and *in vitro* maturation

Cumulus-oocyte-complexes (COCs) were aspirated from ovaries from prepubertal gilts that were collected from a local abattoir. Germinal vesicle (**GV**)stage oocytes were either collected for PDMH analysis or matured *in vitro* prior to in *vitro* fertilization. The COCs were incubated in Tissue Culture Medium 199 (**TCM199**) (Gibco BRL, Grand Islands, NY) containing 0.1% (w/v) PVA, 10 ng/ml (w/v) epidermal growth Factor (**EGF**), 0.57 mM cysteine, 0.5 µg/ml (w/v) porcine follicle stimulating hormone (**FSH**) and 0.5 µg/ml (w/v) porcine lutenizing hormone (**LH**) (Abeydeera et al., 1998). The maturation media was pre-equilibrated in 5% CO₂ in air at 39°C overnight. COCs were matured for 40-44 hours in 5% CO₂ at 39°C prior to the removal of the cumulus cells by vortexing for three minutes in Hepes-buffered medium with 0.1% (w/v) hyaluronidase. Denuded oocytes were washed and held in modified Tris-buffered medium (mTBM) (Abeydeera and Day, 1997) prior to fertilization.

Nuclear transfer embryo production

Reconstructed embryos were produced using somatic cell nuclear transfer techniques as previously described (Lai and Prather, 2003). Porcine fetal fibroblastlike (**PFF**) cultures were established from a day 35 porcine fetus. After the second passage the cells were plated in to 96-well plates and cultured in Dubelcco's Modified Eagle Medium (**DMEM**) containing 15% (v/v) fetal calf serum (**FCS**), 75 μ g/ml (w/v) penicillin G, and 50 μ g/ml (w/v) streptomycin in 5% CO₂ at 39°C. PFF colonies were harvested and transferred to 4-cell culture dishes (Nunc) for about 26-28 population doublings prior to freezing in DMEM/15% (v/v) FBS/10% (v/v) DMSO. The clonal cell sub-lines were used as donor cells in SCNT (Figure 4.1). Seven replications were conducted with each of the donor cell lines used on the same day, thereby allowing direct comparison of the data.

Kidney and mammary tissues were collected from two full term sows and single cell suspensions were produced from the tissues after treatment with collagenase for 8 hours (Figure 4.2). The cells were frozen in 90% (v/v) FCS and 10% (v/v) DMSO. Small, round cells with smooth membranes were collected from the kidney cell preparation. Small round cells with smooth membranes and large cells with rough, asymmetrical membranes were selected from the mammary cell preparation. Six replications for mammary-small (MS) and mammary-large (ML) cells and five replications for kidney cells (K) were conducted on the same day thereby allowing direct comparison of the data.

Kidney and Mammary Donor Cell Culture

The kidney and mammary donor cells were selected and transferred to culture media in order to characterize the *in vitro* growth and morphological characteristics. Donor cells (n=150) from kidney and mammary tissues were selected and cultured under oil in 200 μ l DMEM/20% (v/v) FCS/Pen-Strep in 5% CO₂ at 37°C for 7 days. As a positive control, the original single-cell preparations were left in culture medium and cultured along with the selected donor cells. This procedure was repeated twice.

Statistical Analysis

Treatment means and cell number data were analyzed with the SAS General Linear Models Procedure (SAS Institute, Inc., Cary, NC) by using Duncan's multiple range test.

Porcine Differential Methylation Hybridization

Porcine CpG island clones from a Porcine CpG Island Library (**PCGIL**) (United Kingdom Human Genome Mapping Project, Hinxton, Cambridge, United Kingdom) were cultured in 96 well plates. The cloned inserts were amplified by polymerase chain reaction (PCR) using the library specific primers 3558 (5'- CGG CCG CCT GCA GGT CGA CCT TAA) and 3559 (5'- AAC GCG TTG GGA GCT CTC CCT TAA). The PCR reaction was performed in a 10 µl reaction containing 1X Deep Vent DNA Polymerase Buffer, 10% DMSO, 400 pM of each primer, 100 pm each dATP, dTTP, dCTP, and dGTP, and .018 units Deep Vent Polymerase (New England Biolabs, Beverly, MA). The PCR program consisted of a denaturation step at 98°C for 4 minutes followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds and extension for 72°C for 1 minute. A final extension at 72°C completed the program. PCR products were stored at -20°C until needed. Restriction digestion with *Bstu I* was performed using 1.5µl of the PCR reaction in 1X NEB 2 and 0.4 units Bstu I at 60°C for at least 1 hour. The digested and undigested PCR products were run on a 1.5% 0.5X TBE agarose gel. Bstu I positive clones where the PCR product was cut, indicating the presence of a Bstu I

site (CGCG) in the insert, were reracked and recultured in 96 well plates. Plates with *Bstu I* positive clones were PCR amplified in a 50µl reaction and purified in Millipore 96 well PCR Purification plates in preparation for printing. The purified PCR products were dried and resuspended in 10µl 50% DMSO/1% CHAPS (Rickman et al., 2003).

The resuspended PCR products were printed on Gold Seal glass microscope slides (Fisher Scientific, Hampton, NH) that were coated with 0.02% (w/v) poly-Llysine (Sigma, St. Louis, MO) in 0.5X PBS (Eisen and Brown, 1999). The slides were stored for 3 weeks at room temperature under desiccation before printing with a pick and place robot. The printed slides were cross linked at 120 mJ/cm² for 20s (Spectrolinker; Spectronics Corp., Westbury, NY) prior to blocking in 0.018% (w/v) succinic anhydride (Sigma, St. Louis, MO) and 0.043 M sodium borate (Sigma, St. Louis, MO) in 1-methyl-2-pyrrolidinone (Sigma, St. Louis, MO) (Eisen and Brown, 1999). The slides were stored under desiccation and at room temperature until hybridization.

DNA Isolation

The DNA was isolated from the donor cells by adding H_2O to a final volume of 25 µl and incubating at 98°C for 15 minutes.

Amplicon Generation, Labeling and Hybridization

Amplicons were produced by digesting the donor cell DNA with the restriction enzyme *Mse I* (50 units) in 1X NEB 2, and 1X BSA at 37°C overnight as recommended by the supplier (New England Biolabs (NEB), Beverly, MA). The restricted DNA was ligated to PCR linkers produced by mixing oligomers (H-24, 5'-AGG CAA CTG TGC TAT CCG AGG GAT and H-12, 5'-TAA TCC CTC GGA), heating to 65°C, and cooling to room temperature. The DNA was digested with the methylation sensitive restriction enzyme *Bstu I* (NEB) as recommended. The intact DNA fragments were amplified by PCR using H-24 as the linker specific primer. The PCR program consisted of a denaturation step at 98°C for 5 minutes followed by 40 cycles of denaturation at 95°C for 1 minute, annealing at 55°C for 1 minute and extension for 72°C for 1 minute. A final extension of 72°C for 10 minutes completed the program.

The PCR products were labeled with amino allyl-dUTP using the BioPrime labeling system with modifications. The PCR products were purified with a Qiagen PCR Purification Kit and resuspended in 29 µl H₂O, mixed with 1X Bioprime buffer, dNTPs (2:3 dUTP:dTTP, dATP, dGTP, dCTP), 40 units Klenow, and incubated for 60 minutes at 37°C. Amino allyl-dUTP incorporated PCR products were purified with the Qiaquick columns using PB buffer, phosphate washing buffer (5mM KPO₄, 80% E to H, pH 8.0) and phosphate elution buffer (4 mM KPO₄, pH 8.5). The samples were dried and resuspended in 0.1 M sodium carbonate buffer (pH 9.0) and mixed with Cy3 for the donor cell DNA or mixed with Cy5 for the liver reference sample. The samples were incubated for 60 minutes at room temperature. The labeling reactions were purified with Qiaquick columns by using PB buffer, PE buffer, and EB buffer. The labeling efficiency was then analyzed spectrophotometrically by using the Nanodrop ND-1000 (Nanodrop, Wilmington, DE). Comparable amounts of labeled test sample and liver reference sample, based on the incorporation of the Cy 3 and Cy5 dyes, were mixed together. The combined samples were purified, dried, and resuspended in 26 µl hybridization buffer (50% formamide, 5X SSC, 0.1% SDS). The samples were denatured at 95°C for 3 minutes and immediately transferred to ice before being applied to a microarray slide with a coverslip. The microarrays were incubated at 42°C for 8-12 hours before removing the coverslip in Wash I (1X SSC/0.2% (w/v) SDS), and washing in Wash II (1X SSC/0.2% (w/v) SDS), Wash IVI (0.1X SSC), and Wash V (H₂O). The slides were immediately dried by using centrifugation at 1500xg for 5 minutes, and scanned with an Axon 4000B scanner.

Microarray Analysis

Microarray images were analyzed with GenePix 4.0 and spots with intensities where at least 25% of the pixels were greater than 1 standard deviation from the background in either the Cy3 or Cy5 channel were further analyzed with Gene Spring version 7.2. The LOWESS normalized data was analyzed by ANOVA assuming all variances to be equal, P<0.05 using the Benjamini and Hochberg False Discovery Rate for multiple testing. Specific clones were selected for sequencing based on the similarity or significant difference in the methylation profiles of sperm and *in vivo*produced blastocysts (Bonk et al., 2006). Donor cell methylation profiles and bisulfite sequencing results were compared to the liver and *in vivo*-produced blastocyst methylation profiles and bisulfite sequencing results previously described (Bonk et al., 2006).

Bisulfite Sequencing Analysis

The DNA from the clonal donor cells was treated with bisulfite by using the EZ DNA Methylation-Gold Kit (Zymo Research, Orange, CA) according to the vendor's recommendations. Primers (Table 4.1) were designed for bisulfite treated DNA by using the MethPrimer software (Li et al., 2002). PCR was performed as shown below:

H ₂ O	32.5 µl
DNTP	1.3 µl
10X Buffer (TagGold)	5 µl
MgCl ₂	5 µl
Forward Primer (10 µM)	2 µl
Reverse Primer (10 µM)	2 µl
DNA (Bisulfite treated)	2 µl
AmpliTaq Gold (5u/µl)	<u>0.25</u> μl
Total	50 µl

The PCR program consisted of a denaturation step at 98°C for 3 minutes followed by 50 cycles of denaturation at 95°C for 15 seconds, annealing at 55°C for 30 seconds and extension for 72°C for 30 seconds. A final extension of 72°C for 5 minutes completed the program.

The PCR reaction was purified by using the Qiaquick columns as described by the vendor. The PCR products were cloned by using the pGEM T-Easy Kit (Promega, Madison, WI) according to the vendor's recommendations. The vectors were transformed in to DH10B cells (Invitrogen) and grown on LB/IPTG/X-Gal/Ampicillin agar plates. Recombinant colonies were selected for sequencing based on the blue/white screening criteria. The cytosines of the CpG sites were identified as methylated or unmethylated if a C or T was present in the sequence, respectively. The percent methylation was calculated for the respective sequence and the methylation status of the microarrays and bisulfite sequencing were compared. A ratio of liver:donor cell methylation was calculated by using the following formula,

 $Rm = (100 - M_S) / (100 - M_L)$

Where: M_S is the average % CpG methylation for a sequence in the sample

M_L is the average % CpG methylation for a sequence in the liver reference

The use of this formula provides a means to calculate a ratio that indicates the relative levels of methylation in a given sequence when one of the samples lacks methylated CpG dinucleotides. The ratios produced from the microarray and bisulfite

analysis were classified as consistent when the bisulfite analysis-produced ratio indicated the sample was hypomethylated (>1) or hypermethylated (<1) and matched the hypermethylation status of the microarray-produced data. From the microarrayproduced ratios, the samples were classified as hypermethylated when the ratio was <0.75 and the sample was classified as hypomethylated when the ratio was >1.25.

RESULTS

Development of Reconstructed Embryos after Somatic Cell Nuclear Transfer

The blastocyst rate for the clonal cell lines were significantly higher (p<0.05) for A8 (20.0%) than for A2 (11.7%) (Table 4.2). Significant differences were not observed for the fusion rates, cleavage rates or the mean cell numbers for the clonal cell lines. The blastocyst rate for the MS donor cells (18.3%) was significantly higher (P<0.05) than the K (4.2%) donor cells (Table 4.3). The cleavage rate was significantly higher (P<0.05) for the ML and MS donor cells (46.7% and 45.9%) than for the K donor cells (26.2%). Mean cell numbers of the blastocysts for the K, MS, and ML cells were 22.8, 23.6, and 26.3, respectively. Significant differences were not observed for the fusion rates or the mean cell numbers for the ML, MS, and K donor cells.

Differential Methylation in the Donor Cells and Blastocysts

Microarray data was analyzed by using the GeneSpring 7.2 software to perform an ANOVA assuming all variances to be equal, P<0.01 using the Benjamini and Hochberg False Discovery Rate for multiple testing. Of the 2,445 clones that were analyzed, 380 (15.5%) were found to be significantly different in at least one of the biological conditions of donor cells and *in vivo*-produced blastocysts.

A condition tree was generated based on the methylation profiles of the clonal cell lines, kidney cells, mammary cells and the *in vivo*-produced blastocysts by using the GeneSpring 7.2 software (Figure 4.3). Bootstrap analysis by using the TIGR Multiple Array Viewer software was used to validate the condition tree generated by using the GeneSpring 7.2 software (Fig. A.4). Samples with high levels of similarity in the overall methylation profiles are grouped together in the condition tree. Increasing disparity in the methylation profiles results in the samples being located farther apart in the condition tree. Conversely, the donor cells with the highest blastocysts rates after SCNT (A8 (16.7%), MS (18.3%), and A7 (20.0%)) grouped away from the *in vivo*-produced blastocysts. These results show that the similarities of the donor cell and *in vivo*-produced blastocyst methylation profiles appear to be inversely correlated with the developmental potential of the donor cells after SCNT.

Additional validation of the hierarchical clustering was performed by using bootstrap analysis. These results are presented in Figure A.4 in the Appendix. Unfortunately, the TIGR Multiple Array Viewer software used to do the bootstrap analysis does not include the same correlation analysis that is used by the GeneSpring software. Specifically, the Standard Correlation used in the GeneSpring software is commonly referred to as Pearson correlation around zero. The TIGR Multiple Array Viewer does not contain this correlation procedure so the Pearson Correlation analysis was substituted. Therefore, caution should be used in attempting to extrapolate the bootstrapping results to the clustering generated by using GeneSpring. The strongest support was provided for the clustering of the MS and *in vivo*blastocysts.

Donor Cell Culture

After 7 days in culture, no cells were observed in the culture drops for the K or the MS cells. Conversely, cells were observed to be growing from the ML donor cell group. These cells had a spindle shape associated with fibroblast-like cells or a "cobblestone" shape associated with endothelial cells.

Bisulfite Sequencing Analysis

Spots previously identified as differentially methylated in the donor cells and the blastocyst groups were selected for additional analysis by using bisulfite modified PCR (Bonk et al., 2006). The methylation status for 5 clones (B G2, HH A7, K D3, S E3, and X G2) was determined in the clonal cell lines A2 or A7 (Figure 4.4-4.8). The methylation liver/donor cell methylation ratios were calculated for 5 clones using DNA from the clonal cell lines A2 and A7. The ratios calculated from the percent methylation of the reference and test samples based on bisulfite PCR analysis were similar for the five samples that were tested (Table 4.4). The PDMH values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and in the clonal donor cells (Cy3) samples. The Bisulfite Analysis values represent the relative methylation levels in the liver and in the clonal donor cells at selected regions of the specified clones. The clonal cell line (A2 or A7) is shown in parentheses. The Bisulfite Analysis values were calculated from the equation shown in the Materials and Methods section. Bisulfite Analysis data and the microarray analysis data are in agreement for all of the samples. Differential methylation hybridization microarray analysis of the methylation levels of the donor cells was validated by the bisulfite modification PCR analysis and depicted graphically (Figure 4.9).

Similarity of Donor Cells and In Vivo-Produced Blastocyst Methylation Profiles

The similarity of methylation profiles in the donor cells and the *in vivo*produced blastocysts were analyzed by using Self Organizing Map analysis. Clones that had similar hypomethylation and hypermethylation to in *vivo*-produced blastocysts clustered together are shown in Figure 4.10. Hierarchical clustering with bootstrapping was performed by using the TIGR Multiple Array Viewer software to validate the clustering generated with the GeneSpring software (Figure A.4). The complete Self Organizing Map analysis is shown in Figure A.5 and the BLAST analysis of the sequenced genes is shown in Table A.3. The Cy5/Cy3 ratios of the normalized ratios are shown where the reference sample was labeled with Cy5 and the test sample was labeled with Cy3. The Cy5/Cy3 ratio of one indicates equivalent hybrization levels are calculated for the normalized ratio. A Cy5/Cy3 ratio greater than one indicates there is less methylation in the test sample than in the reference sample. Conversely, a Cy5/Cy3 ratio less than one indicate that the test sample is more methylated than the reference sample. Of particular interest are those groups that show a general trend that correlates to the blastocyst rate. These results suggest that the genes associated with the clones in these groupings may be important in the regulation of developmentally relevant genes. Alternatively, these clones may represent regions that are resistant to epigenetic remodeling during early development and this resistance results in lower development rates following SCNT.

DISCUSSION

To date, studies of epigenetics and SCNT typically involved the identification of factors related to culture conditions that affect the methylation of the donor cells and the reconstructed embryos, or to the identification of errors in epigenomic reprogramming at some point after the SCNT procedure. The objective of this study was to correlate the methylation profiles of various donor cells prior to SCNT to the developmental potential of the respective reconstructed embryos following SCNT. Our hypothesis was that the donor cells with the highest blastocyst rate, measured by the blastocyst rate after *in vitro* culture, would have methylation profiles that were the most similar to the methylation profiles of *in vivo*-produced blastocysts. The results presented here show that there are subpopulations of somatic cells in tissues that have differential potential to direct the development of reconstructed embryos. This differential potential to direct development occurs with donor cells that have undergone extended culture as well as with donor cells that have not been cultured. The significantly lower cleavage rate and blastocyst rate observed in the kidney donor cells imply an intrinsic resistance of the epigenome to reprogramming following SCNT.

We used a microarray based approach to characterize the methylation profiles of the donor cells from adult somatic tissues and fetal tissues and the methylation profiles of *in vivo*-produced blastocysts (Bonk et al., 2006). The similarities of the donor cell methylation profiles and the methylation profiles of the in vivo-produced embryos were inversely correlated. Specifically, donor cells from kidney tissues were found to have methylation profiles with the highest similarity to in vivo-produced embryos and the lowest blastocyst rate following SCNT of all the donor cells. Conversely, the methylation profiles of the small mammary cells and the clonal cell lines A7 and A8 were found to be the most dissimilar to the in vivoproduced blastocyst, yet these donor cells yielded the highest rate of blastocyst development. It should be noted that the entire blastocyst, including the inner cell mass and the trophoblast cells, was included in generating the methylation profile. The effect of analyzing this mixed population of cell types is not known since the differences in the global methylation status of the *in vivo* inner cell mass and trophectoderm has not been extensively studied.

One reason mouse ES cells have been used in SCNT is because it is thought that the epigenetic programming is limited in such a way that there will be minimal reprogramming needed to mimic that of the early blastomere thereby resulting in higher rates of development. Somatic cells are used as donor cells in all other animals since true ES cells have yet to be identified. Here we showed that the lowest rates of blastocyst development were shown to be associated with cells that were the most similar to the methylation profile of the *in vivo*-produced blastocyst.

The donor cells used in the current study were either clonally derived or were selected, based on morphology, from kidney or mammary cells that were not cultured *in vitro*. The goal of both strategies was to start with a homogenous population of donor cells thereby minimizing the likelihood that only a small, select population of donor cells in a primary culture are primarily responsible for the development of the reconstructed embryos. Cells were identified in the clonally derived cells and also the uncultured cells that resulted in high, medium, and low rates of blastocyst development. These results support the idea that successful nuclear transfer requires reprogramming of the donor cells. This basic idea had been intuitively accepted without the presence of a comprehensive study that would control for the technical problems that may affect development. Hiiragi and Solter (2005) recently demonstrated that the developmental rate of reconstructed embryos is inversely correlated to the stage of the embryos from which the donor blastomeres were collected. These results indirectly supports other studies where the rates of blastocyst development and the production of live offspring following SCNT decreases when

121

donor cells are collected from progressively later stages of the early mouse embryo (Cheong et al., 1993; Heyman et al., 2002; Hiiragi and Solter, 2005) and the early cattle embryo (Heyman et al., 2002).

Most nuclear transfer experiments have used donor cells that were cultured *in vitro*. In this experiment, we used adult somatic cells that had not been extensively cultured *in vitro*. These groups were included to assess the effect of minimizing the effect that culture medium and extended culture times have on the methylation status and blastocyst rates following SCNT. The large disparity we observed in the blastocyst rates of the kidney cells and the small mammary cells was not expected. This difference in developmental potential seems to indicate that the epigenetic status of the selected kidney cells is significantly more resistant to reprogramming and remodeling than the other donor cells.

The inability of the kidney cells and the small mammary cells to grow in standard culture medium suggests that there is a selection process when primary cultures are established from fetal or somatic tissues. These cells may be a form of stem cells that requires stem cell specific media that contains growth factors such as LIF, EGF, PDGF, bFGF, ECGF, and insulin (Kues et al., 2005). The presence of cells in the adult mammary tissues that result in high blastocyst rates following SCNT, but are likely excluded from most primary cell culture preparations, presents a potential source of a stem cell-like cell population that is highly abundant in mammary tissues and probably most other tissues. Optimization of the selection procedure and of the culture media for these cells could create a readily available population of cells with

the developmental potential that is functionally similar to isogenic embryonic stem cells. Potentially homologous subpopulations of multitotent cells in the adult mouse testis have been found to contribute to the multiple organs after injection in to the early blastocyst (Guan et al., 2006). *In vitro* culture in the appropriate media resulted in the development of these cells to derivatives of the three germ layers.

In conclusion, this study shows that a wide range of developmental potential is present in donor cells regardless of whether the cells were in extended *in vitro* culture. Also, the similarity of the methylation profiles of the donor cells to the *in vivo*-produced blastocyst shows an inverse correlation to blastocyst rate following nuclear transfer. Therefore, the epigenetic condition of some donor cells is resistant to the detrimental effects of extended culture on donor cells, and there are subpopulations in somatic cells that show variable resistance to epigenetic remodeling following SCNT.

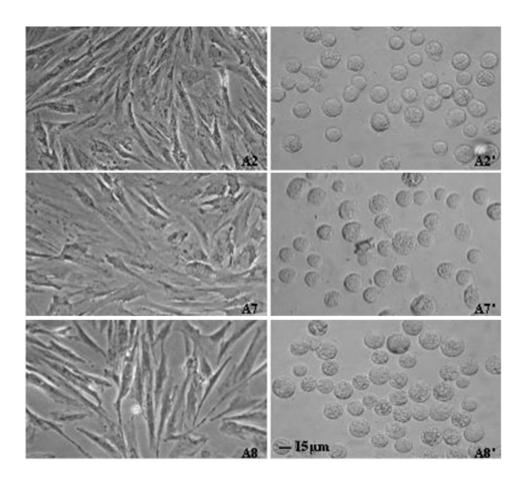


Figure 4.1. Clonal cell lines cultured (A2-A8) and trypsinized (A2'-A8')

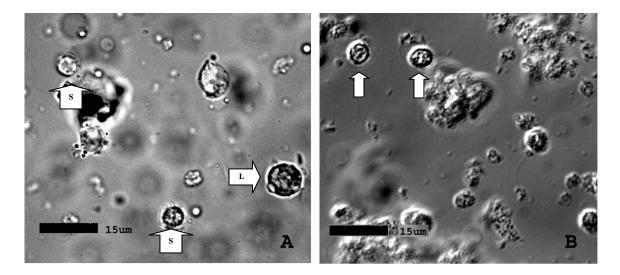


Figure 4.2. Somatic donor cells from mammary (A) and kidney (B) tissues. Arrows indicate the large (L) and small (S) cells that were selected from the mammary cells.

CPG Clone	Primer position	5'3'
B G2	LEFT	TTT TAT TAA TGG GAG GTA GAA TTA G
B G2	RIGHT	TAA AAA CAA AAT TCT CCC AAC CTC
HH A7	LEFT	GTT AAA GTT TGG AGT AAA AGG TG
HH A7	RIGHT	AAT TTA AAA CCC CAT ATT AAA ACC
K D3	LEFT	AAT AAT AAA GTT TTA GGA GGG ATT T
K D3	RIGHT	ATA CTA CCC AAC CCA AAC AAA AAA
SE3	RIGHT	AAA AAA AAT AAC AAT TCC ACC ACC
SE3	LEFT	GTT TAT GGG GAA GTT TAG GGT AGA G
X G2	RIGHT	TAA ACA CTA ACC CAA AAA AAC CTT C
X G2	LEFT	GTT TGG TAG GGG AGT TTG TAG AGT

Table 4.1. Bisulfite modification specific primers

Table 4.2. *In vitro* development of SCNT-produced embryos derived from porcine fetal fibroblast-like clonal cell lines. The blastocyst rates for the clonal cell lines A2, A7, and A8 were significantly different (a,b in the same column, P<0.05) after SCNT. A significant difference was not observed for the fusion rate, cleavage rate, or blastocyst cell number.

Cell-line	No. (%) of fused/manipulated	No. (%) of cleaved	No. (%) of blastocyst	# Cell (mean±SE) in blastocysts (range)
A2	94/139 (67.6)	66 (70.2)	11 (11.7) ^a	25.5±2.0 (17-42)
A7	84/133 (63.2)	63 (75.0)	14 (16.7) ^{ab}	24.3±1.6 (18-40)
A8	95/131 (72.5)	67 (70.5)	19 (20.0) ^b	25.7±1.4 (19-37)

Table 4.3 *In vitro* development of SCNT-produced embryos derived from porcine adult mammary and kidney tissue. The blastocyst rates for the donor cells Kidney, Mammary-Large, and Mammary-Small were significantly different (a,b in the same column, P<0.05) after SCNT. A significant difference was not observed for the fusion rate, cleavage rate, or blastocyst cell number.

Donor cell	No. (%) of fused/manipulated	No. (%) of cleaved	No. (%) of blastocyst	# Cell (mean±SE) in blastocysts (range)
Kidney	103/224 (46.0)	27 (26.2) ^a	4 (4.2) ^a	22.5±2.2 (16-27)
Mammary-Large	77/179 (37.5)	35 (46.7) ^b	8 (10.7) ^{ab}	23.6± 1.3 (21-25
Mammary- Small	77/179 (43.0)	34 (45.9) ^b	22 (18.3) ^b	26.5±2.6 (19-44)

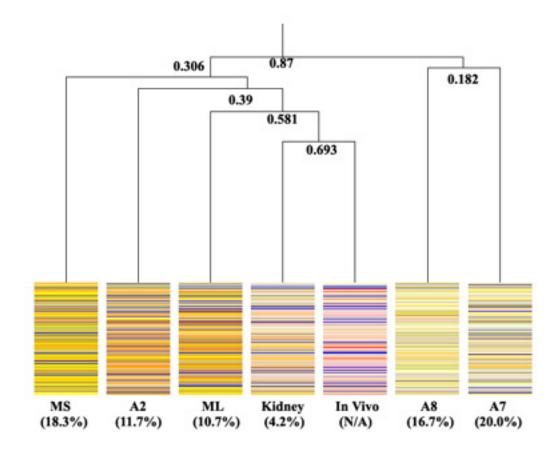


Figure 4.3. Hierarchical clustering of the methylation profiles of the clonal donor cells (A2, A7, and A8,), somatic cells (kidney, (K), Mammary-Large (ML), and Mammary-Small (MS)), and *in vivo*-produced blastocysts. Developmental potential is negatively correlated to similarity to the *in vivo*-produced blastocyst methylation profile. Donor cells that with the lowest blastocyst rates after SCNT had the most similar methylation profiles while donor cells with higher blastocyst rate did not cluster with the *in vivo*-produced blastocysts. The blastocyst rate after SCNT is shown in parentheses below each of the donor cell types.

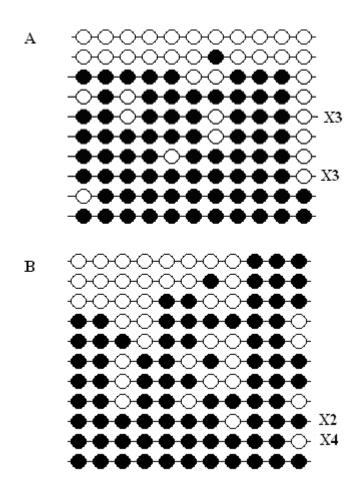


Figure 4.4. Methylation status of the Clone B G2 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The liver and donor cell epigenomes show similar levels of methylation at this region.

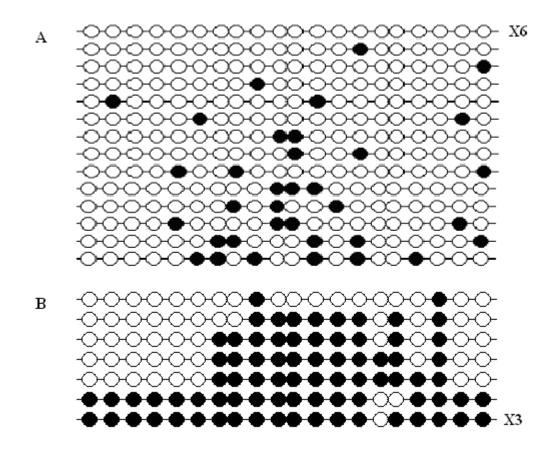


Figure 4.5. Methylation status of the Clone HH A7 in the liver (A) and clonal cell line A7 (B) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The donor cell epigenome shows higher methylation than the liver genome at this region.

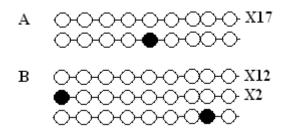


Figure 4.6. Methylation status of the Clone K D3 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The liver and donor cell epigenomes are essentially unmethylated at this region.

Figure 4.7. Methylation status of the Clone S E3 in the liver (A) and clonal cell line A2 (B) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The liver and donor cell epigenomes are essentially unmethylated at this region.

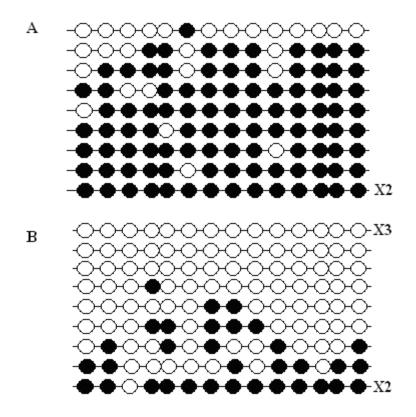


Figure 4.8. Methylation status of the Clone X G2 in the liver (A) and clonal cell line A7 (B) detected by using bisulfite sequencing. Closed circles identify methylated cytosines and open circles identify unmethylated cytosines in the sequenced clones. The number of clones with the same methylation pattern is shown to the right of the sequence. The liver is hypermethylated relative to the donor cell epigenome.

Table 4.4. Methylation status of CpG sites of five regions were analyzed by using PDMH microarrays and bisulfite modification PCR sequencing. Similar ratios were derived based on the methylation levels detected in the liver and in vivoproduced blastocysts when analyzed by either method. The PDMH values are LOWESS normalized Cy5/Cy3 ratios representing the methylation status of the specified clones in the liver (Cy5) and in the clonal donor cells (Cy3) samples. The Bisulfite Analysis values represent methylation in the liver and in the clonal donor cells at selected regions of the specified clones. The clonal cell line (A2 or A7) is shown in parentheses. The Bisulfite Analysis values were calculated from the equation shown in the Materials and Methods section. Bisulfite Analysis data validates the microarray analysis data for all the samples. The ratios produced from the microarray and bisulfite analysis were classified as consistent when the bisulfite analysis-produced ratio indicated the sample was hypomethylated (>1) or hypermethylated (<1) and matched the hypermethylation status of the microarrayproduced data. From the microarray-produced ratios, the samples were classified as hypermethylated when the ratio was < 0.75 and the sample was classified as hypomethylated when the ratio was >1.25.

Α		
	Bisulf	ite Analysis
CPG Clone	Liver	Donor Cell
B G2 (A7)	69.2%	73.9%
HH A7 (A7)	9.2%	65.6%
K D3 (A2)	0.7%	1.5%
S E3 (A7)	6.9%	0.0%
X G2 (A2)	80.7%	16.3%

В

Referer	nce/Sample
Bisulfite	Microarray
0.847	1.180
0.379	0.530
0.992	0.610
1.074	1.310
4.337	2.640

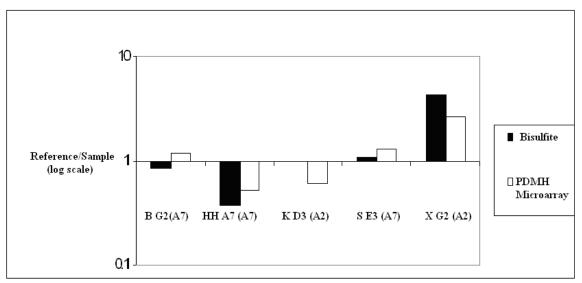


Figure 4.9. Methylation status of CpG sites of five regions were analyzed by using PDMH microarrays and bisulfite modification PCR sequencing. Similar ratios were obtained when methylation was analyzed by either method thereby validating the microarray data.

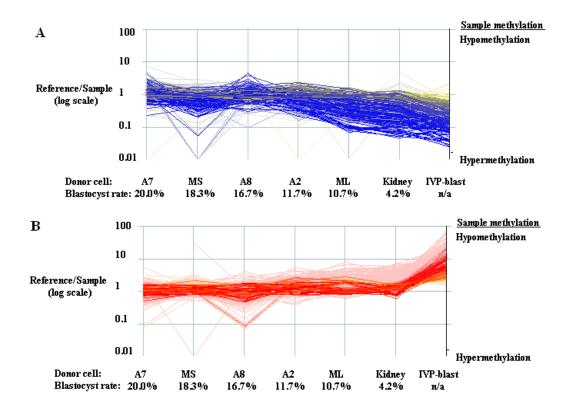


Figure 4.10. Clones with similar methylation profiles in the donor cells and the *in vivo*-produced blastocysts were clustered by using Self Organizing Map analysis. Hypermethylation (A) and hypomethylation (B) of the donor cells are correlated with lower blastocyst rates after SCNT. Those shown above were found to be different (P<0.01) in at least one of the biological samples of donor cells.

CHAPTER V

SUMMARY

The purpose of this research is to study the dynamics of DNA methylation in porcine gametes and in early embryos produced by using *in vivo*, *in vitro*, parthenogenetic, and SCNT procedures. An additional purpose of this research is to assess the methylation profiles of clonal cell lines and adult somatic cells with respect to developmental potential following SCNT. Using Differential Methylation Hybridization microarrays and bisulfite sequencing analysis, we showed that blastocysts produced by using *in vitro* techniques fail to be epigenetically remodeled compared to in vivo-produced blastocysts. The remodeling of in vitro-produced blastocysts shared the least similarity to the in vivo-produced blastocysts despite having higher developmental potential after embryo transfer to a recipient than the parthenogenetic- and SCNT-produced blastocysts. Furthermore, the similarity of the methylation profiles of the donor cells to the *in vivo*-produced blastocyst shows an inverse correlation to blastocyst rate following SCNT. Specifically, the epigenetic condition of some donor cells is resistant to the detrimental effects of extended culture on donor cells, and there are subpopulations in somatic cells that show variable resistance to epigenetic remodeling following SCNT.

These studies show that donor cells with methylation profiles that are similar to the *in vivo*-produced blastocyst, including the trophectoderm and the inner cell

mass, are not as developmentally competent following SCNT when compared to donor cells that have methylation profiles which are less similar to the *in vivo*produced blastocyst. These results are consistent with previous studies where blastomeres could not be used successfully as donor cells in SCNT (McGrath and Solter, 1984; Wakayama et al., 2000). Apparently, a substantial epigenetic change occurs in the murine cells of the ICM to the generation of embryonic stem cells (ESC) to make the ESCs competent to produce live offspring following SCNT. It follows that previous attempts to generate ESCs, with the exceptions of humans and mice, induces epigenetic changes such that differentiation is unavoidable with the culture media tested to date.

Hiiragi and Solter (2005) demonstrated that the earliest stage of blastomeres resulted in the highest rate of blastocyst development. Recent successes in establishing pluripotent stem cells from somatic tissues (Guan et al., 2006) demonstrates a potential alternative to the ethical challenges of embryonic stem cells. This study demonstrates that PDMH microarray analysis is an effective procedure for the identification of cells with high developmental potential following SCNT. The most appropriate follow-up studies will identify the methylation profiles of cells with the highest developmental potential (i.e. early zygote). The resulting methylation profile can then be used to identify populations of somatic stem cells that have high developmental potential following SCNT. Identification of the appropriate *in vitro* culture media could allow for the selection of a population of pluripotent cells from many different adult tissues.

The putative cross-hybridization observed with the microarray analysis appears to result from an interaction of the relatively large size of the sequences that were spotted on the arrays and the common regions of multiple sequences. Specifically, hypermethylation of these similar sequences may result in crosshybridization in the microarray analysis resulting in a false positive signal for a given sequence as shown by using bisulfite sequencing. This issue could be rectified by spotting shorter sequences on the microarrays. Optimally, the spotted sequences would be shorter (170 base pairs instead of 500 base pairs) and would match the sequences analyzed with the validation procedure (e.g. bisulfite analysis or pyrosequencing). The putatively imprinted genes (Table 3.8) are a reasonable listing of sequences to include in the next generation of PDMH microarrays.

The selection of donor cells for SCNT from a heterogeneous population of cells will likely result in the selection of numerous cell types. Accordingly, the developmental potential, as measured by the blastocyst rate after SCNT, will reflect an average of the developmental potential of the donor cells that were selected. Likewise, the effect of a specific treatment of the donor cells prior to SCNT will reflect the average effect on the change in development of the various cell types rather than the effect on a unique cell population. Therefore, in the future it is critical that procedures are developed to ensure that a homogenous population of cells is selected for SCNT studies thereby allowing for the real effect of a treatment on developmental potential to be identified.

APPENDIX

Systematic Name	A A4	A B11	A C10	A C11
In vivo Blast t-test p-value	0.0933	0.279	0.00359	0.000204
In vivo Blast normalized	1.401 (0.99 -2.932)	1.351 (0.988 -3.484)	2.271 (1.245 -3.244)	5.945 (4.557 -9.744)
In vitro Blast t-test p-value	0.0044	No reps.	0.123	0.00134
In vitro Blast normalized	0.504 (0.399 -0.61)	0.01*	0.668 (0.341 -1.263)	0.636 (0.498 -0.793)
NT Blas t t-test p-value	0.0962	0.749	0.301	0.0735
NT Blast normalized	1.735 (0.933 -4.291)	1.053 (0.679 -1.895)	1.19 (0.887 -2.346)	1.235 (1.032 -1.673)
Parth Blast t-test p-value	0.7	0.964	0.257	0.485
Parth Blast normalized	0.915 (0.638 -2.601)	1.023 (0.558 -2.432)	0.883 (0.637 -1.267)	0.934 (0.734 -1.211)
GV Oocyte t-test p-value	0.0192	0.659	0.731	0.0249
GV Oocyte normalized	0.594 (0.332 -0.87)	0.869 (0.511 -1.781)	0.881 (0.196 -1.578)	0.861 (0.717 -1.025)
Sperm t-test p- value	0.704	0.887	0.0739	0.122
Sperm normalized	1.072 (0.575 -1.949)	0.984 (0.603 -1.263)	1.202 (0.974 - 1.581)	0.803 (0.454 -0.971)

Table A.1. PDMH analysis identified spots (n=921) with significant differences (P<0.01) in the methylation in the gametes and blastocysts

1 at	ole A	1.1 (con	unu	cu)							
0.814 (0.432 -1.07)	0.178	0.979 (0.826 -1.108)	0.721	1.619 (0.838 -3.58)	0.127	1.777 (1.497 -2.224)	0.000462	1.135 (0.719 -1.76)	0.601	2.945 (1.229 -7.311)	0.00627	A C12
0.924 (0.469 - 1.29)	0.663	1.193 (0.815 -1.55)	0.189	1.123 (0.784 -1.524)	0.359	1.413 (0.995 -1.983)	0.0359	0.784 (0.631 -0.961)	0.0162	3.931 (1.559 -7.722)	0.00159	A C3
0.874 (0.63 -1.182)	0.177	0.91 (0.824 -1.023)	0.0447	0.967 (0.778 -1.1)	0.542	0.978 (0.707 -1.428)	0.875	0.73 (0.604 -0.899)	0.00392	2.867 (1.667 -4.983)	0.0348	A C6
0.725 (0.394 -1.198)	0.137	2.128 (1.195 -2.943)	0.00291	0.903 (0.509 -1.344)	0.537	0.855 (0.477 -1.151)	0.278	0.821 (0.333 -3.541)	0.596	2.877 (1.276 -8.33)	0.00912	A C8
0.895 (0.829 -0.967)	0.00548	0.749 (0.53 -0.9)	0.0182	0.961 (0.568 -1.309)	0.773	1.184 (0.693 -2.332)	0.418	0.571 (0.355 -0.855)	0.021	13.45 (3.478 -104.1)	0.00495	A D3
0.789 (0.575 -1.271)	0.103	0.564 (0.324 -0.726)	0.00961	1.048 (0.802 -1.511)	0.655	1.082 (0.88 -1.433)	0.334	0.987 (0.646 -1.729)	0.937	5.75 (1.914 -9.167)	0.000857	A D8

Table A.1 (continued)

Tat	ole A	<u>.1 (</u>	con	tınu	ed)	1		1				
1.386 (0.862 -2.378)	0.223	0.975 (0.742 -1.229)	0.783	1.16 (0.613 -1.73)	0.414	2.302 (1.222 -5.622)	0.00935	0.936	No reps.	4.114 (2.072 -9.441)	0.00814	A D9
0.878 (0.789 -0.963)	0.00988	1.101 (0.849 -1.443)	0.418	1.77	No reps.	1.294 (0.698 -1.607)	0.299	5.53	No reps.	2.152	No reps.	A E5
0.928 (0.828 -1.034)	0.106	1.166 (0.875 -1.659)	0.305	1.045 (0.853 -1.386)	0.575	1.497 (1.058 -1.78)	0.00466	0.771 (0.36 -1.244)	0.205	6.825 (3.975 -15.44)	6	A F10
1.174 (1.018 -1.412)	0.0297	0.994 (0.862 -1.148)	0.905	0.969 (0.737 -1.254)	0.675	1.107 (0.907 -1.505)	0.317	1.011 (0.523 -1.499)	0.948	4.504 (1.31 -41.59)	0.0557	A F2
0.974 (0.728 - 1.316)	0.777	0.735 (0.363 -1.26)	0.128	1.362 (0.623 - 2.368)	0.414	1.255 (0.621 -2.572)	0.349	0.01*	No reps.	1.681 (1.096 -2.344)	0.00952	A G1
0.806 (0.567 -1.124)	0.0771	0.965 (0.755 -1.36)	0.745	0.986 (0.673 -1.371)	0.907	1.537 (1.109 -1.961)	0.00352	0.856 (0.516 -1.149)	0.256	7.457 (4.724 -11.27)	0.000291	A H10

Table A.1 (continued)

Ta	ble /	A.1	(cor	ntinu	ied)					1		
1.184 (1.029 -1.558)	0.0424	3.084 (1.84 -5.356)	0.00611	1.753 (0.89 -2.656)	0.0489	1.621 (1.398 -2.235)	0.00417	0.73 (0.568 -0.933)	0.013	12.49 (7.937 -16.69)	3.68E -05	AA A1
1.395 (0.894 -3.561)	0.369	1.71 (1.141 -2.25)	0.0119	0.785	No reps.	0.814 (0.531 -0.994)	0.173	0.01*	No reps.	0.889 (0.323 -2.212)	0.705	AA C11
0.391 (0.276 -0.534)	0.000265	0.384 (0.24 -0.623)	0.00201	1.017 (0.265 -3.846)	0.972	1.376 (0.894 -1.931)	0.0477	1.597 (1.083 -3.699)	0.196	2.749 (2.05 -3.627)	4.81E -05	AA D10
0.958	No reps.	2.702 (1.756 -4.186)	0.00129	1.386 (1.028 -1.892)	0.0205	1.323 (0.938 -1.595)	0.0371	0.738 (0.395 -0.944)	0.0702	47.82 (23.4 -124.5)	3.52E -05	AA D12
0.67 (0.589 -0.813)	0.000278	0.742 (0.593 -0.897)	0.0126	1.053 (0.788 -1.585)	0.648	1.159 (0.718 -1.997)	0.448	0.657 (0.392 -0.97)	0.0257	4.259 (1.329 -41.02)	0.0609	AA D2
1.192 (1.155 -1.23)	0.114	0.951 (0.796 -1.082)	0.644	NO DATA	NO DATA	1.56 (1.269 -2.5)	0.0698	2.444	No reps.	0.565 (0.434 -0.76)	0.0277	AA D6

Table A.1 (continued)

AA D7	AA E10	AA E12	AA F11	AA F7	AA G5
	:				
0.0129	No reps.	3.88E -05	0.205	0.00286	0.00589
3.608 (2.807 -4.671)	11	3.665 (2.939 -5.611)	1.315 (0.98 -1.569)	11.2 (6.699 -20)	6.574 (2.057 -18.24)
No reps.	No reps.	0.503	NO DATA	NO DATA	0.0634
0.463	3.5	0.83 (0.568 -1.702)	NO DATA	NO DATA	0.74 (0.437 -0.943)
0.00193	0.000707	0.00262	0.307	0.00079	0.375
2.109 (1.616 - 2.706)	2.907 (2.063 -4.193)	1.817 (1.363 -2.753)	1.187 (0.804 -1.562)	2.096 (1.703 -2.521)	1.136 (0.821 -2.048)
0.0468	0.00924	0.169	No reps.	0.0849	0.472
2.016 (1.319 -5.283)	2.366 (1.596 - 3.093)	1.251 (0.696 -1.745)	7.619	2.046 (1.382 -2.992)	0.935 (0.731 -1.326)
0.0333	0.607	0.624	0.301	0.00118	0.00274
1.493 (1.069 - 2.018)	1.163 (0.378 - 2.536)	1.085 (0.633 -1.773)	1.227 (0.913 -1.442)	3.601 (1.966 -4.708)	0.851 (0.759 -0.93)
0.998	0.758	0.282	0.376	0.78	0.133
1 (0.631 -2.007)	0.956 (0.675 -1.656)	1.079 (0.816 -1.226)	1.171 (0.791 -1.604)	0.936 (0.466 -1.815)	0.775 (0.495 -1.008)

