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ABSTRACT

In the current data movement, numerous efforts have been made to convert and normalize

a large number of traditionally structured and unstructured data to semi-structured data

(e.g., RDF, OWL). With the increasing number of semi-structured data coming into the

big data community, data integration and knowledge discovery from heterogeneous do-

mains become important research problems. In the application level, detection of related

concepts among ontologies shows a huge potential to do knowledge discovery with big

data. In RDF graph, concepts represent entities and predicates indicate properties that

connect different entities. It is more crucial to figure out how different concepts are re-

lated within a single ontology or across multiple ontologies by analyzing predicates in

different knowledge bases. However, the world today is one of information explosion,

and it is extremely difficult for researchers to find existing or potential predicates to per-

form linking among cross domains concepts without any support from schema pattern

analysis. Therefore, there is a need for a mechanism to do predicate oriented pattern
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analysis to partition heterogeneous ontologies into closer small topics and generate query

to discover cross domains knowledge from each topic. In this work, we present such a

model that conducts predicate oriented pattern analysis based on their close relationship

and generates a similarity matrix. Based on this similarity matrix, we apply an innovative

unsupervised learning algorithm to partition large data sets into smaller and closer topics

that generate meaningful queries to fully discover knowledge over a set of interlinked data

sources.

In this dissertation, we present a graph analytics framework that aims at providing

semantic methods for analysis and pattern discovery from graph data with cross domains.

Our contributions can be summarized as follows:

• The definition of predicate oriented neighborhood measures to determine the neigh-

borhood relationships among different RDF predicates of linked data across do-

mains;

• The design of the global and local optimization of clustering and retrieval algo-

rithms to maximize the knowledge discovery from large linked data: i) top-down

clustering, called the Hierarchical Predicate oriented K-means Clustering; ii) bottom-

up clustering, called the Predicate oriented Hierarchical Agglomerative Clustering;

iii) automatic topic discovery and query generation, context aware topic path find-

ing for a given source and target pair;
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• The implementation of an interactive tool and endpoints for knowledge discovery

and visualization from integrated query design and query processing for cross do-

mains;

• Experimental evaluations conducted to validate proposed methodologies of the frame-

work using DBpedia, YAGO, and Bio2RDF datasets and comparison of the pro-

posed methods with existing graph partition methods and topic discovery methods.

In this dissertation, we propose a framework called the GraphKDD. The GraphKDD

is able to analyze and quantify close relationship among predicates based on Predicate

Oriented Neighbor Pattern (PONP). Based on PONP, the GraphKDD conducts a Hierar-

chical Predicate oriented K-Means clustering (HPKM) algorithm and a Predicate oriented

Hierarchical Agglomerative clustering (PHAL) algorithm to partition graphs into seman-

tically related sub-graphs. In addition, in application level, the GraphKDD is capable of

generating query dynamically from topic discovery results and testing reachability be-

tween source target nodes. We validate the proposed GraphKDD framework through

comprehensive evaluations using DBPedia, Yago and Bio2RDF datasets.

v



APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies, have

examined a dissertation titled “A Graph Analytics Framework for Knowledge Discovery,”

presented by Feichen Shen, candidate for the Doctor of Philosophy degree, and hereby

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Zhiqiang Chen, Ph.D.
Department of Civil & Mechanical Engineering

Baek-Young Choi, Ph.D.
Department of Computer Science & Electrical Engineering

Praveen Rao, Ph.D.
Department of Computer Science & Electrical Engineering

Cui Tao, Ph.D.
School of Biomedical Informatics

The University of Texas Health Science Center at Houston

Yuji Zhang, Ph.D.
Epidemiology & Public Health

University of Maryland School of Medicine

Yongjie Zheng, Ph.D.
Department of Computer Science & Electrical Engineering

vi



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 PREDICATE ORIENTED NEIGHBORHOOD PATTERNS . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Formal Definition of Pattern and Topic . . . . . . . . . . . . . . . . . . . 13

2.4 Association Measurements for Predicate Oriented Neighborhood Patterns 22

2.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 UNSUPERVISED LEARNING ON PONP ASSOCIATION MEASUREMENT 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Hierarchical Predicate Oriented K-Means Clustering . . . . . . . . . . . 57

3.5 Predicate Oriented Hierarchical Agglomerative Clustering . . . . . . . . 65

3.6 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 QUERY GENERATION AND TOPIC AWARE LINK DISCOVERY . . . . . . 122

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 The GraphKDD System . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Query Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5 Topic Aware Link Discovery . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.7 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5 THE GRAPHKDD ONTOLOGY LEARNING FRAMEWORK . . . . . . . . . 165

