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ABSTRACT

A new approach is developed to examine the stability of delay differential equations

that builds upon the previous work in temporal finite element analysis. In contrast

to the results of previous work, which could only be applied to second order delay

differential equations, the present work is on developing an approach which can be

applied to a broader class of systems that may be written in the form of a state space

model.

Conclusive evidence that isolated islands of chatter vibration can exist in the sta-

bility charts of milling processes is provided. Modeling efforts consider the influence

of the tool helix angle to obtain the aforementioned results and develop an analytical

force model with three piecewise continuous regions of cutting. Theoretical predic-

tions are validated by a series of experimental tests that confirm the isolated island

phenomenon.
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poincaré section shown in displacement and delayed displacement co-

ordinates. Cases (e),(f) and (g) show stable solution and (h) shows an

unstable solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



Chapter 1

INTRODUCTION

1.1 Introduction

Metal removal operations form the major portion of the manufacturing industry‘s

ability to make parts with desired shapes, dimensions and surface finish quality. Cost

reduction, optimum quality and performance are the main requirements of any manu-

facturer which can be achieved by designing a predictive model for the metal removing

operation. The knowledge of the right cutting parameters serves as tool for optimiz-

ing the production. In industries like aerospace and the automobile sector etc, the

increasing requirement of high precision, reduced tolerance and high productivity has

made it imperative to develop models which can precisely predict the cutting param-

eters. Milling is one such metal removal operation which has been extensively used

in the industry and has complex dynamics.
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1.2 Background

Static and dynamic effects during a milling operation cause the system to deviate

from the desired geometry. Some of the factors that influence the dynamics of the

system are the material properties of the tool and the workpiece, tool geometry, slide

speed friction, self-excited and forced oscillations, the cutting parameters such as

axial and radial depth of cut and cutting speed. The dynamic effects cause large

amplitude vibrations between the cutting tool and the workpiece called chatter and

are associated with forced and self-excited oscillations. Chatter is undesirable state as

it causes excessive load on the spindle structure, tool wear, inaccurate dimension and

poor surface finish. The chatter vibrations are caused as result of both regenerative

and non-regenerative effects. Arnold [1] was amongst the first study the regenerative

mechanism and showed that the chatter vibration occurred by increasing the cutting

speed. Apart from the cutting speed the parameters like the axial and radial depth

of cut, spindle speed and feed rate are other factors for chatter vibration. This study

did not include the chip thickness variation which was later shown by Tlusty and

Polacek [2] and Tobias [3] as important regenerative mechanism that leads to chatter.

The graphical representation of the stability information in the form stability charts

was first given by Tobias and Fishwick [4] and Tobias [3]. The instability studied

in these work was related to loss of stability of a fixed point of an system giving

secondary Hopf bifurcation. This work was however limited due to assumption that

cutting is a continuous process related to turning process. In turning the orientation

of cutting forces and chip thickness are not a function of time, however in milling

the cutting forces are explicit function of time. The intermittent nature of milling

surfaced as another important cause of chatter vibrations, intermittency introduces

a discontinuity into the system. The work of Tlusty and Polacek was one of the first

which showed the non-regenerative mechanisms may be a cause of chatter vibrations.

Numerical study of non-regenerative mechanisms related due nonlinearities associated
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with intermittent nature of milling was done by references [5–8].

1.3 Motivation for the Current Research

With technological advancement in the manufacturing industry and a never ending

quest to improve productivity and product quality, high speed milling is incorporated

and the process is optimized by high metal removal rates. However the instability in

the milling process causes limitation to the application of this technology. Instabil-

ities induce large loads on the spindle structure which might eventually damage the

spindle in a long run. The surface finish is also diminished during unstable cutting,

which is important where aesthetics, wear resistance etc are concerned. There also

is a possibility of deviation in the required geometry of the workpiece, dimensional

accuracy is important for components which are used in precision mechanisms, high

performance machines etc . The rate of tool wear is another factor that gets affected

due to unstable cutting, which may account for considerable increase in the cost of

the process. The key solution for this is to better understand dynamics of the system

and provide stability charts. Studying the dynamics of milling has shown various

phenomenon which causes the undesirable state of cutting. The recent investigation

of stability behavior, including the geometry of the tool i.e helix angle of the tool

showed some interesting results in the form of isolated islands of instability in the

stability plot [9]. Understanding and validating this phenomenon was the primary

task for this research.

Analytical stability analysis of the milling process can be found using various

methods like semi-discretization, finite element analysis, Temporal finite element anal-

ysis (TFEA). The initial efforts to develop TFEA goes to Halley [10] and Bayly et.

al [11]. This method was improved later by Mann et. al [12–14], along with showing
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experimental validation of this method. Basically TFEA can deal with delay differ-

ential equations which appear in various fields like economics, robotics, population

dynamics, biology, and controls using sensors [13,15–17]. However this method is lim-

ited to second order DDE‘s and to increase the scope of application of this method a

new approach is build based on the previous work. The state space approach is used

for this thesis, and to validate the method it was necessary to look as various DDE‘s

starting with simple autonomous case with scalar control parameters. In addition

several of problems that appeared in prior work are analyzed.

1.4 Thesis organization

The new state space approach of TFEA is applied for the DDE‘s and to check the

validity of this approach different class of problems were solved. The Second chapter

talks about the new approach showing stability results for scalar autonomous case

and generalizing this method for multiple state autonomous case. This is followed

by non-autonomous case of continuous time delay in the form of damped delayed

Mathieu equation. Further application of this method to a piecewise continuous

non-autonomous DDE is also shown. Overall this chapter explains the state space

formulation of TFEA. The chapter three deals with milling experimentation. Detailed

experiment was done using a flexure which is compliant in one direction, whose gov-

erning equation can be mathematically modeled as single degree of freedom equation.

The data from the experiments were analyzed and compared with the analytical sta-

bility prediction using state space formulation of TFEA. The helix angle of the tool is

included in the analysis and the trends for the stability charts are shown comparing

different cases of helix angles. The last chapter gives the overall summary of thesis

along with possible extension of this work.
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Chapter 2

Stability of Delay Equations

written as State Space Models

2.1 Introduction

It has been known for quite some time that several systems can be described by

models that include past effects. These systems, where the rate of change in a state

is determined by both the past and the present states, are described by delay differ-

ential equations (DDE). Examples from the recent literature includes applications in

robotics, biology, economics and manufacturing processes [13,15–17]. The qualitative

study of a dynamical system often includes a stability analysis, which is presented in

form of stability charts that show the stability of the system over a range of system

parameters [18–20]. A primary complexity for delay systems lies in the fact that they

are of an infinite dimension. In particular, it is well-know that introducing a time

delay into a dynamical system causes the phase space to grow from a finite dimension

to an infinite dimension [21,22].
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A linear autonomous DDE with a single delay can be described by

ẏ(t) = Ay(t) + By(t− τ) , (2.1)

where A and B are square matrices and the delay τ > 0. The characteristic equation

for the above system, which is obtained assuming that the solution is in exponential

form, becomes

|λI−A−Be−λτ | = 0 . (2.2)

As compared to the characteristic equation for an autonomous ordinary differential

equation (ODE), Eq. (2.2) has an infinite number of roots. The necessary and suffi-

cient condition for asymptotic stability is that all of the infinite number of character-

istic roots must have negative real parts [22]. A discrete solution form for Eq. (2.1)

that maps the states of the system over a single delay period, from the n− 1 period

to the nth period, can be written as

yn = Q yn−1 . (2.3)

Here, the condition for asymptotically stability requires that the infinite number of

characteristic multipliers, or eigenvalues of Q, must be in a modulus of less than one.

