Public Abstract
First Name:LEONNARD
Middle Name:ODHIAMBO
Last Name:OJWANG
Adviser's First Name:JOSEPH
Adviser's Last Name:AWIKA
Co-Adviser's First Name:
Co-Adviser's Last Name:
Graduation Term:FS 2007
Department:Food Science
Degree:MS

Title:COLOR STABILITY OF SORGHUM 3-DEOXYANTHOCYANINS AGAINST SULFITE AND ASCORBIC ACID DEGRADATION; pH INFLUENCE

The degradation of anthocyanins by food additives like SO2 and ascorbic acid limits their use as natural food colorants. The rare 3-deoxyanthocyanins from sorghum are relatively stable compared to other anthocyanins, but have not been investigated. The stability of apigeninidin, luteolinidin, 5methoxyapigeninidin, 7-methoxyapigeninidin, 5,7-dimethoxyapigeninidin and 5,7-dimethoxyluteolinidin, red cabbage pigment, grape blue powder and crude sorghum pigment extract against SO2, ascorbic acid bleaching and high temperature treatment $\left(121.1^{\circ} \mathrm{C}\right.$ for 15 min$)$ at $\mathrm{pH} 2.0,3.0,3.2$ and 5.0 was measured in the presence (50:1 molar ratio) or absence of pyruvic acid (known to increase the stability of anthocyanins in red wine). Samples were incubated at $37^{\circ} \mathrm{C}$ for 5 days to synthesize the pyruvic acid adducts, and their sulfite and ascorbic acid bleaching resistance investigated at 60 ppm and 500 ppm respectively, using a Shimadzu UV-1650PC spectrophotometer for 21 days. HPLC-DAD/MS analysis confirmed the formation of the 3-deoxyanthocyanin-pyruvic acid adducts at approximately 11-47\% conversion. Samples without pyruvic acid were the controls. Solution pH had the greatest effect on pigment stability, and SO2 and ascorbic acid are co-pigments with 3-deoxyanthocyanin pigments in absence of pyruvic acid at pH 2.0 and 5.0 , respectively. Pyruvic acid had marginal protective influence on the stability of the 3-deoxyanthoxyanin pigments against sulfite and ascorbic acid degradation but not heat. Crude black sorghum extract was the most stable to SO 2 and ascorbic acid bleaching, with and without pyruvic acid. High temperature initiated production of new 3-deoxyanthocyanin-pyruvic acid adducts.