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 199

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

viii



6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

REFERENCE LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

ix



ILLUSTRATIONS

Figure Page

1 The GraphKDD Framework . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Share Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Connectivity Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 PONP and Similarity Matrix (Directional Based) . . . . . . . . . . . . . 28

5 Concept based Neighborhood Similarity (Directional Based) . . . . . . . 29

6 Top Concepts and Predicates: (a) Top 10 Concepts (b) Top 25 Predicates . 33

7 Cross Domain Concept and Predicate Ranking: (a) Top 40 Concepts (b)

Top 40 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Cross Domain Topic Ranking: (a) Feature-based Ranking (b) Pattern-

Based Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Ontology Provider Pattern . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Topic 25: Provider Pattern Graph . . . . . . . . . . . . . . . . . . . . . . 38

11 Ontology Consumer Pattern . . . . . . . . . . . . . . . . . . . . . . . . 40

12 Topic 15: Consumer Pattern Graph . . . . . . . . . . . . . . . . . . . . . 40

13 Ontology Reacher Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 Topic 22: Reacher Pattern Graph . . . . . . . . . . . . . . . . . . . . . . 42

15 Ontology Directional Connector Pattern . . . . . . . . . . . . . . . . . . 44

16 Topic 16: Directional Connector Pattern Graph . . . . . . . . . . . . . . 44

x



17 Ontology Non-Directional Connector Pattern . . . . . . . . . . . . . . . 46

18 Topic 23: Non-Directional Connector Pattern Graph . . . . . . . . . . . . 46

19 Workflow of the GraphKDD Framework . . . . . . . . . . . . . . . . . . 51

20 Silhouette Width and Number of Topics in Topic Hierarchy . . . . . . . . 60

21 Top-Down Topic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 66

22 Bottom-Up Topic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 67

23 DrugBank Topic Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . 78

24 Optimal K Validation using Multiple Clustering Techniques. . . . . . . . 82

25 Topic Rankings for DrugBank. . . . . . . . . . . . . . . . . . . . . . . . 83

26 Optimal Radius with Silhouette Width . . . . . . . . . . . . . . . . . . . 84

27 Optimal Radius with Number of Topic . . . . . . . . . . . . . . . . . . . 85

28 Optimal Radius with Topic Size . . . . . . . . . . . . . . . . . . . . . . 85

29 DBpedia:Optimal Branching with Clustering Algorithms . . . . . . . . . 86

30 YAGO:Optimal Branching with Clustering Algorithms . . . . . . . . . . 87

31 DBpedia Topic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 87

32 YAGO Topic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

33 DBpedia Topic Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 89

34 YAGO Topic Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

35 DBpedia Topic Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

36 YAGO Topic Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

37 Visualization of DBpedia Topic 9 and YAGO Topic 1 . . . . . . . . . . . 91

38 Contents of DBpedia Topic 9 and YAGO Topic 1 . . . . . . . . . . . . . 92

xi



39 DBpedia Similarity Measurement with GraphKDD . . . . . . . . . . . . 95

40 YAGO Similarity Measurement with GraphKDD . . . . . . . . . . . . . 96

41 DBpedia SimRank Similarity Measurement . . . . . . . . . . . . . . . . 99

42 YAGO SimRank Similarity Measurement . . . . . . . . . . . . . . . . . 100

43 GraphKDD vs. Graph Partition on DBpedia . . . . . . . . . . . . . . . . 101

44 GraphKDD vs. Graph Partition on YAGO . . . . . . . . . . . . . . . . . 102

45 GraphKDD vs. LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

46 Bio2RDF 13 domain Topic Visualization with HPKM and PHAL . . . . . 110

47 Bio2RDF Topic Statistics with HPKM and PHAL . . . . . . . . . . . . . 111

48 Bio2RDF Topic Ranking with HPKM and PHAL . . . . . . . . . . . . . 112

49 Bio2RDF Dominant Topic Visualization with HPKM and PHAL . . . . . 113

50 Bio2RDF Dominant Topic Content with HPKM and PHAL . . . . . . . . 114

51 Bio2RDF Topic Similarity with HPKM . . . . . . . . . . . . . . . . . . 116

52 Bio2RDF Topic Similarity with PHAL . . . . . . . . . . . . . . . . . . . 117

53 Bio2RDF Topic Similarity with HPKM and PHAL . . . . . . . . . . . . 118

54 SPARQL Endpoint: Query Example. . . . . . . . . . . . . . . . . . . . . 127

55 GraphKDD Interactive Query Tool . . . . . . . . . . . . . . . . . . . . . 127

56 Automatic Query Generation . . . . . . . . . . . . . . . . . . . . . . . . 131