Another general case to consider is the stability of a time periodic system with a

single delay. The general expression for this type of system is

ẏ(t) = A(t)y(t) + B(t)y(t− τ) , (2.4)

where A(t+ T ) = A(t) and B(t+ T ) = B(t). Analogous to time periodic ODE case,

the solution can be written in the form y = p(t)eλt, where p(t) = p(t+T ). However,

a primary difference exist between the dynamic map equation of a time periodic ODE
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and a time periodic DDE, which can also be written as Eq. (2.3), since the monodromy

operator, Q, for the DDE becomes infinite dimensional. Although the time periodic

system will have a finite dimensional Floquet transition matrix, the delay oscillator

system will have an infinite dimensional monodromy operator [23]. Also, in contrast

to the classical time periodic case, the time delayed system will have an infinite

number of characteristic multipliers. The resulting criteria for asymptotic stability

requires the infinite number of characteristic multipliers to have a modulus of less

than one; this criteria is analogous to requiring the infinite number of characteristic

exponents to be negative and real for a continuous system.

The fact that the mondromy operator is infinite dimensional prohibits a closed-

formed solution. In spite of this, one can approach this problem from a practical

standpoint - by constructing a finite dimensional monodromy operator that closely

approximates the stability characteristics of the infinite dimensional monodromy op-

erator. This is the underlying approach that is followed throughout this manuscript

and in numerous other previous works use discretization methods to examine delay

equations [13,24,25]. The results of previous works using the temporal finite element

method for delay equations required the governing equations to be written in the form

of a second order delay differential equation. A distinguishing feature of the present

manuscript is the development of a temporal finite element approach that can be

used to determine the stability characteristics of delay differential equations that are

in the form of a state space model. Essentially, this work extends the usefulness of

the temporal finite element method to a broader class of systems with time delays.

This chapter describes a new approach to examine the stability of delay differ-

ential equations that builds upon the work using temporal finite element analysis.

In contrast to the results of previous work, which could only be applied to second

order delay differential equations, the focus of the present work is on developing an

approach which can be applied to a broader class of systems that may be written in
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the form of a state space model. A primary result from this work is a generalized

formulation to investigate the asymptotic stability of autonomous delay differential

equations with a single time delay. Furthermore, this approach is shown to be appli-

cable to time-periodic delay differential equations. Finally, results are also presented

to highlight the fact that this methodology can be applied to governing equations

that are piecewise continuous.

The content of this chapter is organized as follows. The next section describes

the formulation of a temporal finite element analysis approach for autonomous delay

equations. In an effort to improve the clarity, the stability of a system with a single

state is examined examined prior to presenting a more general analysis that can

be applied to autonomous delay differential equations with an arbitrary number of

states. The third section examines the subtle differences required to handle systems

that are time periodic. Several results are presented for the delayed damped Mathieu

Equation prior to examining the case of a milling process. The latter of the two

examples highlights a particularly important feature of this method - the ability to

handle both continuous and piecewise continuous DDE’s.

2.2 Autonomous Delay System

A distinguishing feature of autonomous systems is that time does not explicitly appear

in the governing equations. Some application areas where autonomous DDE’s arise

is in robotics, biology, and control using sensor fusion. In an effort to improve the

clarity of this section, we first consider the analysis of a scalar DDE. These results

are then followed by an analysis of the general case of a DDE in the matrix vector

form.
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2.2.1 Scalar Autonomous DDE

Time Finite Element Analysis is an approximate that divides the time intervals of

interest into a finite number of temporal elements. This approach allows the original

DDE to be transformed into the form of a discrete map. The asymptotic stability

of the system is then analyzed from the characteristic multipliers or eigenvalues of

the map. While previous works for the TFEA method have solely focused on second

order DDE’s, the goal here is to present a new approach that is also applicable to

first order DDE’S with a single time delay. For instance, consider following time delay

system that has a single state variable

ẏ(t) = α y(t) + β y(t− τ) , (2.5)

where α and β are scalar control parameters and τ is the time delay. Since the Eq (2.5)

does not have a closed form solution, the first step in the analysis is to consider an

approximate solution for the jth element of the nth period as a linear combination of

polynomials or trial functions. The assumed solution for the state and the delayed

state are

yj(t) =
3∑

i=1

an
jiφi(σ) , (2.6a)

yj(t− τ) =
3∑

i=1

an−1
ji φi(σ) , (2.6b)

where a superscript is used for the coefficients to identify the nth period for the current

state and n − 1 period in the delayed state variable. Each trial function, φi(σ), is

written as a function of the local time, σ, within the jth element and the local time
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is allowed to vary from zero to the time for each element, tj. The introduction of

local time variable is necessary to keep the trial functions orthogonal on the interval

0 ≤ σ ≤ tj. To further clarify the local time concept, assume that E elements are

used in the analysis and that the time for each element is taken to be uniform, then

the time interval for a single element is tj = τ/E. The polynomials used for this

analysis are

φ1(σj) = 1− 23(
σj

tj
)2 + 66(

σj

tj
)3 − 68(

σj

tj
)4 + 24(

σj

tj
)5 , (2.7a)

φ3(σj) = 16(
σj

tj
)2 − 32(

σj

tj
)3 + 16(

σj

tj
)4 , (2.7b)

φ5(σj) = 7(
σj

tj
)2 − 34(

σj

tj
)3 + 52(

σj

tj
)4 − 24(

σj

tj
)5 . (2.7c)

The above trial functions are orthogonal on the interval of 0 ≤ σ ≤ tj and they are

obtained through interpolation. The interpolated trial functions are constructed such

that the coefficients of the assumed solution to directly represent the state variables at

the beginning σ = 0, middle σ = tj/2, and end σ = tj of each element (see Fig 2.1).

The graph in Fig 2.1 illustrates that the coefficients of the assumed solution take

on the values of the state variables at specific times. Furthermore, these functions

satisfy the natural and essential boundary conditions (i.e. the states at the end of

one element match those at the beginning of the following element).

Substituting Eq. (2.6a) and Eq. (2.6b) into Eq. (2.5) results in the following

3∑
i=1

(
an

jiφ̇i(σ)− αan
jiφi(σ)− βan−1

ji φi(σ)
)

= error , (2.8)

which shows a non-zero error associated with the approximate solutions of Eq. (2.6a)

and Eq. (2.6b). In order to minimize this error, the assumed solution is weighted
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Figure 2.1: Time line of the state variable over an interval of 2π, dots denote location

where the coefficients are equivalent to the states and dotted lines mark the beginning

and end of each temporal element

by multiplying by a set of test functions, or so called weighting functions, and the

integral of the weighted error is set to zero. This is called the method of weighted

residuals, are requires that the weighting functions be linearly independent [26]. The

weighting functions used for the presented analysis were shifted Legendre polynomials.

These polynomials were used because they satisfy the required condition of linear

independence. Here, only the first two shifted Legendre polynomials ψ1(σ) = 1 and

ψ2(σ) = 2(σ/tj)− 1 are used. The weighted error expression becomes

∫ tj

0

(
an

jiφ̇i(σ)− αan
jiφi(σ)− βan−1

ji φi(σ)
)
ψp(σ)dσ = 0 . (2.9)

After applying each weighting function, a global matrix equation can be obtained

by combining the resulting equations for each element. To provide a representative

expression, we assume two elements are sufficient and write the global matrix of
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Eq. (2.10). This equation relates the states of the system in the current period to the

states of the system in the previous period.