_

Table A.1 (continued)

1.023 (0.808 -1.679) 0.899	1.099 (0.796 -2.062)	1.205 (0.929 -1.46)	0.807 (0.682 -0.917)	0.847 (0.436 - 1.065)
1.204 (0.848 -1.804) 0.847	1.059 (0.813 -1.502) 0.607	2.777 (1.666 -4.361) 0.0725	0.98 (0.559 -2.339) 0.00492	1.347 (1.042 -1.865) 0.29
0.249	0.531	0.0018	0.936	0.0279
2.138 (1.106 - 3.162)	1.26 (0.583 -2.447)	1.648 (1.315 -2.506)	1.226 (0.977 - 1.672)	1.52 (0.91 -3.012)
0.0138	0.305	0.0152	0.0835	0.122
2.922 (1.512 - 7.96)	1.99 (1.306 -3.043)	1.482 (0.933 -2.618)	1.456 (0.813 - 2.871)	2.916 (1.392 -4.52)
0.0101	0.00465	0.0462	0.0956	0.00286
1.578 (0.828 -3.054)	1.147 (0.852 -1.983)	0.793 (0.434 -1.214)	0.819 (0.709 -0.942)	2.233 (0.978 -4.4)
0.2	0.516	0.203	0.00445	0.0678
6.923 (5.315 - 10.63)	4.949 (3.349 -14.09)	33.62 (20.45 -73.36)	30.4 (15.16 -134.5)	10.29 (4.81 -16.24)
0.000125	0.00381	7.02E -06	0.00042	0.0427
B A5	BA1	AA H5	AA H11	AA G7

Table A.1 (continued)

B B1 0.000227 7.433 (3.881 -14.85)	B B2 0.000173 7.037 (3.903 -11.23)	B B6 0.028 2.244 (1.808 -2.902)	B C1 0.0299 5.278 (1.661 -12.49)	B C11 0.000324 32.15 (4.4 -126)	B C12 0.00833 20.59 (4.574 -452.3)
0.516	0.223	No reps.	0.0677	0.652	0.126
0.398 (0.01 -2.475)	0.801 (0.443 -1.035)	0.01*	0.631 (0.427 -1.096)	1.072 (0.745 -1.701)	1.293 (0.834 -1.795)
0.00127	0.0609	0.811	0.00132	0.00838	0.0846
1.825 (1.488 -2.172)	1.216 (0.84 -1.417)	0.903 (0.352 -3)	1.833 (1.328 -2.454)	1.618 (1.252 -2.462)	1.23 (0.846 -1.629)
0.223	0.739	No reps.	0.0225	0.00169	0.329
1.212 (0.871 -1.911)	1.034 (0.742 -1.482)	0.975	1.433 (0.985 -2.009)	1.192 (1.159 -1.308)	1.426 (0.357 -2.856)
0.142	0.0879	0.674	0.648	0.0272	0.00254
0.897 (0.736 -1.113)	0.772 (0.48 -1.174)	0.739 (0.432 -1.265)	0.956 (0.69 -1.138)	1.119 (0.948 -1.238)	2.027 (1.134 -2.703)
0.112	0.0436	0.583	0.554	0.601	0.29
0.862 (0.632 -1.078)	0.855 (0.781 -1.012)	0.857 (0.46 -1.324)	0.928 (0.656 -1.272)	0.937 (0.596 -1.226)	0.786 (0.314 -1.24)

Table A.1 (continued)

_

Table A.1 (continued)

٦	0	0	Ò	0	7	-	0	-	7	0	0	
0.967	0.964	0.933	0.821	0.01*	No reps.	1.191	0.397	1.725	No reps.	0.814	0.0169	B D2
(0.391 - 3.422)		(0.327 - 1.583)				(0.783 -1.979)				(0.713 - 0.974)		
3.422)		1.583)				1.979)				0.974)		
1.0	0.96	1	1	1.2	0.	2.3	0.0	1	0.4	4.	0.0	B
1.006 (0	96	(0.714		1.361 (0	0.189	2.399 (1	0.000515	1.13 (0.8	0.446	4.192 (1	0.0231	B D5
(0.726 - 1.37)		(0.714 -1.282)		(0.849 -2.491)		(1.417 -2.981)		(0.881 -1.364)		(1.16 -18.02)		
37)				91)		81)		4)		2)		
0.684	0.276	0.409	0.000887	1.534	0.234	1.793	0.00199	1.75	0.401	2.141	0.00967	B D6
			887				99	(1.164 -2.631)			67	
(0.463 -1.108)		(0.295 -0.529)		(0.686 -2.689)		(1.104 -2.137)		-2.631)		(1.397 -5.13)		
0.555	0.000485	0.46 (0.21	1.322	0.267	1.355	0.0177	0.945	0.879	2.048	0.0608	B D7
(0.45 -0.743)	5	(0.166 -1.078)		(0.647 -2.493)		(0.95 -1.591)		(0.703 -1.27)		(0.957 -5.041)		
.743)		.078)		2.493)		.591)		1.27)		5.041)		
1.05	0.64	1.515	0.11	2.1	0.0	2.465	0.0	3.596	No	4.853	0.0	8
	4		1	2.154 (1.	0.00307		0.000217	96	No reps.		0.0111	E11
(0.859 -1.484)		(0.869 -2.679)		(1.929 -2.786)		(1.981 -3.599)				(3.469 -5.831)		
4)		79)		86)		(66				31)		
0.963	0.572	0.996	0.948	1.095	0.597	1.286	0.000109	0.685	0.0628	30.75	0.00231	B G1
				(0.576 -1.71)			60	0.685 (0.498 -1.035)			Ē	
(0.761 -1.159)		(0.828 -1.223)		-1.71)		(1.218 -1.335)		-1.035)		(11.06 -108.5)		

Table A.1 (continued)

Table A.1 (continued)

0.163 0.0519 0.0		0.555 (0.516 -0.606) 0.752 (0.392 -1.133) 1.3	0.00048 0.121 0.0	1.529 (1.483 - 1.576) 1.063 (0.741 - 1.789) 1.4	0.046 0.681 0.0	2.748 (1.103-5) 1.547 (1.096-2.169) 2.217	0.0702 0.00766 0.018	1.154 (0.718 -1.853) 0.804 (0.431 -1.636) 1.0	0.814 0.404 0.802	2.281 (1.994 - 2.458) 5.654 (4.136 - 10.32) 11.	0.00662 0.000104 5.8	BG7 BH3 BI
1.264 (1.076 -1.66)	0.0189	1.335 (1.006 -1.665)	0.00864	1.448 (1.014 -2.069)	0.0432	:17 (1.194 -5.434)	118	1.061 (0.636 -1.535)	02	11.23 (5.67 -21.62)	5.86E -05	B H7
1.027 (0.753 -1.162)	0.698	1.259 (1.035 -1.385)	0.0123	1.333 (0.831 -2)	0.0883	2.515 (1.612 -5.523)	0.00624	2.478 (1.708 -4.006)	0.00104	15.52 (11.59 -23.04)	3.25E -06	BBB A12
0.723 (0.575 -0.812)	0.00732	0.417 (0.216 -0.9)	0.0638	1.982 (1.617 -2.43)	0.184	1.438 (1.369 -1.525)	0.000102	NO DATA	NO DATA	1.853 (1.228 -3.518)	0.0352	BBB B12
0.992 (0.871 -1.092)	0.823	0.949 (0.43 -1.723)	0.826	2.134 (1.677 -2.633)	0.00582	2.103 (1.556 -3.124)	0.000811	1.52 (1.095 -2.11)	0.423	7.476 (2.592 -20.4)	0.0192	BBB B4

Table A.1 (continued)

0.899 (0.717 -1.494)	0.404	1.258 (1.011 -1.556)	0.0596	5.54 (2.707 -11.34)	0.252	2.899 (1.162 - 8.182)	0.0318	NO DATA	NO DATA	6.441 (4.925 - 12.27)	0.00334	BBB B5
1.047 (0.608 - 1.38)	0.737	1.016 (0.723 -1.469)	0.898	1.527 (1.07 - 3.075)	0.0818	1.562 (1.218 - 2.206)	0.00244	1.208 (1 -1.779)	0.25	9.031 (1.558 - 36.5)	0.049	BBB D12
1.204 (1.043 -1.553)	0.0266	1.206 (0.702 -2.653)	0.381	1.783 (1.067 -2.907)	0.0161	2.2 (1.95 - 2.372)	1.85E -05	1.073 (0.935 -1.232)	0.698	12.66 (8.484 -33)	0.00421	BBB E12
0.763 (0.427 -1.246)	0.115	1.027 (0.589 -1.708)	0.876	1.081 (0.85 -1.545)	0.472	1.463 (1.268 -1.653)	0.000292	1.144 (0.549 -2.723)	0.69	3.521 (2.666 -5.107)	2.88E -05	BBB E4
0.998 (0.646 - 1.809)	0.991	0.94 (0.558 -1.631)	0.717	2.765 (1.325 - 10.17)	0.26	2.493 (1.191 -5.472)	0.0149	1.21 (0.988 -1.481)	0.519	8.624 (3.982 - 23)	0.053	BBB G11
0.873 (0.457 -1.296)	0.39	1.192 (0.913 -1.713)	0.18	1.438 (0.762 -2.197)	0.108	2.378 (1.483 -3.601)	0.00422	1.251 (1.03 -1.961)	0.128	4.331 (1.607 -6.928)	0.00116	BBB G2

_

Table A.1 (continued)

0.000162 0.00839 0.908 0.82 (0.773-0.883) 0.78 (0.644-0.908) 1.01	1162 0.00839 (0.773 - 0.883) 0.78 (0.644 - 0.908) \$ 0.0315
(0.871 -1.333) 0.644 -0.908)	(0.871 -1.333) 1.62 0.908 0.644 -0.908) 1.01 0.521
	(0.77 -1.26) 0.734 0.0415
	0.
	0.0315 0.521

Table A.1 (continued)

1.042 (0.676 - 1.941) 2.307 (1.3	0.865 0.0619	0.788 (0.543 - 1.01) 0.918 (0.4	0.0621 0.822	0.352 (0.167 -0.705) 0.481	0.0656 No reps.	0.336 (0.101 -0.847) 0.427 (0.2	0.0682 0.00495	1.725 NO DATA	No reps. NO DATA	0.083 (0.0461 -0.156) 0.349 (0.2	0.00434 0.00548	BLUE C7 BLUE C8	
(1.359 -4.453)		(0.475 - 1.367)				(0.238 -0.525)				(0.257 -0.491)			
1.035 (0.724 -1.78)	0.911	0.697 (0.565 -0.876)	0.0117	0.269 (0.0869 -0.542)	0.0207	0.241 (0.11 -0.308)	0.00033	0.677 (0.635 -0.722)	0.104	0.0976 (0.0532 -0.16)	0.000485	BLUE D10	
3.618 (1.822 -12.91)	0.181	0.87 (0.447 -1.544)	0.543	0.222 (0.123 -0.472)	0.0632	0.263 (0.118 -0.414)	0.00166	NO DATA	NO DATA	0.162 (0.114 -0.193)	0.000646	BLUE D11	
0.916 (0.772 -1.277)	0.298	0.885 (0.594 -1.234)	0.288	1.028 (0.706 -1.398)	0.84	1.032 (0.878 -1.209)	0.654	0.763 (0.294 -1.383)	0.49	2.417 (1.765 -3.199)	0.000323	BLUE D5	
1.515 (0.659 -3.565)	0.173	1.108 (0.85 -1.47)	0.496	0.302 (0.188 -0.486)	0.24	0.497 (0.339 -0.594)	0.0029	1.28	No reps.	0.39 (0.285 -0.452)	3.65E -05	BLUE D6	

Table A.1 (continued)

				RI IIF F2	RI I I E E3
0.0193	0.0144	0.248	0.000165	0.000284	0.000294
1.968 (1.281 -3.291)	0.667 (0.46 -0.857)	0.777 (0.422 -1.283)	0.0862 (0.0478 -0.116)	0.0753 (0.0349 -0.12)	0.206 (0.106 -0.376)
0.359	0.997	0.703	No reps.	0.0755	0.933
0.902 (0.754 -1.158)	1 (0.812 -1.31)	0.949 (0.605 -1.507)	0.636	0.626 (0.455 -0.971)	1.06 (0.607 -1.852)
4.65E -05	0.94	0.121	0.00593	0.0144	0.0052
1.835 (1.634 -2.248)	0.995 (0.879 -1.309)	0.8 (0.484 -1.046)	0.194 (0.0617 -0.522)	0.112 (0.01 -0.457)	0.237 (0.107 -0.427)
0.105	0.687	0.759	0.0503	0.0255	0.0444
2.418 (1.372 -4.005)	1.02 (0.888 -1.257)	1.088 (0.471 -2.046)	0.336 (0.0737 -0.696)	0.189 (0.0547 -0.442)	0.343 (0.0744 -0.72)
0.913	0.0128	1.48E -05	0.202	0.235	0.435
1.018 (0.586 -1.499)	0.87 (0.776 -0.976)	3.127 (2.407 -3.652)	1.334 (0.937 -1.843)	1.287 (0.827 - 2.541)	1.323 (0.529 -2.01)
0.0336	0.0616	0.0635	0.937	0.315	0.0464
0.809 (0.713 -1.155)	0.882 (0.777 -1.055)	1.185 (1.016 -1.597)	0.984 (0.387 -1.37)	1.398 (0.623 -2.145)	1.904 (1.081 -2.679)

Table A.1 (continued)

Ta	ble /	4.1	(cor	ntinu	ied)							
1.173 (0.964 -1.37)	0.0328	1.411 (0.91 -2.107)	0.0514	2.437 (2.196 -2.748)	0.00533	2.317 (1.739 -3.774)	0.000586	1.44 (0.782 -2.392)	0.381	3.813 (2.39 -7.122)	0.0123	BLUE E6
1.444 (1.152 -1.728)	0.0299	1.544 (0.828 - 2.784)	0.106	0.642 (0.191 -6.168)	0.455	0.24 (0.0881 -0.364)	0.00523	1.778 (1.041 -5)	0.381	0.121 (0.0706 -0.192)	0.000193	BLUE E8
1.7 (1.02 -2.627)	0.0953	1.944 (0.897 -3.027)	0.0379	1.104 (0.662 -1.558)	0.624	0.682 (0.248 -0.846)	0.118	NO DATA	NO DATA	0.654 (0.46 -1.106)	0.0528	BLUE F11
0.804 (0.577 -1.104)	0.134	1.476 (1.024 -2.259)	0.0182	0.824 (0.537 -1.191)	0.39	0.672 (0.406 -0.933)	0.0365	0.788	No reps.	0.522 (0.341 -0.861)	0.00394	BLUE F2
2.374 (2.053 -2.591)	0.00707	2.403 (1.595 - 3.621)	0.278	0.456 (0.358 -0.58)	0.19	0.733 (0.369 - 1.039)	0.276	NO DATA	NO DATA	0.441 (0.349 -0.559)	0.00103	BLUE F3
0.803 (0.495 -1.056)	0.143	1.038 (0.511 -1.628)	0.901	0.555 (0.302 -1.296)	0.152	0.385 (0.129 -0.563)	0.00809	1.418 (1.304 -1.543)	0.151	0.205 (0.134 -0.282)	8.59E -05	BLUE F8

Table A.1 (continued)

BLUE G3	BLUE G4	BLUE G8	BLUE H10	BLUE H11	BLUE H2
0.00343	0.000515	6.84E -06	4.39E -05	1.09E -05	0.00858
0.342 (0.25 -0.666)	0.202 (0.128 -0.284)	0.296 (0.248 -0.371)	0.122 (0.0688 -0.199)	2.892 (2.305 -3.303)	3.448 (2.27 -5.722)
NO DATA	NO DATA	NO DATA	0.441	0.616	0.591
NO DATA	NO DATA	NO DATA	1.468 (1.068 -2.019)	1.243 (0.574 -3.11)	1.075 (0.858 -1.235)
0.122	0.00397	0.0212	0.00246	0.0735	0.00125
0.706 (0.468 -1.671)	0.257 (0.111 -0.499)	0.444 (0.164 -0.972)	0.222 (0.118 -0.348)	1.494 (0.956 -2.199)	2.418 (1.621 -4.238)
0.306	0.171	0.0362	0.0749	0.766	0.00492
0.548 (0.242 -1.098)	0.38 (0.114 -1.182)	0.428 (0.277 -0.806)	0.242 (0.0919 -0.667)	1.136 (0.321 -4.444)	2.938 (1.728 -8.042)
0.342	0.762	0.424	0.84	7.61E -05	0.683
1.17 (0.799 -1.799)	1.123 (0.68 -2.117)	1.204 (0.785 -2.582)	0.899 (0.595 -1.361)	0.477 (0.383 -0.564)	0.937 (0.733 -1.672)
0.184	0.0136	0.385	0.648	0.00024	0.97
0.894 (0.709 -1.126)	1.983 (1.344 -2.375)	1.2 (0.613 -1.915)	0.845 (0.474 -1.411)	0.518 (0.412 -0.647)	1.006 (0.697 -1.632)

Table A.1 (continued)

_

Table A.1 (continued)

1.003 (0.713 -1.667) 0.815	0.985 0.281	1.251 (0.759 -1.475) 1.972	0.149 0.00566	1.698 (0.831 - 3.41) 0.781	0.324 0.272	1.906 (1.428 -2.34) 0.968	0.00247 0.717	0.652 0.514	No reps. 0.0126	3.072 (2.096 -4.259) 1.741	9.77E -05 0.0231	C B2 C B4
15 (0.421 -1.227)	31	72 (1.31 -3.193)	566	31 (0.446 -1.422)	2	38 (0.697 - 1.172)	7	14 (0.339 -0.923)	26	11 (0.95 -2.578)	.31	54
0.88 (0.488 -1.233)	0.375	1.292 (0.975 -1.799)	0.0296	1.516 (0.957 -2.342)	0.0203	1.82 (1.139 -2.955)	0.00532	2.037 (0.712 -4.777)	0.331	5 (2.227 -10.91)	0.00264	C B8
1.136 (1.01 -1.532)	0.0972	2.002 (1.547 -2.559)	0.000317	0.92 (0.545 -1.415)	0.632	0.774 (0.496 -1.097)	0.0992	0.659 (0.352 -1.354)	0.0825	9.65 (1.584 -302.5)	0.0465	C B9
1.243 (0.895 - 1.818)	0.0856	1.083 (0.841 -1.486)	0.463	1.157 (0.929 - 1.431)	0.0679	1.967 (1.059 -3.739)	0.0105	0.9 (0.651 -1.152)	0.342	6.796 (5.175 -9.128)	1.50E -05	C D3
0.771 (0.415 -1.589)	0.283	0.836 (0.591 -1.57)	0.469	1.478 (1.125 -1.941)	0.389	2.088 (1.009 -3.056)	0.00826	NO DATA	NO DATA	4.467 (4.266 -4.677)	0.0195	C E2

Table A.1 (continued)

0.906 (0.696 - 1.076)	0.535	0.83 (0.617 -1.287)	0.494	0.01*	No reps.	2.043 (1.944 -2.253)	0.00463	NO DATA	NO DATA	1.552 (0.831 - 2.876)	0.345	C E4
1.168 (1.058 - 1.285)	0.00372	0.921 (0.498 -1.604)	0.681	0.997 (0.711 -1.238)	0.973	1.422 (1.057 - 2.004)	0.0218	0.888 (0.574 -1.251)	0.386	3.798 (2.782 -5.315)	5.47E -05	C E6
1.102 (0.82 -1.527)	0.382	1.161 (0.659 -1.507)	0.276	1.981 (1.457 -2.678)	0.00523	2.223 (0.897 -3.26)	0.00923	1.525	No reps.	5.182 (1.441 -11.45)	0.00295	C E8
1.437 (1.108 -1.956)	0.00629	1.543 (1.017 -2.082)	0.0145	1.701 (1.079 -2.717)	0.00935	2.235 (1.543 -2.588)	0.000145	1.327 (0.207 -2.633)	0.51	5.087 (3.376 -8.877)	0.00012	C E9
0.65 (0.352 -1.112)	0.117	0.886 (0.629 -1.317)	0.325	0.658 (0.172 -2.306)	0.357	0.933 (0.88 -1.048)	0.0492	0.01*	No reps.	0.762 (0.417 -1.156)	0.125	C F5
1.752 (1.233 -4.153)	0.0286	1.361 (1.229 -1.723)	0.00168	1.973 (1.293 -3.01)	0.354	1.5 (0.928 -1.852)	0.0874	0.912 (0.621 -1.338)	0.849	6.555 (3.861 -9.221)	0.0198	C F6

_

Table A.1 (continued)

(0.396 -1.239)
(0.296 -1.23)
(0.692 -1.739)
(1.417 -2.555)
(0.636 -1.538)
(1.353 -1.846)

_

Table A.1 (continued)

1.331 (1.11 -1.759)	0.014	3.036 (2.015 -5.357)	0.0037	1.046 (0.848 -1.407)	0.705	1.53 (0.511 -2.788)	0.168	0.847 (0.496 -1.391)	0.34	22.23 (3.638 -87.69)	0.00109	CC A5
1.261 (0.907 -2.784)	0.446	0.802 (0.361 -1.287)	0.418	0.144 (0.0816 -0.254)	0.182	0.252 (0.0754 -0.461)	0.00586	NO DATA	NO DATA	0.225 (0.148 -0.308)	7.75E -05	CC B3
2.055 (1.638 -2.733)	0.041	1.45 (0.487 -2.249)	0.383	0.345 (0.199 -1.03)	0.191	0.324 (0.222 -0.734)	0.00228	NO DATA	NO DATA	0.375 (0.335 -0.431)	0.0056	CC C1
1.231 (0.437 -2.388)	0.456	1.199 (0.75 -1.556)	0.353	0.637 (0.262 -1.401)	0.217	0.381 (0.13 -0.711)	0.0184	5.347	No reps.	0.491 (0.302 -0.608)	0.00579	CC F2
1.712 (1.203 -3.543)	0.0511	1.857 (1.63 -2.116)	0.132	1.372 (0.918 -2.904)	0.488	0.423 (0.233 -0.693)	0.00817	NO DATA	NO DATA	0.539 (0.398 -0.962)	0.00417	CC F3
2.107 (1.358 -3.27)	0.339	0.509 (0.28 -0.664)	0.0441	0.355 (0.265 -0.476)	0.176	0.579 (0.475 -0.758)	0.00512	NO DATA	NO DATA	0.41 (0.276 -0.548)	0.00229	CC G8

Table A.1 (continued)

		()							
1.983 (1.376 -3.363)	0.0152	1.797 (1.003 -3.208)	0.0342	4.051 (1.885 -14)	0.155	1.43 (0.927 -2.831)	0.138	52.5	No reps.	2.456 (1.022 -4.654)	0.0704	CC H3
1.33 (0.941 -1.523)	0.0111	1.317 (0.686 -2.026)	0.172	2.07 (1.543 -3.328)	0.0935	2.593 (2.068 -4.533)	0.000512	0.881 (0.813 -0.954)	0.357	6.319 (2.886 -17.5)	0.00566	CCC A8
0.783 (0.579 -0.898)	0.019	0.804 (0.71 -0.866)	0.000982	1.052 (0.904 -1.365)	0.56	1.214 (0.911 -1.597)	0.0785	1.063 (0.661 -1.874)	0.705	6.7 (2.334 -57.53)	0.0269	CCC B8
1.967 (1.57 -2.615)	0.0024	1.513 (1.339 -1.818)	0.0475	0.613 (0.357 -1.369)	0.355	0.665 (0.61 -0.715)	7.24E -06	3	No reps.	0.461 (0.392 -0.535)	2.60E -05	CCC C4
1.137 (0.813 -1.389)	0.307	1.152 (0.733 -1.827)	0.408	1.809 (0.51 -4.108)	0.167	1.474 (1.163 -2.882)	0.0381	0.757 (0.745 -0.769)	0.0348	4.043 (2.42 -9.312)	0.00178	CCC D12
1.806 (0.749 -3.626)	0.086	1.666 (1.195 -2.194)	0.00289	0.882 (0.377 -2.858)	0.817	0.867 (0.586 -1.292)	0.362	3.777 (3.5 -4.075)	0.0364	0.647 (0.477 -0.974)	0.00679	CCC D2
1.482 (1.171 -2.044)	0.0429	1.226 (0.679 - 1.779)	0.289	1.611 (1.525 -1.659)	0.00333	1.705	No reps.	0.01*	No reps.	1.499 (0.759 -2.187)	0.107	CCC D4

Table A.1 (continued)

CCC D9 0.00339	0.097	CCC E7 9.15E -05	CCC E9 3.96E -06	0.0486
7.078 (3.51 -20.99)	0.543 (0.391 -0.793)	4.917 (3.281 -8.317)	3.485 (2.921 -4.373)	0.705 (0.452 -1.212)
0.214	NO DATA	0.0373	0.269	No reps.
0.726 (0.281 -1.385)	NO DATA	1.48 (0.955 -2.323)	1.233 (0.732 -1.625)	5.5
0.268	0.708	0.000731	0.00145	0.163
1.267 (0.815 -2.326)	1.077 (0.723 -1.748)	1.578 (1.359 -2.01)	1.567 (1.214 -1.827)	0.641 (0.247 -1.061)
0.379	No reps.	0.0638	0.142	No reps.
1.104 (0.776 -1.4)	0.01*	1.216 (1.011 -1.53)	1.319 (0.767 -1.983)	0.37
0.0943	0.0188	0.000905	0.00811	0.316
0.836 (0.575 -1.009)	1.56 (1.174 - 2.186)	1.295 (1.111 -1.403)	1.503 (1.1 -1.747)	1.185 (0.82 -1.635)
0.465	0.0496	0.000973	0.00153	0.0937
0.947 (0.71 -1.134)	1.662 (1.315 -1.901)	1.413 (1.228 -1.617)	1.673 (1.511 -2.176)	1.507 (1.037 -2.015)

Table A.1 (continued)

CCC F6	CCC F7	CCC G10	CCC G2	CCC H1	CCC H10
0.145	0.000645	0.0124	3.50E -06	0.024	1.46E -06
1.282 (0.799 -1.702)	4.397 (3.02 -7.443)	0.457 (0.328 -0.794)	0.295 (0.237 -0.342)	2.82 (1.652 -4.852)	0.179 (0.151 -0.216)
0.738	0.097	NO DATA	0.671	0.241	0.583
0.948 (0.631 -1.386)	1.285 (0.997 -2.089)	NO DATA	1.718 (0.664 -4.443)	0.734 (0.369 -1.438)	1.849 (0.83 -4.116)
0.757	1.96E -05	0.00548	0.00196	0.477	0.00139
0.989 (0.869 -1.089)	1.681 (1.477 - 1.841)	0.589 (0.374 -0.855)	0.394 (0.193 -0.519)	1.097 (0.817 -1.523)	0.302 (0.173 -0.519)
0.84	0.122	No reps.	0.0776	0.313	0.0782
0.966 (0.606 -1.623)	1.304 (0.869 -2.14)	0.474	0.457 (0.257 -0.817)	0.955 (0.87 -1.084)	0.142 (0.112 -0.181)
0.000614	0.00119	0.279	0.658	0.0963	0.0896
1.591 (1.312 - 1.979)	1.456 (1.192 -1.792)	1.898 (1.405 -2.564)	0.929 (0.618 -1.589)	0.878 (0.723 -1.083)	1.24 (0.996 -1.639)
0.000827	0.099	0.111	0.251	0.706	0.433
1.673 (1.316 -2.058)	1.234 (0.738 - 1.43)	1.873 (0.92 -3.5)	0.83 (0.621 -1.216)	1.026 (0.795 -1.191)	1.477 (0.662 -2.239)

Table A.1 (continued)

	0.431 0.000499	0.992 (0.884 -1.18) 1.513 (1.17 -2.216)	0.861 0.00476	1.129 (0.718 - 1.652) 1.129 (0.701 - 1.677)	0.451 0.513	1.214 (0.837 - 2.158) 1.534 (1.361 - 1.926)	0.378	0.73 (0.484 -1.058) 1.154 (0.789 -1.573)	0.0699 0.397	28.44 (8.761 - 157) 3.43 (2.787 - 3.87)	0.00155 2.15E -06	CCC H12 CCC H2
1.795 (1.555 -2.219)	0.000125	0.994 (0.603 -1.502)	0.978	29	No reps.	2.284 (1.749 -3.838)	0.0208	3.594	No reps.	3.517 (1.214 -8.501)	0.0059	CCC H7
1.155 (1.055 -1.369)	0.231	2.496 (0.134 -4.328)	0.196	1.887 (1.224 -2.62)	0.00241	1.618 (0.82 -2.571)	0.0756	1.055 (0.627 -1.84)	0.78	6.515 (4.378 -15.86)	0.000185	D B12
1.071 (0.799 - 1.574)	0.579	0.92 (0.598 -1.236)	0.54	1.434 (1.07 -2.242)	0.0427	1.862 (1.42 -2.523)	0.000856	2.128	No reps.	2.552 (1.553 -5.593)	0.00394	D B4
1.029 (0.85 -1.324)	0.711	0.761 (0.579 -0.896)	0.00733	0.921 (0.773 -1.128)	0.212	0.898 (0.774 -1.258)	0.208	0.824 (0.543 -1.29)	0.249	3.798 (1.224 -23.06)	0.0807	D B7

Table A.1 (continued)

0.82 (0.807 -0.832) 0.727 (0.241 -1.201) 0.777	0.0493 0.232 0.02	0.766 (0.612 -1.033) 0.591 (0.229 -1.203) 0.767	0.0591 0.0857 0.134	1.493 (1.079 -1.825) 2.187 (1.32 -3.611) 1.157	0.044 0.00829 0.397	0.908 (0.731 -1.236) 1.524 (1.043 -3.156) 1.648	0.249 0.0657 0.00	0.83 (0.827 -0.833) 1.186 (0.819 -1.544) 1.05	0.0128 0.465 0.64	1.141 (0.999 -1.504) 2.676 (1.905 -5.012) 3.976		0.143 0.00135 0.00
777 (0.629 -0.928)	0.0215	767 (0.515 -1.101)	134	157 (0.795 -1.896)	397	648 (1.245 -2.154)	0.00452	1.059 (0.894 -1.283)	64	976 (2.998 -6.855)		0.000978
0.838 (0.612 -1.416)	0.244	0.775 (0.555 -1.03)	0.0748	0.899 (0.67 -1.066)	0.388	1.846 (1.355 -3.2)	0.00428	0.717 (0.309 -1.167)	0.338	1.801 (1.003 -2.991)		0 0283
NO DATA	NO DATA	1.469 (0.995 -2.208)	0.0271	1.282 (0.974 -1.522)	0.0293	2.061 (1.37 -3.09)	0.00106	1.087 (0.982 -1.162)	0.067	30.5 (13.14 -100)	0.00023	
1.259 (0.891 -1.447)	0.027	1.744 (1.075 -2.294)	0.01	1.463 (0.691 -2.817)	0.155	1.076 (0.824 -1.559)	0.491	1.492 (1.253 -1.955)	0.00542	7.955 (3.323 -26.73)	0.00303	

Table A.1 (continued)

37 $D D4$ $D D6$ $D D7$ $D D8$ 37 0.00010^6 3.52^{-05} 0.00008^{-0} 2.45^{-05} 2.45^{-05} $(7.053.87)$ 4.276 $(3.083.7.805)$ 8.786 $6.29 \cdot 18.2$) 4.983 $(4.12 \cdot 6.087)$ 16.56 $(10.75 \cdot 3.3.4)$ $(7.053.87)$ 4.276 $(3.083.7.805)$ 8.786 $(6.29 \cdot 18.2)$ 4.983 $(4.12 \cdot 6.087)$ 16.56 $(10.75 \cdot 3.3.4)$ $(1.236 \cdot 2.12)$ 0.21^{-0} 0.011^{-0} 0.297 0.393^{-0} 0.938^{-0} $(4.236 \cdot 2.12)$ 0.516 $(0.344 \cdot 1.038)$ 1.197 $(1.091 \cdot 1.261)$ 1.339^{-0} $(0.582 \cdot 1.674)$ 0.438^{-0} $(1.033 \cdot 3.219)$ 1.981^{-0} $(1.93 \cdot 0.981 \cdot 3.096)$ 1.718^{-0} $(0.495 \cdot 3.813)$ 1.312^{-0} $(0.554 \cdot 2.317)$ $(0.724 \cdot 1568)$ 0.414^{-0} 0.0157^{-1} 0.021^{-1} 0.0013^{-1} 0.0013^{-1} 0.0013^{-1} $(0.724 \cdot 1568)^{-1}$ 1.335^{-0} $(0.552 \cdot 2.16)^{-1}$ 1.607^{-1} 0.234^{-1}	1.117 (0.905 -1.431)	1.266 (1.086 -1.874)	0.855 (0.479 -1.302)	0.795 (0.378 -1.532)	0.742 (0.641 -0.953)	0.833 (0.692 -1.123)
JT $DD4$ $DD6$ $DD7$ $DD8$ 37 0.000106 $3.52E-05$ 0.000668 $2.45E-05$ $(7.053-87)$ 4.276 $3.063-7.805$ 8.766 $6.29-18.2$ 4.983 $(4.12-6.087)$ 16.56 $(1.075-33.4)$ $(7.053-87)$ 4.276 $(0.304-1.036)$ 1.197 $(1.091-1.261)$ 4.983 $(a.739-2.077)$ 16.56 $(1.075-33.4)$ $(0.236-2.12)$ 0.516 $(0.344-1.036)$ 1.197 $(1.091-1.261)$ 1.339 $(0.739-2.077)$ 1.015 $(0.582-1.674)$ $(0.236-2.12)$ 0.516 $(0.344-1.036)$ 1.197 $(1.091-1.261)$ 1.339 $(0.739-2.077)$ 1.015 $(0.582-1.674)$ $(0.236-2.12)$ 0.516 0.0178 0.353 0.438 0.438 0.0157 0.021 0.0138 $(1.093-3.219)$ 1.335 $(0.552-2.16)$ 1.607 0.021 0.0138 0.00138 $(0.724-1.568)$ 1.335 $(0.552-2.16)$ 0.127 0.016 0.021 <td>0.175</td> <td>0.0396</td> <td>0.345</td> <td>0.323</td> <td>0.0129</td> <td>0.0526</td>	0.175	0.0396	0.345	0.323	0.0129	0.0526
DDI DDI $DIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	45					0.82 (0.546 -1.144)
37 0.00106 $3.2E \cdot 05$ 0.000688 $2.45E \cdot 05$ $(7.053 \cdot 87)$ 4.276 $3.083 \cdot 7.805$) 8.786 $6.29 \cdot 18.2$) 4.983 $4.12 \cdot 6.087$) 16.56 $(10.75 \cdot 33.4)$ $(7.053 \cdot 87)$ 0.27 0.0118 0.297 0.938 0.938 $(0.236 \cdot 2.12)$ 0.516 $(0.344 \cdot 1.038)$ 1.197 $(1.091 \cdot 1.261)$ 1.339 $0.739 \cdot 2.077$) 1.015 0.938 4 0.00895 0.0178 0.353 0.438 0.438 0.438 $(1.093 \cdot 3.219)$ 1.981 $(1.314 \cdot 3.009)$ 1.938 $0.881 \cdot 3.096$ 1.718 $0.4495 \cdot 3.813$ 0.438 $(0.724 \cdot 1.559)$ 0.414 0.0157 0.0241 0.00138 0.00138 $(0.724 \cdot 1.559)$ 1.335 $(0.552 \cdot 2.16)$ 0.0157 2.324 $(1.187 \cdot 7.217)$ 2.126 $(1.588 \cdot 3.276)$	0.396	0.021	0.016	0.127	0.0496	0.229
37 $D04$ $D06$ $D07$ $D06$ 37 0.00106 $3.52E \cdot 05$ 0.000668 $2.45E \cdot 05$ $(7.053 \cdot 87)$ 4.276 $(3.083 \cdot 7.805)$ 8.786 $(6.29 \cdot 18.2)$ 4.983 $(4.12 \cdot 6.087)$ 16.56 $(10.75 \cdot 3.3.4)$ $(7.053 \cdot 87)$ 0.27 0.0118 0.297 0.938 0.938 $(0.236 \cdot 2.12)$ 0.516 $(0.344 \cdot 1.038)$ 1.197 $(1.091 \cdot 1.261)$ 1.339 $0.739 \cdot 2.077$ 1.015 0.938 $(0.236 \cdot 2.12)$ 0.00895 0.0178 0.353 0.438 0.438 $(1.093 \cdot 3.219)$ 1.981 $(1.314 \cdot 3.009)$ 1.938 $0.881 \cdot 3.096)$ 1.718 $0.495 \cdot 3.813$ 1.312 $(0.554 \cdot 2.317)$ $(1.093 \cdot 3.219)$ 0.414 0.0157 0.0241 0.00138 0.00138						0.991 (0.724 -1.558)
$BD4$ DB^{-} DD^{-} <	0.0115	0.00138	0.0241	0.0157	0.414	0.944
M DA DB DD DB 37 0.000106 3.52E-05 0.000668 2.45E-05 (7.053-87) 4.276 (3.083-7.805) 8.786 (6.29-18.2) 4.983 (4.12-6.087) 16.56 (10.75-33.4) (7.053-87) 0.2 0.0118 0.297 0.938 0.938 0.938 (0.236-2.12) 0.516 (0.344-1.038) 1.197 (1.091-1.261) 1.339 (0.739-2.077) 1.015 (0.582-1.674) 4 0.00895 0.0178 0.353 0.353 0.438						1.769 (1.093 -3.219)
M DA DB DD7 DB 37 0.00106 3.52E-05 0.000668 2.45E-05 (7.053-87) 4.276 (3.083-7.805) 8.786 (6.29-18.2) 4.983 (4.12-6.087) 16.56 (10.75-33.4) (7.053-87) 0.2 0.0118 0.297 0.938 0.938 (0.236-2.12) 0.516 (0.344-1.038) 1.197 (1.091-1.261) 1.339 (0.739-2.077) 1.015 (0.582-1.674)	0.00103	0.438	0.353	0.0178	0.00895	0.0124
Matrix DD4 DD6 DD7 DD8 DD9 37 0.000106 3.52E-05 0.000668 2.45E-05 4.01E- (7.053-87) 4.276 (3.083 - 7.805) 8.786 (6.29 - 18.2) 4.983 (4.12 - 6.087) 16.56 (10.75 - 33.4) 5.55 0.2 0.0118 0.297 0.938 0.0681 0.0681	0.697 (0.36					0.805 (0.236 -2.12)
D D4 D D6 D D7 D D8 D D9 i7 0.000106 3.52E-05 0.000668 2.45E-05 4.01E- (7.053-87) 4.276 (3.083-7.805) 8.786 (6.29-18.2) 4.983 (4.12-6.087) 16.56 (10.75-33.4) 5.55	0.0681	0.938	0.297	0.0118	0.2	0.489
D D4 D D6 D D7 D D8 D 0.000106 3.52E-05 0.000668 2.45E-05 4.0						18.83 (7.053 -87)
DD4 DD6 DD7 DD8 D	4.01E -05	2.45E -05	0.000668	3.52E -05	0.000106	0.00537
	D D9	8D D	70 D	D D6	D D4	D D3

Table A.1 (continued)

1.153 (0.927 -1.481)	0.104	2.147 (1.41 -2.652)	0.000422	1.291 (0.8 -2.07)	0.19	1.039 (0.777 -1.455)	0.68	1.387 (1.109 -2.545)	0.0538	3.245 (1.822 -6.148)	0.0015	DE1
1.012 (0.95 -1.09)	0.583	0.883 (0.633 -1.269)	0.398	1.134 (0.924 -1.545)	0.237	1.67 (1.207 -2.352)	0.00815	0.979 (0.742 -1.194)	0.796	20.14 (6.637 -82.65)	0.00082	D E10
0.613 (0.422 -0.81)	0.00372	0.961 (0.4 -2.244)	0.882	0.957 (0.829 -1.183)	0.461	1.035 (0.938 -1.188)	0.339	1.121 (0.753 -1.427)	0.626	2.954 (1.263 -6.343)	0.00936	D E11
0.969 (0.663 -1.386)	0.81	1.731 (1.143 -2.589)	0.00477	2.08 (1.512 -2.978)	0.0033	1.393 (0.16 -3.239)	0.577	2.035 (1.026 -4.816)	0.0241	8.917 (4.57 -20.46)	0.000938	D E3
1.974 (1.285 -2.721)	0.00203	1.53 (1.093 -2.112)	0.0069	2.987 (1.173 -8.695)	0.0764	1.724 (0.523 -2.891)	0.0829	2.059 (0.934 -6.224)	0.0926	15.55 (11.71 -28.63)	4.01E -06	D E5
0.871 (0.622 -1.558)	0.683	0.545 (0.524 -0.568)	0.0425	0.01*	No reps.	1.069 (0.663 -1.474)	0.684	NO DATA	NO DATA	1.931 (1.032 -4.486)	0.125	D F12

Table A.1 (continued)

0.651 (0.422 -0.997) 0.	0.0282	0.78 (0.372 -1.555) 1.	0.377 0.	1.517 (0.743 -2.856) 0.	0.0777 0.	1.043 (0.862 -1.771) 1.	0.729 0.	1.26 (0.831 -1.965) 1.	0.233 0.	2.328 (1.626 -3.765) 4.	0.00128 0.	D F3
0.559 (0.348 -0.833)	0.0141	1.2 (0.504 -2.202)	0.429	0.843 (0.672 -1.277)	0.203	1.134 (0.763 -1.44)	0.283	1.149 (0.476 -2.092)	0.609	4.438 (2.408 - 7.071)	0.000267	D H11
0.841 (0.451 -1.005)	0.23	0.86 (0.687 -1.005)	0.0426	0.99 (0.895 -1.213)	0.831	1.018 (0.802 -1.217)	0.781	1.099 (0.696 -1.513)	0.459	2.689 (1.23 -8.32)	0.0638	DDD B3
1.213 (0.816 -1.861)	0.247	1.111 (0.597 -1.605)	0.68	8.196 (4.071 -16.5)	0.204	1.26 (0.646 -2.926)	0.304	NO DATA	NO DATA	0.877 (0.642 -1.712)	0.642	DDD C11
1.322 (0.844 -2.071)	0.394	0.933	No reps.	4.115 (1.675 -5.283)	0.145	1.121 (0.889 -2.105)	0.517	9	No reps.	0.913 (0.732 -1.184)	0.365	DDD C4
1.182 (0.989 -1.737)	0.182	1.504 (1.02 -1.702)	0.0144	2.541 (1.06 -4.255)	0.0654	2.781 (1.881 -4.81)	0.00545	1.337 (0.752 -2.861)	0.54	4.947 (2.886 -11.76)	0.00367	000 ממס

Table A.1 (continued)

1.457 (1.17 -1.988) 0.606	1.161 (0.769 -1.568)	1.049 (0.768 -1.351)	0.934 (0.611 - 1.12)	0.955 (0.735 -1.363)
0.00505	0.241	0.583	0.508	0.769
1.546 (1.299 - 1.77)	1.236 (0.995 -1.567)	1.129 (0.909 -1.813)	1.355 (1.081 -1.908)	0.512 (0.438 -0.621)
0.00113	0.0471	0.396	0.0255	0.000761
1.629 (1.357 -2.201)	3.025	1.355 (0.916 -1.719)	2.087 (1.19 -3.924)	2.056 (0.999 -7.203)
0.0208	No reps.	0.0178	0.00891	0.194
1.684 (1.154 -2.196)	2.022 (1.461 -2.534)	1.654 (0.984 -2.413)	1.858 (1.433 -2.54)	1.646 (1.152 -2.063)
0.00312	0.000505	0.00823	0.000435	0.00662
1.508 (1.313 - 1.731)	NO DATA	1.094 (1.04 -1.188)	1.509 (0.553 -4.893)	NO DATA
0.207	NO DATA	0.163	0.24	NO DATA
3.26 (2.189 -4.729)	2.652 (1.665 -4.767)	5.786 (3.75 -8.648)	6.102 (3.648 -9.136)	1.68 (1.093 -2.435)
0.00158	0.0337	0.000361	3.82E -05	0.0126
DDD F5	DDD E8	DDD E4	DDD E10	000 09

Table A.1 (continued)

E A11	E A12	E A6	E B4	E C11	E C3
0.0195	0.00151	0.0015	0.105	0.00117	0.7
0.637 (0.412 -0.856)	23.76 (4.804 - 164)	2.656 (1.39 -3.846)	1.981 (1.767 -2.221)	4.661 (1.789 -8.564)	0.928 (0.636 -1.474)
0.188	0.904	0.253	No reps.	0.0155	No reps.
1.211 (0.784 -1.593)	1.011 (0.741 -1.225)	1.277 (1.003 -1.698)	0.01*	1.261 (1.092 -1.462)	5.273
0.0139	0.0749	0.00993	0.0776	0.627	0.00841
0.915 (0.856 -1.015)	1.161 (0.984 -1.581)	1.712 (1.155 -2.756)	1.613 (0.723 -2.103)	1.132 (0.697 -2.735)	1.615 (1.178 -2.58)
0.26	0.428	0.824	0.0294	0.301	0.0729
0.835 (0.603 -1.23)	1.146 (0.689 -1.563)	1.104 (0.267 -3.866)	3.256 (2.5 -4.894)	1.116 (0.878 -1.495)	1.476 (0.983 -1.932)
0.0684	0.000969	0.00143	0.251	0.0353	0.147
1.259 (0.937 -1.585)	1.868 (1.382 -2.493)	0.468 (0.342 -0.673)	0.68 (0.302 -0.944)	1.152 (1.035 -1.341)	0.814 (0.694 -1.277)
0.000771	0.145	0.0117	0.422	0.844	0.153
1.439 (1.227 -1.668)	1.118 (0.951 -1.457)	0.657 (0.496 -0.97)	1.232 (0.655 -2.499)	0.972 (0.64 -1.537)	0.725 (0.383 -1.362)

Table A.1 (continued)

