Public Abstract

First Name: Anthony
Middle Name: James
Last Name: DeGraffenreid
Adviser's First Name: Silvia
Adviser's Last Name: Jurission
Co-Adviser's First Name:
Co-Adviser's Last Name:
Graduation Term: SP 2015
Department: Chemistry
Degree: PhD
Title: Arsenic for Potential Diagnostic Imaging and Radiotherapy

Arsenic-72 (72As; 2.49 MeV positron, 26 h) and 77As (0.683 MeV beta particle, 38.8 h) have nuclear properties useful for positron emission tomography (PET) and radiotherapy applications. Their half-lives are sufficiently long for targeting tumors with peptides and antibodies. Potential radioarsenic radiopharmaceuticals require identification of suitable bifunctional chelates for development of compounds stable under in vivo conditions at high dilution. The thiophilic nature of arsenic led to the synthesis and characterization of aryl arsenite dithiolate precursors to no-carrier added 72,77As complexes. Additionally, the synthesis and no-carrier added labelling of a simple trithiol ligand with 77As, and synthesis of two linkable trithiocyanate precursors, a carboxylic acid, and “clickable” alkyne, are described in detail.