1 0 0 0 0

N1
11 N1

12 N1
13 0 0

N1
21 N1

22 N1
23 0 0

0 0 N2
11 N2

12 N2
13

0 0 N2
21 N2

22 N2
23





a11

a12

a21

a22

a23



n

=



0 0 0 0 Φ

P 1
11 P 1

12 P 1
13 0 0

P 1
21 P 1

22 P 1
23 0 0

0 0 P 2
11 P 2

12 P 2
13

0 0 P 2
21 P 2

22 P 2
23





a11

a12

a21

a22

a23



n−1

,

(2.10)

The terms inside the matrices of Eq. (2.10) are scalar terms that are given by Φ = 1

and

N j
pi =

∫ tj

0

(
φ̇i(σ)− αφi(σ)

)
ψp(σ) dσ , (2.11a)

P j
pi =

∫ tj

0

βφi(σ)ψp(σ) dσ , (2.11b)

Eq. (2.10) describes a discrete time system or a dynamic map that can be written

in a more compact form Gan = Han−1 where the elements of the G matrix are

defined by the each N j
pi term of Eq. (2.11a). Correspondingly, the elements of the H

matrix are defined by the P j
pi terms from Eq. (2.11b). Multiplying the dynamic map

expression by G−1 results in an = Qan−1 where Q= G−1H. Applying the conditions

of the chosen trial functions to the beginning, midpoint, and end conditions allows

us to replace an and an−1 with yn and yn−1, respectively. Here, yn is the vector that

represents the state variable at the beginning, middle, end of each temporal finite

element. Thus, the the final expression becomes
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Figure 2.2: Stability Chart for Eq. (2.5) for a single element,, (graph (a)) and CM

trajectories in complex plane,(graph (a)).

yn = Qyn−1 , (2.12)

which represents a map of the state variable over a single delay period (i.e the Q

matrix relates the state variable at time instances that correspond to the beginning,

middle, and end of each element to the state variable one period into the future).

The eigenvalues of the monodromy operator Q are called characteristic multipliers

(CMs). The criteria for asymptotic stability requires that the magnitudes of the CMs

must be in the modulus of less than one for a given combination of the control

parameters. The CM trajectories in Figure 2.2(b) shows how the changes in the

control parameter causes the CM trajectories pass into the unit circle in a complex

plane. The Figure 2.2(a) shows the boundaries between stable and unstable regions

as a function of the control parameters α and β. The authors note that the resulting

stability chart is identical to the results of Kálmar-Nagy [27]. Before generalizing the
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presented approach to autonomous DDE’s with an arbitrary number of states, we

note that convergence can be obtained by simply increasing the number of elements

in the TFEA method [28].

2.2.2 Generalization for Autonomous DDE

While the previous section examined a scalar autonomous DDE, the intent of this

section is to generalize the aforementioned approach to the first order DDE’s that

may have multiple states. The example shown here is often used in modeling the

sampling effect in control problems [29]. These systems can be commonly written in

the matrix vector form as,

ẍ(t) + αx(t) = β x(t− τ) (2.13)

In the above equation, the delay is set to τ= 2π and the terms α and β are used as

the system control parameters. The first step in the analysis requires Eq. (2.13) to

be written in state space form,

ẏ1

ẏ2

 =

 0 1

−α 0

y1

y2

 +

0 0

β 0

y1(t− τ)

y2(t− τ)

 , (2.14)

where y1 = x and y2 = ẋ. At this point, Eq. (2.14) can now be regarded as being iden-

tical to Eq. (2.1) which is the general case for an autonomous DDE. The expressions

for state and the delayed state variables are now written as vectors
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yj(t) =
3∑

i=1

a n
jiφi(σ) , (2.15a)

yj(t− τ) =
3∑

i=1

a n−1
ji φi(σ) . (2.15b)

during the jth element. After substituting the assumed solution forms into Eq. (2.14)

and using the method of weighted residuals, a global matrix can be obtained that

relates the states of the system in the current period to those in the previous period,



I 0 0 0 0

N1
11 N1

12 N1
13 0 0

N1
21 N1

22 N1
23 0 0

0 0 N2
11 N2

12 N2
13

0 0 N2
21 N2

22 N2
23





a11

a12

a21

a22

a23



n

=



0 0 0 0 Φ

P1
11 P1

12 P1
13 0 0

P1
21 P1

22 P1
23 0 0

0 0 P2
11 P2

12 P2
13

0 0 P2
21 P2

22 P2
23





a11

a12

a21

a22

a23



n−1

,

(2.16)

where I is an identity matrix and the terms Nj
pi and Pj

pi now become the following

square matrices

Nj
pi =

∫ tj

0

(
Iφ̇i(σ)−Aφi(σ)

)
ψp(σ) dσ , (2.17a)

Pj
pi =

∫ tj

0

Bφi(σ)ψp(σ) dσ , (2.17b)

For this particular system, Φ is a 2 × 2 identity matrix. Using the same criteria for

stability as described previously, an example stability chart has been constructed in

Fig. 2.3. As noted by references [25,30], the stability chart for this system has stable

regions that are in the form of disjoint triangles and stability boundaries with slopes

of ± 1.
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Figure 2.3: Stability chart for the system defined by Eq. (2.13). Stable regions are

shaded and unstable regions are left blank.
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2.3 Non-autonomous Delay Systems

While both examples from the previous section consider autonomous DDE’s, the

presented approach can also be applied to non-autonomous DDE’s as long as a few

subtle changes are implemented. Therefore, the goal of this section is to illustrate the

changes required to handle non-autonomous DDE’s. Some specific examples where

non-autonomous DDE’s arise are in controlled systems with base excitation and in

manufacturing applications such as milling. More specifically, references [31–33] give

the governing equations for a milling process which are shown to contain both a time

periodic coefficient and a single time delay.

This sections starts by examining the equations for a continuous non-autonomous

system known as the delayed damped Mathieu Equation. This example is followed

by the application of the temporal finite element method to a system that is non-

autonomous, piecewise continuous, contains a single time delay to highlight the flex-

ibility of the presented approach.

2.3.1 Continuous and Time Periodic DDE

In this section, we consider the Mathieu Equation as the case of a damped and

delayed oscillator. The damped delayed Mathieu Equation (DDME) provides as

representative system with the combined effect of parametric excitation and a single

time delay. The original version of Mathieu’s Equation did not contain either damping

or a time delay and was discussed first in 1868 by Mathieu [34] to study the vibration

of an elliptical membrane. Bellman and Cook [35] and Hsu and Bhatt [36] both made

attempts to lay out the criteria for stability using D-subdivision method combined

with the theorem of Pontryagin [37]. Insperger and Stépán used analytical and semi-

discretization approach in references [23, 38, 39] and Mann et al. [40] used a second
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order temporal finite element analysis to investigate the stability of the DDME. The

equation of interest is

ẍ(t) + κẋ(t) +
(
δ + ε cos(ω t)

)
x(t) = b x(t− τ), (2.18)

where the equation has period of T = 2π/ω, a damping coefficient of κ, a constant

time delay τ=2π. The parameter b acts much like the gain in a state variable feedback

system to scales the influence of the delayed term. For the results of this section, the

parameter ω is set to one. According to the extended Floquet theory for DDE, this

will require the monodromy matrix to be constructed over a period of T = 2π/ω = 2π.