0.534 (0.347 -0.995) 1.074 (0.598 -1.476) 0.9	0.00996 0.703 0.227	0.527 (0.225 -1.009) 0.948 (0.537 -1.992) 0.8	0.0488 0.779 0.139	0.9 (0.443 -1.294) 1.557 (0.791 -3.178) 1.3	0.567 0.385 0.212	0.896 (0.842 -1.1) 0.894 (0.516 -1.77) 1.7	0.0451 0.749 0.0	NO DATA 0.01* 0.5	NO DATA No reps. 0.0	1.599 (0.958 -4.448) 0.763 (0.708 -0.882) 5.5	0.0995 0.0132 7.0	EC4 EC6 E
0.916 (0.746 -1.03)	227	0.818 (0.649 -1.169)	39	1.338 (0.825 -2.7)	212	1.775 (1.146 -2.601)	0.00846	0.513 (0.408 -0.563)	0.00315	5.553 (3.609 -8.851)	7.09E -05	E D1
1.217 (0.913 -1.536)	0.0517	0.986 (0.636 -1.59)	0.934	1.358 (0.849 -2.079)	0.0861	1.663 (0.888 -2.304)	0.0152	0.73 (0.551 -0.993)	0.036	4.45 (3.725 -5.148)	1.79E -06	E D10
1.103 (0.779 -1.621)	0.435	2.061 (1.513 - 2.639)	0.000707	1.542 (0.586 -2.818)	0.0991	1.865 (1.024 -3.328)	0.0138	1.151 (0.995 -1.822)	0.29	44.38 (22.72 - 129)	0.000658	E D8
1.102 (0.794 -1.539)	0.322	0.902 (0.587 -1.344)	0.517	1.145 (0.862 -1.386)	0.126	1.681 (1.194 -2.67)	0.00787	0.919 (0.647 -1.199)	0.444	10.48 (6.601 -22.8)	0.000104	E E12

Table A.1 (continued)

E E2	E E6	E E9	EF1	E G2	E G4
0.00048	0.122	0.0343	0.0121	0.00172	0.371
10.47 (7.391 -23.78)	1.582 (0.964 -2.687)	2.09 (0.921 -4.712)	0.602 (0.44 -1.018)	2.651 (1.415 -4.498)	1.148 (0.843 -1.555)
0.0049	No reps.	0.0544	NO DATA	0.335	No reps.
0.66 (0.55 -0.859)	6.5	0.618 (0.499 -0.974)	NO DATA	0.805 (0.401 -1.28)	2.068
0.0054	0.00905	0.733	0.0592	0.00829	0.00643
1.929 (1.358 -2.883)	1.542 (1.367 - 1.891)	0.967 (0.68 -1.287)	0.621 (0.323 -0.988)	1.747 (1.299 -3.107)	1.478 (1.175 -2.089)
0.295	No reps.	0.195	No reps.	0.106	0.171
1.2 (0.764 -2.063)	0.01*	0.874 (0.619 -1.203)	0.01*	1.405 (0.979 -2.03)	1.689 (0.756 -3)
0.882	0.24	0.0515	0.0451	0.429	0.0305
0.988 (0.829 -1.339)	0.676 (0.578 -0.789)	0.595 (0.339 -0.902)	0.627 (0.606 -0.648)	0.878 (0.637 -1.276)	0.598 (0.396 -0.968)
0.0785	0.261	0.00687	0.915	0.357	0.348
0.809 (0.627 -1.064)	1.184 (1 -1.452)	0.523 (0.348 -0.775)	0.983 (0.731 -1.746)	0.921 (0.649 -1.195)	1.134 (0.722 -1.797)

Table A.1 (continued)

0.926 (0.647 -1.812)	0.759	1.426 (0.976 -2.109)	0.252	0.804	No reps.	0.463 (0.321 -0.635)	0.00061	3.296 (2.717 -3.998)	0.102	0.672 (0.261 -1.893)	0.466	E G7
1.708 (0.672 -4.342)	0.669	1.125	No reps.	0.01*	No reps.	0.901 (0.629 -1.581)	0.64	0.795	No reps.	1.05 (0.805 -1.488)	0.703	E H12
0.581 (0.509 -0.762)	0.000272	0.692 (0.484 -0.889)	0.0122	1.009 (0.501 -1.945)	0.968	1.351 (0.945 -2.245)	0.119	0.754 (0.0493 -1.592)	0.51	3.918 (2.667 -5.057)	2.56E -05	EH3
1.262 (0.72 -1.688)	0.206	0.876 (0.463 -1.719)	0.564	0.56 (0.443 -0.701)	0.000504	0.476 (0.372 -0.645)	0.000942	1.232 (0.948 -1.489)	0.035	0.173 (0.0922 -0.383)	0.00045	EE A11
1.469 (0.988 -2.626)	0.0849	1.072 (0.807 -1.582)	0.655	0.315 (0.169 -0.545)	0.000996	0.264 (0.137 -0.547)	0.000971	0.935 (0.628 -1.23)	0.771	0.146 (0.0624 -0.61)	0.00237	EE A12
1.66 (1.114 -3.358)	0.0314	1.388 (0.843 -2.168)	0.0621	0.441 (0.204 -1.115)	0.0579	0.487 (0.27 -0.617)	0.00918	1.519 (1 -2)	0.07	0.558 (0.442 -0.715)	0.000471	EE A8

Table A.1 (continued)

1 au	ole A	1.1 (con	unu	eu)							
1.708 (1.074 -2.513)	0.00578	1.106 (0.7 -1.803)	0.541	0.425 (0.25 -0.735)	0.0051	0.503 (0.27 -0.643)	0.00293	0.693 (0.01 -1.503)	0.621	0.643 (0.488 -0.955)	0.0171	EE A9
1.065 (0.825 -1.338)	0.372	0.886 (0.641 -1.237)	0.433	1.12 (0.702 -1.552)	0.397	1.609 (1.233 -2.663)	0.0205	0.768 (0.336 -1.275)	0.263	12.24 (5.919 -27.79)	0.000207	EE B1
1.346 (0.65 -2.028)	0.197	1.362 (1.084 -1.66)	0.0129	0.718 (0.427 -1.114)	0.128	0.787 (0.685 -0.942)	0.00721	0.78 (0.669 -1.094)	0.0546	0.458 (0.218 -0.718)	0.0165	EE B3
1.172 (0.985 -1.36)	0.0194	1.213 (0.974 -1.556)	0.0561	0.909 (0.677 -1.185)	0.274	0.816 (0.562 -0.971)	0.0587	0.92 (0.51 -1.296)	0.563	0.434 (0.141 -0.914)	0.0605	EE B6
1.427 (0.761 -3.606)	0.282	0.982 (0.618 -1.326)	0.902	0.458 (0.234 -0.857)	0.0732	0.396 (0.18 -0.639)	0.0123	NO DATA	NO DATA	0.386 (0.303 -0.441)	0.00148	EE B7
1.403 (0.845 -2.604)	0.134	0.821 (0.5 -1.393)	0.305	0.407 (0.287 -0.666)	0.071	0.382 (0.192 -0.534)	0.0022	1.257 (0.85 -1.857)	0.663	0.287 (0.193 -0.392)	4.42E -05	EE B9

Table A.1 (continued)

1.017 (0.742 -1.711)	0.897	1.131 (0.819 - 1.403)	0.257	0.61 (0.507 -0.698)	0.00605	0.965 (0.734 -1.488)	0.806	1.016 (0.634 -1.399)	0.953	0.448 (0.329 -0.733)	0.0013	EE C10
1.015 (0.918 -1.171)	0.768	0.768 (0.385 -1.566)	0.376	0.675 (0.453 -1.087)	0.172	0.363 (0.319 -0.438)	5.74E -06	1.957	No reps.	0.321 (0.236 -0.377)	1.96E -05	EE C2
1.743 (0.977 -2.423)	0.0316	0.977 (0.756 -1.203)	0.826	0.619 (0.559 -0.664)	0.00118	0.405 (0.34 -0.503)	0.000433	0.972 (0.377 -1.812)	0.923	0.383 (0.26 -0.745)	0.00609	EE C4
0.909 (0.52 -1.276)	0.516	1.039 (0.846 -1.235)	0.554	1.131 (0.272 -2.659)	0.724	1.126 (0.945 -1.729)	0.311	1.316 (0.914 -1.866)	0.0552	3.603 (1.29 -17.82)	0.037	EE C8
1.6 (1.244 -1.853)	0.000708	1.157 (0.841 -1.356)	0.109	0.777 (0.349 -1.135)	0.208	0.646 (0.38 -1.229)	0.0383	0.874 (0.335 -1.474)	0.63	0.378 (0.25 -0.424)	8.43E -05	EE C9
0.84 (0.439 -1.915)	0.447	0.776 (0.629 -0.874)	0.04	0.603 (0.417 -1.318)	0.0723	0.603 (0.536 -0.737)	0.000263	NO DATA	NO DATA	0.171 (0.12 -0.212)	4.78E -06	EE D10

Table A.1 (continued)

1.129 (1.116 - 1.142) 1.681	0.0592 0.0667	0.787 (0.455 -1.62) 1.037	0.5 0.819	0.319 (0.204 -0.472) 1.305	0.00714 0.127	0.332 (0.225 -0.45) 1.354	0.00114 0.00361	NO DATA NO DATA	NO DATA NO DATA	0.184 (0.088 -0.421) 0.555	0.00369 0.0291	EE D11 EE D5
(0.807 -2.685)	7	(0.748 -1.515)		(0.944 -1.73)		. (1.149 -1.485)	61	ATA	ATA	(0.234 -0.856)	1	5
1.181 (1.106 -1.299)	0.076	0.783 (0.442 -1.002)	0.174	0.537 (0.189 -1.06)	0.201	0.455 (0.305 -0.526)	0.000205	NO DATA	NO DATA	0.247 (0.203 -0.332)	1.29E -05	EE D9
1.597 (1.16 -2.963)	0.0181	1.373 (0.683 -1.969)	0.169	1.194 (0.611 -1.67)	0.267	1.621 (0.913 -2.228)	0.0152	1.437 (1.192 -1.84)	0.032	4.143 (2.947 -5.313)	1.44E -05	EE E11
1.814 (1.442 -2.431)	0.000599	1.347 (0.976 - 1.785)	0.0374	1.267 (0.521 -2.106)	0.396	1.289 (1.096 -1.7)	0.0123	0.801 (0.463 -0.94)	0.182	1.877 (1.426 -2.259)	0.000324	EE E3
1.49 (1.084 -2.033)	0.00969	1.21 (0.826 -2.091)	0.253	0.552 (0.197 -0.907)	0.19	0.448 (0.232 -0.723)	0.00717	1.77 (1.5 -2.088)	0.18	0.463 (0.282 -0.608)	0.00149	EE E9

Table A.1 (continued)

1.815 (1.07 -2.591) 0.857	0.158 0.0692	1.237 (0.748 -2.062) 0.732	0.329 0.0385	1.055 1.009	No reps. 0.848	0.812 (0.515 -1.058) 1.213	0.16 0.139	0.01* 0.856	No reps. 0.302	0.819 (0.635 - 1.114) 3.55	0.0555 0.00731	EE F9 EE G1
7 (0.696 -1.025)	92	2 (0.563 -0.828)	35	9 (0.908 -1.176)	3	3 (0.899 -1.774)	9	6 (0.513 -1.229)	2	(1.51 -12.94)	731	ũ
0.868 (0.439 -1.253)	0.492	0.949 (0.788 -1.134)	0.478	0.558 (0.409 -0.96)	0.0158	0.316 (0.162 -0.456)	0.00203	0.588	No reps.	0.248 (0.219 -0.297)	4.05E -05	EE G11
1.395 (1.155 -1.795)	0.0149	1.606 (1.099 -1.894)	0.0349	1.225 (0.645 -2.282)	0.412	0.738 (0.619 -0.885)	0.00156	1.83 (1.558 -2.047)	0.0181	0.703 (0.38 -1.081)	0.12	EE H10
1.608 (0.684 -3.552)	0.208	1.131 (0.575 -1.818)	0.564	0.338 (0.187 -0.621)	0.00839	0.334 (0.27 -0.458)	9.59E -05	0.966 (0.576 -1.738)	0.878	0.173 (0.148 -0.235)	3.53E -05	EE H2
1.096 (0.647 -1.729)	0.648	0.918 (0.587 -1.726)	0.653	0.735 (0.435 -1.022)	0.206	0.796 (0.58 -1.142)	0.113	2	No reps.	0.393 (0.251 -0.51)	0.000284	EE H3

Table A.1 (continued)

1.624 (1.053 -2.229) 0.981	0.0257 0.835	1.417 (0.932 -2.08) 1.026	0.0616 0.839	1.091 (0.888 -1.5) 0.969	0.642 0.812	0.865 (0.678 -1.058) 1.345	0.0934 0.122	4.271 1.014	No reps. 0.957	0.756 (0.519 -1.354) 6.425	0.188 9.166	EE H4 EE H7
1 (0.677 -1.246)		(0.713 -1.583)		(0.678 -1.438)		(1.02 -2.761)	2	(0.408 -2.088)		(4.997 -9.43)	9.16E -05	H7
1.331 (1.015 -1.735)	0.0586	1.25 (1.026 -1.802)	0.192	0.548 (0.373 -0.851)	0.0163	0.471 (0.317 -0.634)	0.00117	0.963 (0.583 -1.516)	0.866	0.241 (0.153 -0.347)	0.000765	EE H8
0.844 (0.388 -1.665)	0.442	1.63 (1.092 -2.117)	0.00442	1.287 (0.897 -1.703)	0.114	2.165 (1.42 -3.507)	0.00164	1.334 (1.003 -1.578)	0.0612	1.972 (1.403 -3.684)	0.00701	EE H9
0.859 (0.574 -1.009)	0.14	0.86 (0.763 -0.958)	0.0275	0.959 (0.809 -1.166)	0.459	1.091 (0.885 -1.48)	0.392	0.802 (0.633 -0.998)	0.034	7.312 (1.681 -83.48)	0.0246	EEE B3
0.818 (0.458 -1.296)	0.367	2.543 (1.118 -6.315)	0.0256	1.264 (0.875 -2.234)	0.208	3.582 (2.149 -6.598)	0.00142	4.234 (2.375 -10.98)	0.00559	58.48 (19.48 -151)	8.98E -05	EEE B7

Table A.1 (continued)

EEE B9 EEE D4 EEE D6 EEE D6 EEE E3 0.00649 0.00158 0.00432 7.53E -05 20.48 (5.424 - 169) 32.96 (5.45 - 64.5) 1.949 (1.105 - 4.583) 15.92 (9.497 - 24.2) 0.234 0.0501 0.0917 0.0917 0.000887 0.000887 0.806 (0.496 - 1.186) 1.463 (1.054 - 2.195) 1.119 (0.868 - 1.232) 2.231 (1.696 - 3.192 0.0968 0.022 0.022 0.215 0.000239 0.000239 1.287 (0.967 - 1.996) 2.544 (1.212 - 4.591) 1.152 (0.84 - 1.63) 2.919 (2.14 - 4.393) 1.019 (0.814 - 1.781) 3.381 (2.44 - 5.388) 1.037 (0.827 - 1.314) 2.078 (1.3 - 3.604) 0.761 (0.596 - 0.896) 2.825 (2.349 - 3.675) 0.818 (0.762 - 0.909) 1.468 (0.881 - 2.3) 0.0927 0.0927 0.419 0.457 0.0927 0.0927	0.907 (0.626 -1.344)	1.255 (0.934 -2.022)	0.954 (0.669 -1.213)	1.074 (0.919 -1.44)	0.789 (0.618 -1.012)
B9 EEE D4 EEE D4 49 0.00158 0.0432 49 32.96 (5.45-64.5) 1.949 (1.105-4.583) (5.424-169) 32.96 (5.45-64.5) 0.0917 0.0917 (0.496-1.186) 1.463 (1.054-2.195) 1.119 (0.868-1.232) (0.496-1.186) 0.022 0.215 U.105 U.105 (0.967-1.998) 2.544 (1.212-4.591) 1.152 (0.84-1.63) (0.967-1.998) 2.544 (2.12-4.591) 1.152 (0.84-1.63) (0.967-1.998) 2.544 (2.12-4.591) 1.152 (0.84-1.63) (0.967-1.998) 3.381 (2.44-5.388) 0.64 U.1037 (0.827-1.314) (0.814-1.781) 3.381 (2.44-5.388) 1.037 (0.827-1.314) U.1037 (0.827-1.314) U.1037 (0.827-0.909) U.1037 0.000413 U.1037 0.215 U.1037 0.215 U.1037 0.215 U.1037 0.215 U.1037 U.1037 U.1037 U.1037 U.1037 U.1	0.371	0.0927	0.657	0.419	0.0151
B9 EEE D4 EEE D4 49 0.00158 0.0432 49 32.96 (5.45-64.5) 1.949 (1.105-4.583) (5.424-169) 32.96 (1.054-2.195) 0.0917 0.0917 (0.496-1.186) 1.463 (1.054-2.195) 1.119 (0.868-1.232) (0.496-1.186) 0.022 0.215 0.215 3 0.022 0.215 0.244 (0.967-1.998) 2.544 (1.212-4.591) 1.152 (0.84-1.63) (0.814-1.781) 3.381 (2.44-5.388) 0.64 1.037 (0.827-1.314) 3 4.35E-05 0.000413 0.000413 0.000413 0.000413	1.13				
B9 EEE D4 EEE D4 49 0.00158 0.0432 49 32.96 (5.45-64.5) 1.949 (1.105-4.583) (5.424-169) 32.96 (5.45-64.5) 0.0917	0.601	0.0393	0.000413	4.35E -05	0.0178
B9 EEE D4 EEE D4 49 0.00158 0.0432 49 32.96 (5.45-64.5) 1.949 (1.105-4.583) (5.424-169) 32.96 (5.45-64.5) 0.0917	1.605				
B9 EEE D4 EEE D6 49 0.00158 0.0432 49 32.96 (5.45-64.5) 1.949 (1.105-4.583) (5.424-169) 32.96 (5.45-64.5) 0.0917 0.0917 (0.496-1.186) 1.463 (1.054-2.195) 1.119 (0.868-1.232) 3 0.022 0.215 0.215 0.215 (0.967-1.998) 2.544 (1.212-4.591) 1.152 (0.84-1.63)	0.0514	0.00367	0.64	0.000952	0.88
B9 EEE D4 EEE D6 49 0.00158 0.0432 49 32.96 (5.45 - 64.5) 1.949 (1.105 - 4.583) (5.424 - 169) 32.96 (5.45 - 64.5) 0.0917 0.0917 (0.496 - 1.186) 1.463 (1.054 - 2.195) 1.119 (0.868 - 1.232) 3 0.022 0.215 0.215	2.732	2.919 (2.14 -4.393)			
B9 EEE D4 EEE D6 49 0.00158 0.0432 (5.424 - 169) 32.96 (5.45 - 64.5) 1.949 (1.105 - 4.583) (5.426 - 1.186) 0.0501 0.0917 0.0917 (0.496 - 1.186) 1.463 (1.054 - 2.195) 1.119 (0.868 - 1.232)		0.000299	0.215	0.022	0.0968
B9 EEE D4 EEE D6 EEE E3 49 0.00158 0.0432 7.53E-0 (5.424-169) 32.96 (5.45-64.5) 1.949 (1.105-4.583) 15.92 0.0501 0.0917 0.09068* 0.09068* 0.09068*		2.231 (1.696 -3.192)			
39 EEE D4 EEE D6 EEE E3 19 0.00158 0.0432 7.53E-0 (5.424 - 169) 32.96 (5.45 - 64.5) 1.949 (1.105 - 4.583) 15.92		0.000687	0.0917	0.0501	0.234
EEE D4 EEE D6 0.00158 0.0432		15.92 (9.497 -24.2)			
EEE D4 EEE D6		7.53E -05	0.0432	0.00158	0.00649
		EEE E3	EEE D6	EEE D4	EEE B9

Table A.1 (continued)

0.665 (0.476 - 1.354)	0.0931	0.37 (0.143 -0.646)	0.00895	0.931 (0.554 -1.565)	0.913	2.106 (0.789 -4.516)	0.0536	1.129	No reps.	2.612 (2.142 -3.029)	0.0113	EEE G9
1.82	No reps.	0.508 (0.446 -0.628)	0.000443	J	No reps.	1.554	No reps.	1.078 (0.872 -1.444)	0.459	1.07	No reps.	EEE H11
0.798 (0.489 -1.157)	0.142	0.942 (0.624 -1.725)	0.736	1.582 (0.802 -3.47)	0.122	2.089 (1.324 -2.829)	0.000979	0.766 (0.363 -1.589)	0.278	12.64 (7.868 - 27)	0.000348	F A6
1.014 (0.481 -1.801)	0.94	0.887 (0.637 -1.132)	0.301	1.455 (1.037 -2.119)	0.0802	2.56 (2.472 -2.686)	1.42E -05	2.335	No reps.	3.689 (1.844 -8.757)	0.00166	F C4
1.082 (0.937 -1.38)	0.233	0.934 (0.763 -1.186)	0.425	1.043 (0.885 -1.265)	0.456	1.425 (1.052 - 2.487)	0.0539	1.091 (0.807 -1.818)	0.5	24.93 (4.727 -167)	0.00285	F E10
1.287 (0.946 -1.985)	0.0652	1.125 (0.917 -1.371)	0.162	2.041 (1.481 -2.459)	0.00174	2.057 (0.942 -3.497)	0.0105	1.94 (1.696 -2.485)	0.0333	4.001 (2.813 -6.481)	0.00116	F F10

Table A.1 (continued)

Table A.1 (continued)

0.888 (0.69 -1.11)	1.079 (0.749 - 1.456)	0.933 (0.846 -1.067)	0.816 (0.646 -0.983)	1.082 (0.582 -1.442)	1.048 (0.762 -1.334)
0.399	0.573	0.24	0.0529	0.667	0.555
0.743 (0.55 -0.868)	0.929 (0.58 -1.267)	0.888 (0.618 -1.592)	0.993 (0.671 -1.561)	0.874 (0.558 -1.323)	0.948 (0.673 -1.484)
0.00648	0.61	0.473	0.952	0.451	0.663
0.872 (0.698 -1.087)	1.588 (0.914 -2.024)	1.399 (0.934 -2.149)	2.499 (2.09 -3.287)	2.127 (1.858 -2.563)	1.212 (1.038 -1.941)
0.088	0.0335	0.0417	0.00255	0.0159	0.105
0.992 (0.808 -1.377)	2.093 (1.442 -3.272)	1.363 (0.955 -2.512)	2.52 (1.663 -5.362)	2.732 (1.432 -5.213)	1.417 (1.027 -2.28)
0.927	0.00979	0.0848	0.0108	0.364	0.071
0.864 (0.502 -1.433)	1.302 (0.426 -5)	0.433 (0.161 -1.166)	1.018 (0.866 -1.196)	0.849 (0.655 -1.374)	1.03 (0.727 -1.309)
0.464	0.66	0.553	0.93	0.392	0.761
0.441 (0.31 -0.537)	4.816 (2.761 -13.6)	2.365 (1.067 -4.199)	10.84 (1.923 -36.5)	6.919 (5.632 -8.5)	19.35 (3.852 -119)
0.000192	0.00105	0.00793	0.0103	0.0675	0.00371
FF E4	FF E12	FF C5	FF C4	FF B8	FF B7

Table A.1 (continued)

1.101 (0.569 - 1.709)	0.658	0.851 (0.489 -1.335) 1	0.358	0.291 (0.121 -0.671) 1	0.0217	0.37 (0.292 -0.539) 2	0.00149	1.951	No reps.	0.161 (0.0991 -0.292) 2	0.000465	FF E9
0.96 (0.671 -1.124)	0.754	1.684 (0.773 -4.22)	0.109	1.511 (0.795 -4.043)	0.139	2.12 (1.165 - 3.626)	0.00544	1.072 (0.564 -1.66)	0.786	22.67 (11.04 - 50.5)	0.000618	FF F10
0.835 (0.417 -1.208)	0.409	1.953 (1.692 -2.296)	4.26E -05	1.986 (1.396 -3.042)	0.00955	2.356 (1.411 -3.521)	0.0025	2.604 (1.924 -3.524)	0.195	6.205 (1.777 -16.41)	0.109	FF G1
3.412 (2.926 -3.979)	0.0793	1.851 (0.979 -3.5)	0.511	1.009	No reps.	0.454 (0.231 -0.713)	0.00478	NO DATA	NO DATA	0.549 (0.517 -0.604)	0.00639	FF G9
1.465 (1.071 - 1.853)	0.00721	1.302 (1.021 -1.49)	0.00689	1.794 (1.127 - 2.888)	0.0361	4.103 (1.549-20)	0.0104	1.364 (1.08 -1.636)	0.127	7.767 (3.296 - 15.31)	0.00129	FF H7
1.602 (1.251 -2.359)	0.00358	1.461 (0.904 -2.024)	0.0399	0.603 (0.435 -0.772)	0.00339	0.741 (0.578 -1.021)	0.0324	0.955 (0.451 -2.079)	0.859	0.499 (0.337 -0.664)	0.00406	G A10

Table A.1 (continued)

1.248 (1.021 -1.431)	0.00511	2.249 (0.915 -3.213)	0.0259	1.457 (1.139 - 1.88)	0.0049	1.632 (0.911 -2.882)	0.0254	0.946 (0.732 -1.278)	0.599	16.18 (8.521 -22.72)	0.00105	G A12
1.221	No reps.	NO DATA	NO DATA	0.01*	No reps.	1.334 (1.124 -1.749)	0.0577	NO DATA	NO DATA	0.92 (0.559 -1.216)	0.768	G B1
0.907 (0.544 -2.751)	0.813	0.816 (0.42 -1.784)	0.375	0.115 (0.0332 -0.429)	0.0998	0.222 (0.0603 -0.442)	0.015	NO DATA	NO DATA	0.117 (0.0888 -0.166)	3.18E -05	G B7
0.631 (0.324 -1.27)	0.124	0.716 (0.239 -1.823)	0.412	1.854	No reps.	2.004 (1.665 -2.437)	0.000937	0.0755 (0.01 -0.57)	0.423	3.106 (1.421 -4.213)	0.00101	G C1
0.48 (0.413 -0.56)	0.000354	0.418 (0.227 -0.728)	0.00918	1.268 (0.292 -4.351)	0.633	1.357 (0.881 -2.027)	0.114	1.068 (0.593 -1.826)	0.683	2.521 (2 -3.046)	5.64E -05	G C10
0.744 (0.48 - 1.027)	0.062	0.911 (0.797 -1.06)	0.0719	0.918 (0.328 -1.773)	0.777	0.926 (0.697 -1.242)	0.481	0.834 (0.313 -1.638)	0.487	4.51 (1.628 -34.24)	0.0763	G C8

Table A.1 (continued)

Ta	ble 4	A .1	(cor	ntinu	ied)							
1.767 (1.479 -2.21)	0.0405	1.032 (0.877 -1.376)	0.77	0.493	No reps.	0.878 (0.704 -1.112)	0.259		No reps.	0.753 (0.647 -1.104)	0.0188	G D4
0.702 (0.446 -1.148)	0.081	0.995 (0.845 -1.197)	0.941	1.521 (0.976 -3.343)	0.22	1.329 (1.105 -2.228)	0.102	0.637 (0.528 -0.768)	0.251	2.613 (1.897 -4.492)	0.00366	G E1
0.999 (0.811 -1.332)	0.986	0.964 (0.768 -1.065)	0.486	0.908 (0.838 -1.063)	0.0546	1.181 (0.93 -1.63)	0.135	1.049 (0.695 -1.429)	0.701	3.079 (1.391 -12.12)	0.0202	G E10
0.875 (0.675 -1.33)	0.243	0.997 (0.61 -1.557)	0.984	1.254 (0.907 -1.707)	0.0441	1.616 (1.132 -2.115)	0.00886	0.869 (0.448 -1.825)	0.545	5.363 (2.439 -15.05)	0.00145	G E11
1.359 (0.922 - 1.832)	0.0436	1.18 (0.908 -1.78)	0.252	7.795	No reps.	1.498 (1.123 -1.948)	0.127	NO DATA	NO DATA	1.123 (0.833 -2.017)	0.729	G E3
0.703 (0.591 -0.931)	0.0367	0.734 (0.417 -1.099)	0.228	1.577 (1.046 -2.347)	0.0937	1.466 (1.302 -1.921)	0.00632	1.011 (0.601 -1.588)	0.949	1.551 (1.135 -2.637)	0.0142	G E9

Table A.1 (continued)

G F10	G F11	G G11	G G12	G G2	G G5
0.0163	0.0514	0.00805	0.00812	0.000711	0.0278
10.87 (2.218 -119.4)	1.717 (1.028 -2.981)	1.787 (1.237 -2.764)	4.05 (1.529 -8.802)	2.085 (1.366 -2.835)	3.722 (2.329 -9.572)
9680'0	0.317	0.374	0.36	No reps.	0.67
0.704 (0.421 -1.171)	1.196 (0.939 -1.5)	1.312 (0.901 -2.794)	0.913 (0.754 -1.34)	0.01*	0.883 (0.392 -2.179)
0.591	0.0106	0.659	0.063	0.0627	1.18E -05
1.046 (0.912 -1.37)	1.756 (1.166 -3.287)	0.932 (0.514 -1.256)	1.36 (1 -2.285)	1.465 (0.901 -2.948)	2.103 (1.876 -2.407)
0.0417	0.0151	0.5	0.755	0.104	0.0343
0.852 (0.767 - 1.126)	1.725 (1.025 - 2.198)	1.067 (0.763 -1.5)	0.968 (0.748 -1.371)	1.486 (1.392 -1.586)	2.131 (1.2 -3.06)
0.081	0.0401	0.0031	0.863	0.495	0.985
0.798 (0.56 -0.994)	0.781 (0.575 -0.945)	0.655 (0.501 -0.826)	1.01 (0.892 -1.289)	0.837 (0.596 -2.136)	1.003 (0.568 -1.533)
0.0823	0.0179	0.0223	0.361	0.838	0.91
0.834 (0.612 -1.156)	0.597 (0.373 -0.913)	0.68 (0.459 -0.855)	1.072 (0.968 -1.509)	0.946 (0.458 - 1.334)	1.019 (0.49 - 1.461)

Table A.1 (continued)

r			<u>`</u>									
1.071 (0.851 -1.307)	0.304	1.017 (0.772 -1.226)	0.833	1.322 (0.855 -1.73)	0.332	1.788 (1.263 -2.633)	0.00211	1.303 (0.94 -1.808)	0.567	1.879 (1.387 -2.909)	0.00505	G H3
0.851 (0.641 -1.08)	0.0933	1.019 (0.857 -1.291)	0.793	1.102 (0.884 -1.325)	0.306	1.747 (1.136 -2.568)	0.00479	0.728 (0.539 -0.943)	0.0194	11.19 (7.452 - 19.63)	8.50E -06	G H5
1.092 (0.934 -1.241)	0.314	0.983 (0.613 -1.402)	0.89	1.411 (1.153 -1.748)	0.0053	1.899 (1.153 -3.222)	0.0101	1.075 (0.636 -1.3)	0.618	6.488 (4.118 -14.67)	0.00137	G H8
0.507 (0.382 -0.707)	0.00119	0.439 (0.253 -0.736)	0.0049	1.215 (0.26 -10.34)	0.746	1.418 (0.831 -2.832)	0.276	0.942 (0.58 -1.531)	0.922	2.78 (1.604 -4.178)	0.000506	GGG E8
0.824 (0.484 -1.165)	0.167	0.757 (0.564 -0.901)	0.00943	1.114 (0.888 -1.405)	0.194	1.132 (0.882 -1.641)	0.196	0.973 (0.604 -1.536)	0.855	11.68 (1.634 -391)	0.0959	GGG F2
0.929 (0.507 -1.225)	0.686	0.873 (0.591 -1.308)	0.336	1.973 (1.531 -3.246)	0.00155	1.92 (1.245 -3.011)	0.00351	0.762 (0.396 -1.305)	0.517	11.71 (4.854 -24.5)	0.035	GGG G1

Table A.1 (continued)

GGG G5	HH A12	HH A8	HH B10	HH C9	HH E8
0.768	0.00135	0.00108	0.0016	0.00865	0.00213
1.051 (0.589 -1.47)	66.62 (21.44 -252)	0.566 (0.436 -0.641)	11.2 (4.231 -41.09)	9.729 (4.116 -20.24)	23.03 (4.317 -50.5)
No reps.	0.527	NO DATA	0.0814	0.365	0.38
0.01*	1.066 (0.822 -1.427)	NO DATA	0.709 (0.431 -1.056)	0.718 (0.318 -1.286)	2.588 (0.508 -9)
0.18	0.186	0.296	0.533	0.0309	0.00704
0.811 (0.613 -1.375)	1.22 (0.707 -1.729)	1.212 (0.947 -1.89)	1.088 (0.818 -1.581)	1.989 (1.14 -4.387)	5.342 (0.82 -10.36)
0.0839	0.425	0.587	0.255	0.0233	0.475
0.788 (0.584 -1.047)	1.149 (0.688 -1.618)	0.852 (0.579 -1.36)	0.873 (0.716 -1.426)	1.825 (1.165 -3.58)	1.49 (0.183 -8.941)
0.0274	0.000598	0.0635	0.106	0.586	0.0168
0.437 (0.233 -0.807)	2.563 (1.534 -3.541)	1.296 (1.064 -1.607)	0.83 (0.603 -1.041)	0.87 (0.557 -1.615)	2.248 (1.15 -4.321)
0.0073	0.000139	0.0137	0.692	0.119	0.275
0.517 (0.262 -0.71)	1.557 (1.287 -1.709)	2.233 (2.194 -2.272)	0.962 (0.74 -1.265)	0.73 (0.384 -1.305)	1.234 (0.699 -1.654)

Table A.1 (continued)

1.562	No reps.	NO DATA	NO DATA	0.01*	No reps.	0.605 (0.22 -1.007)	0.155	NO DATA	NO DATA	0.466 (0.294 -0.614)	0.00364	II B5
3.215 (1.75 -6.327)	0.0885	2.271 (0.991 -3.736)	0.188	0.263 (0.01 -0.561)	0.293	0.375 (0.307 -0.509)	0.000117	NO DATA	NO DATA	0.358 (0.182 -0.694)	0.0118	II C4
0.73 (0.605 -0.971)	0.00772	0.624 (0.476 -0.791)	0.00142	0.924 (0.761 -1.133)	0.294	0.985 (0.791 -1.426)	0.884	0.78 (0.435 -1.224)	0.335	1.624 (1.234 -3.333)	0.0235	II C6
0.909	No reps.	1.121 (0.913 -1.542)	0.554	0.01*	No reps.	1.253 (0.84 -1.786)	0.241	NO DATA	NO DATA	0.69 (0.509 -1.001)	0.0955	II E5
1.386 (1.158 -2.031)	0.0136	1.015 (0.593 -1.675)	0.926	1.652 (1.256 -2.231)	0.0017	2.174 (1.87 -2.624)	3.68E -05	0.938 (0.762 -1.317)	0.743	9.42 (3.155 -42.45)	0.00209	II E7
0.991 (0.983 -1)	0.5	2.064	No reps.	0.154 (0.146 -0.162)	0.0174	0.485 (0.259 -0.742)	0.00637	NO DATA	NO DATA	0.238 (0.148 -0.362)	0.00862	II F5

Table A.1 (continued)

0.914 (0.446 -1.385) 0	0.645	1.347 (1.143 - 1.786) 1	0.0195	1.036 (0.91 -1.158) 1	0.509	1.475 (1.105 - 1.917) 2	0.00947	1.452 (0.77 -3.508) 1	0.159	3.108 (0.0993 -5.202) 3	0.156	II G11
0.821 (0.611 -1.103)	0.114	1.106 (0.75 -1.857)	0.464	1.026 (0.482 -1.883)	0.922	2.736 (0.99 - 10.45)	0.0697	1.62 (1.004 -3.089)	0.0309	3.196 (2.11 -4.062)	7.70E -05	II G12
1.248 (0.907 -1.714)	0.0643	1.769 (1.126 -2.497)	0.00489	1.806 (0.851 -3.883)	0.0638	2.961 (1.62 -3.845)	0.00216	1.875 (0.956 -3.677)	0.522	5.443 (1.715 -12.21)	0.00147	II H10
0.473 (0.372 -0.719)	0.000505	0.405 (0.296 -0.498)	0.000181	1.402 (0.292 -8.861)	0.627	1.743 (1.021 -2.562)	0.0237	1.806 (1.087 -3)	0.452	2.553 (1.31 -3.558)	0.00137	III A6
0.403 (0.316 -0.484)	0.000198	1.097 (0.86 -1.478)	0.413	0.537 (0.259 -1.185)	0.14	1.347 (0.792 -2.658)	0.155	1	No reps.	0.604 (0.305 - 1)	0.0787	III B12
0.01*	No reps.	1.536 (1.153 -2.047)	0.375	1.5	No reps.	0.828 (0.406 -1.24)	0.409	NO DATA	NO DATA	0.735 (0.522 -1.486)	0.292	III C10

Table A.1 (continued)

NO DATA 1.	NO DATA NO	NO DATA NO	NO DATA NO	12 0.	No reps.	1.129 (0.969 - 1.335) 0.1	0.116 0.1	NO DATA NO	NO DATA NO	4.333 0.	No reps. 0.	III C2
1.498	No reps.	NO DATA	NO DATA	0.187	No reps.	0.537 (0.516 -0.552)	0.00111	NO DATA	NO DATA	0.495 (0.363 -0.606)	0.00755	III C5
0.793 (0.55 -1.033)	0.0897	0.866 (0.575 -1.246)	0.336	1.334 (0.867 -2.149)	0.0946	1.809 (0.865 -3.388)	0.0327	0.69 (0.37 -0.899)	0.0635	27.56 (11.2 -77)	0.000136	III D1
0.451 (0.337 -0.617)	0.000457	0.446 (0.261 -0.653)	0.00319	1.162 (0.252 -4.582)	0.754	1.44 (1.066 -2.013)	0.0228	1.525 (0.858 -4.014)	0.177	2.292 (1.815 -3.078)	9.33E -05	III D2
1.1 (0.973 -1.332)	0.123	0.888 (0.632 -1.103)	0.297	1.115 (0.976 -1.301)	0.0649	1.344 (1.036 - 1.631)	0.0167	0.905 (0.377 -1.57)	0.719	4.41 (3.974 -4.944)	8.28E -05	III E1
2.326 (1.203 -4.5)	0.422	0.934 (0.586 -1.244)	0.65	0.595 (0.377 -0.921)	0.183	0.549 (0.414 -0.655)	0.000506	3.212	No reps.	0.287 (0.231 -0.426)	0.00267	III E11

Table A.1 (continued)

III E3 0.000415 4.824 (3.328 -9.849) 0.348 0.597 (0.437 -0.817)	III E6 9.09E -05 2.367 (1.752 -2.711) 0.248 1.811 (0.918 -9)	III F12 0.754 0.949 (0.603 -1.397) No reps. 4.064	JJ B10 0.000237 22.01 (12.72 -71.9) 0.246 0.729 (0.408 -1.325)	JJ B11 0.000589 5.968 (2.613 -14.84) 0.0878 0.769 (0.523 -1.129)	JJ C2 0.0266 11.22 (E NO DATA NO DATA
0,		4.064 0.217			9)
1.768 (1.318 -2.351)	1.407 (0.74 -2.424)	0.686 (0.552 -1.047)	1.162 (0.93 -1.694)	2.015 (1.194 -4.588)	8)
0.0309	0.962	No reps.	0.961	0.523	
1.499 (1.277 -2.042)	1.027 (0.236 -7.023)	0.01*	0.995 (0.743 -1.323)	1.057 (0.815 -1.355)	5)
0.841	0.00391	No reps.	0.146	0.236	
1.034 (0.615 -1.835)	0.437 (0.264 -0.745)	1.473	0.793 (0.583 -0.961)	0.875 (0.65 -1.066))
0.525	0.00182	0.5	0.762	0.451	
1.093 (0.799 -1.671)	0.449 (0.289 -0.681)	1.533 (1 -2.349)	0.971 (0.737 -1.223)	0.936 (0.732 -1.221)	.1)

Table A.1 (continued)

0.85 (0.665 -1.014) 0.884 (0.554 -1.24) 0.	0.0395 0.523 0.	0.741 (0.608 -0.82) 0.845 (0.725 -1.155) 0.	0.000989 0.0788 0.3	1.075 (0.859 -1.315) 1.155 (0.975 -1.603) 1.	0.369 0.102 0:	1.27 (0.87 -1.915) 1.287 (0.994 -1.746) 1.	0.117 0.265 0.	0.885 (0.721 -1.07) 0.738 (0.551 -0.89) 0.	0.129 0.0241 0.	7.204 (1.362 -218.6) 4.174 (3.064 -5.9) 19	0.0752 2.47E -05 0.	JJ C6 JJ D11 J.
0.789 (0.582 -1.094)	0.0823	0.901 (0.765 -1.265)	3	1.25 (0.844 -2.22)	0.208	1.468 (0.809 -2.822)	0.197	0.852 (0.705 -1.089)	0.0903	19.76 (9.739 -72.79)	0.000614	JJ D12
0.525 (0.402 -0.827)	0.00614	0.477 (0.323 -0.705)	0.00168	1.011 (0.333 -3.143)	0.979	1.291 (0.82 -1.947)	0.133	0.892 (0.496 -1.861)	0.587	2.2 (1.881 -2.623)	2.61E -05	JJ D3
0.916 (0.851 -0.999)	0.0162	0.749 (0.673 -0.89)	0.00154	1.016 (0.943 -1.134)	0.628	1.077 (0.822 - 1.529)	0.475	0.82 (0.695 -0.93)	0.013	2.024 (1.114 -5.933)	0.0603	JJ D5
0.994 (0.612 -1.458)	0.966	0.737 (0.38 -1.055)	0.101	1.078 (0.594 -1.714)	0.833	1.324 (0.921 -1.689)	0.0662	1.033 (0.499 -1.814)	0.941	6.389 (2.798 -14.5)	0.00338	JJ D7

Table A.1 (continued)

202	6	6	16	4	1
30.31 (10.4 -129)	12.05 (9.025 - 20.78)	9.948 (6.682 -14.82)	22.58 (11.71 -64)	5.116 (3.644 -12.82)	3.245 (1.505 -4.925)
0.561	0.607	0.582	0.0709	0.201	0.506
0.917 (0.561 -1.245)	0.942 (0.695 -1.096)	0.893 (0.398 -1.402)	0.747 (0.484 -1.1)	0.768 (0.331 -1.103)	1.444 (0.993 -2.101)
0.0459	0.00132	0.226	0.00469	0.00716	0.0146
1.565 (1.015 -3.159)	1.919 (1.306 -2.452)	1.164 (0.786 -1.799)	1.593 (1.242 -2.071)	1.588 (1.29 -2.66)	2.015 (0.917 -2.73)
0.401	0.0136	0.815	0.202	0.0263	0.0244
1.158 (0.813 -1.857)	1.376 (1.141 -2.075)	0.975 (0.737 -1.317)	1.173 (0.832 -1.654)	1.377 (1.106 - 1.798)	2.769 (1.3 -5.441)
0.00531	0.000299	0.0066	0.616	0.00224	0.641
0.804 (0.7 -0.9)	2.191 (1.739 -3.02)	0.611 (0.39 -0.845)	0.947 (0.75 -1.309)	0.805 (0.687 -0.902)	0.935 (0.634 -1.627)
0.0757	0.0067	0.00714	0.174	0.0932	0.743
0.801 (0.608 -1.065)	1.25 (1.103 -1.388)	0.697 (0.604 -0.832)	0.906 (0.726 -1.141)	1.059 (0.963 -1.186)	1.06 (0.716 -1.666)

Table A.1 (continued)

Table A.1 (continued)

Ta	ble 4	A.1	(cor	ntinu	ied)							
1.532 (1.263 -1.95)	0.00194	1.524 (0.724 -2.397)	0.065	1.484 (1.224 -2.097)	0.0049	2.379 (1.394 -4.388)	0.00394	1.152 (0.947 -1.518)	0.294	15.01 (10.97 -18.72)	0.000182	K A7
NO DATA	NO DATA	0.183 (0.104 -0.432)	0.0112	0.167 (0.119 -0.281)	0.00038	0.337 (0.137 -0.877)	0.0134	1.144 (0.964 -1.357)	0.576	1.038 (0.82 -1.811)	0.857	K B1
0.855 (0.484 -1.47)	0.387	1.082 (0.749 -1.469)	0.478	2.239 (1.178 -4.178)	0.0636	1.793 (1.49 -2.344)	0.000594	1.529	No reps.	2.639 (1.5 -5.003)	0.00253	K B7
0.498 (0.384 -0.599)	0.000904	0.611 (0.475 -0.957)	0.0109	0.982 (0.524 -1.335)	0.914	1.027 (0.931 -1.158)	0.533	1.977 (0.997 -6.5)	0.372	1.798 (1.251 -2.529)	0.00198	K C2
0.757 (0.441 -1.074)	0.0855	0.572 (0.364 -0.726)	0.0092	1.072 (0.59 -1.878)	0.854	1.407 (1.039 - 1.957)	0.0114	1.162 (0.9 -1.5)	0.661	1.763 (0.982 -3.209)	0.0455	K C6
1.38 (0.807 -1.961)	0.0436	1.243 (1.02 -1.419)	0.00774	1.318 (0.736 -2.195)	0.151	1.517 (1.074 -1.696)	0.00199	1.113 (0.796 -1.649)	0.51	7.039 (3.396 -15.55)	0.000242	K C7

Table A.1 (continued)

Ta	ble 4	A .1	(cor	ntinu	ied)							
0.593 (0.305 -0.954)	0.0197	0.411 (0.107 -2.028)	0.139	1.674 (1.227 -2.036)	0.00527	1.432 (1.068 -2.421)	0.0518	3.364	No reps.	2.806 (1.809 -3.638)	0.000526	K D3
0.871 (0.603 -1.372)	0.275	0.813 (0.635 -1.251)	0.1	0.954 (0.476 -1.534)	0.84	1.308 (0.81 -1.796)	0.0698	0.94 (0.581 -1.489)	0.689	3.088 (2.398 -3.826)	5.14E -05	K D5
0.893 (0.744 -1.16)	0.232	0.899 (0.548 -1.699)	0.565	0.784 (0.512 -1.224)	0.172	1.268 (0.967 -1.668)	0.0258	NO DATA	NO DATA	2.316 (1.44 -5.309)	0.0179	K E12
1.513 (1.17 -2.217)	0.0225	1.907 (1.281 -2.817)	0.0164	0.78 (0.457 -1.254)	0.17	1.393 (0.598 -2.095)	0.118	0.644 (0.321 -1.715)	0.226	1.498 (1.042 -2.306)	0.0449	K E9
1.219 (0.959 -1.596)	0.312	1.146 (0.767 -3.054)	0.613	0.853 (0.831 -0.876)	0.104	0.307 (0.129 -0.421)	0.00115	2.14 (1.51 -3.035)	0.274	0.594 (0.289 - 1.091)	0.0456	K F12
0.953 (0.702 -1.214)	0.629	0.768 (0.564 -1.06)	0.0674	0.866 (0.599 -1.13)	0.276	1.245 (0.984 -1.975)	0.143	0.746 (0.256 -1.849)	0.334	7.484 (3.006 -18.98)	0.00144	K F6

