THE ROLE OF PHOSPHOLIPASE A₂ IN AMYLOID β UPTAKE BY MICROGLIA

Li Dong

Dr. James Lee, Thesis Supervisor

ABSTRACT

The accumulation of amyloid- β (A β) is a key characteristic of Alzheimer's disease (AD). Microglia are the principle macrophages in the brain and are known to internalize A β , however the phagocytic function is impaired as AD progresses. Cytosolic phospholipase A₂ (cPLA₂) and calcium-independent PLA₂ (iPLA₂) are two major groups of PLA₂s that are involved in modulating membrane properties, intracellular trafficking and the cellular inflammatory responses. Here, we study the role of cPLA₂ and iPLA₂ in the uptake of A β ₁₋₄₂ by microglia in vitro. We found that the uptake of A β ₁₋₄₂ was rapid (<15 minutes) and remained unchanged up to 60 minutes. Also, inhibition of cPLA₂ greatly reduced A β ₁₋₄₂ uptake while increasing cPLA₂ activation did not affect A β ₁₋₄₂ uptake. iPLA₂ appears to reduce the rate of A β ₁₋₄₂ uptake, but had no influence on the uptake level later on. Furthermore, cPLA₂ and iPLA₂ are not involved in intercellular processing of A β ₁₋₄₂.