The first step in the analysis is to rewrite Eq. (2.18) as a state space equation,

ẏ1

ẏ2

 =

 0 1

−(δ + ε cos(ωt)) k

y1(t)

y2(t)

 +

0 0

b 0

y1(t− τ)

y2(t− τ)

 (2.19)

where y1 = x and y2 = ẋ. Once the equation is written in the form of a state

space model, it becomes apparent that the more generalized form is Eq. (2.4). This

non-autonomous case has two matrices A(t) and B which are given by

A(t) =

 0 1

−δ − ε cos(ωt) k

 , and B =

0 0

b 0

 . (2.20)

Once again, the solution process starts by substituting Eq. (2.15a) and Eq. (2.15b)

into Eq. (2.4). The solution for the jth element then requires a slight alteration to

the time periodic terms inside the matrices. Assuming that E uniform temporal
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elements are applied, the time duration for each element would be tj = T/E. Next,

we substitute t = σ + (j − 1)tj into the matrix A(t) so that the cosine term takes on

the correct values over the entire period T = 2π/ω. These terms are then substituted

into Eq. (2.4) and the method of weighted residuals is applied - as in the previous

sections. The expressions that populate the matrix of Eq. (2.16) are

Nj
pi =

∫ tj

0

(
Iφ̇i(σ)−A

(
σ + (j − 1)tj

)
φi(σ)

)
ψp(σ) dσ , (2.21a)

Pj
pi =

∫ tj

0

Bφi(σ)ψp(σ) dσ , (2.21b)

and Φ is taken to be the identity matrix.

The Fig. 2.3.1 shows stability chart for different values of ε and κ. It can be seen

from stability charts that as the damping is increased the stability properties of the

system improves. Also from the three figures in each row it can be observed that the

stable parameter space begins to unify as the damping term is increased. At the same

time when the amplitude of ε is increased due to the effect of parametric excitation

the stability regions again start getting disjoint.

2.3.2 Piecewise Continuous and Time Periodic DDE

Delay differential equations are often used to describe the self-excitation of machining

processes [24,41–43]. In order to avoid the regions in the parameter space where self-

excited vibrations may exist, one needs to specify the range of parameters (the spindle

speed and the depth of cut) at which the process is stable. In this section, we examine

the time periodic DDE model for milling that was given by Mann and Young [13].

The equation of interest is
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Figure 2.4: Stability chart for Eq. (2.18) using τ = 2π. The results of each graph

are for the parameters: (a) ε = 0 and κ = 0; (b) ε = 0 and κ = 0.1; (c) ε = 0 and

κ = 0.2; (d) ε = 1 and κ = 0: (e) ε = 1 and κ = 0.1; (f) ε = 1 and κ = 0.2; (g) ε = 2

and κ = 0; (h) ε = 2 and κ = 0.1; (i) ε = 2 and κ = 0.2

.
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ẍ(t) + 2ζωẋ(t) + ω2x(t) = −bKsx(t)
[
x(t)− x(t− τ)

]
, (2.22)

where ζ = 0.0012 is the damping ratio, ω = 920.5 is the circular natural frequency,

b is the axial depth of cut, and Ksx(t) is given by

Ksx(t) = gp(ten − tex)[Γ1 cos θt + Γ2 sin θt] sin θt , (2.23)

where ten is the time when the tool enters the cut and tex is the time when the

tool exits the cut. The Heavyside step function gp assumes a value of one during the

time interval from ten ≤ t ≤ tex and is zero for times larger than tex. This makes

milling an example of piecewise continuous system.

Following the same method as shown for damped delayed Mathieu Equation in

the earlier part of this section, the first step would be to write the Eq. (2.22) in the

state space form which results in

A(t) =

 0 1

−ω2 − bKsx(t) −2ζω

 , and B(t) =

 0 0

bKsx(t) 0

 . (2.24)

As the terms in the matrices A(t) and B(t) are time periodic, we substitute

t = σ + (j − 1)tj in those matrices so that the periodic terms take the correct values

over the entire period. Then the matrices A(t) and B(t) are then substituted in

Eq. (2.4) and the method of weighted residuals is applied as in the previous sections.
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Nj
pi =

∫ tj

0

(
Iφ̇i(σ)−A

(
σ + (j − 1)tj

)
φi(σ)

)
ψp(σ) dσ , (2.25a)

Pj
pi =

∫ tj

0

B
(
σ + (j − 1)tj

)
φi(σ)ψp(σ) dσ , (2.25b)

The expressions Eq. (2.25a) and Eq. (2.25b) are used to populate the matrix

Eq. (2.16), where the term Φ is defined as a 2 × 2 matrix Eq. (2.26) and the terms

in the matrix are given by Eq. (2.28a) to Eq. (2.28d) in the appendix.

Φ =

Φ11 Φ12

Φ21 Φ22 ,

 (2.26)

Radial Immersion θen θex

%

5 0 0.1436π

10 0 0.2048π

20 0 0.2952π

50 0 0.5π

Table 2.1: Values of entry and exit angles for up-milling with different percentage of

radial immersion

Figure 2.5 and 2.6 show milling stability charts for several different cases of the

radial immersion. Here, the radial immersion is defined as the fraction of the tool

diameter that engaged in the cut as presented in references [44–46]. However, this can

also be expressed solely in terms of entry and exit angles θen and θex, respectively. For

instance, the results of Fig. 2.5 are for an up-milling operation which can be defined

by the θen and θex values of Table 2.1. The conversion from θen and θex to the values

of ten and tex, terms which give the time interval for gp to be either one or zero, are

given by the following expressions
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Figure 2.5: Stability Chart for up-milling: with the following percentage radial im-

mersion (a)=5%, (b)=10%, (c)=20% and (d)=50%. The percentage radial immersion

corresponds to the θen and θex values given in Table 2.1, the values for ten and tex are

obtained from Eq. (2.27a) and Eq. (2.27b).
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ten =
θen

Ω
, (2.27a)

tex =
θex

Ω
. (2.27b)

where ten and tex entry and exit times, respectively, θen and θex are the entry and exit

angles and Ω is the spindle speed.
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Figure 2.6: Stability Chart for down-milling: with the following percentage radial

immersion (a)=5%, (b)=10%, (c)=20% and (d)=50%. The percentage radial immer-

sion corresponds to the θen and θex values given in Table 2.2, the values for ten and

tex are obtained from Eq. (2.27a) and Eq. (2.27b).

The results of Fig. 2.6 corresponds to a down-milling operation with the entry

and exit angles listed in the Table 2.2. The corresponding entry and exit times can
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Radial Immersion θen θex

%

5 0.8564π π

10 0.7952π π

20 0.7048π π

50 0.5π π

Table 2.2: Values of entry and exit angles for down-milling with different percentage

of radial immersion

be obtain by the same expressions used for the previous case (i.e. Eq. (2.27a) and

Eq. (2.27b), respectively). It can be observed from the Figure 2.5 and 2.6 that the

stability charts for up-milling and down-milling are not the same and as the radial

immersion is increased the unstable lobes starts merging, reducing the stable region

in the stability chart.

2.4 Conclusion

This chapter presents a temporal finite element analysis approach for investigating

the stability behavior of linear autonomous and nonautonomous DDE’s. In contrast

to the results of previous work, which could only be applied to second order DDE’s,

the present work is applicable to a broader class of systems that may be written in

the form of a state space model. The first section describes an introductory example,

an autonomous DDE with a single state, prior to generalizing the formulation to

autonomous DDE’s with multiple states. The examples of the third section extends

the presented approach to time-periodic DDE’s and highlight the fact that it can be

applied to governing equations that are piecewise continuous.

A specific limitation of the presented work is that it is only applicable to DDE’s
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that contain a single time delay. However, the extension of the presented approach

to both nonlinear DDE’s and DDE’s with multiple time delays is an area of future

research.