Table A.1 (continued)

0.749 (0.481 -1.173) 1	0.186	0.889 (0.512 -1.242) 1	0.478	0.578	No reps.	0.516 (0.421 -0.821) 1	0.00129	0.0421 (0.01 -0.747) 0	0.158	0.487 (0.385 -0.56) 2	5.51E -05	K F8
1.005 (0.896 - 1.137)	0.907	1.262 (0.859 -1.527)	0.0421	1.034 (0.677 -1.557)	0.816	1.353 (1.118 -1.655)	0.00297	0.604 (0.444 -0.852)	0.117	2.837 (1.902 -4.76)	0.00103	K G10
0.899 (0.571 -1.071)	0.328	1.041 (0.759 -1.263)	0.596	1.111 (0.751 -1.671)	0.408	1.407 (1.033 -2.158)	0.0346	0.881 (0.703 -1.248)	0.261	5.202 (1.732 -13.39)	0.00167	K G2
0.955 (0.693 -1.14)	0.623	0.964 (0.589 -1.377)	0.837	0.444 (0.325 -0.928)	0.0473	0.302 (0.177 -0.47)	0.000285	0.822 (0.372 -1.876)	0.542	0.072 (0.0363 -0.117)	0.00043	KH1
1.38 (0.787 -1.917)	0.133	1.073 (0.613 -2.356)	0.775	0.264 (0.0783 -0.707)	0.0205	0.21 (0.149 -0.326)	0.000101	1.857 (1.349 -2.555)	0.303	0.0995 (0.0656 -0.163)	0.00115	K H10
1.336 (0.99 - 1.805)	0.511	1.229 (0.554 -2.432)	0.511	0.512 (0.335 -0.783)	0.36	0.391 (0.347 -0.442)	1.13E -06	NO DATA	NO DATA	0.312 (0.258 -0.364)	2.33E -06	K H8

Table A.1 (continued)

12	ıble	A.I	(CO	ntin	uea))						
1.818 (1.506 -2.294)	0.000155	1.506 (1.263 -1.797)	0.00447	1.434 (1.02 -1.723)	0.00749	1.919 (1.551 -2.219)	7.25E -05	1.257 (0.67 -1.94)	0.21	3.975 (1.714 -6.628)	0.00135	KK A6
0.968 (0.777 -1.5)	0.771	0.838 (0.692 -0.962)	0.0173	0.989 (0.921 -1.115)	0.739	1.172 (0.933 -1.561)	0.145	0.876 (0.761 -1.091)	0.112	3.401 (1.382 -22.2)	0.0945	KK A7
1.153 (0.814 -1.653)	0.243	1.09 (0.842 -1.801)	0.565	1.898 (1.285 -3.1)	0.0514	1.783 (1.353 -2.405)	0.000957	0.706 (0.393 -1.086)	0.227	3.24 (1.633 -7.258)	0.00259	KK B10
0.739 (0.578 -0.836)	0.0152	0.539 (0.256 -0.906)	0.0628	0.622 (0.375 -1.252)	0.0463	0.439 (0.245 -0.913)	0.00569	0.59 (0.381 -0.795)	0.141	0.209 (0.15 -0.321)	6.22E -05	KK B5
0.97 (0.792 -1.157)	0.675	1.008 (0.732 -1.284)	0.942	1.041 (0.767 -1.253)	0.605	1.192 (1.021 -1.363)	0.0124	0.789 (0.356 -1.657)	0.301	4.875 (3.478 -7.535)	6.32E -05	KK B7
0.726 (0.402 -1.11)	0.114	0.919 (0.726 -1.543)	0.505	1.434 (0.928 -1.991)	0.0203	1.938 (1.395 -2.851)	0.000925	0.742 (0.367 -0.968)	0.169	5.075 (2.281 -12.84)	0.00107	KK C10

Table A.1 (continued)

(0.232 -0.797)	0.995 (0.655 -1.6)	0.97 (0.687 -1.408)	
0.00857 No reps.	0.978		0.896
0.688 (0.475 -1.087) 0.69 (0.247 -2.291)	1.061 (0.749 -1.428)		0.987 (0.622 -1.399)
0.0306 0.502	0.631		0.923
0.891 (0.452 -1.303) 17.18 (7.694 -38.38)	1.885		1.552 (1.159 -2.686)
0.554 0.175	No reps.		0.101
1.079 (0.874 -1.393) 1.245 (0.683 -1.92)	2.419 (1.535 -4.236)		2.443 (1.667 -5.974)
0.632 0.26	0.00335		0.00551
1.269 (0.774 - 2) NO DATA	NO DATA		0.896 (0.641 -1.516)
0.364 NO DATA	NO DATA		0.719
1.907 (0.994 -4.438) 2.243 (1.272 -3.951)	2.67 (1.722 -3.623)		5.271 (4.18 -6.298)
0.038 0.0209	0.000307		0.000355
KK D2 KK D8	KK D9		KK E4

Table A.1 (continued)

0.955 (0.316 -1.603)	0.856	0.891 (0.357 -1.692)	0.706	3.165 (2.429 -4.627)	0.00482	2.282 (1.182 -5.229)	0.00845	0.563 (0.383 -0.827)	0.375	7.619 (4.643 - 12.5)	0.152	KK F8
1.139 (0.464 -2.57)	0.667	0.998 (0.488 -1.578)	0.993	0.373 (0.206 -0.864)	0.0169	0.396 (0.296 -0.617)	0.000552	0.786	No reps.	0.433 (0.291 -0.646)	0.000672	KK G6
1.048 (0.872 -1.526)	0.737	0.945 (0.738 -1.523)	0.68	0.946 (0.869 -1.03)	0.631	0.983 (0.731 -2.42)	0.934	NO DATA	NO DATA	0.404 (0.358 -0.444)	1.19E -06	KK G8
1.244 (1.151 -1.344)	0.217	0.816 (0.657 -1.3)	0.205	0.864 (0.705 -1.135)	0.412	0.817 (0.704 -0.98)	0.0259	NO DATA	NO DATA	0.425 (0.305 -0.682)	0.00514	KK H10
1.515 (1.114 -2.829)	0.0371	1.17 (0.799 -1.567)	0.165	0.164	No reps.	0.76 (0.309 -1.09)	0.222	NO DATA	NO DATA	1.354 (0.774 -1.827)	0.225	КК НЗ
1.328 (0.948 -1.63)	0.0188	1.007 (0.772 -1.372)	0.942	1.11 (0.681 -1.567)	0.529	1.706 (1.282 -2.363)	0.0111	1.276 (0.869 -2.618)	0.18	5.811 (2.061 -9.278)	0.000496	L A10

Table A.1 (continued)

	ble <i>i</i>		(cor									
1.356 (0.989 -1.778)	0.0385	1.045 (0.925 - 1.45)	0.559	0.82 (0.583 -1.019)	0.106	1.297 (1.088 -1.519)	0.012	0.859	No reps.	2.059 (1.467 -3.285)	0.00309	L A5
0.866 (0.662 -1.309)	0.242	0.766 (0.595 -0.993)	0.0475	1.004 (0.871 -1.379)	0.957	1.205 (0.882 -1.964)	0.252	0.762 (0.488 -1.211)	0.17	8.63 (2.376 -88.51)	0.015	L B10
0.608 (0.537 -0.717)	0.000182	0.659 (0.319 -0.916)	0.0591	1.292 (0.842 -2.379)	0.202	1.237 (0.881 -1.445)	0.0412	0.729 (0.345 -1.084)	0.183	2.811 (2.001 -3.79)	0.000116	L B11
1.527 (1.353 -1.722)	0.000119	1.446 (1.207 -1.916)	0.00246	0.943 (0.497 -1.472)	0.7	1.325 (1.132 -1.639)	0.00243	1.12	No reps.	2.731 (2.111 -3.615)	0.000574	L B5
0.914 (0.646 -1.395)	0.511	0.85 (0.576 - 1.176)	0.24	1.591 (1.25 -1.961)	0.00126	1.958 (1.51 -2.927)	0.00124	0.825 (0.568 -0.99)	0.235	7.168 (1.851 -27.04)	0.00296	LC1
1.132 (0.767 -1.435)	0.309	1.1 (0.954 -1.43)	0.283	1.514 (1.165 -2.141)	0.0161	2.234 (1.329 -3.276)	0.00136	2.185 (1.526 -3.436)	0.0821	4.063 (1.819 -6.729)	0.0155	L C12

Table A.1 (continued)

1.169 (0.837 -1.424)	0.103	0.971 (0.433 -1.503)	0.883	0.76 (0.5 -1.356)	0.174	0.489 (0.418 -0.517)	4.08E -06	0.981 (0.965 -0.998)	0.461	0.473 (0.384 -0.681)	0.00297	LC2
0.908 (0.644 - 1.154)	0.295	1.034 (0.509 -1.506)	0.87	1.324 (0.821 -1.873)	0.0591	1.939 (1.326 - 2.893)	0.0329	0.716 (0.39 -1.159)	0.124	4.882 (3.642 - 10.88)	0.000203	LC3
1.018 (0.523 -1.317)	0.902	1.411 (0.337 -2.934)	0.412	1.074 (0.661 -2.293)	0.698	1.678 (0.874 -2.436)	0.0192	1.24 (0.898 -1.8)	0.104	8.616 (2.465 -30.46)	0.00245	L C4
0.7 (0.415 -0.951)	0.0365	0.962 (0.87 -1.008)	0.207	1.155 (1.062 -1.255)	0.00641	1.42 (1.048 -2.182)	0.049	0.647 (0.528 -0.793)	0.279	3.99 (2.489 -8.106)	0.000866	L C6
0.777 (0.65 -0.978)	0.00811	0.693 (0.466 -0.981)	0.0302	1.124 (0.851 -1.462)	0.258	1.674 (0.84 -2.195)	0.0162	0.704 (0.265 -0.969)	0.229	2.458 (1.372 -4.872)	0.00709	L D1
0.771 (0.661 -0.928)	0.00483	0.745 (0.522 -0.899)	0.0122	1.034 (0.758 -1.623)	0.818	1.197 (0.746 -2.163)	0.413	0.735 (0.369 -1.218)	0.232	5.063 (1.742 -25.56)	0.0354	L D10

Table A.1 (continued)

Ta	ble 4	A.1	(cor	ntinu	ied)							
1.223	0.105	0.951	0.511	0.723	0.0397	0.734	0.0237	1.404	0.0341	0.552	0.00214	L D11
(0.91 -1.671)		(0.807 -1.263)		(0.557 -1.143)		(0.505 -0.911)		(1.278 -1.588)		(0.455 -0.705)		
1.394 (1.254 -1.596)	0.000252	1.475 (1.114 -2.012)	0.0054	1.153 (0.977 -1.546)	0.113	1.803 (1.296 -2.595)	0.00141	1.002 (0.358 -1.633)	0.992	4.833 (3.478 -8.425)	6.54E -05	L D3
0.799 (0.67 -0.945)	0.00474	0.782 (0.56 -0.908)	0.0179	0.875 (0.693 -1.124)	0.108	1.03 (0.752 -1.455)	0.802	0.942 (0.37 -1.811)	0.797	2.848 (1.369 -14.78)	0.0462	L D7
0.94 (0.705 -1.125)	0.713	1.054 (0.389 -3.324)	0.931	0.286 (0.272 -0.299)	0.024	0.114 (0.0107 -0.296)	0.0235	0.909 (0.581 -1.234)	0.715	0.036 (0.0116 -0.0869)	0.000187	L E11
1.044 (0.754 - 1.306)	0.82	0.868 (0.651 -1.053)	0.264	0.5 (0.316 -0.789)	0.371	0.652 (0.58 -0.724)	0.000646	1.473 (1.024 - 2.119)	0.48	0.478 (0.379 -0.66)	0.00209	L E12
1.072 (0.611 -1.8)	0.643	0.929 (0.847 -0.981)	0.0183	0.945 (0.896 -0.985)	0.0107	0.957 (0.776 -1.487)	0.676	1.074 (0.684 -1.336)	0.494	0.507 (0.367 -0.617)	0.00249	L E6

Table A.1 (continued)

1.207 (0.703 -2.057)	0.344	1.488 (0.0659 -2.701)	0.405	0.769 (0.366 -1.503)	0.312	0.535 (0.459 -0.662)	0.000128	0.746 (0.178 -1.502)	0.587	0.286 (0.144 -0.435)	0.00411	L E9
0.697 (0.456 -1.04)	0.0314	0.624 (0.457 -0.804)	0.0118	1.454 (1.114 -1.797)	0.0351	1.581 (0.962 -1.984)	0.00671	0.869 (0.672 -1.246)	0.529	3.611 (2.398 - 11.41)	0.0115	L F2
0.834 (0.646 -1.153)	0.129	1.105 (0.804 -1.383)	0.269	1.515 (1.067 -1.844)	0.0149	1.928 (1.305 -2.909)	0.00396	1.637 (1.316 -2.036)	0.265	2.077 (1.031 -3.754)	0.0108	L G6
0.956 (0.422 -1.271)	0.798	0.805 (0.626 -1.069)	0.0728	0.914 (0.683 -1.188)	0.28	0.822 (0.659 -1.135)	0.0477	0.84 (0.46 -1.381)	0.413	0.303 (0.184 -0.451)	0.000664	69 T
0.886 (0.686 -1.08)	0.154	1.102 (0.769 -1.555)	0.399	2.491 (1.056 -3.682)	0.0181	2.316 (1.81 -3.059)	0.00127	1.353 (1.041 -2.062)	0.291	6.955 (3.63 -15.08)	0.000254	L H10
0.814 (0.477 -1.39)	0.31	0.791 (0.418 -1.242)	0.269	0.797 (0.454 -2.201)	0.699	1.85 (1.22 -2.62)	0.00706	1.641	No reps.	3.452 (2.039 -5.828)	0.00203	L H12
1.451	No reps.	0.715 (0.325 -1.536)	0.33	0.491 (0.333 -0.723)	0.317	0.356 (0.255 -0.48)	6.16E -05	1.181 (0.96 -1.452)	0.569	0.152 (0.0339 -0.312)	0.00188	L H2

Table A.1 (continued)

0.89 (0.552 -1.393)	0.463	0.732 (0.335 -1.127)	0.158	0.418 (0.258 -0.646)	0.032	0.317 (0.21 -0.445)	0.000216	1.37 (0.583 -3.221)	0.775	0.0345 (0.0168 -0.0633)	0.000332	LH9
2.244	No reps.	1.354 (1.236 -1.656)	0.0212	0.528	No reps.	0.836 (0.808 -0.903)	0.00612	NO DATA	NO DATA	0.663 (0.471 -1.17)	0.0238	LL A11
0.344 (0.198 -0.831)	0.00526	0.545 (0.225 -1.189)	0.0813	0.682 (0.499 -0.902)	0.0337	0.855 (0.737 -1.132)	0.0841	0.536 (0.486 -0.59)	0.0977	1.547 (0.857 -4.839)	0.162	LL A9
0.7 (0.357 -2.002)	0.288	0.314 (0.0911 -0.689)	0.0267	1.312 (0.994 -1.554)	0.0757	1.038 (0.662 -1.884)	0.827	NO DATA	NO DATA	1.516 (0.899 -2.485)	0.14	LL C10
NO DATA	NO DATA	1.09 (0.785 -1.925)	0.79	0.01*	No reps.	0.616 (0.333 -0.861)	0.0586	ω	No reps.	0.662 (0.566 -0.835)	0.0736	LL C3
1.326 (0.98 -2.326)	0.15	3.804 (2.255 -11)	0.0129	0.01*	No reps.	1.436 (0.812 -2.449)	0.126	NO DATA	NO DATA	1.929 (0.691 -4.409)	0.112	

Table A.1 (continued)

1.705 0.839 (0.45	No reps. 0.309	1.031 (0.442 -2.25) 0.883 (0.69	0.911 0.181	0.213 (0.0734 -0.687) 0.664 (0.43	0.0757 0.0201	0.0579 (0.01 -0.209) 0.777 (0.51	0.0884 0.0434	NO DATA 0.91 (0.721	NO DATA 0.327	0.0562 (0.0263 -0.103) 0.268 (0.17	0.000221 0.00239	
(0.453 -1.261)		(0.696 -1.096)		(0.432 -0.858)		(0.516 -0.937)		(0.721 -1.33)		(0.177 -0.796)		
0.958 (0.836 -1.076)	0.29	0.987 (0.725 -1.26)	0.885	1.212 (0.749 -2.337)	0.28	1.921 (1.29 -4.382)	0.0164	0.801 (0.561 -0.965)	0.0436	11.55 (4.709 -26.84)	0.00012	LL E12
1.285 (0.785 -2.495)	0.449	0.983 (0.822 -1.359)	0.927	0.687	No reps.	1.143 (0.81 -1.421)	0.348	0.01*	No reps.	0.619 (0.424 -0.893)	0.0194	LL E2
1.196 (1.039 - 1.431)	0.0213	1.37 (1.053 - 1.762)	0.00534	1.187 (0.948 -1.346)	0.0208	1.61 (1.43 -1.937)	0.000104	1.176 (0.75 -1.684)	0.224	11.71 (9.275 - 17.28)	2.32E -05	LL E4
0.674 (0.514 -0.986)	0.0087	0.644 (0.327 -1.18)	0.0539	1.514 (0.959 -2.871)	0.0442	1.047 (0.741 -1.552)	0.722	1.257	No reps.	1.326 (0.925 -1.943)	0.0444	LL E7

Table A.1 (continued)

LL F12	LL G10	LL G12	LL G5	M A11	M A12
0.0146	0.418	0.00389	0.0194	3.75E -06	0.0707
0.515 (0.508 -0.523)	0.862 (0.617 -1.899)	4.17 (2.711 -5.815)	0.826 (0.79 -0.936)	0.271 (0.213 -0.312)	0.477 (0.196 -0.945)
NO DATA	No reps.	0.122	No reps.	0.957	0.197
NO DATA	9.5	1.876 (1.159 -2.531)	0.01*	1.017 (0.703 -2.355)	1.159 (0.837 -1.734)
0.574	0.129	0.0942	0.0178	0.00196	0.156
1.151 (0.722 - 2.688)	1.375 (0.932 -3.195)	1.519 (0.62 -2.379)	0.836 (0.718 -0.984)	0.435 (0.246 -0.613)	0.754 (0.438 -1.425)
No reps.	0.443	0.019	0.386	0.139	0.986
0.01*	1.225 (0.742 -2.035)	3.053 (2.001 -6.1)	0.782 (0.262 -1.378)	0.588 (0.146 -1.065)	0.995 (0.348 -1.758)
No reps.	0.988	0.00827	0.0646	0.0392	0.00267
3.125	0.997 (0.592 -1.899)	1.881 (1.466 -2.95)	0.668 (0.463 -1.156)	1.404 (0.851 -1.936)	2.003 (1.237 -2.982)
0.351	0.51	0.673	0.00396	0.796	0.374
2.197 (1.354 -3.567)	0.891 (0.486 -1.229)	0.931 (0.594 -1.517)	0.562 (0.39 -0.789)	0.948 (0.564 -1.533)	0.914 (0.687 -1.279)

_

Table A.1 (continued)

0.00147 0.197 0.105 0.00752 2.282 (1.283 - 3.2) 1.294 (0.987 - 2.006) 1.205 (0.922 - 1.776) 1.664 (0.978 - 2.11) 0.0309 No reps. 0.01* 0.501 0.501 0.278 0.278 1.632 (0.979 - 2.637) 0.01* 1.11 (0.709 - 1.689) 0.801 (0.387 - 1.549) 0.327 0.0577 0.0577 0.0224 0.197 0.197 1.285 (0.48 - 2.053) 1.307 (0.899 - 1.625) 0.706 (0.439 - 0.975) 1.145 (0.865 - 1.528) 0.774 0.158 0.158 0.412 0.689 1.145 (0.865 - 1.528) 0.87 (0.2 - 3.351) 1.944 (1.643 - 2.3) 0.867 (0.589 - 1.558) 0.95 (0.565 - 1.173) 0.485 0.276 0.77 0.305 0.848 (0.638 - 1.369) 0.489 (0.233 - 1.325) 0.848 (0.434 - 2.219) 1.139 (0.803 - 1.449) 0.848 (0.638 - 1.369) 0.000245 0.589	M A6	M A7	M B6	M C2	M C5	M D11
	0.00147	0.197	0.105	0.00752	0.000141	
9 No reps. 0.501 0.278 $(0.979 \cdot 2.637)$ 0.01^{+} 1.11 $(0.709 \cdot 1.689)$ 0.801 $(0.387 \cdot 1.549)$ $(0.48 \cdot 2.053)$ 1.307 $(0.899 \cdot 1.625)$ 0.706 $(0.439 \cdot 0.975)$ 1.145 $(0.385 \cdot 1.528)$ $(0.48 \cdot 2.053)$ 1.947 $(1.643 \cdot 2.3)$ 0.412 0.89 $.589$ $(0.2 \cdot 3.351)$ 1.944 $(1.643 \cdot 2.3)$ 0.867 $(0.589 \cdot 1.558)$ 0.95 $(0.565 \cdot 1.173)$ $(0.233 \cdot 1.325)$ 0.848 $(0.434 \cdot 2.219)$ 0.133 0.226 $$					0.0758 (0.0452 -0.118)	
	0.0309	No reps.	0.501	0.278	0.0593	
(0.46 - 2.053) 0.0577 0.0224 0.197 0.197 $(0.48 - 2.053)$ 1.307 $(0.899 - 1.625)$ 0.706 $(0.439 - 0.975)$ 1.145 $(0.865 - 1.528)$ $(0.2 - 3.351)$ 0.158 0.412 0.412 0.689 0.689 $(0.2 - 3.351)$ 1.944 $(1.643 - 2.3)$ 0.867 $(0.589 - 1.558)$ 0.95 $(0.565 - 1.173)$ 5 0.77 0.305 0.305 0.226 0.226 $(0.233 - 1.325)$ 0.848 $(0.434 - 2.219)$ 1.139 $0.803 - 1.449$ 0.848 $(0.638 - 1.369)$ 245 0.589 0.589 0.0113 0.000908 0.732 $(0.639 - 0.871)$		0.01*			0.628 (0.453 -0.965)	
(0.48 - 2.053) 1.307 (0.899 - 1.625) 0.706 (0.439 - 0.975) 1.145 (0.865 - 1.528) (0.2 - 3.351) 0.158 0.412 0.412 0.689 0.689 (0.2 - 3.351) 1.944 (1.643 - 2.3) 0.867 (0.589 - 1.558) 0.95 (0.565 - 1.173) 5 0.77 0.305 0.305 0.226 0.226 (0.233 - 1.325) 0.848 (0.434 - 2.219) 1.139 0.803 - 1.449) 0.848 (0.638 - 1.369) 245 0.589 0.589 0.0113 0.000908 0.000908 0.000908 (0.466 - 0.701) 1.121 (0.695 - 2.275) 1.632 (1.12 - 2.638) 0.732 (0.639 - 0.871)	0.327	0.0577	0.0224	0.197	0.00119	
(0.23.351) 1.944 (1.643-2.3) 0.867 (0.589-1.558) 0.95 (0.565-1.173) 5 0.77 0.305 0.305 0.226 0.226 (0.233-1.325) 0.848 (0.434-2.219) 1.139 0.803-1.449) 0.848 (0.638-1.369) 245 0.589 0.589 0.0113 0.000908 0.000908 (0.466-0.701) 1.121 (0.695-2.275) 1.632 (1.12-2.638) 0.732 (0.639-0.871)					0.307 (0.229 -0.716)	
(0.23.351) 1.944 (1.643-2.3) 0.867 (0.589-1.558) 0.95 (0.565-1.173) 5 0.77 0.305 0.305 0.226 0.226 (0.233-1.325) 0.848 (0.434-2.219) 1.139 (0.803-1.449) 0.848 (0.638-1.369) 245 0.589 0.589 0.0113 0.000908 0.000908 (0.466-0.701) 1.121 (0.695-2.275) 1.632 (1.12-2.638) 0.732 (0.639-0.871)	0.774	0.158	0.412	0.689	0.00895	
5 0.77 0.305 0.226 (0.233 -1.325) 0.848 (0.434 - 2.219) 1.139 (0.803 -1.449) 0.848 (0.638 -1.369) 245 0.589 0.589 0.0113 0.000908 0.000908 (0.466 - 0.701) 1.121 (0.695 - 2.275) 1.632 (1.12 - 2.638) 0.732 (0.639 - 0.871)					0.491 (0.278 -0.943)	
(0.233 -1.325) 0.848 (0.434 -2.219) 1.139 (0.803 -1.449) 0.848 (0.638 -1.369) 245 0.589 0.0113 0.00908 0.00908 (0.466 - 0.701) 1.121 (0.695 - 2.275) 1.632 (1.12 - 2.638) 0.732 (0.639 - 0.871)	0.0465	0.77	0.305	0.226	0.0056	
245 0.589 0.0113 0.000908 (0.466 - 0.701) 1.121 (0.695 - 2.275) 1.632 (1.12 - 2.638) 0.732 (0.639 - 0.871)					0.351 (0.303 -0.396)	
(0.466 - 0.701) 1.121 (0.695 - 2.275) 1.632 (1.12 - 2.638) 0.732 (0.639 - 0.871)	0.000245	0.589	0.0113	0.000908	0.000643	0.413
					0.569 (0.452 -0.611)	1.159

Table A.1 (continued)

0.959 (0.416 -1.414)	0.822	1.474 (1.219 -2.145)	0.0217	2.373 (1.488 -3.067)	0.013	1.581 (1.015 -1.853)	0.0534	1.579 (1.28 -2.326)	0.142	6.167 (3.304 -8.963)	0.00385	M D8
0.929 (0.748 -1.04)	0.208	1.355 (1.009 - 1.622)	0.071	0.68 (0.464 -0.843)	0.00806	0.85 (0.65 -1.089)	0.113	0.926 (0.707 -1.233)	0.681	0.55 (0.344 -0.831)	0.0461	M E11
1.046 (0.843 -1.265)	0.596	0.979 (0.586 -1.585)	0.895	0.704 (0.388 -1.208)	0.135	0.701 (0.427 -1.155)	0.0489	1.149 (0.65 -1.487)	0.336	0.467 (0.379 -0.704)	0.00258	M E12
1.422 (0.874 -2.013)	0.0281	0.986 (0.678 -1.218)	0.884	1.052 (0.806 -1.43)	0.572	1.205 (1.014 -1.586)	0.0753	1.307 (1.063 -2)	0.0363	2.257 (1.348 -4.453)	0.00386	M E2
1.234 (0.76 -1.573)	0.119	1.152 (0.857 -1.409)	0.196	0.848 (0.645 -1.109)	0.113	0.826 (0.684 -0.997)	0.0293	1.246 (0.579 -1.707)	0.246	0.45 (0.206 -0.718)	0.0102	ME3
1.183 (1.068 -1.252)	0.0818	0.961 (0.624 -1.541)	0.848	0.854 (0.462 -1.344)	0.585	1.188 (0.719 -1.963)	0.295	0.0625 (0.01 -0.39)	0.372	1.23 (0.954 -1.583)	0.0901	M E4

Table A.1 (continued)

12	ible	A.I	(co	ntin	uea))						
1.24 (1.051 -1.381)	0.0346	1.282 (0.73 -2.31)	0.235	0.504 (0.287 -0.784)	0.0473	0.603 (0.448 -0.83)	0.00378	0.968 (0.588 -1.364)	0.911	0.656 (0.51 -0.755)	0.00379	M E5
0.839 (0.63 -0.949)	0.0745	0.824 (0.657 -1.036)	0.041	0.963 (0.751 -1.313)	0.649	0.967 (0.815 -1.33)	0.68	0.938 (0.785 -1.168)	0.415	6.183 (1.688 - 16.29)	0.00239	M E9
0.903 (0.499 -1.229)	0.491	0.93 (0.854 -1.08)	0.101	0.803 (0.454 -0.944)	0.116	0.594 (0.442 -0.695)	0.000506	1.016 (0.483 -1.524)	0.93	0.0659 (0.0265 -0.152)	0.00164	M F12
1.337 (0.745 -1.896)	0.127	1.285 (0.74 -2.362)	0.203	0.482 (0.204 -0.824)	0.0233	0.33 (0.155 -0.616)	0.00806	0.737 (0.637 -0.909)	0.105	0.289 (0.202 -0.404)	6.65E -05	M F2
0.924 (0.635 - 1.579)	0.575	1.131 (0.641 -2.481)	0.606	0.633 (0.478 -1.203)	0.0514	0.85 (0.662 - 1.423)	0.232	2.225 (1.501 - 2.71)	0.0555	0.625 (0.423 -0.771)	0.00515	M F6
1.096 (0.534 -1.525)	0.582	0.914 (0.457 -1.709)	0.673	1.703 (1.226 -3.443)	0.0481	1.814 (1.13 -2.297)	0.00327	0.819 (0.409 -1.554)	0.356	4.391 (3.172 -6.37)	0.000255	M G1

Table A.1 (continued)

12	ıble	A.I	(co	ntin	ued))			0			
0.986 (0.631 -1.467)	0.909	0.737 (0.564 -0.949)	0.0334	0.507 (0.277 -0.76)	0.158	0.318 (0.186 -0.404)	0.0013	1.608	No reps.	0.146 (0.0872 -0.251)	0.000358	M G10
0.587 (0.351 -0.835)	0.00995	0.48 (0.263 -0.866)	0.0107	0.507 (0.349 -0.861)	0.0196	0.371 (0.315 -0.47)	2.00E -05	0.733 (0.38 -1.355)	0.351	0.175 (0.0747 -0.416)	0.00506	M G11
0.866 (0.627 -1.462)	0.491	0.861 (0.514 -1.619)	0.582	0.255 (0.0769 -0.739)	0.0505	0.142 (0.0564 -0.373)	0.00405	1.608	No reps.	0.042 (0.0237 -0.0823)	0.000147	M G12
1.345 (1.085 -2.088)	0.0285	1.248 (0.933 -1.618)	0.085	0.796 (0.487 -1.167)	0.217	0.468 (0.252 -0.682)	0.0146	1.398 (0.727 -3.308)	0.533	0.337 (0.234 -0.458)	0.00127	M G2
0.814 (0.664 - 1.007)	0.0354	1.223 (0.375 -2.673)	0.479	0.592 (0.36 -0.965)	0.103	0.418 (0.187 -0.724)	0.0116	1.481 (0.993 -2.051)	0.0357	0.258 (0.112 -0.616)	0.00529	M G3
1.044 (0.912 -1.287)	0.722	0.62 (0.557 -0.684)	0.000162	0.477 (0.382 -0.641)	0.00638	0.418 (0.367 -0.453)	2.74E -05	0.897	No reps.	0.295 (0.198 -0.583)	0.00262	M H1

Table A.1 (continued)

12	able	A.1	(00)	num	ued))						
0.876 (0.483 -1.545)	0.608	0.988 (0.462 -1.557)	0.977	0.243 (0.0877 -0.801)	0.0123	0.159 (0.0893 -0.241)	0.000199	0.691	No reps.	0.0581 (0.0325 -0.101)	0.000199	M H10
1.103 (0.998 -1.254)	0.0582	0.843 (0.653 -1.018)	0.0602	0.819 (0.672 -0.976)	0.026	0.891 (0.587 -1.018)	0.238	0.904 (0.571 -1.297)	0.5	0.336 (0.149 -0.669)	0.00964	M H5
1.35 (1.176 -1.604)	0.00332	1.074 (0.576 -1.756)	0.693	0.584 (0.181 -1.245)	0.122	0.378 (0.269 -0.533)	0.000785	0.919 (0.602 -1.479)	0.589	0.0815 (0.034 -0.157)	8.53E -05	M H6
1.629 (1.483 -1.871)	4.34E -05	0.696 (0.244 -1.159)	0.2	1.038 (0.382 -2.386)	0.911	2.708 (0.672 -7.483)	0.0351	3.545 (2.152 -9.5)	0.0323	2.911 (1.853 -4.282)	0.00173	MM A2
Ch	No reps.	NO DATA	NO DATA	0.01*	No reps.	0.858 (0.708 -1.018)	0.0846	NO DATA	NO DATA	0.826 (0.562 -1.269)	0.386	MM C2
1.171 (1.128 -1.216)	0.148	1.028 (0.778 -1.439)	0.813	2.94 (1.176 - 16.62)	0.0766	1.823 (1.278 -2.38)	0.0193	0.796 (0.342 -1.378)	0.5	11.45 (3.714 -25)	0.0131	MM D8

Table A.1 (continued)

12	ıble	A.I	(CO)	ntin	ued))						
1.008 (0.756 -1.659)	0.945	0.989 (0.706 -1.493)	0.94	1.604 (1.028 -2.293)	0.023	2.543 (1.821 -3.305)	0.0337	0.732 (0.434 -1.631)	0.232	17.5 (7.5 -33)	0.00423	MM F10
1.299 (0.965 - 1.722)	0.0407	0.966 (0.721 -1.599)	0.806	1.901 (1.116 -3.557)	0.0103	1.434 (0.988 -1.837)	0.0355	0.875 (0.569 -1.298)	0.501	13.83 (4.212 -42.5)	0.0045	MM H10
0.813 (0.514 -1.097)	0.251	1.042 (0.745 -1.288)	0.72	2.265 (1.743 -2.901)	0.0309	1.507 (0.985 -1.996)	0.00874	0.919 (0.699 -1.447)	0.746	5.86 (2.914 - 16.18)	0.018	MM H7
0.821 (0.677 -1.088)	0.029	0.819 (0.661 -0.921)	0.0211	0.986 (0.767 -1.394)	0.89	1.185 (0.92 -1.562)	0.125	0.877 (0.563 -1.033)	0.439	8.945 (3.854 -26.9)	0.000915	N A10
1.099 (0.944 -1.301)	0.176	0.953 (0.681 -1.705)	0.736	1.867 (1.088 -3.699)	0.0436	2.7 (2.062 -5.521)	0.0252	1.333 (0.742 -2.394)	0.71	6.625 (4.258 -11)	0.00279	N A11
1.099 (0.897 -1.754)	0.479	1.038 (0.735 -1.387)	0.741	1.48 (0.994 -3)	0.0545	1.671 (0.961 -2.682)	0.0359	0.603 (0.374 -0.817)	0.0582	14.52 (8.178 - 49.3)	0.000195	N A3

Table A.1 (continued)

10	ible	A.I	(co	num	ued)							
1.054 (0.509 -1.697)	0.9	0.862 (0.54 -1.608)	0.462	0.245 (0.0709 -1.086)	0.0522	0.17 (0.0739 -0.336)	0.00152	0.669	No reps.	0.0943 (0.0688 -0.178)	0.000148	N A5
1.107 (0.913 -1.342)	0.259	0.895 (0.53 -1.663)	0.587	1.741 (0.64 -3.991)	0.0987	2.016 (1.74 -2.534)	0.000507	0.817 (0.218 -2.25)	0.709	7.978 (5.277 -12.5)	0.00176	N A6
1.258 (0.711 -2.081)	0.272	1.076 (0.707 -1.343)	0.761	0.465 (0.212 -1.049)	0.124	1.167 (0.782 -1.922)	0.429	0.58 (0.351 -1.072)	0.0307	2.137 (1.751 -2.747)	0.00387	N A9
0.83 (0.661 -1.236)	0.11	0.879 (0.679 -1.278)	0.247	1.142 (0.857 -1.813)	0.344	1.549 (0.999 -2.905)	0.0389	0.843 (0.611 -1.336)	0.387	30.18 (12.38 -95)	0.000224	N B1
0.9 (0.758 -1.214)	0.164	1.013 (0.731 -1.387)	0.909	1.221 (0.73 -1.694)	0.155	1.695 (1.186 -2.57)	0.00759	0.849 (0.445 -1.319)	0.536	22.62 (11.37 -57.5)	6.57E -05	N B9
2.041 (1.805 -2.307)	0.108	1.042 (0.856 -1.268)	0.869	0.494	No reps.	0.503 (0.114 -1.351)	0.167	0.01*	No reps.	0.813 (0.669 -1.233)	0.237	N C5

Table A.1 (continued)

1a	ble /	1.1	(cor	lliiil	ieu)							
1.262 (1.14 -1.555)	0.00459	2.072 (0.788 -3.273)	0.0209	1.478 (0.689 - 2.903)	0.171	1.434 (1.103 -1.811)	0.00806	1.006 (0.596 -1.287)	0.968	3.608 (2.686 -4.465)	0.000159	N D11
1.171 (0.749 -1.627)	0.565	0.997 (0.629 -1.949)	0.989	0.316 (0.0687 -0.75)	0.0528	0.296 (0.117 -0.571)	0.00513	1.083 (1 -1.173)	0.5	0.189 (0.132 -0.454)	0.00187	N D4
1.32 (1.198 -1.643)	0.0322	1.58 (1.088 -2.619)	0.0519	1.61 (1.262 -1.908)	0.00596	2.5 (1.565 -4.12)	0.00399	0.924 (0.499 -1.27)	0.74	16.32 (5.011 -33)	0.00713	N D6
0.617 (0.378 -0.978)	0.0892	0.547 (0.293 -1.055)	0.15	1.572 (1.143 -2.162)	0.391	2.304 (1.523 -4.149)	0.0288	0.01*	No reps.	1.43 (0.943 -2.5)	0.213	N E10
0.799 (0.573 -1.013)	0.0595	0.65 (0.369 -1.11)	0.0654	0.462 (0.3 -0.827)	0.00392	0.485 (0.265 -1.08)	0.0203	0.864 (0.687 -1.004)	0.148	0.102 (0.0524 -0.272)	0.000343	N E2
1.077 (0.899 -1.397)	0.407	1.201 (0.899 -1.771)	0.235	1.027 (0.826 -1.318)	0.73	1.167 (0.993 -1.402)	0.0775	0.923 (0.505 -1.243)	0.575	2.522 (2.056 -3.288)	3.91E -05	N E3

Table A.1 (continued)

10	ible	A.I	(CO)	num	ued)							
1.365 (1.199 -1.972)	0.012	0.912 (0.718 -1.232)	0.385	1.759 (1.131 -2.888)	0.0365	2.269 (1.989 -2.925)	0.00035	1.402 (0.725 -2.627)	0.46	8.879 (5.086 -19.5)	0.00455	N E6
0.818 (0.674 -1.192)	0.0693	1.034 (0.704 -1.533)	0.835	1.094 (0.692 -1.786)	0.52	1.69 (1.366 -2.242)	0.00558	0.905 (0.606 -1.702)	0.623	7.299 (4.647 -12.09)	0.000309	N F1
1.431 (0.828 -1.997)	0.323	0.914 (0.725 -1.153)	0.765	0.01*	No reps.	1.338 (1.018 -1.84)	0.0503	NO DATA	NO DATA	0.356 (0.343 -0.369)	0.0226	N F10
1.137 (0.803 -1.61)	0.273	1.002 (0.489 -1.539)	0.991	1.431 (0.768 -3.047)	0.201	1.608 (1.216 -3.041)	0.0465	1.07 (0.905 -1.265)	0.756	19.82 (8.609 -48.42)	0.00111	N F2
0.828 (0.482 - 1.216)	0.196	1.042 (0.838 -1.54)	0.793	1.204 (0.636 - 1.891)	0.337	2.095 (1.574 - 3.588)	0.00721	0.888 (0.566 - 2.039)	0.558	6.336 (2.672 -12.12)	0.000256	N F9
0.965 (0.617 -1.498)	0.775	1.033 (0.773 -1.212)	0.663	1.313 (0.177 -3.365)	0.513	1.61 (1.057 -2.186)	0.0195	2.259 (0.0521 -5.26)	0.243	4.462 (2.76 -7.489)	0.000302	N G8

Table A.1 (continued)

		A.I			ued)							
1.153 (0.871 -1.457)	0.113	0.846 (0.774 -0.896)	0.000429	0.915 (0.669 -1.151)	0.341	0.932 (0.728 - 1.179)	0.431	0.9 (0.732 -1.261)	0.244	0.59 (0.528 -0.653)	0.000265	N H7
1.305 (0.905 -1.881)	0.6	0.431 (0.385 -0.505)	0.000728	0.868 (0.664 -1.222)	0.514	0.722 (0.466 -1.25)	0.083	5.5	No reps.	0.39 (0.318 -0.478)	0.136	NN A2
1.23 (0.659 -3.125)	0.706	0.993 (0.573 -1.732)	0.972	0.193 (0.0954 -0.571)	0.0961	0.3 (0.109 -0.704)	0.014	1.482 (0.878 -2.5)	0.59	0.226 (0.144 -0.384)	0.00122	NN A4
1.164 (0.812 -1.978)	0.49	1.394 (0.886 -2.045)	0.197	0.244	No reps.	0.516 (0.171 -0.802)	0.0364	1.863	No reps.	0.499 (0.403 -0.673)	0.000352	NN B9
1.042 (0.444 - 1.764)	0.868	0.982 (0.692 - 2.426)	0.927	2.707 (2.135 -3.415)	0.0181	1.946 (1.223 -3.476)	0.0207	0.605 (0.368 -0.984)	0.219	4.174 (1.595 -14.26)	0.0553	NN C5
1.458 (1.114 -2.042)	0.00652	1.436 (1.069 -2.313)	0.0365	3.919 (2.408 -5.497)	0.0318	2.215 (0.395 -6.134)	0.0962	2.706 (1.783 -5.347)	0.101	9.35 (6.411 - 17)	0.0178	NN D12

Table A.1 (continued)

NN D2	NN D4	NN D5	NN D7	NN E1	NN E10
0.0015	1.77E -05	0.0184	0.0326	0.0162	0.0666
30.49 (10.82 -171.5)	4.058 (2.853 -5.027)	4.964 (1.699 -31.05)	7.801 (4.8 -16.5)	10.2 (3.564 -43.38)	0.488 (0.452 -0.526)
0.199	0.718	0.108	0.98	0.535	NO DATA
0.833 (0.485 -1.119)	1.104 (0.667 -2.174)	0.893 (0.744 -1.032)	1.016 (0.624 -1.655)	0.954 (0.772 -1.29)	NO DATA
0.215	0.466	0.121	0.0166	0.74	0.0117
1.374 (0.899 - 2.41)	1.141 (0.957 -1.838)	1.273 (0.928 -1.845)	1.893 (0.976 -3.165)	0.979 (0.914 -1.166)	0.633 (0.45 -0.809)
0.29	0.411	0.951	0.103	0.246	0.892
1.146 (0.832 -1.741)	1.28 (0.561 -2.831)	1.003 (0.844 -1.135)	3.123 (1.604 -6.334)	0.667 (0.483 -1.09)	0.977 (0.832 -1.316)
0.141	0.0163	0.375	0.85	0.000601	0.0472
0.861 (0.698 -1.238)	1.176 (1.063 -1.427)	0.929 (0.749 -1.201)	0.974 (0.765 -1.367)	1.451 (1.265 - 1.666)	0.832 (0.766 -0.869)
0.00462	0.412	0.0507	0.00865	0.841	0.076
0.806 (0.694 -0.91)	0.842 (0.739 -0.959)	1.133 (0.947 -1.27)	1.657 (1.162 -2.504)	1.007 (0.87 -1.093)	1.449 (1.057 -1.951)

Table A.1 (continued)

NN E11	NN E8	NN E9	NN F9	NN G1	NN G6
0.0176	0.000143	0.0758	0.00272	0.0257	0.000385
0.487 (0.33 -0.624)	0.487 (0.412 -0.564)	12.98 (9.549 -17.64)	0.712 (0.62 -0.815)	0.479 (0.297 -0.982)	3.554 (2.561 -5.797)
NO DATA	No reps.	NO DATA	No reps.	0.195	0.0704
NO DATA	1.629	NO DATA	2.585	0.775 (0.4 -1.168)	0.806 (0.629 -1.118)
0.49	0.0428	0.0248	0.0225	0.298	0.311
0.868 (0.472 -1.331)	0.444 (0.12 -1.082)	4.219 (2.745 -6.056)	0.553 (0.368 -0.641)	0.919 (0.786 -1.282)	0.851 (0.466 -1.196)
No reps.	0.346	0.344	No reps.	0.0167	0.25
0.01*	0.175 (0.061 -0.501)	1.543 (1.19 -2.002)	0.398	0.882 (0.761 -0.961)	1.242 (1 -2.347)
No reps.	0.216	NO DATA	0.609	0.00636	9.73E -05
1.452	1.2 (0.979 -1.644)	NO DATA	1.148 (0.804 -1.762)	0.804 (0.675 -0.952)	1.474 (1.301 -1.668)
NO DATA	0.0292	0.0529	0.0857	0.0656	0.0126
NO DATA	2.084 (1 -3.877)	1.237 (0.91 -1.69)	1.31 (1.027 -1.708)	1.14 (0.905 -1.315)	0.759 (0.652 -0.996)

Table A.1 (continued)

NNI CZ					0
0.152	0.000501	0.0032	0.124	0.00346	0.000202
0.263 (0.0101 -0.824)	1.373 (1.168 -1.539)	0.501 (0.301 -0.728)	0.721 (0.406 -1.112)	2.008 (1.316 -3.094)	33.23 (12.26 -113.5)
0.269	0.333	NO DATA	NO DATA	No reps.	0.352
0.762 (0.311 -1.295)	0.707 (0.579 -0.864)	NO DATA	NO DATA	0.01*	0.842 (0.408 -1.242)
0.0304	0.149	0.0308	0.00599	0.388	0.172
0.858 (0.752 -0.989)	1.28 (0.788 -1.869)	0.73 (0.576 -0.895)	0.566 (0.537 -0.618)	1.114 (0.902 -1.351)	1.266 (0.729 -1.587)
0.00102	0.0354	No reps.	No reps.	0.139	0.161
0.859 (0.826 -0.912)	1.344 (0.986 -2.127)	0.109	0.155	1.206 (0.964 -1.616)	1.221 (0.806 -1.81)
0.00771	0.964	0.767	0.201	0.546	0.00504
0.896 (0.818 -0.957)	1.003 (0.811 -1.196)	0.947 (0.666 -1.468)	1.252 (0.927 -1.804)	0.936 (0.68 -1.153)	2.471 (1.367 -4.146)
0.257	0.128	0.0435	0.0939	0.388	0.00777
0.768 (0.291 -1.119)	0.781 (0.592 -1.053)	2.82 (1.86 -4)	1.923 (1.291 -2.71)	0.699 (0.331 -1.716)	1.292 (1.024 -1.583)