57 Topic Aware Link Discovery . . . . . . . . . . . . . . . . . . . . . . . . 134

58 Topic 3 4 (T3 4) Graph in DrugBank. . . . . . . . . . . . . . . . . . . . 141

59 Query-1 SPARQL in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 141

60 Query Results of Query-1 in DrugBank. . . . . . . . . . . . . . . . . . . 142

xii



61 Topic 3 7 (T3 7) Graph in DrugBank. . . . . . . . . . . . . . . . . . . . 143

62 Query-2 SPARQL in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 144

63 Results of Query-2 in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 145

64 Topic 3 6 (T3 6) Graph in DrugBank. . . . . . . . . . . . . . . . . . . . 146

65 Query-3 SPARQL in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 147

66 Results of Query-3 in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 148

67 Topic 3 2 (T3 2) Graph in DrugBank. . . . . . . . . . . . . . . . . . . . 149

68 Query-4 SPARQL in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 150

69 Results of Query-4 in DrugBank. . . . . . . . . . . . . . . . . . . . . . . 151

70 Size for Each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

71 Pre-Processing Performance for GraphKDD . . . . . . . . . . . . . . . . 154

72 Pre-Processing Performance between GraphKDD and LIMES . . . . . . 155

73 Processing Performance between GraphKDD and LIMES . . . . . . . . . 155

74 Bio2RDF 9 Domains Topic 16 . . . . . . . . . . . . . . . . . . . . . . . 157

75 Bio2RDF 9 Domains Topic 27 . . . . . . . . . . . . . . . . . . . . . . . 158

76 Path between Topic 16 and 27 . . . . . . . . . . . . . . . . . . . . . . . 159

77 Drug Target Association Query. . . . . . . . . . . . . . . . . . . . . . . 160

78 Drug Target Association Query Results. . . . . . . . . . . . . . . . . . . 161

79 The SLAP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

80 The GraphKDD Framework . . . . . . . . . . . . . . . . . . . . . . . . 166

81 The GraphKDD Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . 171

82 Visualization of 6 Complication Ontologies . . . . . . . . . . . . . . . . 177

xiii



83 Visualization of Hierarchical Fuzzy C-Means Clustering . . . . . . . . . 178

84 Detailed Information for Topic 1 . . . . . . . . . . . . . . . . . . . . . . 180

85 Detailed Information for Topic 2 . . . . . . . . . . . . . . . . . . . . . . 181

86 Detailed Information for Topic 3 . . . . . . . . . . . . . . . . . . . . . . 182

87 Detailed Information for Topic 4 . . . . . . . . . . . . . . . . . . . . . . 183

88 Detailed Information for Topic 5 . . . . . . . . . . . . . . . . . . . . . . 185

89 Detailed Information for Topic 6 . . . . . . . . . . . . . . . . . . . . . . 186

90 Detailed Information for Topic 7 . . . . . . . . . . . . . . . . . . . . . . 187

91 Detailed Information for Topic 8 . . . . . . . . . . . . . . . . . . . . . . 188

92 Predicate Oriented Clustering Decision Making on Different Levels (A) . 189

93 Predicate Oriented Clustering Decision Making on Different Levels (B) . 190

94 Predicate Oriented Clustering Decision Making on Different Levels (C) . 190

95 Predicate Oriented Clustering Decision Making on Different Levels (D) . 191

96 Correlation Matrices for Golden Standard . . . . . . . . . . . . . . . . . 192

97 Cross Complications Queries . . . . . . . . . . . . . . . . . . . . . . . . 194

98 Single Complication Queries . . . . . . . . . . . . . . . . . . . . . . . . 195

xiv



TABLES

Tables Page

1 Comparison among Graph Analysis Approaches . . . . . . . . . . . . . . 9

2 RDF Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Summary of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Datasets Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Average Similarity Measurement . . . . . . . . . . . . . . . . . . . . . . 31

6 Top 3 Predicates for 5 Top Topics with Bio2RDF 9 Domains . . . . . . . 34

7 Top 2 Unique Predicates for 5 Top Topics Bio2RDF 9 Domains . . . . . . 34

8 Provider Pattern in Topic 25 . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Consumer Pattern in Topic 15 . . . . . . . . . . . . . . . . . . . . . . . 41

10 Reacher Pattern in Topic 22 . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Directional Connector Pattern in Topic 16 . . . . . . . . . . . . . . . . . 45

12 Non-Directional Connector Pattern in Topic 23 . . . . . . . . . . . . . . 49

13 The GraphKDD with Graph Partition Algorithms . . . . . . . . . . . . . 56

14 The GraphKDD with Clustering Algorithms . . . . . . . . . . . . . . . . 56

15 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16 DrugBank Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