2.5 Appendix

Φ11 =
λ1e

λ2tf − λ2e
λ1tf

λ1 − λ2

, (2.28a)

Φ12 =
eλ1tf − eλ2tf

λ1 − λ2

, (2.28b)

Φ21 =
λ1λ2e

λ2tf − λ1λ2e
λ1tf

λ1 − λ2

, (2.28c)

Φ22 =
λ1e

λ1tf − λ2e
λ2tf

λ1 − λ2

. (2.28d)
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Chapter 3

Uncharted Islands of Chatter

Instability in Milling

3.1 Introduction

The productivity of high speed milling operations is limited by the onset of a self-

excited vibration known as chatter [6]. Unless avoided, chatter vibrations may cause

large dynamic loads which can damage the machine spindle, cutting tool, or workpiece

and leave behind a poor surface finish [6,12,42]. In practice, one of the most prevalent

strategies is to simply avoid chatter by applying analyses that predict parameter

domains of stable cutting.

While there exist a relatively large body of work that investigates the phenomenon

of regenerative chatter [7, 9, 47–49], it is well-known that the pioneering work of

Tlusty [2] and Tobias [3, 4] led to the development of stability charts. More specif-

ically, their efforts provided stability charts or lobe diagrams that compactly repre-

sented stability information as function of the control parameters in a turning process.
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A specific discovery from their work was that the coupling between the cutting forces

and tool motion could be captured by including a delay position variable in the gov-

erning equations. Thus a number of investigators have targeted this mechanism to

predict chatter vibration [5,15,50–52]. On the other hand, several authors have also

shown that additional physical mechanisms can influence stability such as investiga-

tions of nonlinearity [18,40,53,54], thermoplastic behavior in chip formation [55], and

frictional effects at the toolchip interface [56].

In comparison to the case of milling, the prior works for turning are only ap-

proximate since they rely on the assumption of continuous cutting. In comparison

to the case of milling, these prior stability analyses are only approximate since they

rely assumption of continuous cutting. In milling, the cutting forces change direction

with tool rotation and cutting is interrupted (i.e. zero force values are experienced

when the tool is not cutting and a relatively large force is obtained during cutting).

The focus of many recent works has been the occurrence of new bifurcation phenom-

ena in interrupted cutting processes. In addition to Neimark-Sacker or secondary

Hopf bifurcations, period-doubling bifurcations have now been analytically and/or

experimentally shown in several references [20,49,57–59].

The phenomena of isolated islands of chatter vibration were first shown to occur

in interrupted turning operations by Szalai et. al [60]. More recently, Zatarain et. al

showed a similar phenomenon could occur for helix angle tools in milling processes [9].

Their work used a frequency domain approach to investigate the influence of the helix

angle on stability and described some experimental validation. However, the authors

used a two-flute end mill for their experiments. Since the experimental validation

hinged upon distinguishing the difference between runout and period-doubling, it

would have been diffcult to distinguish between these effects without also developing a

new approach to recognize chatter under these conditions. In particular, reference [14]

shows that runout and period-two motion give nearly indistinguishable frequency
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spectra for a two flute tool and other methods are required for chatter detection.

The focus of the current research is to provide independent verifcation of the

phenomena described by Zatarain et. al [9]. Furthermore, we believe that conclusive

evidence is presented to show isolated islands of chatter vibration do exist in milling

processes. The chapter is organized as follows - the first section gives the detailed

experimental setup. Followed by the governing equation related to the experimental

setup which also includes the derivation for the cutting coefficients for an helical tool.

The third section gives an new lytical approach to solve the piece-wise continuous

DDE. A separate section on trends in the stability boundaries due to effect of change

in helix angle and the radial immersion is presented. This section also shows the

changes in stability lobes for different milling operation viz. up-milling and down-

milling.

3.2 Description of the Experimental Apparatus

A schematic diagram of the experimental system is shown in the Fig. 3.1. The ex-

perimental was designed to mimic a rigid tool and compliant workpiece arrangement

which required a flexure that was an order of magnitude more compliant than the

cutting tool. Furthermore, the goal was to limit the number of degrees of freedom

and focus on the island phenomenon for a relatively simple system. Therefore, the

complaint flexure was machined in such that it was only compliant in a single direc-

tion. With regards to designing the flexure to have a selected compliance, refer the

examples provided within reference [61]

A single non-contact type eddy current displacement transducer was used to mea-

sure the displacement and the output of the transducer was filtered using a digital

low pass filter and sampled at 25 (KHz), with data acquisition hardware connected to
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a laptop computer. A laser tachometer was used to measure a periodic 1/revolution

timing pulse using a barcode painted on the spindle as shown in the Fig. 3.1.

Cutting test were performed by feeding the tool along the compliant direction of

the flexure which also corresponds to the x-direction of Fig. 3.1. The cutting tool used

for the experiments was a three flute, 19.05 (mm) diameter, peripheral end milling

with a 30◦ helix angle. After mounting an aluminum 6061-T6 test specimen onto the

flexure, modal parameters were obtained by performing instrumented impact test on

both the flexure and cutting tool (see Tab. 3.1). In comparison with the first modal

of the flexure, the first modal stiffness of the tool was more than 20 times greater.

The radial immersion is another parameter that is required to describe a given

milling process. It can be defined from a combination of two parameters shown in

Fig. 3.3. More specifically, the ratio of the radial step over distance, rs, to the tool

diameter, D, is called the radial immersion

RI =
rs

D
=

1− cos θn

2
, (3.1)

where θn is the angular distance that the tool tip is engaged in cutting. The radial

immersion used for all cutting tests was 0.525 or 5.25%.

Table 3.1: Flexure modal parameters and workpiece cutting coefficients.

m (Kg) ω (rad/s) ζ Kn (N/m2) Kt (N/m2)

6.4363 1057.8 0.0056 2.0 ×108 5.5 ×108
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3.3 Milling Process Model

To mimic results of experimental modal tests, the equation of motion is assumed to

be the single degree of freedom shown in Fig. 3.3. The mathematical representation

of this system is given by

ẍ+ 2ζωẋ+ ω2x =
1

m
Fx(t, τ) , (3.2)

where ζ is the damping ratio, ω is the circular natural frequency, and m is the modal

mass. The final term in the governing equation is the x-direction cutting force,

Fx(t, τ), which is a function of both time and the time delay between consecutive

passages of the cutting teeth, τ . The remainder of this section describes the cutting

force that is later applied when analyzing the governing equation of motion.

3.3.1 Cutting Force Model

This section derives analytical expressions for the x-direction cutting forces of a helical

end mill. A typical peripheral end mill with helical flutes is shown in Fig. 3.2. The

tangential and normal forces acting on a differential element of height dz can be

expressed as

dFt = g(z, t)Ktw (θ(z, t), τ) dz , (3.3a)

dFn = g(z, t)Knw (θ(z, t), τ) dz , (3.3b)

where θ(z, t) is the rotation angle of the reference tooth shown in Fig. (3.3a–b).