Table A.1 (continued)

-												1
0.947 (0.589 -1.498)	0.86	4.241 (2.477 -7.259)	0.227	0.01*	No reps.	2.146 (1.726 -3.307)	0.0716	NO DATA	NO DATA	3.563	No reps.	O A8
1.063 (0.829 -1.331)	0.443	1.116 (0.704 -1.797)	0.503	2.083 (1.273 -4.634)	0.0865	2.249 (1.456 -3.49)	0.00404	1.42	No reps.	5.672 (3.789 -11.22)	0.00522	O A9
1.087 (0.949 -1.657)	0.375	2.172 (1.313 -3.224)	0.00315	0.976 (0.613 -1.602)	0.892	0.868 (0.544 -1.058)	0.24	0.712 (0.54 -1.039)	0.0523	28.84 (5.336 -172)	0.00167	O B1
0.943 (0.324 -1.516)	0.811	1.261 (0.937 -1.95)	0.114	1.522 (1.019 -2.259)	0.0524	1.656 (0.793 -2.322)	0.0257	0.631 (0.4 -1.094)	0.258	4.37 (2.18 -11.15)	0.00236	O B10
1.086 (0.896 -1.274)	0.237	1.08 (0.822 -1.556)	0.643	1.133 (0.828 -1.663)	0.327	2.135 (1.651 -2.797)	0.000372	1.037 (0.752 -1.83)	0.845	7.922 (4.318 -24.24)	0.000542	O B3
0.845 (0.704 -1.189)	0.0928	1.398 (0.858 -1.817)	0.0634	0.963 (0.477 -2.298)	0.879	1.773 (1.423 -2.512)	0.00232	0.807 (0.521 -1.174)	0.296	5.104 (2.46 -9.375)	0.000367	O B6

Table A.1 (continued)

1.188	0.337	1.629	0.0106	1.572	0.15	2.163	0.00171	1.063	0.739	7.772	0.0277	O B7
38 (0.619 -2.081)	37	29 (1.15 -2.256)	106	72 (1.003 -2.745)	5	33 (1.728 -3.102)	0171	33 (0.722 -1.459)	39	72 (4 - 13)	277	37
1.239 (0.447 -2.193)	0.425	1.858 (1.194 -2.825)	0.00544	3.318 (2.151 -5.118)	0.221	1.439 (0.776 -2.16)	0.112	1.048 (0.763 - 1.44)	0.906	7.474 (4 - 10.99)	0.0237	O B9
0.776 (0.475 -1.078)	0.0761	0.876 (0.707 -1.153)	0.156	1.295 (0.978 -1.598)	0.0328	1.455 (0.983 -2.035)	0.0223	0.666 (0.396 -1.005)	0.0371	4.669 (2.462 -9.592)	0.000518	O C10
0.896 (0.706 -1.09)	0.219	0.89 (0.5 -1.499)	0.644	1.194 (0.734 -1.823)	0.313	1.916 (1.578 -2.113)	0.000303	1.527 (0.882 -3.604)	0.257	7.668 (5.205 -11.88)	4.27E -06	O C11
0.601 (0.472 -0.661)	0.000228	1 (0.742 -1.476)	0.998	0.926 (0.608 -1.213)	0.456	0.871 (0.763 -0.986)	0.081	0.787 (0.576 -1.373)	0.194	1.708 (0.962 -2.707)	0.012	0 C2
0.932 (0.718 -1.121)	0.338	0.746 (0.553 -0.934)	0.0108	1.073 (0.874 -1.396)	0.429	1.265 (0.964 -1.725)	0.0766	0.745 (0.38 -1.113)	0.122	5.75 (1.285 -70.12)	0.0563	0 C6

_

Table A.1 (continued)

1 a	ble <i>i</i>	A. I	(cor	lliiil	ieu)							
1.155 (0.903 - 1.373)	0.0687	1.451 (1.11 -2.042)	0.00606	1.587 (1.003 - 2.615)	0.0267	1.521 (1.156 -2.004)	0.0535	0.48 (0.211 -1.203)	0.0809	3.406 (2.668 -4.928)	0.000309	O C7
1.268 (1.048 -1.494)	0.0327	1.728 (1.249 -2.99)	0.0152	1.383 (0.842 -2.463)	0.0769	1.598 (1.173 -2.134)	0.0185	0.755 (0.53 -1.214)	0.106	6.963 (4.796 -10.84)	4.28E -05	0 C8
0.949 (0.715 -1.166)	0.498	2.034 (1.275 -3.479)	0.00733	1.298 (0.763 -1.808)	0.256	1.911 (1.098 -2.803)	0.00363	0.667 (0.454 -1.263)	0.094	7.654 (3.609 -26.3)	0.00405	0 C9
1.105 (0.886 -1.434)	0.22	1.068 (0.845 -1.617)	0.602	1.178 (0.705 -1.686)	0.316	1.546 (1.185 -2.06)	0.00387	0.99 (0.511 -1.711)	0.956	6.897 (4.956 -11.35)	3.15E -05	O D10
0.993 (0.64 -1.502)	0.968	0.786 (0.629 -0.952)	0.00902	1.191 (0.843 -1.869)	0.22	1.244 (0.837 -2.281)	0.269	1.152 (0.809 - 2.064)	0.342	26.24 (9.087 -219.5)	0.00254	O D12
0.725 (0.623 -0.92)	0.116	0.695 (0.502 -1.147)	0.289	0.01*	No reps.	0.659 (0.431 -0.933)	0.0543	NO DATA	NO DATA	0.868 (0.535 -1.698)	0.722	O D3

Table A.1 (continued)

12	ıble	A.I	(00)	ntin	uea))						
1.381 (1.027 -1.636)	0.0154	1.281 (0.943 -1.695)	0.0583	1.573 (0.871 -2.787)	0.102	2.354 (1.762 -3.674)	0.00374	0.919 (0.673 -1.288)	0.59	5.634 (3.064 -10.97)	0.000159	O D6
1.198 (1.002 -1.4)	0.0168	2.096 (1.311 -2.904)	0.00801	2.246 (1.562 -3.437)	0.00338	2.025 (1.005 -4.018)	0.0151	0.883 (0.594 -1.729)	0.641	12.34 (2.926 -39)	0.00401	0 07
1.147 (0.946 -1.256)	0.0682	1.419 (0.942 -2.155)	0.111	1.515 (0.934 -2.077)	0.022	1.893 (1.364 -3.128)	0.00579	0.85 (0.602 -1.012)	0.144	10.82 (6.975 -30.73)	0.000124	O D9
1.185 (0.955 -1.345)	0.0205	1.174 (0.78 -1.75)	0.288	1.298 (0.928 -1.945)	0.0795	2.107 (1.444 -3.467)	0.00534	0.983 (0.7 -1.925)	0.93	5.628 (4.716 -8.083)	5.70E -05	O E10
1.078 (0.835 -1.511)	0.711	1.134 (0.774 -1.975)	0.466	0.856 (0.832 -0.882)	0.118	0.791 (0.354 -1.093)	0.315	7	No reps.	0.644 (0.535 -0.801)	0.00161	O E11
1.289 (1.166 -1.419)	0.000672	1.342 (0.927 -1.941)	0.0889	1.357 (0.689 -2.338)	0.131	1.532 (0.973 -2.345)	0.018	1.036 (0.667 -2.419)	0.851	4.889 (3.373 -6.484)	0.000178	O E6

Table A.1 (continued)

17	able	A.I	(CO	ntin	ued))						
1.675 (1.395 -1.934)	0.00089	1.477 (0.907 -2.271)	0.0248	1.738 (1.013 -2.964)	0.0369	1.516 (0.576 -2.897)	0.2	1.262 (0.662 -2.322)	0.287	9.511 (4.384 -14.63)	0.000387	0 E7
1.206 (0.791 -1.403)	0.0844	1.16 (1.094 -1.322)	0.0115	1.052 (0.933 -1.233)	0.33	1.205 (1.016 -1.801)	0.082	0.927 (0.606 -1.177)	0.459	6.026 (1.221 -39.12)	0.0238	O E8
1.268 (1.176 -1.44)	0.065	1.169 (0.89 -1.371)	0.0522	1.061 (0.819 -1.31)	0.543	1.335 (1.083 -2.007)	0.0368	1.007 (0.746 -1.684)	0.958	7.487 (1.913 -32.02)	0.00523	O E9
1.038 (0.57 -1.619)	0.817	1.333 (1.025 -2.028)	0.0365	1.372 (0.968 -2.025)	0.0239	1.962 (1.499 -3.403)	0.0133	1.226 (0.753 -1.553)	0.184	6.659 (4.335 -12.53)	0.000484	O F11
1.249 (0.755 - 1.767)	0.152	1.177 (0.93 -1.628)	0.182	1.364 (1.235 -1.605)	0.0121	1.356 (1.022 - 1.856)	0.0227	0.84 (0.531 -1.184)	0.379	3.171 (2.156 -4.459)	0.000204	O F6
1.154 (0.948 -1.286)	0.0255	1.031 (0.78 -1.355)	0.715	1.048 (0.912 -1.251)	0.432	1.162 (1.083 -1.431)	0.0184	0.835 (0.463 -1.233)	0.24	5.227 (2.959 -10.57)	0.00187	O F7

Table A.1 (continued)

O F8	0 G12	O G6	0 G7	O G8	0 G9
0.000378	0.000985	1.96E -05	0.000606	1.84E -05	0.000943
13.01 (6.912 -42)	3.627 (1.633 -6.432)	5.128 (3.683 -6.233)	3.91 (2.3 -8.048)	3.335 (2.842 -4.68)	3.29 (2.547 -3.819)
0.784	NO DATA	0.573	0.843	0.138	0.0599
1.054 (0.615 -2.079)	NO DATA	1.223 (0.503 -2.907)	1.046 (0.645 -1.796)	0.732 (0.327 -1.214)	0.631 (0.355 -1.089)
0.00585	0.0619	0.00443	0.00127	0.000257	0.00903
2.306 (1.572 -3.83)	5.003 (1.518 - 26.71)	1.29 (1.061 -1.502)	1.983 (1.706 -2.256)	1.227 (1.116 -1.314)	1.695 (1.345 -2.526)
0.000322	0.139	0.123	0.0162	0.17	0.0318
2.143 (1.489 -2.695)	7.532 (4.816 -11.78)	1.214 (0.949 -1.555)	2.207 (1.462 -3.081)	1.131 (0.901 -1.363)	1.527 (0.997 -2.302)
0.0688	0.183	0.0463	0.848	0.141	0.766
1.45 (0.914 -2.32)	0.619 (0.29 -1.55)	1.319 (0.971 -1.723)	0.983 (0.79 -1.204)	0.838 (0.565 -1.096)	1.045 (0.745 -1.448)
0.647	0.35	0.13	0.425	0.426	0.422
1.065 (0.573 -1.341)	0.791 (0.386 -1.276)	1.241 (0.812 -1.641)	1.134 (0.798 -1.799)	1.074 (0.81 -1.219)	1.123 (0.828 -1.63)

Table A.1 (continued)

1a	ble <i>i</i>	A. I	(cor	lliiil	ieu)							
1.514 (1.441 - 1.61)	5.06E -05	1.284 (0.955 -1.763)	0.119	1.663 (1.096 -1.98)	0.00885	2.15 (1.349 -3.953)	0.00535	1.187 (0.687 -1.944)	0.391	21.79 (12.34 -78.5)	0.00583	O H12
1.111 (0.864 -1.456)	0.241	1.024 (0.807 -1.486)	0.806	1.296 (0.894 -1.998)	0.0695	1.422 (0.638 -2.641)	0.189	0.952 (0.673 -1.843)	0.843	3.652 (2.16 -5.856)	0.00217	O H5
1.284 (0.532 -1.866)	0.459	1.278 (0.786 -1.984)	0.182	0.751 (0.51 -1.022)	0.146	0.704 (0.529 -0.927)	0.0198	0.01*	No reps.	0.434 (0.293 -0.655)	0.0695	OO A10
NO DATA	NO DATA	1.819	No reps.	0.01*	No reps.	0.317 (0.271 -0.379)	5.78E -05	NO DATA	NO DATA	0.526 (0.371 -0.708)	0.00619	OO B6
1.011 (0.443 -1.748)	0.965	1.062 (0.695 -2.009)	0.73	1.003 (0.617 -1.75)	0.99	0.518 (0.395 -0.638)	0.000897	NO DATA	NO DATA	0.452 (0.33 -0.671)	0.00324	00 C1
1.455 (0.918 -2.076)	0.0308	1.574 (1.206 -2.181)	0.0184	0.965 (0.654 -1.253)	0.873	0.884 (0.587 -1.239)	0.431	7.5	No reps.	1.321 (0.974 -1.902)	0.116	00 C7

Table A.1 (continued)

12	ıble	A.I	(CO	ntin	uea)							
0.811 (0.641 -0.96)	0.0335	0.725 (0.621 -0.811)	0.000555	1.016 (0.881 -1.171)	0.782	1.05 (0.771 -1.615)	0.703	1.024 (0.616 -1.484)	0.864	1.935 (1.103 -4.973)	0.0477	00 D11
2.603 (2.353 -2.879)	0.067	NO DATA	NO DATA	0.01*	1	0.589 (0.271 -0.916)	0.142	NO DATA	NO DATA	0.417 (0.247 -0.662)	0.0245	00 E4
1.132 (0.889 -1.318)	0.238	1.112 (0.616 -1.649)	0.542	3.156 (2.976 -3.347)	0.0325	1.726 (1.113 -3.204)	0.0448	1.939	No reps.	11.5	No reps.	00 F3
0.88 (0.555 -1.308)	0.426	1.05 (0.673 -1.708)	0.778	1.593 (1.119 -2.385)	0.0336	2.021 (1.269 -2.98)	0.00347	0.888 (0.599 -1.341)	0.419	7.135 (4.888 -16.13)	0.000108	00 G10
1.754 (0.917 -2.868)	0.105	NO DATA	NO DATA	0.448 (0.33 -0.798)	0.109	0.406 (0.282 -0.547)	0.000201	NO DATA	NO DATA	0.298 (0.17 -0.404)	0.000443	OO G12
1.327 (0.815 -2.027)	0.188	0.741 (0.241 -1.094)	0.354	1.2 (0.905 -1.389)	0.325	0.469 (0.376 -0.544)	3.37E -05	_	No reps.	0.37 (0.28 -0.59)	0.00293	00 G2

Table A.1 (continued)

12	able	A.1	(CO.	nun	ued)							
0.911 (0.6	0.396	1.122 (0.7	0.38	1.432 (0.9	0.415	2.251 (1.)	0.0135	1.688 (0.7	0.291	6.448 (0.6	0.0426	00 G3
(0.69 -1.23)		(0.754 -1.625)		(0.945 -2.886)		(1.158 -4.762)		(0.724 -8)		(0.622 -12.4)		
0.927 (0	0.0201	0.664 (0	0.00115	1.138 (0	0.226	1.279 (0	0.129	0.784 (0	0.0067	4.616 (1	0.0458	00 G8
(0.833 -0.966)		(0.583 -0.763)		(0.88 -1.512)		(0.879 -1.985)		(0.63 -0.944)		(1.475 -40.71)		
1.435 (0	0.162	1.022 (0	0.931	0.739 (0	0.238	0.632 (0	0.00355	ω	No reps.	0.466 (0	0.00636	00 H11
(0.897 -2.963)		(0.567 -1.773)		(0.656 -0.832)		(0.491 -0.844)				(0.359 -0.815)		
1.104 (0	0.188	0.958 (0	0.696	1.737 (1	0.0381	1.706 (1	0.00483	1.147 (0	0.555	2.824 (1	0.00354	00 H3
(0.95 -1.287)		(0.796 -1.252)		(1.133 -4.152)		(1.114 -2.174)		(0.746 -1.929)		(1.647 -6.114)		
1.013 (0	0.916	0.726	No reps.	0.932 (0	0.589	0.924 (0	0.696	0.016	No reps.	1.194 (0	0.794	00 H4
(0.84 -1.39)				(0.85 -1.023)		(0.575 -1.808)				(0.704 -2.026)		
2.074	No reps.	0.01*	No reps.	NO DATA	NO DATA	1.62 (0.9	0.0216	NO DATA	NO DATA	1.1 (0.99	0.514	00 H9
						(0.995 -2.08)				(0.996 -1.214)		

Table A.1 (continued)

	1	1	<u>`</u>	-		1	1	1	1	1	1	
1.101 (0.119 -2.679)	0.712	1.624 (0.01 -5.291)	0.161	1.499 (1.12 -2.007)	0.021	1.361 (0.291 -4.25)	0.359	0.667 (0.554 -0.82)	0.0702	4.231 (0.647 -8.88)	0.00137	P A10
1.035 (0.01 - 1.95)	0.948	5	No reps.	2.175 (0.916 - 3.435)	No reps.	1.472 (0.01 -3.277)	0.157	1.518	No reps.	0.649 (0.4 -0.933)	0.348	P B3
1.115 (0.01 -3.7)	0.758	0.83 (0.384 -1.206)	0.425	6.219 (4.626 -8.361)	0.102	1.726 (0.01 -8.5)	0.342	2.747	No reps.	5.092 (4.241 -7)	0.00949	P B6
1.1 (0.01 -2.91)	0.722	1.009 (0.174 -2.4)	0.972	1.392 (0.809 -3.596)	0.375	2.091 (0.508 -5.058)	0.0117	0.584 (0.381 -1.051)	0.0334	4.69 (0.0915 -9.777)	0.00209	P C10
0.858 (0.01 -2.067)	0.613	0.795 (0.101 -1.849)	0.38	1.232 (0.312 -2.808)	0.633	1.436 (0.01 -4.151)	0.19	0.883 (0.67 -1.491)	0.471	2.434 (0.484 -5.29)	0.00433	P C2
1.145 (0.33 - 1.979)	0.442	1.263 (0.627 -2.715)	0.198	1.064 (0.919 -1.259)	0.672	1.085 (0.355 -1.46)	0.574	0.01*	No reps.	0.955 (0.01 -4)	0.851	P D1

Table A.1 (continued)

10	ible	A.I	(00	ntin	ueu)							
0.788	0.443	0.712	0.369	1.093	0.787	1.363	0.35	0.754	0.449	12.42	0.00198	P D10
(0.01 -1.675)		(0.0227 -1.312)		(0.0307 -3.307)		(0.01 -3.039)		(0.112 -1.271)		(0.159 - 151.7)		
1.569	0.247	1.176	0.732	1.246	0.386	1.063	0.637	0.396	No reps.	0.6 (0.	0.409	P D12
(0.802 -2.405)		(0.01 -1.635)		(0.919 -2.079)		(0.548 -1.777)				(0.01 -1.197)		
1 (0.7	0.995	0.955	0.565	1.192	0.178	1.451	0.0603	0.848	0.277	6.931	0.00198	P D3
(0.742 -1.495)		(0.631 -1.382)		(0.686 -2.074)		(0.707 -3.249)		(0.411 -1.589)		(1.587 -29.98)		
1.268 (0.925 -1.562)	0.277	1.123 (0.261 -1.866)	0.604	NO DATA	NO DATA	1.529 (1.129 -1.794)	0.186	1.615	No reps.	3.204 (2.35 -3.66)	0.00152	P D6
1.11	0.753	0.973	0.948	0.896	0.0489	1.005	0.988	0.98	0.797	2.616	0.0278	P E11
(0.01 -2.579)		(0.0215 -2.152)		(0.793 -1.058)		(0.01 -1.965)		(0.829 -1.367)		(1.435 -8.347)		
0.692	0.186	0.9 (0	0.609	1.228	0.331	1.256	0.238	1.339	0.438	2.054	0.00114	P E2
(0.01 -1.877)		(0.472 - 1.637)		(0.453 -2.32)		(0.307 -2.61)		(0.01 -2.248)		2.054 (0.792 -4.307)		

Table A.1 (continued)

1.408	0.255	1.11	0.705	1.08	0.785	1.109	0.709	1.311	0.362	0.848	0.561	P E3
(0.156 -3.561)		(0.108 -3.007)		(0.0986 -2.427)		(0.121 -2.306)		(0.12 -3.678)		(0.116 -1.934)		
0.896 (0.0773 -1.931)	0.733	1.102 (0.0129 -3.076)	0.735	1.03 (0.34 -2.208)	0.924	1.726 (0.331 -3.424)	0.0975	0.826 (0.491 -1.246)	0.45	4.875 (2.617 -23.14)	0.103	P E5
1.02 (0.01 -2.141)	0.952	1.189 (0.821 -1.711)	0.192	1.036 (0.0678 -2.73)	0.914	1.78 (0.01 -4.542)	0.102	1.163 (0.89 -1.774)	0.271	6.458 (0.01 -16.63)	0.00101	P E6
0.89 (0.01 -2.115)	0.766	0.907 (0.01 -2.208)	0.766	0.832 (0.104 -1.759)	0.632	1.159 (0.0109 -4.102)	0.646	0.821 (0.507 -1.641)	0.321	5.872 (0.01 -55.97)	0.0015	P E8
0.984 (0.65 -1.542)	0.894	1.064 (0.0152 - 2.899)	0.721	0.759 (0.418 -1.123)	0.276	1.099 (0.0762 -1.819)	0.532	3.522 (3.063 -4.051)	0.0704	0.972 (0.652 -1.704)	0.853	P E9
1.119 (0.01 -2.309)	0.746	0.846 (0.539 -1.146)	0.233	0.908 (0.661 -1.054)	0.226	1.09 (0.01 -2.51)	0.794	1.116 (0.973 -1.308)	0.107	2.962 (0.01 - 29.48)	0.0456	P F11

Table A.1 (continued)

0	0	0	ò	_	0	_	0	0	0	_	0	_
0.978	0.92	0.945	0.84	1.451	0.398	1.295	0.286	0.711	0.309	1.856	0.266	P F12
(0.01 -2.223)		(0.0857 -1.804)		(0.225 -2.409)		(0.643 -2.548)		(0.573 -0.988)		(0.531 -3.715)		
0.92	0.777	0.82	0.518	1.074	0.817	1.174	0.596	1.019	0.951	4.225	0.00398	PF3
(0.0387 -2.975)		(0.0513 -1.809)		(0.0499 -2.676)		(0.0716 -2.669)		(0.0126 -3.939)		(0.0985 -30.9)	8	
1.049	0.821	1.002	0.995	1.137	0.726	1.748	0.0887	1.186	0.756	4.284	0.00986	P F5
(0.209 -2.131)		(0.092 -2.944)		(0.145 -2.292)		(0.0537 -4.504)		(0.01 -3.665)		(0.648 -12.74)	6	
0.787	0.477	1.001	0.997	0.907	0.796	1.053	0.868	0.868	0.702	4.106	0.00788	P F8
(0.01 -1.6)		(0.01 -2.044)		(0.0522 -1.904)		(0.01 -3.057)		(0.0462 -1.544)		(0.01 -16.99)	3	
1.02	0.931	1.952	0.0898	0.884	0.539	1.01	0.972	1.056	0.717	9.549	0.000819	PG1
(0.289 -2.27)		(0.102 -4.789)		(0.223 -1.718)		(0.171 -2.201)		(0.22 -1.54)		(0.979 - 33.38)	19	
1.017	0.957	1.85	0.123	1.565	0.309	1.771	0.0816	0.754	0.317	6.152	0.00147	P G3
(0.01 -2.614)		(0.0897 -5.151)		(0.632 -3.437)		(0.125 -4.24)		(0.2 -1.799)		(0.01 -16.66)	17	

_

Table A.1 (continued)

0.942 (0.01 -1.845)	0.802	0.993 (0.302 -2.505)	0.978	1.533 (0.912 -3.15)	0.109	2.041 (0.639 -4.612)	0.0382	1.045 (0.818 -1.336)	0.886	3.112 (0.832 -14.43)	0.00788	P G6
0.739 (0.01 -1.968)	0.372	0.802 (0.0143 -1.74)	0.511	1.026 (0.0277 -3.595)	0.931	1.281 (0.0507 -2.211)	0.48	0.916 (0.579 -1.507)	0.639	4.222 (0.0154 - 12.49)	0.0481	P G8
1.108 (0.817 -1.317)	0.29	2.01 (1.445 - 2.98)	0.00504	0.987 (0.581 -2.034)	0.953	1.393 (1.103 - 2.049)	0.0331	0.544 (0.259 -0.872)	0.0148	14.28 (0.707 -35.59)	0.0704	P G9
1.042 (0.0345 -2.653)	0.888	2.249 (0.0325 -5.923)	0.0347	1.135 (0.239 -1.658)	0.699	1.124 (0.0536 -2.587)	0.678	0.737 (0.502 -0.982)	0.0286	34.77 (0.872 -296)	8.07E -06	P H5
1.092 (0.936 -1.275)	0.67	2.015 (1.254 -3.45)	0.0259	0.58 (0.566 -0.595)	0.0296	1.196 (0.834 -1.49)	0.108	NO DATA	NO DATA	0.73 (0.489 -1.159)	0.0426	PINK A12
1.062 (0.887 -1.188)	0.321	1.115 (0.916 -1.326)	0.0948	1.067 (0.851 -1.395)	0.466	1.09 (0.926 - 1.707)	0.406	0.833 (0.457 -1.182)	0.269	2.512 (1.299 -3.903)	0.00466	PINK A3

Table A.1 (continued)

12	ıble	A.I	(co)	ntin	ued))						
1.187 (1.029 -1.302)	0.00445	1.59 (1.162 -2.702)	0.1	1.048 (0.791 -1.378)	0.702	1.404 (0.921 -1.739)	0.0379	0.868 (0.66 -1.259)	0.268	20.89 (0.831-266)	0.0193	PINK A6
1.363 (0.758 -2.295)	0.267	0.646 (0.566 -0.823)	0.069	0.461 (0.337 -0.65)	0.0552	0.449 (0.392 -0.55)	0.000179	1.099 (0.936 -1.29)	0.662	0.233 (0.151 -0.29)	2.45E -05	PINK B1
1.251 (1.012 -1.54)	0.0296	0.887 (0.216 -1.901)	0.725	0.555 (0.269 -1.026)	0.0328	0.406 (0.278 -0.529)	0.00154	1.518	No reps.	0.339 (0.293 -0.366)	0.000217	PINK B10
1.289 (0.86 -1.549)	0.0747	1.01 (0.434 -2.518)	0.979	0.257 (0.102 -1.23)	0.104	0.313 (0.204 -0.384)	0.00399	NO DATA	NO DATA	0.318 (0.282 -0.383)	3.66E -05	PINK B11
0.965 (0.591 -1.285)	0.753	0.967 (0.786 -1.206)	0.671	1.272 (0.928 -2.214)	0.117	1.789 (1.183 -2.57)	0.0408	1.277 (0.815 -1.697)	0.092	33.98 (11.17 -142.5)	0.00299	PINK B8
0.877 (0.67 -0.995)	0.107	0.84 (0.613 -1.487)	0.318	0.716 (0.283 -1.207)	0.378	0.42 (0.331 -0.564)	0.000104	0.789 (0.438 -1.356)	0.384	0.277 (0.179 -0.38)	0.000582	PINK C1

Table A.1 (continued)

12	able	A.I	(CO	ntin	ued))	-		-			
1.2 (0.784 -1.809)	0.262	1.408 (0.655 -2.292)	0.137	0.744 (0.513 -1.04)	0.177	0.606 (0.417 -0.793)	0.01	1.19 (0.715 -1.98)	0.79	0.486 (0.343 -0.683)	0.00175	PINK C11
1.225 (0.8 -1.811)	0.202	1.35 (0.741 -2.006)	0.143	0.491 (0.262 -1.054)	0.122	0.327 (0.25 -0.397)	3.66E -05	NO DATA	NO DATA	0.294 (0.208 -0.359)	1.67E -05	PINK C2
1.788 (1.185 -3.128)	0.00922	1.13 (0.624 -1.968)	0.545	0.701 (0.204 -1.683)	0.45	0.474 (0.374 -0.563)	0.000595	ω	No reps.	0.375 (0.312 -0.46)	0.000168	PINK C5
1.484 (0.48 -2.694)	0.27	1.374 (0.88 -1.817)	0.0714	0.29	No reps.	0.545 (0.285 -0.792)	0.0152	NO DATA	NO DATA	0.56 (0.347 -0.794)	0.0145	PINK C7
1.079 (0.647 -1.893)	0.652	1.668 (1.1 -3.213)	0.0341	1.087 (0.01 -2.231)	0.828	1.532 (0.928 -2.353)	0.0423	2.416 (1.54 -3.343)	0.00348	6.01 (3.217 -10.47)	0.000168	PINK C8
1.124 (0.73 - 1.692)	0.565	1.174 (0.687 -1.709)	0.29	0.913 (0.559 -1.45)	0.697	0.545 (0.478 -0.625)	3.24E -05	1.311 (1.206 -1.426)	0.191	0.313 (0.219 -0.446)	0.000505	PINK D10

Table A.1 (continued)

10	ible	A.1	È.		ued)							
1.83 (0.987 -3.738)	0.0561	1.33 (0.453 -2.602)	0.346	0.665 (0.242 -1.26)	0.508	0.198 (0.01 -0.46)	0.0963	1.936 (1.249 -5)	0.13	0.261 (0.185 -0.425)	8.50E -05	PINK D3
1.875 (1 -3.015)	0.0719	1.648 (1.045 -2.832)	0.0766	0.384 (0.297 -0.63)	0.061	0.484 (0.232 -0.794)	0.0509	NO DATA	NO DATA	0.356 (0.139 -0.615)	0.0561	PINK D4
1.113 (0.821 -1.478)	0.295	1.753 (1.318 -2.181)	0.00106	0.933 (0.575 -1.398)	0.669	0.951 (0.794 -1.061)	0.335	2.514 (1.654 -4.525)	0.00275	0.195 (0.0867 -0.322)	0.00463	PINK D5
1.427 (0.744 -2.314)	0.277	1.401 (0.914 -1.793)	0.0571	0.628 (0.288 -1.396)	0.415	0.426 (0.244 -0.702)	0.00642	NO DATA	NO DATA	0.467 (0.292 -0.853)	0.00313	PINK D6
0.932 (0.813 -1.012)	0.106	0.829 (0.655 -0.954)	0.0189	0.587 (0.325 -0.841)	0.0179	0.5 (0.304 -0.61)	0.00126	0.752 (0.553 -1.231)	0.123	0.0504 (0.0288 -0.0859)	0.000231	PINK E10
1.243 (1.01 -1.613)	0.11	1.593 (1.005 -2.491)	0.042	0.376 (0.0906 -0.932)	0.0482	0.245 (0.111 -0.565)	0.00383	0.0907 (0.01 -0.822)	0.473	0.0704 (0.0374 -0.126)	0.00025	PINK E11

Table A.1 (continued)

	able				ued)							
1.561 (1.225 -1.969)	0.00155	1.079 (0.795 -1.57)	0.636	0.3 (0.18 -0.614)	0.0824	0.242 (0.0274 -0.529)	0.0294	1.593	No reps.	0.272 (0.179 -0.418)	0.000134	PINK E12
1.642 (1.297 -1.982)	0.000601	1.578 (0.771 -2.787)	0.0678	0.379 (0.0886 -0.969)	0.0763	0.216 (0.11 -0.369)	0.00348	0.788 (0.308 -1.041)	0.277	0.0268 (0.0118 -0.0605)	0.000426	PINK E2
0.964 (0.748 -1.199)	0.665	0.916 (0.598 -1.301)	0.619	0.573 (0.423 -0.734)	0.00377	0.546 (0.408 -0.729)	0.00236	0.785 (0.744 -0.829)	0.139	0.151 (0.0935 -0.249)	6.51E -05	PINK E3
1.307 (0.979 -1.986)	0.0898	1.003 (0.527 -1.786)	0.991	0.169 (0.0487 -1.334)	0.109	0.145 (0.0341 -0.303)	0.00297	NO DATA	NO DATA	0.0395 (0.0181 -0.0776)	0.000571	PINK E4
1.367 (0.997 - 1.875)	0.503	1.259 (0.771 -2.633)	0.397	0.191 (0.0709 -0.325)	0.0797	0.246 (0.119 -0.393)	0.0117	0.395	No reps.	0.0284 (0.0173 -0.0604)	7.62E -06	PINK E5
1.23 (1.032 -1.369)	0.0184	1.212 (0.813 -2.225)	0.324	0.488 (0.187 -0.943)	0.28	0.362 (0.237 -0.513)	0.00104	1.205 (0.696 -1.926)	0.594	0.0993 (0.0438 -0.202)	0.000125	PINK E6

Table A.1 (continued)

	able	A.1			ued)			-				
1.556 (1.196 - 2.246)	0.0184	1.648 (0.857 -2.506)	0.0204	0.747 (0.359 - 1.226)	0.221	0.543 (0.192 -0.808)	0.0498	1.357 (0.551 - 2.39)	0.42	0.635 (0.455 -0.919)	0.02	PINK E7
0.499 (0.421 -0.579)	6.66E -05	0.724 (0.283 -1.502)	0.396	0.759 (0.579 -1.488)	0.181	0.416 (0.213 -1.018)	0.0104	10.5	No reps.	0.473 (0.408 -0.587)	0.000293	PINK E8
0.955 (0.795 -1.463)	0.641	0.807 (0.69 -0.923)	0.0165	0.546 (0.257 -0.896)	0.0314	0.366 (0.205 -0.668)	0.00198	0.804 (0.654 -1.213)	0.0581	0.0408 (0.0175 -0.0766)	5.99E -05	PINK E9
1.154 (1.023 -1.312)	0.0137	0.679 (0.469 -0.797)	0.0527	0.858 (0.665 -0.985)	0.0599	0.799 (0.526 -1.23)	0.0979	0.942 (0.564 -1.366)	0.688	0.318 (0.212 -0.42)	0.00112	PINK F1
1.057 (0.894 - 1.469)	0.595	0.787 (0.694 -0.875)	0.00154	1.387 (1.09 -1.582)	0.00708	1.394 (0.977 -1.663)	0.0324	0.904 (0.619 -1.192)	0.658	4.873 (3.667 - 6.663)	1.37E -05	PINK F10
0.762 (0.469 -1.026)	0.0551	0.775 (0.52 -1.031)	0.0546	1.253 (0.732 -1.825)	0.15	1.242 (0.86 -1.75)	0.151	0.618 (0.454 -1)	0.187	2.602 (0.929 -5.236)	0.0183	PINK F11

Table A.1 (continued)

	able				ued)	6	c	c	c	c	~	
0.961 (0.482 -1.259)	0.798	1.022 (0.745 -1.493)	0.862	0.61 (0.248 -1.159)	0.139	0.548 (0.462 -0.628)	0.000537	0.822 (0.447 -1.252)	0.326	0.15 (0.103 -0.199)	8.55E -05	PINK F2
1.099 (0.393 -1.73)	0.702	1.563 (0.936 -2.447)	0.148	0.51 (0.136 -1.413)	0.434	0.308 (0.17 -0.502)	0.0017	0.958 (0.504 -1.807)	0.885	0.174 (0.0861 -0.421)	0.00246	PINK F3
1.914 (1.488 -2.462)	0.236	1.406 (0.516 -3.09)	0.422	0.103 (0.0189 -0.417)	0.0619	0.155 (0.0721 -0.302)	0.00144	0.592	No reps.	0.0857 (0.05 -0.162)	0.000211	PINK F7
1.728 (1.563 -1.991)	2.96E -05	1.348 (1.05 -1.798)	0.0613	0.811 (0.602 -1.126)	0.101	1.046 (0.903 -1.619)	0.65	1.104 (0.642 -1.552)	0.483	0.651 (0.434 -1.099)	0.035	PINK F9
1.098 (0.86 -1.46)	0.297	0.955 (0.715 -1.319)	0.681	1.204 (0.813 -1.644)	0.211	0.96 (0.749 - 1.176)	0.623	0.983 (0.461 -1.641)	0.941	1.934 (1.576 - 2.217)	5.34E -05	PINK G1
1.183 (0.707 -1.54)	0.213	1.161 (1.062 -1.227)	0.00436	1.112 (0.579 -1.844)	0.519	1.446 (1.048 -2.413)	0.0425	0.99 (0.806 -1.331)	0.909	3.042 (2.031 -6.465)	0.00156	PINK G12

Table A.1 (continued)

10	able	A.I	(00)	num	ued))						
1.572 (1.291 - 1.973)	0.00287	1.767 (1.328 - 2.327)	0.00107	0.807 (0.588 -1.691)	0.452	0.74 (0.435 -0.959)	0.0749	1.237 (0.747 -2.163)	0.561	0.835 (0.583 -1.014)	0.0962	PINK G2
1.014 (0.764 -1.476)	0.904	1.026 (0.811 -1.303)	0.746	1.705 (1.169 -2.267)	0.0153	1.313 (1.012 -1.699)	0.0294	0.993 (0.517 -2.498)	0.984	3.006 (2.111 -6.761)	0.0017	PINK G3
1.123 (0.823 -2.119)	0.434	1.531 (0.884 -2.102)	0.0219	0.577 (0.212 -1.642)	0.381	0.339 (0.153 -0.525)	0.00422	1.518	No reps.	0.284 (0.184 -0.476)	0.00821	PINK G5
1.293 (0.623 -3.135)	0.418	1.363 (1.099 -1.816)	0.0235	0.415 (0.391 -0.44)	0.0425	0.469 (0.293 -0.599)	0.00235	NO DATA	NO DATA	0.345 (0.285 -0.448)	0.000145	PINK H1
1.377 (1.149 -1.783)	0.00702	1.198 (0.7 -1.479)	0.172	1.209 (0.764 -1.726)	0.225	1.327 (1.118 -1.539)	0.00535	0.796 (0.55 -1.053)	0.119	2.687 (1.947 - 3.649)	8.59E -05	PINK H3
1.164 (0.956 -1.483)	0.0633	2.644 (2.333 -3.006)	1.16E -06	1.233 (0.61 -2.294)	0.377	0.868 (0.556 -1.058)	0.207	1.258 (0.789 -1.804)	0.309	0.275 (0.112 -0.736)	0.024	PINK H4

Table A.1 (continued)

12	ıble	A.I	(CO	ntin	ued))	-					
1.341 (1.178 -1.586)	0.0204	1.166 (0.82 -1.738)	0.441	0.375 (0.0829 -1.042)	0.123	0.315 (0.156 -0.45)	0.00409	2.022 (1.556 -2.629)	0.227	0.148 (0.0592 -0.262)	0.00269	PINK H7
1.256 (0.843 -1.464)	0.0423	1.069 (0.886 -1.222)	0.221	1.23 (0.796 -1.494)	0.0933	1.31 (1.018 -1.726)	0.027	0.876 (0.477 -1.828)	0.578	10.54 (5.043 -34.98)	0.000357	PINK H9
1.303 (0.662 - 2.726)	0.585	2.484 (2.384 -2.62)	0.000936	1.155 (0.925 -1.405)	0.356	0.52 (0.322 -1.126)	0.0345	NO DATA	NO DATA	0.38 (0.263 -0.619)	0.0123	PP A7
2.5	No reps.	1.152 (0.863 -1.537)	0.71	0.01*	No reps.	0.796 (0.546 -1.871)	0.252	NO DATA	NO DATA	0.751 (0.467 -1.443)	0.485	PP B12
0.822 (0.418 - 1.373)	0.334	1.067 (0.78 -1.552)	0.532	0.679 (0.442 -1.118)	0.135	0.541 (0.329 -0.78)	0.013	3.285	No reps.	0.563 (0.407 -0.919)	0.00376	PP B7
2.837	No reps.	1.785 (0.91 -3.5)	0.548	0.01*	No reps.	0.838 (0.575 -1.533)	0.34	NODATA	NODATA	0.641 (0.336 -0.873)	0.138	88 dd

Table A.1 (continued)

10	able	A.1	(00)	num	ued))						
0.01*	No reps.	0.461	No reps.	0.0938	No reps.	0.413 (0.197 -0.608)	0.0114	NO DATA	NO DATA	0.425 (0.213 -0.694)	0.0409	PP B9
0.964 (0.701 -1.482)	0.752	0.972 (0.46 -1.578)	0.907	0.186 (0.0733 -0.466)	0.0385	0.193 (0.105 -0.285)	0.000134	0.961	No reps.	0.0905 (0.0435 -0.162)	0.000517	PP C2
1.253 (0.868 -1.752)	0.221	0.99 (0.458 -1.711)	0.967	0.518 (0.183 -1.288)	0.217	0.358 (0.207 -0.472)	0.0129	1.275 (0.897 -1.812)	0.615	0.276 (0.221 -0.37)	0.00151	PP C3
1 (0.497 -1.647)	1	1.204 (0.881 -2.112)	0.434	0.442 (0.0925 -1.024)	0.179	0.403 (0.182 -0.638)	0.00862	2.57 (1.887 -3.5)	0.201	0.275 (0.251 -0.291)	3.40E -05	PP C8
1.036 (0.907 - 1.169)	0.595	1.036 (0.6 -1.928)	0.883	0.357 (0.124 -0.981)	0.126	0.209 (0.102 -0.339)	0.00111	3.509	No reps.	0.213 (0.146 -0.38)	0.000626	PP D1
0.909 (0.823 -1.119)	0.0827	2.044 (1.658 -2.683)	0.000195	1.22 (0.766 -1.846)	0.22	1.097 (0.838 -1.443)	0.331	0.766 (0.532 -0.939)	0.0535	2.71 (1.473 - 3.608)	0.000672	PP D10

Table A.1 (continued)

	0.17 0.04	0.79 (0.362 -1.016) 1.272 (1.235 -1.31)	0.21 0.0771	1.165 (0.919 - 1.582) 0.44 (0.394 - 0.491)	0.18 0.0848	1.428 (0.71 -3.244) 0.432 (0.378 -0.477)	0.183 0.000665	0.624 (0.54 -0.711) 3	0.000895 No reps.	4.554 (3.832 -6.447) 0.364 (0.299 -0.499)	1.10E -05 5.47E -05	PP D11 PP D3
(1.056 - 1.498) 0.876 (0.575 - 1.334)	0.55	0.81 (0.515 -1.035)	0.194	0.81 (0.571 -1.207)	0.138	0.735 (0.594 -1.075)	0.0687	0.01*	No reps.	0.391 (0.298 -0.608)	0.000506	PP D4
1.188 (0.91 -1.713)	0.14	1.11 (0.756 -1.575)	0.438	0.884 (0.635 -1.141)	0.233	0.695 (0.634 -0.73)	1.24E -05	1.478 (1.166 -1.823)	0.0119	0.208 (0.103 -0.34)	0.00391	PP D6
1.18 (0.872 -1.509)	0.134	1.502 (1.193 -1.919)	0.00223	1.004 (0.557 -1.77)	0.983	0.981 (0.767 -1.186)	0.77	2.076 (1.027 -3.527)	0.00942	0.238 (0.0745 -0.495)	0.011	PP D7
0.854 (0.614 -1.482)	0.371	1.136 (0.912 -1.607)	0.23	0.752 (0.418 -1.258)	0.183	0.519 (0.42 -0.59)	7.89E -05	3.442 (3.251 -3.567)	0.000543	0.14 (0.0685 -0.248)	0.000857	PP D8

Table A.1 (continued)

10	ible	A.I	(00)	num	ued))						
0.738 (0.599 -0.88)	0.0133	1.155 (0.988 -1.246)	0.00776	0.784 (0.332 -1.403)	0.364	0.56 (0.483 -0.622)	1.62E -05	1.099 (0.721 -1.732)	0.694	0.249 (0.111 -0.45)	0.00531	PP D9
0.766 (0.598 -1.073)	0.266	1.137 (0.394 -2.681)	0.661	0.262 (0.0532 -0.97)	0.0676	0.13 (0.01 -0.462)	0.0147	1.619 (1.095 -2.394)	0.434	0.137 (0.104 -0.188)	3.02E -05	PP E10
1.268 (0.941 -1.779)	0.0984	1.205 (0.567 -2.957)	0.57	0.567 (0.226 -1.406)	0.212	0.315 (0.213 -0.487)	0.000281	1.187 (0.799 -1.991)	0.379	0.135 (0.0767 -0.212)	0.000326	PP E2
1.044 (0.883 -1.191)	0.459	1.493 (1.125 -1.952)	0.00536	0.846 (0.502 -1.208)	0.3	0.667 (0.461 -1.164)	0.0374	0.908 (0.602 -1.274)	0.472	0.503 (0.268 -1.113)	0.043	PP E4
1.091 (0.799 -1.388)	0.416	1.422 (1.207 -1.558)	0.000405	0.77 (0.555 -1.071)	0.215	0.658 (0.425 - 1.004)	0.0267	1.566 (0.979 -3.395)	0.121	0.183 (0.0793 -0.302)	0.000593	PP E5
1.225 (1.001 -1.572)	0.0194	1.774 (1.538 -2.205)	0.000107	0.686 (0.475 -1.022)	0.0265	0.583 (0.421 -0.884)	0.00506	1.271 (0.852 -1.667)	0.105	0.134 (0.0451 -0.272)	0.00395	PP E6

Table A.1 (continued)

10	ible	л. I	(00	111111	ued)						,	
1.516 (1.177 -1.746)	0.0181	1.585 (0.846 -4.339)	0.101	0.296 (0.0524 -0.887)	0.138	0.31 (0.174 -0.573)	0.0011	NO DATA	NO DATA	0.346 (0.257 -0.585)	0.0109	PP E7
0.935 (0.682 -1.397)	0.691	1.238 (0.954 -1.834)	0.227	0.415 (0.204 -0.592)	0.035	0.334 (0.137 -0.561)	0.00312	0.01*	No reps.	0.241 (0.193 -0.296)	0.00756	PP E8
1.056 (0.965 -1.298)	0.371	1.446 (1.196 -2.209)	0.0292	0.554 (0.42 -0.725)	0.0037	0.556 (0.308 -0.835)	0.00752	0.897 (0.485 -1.372)	0.673	0.268 (0.145 -0.416)	0.00222	PP E9
0.831 (0.652 -1.058)	0.584	0.934 (0.49 -1.815)	0.811	0.386 (0.176 -0.897)	0.181	0.22 (0.108 -0.345)	0.00445	1.978	No reps.	0.211 (0.168 -0.259)	5.07E -06	PP F4
1.414 (1.166 - 1.951)	0.166	1.167 (0.85 -2.127)	0.397	0.58 (0.549 -0.598)	0.00254	0.463 (0.242 -0.699)	0.00312	NO DATA	NO DATA	0.308 (0.16 -0.522)	0.00116	PP F7
1.25 (1.034 - 1.616)	0.0296	1.597 (1.26 -1.995)	0.00532	0.859 (0.602 -1.149)	0.287	0.657 (0.377 -0.883)	0.0354	1.118 (0.661 -1.751)	0.449	0.234 (0.104 -0.497)	0.00361	PP F9

Table A.1 (continued)

Та	able	A.1	(co:	ntin	ued))						
0.798 (0.671 -1.301)	0.0786	0.409 (0.375 -0.434)	9.74E -05	0.402 (0.183 -0.831)	0.0343	0.245 (0.184 -0.332)	3.49E -05	1.095	No reps.	0.118 (0.0915 -0.18)	6.37E -05	PP G1
0.915 (0.704 - 1.302)	0.487	0.741 (0.473 -1.139)	0.186	0.161 (0.0641 -0.552)	0.035	0.154 (0.0741 -0.271)	0.000457	NO DATA	NO DATA	0.081 (0.0574 -0.2)	0.000403	PP G2
0.116 (0.101 -0.142)	2.03E -07	1.871 (1.304 -2.405)	0.00631	1.189 (0.607 -2.952)	0.535	0.123 (0.0927 -0.14)	3.94E -07	0.121 (0.0635 -0.154)	1.77E -05	0.773 (0.274 -1.365)	0.406	PP G3
0.558 (0.312 -0.968)	0.0159	0.758 (0.416 -1.187)	0.146	0.867 (0.488 -1.48)	0.381	0.552 (0.48 -0.679)	0.000163	0.854 (0.748 -0.916)	0.141	0.259 (0.194 -0.371)	0.000495	PP G6
1.09 (0.443 -2.207)	0.872	1.23 (0.955 -1.62)	0.181	0.01*	No reps.	0.441 (0.284 -0.595)	0.00282	NO DATA	NO DATA	0.403 (0.307 -0.571)	0.000568	PP G7
1.112 (0.654 -2.174)	0.792	1.214 (0.628 - 2.643)	0.689	0.362 (0.0809 -1.397)	0.178	0.19 (0.0821 -0.24)	0.000199	NO DATA	NO DATA	0.146 (0.121 -0.177)	3.43E -07	PP H2

Table A.1 (continued)

1.131 (0.858 -1.725) 1.082	0.27 0.48	1.379 (0.131 -2.549) 0.988	0.461 0.908	0.911 (0.751 -1.018) 0.843	0.0994 0.315	0.876 (0.741 -1.006) 0.596	0.0421 0.00055	1.314 (1.009 -1.97) 1.289	0.0461 0.389	0.104 (0.044 -0.199) 0.597	0.000378 0.00212	РР H6 РР H7
32 (0.82 - 1.61)	3	38 (0.82 - 1.586)	08	43 (0.592 -1.59)	15	96 (0.486 -0.703)	0055	39 (1.079 -1.54)	39	97 (0.456 -0.815)	0212	H7
1.025 (0.828 -1.196)	0.844	0.879 (0.74 -1.034)	0.114	0.615 (0.26 -1.744)	0.131	0.4 (0.295 -0.476)	0.000437	NO DATA	NO DATA	0.26 (0.199 -0.372)	0.000442	PP H8
1.272 (0.959 -1.49)	0.0158	1.261 (1.05 -1.405)	0.00315	1.17 (0.919 -1.663)	0.144	1.479 (1.074 -2.286)	0.0231	1.612 (1.008 -3.146)	0.0679	9.661 (3.65 -20.45)	0.00019	Q B12
1.539 (1.463 - 1.604)	0.000332	1.159 (0.755 -2.091)	0.676	0.727 (0.0938 -1.36)	No reps.	0.629 (0.243 -1.038)	0.246	19.71	No reps.	0.706 (0.539 - 1.18)	0.03	Q C4
1.001 (0.544 -1.62)	0.995	1.669 (0.766 -2.255)	0.179	2.089 (1.191 -3.609)	0.012	2.427 (1.923 -3.122)	0.00447	1.386 (0.882 -1.948)	0.3	3.818 (2.745 -4.944)	3.17E -05	Q C7

Table A.1 (continued)

12	able	A.I	(00)	num	ued)		-	-	-	-		
1.35 (1.015 -1.741)	0.0995	0.849 (0.46 -1.394)	0.412	0.671 (0.377 -1.37)	0.145	0.608 (0.431 -0.699)	0.00105	0.842 (0.482 -1.365)	0.626	0.402 (0.27 -0.52)	0.000239	Q D2
1.414 (0.962 -1.972)	0.0196	1.37 (0.507 -2.252)	0.198	1.767 (1.158 -2.381)	0.00239	2.067 (1.806 -2.713)	0.000562	2.264 (1.862 -2.753)	0.149	6.223 (3.851 - 12.21)	0.000108	Q D3
1.889	No reps.	NO DATA	NO DATA	0.01*	No reps.	1.17 (0.751 -1.485)	0.552	4.961	No reps.	0.693 (0.378 -1.659)	0.267	Q F6
1.034 (0.71 -1.437)	0.839	0.899 (0.694 -1.251)	0.289	2.816	No reps.	1.453 (1.214 -1.803)	0.0369	NO DATA	NO DATA	2.62 (1.965 -5.016)	0.0219	Q F9
1.328 (0.892 - 1.831)	0.311	1.234 (1.118 -1.362)	0.279	0.01*	No reps.	0.697 (0.587 -0.961)	0.154	NO DATA	NO DATA	0.508 (0.339 -0.802)	0.113	Q G9
1.198 (0.831 -1.767)	0.314	1.008 (0.629 -1.772)	0.965	0.286 (0.131 -0.553)	0.00871	0.199 (0.138 -0.26)	1.51E -05	1.21 (1.036 -1.424)	0.174	0.0255 (0.0106 -0.049)	0.000351	Q H3

Table A.1 (continued)

Q H5	QQ A10	QQ A6	QQ B1	QQ B5	QQ B6
9.30E-05	7.70E-05	0.00709	0.000478	0.225	0.972
0.0673 (0.0397 -0.102)	5.278 (2.752 -7.484)	29.11 (8.151 -171)	0.182 (0.113 -0.245)	0.759 (0.636 -1.042)	0.997 (0.82 -1.147)
0.284	0.255	0.701	NO DATA	NO DATA	NO DATA
1.299 (0.998 -1.837)	0.894 (0.718 -1.048)	0.943 (0.493 -1.421)	NO DATA	NO DATA	NO DATA
4.76E -05	0.00134	0.0145	0.000261	0.00245	0.0654
0.298 (0.245 -0.403)	1.975 (1.501 -3.206)	1.632 (1.143 -2.756)	0.217 (0.115 -0.334)	3.054 (2.734 -3.24)	0.73 (0.597 -1)
0.00311	0.0402	0.283	0.0454	NO DATA	No reps.
0.425 (0.275 -0.689)	1.467 (0.97 -2.665)	1.133 (0.897 -1.608)	0.251 (0.16 -0.449)	NO DATA	0.237
0.817	0.832	0.0275	0.612	NO DATA	No reps.
0.961 (0.548 -1.308)	1.044 (0.702 -1.467)	0.77 (0.607 -0.898)	0.786 (0.556 -1.11)	NO DATA	0.53
0.657	0.0814	0.271	0.844	NO DATA	No reps.
1.092 (0.65 -1.691)	0.889 (0.749 -1.004)	0.926 (0.776 -1.154)	1.068 (0.82 -1.392)	NO DATA	2

Table A.1 (continued)

Ta	ble /	A .1	(cor	ntinu	ied)							
0.657 (0.629 -0.687)	0.0668	0.512 (0.296 -0.859)	0.0114	0.615 (0.407 -1.309)	0.0434	0.415 (0.286 -0.557)	0.000532	0.852 (0.517 -1.406)	0.803	0.132 (0.0766 -0.224)	0.000474	QQ C2
0.693 (0.382 -0.925)	0.0395	0.707 (0.631 -0.812)	0.000546	1.077 (0.842 -1.411)	0.447	1.219 (0.902 -1.848)	0.103	0.864 (0.565 -1.219)	0.311	2.331 (0.946 -6.424)	0.0522	QQ C9
3.404 (1.5 -7.723)	0.375	NO DATA	NO DATA	0.01*	No reps.	1.03 (0.781 -1.71)	0.883	NO DATA	NO DATA	0.658 (0.396 -1.067)	0.189	QQ D1
1.427 (1.193 -1.799)	0.0995	1.736 (1.608 -2.07)	0.00273	NO DATA	NO DATA	0.575 (0.437 -0.737)	0.0185	NO DATA	NO DATA	1.035 (0.729 -2.02)	0.842	QQ D12
0.729 (0.31 -1.183)	0.537	0.632 (0.433 -0.884)	0.0707	0.504 (0.29 -0.952)	0.0234	0.269 (0.154 -0.462)	0.000264	NO DATA	NO DATA	0.244 (0.166 -0.295)	0.000158	QQ D4
0.499 (0.368 -0.732)	0.00818	0.652 (0.3 -1.78)	0.372	2.204 (1.748 -2.823)	0.0294	0.813 (0.67 -0.93)	0.00753	NO DATA	NO DATA	0.503 (0.391 -0.74)	0.0171	QQ D6

Table A.1 (continued)

0.16 0.0246 1.096 (0.918-1.228) 0.641 0.0267 0.0651 1.161 (0.95-1.307) 0.818 0.84 0.041 0.041 0.979 (0.695-1.458) 0.091 0.37 0.0057 0.00057 0.828 (0.372-1.367) 0.548	QQ E1 0.909 1.02 (0.738 -1.4) No reps.	QQ E2 0.00136 0.446 (0.291-0.656) NO DATA NO DATA	QQ F1 0.00373 3.124 (1.65-4.751) 0.437 1.264 (0.702-2.414)	QQ F3 3.66E -05 2.018 (1.743 -2.417) 0.455 0.878 (0.624 -1.149)	QQ G10 0.000647 0.47 (0.393-0.617) 0.0868 1.32 (1.271-1.371)	QQ G4 0.000744 6.701 (0.44
Image: Normal System 0.00148 0.00232 0.16 Image: Normal System 0.0246 (1.187 - 1.761) 0.501 (0.3 - 0.591) 1.406 (1.178 - 1.688) 1.096 (0.918 - 1.228) 0.641 3 Noreps. 0.0413 0.0267 0.0267 0.0267 0.0267 0.0319 0.0413 0.0267 1.161 (0.95 - 1.307) 0.818 (0.367 - 1.146) 0.0319 0.558 0.526 - 1.755) 0.84 0.0413 0.0413 (0.367 - 1.146) 0.83 (0.75 - 0.908) 0.875 (0.526 - 1.755) 0.84 0.691 0.0057 (0.867 - 1.146) 0.291 0.235 0.372 0.365 0.372 0.691 (0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548	0.881	NO DATA	1.264 (0.702 -2.414)	0.878 (0.624 -1.149)	1.32 (1.271 -1.371)	
(1.187 - 1.761) 0.501 (0.3 - 0.591) 1.406 (1.178 - 1.688) 1.096 (0.918 - 1.228) 0.641 3 No reps. 0.0413 0.267 0.0267 0.0267 0.0651 0.0651 (3.627 - 4.089) 0.204 1.543 (0.867 - 2.312) 1.161 (0.95 - 1.307) 0.818 (3.627 - 4.089) 0.0319 0.558 0.84 0.941 0.0413 0.0413 0.041 (0.867 - 1.146) 0.83 (0.75 - 0.908) 0.875 (0.526 - 1.755) 0.84 0.691 0.0057 (0.881 - 1.998) 0.291 0.235 0.372 0.367 0.0057 0.528 0.372 - 1.367) 0.548	0.146	0.00148	0.00232	0.16	0.0246	
3 No reps. 0.0413 0.0267 0.0267 0.0651 (3.627 - 4.089) 0.204 1.543 (0.867 - 2.312) 1.161 (0.95 - 1.307) 0.818 (0.867 - 1.146) 0.0319 0.558 0.84 0.0413 0.0413 0.0413 0.0413 (0.867 - 1.146) 0.0319 0.558 0.875 0.879 0.899 0.691 (0.867 - 1.146) 0.83 0.75 - 0.908) 0.875 0.526 - 1.755) 0.979 0.695 - 1.458) 0.691 (0.881 - 1.998) 0.291 0.235 0.37 0.372 0.367 0.00057 (0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548					0.641 (0.453 -0.947)	
(3.627 - 4.089) (0.204 1.543 (0.867 - 2.312) 1.161 (0.95 - 1.307) (0.81 0.0319 0.319 0.558 0.84 0.84 0.041 (0.867 - 1.146) 0.83 (0.75 - 0.908) 0.875 (0.526 - 1.755) 0.979 (0.695 - 1.458) 0.691 (0.881 - 1.998) 0.291 0.235 0.37 0.372 0.00057 (0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 (0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548 <td>0.0283</td> <td>No reps.</td> <td>0.0413</td> <td>0.0267</td> <td>0.0651</td> <td></td>	0.0283	No reps.	0.0413	0.0267	0.0651	
Image: Normal System Image: No		0.204			0.818 (0.632 -1.032)	
(0.867 - 1.146) 0.83 (0.75 - 0.908) 0.875 (0.526 - 1.755) 0.979 (0.695 - 1.458) 0.691 0.291 0.235 0.37 0.37 0.00057 0.00057 (0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 (0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548	0.666	0.0319	0.558	0.84	0.041	
0.291 0.235 0.37 0.00057 (0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 (0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548					0.691 (0.51 -0.957)	
(0.881 - 1.998) 1.2 (0.936 - 1.437) 0.87 (0.627 - 1.278) 0.828 (0.372 - 1.367) 0.548	0.318	0.291	0.235	0.37	0.000573	
					0.548 (0.49 -0.676)	

_

Table A.1 (continued)

12	ıble	A.I	(co	ntın	ued))						
1.466 (1.061 -1.95)	0.0322	1.349 (1.059 -1.663)	0.0116	0.662 (0.268 -1.963)	0.313	0.582 (0.49 -0.678)	0.000145	7.5	No reps.	0.534 (0.355 -0.725)	0.00551	QQ H12
0.96 (0.803 -1.262)	0.566	0.831 (0.635 -1.145)	0.108	1.102 (0.855 -1.422)	0.374	1.46 (1.155 -1.849)	0.00501	1.032 (0.894 -1.299)	0.576	9.105 (4.972 -23.86)	0.000454	RR A2
NO DATA	NO DATA	_	No reps.	0.01*	No reps.	0.447 (0.338 -0.508)	0.00355	NO DATA	NO DATA	0.287 (0.267 -0.309)	0.0372	RR B11
0.985 (0.764 -1.291)	0.866	0.984 (0.718 -1.656)	0.921	1.636 (1.189 -2.968)	0.0222	1.773 (1.272 -2.114)	0.0748	0.69 (0.352 -1.242)	0.185	5.179 (3.087 -7.777)	6.76E -05	RR B12
1.762 (1.225 - 2.5)	0.111	1.75 (1.53 -2.001)	0.15	0.279 (0.255 -0.306)	0.0459	0.36 (0.181 -0.536)	0.00153	NO DATA	NO DATA	0.408 (0.212 -0.574)	0.00163	RR B9
0.986 (0.824 -1.234)	0.841	1.026 (0.841 -1.418)	0.786	1.484 (0.776 -3.48)	0.135	1.851 (1.262 -2.885)	0.0131	0.654 (0.336 -0.925)	0.0924	9.937 (4.674 -25.26)	0.000207	RR C3

Table A.1 (continued)

10	ible	A.I	(co	num	ued)							
1.052 (0.864 -1.213)	0.452	1.258 (0.89 -1.788)	0.0891	2.311 (0.987 -12.22)	0.127	1.885 (0.876 -4.369)	0.0567	0.619 (0.526 -0.695)	0.0293	6.828 (5.128 -11.49)	4.94E -05	RR D11
1.376 (1.268 -1.457)	0.0168	1.099 (0.824 -1.728)	0.492	1.243 (0.949 -1.881)	0.0892	1.329 (0.997 -1.685)	0.0426	0.964 (0.614 -1.673)	0.794	3.782 (2.871 -5.042)	3.57E -05	RR D4
0.928 (0.843 -1.024)	0.0624	0.989 (0.734 -1.438)	0.92	1.2 (0.946 -1.683)	0.0709	1.585 (1.145 -2.657)	0.0106	1.004 (0.686 -1.238)	0.966	10.18 (7.304 -17.86)	1.61E -05	RR F5
3.648	No reps.	1.208 (1.166 -1.288)	0.028	0.0724	No reps.	0.693 (0.616 -0.743)	0.025	6.5	No reps.	0.588 (0.467 -0.713)	0.0112	RR G1
1.007 (0.666 -1.405)	0.956	1.014 (0.763 -1.707)	0.933	2.118 (1.38 -2.569)	0.0138	2.115 (1.949 - 2.255)	0.000263	0.902 (0.626 -1.598)	0.555	12.78 (6.273 -18.5)	0.019	RR G5
0.788 (0.381 -1.092)	0.201	2.12 (1.57 -2.748)	0.000371	1.067 (0.508 -1.522)	0.75	0.882 (0.491 -1.229)	0.498	0.78 (0.356 -1.231)	0.224	9.313 (0.785 -54.46)	0.00683	RR G7

Table A.1 (continued)

12	ıble	A.I	(00)	ntin	ued)							
2.271	No reps.	0.733 (0.723 -0.742)	0.026	0.304 (0.212 -0.538)	0.0541	0.451 (0.237 -0.553)	0.00822	2.164	No reps.	0.323 (0.245 -0.462)	0.000479	RR H5
1.142 (0.788 -2.011)	0.69	0.107 (0.0439 -0.221)	0.000348	0.163 (0.0601 -0.548)	0.0115	0.394 (0.247 -0.498)	0.000375	0.232 (0.157 -0.465)	0.00901	0.656 (0.463 -0.985)	0.125	S A1
1.338 (0.973 -1.72)	0.0359	1.511 (1.194 -2.018)	0.00619	1.624 (1.103 -2.218)	0.00698	2.397 (1.696 -3.583)	0.00368	2.143 (1.808 -2.802)	8.04E -05	13.19 (9.07 -20.73)	4.83E -06	S A2
0.87 (0.803 -0.948)	0.0278	0.757 (0.659 -0.901)	0.00149	1.052 (0.903 -1.252)	0.386	1.077 (0.877 -1.434)	0.455	0.956 (0.801 -1.171)	0.506	1.824 (0.954 -5.351)	0.117	S B1
0.794 (0.591 -0.926)	0.0269	0.769 (0.605 -0.87)	0.00478	2.126 (1.451 -4.387)	0.0242	1.866 (1.64 -2.069)	0.000136	0.948 (0.696 -1.258)	0.603	6.52 (3.256 -11.22)	0.000284	S B2
1.064 (0.814 -1.927)	0.645	0.911 (0.525 -1.62)	0.627	0.941 (0.806 -1.151)	0.345	1.049 (0.788 -1.296)	0.654	1.176 (0.662 -2.101)	0.364	2.22 (1.471 - 2.684)	0.000347	S B7

Table A.1 (continued)

0.945 (0.854 -1.043)	0.338	0.994 (0.572 - 1.621)	0.978	0.913 (0.812 - 1.026)	0.579	0.949 (0.609 - 1.169)	0.671	0.01*	No reps.	1.061 (0.942 - 1.223)	0.284	S D4
) 1.124 (0.682 - 1.721)	0.567) 1.472 (0.75 - 2.449)	0.114) 0.597 (0.317 -0.997)	0.055) 0.676 (0.411 -0.843)	0.037	1.939 (1.709 - 2.2)	0.12) 0.52 (0.472 -0.653)	0.000391	S E12
0.964 (0.755 -1.088)	0.523	0.987 (0.734 -1.444)	0.937	1.014 (0.841 -1.276)	0.857	1.1 (0.62 -1.442)	0.479	0.924 (0.635 -1.364)	0.608	2.297 (1.39 -3.998)	0.00582	S E2
1.35 (1.04 -1.669)	0.0184	1.096 (0.593 -2.055)	0.682	0.756 (0.384 -1.178)	0.15	0.761 (0.588 -1.027)	0.0193	NO DATA	NO DATA	0.468 (0.314 -0.661)	0.00399	S E9
1.098 (0.681 -1.451)	0.465	1.299 (1.022 -2.123)	0.0698	1.189 (0.942 -1.526)	0.0854	2.111 (1.717 -2.539)	0.000318	0.772 (0.385 -1.219)	0.422	14.88 (5.933 -51.5)	0.000484	S F11
0.843 (0.01 -1.977)	0.673	1.465 (1.283 -1.58)	5.00E -05	1.182 (0.98 -1.553)	0.0981	1.24 (0.957 - 1.721)	0.123	0.933 (0.511 -1.525)	0.673	5.364 (2.099 - 26.64)	0.00802	S G2

_

Table A.1 (continued)

0.845	0.411	1.712	0.0119	1.276	0.0245	1.462	0.00228	1.198	0.412	7.968	0.0801	S G3
(0.43 -1.26)		(1.016 -2.537)		(1.023 -1.53)		(1.187 -1.7)	3	(0.642 -2.027)		(1.067 -12.89)		
1.604	No reps.	NO DATA	NO DATA	3.309	No reps.	1.811 (1.646 -1.884)	0.000341	NO DATA	NO DATA	1.064 (1 -1.132)	0.5	T A1
2.394 (1.47 -5.323)	0.0516	1.092 (0.715 -1.35)	0.486	1.698 (0.991 -2.248)	0.188	1.661 (1.488 -1.955)	0.0045	1.293	No reps.	5.153 (2.299 -8.743)	0.000572	T A11
1.363 (1.285 -1.509)	0.000582	1.52 (1.114 -2.116)	0.00961	1.523 (1.059 -2.373)	0.0136	1.861 (1.447 -2.359)	0.0123	1.521 (0.937 -2.025)	0.0878	4.419 (2.094 -7.215)	0.000387	T A2
0.784 (0.502 - 1.303)	0.124	0.784 (0.592 -0.941)	0.0188	1.987 (1.178 -3.422)	0.0726	2.331 (1.58 -3.22)	0.00181	1.12 (0.971 -1.357)	0.372	4.543 (2.937 -8.258)	0.000927	T B10
0.959 (0.709 -1.308)	0.834	0.819 (0.526 -1.394)	0.304	0.623 (0.354 -0.832)	0.0369	0.433 (0.235 -0.554)	0.0062	0.01*	No reps.	0.47 (0.37 -0.668)	0.00912	T B3

Table A.1 (continued)

10	ible	л. I	(00	111111	ued)						,	
1.306	0.0578	1.169	0.154	0.936	0.149	1.128	0.134	1.552	0.0334	0.592	0.161	T B7
(0.788 -1.603)		(0.751 -1.413)		(0.86 -1.065)		(0.954 -1.485)		(0.968 -2.651)		(0.272 -1.327)		
0.58 (0.484 -0.767)	0.000362	0.439 (0.284 -0.772)	0.0105	1.081 (0.254 -3.501)	0.869	1.287 (0.753 -1.995)	0.208	0.928 (0.291 -1.585)	0.784	2.749 (2.128 -3.324)	5.53E -05	TC1
1.619 (1.19 -2.572)	0.0304	1.007 (0.696 -1.459)	0.988	0.126	No reps.	0.548 (0.419 -0.729)	0.00236	NO DATA	NO DATA	0.45 (0.32 -0.582)	0.000515	T C12
0.652 (0.424 -0.885)	0.00823	0.921 (0.416 -1.481)	0.676	1.647 (0.942 -3.22)	0.04	1.174 (0.818 -1.444)	0.135	1.708 (1.369 -1.999)	0.0423	1.56 (1.121 -2.782)	0.0527	ТСЗ
0.716 (0.295 - 1.138)	0.35	1.025 (0.759 -1.342)	0.727	0.616 (0.452 -0.874)	0.128	0.792 (0.638 -1.41)	0.104	1.406 (1.2 -1.78)	0.105	0.406 (0.306 -0.853)	0.115	T C7
0.929 (0.756 -1.127)	0.359	1.109 (1.015 -1.285)	0.06	1.306 (0.902 -1.656)	0.0844	1.778 (1.495 -2.002)	0.000133	1.426 (0.993 -2.688)	0.219	8.804 (5.257 -14.63)	1.94E -05	T C8

Table A.1 (continued)

17	able	A.I	(00)	num	ued)		-	-	-			
1.062 (0.724 - 1.532)	0.662	1.081 (0.793 -1.319)	0.446	1.364 (1.176 -1.579)	0.0231	1.563 (1.008 -3.126)	0.0774	2.267 (1.796 -3)	0.00453	0.734 (0.373 -1.005)	0.188	T D11
0.983 (0.815 -1.262)	0.824	1.034 (0.736 -1.89)	0.847	1.091 (0.685 -1.407)	0.745	1.208 (0.846 -1.745)	0.212	2.419 (2.239 -2.547)	0.00199	0.82 (0.614 -1.052)	0.138	T E10
1.357 (0.969 -2.46)	0.085	1.308 (1.03 -1.881)	0.0656	1.57 (0.999 -1.993)	0.00557	1.955 (1.499 -2.707)	0.000552	0.994 (0.369 -1.926)	0.982	3.47 (2.271 -5.096)	0.000924	T E2
1.049 (0.804 -1.588)	0.693	0.895 (0.744 -1.094)	0.109	1.185 (0.831 -1.801)	0.233	1.464 (1.146 -2.015)	0.017	1.051 (0.764 -1.404)	0.639	17.67 (7.522 -58.93)	0.000416	TE3
1.244 (0.828 -2.194)	0.235	1.185 (0.819 -1.596)	0.179	2.103 (1.551 -2.692)	0.0442	3.068 (2.016 -8.197)	0.011	1.323 (0.566 -2.293)	0.583	5.287 (3 -6.527)	3.37E -05	TE4
1.474 (1.22 - 1.689)	0.000973	1.428 (1.126 -1.994)	0.0146	1.415 (0.982 -1.99)	0.015	2.211 (1.738 -2.488)	2.17E -05	1.198 (0.654 -1.883)	0.505	8.983 (6.039 -17.53)	5.37E -05	T E6

Table A.1 (continued)

18	ible	A.I	(co	ntın	ued))						
0.926 (0.646 -1.226)	0.482	0.875 (0.705 -1.026)	0.251	1.605 (1.177 -2.953)	0.11	1.765 (1.152 -2.457)	0.00383	1.333	No reps.	5.473 (2.825 -10.74)	0.00914	T F10
1.093 (0.728 - 1.648)	0.497	0.692 (0.198 - 1.468)	0.339	0.909 (0.774 -1.096)	0.221	1.002 (0.846 -1.324)	0.982	0.871 (0.586 -1.377)	0.392	8.755 (1.891 -73.1)	0.0372	T F2
1.492 (1.116 -1.992)	0.00437	1.376 (1.273 -1.542)	0.00079	1.136 (0.649 -2.007)	0.585	1.525 (0.957 -2.718)	0.0823	0.82 (0.467 -1.048)	0.272	3.236 (1.828 -4.728)	0.0102	T F5
1.448 (0.646 -2.271)	0.156	1.085 (0.861 -1.327)	0.283	0.673 (0.291 -1.18)	0.124	0.747 (0.572 -0.906)	0.00695	1.064 (0.875 -1.292)	0.805	0.571 (0.461 -0.732)	0.00226	T F6
1.82 (1.447 -2.445)	0.000783	1.448 (1.047 -2.096)	0.0128	0.886 (0.477 -1.352)	0.517	0.905 (0.718 -1.243)	0.448	0.534 (0.407 -0.89)	0.133	1.03 (0.681 -1.297)	0.809	T F7
1.908 (1.45 - 2.697)	0.0011	1.957 (1.195 -2.876)	0.00277	0.57 (0.418 -0.913)	0.0149	1.081 (0.788 -1.249)	0.391	1.053 (0.687 -1.582)	0.735	1.467 (1.038 -2.523)	0.0332	T G2

Table A.1 (continued)

			È	-								
1.039	0.697	2.291	5.37E -05	1.019	0.922	0.831	0.238	0.716	0.0399	0.875	0.44	T G6
(0.739 -1.46)		(1.773 -2.797)	05	(0.571 -1.588)		(0.476 -1.122)		(0.492 -0.978)		(0.505 -1.295)		
0.804 (0.43 -1.455)	0.432	0.992 (0.733 -1.356)	0.949	1.239 (0.914 -1.714)	0.127	1.912 (1.389 -3.709)	0.00624	0.905 (0.516 -1.418)	0.589	5.014 (2.455 -11.69)	0.000878	Т G9
1.329 (0.835 -1.754)	0.348	0.835 (0.541 -1.632)	0.362	0.706 (0.352 -0.988)	0.0866	0.724 (0.535 -0.907)	0.0785	1.38 (0.993 -1.976)	0.108	0.415 (0.316 -0.697)	0.0155	т нз
1.777 (1.346 -2.231)	0.00138	1.329 (0.952 -2.092)	0.0566	0.467 (0.204 -0.969)	0.0377	0.663 (0.592 -0.841)	0.00396	0.627 (0.254 -1.433)	0.271	0.522 (0.379 -0.77)	0.00344	Т Н9
0.865 (0.678 - 1.232)	0.134	0.801 (0.628 -0.905)	0.0112	1.043 (0.944 - 1.258)	0.35	1.166 (0.919 - 1.572)	0.192	0.902 (0.527 -1.365)	0.469	8.55 (1.12 -285)	0.0798	TT A2
1.294 (0.973 -1.77)	0.0439	1.121 (0.924 -1.292)	0.148	0.593 (0.479 -0.801)	0.017	0.703 (0.386 -1.135)	0.0692	0.522 (0.255 -1.068)	0.53	0.514 (0.425 -0.665)	0.00285	TT A9

Table A.1 (continued)

12	able	A.I	(CO	ntın	ued))						
0.64 (0.396 -2.541)	0.267	0.818 (0.506 -1.459)	0.348	1.997 (1.208 -4.31)	0.092	1.835 (1.311 -2.286)	0.00102	0.01*	No reps.	2.372 (1.405 -3.405)	0.00489	TT B12
1.451 (1.13 - 1.723)	0.00372	0.987 (0.74 -1.302)	0.896	0.887 (0.806 - 1.043)	0.0763	0.976 (0.762 -1.297)	0.765	1.148 (0.876 -1.775)	0.336	0.619 (0.378 -0.779)	0.0020	тт в6
NO DATA	NO DATA	1.116 (1.075 -1.158)	0.207	0.01*	-1	0.537 (0.398 -0.6)	0.00837	NO DATA	NO DATA	0.275 (0.189 -0.387)	0.00429	ТТ В9
2.106 (1.589 -2.82)	0.000209	1.026 (0.684 -1.387)	0.853	1.379 (0.926 -3)	0.495	0.897 (0.645 -1.483)	0.393	0.745	No reps.	0.563 (0.35 -0.729)	0.039	TT C1
0.712 (0.469 -0.901)	0.0444	0.699 (0.557 -0.754)	0.000721	1.003 (0.0781 -2.026)	0.993	1.144 (0.855 -1.619)	0.243	1.009 (0.703 -1.649)	0.945	1.534 (1.074 -2.759)	0.0813	TT C12
2.542 (1.856 -3.482)	0.207	0.713 (0.587 -1.068)	0.0933	0.465	No reps.	0.55 (0.428 -0.926)	0.013	4.022	No reps.	0.494 (0.408 -0.748)	0.00306	TT D10

Table A.1 (continued)

1.999 (1.629 - 2.499)	0.000901	1.008 (0.695 -1.402)	0.958	1.156 (0.873 -1.686)	0.231	0.948 (0.656 -1.249)	0.676	2.196 (1.754 -3.339)	0.00214	0.646 (0.369 -0.993)	0.0633	TT D11
1.11 (0.919 - 1.594)	0.334	1.395 (0.673 -2.693)	0.198	0.725 (0.51 -1.336)	0.251	0.936 (0.813 -1.035)	0.215	0.658 (0.504 -0.859)	0.361	0.501 (0.424 -0.635)	0.000517	TT D6
1.476 (1.452 -1.5)	0.0264	1.098 (0.628 -1.605)	0.668	1.071 (0.983 -1.138)	0.26	1.481 (0.819 -3.11)	0.0907	NO DATA	NO DATA	0.466 (0.268 -0.567)	0.00554	TT E12
1.739 (1.195 -2.292)	0.00636	1.337 (1.092 -1.569)	0.00899	1.02 (0.385 -1.659)	0.956	0.728 (0.366 -1.587)	0.174	1.196 (1.157 -1.237)	0.118	0.474 (0.315 -0.787)	0.00423	TT E5
1.422 (0.802 -2.27)	0.163	1.228 (0.877 -1.648)	0.0901	0.605 (0.429 -1.086)	0.0179	0.62 (0.532 -0.882)	0.00604	0.513 (0.39 -0.596)	0.0398	0.55 (0.472 -0.669)	9.28E -05	ТТ Е9
1.481 (0.851 -1.952)	0.0299	3.333 (2.595 -5.051)	0.000491	1.05 (0.524 -1.727)	0.817	0.846 (0.553 -1.322)	0.223	1.208 (0.742 -1.717)	0.206	2.351 (1.094 -5.131)	0.0304	TT F3

Table A.1 (continued)

Τa	able	A.1	(co	ntin	ued))						
0.997	0.993	0.892	0.578	0.334	0.125	0.268	0.000996	1.007	0.99	0.247	0.000533	TT F9
(0.468 -2.122)		(0.639 -1.815)		(0.0979 -1.006)		(0.141 -0.407)	6	(0.386 -1.882)		(0.159 -0.348)	33	
1.053 (0.826 -1.326)	0.517	2.012 (1.83 -2.202)	1.47E -06	1.22 (0.836 -1.513)	0.111	1.207 (0.931 -1.599)	0.0796	1.367 (0.799 -1.705)	0.0464	3.032 (1.54 -5.879)	0.00385	Π G10
1.368 (0.95 -1.842)	0.0264	2.989 (1.968 -4.72)	0.000429	1.539 (0.981 -2.707)	0.0266	1.606 (1.21 -1.861)	0.000679	2.57 (1.999 -3.209)	5.83E -05	1.306 (0.499 -2.933)	0.355	тг G12
1.249 (0.817 -2.063)	0.202	0.891 (0.724 -1.114)	0.153	0.536	No reps.	0.52 (0.4 -0.738)	0.0144	NO DATA	NO DATA	0.647 (0.528 -0.95)	0.00139	TT G3
1.614 (1.021 -2.552)	0.486	1.544 (1.24 -2.153)	0.0421	0.216 (0.106 -0.772)	0.138	0.413 (0.177 -0.642)	0.0055	1.671	No reps.	0.316 (0.222 -0.427)	0.0002	TT G4
1.523 (1.314 -1.805)	0.00042	1.435 (1.149 -1.855)	0.00457	1.07 (0.691 -1.643)	0.651	1.198 (1.109 -1.336)	0.00185	1.018 (0.483 -1.422)	0.916	1.989 (1.714 -2.278)	9.73E -06	TT G6

Table A.1 (continued)

12	able	A.I	(co	ntın	ued))						
1	No reps.	2.294 (1.754 -3)	0.199	0.365	No reps.	0.498 (0.448 -0.616)	0.00233	0.412	No reps.	0.706 (0.591 -0.866)	0.0885	TT G9
1.449 (0.799 -2.393)	0.113	1.913 (1.158 -3.869)	0.215	0.392	No reps.	0.636 (0.442 -0.874)	0.00408	NO DATA	NO DATA	0.342 (0.168 -0.524)	0.0086	щΗ
1.175 (0.681 -1.571)	0.615	0.963 (0.698 -1.232)	0.783	0.239	No reps.	0.332 (0.22 -0.414)	0.00494	NO DATA	NO DATA	0.384 (0.294 -0.496)	0.000439	TT H5
1.93 (1.548 -2.917)	0.00115	1.391 (0.81 -2.145)	0.0888	0.509 (0.19 -1.624)	0.306	0.934 (0.728 -1.63)	0.62	0.706 (0.463 -1.258)	0.197	1.701 (1.372 -2.042)	0.000249	ТТ Н6
1.191 (0.847 -1.726)	0.19	1.429 (1.079 -2.096)	0.013	2.23 (1.437 -4.467)	0.0231	2.397 (1.577 -3.289)	0.00276	1.028 (1.004 -1.052)	0.449	4.359 (1.629 - 14)	0.0136	U A1
1.363	No reps.	0.989 (0.576 -1.695)	0.958	2.687 (2.421 -2.982)	0.0669	2.385 (1.3 -4.779)	0.00504	NO DATA	NO DATA	3.472 (2.853 -4.343)	0.000859	U A4

Table A.1 (continued)

Та	able	A.1	(co:	ntin	ued))						
1.08 (0.688 -1.316)	0.466	1.213 (0.744 -1.69)	0.228	1.629 (1.259 -2.929)	0.0117	2.149 (1.513 -3.229)	0.000705	1.789 (1.295 -3.736)	0.025	15.24 (10.64 -19.74)	1.35E -05	U B8
1.167 (0.665 -1.475)	0.245	1.625 (0.739 -2.179)	0.0715	0.896 (0.496 -1.457)	0.556	0.656 (0.464 -0.844)	0.0122	0.714 (0.29 -1.385)	0.192	2.645 (0.722 -6.988)	0.0681	U C5
0.89 (0.61 -1.397)	0.391	0.856 (0.704 -0.984)	0.0608	0.822	No reps.	0.53 (0.334 -0.675)	0.00608	2.687	No reps.	0.74 (0.539 -0.99)	0.0381	U C7
0.999 (0.804 -1.224)	0.983	0.965 (0.798 -1.158)	0.582	1.167 (0.991 -1.396)	0.0417	1.505 (1.114 -1.888)	0.00496	0.746 (0.254 -1.521)	0.375	5.915 (4.422 -11.24)	5.04E -05	U D5
0.766 (0.562 - 1.017)	0.0432	0.779 (0.588 -0.985)	0.0166	0.977 (0.831 -1.069)	0.556	1.123 (0.788 -1.656)	0.398	0.783 (0.507 -1.231)	0.183	1.63 (1.073 - 2.922)	0.0312	U D9
1.162 (0.772 -1.609)	0.471	1.464 (0.818 -2.287)	0.337	1.562 (0.93 -2.625)	0.548	1.835 (1.05 -3.198)	0.0756	0.01*	No reps.	2.135 (0.81 -3.511)	0.11	U E4

Table A.1 (continued)

1.213 (0.871 -1.504)	0.98 (0.608 -1.25)	1.02 (0.38 -1.873)	1.487 (1.072 -2.276)	1.227 (1.02 -1.509)	1.022 (0.756 - 1.469)
0.0683	0.858	0.934	0.0117	0.0154	0.814
0.756 (0.579 -1.162)	1.311 (1.04 -1.854)	2.267 (1.553 -2.969)	1.832 (0.662 -3.161)	1.451 (1.254 -1.687)	1.015 (0.866 -1.14)
0.0936	0.0555	0.00474	0.0776	0.00376	0.772
0.864 (0.154 -2.503)	1.913	1.403 (0.774 -2.531)	2.095 (1.263 -4.072)	0.755 (0.385 -1.309)	0.882 (0.794 -0.987)
0.758	No reps.	0.204	0.0149	0.224	0.0219
1.766 (0.987 -3.002)	1.896 (1.626 - 2.03)	1.037 (0.687 -1.346)	2.243 (1.125 -6.79)	0.733 (0.532 -0.866)	0.958 (0.76 -1.424)
0.0306	0.00116	0.782	0.0214	0.00846	0.669
1.419 (0.772 -3.541)	1.553	1.185 (0.861 -1.687)	1.86 (0.908 -4.449)	0.96 (0.599 -1.226)	0.875 (0.385 -1.324)
0.329	No reps.	0.209	0.0951	0.711	0.495
13.78 (6.668 -41.5)	3.312 (2.437 -4.707)	2.218 (1.595 -2.79)	6.671 (3.862 -10.81)	0.283 (0.125 -0.446)	0.416 (0.267 -0.699)
0.000375	0.00497	0.00022	0.000646	0.00163	0.00969
U H1	U G7	U G11	UG1	U F5	U E6

Table A.1 (continued)

0.943 (0.8	0.338	0.908 (0.7	0.0983	0.983 (0.7	0.814	0.845 (0.6	0.15	0.943 (0.6	0.57	0.338 (0.1	0.0164	U H2
(0.813 -1.172)		(0.728 -1.01)		(0.756 -1.16)		(0.645 -1.113)		(0.696 -1.194)		(0.164 -0.575)		
0.959 (0.569 - 1.809)	0.804	0.934 (0.789 -1.456)	0.586	1.087 (0.629 - 1.463)	0.603	1.63 (1.532 - 1.76)	0.000101	0.867 (0.617 -1.611)	0.549	4.033 (1.075 - 11.41)	0.009	U H3
1.016 (0.642 -1.356)	0.929	0.892 (0.5 -1.335)	0.57	0.348 (0.126 -1.129)	0.24	0.334 (0.266 -0.408)	8.35E -06	NO DATA	NO DATA	0.425 (0.369 -0.494)	5.80E -06	U H5
1.17 (0.726 -1.784)	0.308	1.094 (0.834 -1.376)	0.324	1.145 (0.92 -1.505)	0.195	1.522 (1.289 -2.12)	0.00285	0.949 (0.782 -1.309)	0.589	9.46 (4.65 -21.5)	0.00157	UU A11
1.072 (0.938 -1.382)	0.295	0.848 (0.705 -0.905)	0.00762	1.073 (0.857 -1.551)	0.447	1.361 (1.008 - 1.78)	0.0292	1.071 (0.904 - 1.539)	0.445	9.563 (2.102 - 39.5)	0.0111	UU A4
1.459 (1.179 -1.962)	0.00696	1.096 (0.516 -2.834)	0.776	2.74 (1.396 -6.27)	0.0483	1.399 (1.024 -2.916)	0.266	0.394 (0.341 -0.459)	0.0014	3.465 (2.378 -5.484)	0.000153	BA UU

_

Table A.1 (continued)

		A.I	(00)	ntin	· · · · · ·							
1.116 (0.777 -1.455)	0.275	1.144 (0.977 -1.412)	0.0763	1.184 (0.834 -2.314)	0.311	1.434 (0.848 -2.151)	0.0409	1.15 (0.655 -1.715)	0.422	2.593 (1.928 -3.912)	0.000165	UU B5
1.08 (0.89 -1.32)	0.275	0.933 (0.655 -1.467)	0.653	1.287 (1.033 -1.657)	0.0179	1.498 (1.043 -2.214)	0.0309	0.78 (0.534 -1.001)	0.176	3.679 (2.829 -5.472)	0.000275	UU B6
1.222 (1.028 -1.538)	0.236	0.917 (0.815 -1.188)	0.188	0.779 (0.388 -1.454)	0.494	0.983 (0.616 -1.387)	0.895	NO DATA	NO DATA	0.414 (0.391 -0.441)	2.81E -06	UU B7
0.958 (0.784 -1.242)	0.529	0.714 (0.565 -0.951)	0.0257	1.696 (1.195 -3.059)	0.0285	1.242 (0.853 -1.588)	0.106	0.734 (0.338 -1.158)	0.187	2.516 (1.758 -3.187)	0.000803	UU B9
0.697 (0.4 -1.272)	0.159	1.526 (0.0863 -4.27)	0.373	2.993 (1.892 -4.84)	0.0562	1.066 (0.687 -1.913)	0.654	0.01*	No reps.	1.458 (1.005 - 1.814)	0.065	UU C10
0.918 (0.745 -1.03)	0.15	0.691 (0.64 -0.765)	0.000427	1.194 (0.957 -1.589)	0.117	1.274 (0.946 -1.88)	0.084	0.814 (0.635 -0.936)	0.0308	15.94 (2.786 -188)	0.0462	UU C12

Table A.1 (continued)

2.009 (1.5 -3.221)	0.00973	0.64 (0.283 -1.124)	0.26	0.896 (0.824 -0.957)	0.128	0.65 (0.503 -1.032)	0.0292	1.136 (1.071 -1.206)	0.277	0.534 (0.351 -0.784)	0.00599	60 NN
0.492	No reps.	0.719 (0.631 -0.935)	0.0348	1.265 (0.889 -1.798)	0.625	1.146 (0.574 -1.847)	0.493	0.01*	No reps.	0.657 (0.507 -0.937)	0.0513	UU D3
2.103 (1.736 -3.174)	0.0134	0.786 (0.5 -1.095)	0.159	0.52 (0.394 -0.786)	0.0898	0.571 (0.425 -0.79)	0.00138	NO DATA	NO DATA	0.425 (0.229 -0.568)	0.00156	00 D2
0.529 (0.349 -0.769)	0.0152	0.365 (0.244 -0.65)	0.0765	1.439 (1.074 -1.927)	0.431	1.107 (0.638 -1.295)	0.399	NO DATA	NO DATA	0.516 (0.269 -0.926)	0.025	UU D6
0.981 (0.597 -1.669)	0.903	1.087 (0.863 -1.517)	0.457	1.275 (0.849 -2.027)	0.438	1.925 (1.454 -2.354)	0.00354	0.945 (0.606 -1.156)	0.734	1.853 (1.497 -2.232)	0.000188	UU E1
0.95 (0.401 -1.277)	0.781	2.097 (2.031 -2.23)	8.79E -08	1.439 (0.523 -3.287)	0.222	1.5 (1.161 -1.661)	0.00364	1.411 (0.956 -1.727)	0.0129	4.527 (2.006 -9.763)	0.00113	UU E12

Table A.1 (continued)

1.47 (1.303 -1.615)	0.00517	1.602 (1.042 -3.668)	0.193	0.759 (0.473 -1.286)	0.271	0.656 (0.502 -0.85)	0.00204	1.39 (0.749 -2.513)	0.197	0.485 (0.407 -0.573)	0.00217	UU E2
1.649 (1.257 -2.271)	0.00738	1.286 (0.719 -2.688)	0.33	0.788	No reps.	0.854 (0.462 -1.871)	0.454	NO DATA	NO DATA	0.478 (0.312 -0.647)	0.00101	UU E6
0.777 (0.565 -1.121)	0.1	0.657 (0.335 -1.116)	0.139	1.493 (0.815 -2.592)	0.0588	1.409 (1.03 -1.795)	0.0104	1.388 (1.255 -1.535)	0.19	4.789 (2.587 -7.083)	0.000138	UU F2
0.92 (0.795 -1.127)	0.354	0.728 (0.41 -1.399)	0.155	1.322 (1.208 -1.447)	0.199	1.58 (1.063 -2.177)	0.0116	NO DATA	NO DATA	1.57 (1.285 -2.24)	0.0106	UU F7
1.141 (0.904 -1.542)	0.219	0.928 (0.746 -1.088)	0.334	1.003 (0.844 -1.309)	0.972	1.155 (0.927 -1.599)	0.217	0.955 (0.661 -1.459)	0.765	6.146 (1.679 - 30.45)	0.0355	UU F9
0.501 (0.339 -0.722)	0.00614	0.366 (0.144 -0.67)	0.00869	1.001 (0.193 -5.325)	0.998	1.421 (0.763 -2.281)	0.127	1.248 (0.647 -1.867)	0.573	2.993 (1.76 -4.345)	0.000561	UU G1