Here, the term ‘reference tooth’ is applied draw attention to the fact that we have
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only written the cutting forces on a single cutting tooth and not for multiple cutting

teeth. However, when multiple teeth are engaged in cutting, the total force is found

from a summation of the individual forces from each cutting tooth. The expression

for the angular orientation of the reference tooth is θ(z, t) = Ωt − κz where Ω is

the tool rotational speed in (rad/s) and κ = (2 tan β)/D is defined in terms of the

helix angle, β. The function g(z, t) is a Heaviside step function that accounts for the

fact that milling is an interrupted cutting process and assumes a value one when the

cutting tooth is engaged in cutting and zero when the tool is out of the cut. The

cutting coefficients along the tangential and normal directions of the tool are given by

Kt and Kn. Following the work of reference [62, 63], a circular tool path is assumed

which allows the radial chip thickness for the reference tooth to be written as

w
(
θ(z, t), τ

)
= h sin θ(z, t) +

[
x(t)− x(t− τ)

]
sin θ(z, t) , (3.4)

where h is the feed per tooth and τ is the time delay between consecutive tooth

passages. The cutting force along the compliant direction of the workpiece is obtained

by integrating Eq. (3.3a) and Eq. (3.3b) with respect to the differential axial depth,

dz. The expression for the reference flute of the tool becomes

Fx(t, τ) =

∫ z2(t)

z1(t)

−g(z, t)
[
dFt cos θ(z, t) + dFn sin θ(z, t)

]
dz , (3.5)

where the limits of integration z1(t) and z2(t) depend upon several conditions. In

particular, the limits of integration are piecewise continuous in an entry, middle of

the cut, and exit region. The piecewise continuous integration limits mean that

analytical cutting force expression of Eq. (3.5) is piecewise continuous in each of the

three regions labeled 1–3 of Fig. 3.2. Table 3.3.1 gives the z1(t) and z2(t) expressions
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Figure 3.2: Two different cases of helix angle. Each case shows the three regions of

consideration 1. entry, 2. middle. and 3. exit with the corresponding values of z

for each cutting regions and for two different cases that might arise. Here, the entry

angle depends upon whether up-milling (θst = 0) or down-milling (θst = π − θn)

process is being examined.

To delineate between the two different cases of Table 3.3.1, we first define a new

parameter κ = (2 tan β)/D. Here, we conclude that the second case will only arise if

the tool tip exits before z2(t) takes on a value equal to b. For this second case, the

upper limit of integration at the instant the tool tip exits, tex, is given by z2(tex) =

θn/κ. Therefore, the second case is applied when z2(tex) < b and the first case is

applied otherwise.

3.4 Stability Analysis

The goal of this section is to describe a new solution approach for determining the

asymptotic stability boundaries for the governing delay differential equation. While
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Table 3.2: Integration limits for each situation and cutting region.

Region Case I Case II

Entry z1 = 0 z1 = 0

z2(t) = (Ωt− θst) /κ z2(t) = (Ωt− θst) /κ

Middle z1 = 0 z1(t) =
(
Ωt− (θn + θst)

)
/κ

z2 = b z2(t) = (Ωt− θst) /κ

Exit z1(t) =
(
Ωt− (θn + θst)

)
/κ z1(t) =

(
Ωt− (θn + θst)

)
/κ

z2(t) = b z2(t) = b

the new approach is based upon the prior work of references [10–14], the primary

advantage of the current formulation is the ability to analyze delay equations in

the form of state space models. Given that the the cutting forces are piecewise

continuous, the temporal finite element approach will be shown to provide a natural

way of discretizing the system. In particular, the cutting time was divided into

temporal elements which may be conveniently truncated to capture the different limits

of integration introduced in the previous section.

An expanded expression for the x-direction forces is obtained by substituting

Eq. (3.3a), Eq. (3.3b), and Eq. (3.4) into Eq. (3.5). This gives the following expression,

Fx =

∫ z2(t)

z1(t)

−g(z, t)
(h+ x(t)− x(t− τ)

2

)[
Kt sin 2θ(z, t)+Kn(1−cos 2θ(z, t))

]
dz ,

(3.6)

Equation (3.6) can be written in a more compact form as Fx(t) = Kc(t)[x(t)− x(t−

τ)] + f0(t), where Kc(t) and f0(t) is compact notation for

35



Kc(t) = −1/2

∫ z2(t)

z1(t)

[Kt sin 2θ(z, t) +Kn(1− cos 2θ(z, t))]dz , (3.7a)

f0(t) = −h/2
∫ z2(t)

z1(t)

[
Kt sin 2θ(z, t) +Kn(1− cos 2θ(z, t))]dz . (3.7b)

As shown in reference [48], variational system can be formed by writing the solution

as perturbation ξ(t) about the τ -periodic motion

x = xp(t) + ξ(t) , (3.8)

where xp(t) is defined as the τ -periodic motion of the tool.Substituting Eq. (3.6) and

Eq. (3.8) into Eq. (3.2) and subtracting off the equation for only periodic motion

gives the final equation for further study

ξ̈ + 2ζωξ̇ + ω2ξ =
1

m
Kc(t) [ξ − ξ(t− τ)] . (3.9)

3.4.1 State Space TFEA Approach

Time Finite Element Analysis is an approximation method that divides the time in-

tervals of interest into a finite number of temporal elements. This approach allows

the original DDE to be transformed into the form of a discrete map. The asymptotic

stability of the system is then analyzed from the characteristic multipliers or eigen-

values of the map. The first step in the new approach is to write Eq. (3.9) in the

form of the following state space equation,
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ẏ1

ẏ2

 =

 0 1

−ω2 − Kc(t)
m

−2ζω

y1(t)

y2(t)

 +

 0 0

Kc(t)
m

0

y1(t− τ)

y2(t− τ)

 , (3.10)

where y1 = ξ and y2 = ξ̇. Once the governing equation is written in the state space

form, it can be regarded into a more generalized form as,

ẏ(t) = A(t)y(t) + B(t)y(t− τ) , (3.11)

where the term A(t) and B(t) are time periodic. As the delay differential equation

does not have a closed form solution the TFEA method assumes an approximate

solution for the equation Eq. (3.11). The assumed solution for the state and the

delayed are written as linear combination of polynomials or trial function and are

given as,

y(t) =
3∑

i=1

an
jiφi(σ) , (3.12a)

y(t− τ) =
3∑

i=1

an−1
ji φi(σ) , (3.12b)

here a superscript is used for the coefficients to identify the nth period for the current

state and n − 1 period in the delayed state variable. Each trial function, φi(σ), is

written as a function of the local time, σ, within the jth element and the local time

is allowed to vary from zero to the time for each element, tj. The introduction of

local time variable is necessary to keep the trial functions orthogonal on the interval

0 ≤ σ ≤ tj. As the terms inside the matrices A(t) and B(t) are periodic, we substitute

t = σ+t0 into these matrices so that periodic terms take on the correct values over the
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entire period. Here, the term t0 is the elapsed time prior to the start of the element.

The polynomials used for the analysis are,

φ1(σj) = 1− 23

(
σ

tj

)2

+ 66

(
σ

tj

)3

− 68

(
σ

tj

)4

+ 24

(
σ

tj

)5

, (3.13a)

φ2(σj) = 16

(
σ

tj

)2

− 32

(
σ

tj

)3

+ 16

(
σ

tj

)4

, (3.13b)

φ3(σj) = 7

(
σ

tj

)2

− 34

(
σ

tj

)3

+ 52

(
σ

tj

)4

− 24

(
σ

tj

)5

. (3.13c)

These trial functions are chosen in such a way that they orthogonal and they allow the

coefficients of the assumed solution the states of the system at the beginning, middle,

and end of each element. Substituting Eq. (3.12a) and Eq. (3.12b) into Eq. (3.11)

results in the following

3∑
i=1

(
Ian

jiφ̇i(σ)−A(σ + t0)a
n
jiφi(σ) −B(σ + t0)a

n−1
ji φi(σ)

)
= error , (3.14)

which shows a non-zero error associated with the approximate solutions of Eq. (3.12a)

and Eq. (3.12b). In order to minimize this error, the assumed solution is weighted

by multiplying by a set of test functions, or so called weighting functions, and the

integral of the weighted error is set to zero. This is called the method of weighted

residuals, and requires that the weighting functions be linearly independent [26]. The

weighting functions used for the presented analysis were shifted Legendre polynomials.