Table A.1 (continued)

1.723 (1.318 -2.367)	NO DATA	1.142 (0.876 -1.505)	1.072 (0.996 -1.27)	1.288 (1.154 - 1.475)	0.82 (0.54 -1.083)
0.0057	NO DATA	0.137	0.134	0.0722	0.169
2.777 (1.426 -4.968)	NO DATA	1.291 (0.936 -1.459)	1.544 (0.893 -2.086)	1.15 (0.857 -1.542)	0.914 (0.775 -1.167)
0.00197	NO DATA	0.0125	0.0179	0.169	0.169
2.242 (1.368 -3.994)	10	2.683 (1.385 -5.627)	0.87 (0.397 -1.27)	1.643 (1.167 -1.99)	1.459 (0.539 -1.881)
0.00646	No reps.	0.00515	0.52	0.102	0.323
2.207 (1.318 -5.165)	4.643 (4.64 -4.646)	2.795 (1.922 -4.23)	0.692 (0.363 -0.938)	2.005 (1.263 - 3.273)	1.231 (1.002 -1.496)
0.0264	0.000299	0.000325	0.0527	0.00491	0.032
0.886 (0.463 -1.394)	NO DATA	1.725 (1.045 -2.547)	0.628 (0.423 -0.891)	NO DATA	3.541
0.641	NO DATA	0.0678	0.00916	NO DATA	No reps.
9.704 (4.881 -16.87)	NO DATA	6.792 (5.213 -9.494)	2.313 (1.244 -5.98)	4.333 (2.99 -7.884)	1.515 (0.851 -2.083)
0.000616	NO DATA	3.82E -05	0.0343	0.0399	0.0294
V D3	V B1	6H NN	UU H5	UU H10	UU G8

Table A.1 (continued)

			<u>`</u>									
1.081	0.411	1.009	0.92	0.962	0.478	1.451	0.039	1.256	0.299	9.569	0.0156	V E8
(0.818 -1.374)		(0.712 -1.215)		(0.809 -1.178)		(1.049 -2.33)		(0.699 -2.498)		(1.667 -63.42)		
0.805 (0.431 -1.142)	0.258	0.325 (0.3 -0.352)	0.0449	5.485 (4.629 -6.5)	0.0633	2.499	No reps.	NO DATA	NO DATA	5	No reps.	W A2
0.871 (0.733 -1.027)	0.0402	0.816 (0.681 -0.9)	0.0057	1.157 (0.845 -1.857)	0.265	1.307 (1.065 -1.616)	0.02	0.852 (0.613 -1.108)	0.174	19.58 (6.831 -80.66)	0.0011	W B10
1.007 (0.679 -1.433)	0.951	0.91 (0.631 -1.362)	0.436	1.575 (1.102 -2.383)	0.0226	2.045 (1.347 -3.593)	0.00476	0.883 (0.617 -1.429)	0.327	19.58 (8.927 -62.5)	0.000196	W 87
0.809 (0.533 -1.264)	0.356	1.149 (0.845 -1.516)	0.401	0.39 (0.222 -0.68)	0.0311	0.527 (0.423 -0.842)	0.00692	1.026 (0.869 -1.235)	0.734	0.521 (0.348 -0.798)	0.0041	W B9
0.78 (0.616 -0.948)	0.03	0.81 (0.699 -0.926)	0.0191	0.887 (0.817 -1.004)	0.0259	0.788 (0.666 -0.878)	0.00258	0.744 (0.477 -0.965)	0.0406	0.313 (0.207 -0.739)	0.00749	W C10

Table A.1 (continued)

Τa	ıble	A.1	(co	ntin	ued)							
1.032 (0.425 -1.57)	0.882	1.234 (0.666 -2.026)	0.259	0.583 (0.273 -0.846)	0.133	0.304 (0.0957 -0.67)	0.0428	1.26	No reps.	0.124 (0.0565 -0.286)	0.00214	W C3
1.046 (0.751 -1.23)	0.585	1.293 (0.739 -3.088)	0.372	1.877 (1.786 -1.973)	0.0504	8.664 (3.796 -25)	0.0078	3.395 (2.833 -4.094)	0.00748	6.598 (2.148 - 20)	0.057	W C6
1.291 (0.902 -1.647)	0.172	0.857 (0.437 -1.782)	0.74	0.276 (0.0672 -1.2)	0.142	0.35 (0.227 -0.414)	0.00551	NO DATA	NO DATA	0.123 (0.0865 -0.223)	0.000239	W D1
1.381 (0.551 -2.76)	0.284	0.069 (0.0119 -0.191)	0.00258	0.0722 (0.0149 -0.134)	0.00326	0.175 (0.0887 -0.336)	0.00154	0.0869 (0.01 -0.211)	0.0437	0.568 (0.243 -0.94)	0.316	W D12
1.601 (1.272 - 2.154)	0.00374	4.195 (2.035 -11.62)	0.0106	1.518 (0.748 -4.114)	0.217	1.335 (0.441 - 2.673)	0.299	9.477 (1.965 - 38.5)	0.0093	0.554 (0.252 -0.922)	0.0551	W E11
1.134 (0.538 -1.523)	0.454	1.47 (1.133 - 2.039)	0.0676	0.444 (0.251 -0.891)	0.0295	0.322 (0.222 -0.483)	0.00014	2.809	No reps.	0.147 (0.103 -0.195)	7.23E -05	W E3

Table A.1 (continued)

1 au	ole A	1.1 (con	unu	eu)							
0.743 (0.467 -1.392)	0.125	0.645 (0.351 -0.801)	0.0179	0.469 (0.207 -1.244)	0.0672	0.593 (0.367 -0.771)	0.00516	0.679 (0.476 -0.968)	0.472	0.239 (0.193 -0.347)	0.000164	W E5
1.147 (1.003 - 1.407)	0.106	1.162 (0.804 -1.94)	0.36	0.76 (0.479 -1.542)	0.253	0.34 (0.254 -0.377)	1.01E -05	1.99 (1.575 -2.471)	0.000267	0.0383 (0.0114 -0.101)	0.000258	W F1
0.811 (0.5 -0.927)	0.159	1.099 (0.788 -1.565)	0.488	1 (0.669 -1.393)	0.999	1.585 (1.216 -2.496)	0.0162	1.114 (0.688 -1.717)	0.578	11.66 (6.84 -33.65)	0.000142	W F3
0.804 (0.625 -0.987)	0.0447	0.742 (0.451 -1.004)	0.205	1.674 (0.988 -2.443)	0.0117	2.302 (1.315 -3.738)	0.00193	0.469 (0.378 -0.581)	0.176	5.462 (2.004 -14.53)	0.00138	W G10
0.888 (0.646 - 1.077)	0.277	1.26 (1.028 -1.826)	0.168	0.475 (0.286 -0.705)	0.108	0.361 (0.205 -0.548)	0.0027	1.334 (1.105 - 1.61)	0.369	0.285 (0.211 -0.625)	0.0802	W G11
1.744 (0.98 - 2.881)	0.13	1.181 (0.916 -2.381)	0.529	0.238 (0.1 -0.589)	0.0437	0.22 (0.0831 -0.315)	0.00389	NO DATA	NO DATA	0.145 (0.0774 -0.279)	0.00087	W G7

Table A.1 (continued)

Table A.1 (continued)

H11 WW H2 X A4 X B1 X B12 X B12 <thx b12<="" th=""> X B12 X B</thx>	1.155 (0.767 -1.559)	0.884 (0.702 -1.235)	1.044 (0.598 -2.442)	1.521 (0.805 -2.264)	1.244 (0.703 -4.443)	2.072 (1.246 - 3.211)
H11 WW H2 X 4 X 6 X B12 L 0.0278 0.000254 0.016 0.022 L 0.0278 0.000254 0.016 0.022 L 0.027 0.016 0.016 0.022 L 0.964 (3.31-8.34) 0.21 (0.153-0.331) 3.095 (1.732-5.275) 10.55 (5.869-20) L 0.921 0.914 0.916 0.918 0.155 0.927 ATA 0.986 (0.843-1.277) 0.944 0.916 0.425 0.425 ATA 0.9962 0.916 0.916 0.787 (0.561-1.713) L 0.0147 0.02952 0.00504 0.0015 0.0015 L 0.026 0.331 (0.166-0.873) 2.796 (1.95-3.828) 0.0015 0.0015 L NO DATA 0.0595 2.003 (1.756-2.574) 2.247 (1.9-3.369) 0.037 L NO DATA 0.348 0.135 0.0591 2.147	0.205	0.237	0.856	0.0719	0.546	0.00643
111 $WWH2$ $XA4$ $XA6$ $XB12$ $XB12$ 0.0278 0.00254 0.016 0.02 0.021 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.023						1.728 (0.706 -4.741)
H1 WW H2 X A4 X A6 X B12 0.0278 0.00254 0.016 0.022 (0.882-1.709) 4.964 (3.31-8.34) 0.21 (0.153-0.331) 3.095 (1.732-5.275) 10.55 (5.869-20) ATA 0.921 No reps. No reps. 0.916 0.425 (0.561-1.713) ATA 0.944 0.944 0.916 0.787 0.787 (0.561-1.713) ATA 0.0147 0.90962 0.00504 0.0015 0.0015 (0.834-1.376) 1.856 (1.324-2.225) 0.381 (0.166-0.873) 2.796 (1.95-3.828) 2.288 (1.597-3.948) 35. NO DATA 0.0595 5.40E-05 0.0337 (1.9-3.369) 36. NO DATA 0.318 (0.138-0.784) 2.003 1.756-2.574) 2.447 (1.9-3.369)	0.0543	0.979	0.0592	0.348	0.659	0.26
H11 WW H2 X A4 X A6 X B12 M 0.0278 0.000254 0.016 0.022 (0.882-1.709) 4.984 (3.31-8.34) 0.21 (0.153-0.331) 3.095 (1.732-5.275) 10.55 (5.869-20) ATA 0.921 No reps. No reps. 0.916 0.425 2.025 ATA 0.986 (0.843-1.277) 0.944 0.916 0.787 0.787 0.561-1.713) ATA 0.0147 0.00962 0.00504 0.0015 0.0015 0.0015 (0.834-1.378) 1.856 (1.324-2.225) 0.381 (0.166-0.873) 2.796 (1.95-3.828) 2.288 (1.597-3.948) ps. NO DATA 0.054 0.595 5.40E-05 0.0337 0.0337					NO DATA	0.01*
H11 WW H2 X A4 X A6 X B12 L 0.0278 0.000254 0.016 0.022 L 0.0278 0.000254 0.016 0.022 L 0.0278 0.000254 0.016 0.022 L 0.921 0.21 (0.153-0.331) 3.095 (1.732-5.275) 10.55 (5.869-20) ATA 0.921 No reps. No reps. 0.916 0.425 . ATA 0.986 (0.843-1.277) 0.944 0.916 0.787 (0.561-1.713) ATA 0.986 (0.843-1.277) 0.944 0.916 0.787 (0.561-1.713) ATA 0.986 (0.843-1.277) 0.944 0.00504 0.0015 . ATA 0.986 (0.843-1.277) 0.944 0.916 0.0015 . ATA 0.0147 0.00962 0.00504 0.0015 . . (0.834-1.378) 1.856 (1.324-2.225) 0.381 (0.166-0.873) 2.796 <t< td=""><td>0.7</td><td>0.0337</td><td>5.40E -05</td><td>0.0595</td><td>NO DATA</td><td>No reps.</td></t<>	0.7	0.0337	5.40E -05	0.0595	NO DATA	No reps.
H11 WW H2 X A4 X A6 X B12 0.0278 0.0278 0.000254 0.016 0.022 (0.882 - 1.709) 4.964 (3.31 - 8.34) 0.21 (0.153 - 0.331) 3.095 (1.732 - 5.275) 10.55 (5.869 - 20) ATA 0.921 No reps. No reps. 0.916 0.425 2.4 ATA 0.986 (0.843 - 1.277) 0.944 0.916 0.787 (0.561 - 1.713) ATA 0.0147 0.00962 0.00504 0.0015 0.0015						1.141 (0.834 -1.378)
H11 WW H2 X A4 X A6 X B12 L 0.0278 0.000254 0.016 0.022 (0.892 - 1.709) 4.964 (3.31 - 8.34) 0.21 (0.153 - 0.331) 3.095 (1.732 - 5.275) 10.55 (5.869 - 20) ATA 0.921 No reps. No reps. No reps. 0.425 0.425 ATA 0.986 (0.843 - 1.277) 0.944 0.916 0.916 0.787	0.17	0.0015	0.00504	0.00962	0.0147	0.311
H11 WW H2 X A4 X A6 X B12 X B3 0.0278 0.000254 0.016 0.0278 0.00795 (0.892 - 1.709) 4.964 (3.31 - 8.34) 0.21 (0.153 - 0.331) 3.095 (1.732 - 5.275) 10.55 (5.869 - 20) 25.07 ATA 0.921 No reps. No reps. No reps. 0.425 0.132	0.897 (0.682 -1.026)		0.916	0.944		NO DATA
H11 WW H2 X A4 X A6 X B12 X B3 0.0278 0.000254 0.016 0.022 0.00795 (0.892 - 1.709) 4.964 (3.31 - 8.34) 0.21 (0.153 - 0.331) 3.095 (1.732 - 5.275) 10.55 (5.869 - 20) 25.07		0.425	No reps.	No reps.	0.921	NO DATA
H11 WW H2 X A4 X A6 X B12 0.0278 0.000254 0.016 0.022						1.127 (0.892 -1.709)
WW H2 X A4 X A6 X B12 X	0.00795	0.022	0.016	0.000254	0.0278	0.359
	X B3	X B12	X A6	X A4	WW H2	WW H11

_

Table A.1 (continued)

18	ıble	A.I	(00)	ntın	ued))			0	0	1	
1.141 (0.818 -1.424)	0.254	1.232 (0.855 -1.693)	0.0772	1.787 (1.223 -3.032)	0.0228	1.328 (1.126 -1.428)	0.0147	1.947 (1.199 -3)	0.129	5.109 (2.486 -12.49)	0.00973	X C1
1.086 (0.927 -1.204)	0.148	0.893 (0.736 -0.994)	0.0525	1.184 (0.706 -1.596)	0.194	1.517 (0.953 -2.809)	0.168	0.58 (0.299 -0.938)	0.122	17.24 (8.075 -60.5)	0.000688	X C2
1.415 (1.085 -1.732)	0.00888	1.413 (1.234 -1.574)	0.000499	1.249 (0.517 -2.043)	0.437	1.719 (1.257 -2.38)	0.00565	1.035 (0.507 -1.64)	0.903	7.981 (4.015 -16.53)	0.000331	X D4
1.881	No reps.	1.281 (0.635 -1.888)	0.38	0.096	No reps.	0.547 (0.313 -0.781)	0.0406	NO DATA	NO DATA	0.411 (0.256 -0.517)	0.00205	X E11
1.308 (1.025 - 1.752)	0.0177	1.219 (0.93 -1.621)	0.168	1.215 (0.774 -1.947)	0.219	1.783 (1.201 - 2.454)	0.0064	0.978 (0.615 -1.306)	0.871	36.04 (20.46 -104)	0.0212	X E2
1.497 (1.456 -1.571)	0.000161	1.319 (1.292 -1.347)	0.0479	5.691	No reps.	1.626 (1.624 -1.629)	0.00199	NODATA	NODATA	NODATA	NODATA	X E3

Table A.1 (continued)

10	ble /	A. I	(cor	lliiil	ieu)							
0.847	0.144	0.882	0.298	1.431	0.151	1.554	0.00171	0.723	0.092	8.198	0.000407	X F12
(0.559 -1.027)		(0.663 -1.364)		(0.865 -3.04)		(1.217 -2.107)		(0.396 -1.235)		(6.103 -17.55)	07	
0.868	0.737	1.016	0.897	1.036	0.516	1.021	0.738	0.66	0.0406	1.857	0.0314	X F4
(0.01 -1.808)		(0.703 -1.405)		(0.86 -1.223)		(0.794 -1.143)		(0.455 -1.072)		(0.924 -3.324)		
0.979	0.825	0.83	0.0166	0.973	0.744	1.166	0.362	0.776	0.0684	11.05	0.0148	X G1
(0.683 -1.364)		(0.708 -0.976)		(0.827 -1.375)		(0.839 -1.68)		(0.581 -1.121)		(2.311 -129.2)		
0.763	0.0114	0.436	0.0156	1.273	0.226	1.813	0.016	NO DATA	NO DATA	1.655	0.00375	X G11
(0.604 -0.959)		(0.311 -0.888)		(0.878 -1.693)		(1.34 -3.048)		ΓA	ΓA	(1.203 -2.133)		
1.251	0.205	1.203	0.173	1.24	0.414	2.129	0.0046	0.938	0.715	3.596	0.000229	X G2
(0.82 -2.154)		(0.845 -1.751)		(0.393 -2.058)		(1.666 -3.42)		(0.515 -1.352)		(2.411 -6.294)	29	
1.307	0.0845	2.472	0.000705	1.434	0.0769	1.783	0.00041	0.602	0.0822	3.863	1.55E -05	X G4
(0.79 -1.819)		(1.704 -3.373)	05	1.434 (0.962 -2.726)		(1.462 -2.198)	1	0.602 (0.428 -1.027)		(2.825 -5.044)	05	

Table A.1 (continued)

10	ible	A.1	(00)	IIIII	ued)							
0.84 (0.631 -1.386)	0.362	1.202 (0.869 -1.5)	0.0704	1.806 (1.372 -3.072)	0.00402	1.93 (1.611 -2.153)	0.0186	0.835 (0.596 -1.663)	0.496	18.82 (7.749-50)	0.000167	X G6
0.791 (0.43 -1.088)	0.23	0.942 (0.789 -1.078)	0.25	0.944 (0.874 -1.158)	0.332	1.084 (0.885 -1.293)	0.292	0.925 (0.537 -1.553)	0.642	3.578 (1.201 -25.58)	0.0732	X G7
1.37 (1.021 -1.609)	0.0579	1.014 (0.64 -1.298)	0.912	1.556 (0.175 -2.659)	0.355	1.892 (0.905 -2.636)	0.0282	1.082 (0.694 -1.796)	0.747	4.558 (2.777 -10.99)	0.00301	X G8
1.562 (1.092 -1.951)	0.00285	0.604 (0.407 -0.957)	0.0195	1.077 (0.48 -2.032)	0.767	3.014 (0.466 -11.62)	0.227	1.347 (0.706 -1.983)	0.173	5.713 (2.994 -12.48)	0.00229	X G9
0.835 (0.543 -1.104)	0.24	0.759 (0.462 -1.64)	0.3	1.318 (0.7 -3.881)	0.412	3.003 (1.761 -5.703)	0.00254	1.223 (1.038 - 1.441)	0.435	6.101 (3.112 - 21.5)	0.00119	X H4
1.108 (0.966 -1.407)	0.146	1.002 (0.896 -1.124)	0.97	0.889 (0.698 -1.049)	0.177	1.055 (0.833 -1.712)	0.672	1.015 (0.573 -2.172)	0.945	6.474 (2.047 -24.39)	0.00524	Х Н7

Table A.1 (continued)

1a	ble <i>I</i>	A .1	(cor	itini	ied)							
1.174	0.394	0.948	0.246	1.079	0.525	1.156	0.244	0.886	0.431	10.01	7.45E -05	X H8
(0.843 -1.963)		(0.848 -1.08)		(0.756 -1.433)		(0.886 -1.75)		(0.656 -1.212)		(6.719 -20.09)	05	
0.852	0.494	1.021	0.856	1.38 (0.0859	1.459	0.0271	1.053	0.873	3.027	0.00123	X H9
(0.389 -1.716)		(0.615 - 1.333)		(0.924 -2.504)		(0.895 -2.146)		(0.679 -2.547)		(1.987 -4.193)		
0.813	0.503	0.804	0.119	2.12	0.0596	1.875	0.0712	1.327	0.033	4.708	0.00901	XX A10
(0.403 -1.801)		(0.567 -1.062)		(1.04 -3.107)		(0.671 -2.592)		(1.116 -1.612)		(2.416 -8.35)		0
1.79 (1.373 -2.334)	0.272	NO DATA	NO DATA	2.288 (2.095 -2.5)	0.0677	0.557 (0.516 -0.601)	0.0826	NO DATA	NO DATA	0.502 (0.45 -0.564)	0.0089	XX B11
0.841	0.0564	0.701	0.000138	0.937	0.153	0.983	0.751	0.685	0.0154	4.385	0.000578	XX C12
(0.681 -0.964)		(0.632 -0.757)	38	(0.839 -1.069)		(0.854 -1.194)		(0.461 -0.947)		(2.072 -7.7)	78	2
0.919	0.32	0.805	0.00552	1.009	0.883	1.178	0.296	0.786	0.26	7.23 (0.0263	XX D1
(0.677 -1.145)		(0.687 -0.922)		1.009 (0.857 -1.308)		(0.789 -1.658)		0.786 (0.364 -1.288)		(2.266 -83.87)		

Table A.1 (continued)

Ta	ble .	4.1	(cor	ntinu	ied)						0	
0.922 (0.704 -1.067)	0.288	1.007 (0.713 -1.499)	0.954	1.331 (0.777 -2.349)	0.159	1.657 (0.938 -4.073)	0.158	0.875 (0.764 -1.23)	0.22	27.84 (13.03 -112)	0.000345	XX D10
2.994	No reps.	0.458 (0.368 -0.569)	0.173	4.382	No reps.	4.349 (3.707 -5.102)	0.0689	NO DATA	NO DATA	0.836 (0.718 - 1)	0.204	XX E12
1.46 (1.024 -1.742)	0.00637	1.431 (0.982 -1.882)	0.0212	2.095 (1.228 - 3.091)	0.00243	2.514 (2.03 - 2.953)	0.000152	1.849 (0.958 -3.635)	0.139	4.587 (1.866 -8.068)	0.00105	XX E3
1.688 (1 -3.551)	0.304	NO DATA	NO DATA	0.01*	No reps.	1.123 (0.968 -1.303)	0.578	0.681	No reps.	1.176 (0.929 -2)	0.43	XX E5
0.955 (0.596 - 1.655)	0.796	0.965 (0.514 -1.24)	0.811	1.803 (1.284 -2.243)	0.018	1.642 (1.051 -2.278)	0.00576	1.656	No reps.	2.509 (1.953 - 3.059)	0.000101	XX G1
0.942 (0.558 -1.292)	0.703	1.369 (0.998 -1.918)	0.0666	2.817 (2.575 -3.168)	0.0035	2.93 (1.833 -4.864)	0.00235	1.068 (0.98 -1.165)	0.585	5.535 (2.665 -8.229)	0.0428	XX G4

Table A.1 (continued)

				- 50	
0.00124	0.000446	0.000162	0.137	0.000834	0.00511
15.4 (7.114 -46.43)	30.2 (14.54 -118.5)	10.6 (6.597 -24.8)	0.646 (0.322 -1.184)	5.861 (3.535 -18.66)	3.724 (1.744 -11.08)
0.814	0.232	0.669	NO DATA	0.146	0.83
0.961 (0.669 -1.288)	0.775 (0.391 -1.12)	0.917 (0.532 -1.74)	NO DATA	0.814 (0.733 -0.971)	1.044 (0.51 -1.963)
0.0297	0.0814	0.0129	0.0137	0.0549	0.386
2.382 (1.076 -5.65)	1.642 (0.847 -3.082)	1.611 (1.244 -2.726)	0.41 (0.262 -0.848)	1.846 (1.112 -4.23)	1.114 (0.841 -1.778)
0.071	0.571	0.608	No reps.	0.00171	0.684
1.45 (0.906 -2.296)	1.089 (0.79 -1.647)	1.062 (0.679 -1.422)	0.01*	2.139 (1.634 -2.967)	0.872 (0.234 -1.697)
0.816	0.178	0.961	NO DATA	0.963	0.00254
1.042 (0.641 -1.643)	1.166 (0.873 -1.568)	1.006 (0.678 -1.424)	NO DATA	1.008 (0.611 -1.565)	0.787 (0.688 -0.911)
0.884	0.0667	0.596	No reps.	0.783	0.0472
0.979 (0.573 -1.356)	1.102 (0.977 -1.241)	0.965 (0.717 -1.066)	3.195	0.964 (0.555 -1.253)	0.798 (0.599 -1.118)

Table A.1 (continued)

1.379 (0.92 -1.924)	0.0234	1.006 (0.163 -1.743)	0.988	2.288 (1.028 - 4.677)	0.0294	3.162 (1.564 - 19)	0.0329	1.072 (0.757 -1.565)	0.772	8.653 (4.557 - 20.5)	0.00999	YY C6
0.822 (0.358 -1.278)	0.424	0.461 (0.407 -0.522)	0.101	1.807 (1.671 - 1.893)	0.000261	1.272 (1.105 - 1.572)	0.0205	NO DATA	NO DATA	1.635 (0.971 -2.887)	0.0609	YY F4
2.454 (2.409 -2.5)	0.0132	NO DATA	NO DATA	NO DATA	NO DATA	1.09 (1 -1.27)	0.377	NO DATA	NO DATA	0.855 (0.628 -1.196)	0.226	YY G8
2.526	No reps.	NO DATA	NO DATA	0.01*	No reps.	0.798 (0.643 -1.042)	0.252	NO DATA	NO DATA	0.649 (0.421 -1.136)	0.278	YY H11
1.355 (1.055 - 1.809)	0.193	0.01*	No reps.	NO DATA	NO DATA	1.006 (0.983 - 1.03)	0.834	NO DATA	NO DATA	1.575 (0.951 - 2.61)	0.534	Z B11
0.877 (0.625 -1.184)	0.294	1.016 (0.658 -1.329)	0.893	1.226 (1 -1.533)	0.0184	1.485 (1.168 -2.034)	0.0151	0.812 (0.456 -1.554)	0.348	22.12 (9.764 -72.5)	0.000343	Z D3

Table A.1 (continued)

			<u>`</u>									1
1.533 (0.816 -2.284)	0.0768	3.492 (2.953 -4.129)	0.0848	2.549 (2.185 -3.376)	0.0219	1.092 (0.285 -2.228)	0.841	NO DATA	NO DATA	43.15 (24.5 -76)	0.095	Z E5
0.873 (0.623 -1.203)	0.356	0.639 (0.343 -1.362)	0.111	1.312 (1.074 -1.513)	0.0328	0.923 (0.613 -1.75)	0.665	0.01*	No reps.	1.151 (0.757 -2.253)	0.594	Z G1
1.032 (0.932 -1.133)	0.386	0.884 (0.799 -0.963)	0.012	2.062 (1.15 -3.47)	0.0523	2.634 (1.441 -6.056)	0.0209	0.939 (0.476 -1.405)	0.727	8.993 (3.522 -26.75)	0.0652	Z G8
0.883 (0.704 -1.037)	0.119	1.214 (1.208 -1.221)	0.0185	0.661	No reps.	1.533 (1.294 -2.257)	0.0458	NO DATA	NO DATA	2.33 (1.931 -4.413)	0.00622	69 ZZ
0.778 (0.426 -0.97)	0.104	0.811 (0.765 -0.87)	8.59E -05	0.978 (0.862 -1.179)	0.646	0.87 (0.755 -0.975)	0.0175	0.947 (0.431 -1.423)	0.783	0.469 (0.316 -0.658)	0.00111	ZZ B8
0.939 (0.737 -1.188)	0.422	0.957 (0.727 -1.19)	0.579	1.138 (0.849 -1.588)	0.209	1.799 (1.261 -2.684)	0.0104	0.724 (0.544 -0.947)	0.00998	25.81 (12.44 -91)	0.000268	ZZ C3

Table A.1 (continued)

1.192 (0.979 - 1.518)	0.0568	0.96 (0.627 -1.711)	0.789	1.277 (0.121 -1.7)	0.568	1.798 (1.267 -2.299)	0.000899	1.055 (0.43 -1.711)	0.847	4.391 (3.059 -6.268)	7.04E -05	ZZ C8
0.823	No reps.	1.233 (0.851 -1.635)	0.392	0.602 (0.56 -0.646)	0.0891	0.55 (0.3 -0.868)	0.0254	5.377	No reps.	0.471 (0.334 -0.735)	0.000979	ZZ D9
1.396 (0.654 -3.228)	0.185	0.847 (0.518 -1.275)	0.452	0.298 (0.0574 -1.059)	0.295	0.248 (0.0949 -0.65)	0.0216	NO DATA	NO DATA	0.194 (0.133 -0.32)	0.000668	ZZ E12
1.709 (1 -2.148)	0.0584	1.541 (0.97 -3.104)	0.124	0.355 (0.177 -0.786)	0.139	0.632 (0.478 -0.927)	0.0453	0.01*	No reps.	0.373 (0.167 -0.61)	0.0143	ZZ E6
3.608 (3.5 -3.72)	0.0151	0.832 (0.509 -1.435)	0.473	0.196 (0.0489 -0.582)	0.155	0.516 (0.297 -0.683)	0.0119	NO DATA	NO DATA	0.197 (0.128 -0.288)	0.000269	ZZ E8
1.663 (1 -2.298)	0.187	0.799	No reps.	0.0366 (0.01 -0.134)	0.238	0.516 (0.352 -0.741)	0.00249	NO DATA	NO DATA	0.356 (0.215 -0.634)	0.00923	ZZ F1

Table A.1 (continued)

1.043 (0.79 -1.303)	0.557	1.061 (0.833 -1.56)	0.563	1.567 (1.201 - 2.786)	0.0146	2.073 (1.262 -3.239)	0.00531	0.778 (0.588 -1.089)	0.0746	17.77 (8.606 -48)	0.000269	ZZ F10
3.177 (2.533 -5.499)	0.00819	1.41 (0.482 -2.642)	0.451	0.822 (0.534 -1.268)	0.441	0.721 (0.48 -1.19)	0.074	0.673	No reps.	0.577 (0.361 -0.947)	0.0248	ZZ F7
1.415 (0.949 -2.179)	0.0706	2.228 (1.538 -3.229)	0.276	0.46 (0.258 -0.821)	0.408	0.574 (0.347 -0.847)	0.00739	NO DATA	NO DATA	0.656 (0.548 -0.788)	0.0565	ZZ G12
2.175 (1.449 -3.72)	0.0329	0.618 (0.427 -1.202)	0.286	3.374 (3.233 -3.521)	0.0223	0.477 (0.295 -0.976)	0.00601	NO DATA	NO DATA	0.472 (0.281 -0.731)	0.115	ZZ G3
1.918 (1.449 -2.495)	0.0537	1.156 (0.863 -1.8)	0.321	0.364 (0.312 -0.424)	0.0961	0.431 (0.318 -0.558)	0.000804	NO DATA	NO DATA	0.557 (0.504 -0.69)	0.00395	ZZ H1
0.889 (0.559 -1.131)	0.307	0.983 (0.517 -1.366)	0.91	1.241 (1.127 -1.334)	0.00895	1.828 (1.053 -2.68)	0.0159	0.81 (0.576 -1.477)	0.169	7.342 (3.19 -21.12)	0.00277	ZZZ A10

Table A.1 (continued)

0.306 $0.215 \cdot 0.431$ 0.585 $0.452 \cdot 0.686$ 0.211 $(0.135 \cdot 0.345)$ 8.143 $(3.776 \cdot 12.59)$ 7.978 $(3.952 \cdot 32.92)$ 0.526 NO NO NO NO NO 0.49 0.49 0.49 0.414 0.414 1.748 $0.954 \cdot 3.203$ NO NO NO 0.911 $0.64 \cdot 1.38$ 1.111 $0.786 \cdot 1.537$ 0.0032 0.192 0.397 $0.131 \cdot 0.477$ 1.481 $(1.192 \cdot 1.878)$ 0.647 0.0047 0.109 $0.172 \cdot 0.595$ 0.832 $0.53 \cdot 1.074$ 0.257 $0.131 \cdot 0.477$ 1.481 $(1.192 \cdot 1.878)$ 1.611 $0.891 \cdot 2.47$ 0.109 $0.172 \cdot 0.595$ 0.897 $0.531 \cdot 1.537$ 0.254 $0.0678 \cdot 0.734$ 1.481 $(1.192 \cdot 1.933)$ 1.492 $(1.962 \cdot 1.933)$ 0.167 $0.1592 \cdot 1.287$ 0.254 $0.0678 \cdot 0.734$ 1.395 $(1.492 \cdot 1.933)$ 1.492 $(1.962 \cdot 1.933)$ 0.163 $0.592 \cdot 1.287$ <	ZZZ A6 0.00072	ZZZ B8 0.0542	ZZZ C11 0.0659	ZZZ C5 0.000521	ZZZ C8 0.00117	ZZZ D10 0.000526
NO DATA NO DATA NO DATA 0.49 0.414 (0.954-3.203) NO DATA NO DATA 0.911 (0.64-1.38) 1.111 13 0.198 0.00106 0.00447 0.00472 0.00472 0.00472 0.0472 (0.172-0.595) 0.832 (0.53-1.074) 0.257 (0.131-0.447) 1.481 (1.192-1.878) 1.581 (0.172-0.595) 0.997 (0.618-1.537) 0.254 (0.0878-0.734) 1.395 (1.152-1.933) 1.492 (0.122-0.228) 0.997 (0.618-1.537) 0.254 (0.0878-0.734) 1.395 (1.152-1.933) 1.492 (0.533-1.569) 1.051 (0.892-1.297) 1.084 (0.521-1.962) 0.41 1.095 1.095 (0.533-1.569) 1.051 (0.892-1.297) 1.062 (0.912-1 0.914 1.095 (0.533-1.569) 0.0119 0.503 0.012-1 0.91 0.91 (0.953-4.268) 0.971 1.061 (0.861-1.246) 1.29 (0.998-1.61) 0.99					7.978 (3.952 -32.49)	9)
(0.954-3.203) NO DATA NO DATA 0.911 (0.64-1.38) 1.11 13 0.198 0.00106 0.00447 0.00447 0.0447 0.0472 13.12 0.832 (0.53-1.074) 0.257 (0.131-0.447) 1.481 (1.192-1.878) 1.581 (0.172-0.595) 0.887 0.419 0.00591 0.00491 0.00491 (0.122-0.228) 0.997 (0.618-1.537) 0.254 (0.0878-0.734) 1.395 (1.152-1.933) 1.492 (0.533-1.569) 0.608 0.784 0.521-1.962) 0.41 0.0141 0.0141 (0.533-1.569) 1.051 (0.892-1.297) 1.084 (0.521-1.962) 0.012 0.0141 (0.533-1.568) 0.0119 0.503 0.012 0.998 1.095 0.998 1.095 0.998 0.997 0.998 0.997 0.998 0.997	0.526	NO DATA	NO DATA	0.49	0.414	
13 0.198 $0.0010E$ 0.0047 0.0047 0.00591 0.00591 0.00691 0.00491 0.00491 0.00591 0.00491 0.0141 0.0141 0.0141 0.0141 0.0141 0.012 0.012		NO DATA	NO DATA	0.911 (0.64 -1.38)	1.111 (0.786 -1.503)	03)
(0.172 - 0.595) (0.832 (0.53 - 1.074) (0.257 (0.131 - 0.447) (1.481 (1.192 - 1.878) 1.581 (0.122 - 0.228) 0.987 (0.618 - 1.537) 0.419 0.00591 0.00491 0.00491 (0.122 - 0.228) 0.997 (0.618 - 1.537) 0.254 (0.0878 - 0.734) 1.395 (1.152 - 1.933) 1.492 (0.533 - 1.569) 0.608 0.784 0.784 0.417 0.0141 0.0141 (0.533 - 1.569) 0.0119 1.064 (0.521 - 1.962) 1.062 0.0124 1.095 (0.953 - 4.268) 1.871 (1.477 - 2.5) 1.061 (0.861 - 1.246) 1.29 (0.998 - 1.61) 0.997	0.00323	0.198	0.00106	0.00447	0.0472	
					1.581 (0.891 -2.152)	2)
(0.122-0.228) 0.997 (0.618-1.537) 0.254 (0.0878-0.734) 1.395 (1.152-1.933) 1.492 L 0.608 0.784 0.784 0.41 0.0141 0.0141 (0.533-1.569) 1.051 (0.892-1.297) 1.064 (0.521-1.962) 1.062 0.873-1.421) 1.095 (0.533-4.268) 0.0119 0.503 0.0124 0.997 0.997	0.109	0.987	0.419	0.00591	0.00491	
Image: Mark Mark Mark Mark Mark Mark Mark Mark					1.492 (1.196 -2.132)	2)
(0.533 - 1.569) 1.051 (0.892 - 1.297) 1.084 (0.521 - 1.962) 1.062 (0.873 - 1.421) 1.095 0.0119 0.503 0.503 0.0124 0.9 0.9 (0.953 - 4.268) 1.871 (1.477 - 2.5) 1.061 (0.861 - 1.246) 1.29 (0.998 - 1.61) 0.997	0.643	0.608	0.784	0.41	0.0141	
0.0119 0.503 0.0124 0.9 (0.953 - 4.268) 1.871 (1.477 - 2.5) 1.061 (0.861 - 1.246) 1.29 (0.998 - 1.61) 0.997					1.095 (1.038 - 1.156)	56)
(0.953 - 4.268) 1.871 (1.477 - 2.5) 1.061 (0.861 - 1.246) 1.29 (0.998 - 1.61) 0.997	0.301	0.0119	0.503	0.0124	0.9	
					0.997 (0.907 -1.059)	(6

Table A.1 (continued)

1.388 (1.193 - 1.655)	0.0748	NO DATA	NO DATA	0.416 (0.354 -0.48)	0.0101	0.232 (0.163 -0.312)	3.93E -05	NO DATA	NO DATA	0.0732 (0.0358 -0.135)	0.000725	ZZZ D11
1.189 (0.75 - 1.99)	0.389	0.979 (0.727 -1.359)	0.871	0.408 (0.156 -0.61)	0.0224	0.352 (0.233 -0.605)	0.000609	0.389 (0.241 -0.627)	0.298	0.204 (0.0862 -0.428)	0.00112	ZZZ D12
0.976 (0.578 -1.311)	0.892	0.941 (0.643 -1.694)	0.768	0.277 (0.168 -0.404)	0.00817	0.298 (0.24 -0.381)	0.000118	NO DATA	NO DATA	0.12 (0.0522 -0.21)	0.00161	ZZZ D4
4.312	No reps.	1.411 (0.915 -1.897)	0.26	0.405 (0.343 -0.478)	0.115	0.715 (0.465 -1.397)	0.143	NO DATA	NO DATA	0.523 (0.365 -0.933)	0.00551	ZZZ D8
1.769 (1.029 -2.665)	0.0233	2.002 (1.12 -4.805)	0.0447	1.169 (0.589 -1.829)	0.697	0.521 (0.195 -0.748)	0.0287	1.768 (1.574 -2.097)	0.0225	0.728 (0.405 -2.64)	0.303	ZZZ E6
1.685 (0.923 -2.982)	0.264	1.539 (1.141 -2.486)	0.0892	0.314 (0.133 -1.002)	0.194	0.312 (0.104 -0.505)	0.0143	1.387 (1.377 -1.397)	0.0141	0.27 (0.176 -0.419)	0.0348	ZZZ F11

Table A.1 (continued)

1.62 (0.712 -2.886)	0.0523	1.178 (0.81 -2.79)	0.5	0.67 (0.324 -1.18)	0.175	0.404 (0.289 -0.479)	8.68E -05	1.086 (0.475 -2.485)	0.936	0.363 (0.237 -0.596)	0.000653	ZZZ F2
1.737 (1.432 -2.499)	0.0938	1.04 (0.969 -1.153)	0.532	0.426 (0.399 -0.455)	0.0488	0.391 (0.256 -0.494)	0.00041	NO DATA	NO DATA	0.403 (0.25 -0.469)	0.00161	ZZZ F6
0.822 (0.441 -1.066)	0.226	0.858 (0.624 -1.226)	0.334	1.446 (0.987 -2.312)	0.039	1.96 (1.475 -2.761)	0.00272	0.911 (0.705 -1.011)	0.157	17.48 (10.47 -54.06)	0.000105	ZZZ F9
0.99 (0.594 -1.721)	0.955	1.527 (0.756 -2.533)	0.0574	0.306	No reps.	0.363 (0.152 -0.662)	0.0094	0.922	No reps.	0.463 (0.306 -1.024)	0.00965	ZZZ G11
1.428 (1.136 -1.842)	0.0268	0.998 (0.609 -1.415)	0.989	1.105 (0.783 -2.26)	0.707	0.746 (0.561 -1.334)	0.0723	2.039 (1.658 -2.508)	0.18	0.614 (0.433 -0.725)	0.00158	ZZZ H10
0.658 (0.486 -1.004)	0.00846	0.524 (0.288 -1.081)	0.0438	0.928 (0.639 -1.436)	0.529	0.893 (0.756 -1.073)	0.0796	0.01*	No reps.	1.125 (0.649 -1.967)	0.547	ZZZ H3

Table A.1 (continued)

ZZZ H6 0.000336 0.225 (0.135 -0.28)
0.28)
NO DATA 0.000456
0.328 (0.255 -0.511)
0.139
0.078 (0.01 -0.354)
0.531
1.181 (0.713 -2.824)
0.427
1.333 (0.672 -2.334)

Table A.1 (continued)

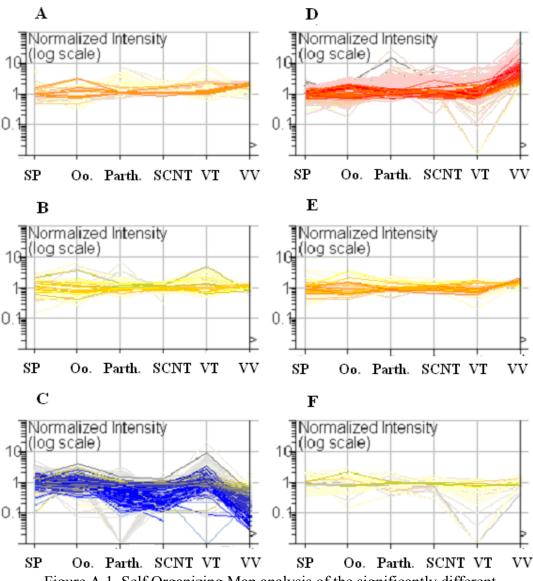


Figure A.1. Self Organizing Map analysis of the significantly different (P<0.05) spots (n=1532) in the methylation profiles of sperm, GV oocyte and blastocysts. Spots that do that have an average of one in the sperm (SP), oocytes (Oo.), parthenogenetic-produced blastocysts (Parth.), somatic cell nuclear transfer-produced blastocysts (SCNT), *in vitro*- produced blastocysts (VT), and *in vivo*-produced blastocysts (VV).

Table A.2. Sequenced clones exhibiting similar methylation profiles in the gametes and blastocysts as determined by Self Organizing Map analysis. Blast analysis identified 21% (22/105) of the clones as having similarity to multiple regions, 39% (41/105) of the clones as having no similarity to existing sequenced, and 40% (42/105) of the clones as having similarity to sequenced clones as similar to identified or predicted genes.

Clone	Score	Annotation	Gene	Access #
Α				
G A10	396	Human DNA sequence from clone RP11-697G4 on chromosome 6, 5' end of the FOXO3A gene	FOXO3A	AL391646
NN H8		NS		
RR C8	206	PREDICTED: Bos taurus similar to myeloid leukemia factor 1,mRNA.	MLF1	XM_874504
S A11	163	Human DNA sequence from clone RP11-50D16 on chromosome 13		AL445590
W D5	58	PREDICTED: Pan troglodytes similar to frizzled 2 (LOC459881), mRNA	Not found in HUGO	XM_516034
W H6	274	Homo sapiens T- box, brain, 1 (TBR1), mRNA	TBR1	NM_006593
В				
B A C6		Multiple		
AA A11		Multiple Sus scrofa CC chemokine receptor genes (CCR9)	CCBP2	
E A10		Multiple		
G F5		Multiple immune etc, (STRONG)		
II B3	293	Homo sapiens chromosome 5 clone CTD- 2012M11, complete sequence		AC016595.
K D3	262	Homo sapiens BAC clone RP11- 73G16 from 4, complete sequence		AC097375.
IX DJ	202	complete sequence		AC071313.

Table A.2 (continued)

N G6		NS		
QQ A1		NS		
		PREDICTED: Bos taurus similar to peptidyl prolyl		
QQ E4	149	isomerase H	PPIH	XM_873469
		Human GLA gene for alpha-D- galactosidase A		
T F3	188	(EC 3.2.1.22).	GLA	X14448.
U B12		NS		
X G10		NS		
С				
AA A1		NS		
B G2		NS		
		Sus scrofa glutamate decarboxylase 2		
BBB A12	301	(GAD2), mRNA	GAD2	NM_213895
BBB H7		Multiple		
CCC H12	113	Multiple		
D C10		NS		
D D10		NS		
D D6		Multiple		
EEE B7		Multiple		
EEE B9		Multiple		
EEE E3		only Bac matches		
F E10		Multiple		
F F10		NS		
FF G1		only Bac matches		
G G10	188	PREDICTED: Canis familiaris similar to DEAD (Asp-Glu-Ala-Asp) box	DDX10	XM_536583
GGG D4	226	WNT8B gene	WNT8B	Y11108.
** *** *	1	Multiple		
II H10		manipio		

Table A.2 (continued)

Table A.2	(contin	ilucu)	1	1
		Bos taurus similar		
		to Homeobox		
		protein SIX6 (Sine oculis homeobox		
JJ B10	910	homolog 6)	SIX6	XM_589185
		H.sapiens CpG		
JJ D12	129	island DNA gen		
JJ E10		NS		
		Human cyclic		
		AMP		
		transcriptional		
K G10	157	regulator binding protein (CRE-BP1)	ATF2	J05623
	137	· · · · · · · · · · · · · · · · · · ·	AIF2	303023
LL E4		NS		
NN G9		NS		
D12		Multiple Bos taurus similar		
		to protopor-		
		phyrinogen		
		oxidase, Last		
P F6	180	enzyme of heme synth.	PPOX	XM 593850
110	100	5ynni.	non	
		PREDICTED: Bos		
		taurus similar to		
D.115	200	zinc finger, CSL	70910	XXX 074200
PH5	200	domain	ZCSL2	XM_874300
QQ A6		Multiple		
		H. sapiens genes		
		for histones H2B.1		
RR G5	597	and H2A	HIST2H2BE	BC069193.
UU C10		NS		
UU H3		NS		
		Homo sapiens		
		prostate antigen PARIS-1 mRNA,		
X F12		complete cds	TBC1D2	
X G2		NS		
XX H10		NS		
		Homo sapiens		
		splicing factor 3a,		
XX H12	133	subunit 3, 60kDa (SF3A3), mRNA	SF3A3	NM 006802
Z D3		NS		500002
		1.0		
D				
BLUE E3		NS		
CC C1		NS		
CCC B6		Multiple		
		Membrane bound		
		O-acyltransferase		
EE A11		domain	MBOAT5	
EE A12		NS		

Table A.2 (continued)

	(contra	Í			
EE H2		Multiple			
		Homo sapiens aryl hydrocarbon receptor nuclear			
EE H8	159	translocator	ARNT	AY430083.	
FF E4	260	Multiple immune components			
		Caula familiaria			
		Canis familiaris similar to coatomer			
G B8	123	zeta-1 subunit	COPZ1	XM_843171	
HH A7		NS			
L E8		CpG Island plus others (multiple)			
LL D3	NS	others (maniple)			
		Homo sapiens			
		serine/threonine protein kinase			
N E2	553	Kp78 (ribosomal)	MARK3	AF159295.	
		Mus musculus			
NN F4	151	RIKEN cDNA 2810429005 gene		NM 134046	
PINK E2		NS			
PINK E9		NS			
PINK E10		Multiple			
PP C2		NS			
PP D6		NS			
PP E2		Multiple			
		PREDICTED: Bos			
		taurus similar to			
		malignant T cell amplified sequence			
PP E4	293	1	MCTS1	XM_593366	
		PREDICTED:			
		Canis familiaris similar to			
		Methyltransferase-	Not found in		
PP E5	145	like PREDICTED: Bos	Hugo	XM_537604	
		taurus similar to			
		Paired box protein			
PP E6	180	Pax-3	PAX3	XM_872034	
PP G1		NS Homo coniona			
		Homo sapiens FRG1 (FRG1)			
		gene, complete cds			
PP H6	109	(multiple)	FRG1	AF146191.	

Table A.2 (continued)

1 abic 11.2			1	1
Q A2 Q H5	569	Homo sapiens serine/threonine protein kinase Kp78 (ribosomal) PREDICTED: Bos taurus similar to Forkhead box protein J2	MARK3 FOXJ2	AF159295. XM_612715
QQ D3		NS		
T A6 TT G8	121	NS 790G17 on chromosome 1q21.1-21.3		AL138795.
WE3		NS		
W F1		NS		
Е				
B F12	291	Nicotinamide mononucleotide adenylyltransferase 2 isoform 1	NMNAT2	NM_015039
EEE D4	299	Homo sapiens cell division cycle 27 (CDC27) gene, complete cds	CDC27	AY518321
		PREDICTED: Bos taurus similar to Microtubule- associated protein RP/EB family member 2 (APC- binding protein	APC-binding	
F D1	67.9	EB2 Homo sapiens	protein EB2	XM_587271
III C8	196	UMPS gene for UMP synthase	UMPS	AY691629.
	(0.1	Homo sapiens clone RP11- 4181C1 on		
M C9	69.1	chromosome 10	MLLT10	AL358780.
M D1		NS		
Р D2 Р H3	73.8	NS Homo sapiens similar to ankyrin-repeat protein Nrarp	Nrarp Not found in Hugo	BC053618.
PP F12		NS		
S E3	168	Homo sapiens protopor- phyrinogen oxidase (PPOX) gene, exons 2, 3,	PPOX	AY032686.

Table A.2 (continued)

T G4	167	Homo sapiens RPL18 gene for ribosomal protein L18, complete cds	RPL18	AB061825.
U G4		Multiple ribosomal proteins		
F				
JJ E12		NS		
P G12		NS		
PP D2		NS		
T F1		NS		

Bootstrap analysis of Sperm, GV Oocyte, and Blastocysts PDMH Results

The TIGR Multiple Array Viewer (TMEV) was used to perform additional validation by using the bootstrap analysis to create a hierarchical support tree. Please note TMEV does not use the same algorithm to perform hierarchical clustering and the resulting trees are different than those generated by using GeneSpring software. Specifically, the Standard Correlation used in the GeneSpring software is commonly referred to as Pearson correlation around zero. The TIGR Multiple Array Viewer does not contain this correlation procedure so the Pearson Correlation analysis was substituted. The Pearson Correlation metric was chosen because the hierarchical clustering tree was the most similar, when compared to the other metrics, to the analogous tree produced by using the GeneSpring software.

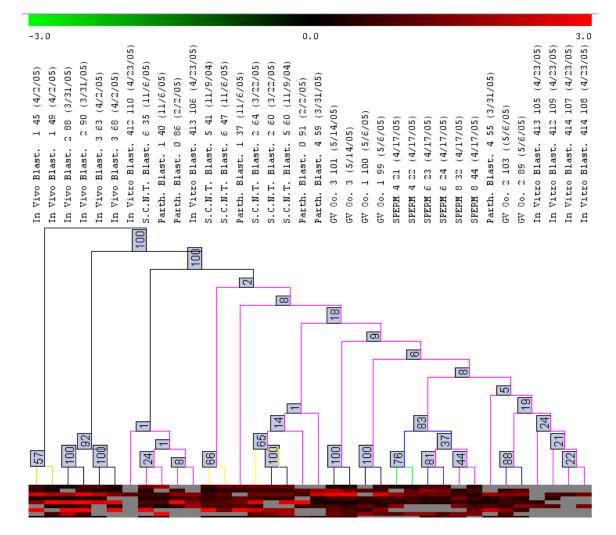


Figure A.2. Bootstrap analysis with replacement after 1000 iterations by using spots that were significantly different (P<0.01) using the Pearson Correlation metric in the TIGR Multiple Array Viewer. High bootstrapping values are identified with the clusters of in vivo developed and matured groups including *in vivo*-produced blastocysts and sperm. The remaining groups were either immature (GC oocytes) or cultured *in vitro* (Parthenogenetic-, *in vitro*-, and SCNT-produced blastocysts) and had low bootstrapping values. These results suggest that *in vivo* development ond maturation increases the consistency of establishing CpG methylation.

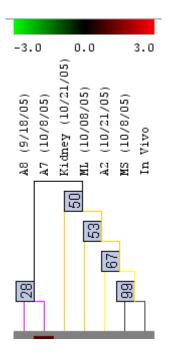


Figure A.3. Hierarchical support tree including bootstrap analysis with replacement after 1000 iterations by using spots that were significantly different (P<0.01) between the donor cells and *in vivo*-produced blastocysts. Differential methylation in the gametes and blastocysts was previously identified by using PDMH analysis and bisulfite sequencing (Bonk et al., 2006). Larger numbers at the nodes (range=1 to 100) indicates the support of the clustering. The clustering pattern Generated with by using the Pearson Correlation metric in the TIGR Multiple Array Viewer is not consistent with the clustering pattern produced by using GeneSpring software but these results demonstrate the consistency of the data in each group.

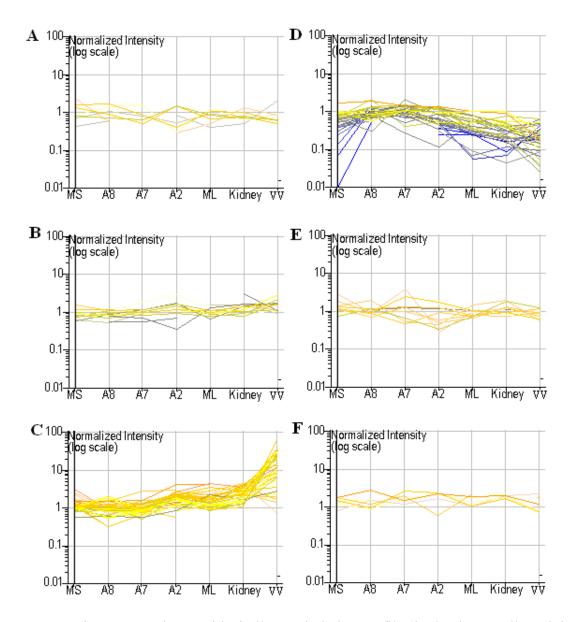


Figure A.4. Clones with similar methylation profiles in the donor cells and the *in vivo*-produced blastocysts were clustered by using Self Organizing Map analysis. Representative clones from each of the clusters are listed in Table A.3. Hypermethylation levels of the donor cells in (C) are positively correlated decreasing blastocyst rates after SCNT.

Table A.3 Sequenced clones exhibiting similar methylation profiles in the donor cells and the *in vivo*-produced blastocysts as determined by Self Organizing Map analysis. Spots that were significantly different (P<0.05) were included in the analysis, BLAST analysis identified 21.1% (22/104) of the clones as having similarity to multiple regions, 38.5% (40/104) of the clones as having no similarity to existing sequenced, and 40.4% (42/104) of the clones as having similarity to sequenced clones as similar to identified or predicted genes.

Α				
C A10	396	Human DNA sequence from clone RP11-697G4 on chromosome 6, 5' end of the FOXO3A	EOVOZA	AL 201646
G A10	396	gene	FOXO3A	AL391646.
PINK A9	157	activating transcription factor 2	ATF2	
NN H8		NS		
B				
QQ E4	149	PREDICTED: Bos taurus similar to peptidyl prolyl isomerase H	РРІН	XM_873469
II B3	293	BAC		AC016595.
X G10		NS		
U B12		NS		
N G6		NS		
T F3	188	Human GLA gene for alpha-D- galactosidase A (EC 3.2.1.22).	GLA	X14448.
QQ A1		NS		
A C6		Multiple		
E A10		Multiple		
С				
G G10	188	PREDICTED: Canis familiaris similar to DEAD (Asp-Glu- Ala-Asp) box Bos taurus similar to	DDX10	XM_53658:
P F6	180	protoporphyrinogen oxidase, Last enzyme of heme synth.	PPOX	XM_593850
AA A1		NS		
UU C10		NS		
D D6		Multiple		
X G2		NS		

Table A.3 (continued)

		Sus scrofa CC chemokine receptor		
Blue D7		genes (CCR9)	CCR9	
GGG D4	226	WNT8B gene	WNT8B	Y11108.
EEE E3		Bac matches		
X F12		Homo sapiens prostate antigen PARIS-1 mRNA, complete cds	TBC1D2	
UU H3		NS		
RR G5	597	H. sapiens genes for histones H2B.1 and H2A	HIST2H2 BE	BC069193.
EEE D4	299	Homo sapiens cell division cycle 27 (CDC27) gene, complete cds	CDC27	AY518321.
XX H10		NS		
Р Н5	200	Zinc finger, CSL- type containing 2	ZCSL2	XM_874300
XX H12	133		SF3A3	NM_006802
III D1		Multiple		
LL E4		NS		
D D10		NS		
NN G9		NS		
CCC H12	113	Multiple		
JJ B10	910	Bos taurus similar to Homeobox protein SIX6 (Sine oculis homeobox homolog 6)	SIX6	XM 589185
		H.sapiens CpG		
JJ D12 JJ E10	129	islands NS		
B G2		NS		
O D12		Multiple		
BBB H7		Multiple		
EEE B9		Multiple		
F E10		Multiple		
QQ A6		Multiple		
EEE B7		Multiple		
D				
CCC B6		Multiple		
G B8	123	Canis familiaris similar to Coatomer zeta-1 subunit	Zeta-1 COP Not found in Hugo	XM_843171
EE H2		Multiple		

Table A.3 (continued)

×		CpG Island plus		
L E8		others		
CC B12		NS		
BLUE E4		NS		
PP G1		NS		
NN F4	151	Mus musculus RIKEN cDNA 2810429005 gene	Not found in Hugo	NM_134046
EE H8	159	Homo sapiens aryl hydrocarbon receptor nuclear translocator	ARNT	AY430083.
PINK E8		Multiple		
W E3		NS		
PINK F7		Multiple		
PP C2		NS		
PP E4 EE A11	293	PREDICTED: Bos taurus similar to malignant T cell amplified sequence 1 Membrane bound O- acyltransferase domain	MCTS1	XM_593366
PP E2		Multiple		
00 D3		NS		
Q A2	569	Homo sapiens serine/threonine protein kinase Kp78 (ribosomal) acidic (leucine-rich) nuclear	MARK3	AF159295.
TT G8	121	phosphoprotein 32 family, member E PREDICTED: Bos taurus similar to	ANP32E	AL138795.
Q H5	103	Forkhead box protein J2	FOXJ2	XM_612715
PP E5	145	PREDICTED: Canis familiaris similar to Methyltransferase- like	Not found in Hugo	XM_537604
N E2	553	Homo sapiens serine/threonine protein kinase Kp78 (ribosomal)	MARK3	AF159295.
II G8		NS		
PP D6 Pink E2		NS NS		
FF G1		Bac matches		
Pink E10		Multiple		
W F1		NS		
E				
Р Н3	73.8	Homo sapiens similar to ankyrin-repeat protein Nrarp	Nrarp Not found in Hugo	BC053618.
III C8	196	Homo sapiens UMPS gene for UMP synthase	UMPS	AY691629.

Table A.3 (continued)

()			1	
		H. sapiens clone		
		RP11-4181C1 on		
M C9	69.1	chromosome 10	MLLT10	AL358780.
		Homo sapiens		
		RPL18 gene for		
		ribosomal protein		
T G4	167	L18, complete cds	RPL18	AB061825.
PP F12		NS		
		Multiple ribosomal		
U G4		proteins		
P D2		NS		
		Homo sapiens protoporphyrinogen oxidase (PPOX)		
S E3	168	gene, exons 2, 3,	PPOX	AY032686.
F				
P G12		NS		
T F1		NS		
PP D2		NS		

BIBLIOGRAPHY

Aapola, U., K. Shibuya, H.S. Scott, J. Ollila, M. Vihinen, M. Heino, A. Shintani, K. Kawasaki, S. Minoshima, K. Krohn, S.E. Antonarakis, N. Shimizu, J. Kudoh, and P. Peterson (1999). "Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methylatransferase 3 gene family." <u>Genomics</u> **65**: 293-298.

Abeydeera, L.R. and B.N. Day. (1997). "Fertilization and subsequent development in vitro of pig oocytes inseminated in modified Tris-buffered medium with frozen thawed ejaculated spermatozoa." <u>Biol. Reprod</u> **57**: 729-734.

Abeydeera, L. R., W-H. Wang, R.S. Prather, and B.N. Day (1998). "Maturation in vitro of pig oocytes in protein-free media: fertilization and subsequent embryo development in vitro." <u>Biol Reprod</u> **58**: 1316-1320.

Adjoran, P., J. Distler, E. Lipsher, F. Model, J. Muller, C. Pelet, A. Braun, A.R. Florl, D. Gutig, G. Grabs, A. Howe, M. Kursar, R. Lesche, E. Leu, A. Lewin, S. Maier, V. Muller, T. Otto, C. Scholz, W.A. Schulz, H.-H. Seifert, I. Schwope, H. Ziebarth, K. Berlin, C. Piepenbrock and A. Olek (2002). "Tumour class prediction and discovery by microarray-based DNA methylation analysis." <u>Nucleic Acids</u> <u>Res</u> **30**: e21.

Archer, G. S., S. Dindott, T.H. Friend, S. Walker, G. Zaunbrecher, B. Lawhorn, and J.G. Piedrahita (2003). "Hierarchical phenotypic and epigenetic variation in cloned swine." <u>Biol Reprod</u> **69**: 430-436.

Baguisi, A., E. Behboodi, D.T. Melican, J.S. Pollock, M.M. Destrempes, C. Cammuso, J.L. Williams, S.D. Nims, C.A. Porter, P. Midura, M.J. Palacois, S.L. Ayres, R.S. Denniston, M.L. Hayes, C.A. Ziomek, H.M. Meade, R.S. Godke, W.G. Gavin, E.W. Overstrom, and Y. Echelard (1999). "Production of goats by somatic cell nuclear transfer." <u>Nat Biotech</u> **17**: 456-461.

Bao, S., T. Obata, J. Carroll, I. Domecki and T. Kono (2000). "Epigenetic modifications necessary for normal development are established during oocyte growth in mice." <u>Biol Reprod</u> **62:** 616-621.

Beaujean, N., G. Hartshorne, J. Cavilla, J. Taylor, J. Gardner, I. Wilmut, R. Meehan, and L. Young (2004). "Non-conservation of mammalian preimplantation methylation dynamics." <u>Curr Biol</u> **14**: R266-267.

Bestor, T., A. Laudano, R. Mattaliano, and V. Ingram (1988). "Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxy-terminal domain of the mammalian enzyme is related to bacterial restriction methyltransferases." J Mol Biol **203**: 971-983.

Bhattacharya, S. J., S. Ramchandani, N. Cervoni and M. Szyf (1999). "A mammalian protein with specific demethylase activity for mCpG DNA." <u>Nature</u> **397**: 579-583.

Bird, A. P., and E.M. Southern (1978). "Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis." J Mol Biol **118**: 27-47.

Bird, A. (2002). "DNA methylation patterns and epigenetic memory." <u>Genes Dev</u> **16:** 6-21.

Bjerregaard, B., H.G. Pedersen, A.S. Jakobsen, L.F. Rickords, L. Lai, H-T. Cheong, M. Samuel, R.S. Prather, F. Strejceck, Z., R. Rasmussen, J. Laurincik, K. Schellander, H. Niemann, P.Maddox-Hyttel, and P.D. Thomsen (2006). "Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer." In preparation.

Bonk, A. J., R. Li, H.T. Cheong, Z. Liu, L.Lai, Y. Hao, M. Samuel, E. Ferguson, E. Antoniou, and R.S. Prather (2006). "Aberrant DNA methylation in procine in vitro-, parthenogenetic-, and nuclear transfer- produced blastocysts." <u>In</u> <u>Preparation</u>.

Bourc'his, D., G.-L. Xu, C.-S. Lin, B. Bollman, and T.H. Bestor (2001). "Dnmt3L and the establishment of maternal genomic imprints." <u>Science</u> **294**: 2536-2539.

Braunschweig, M. H., A.-S. Van Laere, N. Buys, L. Andersson, and G. Andersson (2004). "IGF2 antisense transcript expression in procine postnatal muscle is affected by a quantitative trait nucleotide in intron 3." <u>Genomics</u> **84**: 1021-1029.

Cabot, R. A., B. Kuhholzer, A.W.S. Chan, L. Lai, K.W. Park, K.Y. Chong, G. Schatten, C.N. Murphy, L.R. Abeydeera, B.N. Day and R.S. Prather (2001). "Transgenic pigs produced using matured oocytes infected with a retroviral vector." <u>Anim Biotech</u> **12**: 205-14.

Carlson, L. L., A.W. Page and T.H. Bestor (1992). "Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting." <u>Genes Dev</u> **6**: 2536-2541.

Carter, D. B., A.Lai, K.-W. Park, M. Samuel, A.C. Lattimer, K.R. Jordan, D.M. Estes, C. Bech-Williford and R.S. Prather (2002). "Phenotyping of transgenic cloned piglets." <u>Cloning and Stem Cells</u> **4**: 131-145.

Chen, C., M.C. Yang, and T.P. Yang (2001). "Evidence that silencing of the HPRT promoter by DNA methylation is mediated by critical CpG sites." J Biol Chem **276**: 320-328.

Chen, T., Y.-L. Zhang, Y. Jiang, S.-Z. Liu, H. Schatten, D.-Y. Chen, and Q.Y. Sun (2004). "The DNA methylation events in normal and cloned rabbit embryos." <u>FEBS</u> **578**: 69-72.

Chen, Y.-L. Z., J. Jiang, J-H. Liu, H. Schatten, D.Y. Chen, and Q.Y. Sun (2006). "Interspecies nuclear transfer reveals that demethylation of specific repetitive sequences is determined by recipient ooplasm but not by donor intrinsic property in cloned embryos." <u>Mol Reprod Dev</u> **73**: 313-317.

Cheong, H. T., T. Takahashi and H. Kanagawa (1993). "Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes." <u>Biol Reprod</u> **48**: 958-963.

Chesne, P., P.G. Adenot, C. Viglietta, M. Barrate, L Boulanger, and J.P. Renard (2002). "Cloned rabbits produced by nuclear transfer from adult somatic cells." <u>Nat Biotech</u> **20**: 366-369.

Chung, Y. G., S. Ratman, J.R. Chaillet and K.E. Latham (2003). "Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos." <u>Biol</u> <u>Reprod</u> **69**: 146-153.

Cibelli, J. B., S.L. Stice, P.J. Golueke, J.J. Kane, J. Jerry, C. Blackwell, F.A.P. de Leon, and J.M. Robl (1998). "Cloned transgenic calves produced from nonquiescent fetal fibroblasts." <u>Science</u> **280**: 1256-1258.

Conway, K.L. (1996). "Birthweight of bovine calves produced by nuclear transfer (cloning) and their offspring (embryo transfer). <u>Dissertation Abstr. Int.</u> **57:** 3462.

Costello, J. F., C. Plass, W. Arap, V.M. Chapman, W.A. Held, M.S. Berger, H.J. Su Huang and W.K. Cavanee (1997). "Cyclin dependent kinase 6 (CDK6) amplification in human gliomas identified using two dimensional separation of genomic DNA." <u>Cancer Res</u> **57**: 1250-1254.

Costello, J. F., M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, GP. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, D.E. Schuller, L. Yu, C.D. Bloomfield, M.A. Caligiuri, A. Yates, R. Nishikawa, H. Su Huang, N.J. Petrelli, X. Zhang, M.S. O'Dorisio, W.A. Held, W.K.Cavanee and C. Plass (2000). "Aberrant CpG-island methylation has non-random and tumour-type-specific patterns." Nat Genet **24**: 132-138.

Dean, W., D. Lucifero, and F. Santos (2005). "DNA methylation in mammalian development and disease." <u>Birth Defects Res</u> **75**: 98-111.

Dean, W., F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter, E. Wolf, and W. Reik (2001). "Conservation of methylation reprogramming in mammalian

development: aberrant reprogramming in cloned embryos." <u>PNAS USA</u> **98**: 13734-13738.

DeBaun, M. R., E.L. Neimitz and A.P. Feinberg (2003). "Association of in vitro fertilization with Beckwith-Weidmann syndrome and epigenetic alterations of LIT1 and H19." <u>Am J Hum Genet</u> **72**: 156-160.

Doherty, A. S., M.R.W. Mann, K.D. Tremblay, M.S. Bartolomei and R.M. Schultz (2000). "Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo." <u>Biol Reprod</u>: 1526-1535.

Eggan, K., A. Rode, I. Jentsch, C. Samuel, T. Hennek, H. Tintrup, B. Zevnik, J. Erwin, J. Loring, L. Jackson-Grusby, M.R., Speicher, R. Kuehn, and R. Jaenisch (2002). "Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation." <u>Nat Biotech</u> **20**: 455-459.

Eisen, M.B. and P.A. Brown (1999). DNA microarrays for analysis of gene expression. <u>cDNA Preparation and Characterization</u>. S.M. Weissman. San Diego, Academic Press: 179-205.

Frommer, M., L.E. McDonald, D.S. Millar, C.M. Collis, F. Watt, G.W. Grigg, P.L. Molloy, and C.L. Paul (1992). "A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands." <u>PNAS</u> <u>USA</u> **89**: 1827-1931.

Fulka, H., M. Mreazek, O. Tepla, and J. Fulka Jr. (2004). "DNA methylation pattern in human zygotes and developing embryos." <u>Reproduction</u> **128**: 703-708.

Fulka, J., H. Fluka, T. Slavik, K. Okada and J, Fulka Jr. (2006). "DNA methylation pattern in pig in vivo produced embryos." <u>Histochem Cell Biol</u> **126**: 213-217.

Futscher, B. W., M.M. Oshiro, R.J. Wozniak, N. Holtan, C.L. Hanigan, H. Duan and F.E. Domann (2002). "Role for DNA methylation in the control of cell type specific maspin expression." <u>Nat Genet</u> **31**: 123-124.

Galli, C., I. Lagutina, G. Crotti, S. Colleoni, P. Turini, N. Ponderato, R. Duchi, and G. Lazzari (2003). "Pregnancy: a cloned horse born to its dam twin." <u>Nature</u> **424**: 635.

Gardiner-Garden, M., and M. Frommer (1987). "CpG islands in vertebrate genomes." <u>J Mol Biol</u> **196:** 261-282.

Gioia, L., B. Barboni, M. Turriani, G. Capacchietti, M.G. Pistilli, P. Berardinelli and M. Mattioli (2005). "The capability of reprogramming the male chromatin

after fertilization is dependent on the quality of oocyte maturation." <u>Reproduction</u> **13**: 29-39.

Gitan, R. S., H. Shi, C.M. Chen, P.S. Yan and T.H. Huang (2002). "Methylationspecific oligonucleotide microarray: a new potential for high-throughput methylation analysis." <u>Genome Res</u> **12**: 158-164.

Goll, M. G., F. Kirpekar, K.A. Maggert, J.A. Yoder, C-L Hsieh, X. Zhang, K.G. Golic, S.E. Jacobsen and T.H. Bestor (2006). "Methylation of tRNA^{Asp} by the DNA methyltransferase homolog Dnmt2." <u>Science</u> **311**: 395-398.

Grunstein, M. (1997). "Histone acetylation in chromatin structure and transcription." <u>Nature</u> **389:** 349-357.

Guan, K., K. Nayernia, L.S. Maier, S. Wagner, R. Dressel, J.H. Lee, J. Nolte, F. Wolf, M. Li, W. Engel and G. Hasenfuss (2006). "Pluripotency of spermatogonial stem cells from adult mouse testis." <u>Nature</u> **440**: 1199-1203.

Hajkova, P., S. Erhardt, N. Lane, T. Haaf, O. El-Maari, W. Reik, J Walter, and M. Azim Surani (2002). "Epigenetic reprogramming in mouse germ cells." <u>Mech</u> <u>Dev</u> **117**: 15-23.

Halliday, J., K. Oke, S. BrehenyJ. Halliday, K. Oke, S. Breheny, E. Algar, and D.J. Amor (2004). "Beckwith-Wiedmann syndrome and IVF: a case-control study." <u>Am J Hum Genet</u> **75**: 526-528.

Hata, K., M. Okana, H. Lei, and H. Li (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." <u>Cell</u> **99**: 247-257.

Hendrich, B., and A. Bird (1998). "Identification and characterization of a family of mammalian methyl-CpG binding proteins." <u>Mol Cell Biol</u> **18**: 6538-6547.

Hendrich, B., J. Guy, B. Ramsahoye, V.A. Wilson and A. Bird (2001). "Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development." <u>Genes Dev</u> **15**: 710-723.

Heyman, Y., P. Chavatte-Palmer, D. LeBourhis, S. Camous, X. Vignon, and J.P. Renard (2002). "Frequency and occurrence of late-gestation losses from cattle cloned embryos." <u>Biol Reprod</u> **66**: 6-13.

Hiiragi, T., and D. Solter (2005). "Reprogramming is essential in nuclear transfer." <u>Mol Reprod Dev</u> **70**: 417-421.

Hoechedlinger, K., and R. Jaenisch (2002). "Monoclonal mice generated by nuclear transfer from mature B and T cells. "<u>Nature</u> **415**: 1035-1038.

Hochedlinger, K., W.M. Rideout, M. Kyba, G.Q. Daley, R. Blelloch, and R. Jaenisch (2004). "Nuclear transplantation, embryonic stem cells and the potential for cell therapy." <u>Hematol J</u> **5**: S114-S117.

Hotchkiss, R.D. (1997). "The quantitative separation of purines, pyrimidines, and nucleotides by paper chromatography. "J Biol Chem **168:** 315-332.

Howell, C. Y., T.H. Bestor, F. Ding, K.E. Latham, C. Mertineit, J.M. Trasler, and J.R. Chaillet (2001). "Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene." <u>Cell</u> **104**: 829-838.

Hsieh, C. L. (1997). "Dependence of transcriptional repression on CpG methylation density." <u>Mol Cell Biol</u> **14**: 5487-5494.

Huang, T. H.-M., M.R. Perry and D.E. Laux (1999). "Methylation profiling of CpG islands in human breast cancer cells." <u>Hum Mol Genet</u> **8**: 459-470.

Humpherys, D., K. Eggan, H. Akutsu, K. Hochedlinger, W. Rideout III, D. Biniszkiewicz, R. Yanagimachi, and R. Jaenisch (2001). "Epigenetic instability in ES cells and cloned mice." <u>Science</u> **293**: 95-97.

Inoue, K., H. Wakao, N. Ogonuki, H. Miki, K.-I. Seino, R. Nambu-Wakao, S. Noda, H. Miyoshi, H. Koseki, M. Tanuguchi, and A. Ogura (2005). "Generation of cloned mice by direct nuclear transfer from natural killer T cells." <u>Curr Biol</u> **15**: 1114-1118.

Jeon, J.-T., O. Carlbourg, A. Tornsten, E. Giuffra, V. Amarger, P. Chardon, L. Andersson-Eklund, K. Andersson, I. Hansson, K. Lundstrom and L. Andersson (1999). "A paternally expressed QTL affecting skeletal and cardiac muscle mass in pig maps to the IGF2 locus." <u>Nat. Genet</u> **21**: 157-158.

Jones, P.A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in cancer." <u>Nature</u> **3:** 415-428.

Kang, Y. K., D.B. Koo, J.S. Park, Y.H. Choi, A.S. Chung, K.K. Lee and Y.M. Han (2001). "Aberrant DNA methylation of donor genome in cloned bovine embryos." <u>Nat Genet</u> **28**: 173-177.

Kang, Y.-W., D.-B. Koo, J.-P. Park, Y.-H. Choi, H.-N. Kim, W.-K. Chang, K.-K. Lee, and Y.-M. Han (2001). "Typical demethylation events in cloned pig embryos." J Biol Chem **276**: 39980-39984.

Khosla, S., W. Dean, D. Brown, W. Reik and R. Feil (2001). "Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes." <u>Biol Reprod</u> **64**: 918-926.

Killian, J. K., C.M. Nolan, A.A. Wylie, T. Li, T.H. Vu, A.R. Hoffman and R.L. Jirtle. (2001). "Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quarternary." <u>Hum. Mol. Genet</u> **10**: 1721-1728.

Klose, R.J.. and A.P. Bird. (2006). "Genomic DNA methylation: the mark and its mediators." <u>Trends Biochem Sci</u> **31:** 89-97.

Kono, T., Y. Obata, T. Yoshimzu, T. Nakahara and J. Carroll (1996). "Epigenetic modifications durinf oocyte growth correlates with extended parthenogenetic development in the mouse." <u>Nat Genet</u> **13**: 91-94.

Kremenskoy, M., Y. Kremenska, J. Ohgane, N. Hattori, S. Tanaka, K. Hashizume and K. Shiota (2003). "Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses." <u>Biochem Biophys Res Com</u> **311**: 884-890.

Kues, W. A., B. Peterson, W. Myesegades, J.C. Carnwath and H. Niemann (2005). "Isolation of murine and porcine fetal stem cells from somatic tissue." <u>Biol. Reprod</u> **72**: 1020-1028.

Lai, L., T. Tao, Z. Machaty, B. Zühholzer, Q-Y. Sun, K-W. Park, B.N. Day, and R.S. Prather (2001). "Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donor." <u>Biol. Reprod</u> **65**: 1558-1564.

Lai, L., and R.S. Prather (2002). "Progress in producing knockout models for xenotransplantation by nuclear transfer." <u>Annal of Med</u> **34:** 501-506.

Lai, L., and R.S. Prather (2003). "Production of cloned pigs by using somatic cells as donors." <u>Cloning and Stem Cells</u> **5:** 233-241.

Lane, N., W. Dean, S. Erhardt, P. Hajkova, A. Surani, J. Walter, and W. Reik (2002). "Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse." <u>Genesis</u> **35**: 88-93.

Lanza, R. P., J.B. Cibelli, C.T. Moraes, P.W. Farin, C.E. Farin, C.J. Hammer, M.D. West, and P. Diamiani (2000). "Cloning of an endangered species (bos gaurus) using interspecies nuclear transfer." <u>Cloning</u> **2**: 79-90.

Lee, J., K. Inoue, R. Ono, N. Ogonuki, T. Coda, T. Kaneko-Ishino, A. Ogura, and F. Ishino. (2002). "Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells." <u>Devel</u> **129**: 1807-17.

Li, E. (2002). "Chromatin modification and epigenetic reprogramming in mammalian development." <u>Nat Rev Genet</u> **3:** 662-673.

Li, L. C., and R. Dahiya (2002). "MethPrimer: designing primers for methylation PCRs." <u>Bioinformatics</u> **11**: 1427-31.

Lucifero, D., C. Mertineit, H.J. Clarke, T.H. Bestor and J.M. Trasler (2002). "Methylation dynamics of imprinted genes in mouse germ cells." <u>Genomics</u> **79**: 530-538.

Lucifero, D., M.R. Mann, M.S. Bartolomei and J.M. Trasler (2004). "Genespecific timing and epigenetic memory in oocyte imprinting." <u>Hum. Mol. Genet</u> **13**(839-849).

Machaty, Z., B.N. Day and R.S. Prather (1998). "Development of early porcine embryos in vitro and in vivo." <u>Biol. Reprod</u> **59**: 451-455.

Mann, M. R. W., S.S. Lee, A.S. Doherty, R.I. Verona, L.D. Nolen, R.M. Schultz and M.S. Bartolomei (2004). "Selective loss of imprinting in the placenta following preimplantation development in culture." <u>Devel</u> **131**: 3727-3735.

Mann, M. R. W., Y.G. Chung, L.D. Nolen, R.I. Verona, K.E. Latham and M.S. Bartolomei (2003). "Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos." <u>Biol. Reprod</u> **69**: 902-914.

Mayer, W., A. Niveleau, J. Walter, R. Fundele, and T. Haaf (2000). "Embryogenesis: demethylation of the zygotic paternal genome." <u>Nature</u> **503**: 501-502.

McGrath, J., and D. Solter (1984). "Completion of mouse embryogenesis requires both the maternal and paternal genomes." <u>Cell</u> **37:** 179-183.

Mertineit, C., J.A. Yoder, T. Taketo, D.W. Laird, J.M. Trasler and T.H. Bestor (1998). "Sex-specific exons control DNA methyltransferase in mammalian germ cells." <u>Devel</u> **125**: 889-897.

Miles, J. R., C.E. Farin, K.F. Rodriguez, J.A. Alexander, and P.W. Farin. (2005). "Effects of embryo culture on angiogenesis and morphometry of bovine placentas during early gestation." <u>Biol. Reprod</u> **73**: 663-671.

Morrison, I. M., J.P. Ramsay, and H.G. Spencer (2005). "A census of mammalian imprinting." <u>Trends Genet.</u> **21**: 457-465.

Nan, X., H.H. Ng, C.A. Johnson, C.D. Laherty, B.M. Turner, R.N. Eisenman, and A. Bird (1998). "Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex." <u>Nature</u> **393**: 386-389.

Nezer, C., C. Collette, L. Moreau, B. Brouwers, J.-J. Kim, E. Giuffra, N. Buys, L. Andersson and M. Georges. (2003). "Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene." <u>Genet</u> **165**: 277-285.

Nezer, C., L Moreau, B. Brouwers, W. Coppieters, J. Detilleux, R. Hanset, L. Karim, A. Kvasz, P. Leroy, and M. Georges (1999). "An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs." <u>Nat. Genet</u> **21**: 155-156.

Novik, K. L., I. Nimmrich, B. Genc, S. Maier, C. Piepenbrock, A. Olek, and S. Beck (2002). "Epigenomics: genome-wide study of methylation phenomenona." <u>Curr Issues Mol Biol</u> **4**: 111-128.

Okana, M., D.W. Bell, D.A. Haber, and E. Li (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." <u>Cell</u> **99**: 247-257.

Obata, Y., and T. Kono (2002). "Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth." J Biol Chem 277: 5286-5289.

Okano, M., S. Xie, and E. Li (1998). "Dnmt2 is required for de novo and maintenance methylation of viral DNA in embryonic stem cells." <u>Nucleic Acids</u> <u>Res</u> **26**: 2536-2540.

Park, K. W., H.T. Cheong, L.X. Lai, G.S. Im, B. Kuhholzer, A. Bonk, M. Samuel, A. Rieke, B.N. Day, C.N. Murphy, D.B. Carter and R.S. Prather (2001). "Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein." <u>Anim Biotech</u> **12**: 173-181.

Plass, C., F. Yo, L. Yu, M.P. Strout, W. El-Rifai, E. Elonen, S. Knuutila, G. Marcucci, D.C. Young, W.A. Held, C.D. Bloomfield and M.A. Caligiuri (1999). "Restriction landmark genomic scanning aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene." <u>Oncogene</u> **18**: 3159-3165.

Polejaeva, I. A., S.H. Chen, T.D. Vaught, R.L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D.L. Ayares, A. Colman, and K.H.S. Campbell (2000). "Cloned pigs produced by nuclear transfer from adult somatic cells." <u>Nature</u> **407**: 86-90.

Prather, R. S., M.M. Sims, and N.L. First (1989). "Nuclear transplantation in early pig embryos." <u>Biol. Reprod.</u> **38**: 380-385.

Prather, R. S., R.J. Hawley, D.B. Carter, L. Lai, and J.L. Greenstein (2003). "Transgenic swine for biomedicine and agriculture." <u>Theriogenology</u> **59**: 115-125.

Ratnam, S., C. Mertineit, F. Ding, C.Y. Howell, H.J. Clarke, T.H. Bestor, J.R. Chaillet and J.M. Trassler (2002). "Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development." <u>Dev. Biol.</u> **245**: 304-314.

Reik, W., and J. Walter (2001). "Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote." <u>Nature Genetics</u> **27:** 255-256.

Rickman, D. S., C.J. Herbert and L.P. Aggerbeck (2003). "Optimizing spotting solutions for increased reproducibility of cDNA microarrays." <u>Nucleic Acids Res</u> **31**: e109.

Rideout III, W. M., T. Wakayama, A. Wutz, K. Egan, L. Jackson-Grusby. J. Dausman, R. Yanagimachi and R. Jaenisch (2000). "Generation of mice from wild-type and targets ES cells by nuclear cloning." <u>Nature</u> **24**: 109-110.

Roberson, K. D. (2002). "DNA methylation and chromatin-unraveling the tangled web." <u>Oncogene</u> **21**: 5361-5379.

Robl, J. M., R. Prather, F. Barnes, W. Eyestone, D. Northey, B. Gilligan, and N.L. First (1987). "Nuclear transplantation in bovine embryos." J. Anim. Sci. **64**: 642-647.

Ronaghi, M. (2001). "Pyrosequencing sheds light on DNA sequencing." <u>Genome</u> <u>Res</u> **11:** 3-11.

Rougier, N., D. Bourc'his, D.M, Gomes, A. Niveleau, M. Plachot, A. Paldi, and E. Viegas-Pequignot (1998). "Chromosome demethylation patterns during mammalian preimplantation development." <u>Genes Dev.</u> **12**: 2108-13.

Russo, V. A., R.A. Martienssen, and A.D. Riggs (1996). <u>Epigenetic Mechanisms</u> of Gene Regulation. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.

Santos, F., B. Hendrich, W. Reik, and W. Dean (2002). "Dynamic reprogramming of DNA methylation in the early mouse embryo." <u>Curr. Biol</u> **241**: 172-182.

Santos, F., and W. Dean (2004). "Epigenetic reprogramming during early development in mammals." <u>Reproduction</u> **127:** 643-651.

Sasaki, H., A.C. Ferguson-Smith, A.S. Shum, S.C. Barton and M.A. Surani (1995). "Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos." <u>Devel</u> **121**: 4195-4202.

Shi, H., S.H. Wei, Y-W. Leu, F, Rahmatpanah, J.C. Liu, P.S. Yan, K.P. Nephew, and T. H-M. Huang (2003). "Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation." <u>Cancer Res</u> **63**: 2164-2171.

Shi, W., F. Dirim, E. Wolf, V. Zakhartchenko and T. Haaf (2004). "Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos." <u>Biol. Reprod</u> **71**: 340-347.

Singer-Sam, J., J.M. LeBon, K. Okuyama, V.Chapman, M. Monk and A.D. Riggs (1990a). "Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-Chromosome inactivation." Mol Cell Biol **10**: 4987-4989.

Singer-Sam, J., J.M. LeBon, R.L. Tanguay and A.D. Riggs (1990b). "A Quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells." <u>Nucleic Acids Res</u> **18**: 687-.

Smith, S. L., R.E. Evans, X.C. Tian, F. Du, L.-Y. Sung, S.L. Rodriguez-Zas, B.-S. Jeong, J.-P. Renard, H.A. Lewin, and X. Yang (2005). "Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning." <u>PNAS USA</u> **102**: 17582-17587.

Surani, M.A., S.C. Barton, and M.L. Norr (1984). "Development of the reconstituted mouse eggs suggests imprinting of the genome during gametogenesis." <u>Nature</u> **308:** 548-550.

Takai, D., and P.A. Jones (2002). "Comprehensive analysis of CpG islands in human chromosomes 21 and 22." <u>PNAS USA</u> **99:** 3740-3745.

Tamashiro, K. L., T. Wakayama, H. Akutsu, Y. Yamazaki, J.L. Lachey, M.D. Wortman, R.J. Seeley, D.A. D'Alessio, S.C. Woods, R. Yanagimachi and R.R. Saki. (2002). "Cloned mice have an obese phenotype not transmitted to their offspring." <u>Nat. Med</u> **8**: 262-267.

van Steensel, B., and S. Henikoff (2003). "Epigenomic profiling using microarrays." <u>BioTechniques</u> **35:** 346-357.

Wakayama, T., I. Rodriguez, A.C. Perry, R. Yanagimachi, and P. Mombaerts (1999). "Mice cloned from embryonic stem cells." <u>PNAS USA</u> **96**: 14984-14989.

Wakayama, T., H. Tateno, P. Mombaerts, and R. Yanagimachi (2000). "Nuclear transfer into mouse zygotes." <u>Nat Genet</u> **24:** 108-109.

Wakayama, T., V. Tabar, I. Rodriguez, A.C. Perry, L. Studer, and P. Mombaerts (2001). "Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer." <u>Science</u> **292**: 740-743.

Wang, R. Y.-H., C.W. Gehrke, and M. Ehrlich (1980). "Comparison of bisulphite modification of 5-methyldeoxycytidine and deoxycytidine residues." <u>Nucleic Acids Res</u> **8**: 4777.

Wang, Y., and F.C.C. Leung (2004). "DNA structure constraint is probably a fundamental factor inducing CpG deficiency in bacteria." <u>Bioinformatics</u> **20**: 3336-3345.

Wei, S. H., C-M. Chen, G. Strathdee, J. Harnsomburana, C.-R. Shyu, F. Rahmatpanah, H. Shi, S.-W. Ng, P.S. Yan, K.P. Nephew, R. Brown, and T. H-M. Huang (2002). "Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic markers." <u>Clin Cancer Res</u> **8**: 2246-2252.

Whitworth, K. M., C. Agca, J.-G. Kim, R.V. Patel, G.K. Springer, N.J. Bivens, L.J. Forrester, N. Mathialagan, J.A. Green and R.S. Prather (2005).
"Transcriptional Profiling of Pig Embryogenesis by using a 15-K Member Unigene Set Specific for Reproductive Tissues and Embryos." <u>Biol Reprod</u> 72: 1437-1451.

Willadsen, S.M. (1986). "Nuclear Transfer in Sheep." Nature 320: 63-65.

Wilmut, I., N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D.N. Wells, and L.E. Young (2002). "Somatic cell nuclear transfer." <u>Nature</u> **419**: 583-586.

Wilmut I., A. E. Schieke, J. McWhir, A.J. Kind, and K.H.S. Campbell (1997). "Viable offspring derived from fetal and adult mammalian cells." <u>Nature</u> **385**: 810-813.

Wu, P., C. Qiu, A. Sohail, X. Zhang, A.S. Bagwat, and X. Cheng (2003). "Mismatch repair in methylated DNA. Structure and activity of the mismatch to specific thymine glycosylase domain of methyl-CpG-binding protein MBD4." J Biol Chem **278**: 5285-5291.

Yang, Y., T. Li, T.H. Vu, G.A. Ulaner, J.-F. Hu and A.R. Hoffman (2003). "The histone code regulating expression of the imprinted mouse Igf2r gene." <u>Endocrinology</u> **144**: 5658-5670. Yoshioka, K., C. Suzuki, A. Tanaka, I. M.-K. Anas, and S. Iwamura (2002). "Birth of piglets derived from porcine zygotes cultured in a chemically defined medium." <u>Biol Reprod</u> **66**: 112-119.

Young, L. E., K. Fernandes, T.G. McEvoy, S.C. Butterwith, C.G. Gutierrez, C. Carolan, P.J. Broadbent, J.J. Robinson, I. Wilmut and K.D. Sinclair (2001). "Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture." <u>Nat Genet</u> **27**: 153-154.

Zhang, S., C. Kobuta, L. Yang, Y. Zhang, R. Page, M. O'Neill, X. Yang, and X.C. Xiang (2004). "Genomic Imprinting of H19 in naturally reproduced and cloned cattle." <u>Biol Reprod</u> **71**: 1540-1544.

Zhao, Z., and F. Zhanf (2006). "Sequence context analysis in the mouse genome: single nucleotides and CpG island sequences." <u>Genomics</u> 87: 68-74.

Zhou, Q., A. Jouneau, V. Brochard, P. Adenot, and J.P. Renard (2001). "Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei." <u>Biol Reprod</u> **65**: 412-419.

Zhou, Q., J.P. Renard, G. Le Friec, V. Brochard, N. Beaujean, Y. Cherifi, A. Fraichard, and J. Cozzi (2003). "Generation of fertile cloned rats by regulating oocyte activation." <u>Science</u> **302**: 1179.

VITA

Aaron James Bonk was born August 21, 1970 in Manitowoc, Wisconsin. Aaron grew up in Green Bay, Wisconsin where he graduated from high school in 1988. He earned Bachelor of Science degrees in Biology and Psychology from the University of Wisconsin–Stevens Point and a Masters of Science in Biology with a Microbiology Emphasis from the University of Wisconsin-Oshkosh. Aaron joined the laboratory of Dr. Randall S. Prather in 1997 as a Research Specialist. In 2007 he completed a PhD in Animal Science from the University of Missouri at Columbia. In 1996, Aaron married Jennifer Ann Eggerstedt and they have 3 children, Anna, Ava, and Henry. Aaron is now employed with Promega in Madison Wisconsin.