These polynomials were used because they satisfy the required condition of linear

independence. Here, only the first two shifted Legendre polynomials ψ1(σ) = 1 and

ψ2(σ) = 2(σ/tj)− 1 were applied. The weighted error expression becomes

∫ tj

0

(
an

jiφ̇i(σ)−A(σ + t0)a
n
jiφi(σ)− B(σ + t0)a

n−1
ji φi(σ)

)
ψp(σ)dσ = 0 . (3.15)
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After applying each weighting function, a global matrix equation can be obtained

by combining the resulting equations for each element. This equation relates the

states of the system in the current period to the states of the system in the previous

period. For the purposes of illustration, the two element solution would have the

following global matrix



I 0 0 0 0

N1
11 N1

12 N1
13 0 0

N1
21 N1

22 N1
23 0 0

0 0 N2
11 N2

12 N2
13

0 0 N2
21 N2

22 N2
23





a11

a12

a21

a22

a23



n

=



0 0 0 0 Φ

P1
11 P1

12 P1
13 0 0

P1
21 P1

22 P1
23 0 0

0 0 P2
11 P2

12 P2
13

0 0 P2
21 P2

22 P2
23





a11

a12

a21

a22

a23



n−1

,

(3.16)

where I is an identity matrix and Φ is the a 2 × 2 state transition matrix. Before

proceeding, the authors note that a minimum of three elements are required to form a

global matrix that truncates the temporal elements at the end of each cutting region.

The terms inside the global matrix are the following square matrices

Nj
pi =

∫ tj

0

(
Iφ̇i(σ)−A

(
σ + t0

)
φi(σ)

)
ψp(σ) dσ , (3.17a)

Pj
pi =

∫ tj

0

B
(
σ + t0

)
φi(σ)ψp(σ) dσ . (3.17b)

The state transition matrix, Φ, provides the exact solution to the free vibration

problem to account for the time intervals when the tool is not cutting. The expression

for Φ is
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Φ =

Φ11 Φ12

Φ21 Φ22

 . (3.18a)

The following are the individual matrix terms

Φ11 =
λ1e

λ2tf − λ2e
λ1tf

λ1 − λ2

, (3.19)

Φ12 =
eλ1tf − eλ2tf

λ1 − λ2

, (3.20)

Φ21 =
λ1λ2e

λ2tf − λ1λ2e
λ1tf

λ1 − λ2

, (3.21)

Φ22 =
λ1e

λ1tf − λ2e
λ2tf

λ1 − λ2

, (3.22)

(3.23)

where tf is the time for free vibration, λ1 = −ζω + ω
√
ζ2 − 1, and λ2 = −ζω −

ω
√
ζ2 − 1.

Eq. (3.16) describes a discrete time system or map that can be written in a more

compact form Gan = Han−1 where the elements of the G matrix are defined by the

each Nj
pi term of Eq. (3.17a). Correspondingly, the elements of the H matrix are

defined by the Pj
pi terms from Eq. (3.17b). Multiplying the dynamic map expression

by G−1 results in an = Qan−1 where Q= G−1H. Applying the conditions of the

chosen trial functions to the beginning, midpoint, and end conditions allows us to

replace an and an−1 with yn and yn−1, respectively. Here, yn is the vector that

represents the state variable at the beginning, middle, end of each temporal finite

element. Thus, the the final expression becomes

yn = Qyn−1 , (3.24)
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The stability of the system can be directly determined from the monodromy operator

Q, which provides a mapping over a single delay period. The eigenvalues of the

monodromy operator Q are called characteristic multipliers (CMs). The criteria for

asymptotic stability requires that the magnitudes of the CMs must be in the modulus

of less than one for a given combination of the control parameters. For any CMs with

magnitude greater the one, the system is considered to be unstable.

3.5 Stability Trends

The goal of this section is to apply the analysis of the previous section to investigate

the influence of helix angle, radial immersion and feed direction on the stability of the

experimental system. While the results of prior work have shown stability differences

that can occur due to a change in the feed direction and radial immersion [58,59], the

main focus here is on changes in the stability boundaries that are attributed to the

tool helix angle. To be more specific, this section shows isolated islands of chatter

vibration can arise for helix angle tools and that the location of the islands is different

for up-milling and down-milling.

Depending on the feed direction, a milling process can be categorized as either

up-milling and down-milling (see Fig. 3.3).

Fig. 3.4 shows up-milling and Fig. 3.5 shows down-milling stability charts for

the system described in section two with 30o helix angle and with changes in the

radial immersion. Comparing the two figures for up-milling and down-milling, it can

be observed that the period doubling lobes vary in size but are located more or less

around the same spindle speed range. However this is not true for the secondary Hopf

bifurcations lobes, for up-milling these Hopf bifurcations lobes are located to the left

of the period doubling lobes and the for the case of down-milling they are to the right
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Figure 3.3: Schematic diagrams of single degree of freedom milling process: (a) Up-

milling and (b) Down-milling

of the period doubling lobes , which is like a mirror image of each other. Basically the

period doubling lobes are related to the impact effect of the tool entering and leaving

the workpiece due which these lobes are independent of the direction of feed. Further

if we look at the individual plots in each of these figures, it can be observed that as the

percentage radial immersion is reduced the Hopf bifurcation lobe starts reducing in

size and progressively the period doubling lobes starts to disintegrate from the Hopf

bifurcation lobe. The analytical investigation becomes interesting at the point where

the period doubling unstable lobe completely disintegrated from the main lobe, which

is observed for 5.25% and 2% radial immersion for both up-milling Fig.( 3.4c–d) and

down-milling Fig.( 3.5c–d) case. These disintegrated period doubling lobes are called

unstable islands henceforth in the manuscript.

To confirm the existence of islands due to the effect of helix angle of the tool in

the analysis, we show stability chart for different helix angles in Fig. 3.6 for the case

of up-milling and Fig. 3.7 for the case of down-milling . To illustrate the effect of

helix the stability plots are compared with the first subfigure in each figure, which has

zero helix angle and subsequent stability charts are presented with 10o, 30o, and 45o
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Figure 3.4: Stability Charts for Up-milling with Radial Immersion of : (a) 2% , (b)

5.25% (c) 10%, (d) 20%
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Stability C hart with changes in radial immersion
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Figure 3.5: Stability Charts for Down-milling with Radial Immersion of : (a) 2% ,

(b) 5.25% (c) 10%, (d) 20%
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helix angle. As mentioned earlier, the cutting forces change with helix angle due to

which the asymptotic stability boundaries are altered. As the helix angle is increased

the period doubling lobe starts to isolate from the main lobe. For the single degree

of freedom system in this chapter it can be observed that for a 30o and 45o helix,

isolated instability islands appear in the stability charts. This a new phenomenon ..

(is interesting because)

Stabilty Chart with changes in helix angle
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Figure 3.6: Stability Charts for Up-milling with: (a) No helix angle, (b) 10o helix

angle, (c) 30o helix angle, (d) 45o helix angle
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Stability Chart with changes in the helix angle
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Figure 3.7: Stability Charts for Up-milling with: (a) No helix angle, (b) 10o helix

angle, (c) 30o helix angle, (d) 45o helix angle
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3.6 Comparisons Between Theory and Experi-

ment

This section describes the experiments that were performed to validate the phenomena

of isolated islands of chatter vibration. Experiments were performed for the case of

a down-milling process with 5:25% radial immersion and 300 helix angle. The modal

parameters for the flexure system and the cutting coefficients applied for stability

chart predictions are given in Table 3.1.

Figure 3.8 shows stability assessments from each cutting test superimposed onto

the theoretical stability boundaries for both a 300 and zero helix tool. The spindle

speed and cutting depths that are further described in Fig. 3.9 and Fig. 3.10, were

selected to define the stability borders for the island and main Hopf bifurcation lobe.

In the figures that follow, shows time series results for eight of the cutting tests

labeled a − h in Fig. 3.8. For instance, the once per revolution timing pulse from

the laser tachometer was used as a reference signal to periodically sample the flex-

ure vibrations that appear in the left-hand column of Fig. 3.9 and Fig. 3.10. Since

only flexure displacements were recorded, visualization of the qualitative features of

each periodic attractor required the application of delayed embedding techniques to

reconstruct a topologically equivalent phase space in displacement vs. delayed dis-

placement θ(t + ∆t) cordinates. Following the methods suggested in reference [64],

algorithms were developed to graph the mutual information function for the time

series and the same time series shifted by ∆t. The first minimum of the mutual

information graph was used as the time shift, or delay, between the original time

series and the x(t + ∆t) time series. Using the false nearest neighbors approach of

reference [64], the embedding dimension was found to be equivalent to two for each

of the presented time series. Poincarè sections were created by periodically sampling
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the displacement and delayed displacement signals as shown in the right-hand graphs

of Fig. 3.9 and Fig. 3.10.

Noting the locations of tests a − d in Fig. 3.8, the results of Fig. 3.9 provide

experimental evidence of isolated islands of chatter vibration. As predicted by the

theoretical analysis, these cases all exhibit period-doubling behavior. This type of

instability is predicted when the largest magnitude eigenvalues of the monodromy

operator Q are negative and real with a magnitude greater than one. The remaining

experimental tests, experimental trials e−h from Fig. 3.8, are displayed in Fig. 3.10.

The first three tests are clearly stable since the both the 1/spindle period displace-

ment samples (shown) and 1/tooth passage displacement samples (not shown) both

approached a single fixed point value. Although experimental test g is a stable result,

it is perhaps one of the more interesting cases since the predictions for the 300 and

zero helix tool differ in this region of the stability chart. For instance, the zero helix

angle stability predictions of Fig. 3.8 show that chatter vibrations should arise in this

region for a zero helix tool, but not for a tool with a 300 helix.

The last experimental test shown is an example of quasi-periodic behavior and is

predicted by the theoretical model when the largest complex characteristic multiplier

obtains a magnitude greater than one. As shown in Fig. 3.10(h), this causes the

Poincarè map for this case to take the appearance of a circle map. This final example

is shown to provide evidence that the location of the secondary Hopf bifurcation

region is also correctly captured.
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Figure 3.8: Shaded stability chart with 30o helix angle is superimposed zero helix case.

Symbols in the above diagram are as follows: (1)(/) is clearly stable case, (2)(◦) is an

unstable cutting case, and (3)(×) are points that are not clearly stable or unstable

49



0 100 200 300 400 500 600 700 800

-2

0

2

x 10
�-4

x
(t

n
)

�

� -2

0

2

x 10
�-4

x (tn )

x
(t

n
+
∆

t
)

0 100 200 300 400 500 600 700 800

� -2

0

2

x 10
�-4

x
(t

n
)

� -2

0

2

x 10
�-4

x (tn )

x
(t

n
+
∆

t
)

0 100 200 300 400 500 600 700 800

� -2

0

2

x 10
�-4

x
(t

n
)

� -2

0

2

x 10
�-4

x (tn )

x
(t

n
+
∆

t
)

0 100 200 300 400 500 600 700 800

� -2

0

2

x 10
�-4

x
(t

n
)

� -2 0 2 x 10
�-4

� -2

0

2

x 10
�-4

x (tn )

x
(t

n
+
∆

t
)

n    spindle period

1/ period samples Poincare section`

d

c

d

b

c

a

b

a

th 

Figure 3.9: Experimental down-milling data for cases: (a) Ω=2230 (rpm) and b=3.5

(mm), (b) Ω=2215 (rpm) and b=6 (mm) (c) Ω=2205 (rpm) and b=7 (mm) (d)

Ω=2225 (rpm) and b=4.5 (mm) shown in the Fig. 3.8. Each row contains 1/period

samples plot in the compliant x-direction and poincaré section shown in displacement

and delayed displacement co-ordinates. All the case are clearly unstable showing

period doubling.
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Figure 3.10: Experimental down-milling data for cases: (e) Ω=2100 (rpm) and b=4

(mm), (f) Ω=2300 (rpm) and b=5 (mm), (g) Ω=2240 (rpm) and b=10 (mm), (h)

Ω=2480 (rpm) and b=5 (mm) shown in the Fig. 3.8. Each row contains 1/period

samples plot in the compliant x-direction and poincaré section shown in displacement

and delayed displacement co-ordinates. Cases (e),(f) and (g) show stable solution and

(h) shows an unstable solution.
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3.7 Conclusions

This chapter explores the in fluence of a common form of tool geometry on the

stability trends of a milling process. Modeling efforts consider the in uence of the

tool helix angle to obtain an analytical force model with three piecewise continuous

regions of cutting. A new theoretical analysis is described that is applicable to solving

the governing equations that arise. The new analysis is then applied to examine the

asymptotic stability trends for several different radial immersions and helix angles.

The most interesting phenomena is the presence of isolated islands of chatter

vibration. However, we have also shown stability differences between the islands

and secondary Hopf bifurcation lobes for up-milling and down-milling. Additional

studies, for this particular system, show that the zero helix angle tool does not re-

sult in isolated islands of chatter. Finally, theoretical predictions are validated by

a series of experimental down-milling experiments which confirm the isolated island

phenomenon.
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Chapter 4

Summary

A new approach of state space formulation method of temporal finite element analysis

(TFEA) is developed to investigate the stability behaviour of linear autonomous and

non-autonomous delay differential equations (DDE‘s), which is applicable to a broader

class of problems. The previous work in TFEA was limited to second order DDE‘s

and as this new approach is based on state space appraoch, the stability behaviour

of systems that can be written in state space model can be investigated. To validate

the applicability of the method several problems which appeared in prior work are

analyzed in the second chapter. The main focus here was to be able to develop

method which is simpler and can be applied to stability analysis of an milling process.

Stability plots are obtained for single degree of freedom milling equation and compared

with prior work by Mann and Young [13] using the same cutting forces and modal

parameters and these plots were in perfect agreement. The state space approach

presented in the thesis can deal with delay differential equation with single delay

only, however further extension of this method for stability analysis of multiple delay

DDE‘s could be potentially important area of further research.

The invesitgation of stability behaviour considering the influence of helix angle of
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the tool for a single degree of freedom milling equation showed interesting phenom-

ena of isolated islands of chatter vibration in the stability charts. Further comparison

for different helix angle cases showed distinctive trends in the stability chart. These

islands were obsereved in the analytical stability charts for certain radial immersion.

This served as a motivation to perform experiments and validate the existence of the

isolated islands. Detailed experiment was performed on the basis of which conclusive

remarks can be made on the presence of isolated islands in milling. Islands of insta-

bility in milling with experimental results was given by Zatarain et. al [9] . However

this validation could not rule out the effect of runout which is a common phenomenon

affecting the cutting performance. Espeacially in case of period doubling it is difficult

to distinguish between run-out and period doubling if end mill with even numbered

teeth is used for the experiments, however with odd number of teeth on the end mill,

each tooth passage signal can be analyzed in order to distinguish between period

doubling and run-out. And for these reason the experimental analysis in this thesis

could provide conclusive evidence of isloated islands of instability.

The experimental evidence of isolated islands is limited to the case of down-milling.

With distinct difference in the stability boundaries for up-milling and down-milling,

it is of potential importance to also validate the results for up-milling where these

islands appear in the stability chart.
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