17 Short Notation for DrugBank and Related Domains . . . . . . . . . . . . 76

18 Top 20 Predicates and Concepts in DrugBank Ontology . . . . . . . . . . 79

xv



19 Duplicated Concepts and their Topic ID in DrugBank Ontology . . . . . . 80

20 Clustering Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

21 Average Topic Similarity Comparison for GraphKDD . . . . . . . . . . . 97

22 Average Topic Similarity Comparison for SimRank . . . . . . . . . . . . 98

23 Cross Domain Clustering: PHAL vs. HPKM . . . . . . . . . . . . . . . 106

24 Cross Domain Concepts and Predicates before/after Clustering . . . . . . 107

25 Cross Domain Neighborhood Patterns . . . . . . . . . . . . . . . . . . . 108

26 Bio2RDF HPKM vs. PHAL . . . . . . . . . . . . . . . . . . . . . . . . 109

27 Average Topic Similarity Comparison for Cross Domain GraphKDD . . . 115

28 Classification Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 118

29 Case Study Datasets: Ontologies . . . . . . . . . . . . . . . . . . . . . . 121

30 Complexity for HPKM and PHAL . . . . . . . . . . . . . . . . . . . . . 139

31 Topic Awareness Statistics for GraphKDD . . . . . . . . . . . . . . . . . 156

32 Top 5 Drug Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

33 Comparison Results Between GraphKDD and SLAP . . . . . . . . . . . 164

34 Clinical Free Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

35 Mapping among Clinical Free Text, MedTagger Terms and RDF Triples . 174

36 Definition of Colorectal Post-surgical Complication . . . . . . . . . . . . 197

37 Statistics of Six Complication Ontologies . . . . . . . . . . . . . . . . . 198

xvi



ACKNOWLEDGEMENTS

First of all, I’d like to give sincere thanks to my research advisor, Dr. Yugyung

Lee. Dr. Yugyung Lee gave me the best guidance in doing my research and in helping

me to solve problems as well as overcome difficulties. She always encouraged me to

pursue the highest quality of research work in terms of writing paper and experimental

evaluations.

I also want to thank my other Ph.D. committee members Drs. Baek-Young Choi,

Cui Tao, Praveen Rao, Yongjie Zheng, Yuji Zhang and Zhiqiang Chen. As a co-displine

committee member, Dr. Choi gave me a good insight in the network area and made me

think more in many different aspects. Dr. Tao was my previous supervisor at the Mayo

Clinic when I did my 2012 summer Ph.D. internship. She trained me wonderfully in

ontology management and data normalization. Dr. Rao’s team and our group shared

the same lab room, which increased the opportunity of having conversations with him.

His intelligence and valuable feedback always helped me in research, job searching, and

my personal life. Dr. Zheng and I collaborated on a class entitled “Software Method

and Tools”. At that time, I was his teaching assistant. During his class, I learned how

to become an outstanding lecturer and how to make students interested in the class. On

research sites, Dr. Zheng’s word always inspired me: “doing research is just like climbing

a circling mountain. Sometimes we are facing sunshine, but most of the time we are facing

darkness. When we are facing darkness, if we don’t move forward, we can never see the

sunshine again. But if we keep moving, we will definitely reach the top of the mountain.”



Dr. Yuji Zhang was also my previous supervisor from the Mayo Clinic when I did my

2013 summer internship there. She trained me how to use CytoScape, a visualization tool

that is commonly used in the biomedical domain. With the help of CytoScape, I was able

to generate all visualizations throughout my research. Dr. Chen and I collaborated on

mobile cloud computing research in the past. His dedication and great insight influenced

me tremendously. I’d like to give thanks again to all the committee members for their

support and help throughout the formation of my dissertation and academic endeavors.

Moreover, I’d like to give thanks to the UMKC School of Graduate Studies (SGS)

for awarding me the research grant to support my academia research from 2014 to 2015

and training me as a leader in the Graduate Student Professional Development Program.

I also want to thank School of Computing and Engineering (SCE) for supporting me with

Research/Teaching Assistant Scholarship, Travel Grant and giving me the Outstanding

Doctoral Student Award in 2014.

In addition, I want to give thanks to all members of UMKC Distributed Intelligent

Computing (UDIC) Group for their help on my study and research.

Finally, I would like to thank my family. My wonderful wife, You Wan has always

given me support during my Ph.D. work. My parents gave me not only financial support

but they also encouraged my spirit even though they live in China. I would like to thank

each of them for making this possible.

xviii



CHAPTER 1

INTRODUCTION

In this chapter, we first give a basic overview of current approaches and solutions

on big graph knowledge discovery and analysis. We then elaborate the motivation for

developing the GraphKDD framework and the contributions we have made.

1.1 Problem Statement

Today, the main challenge we are facing in knowledge discovery research is the

big data problem associated with large, complex, and dynamic variations of formats.

There is no capacity to carry out analysis of these datasets, because we do not have the

appropriate tools and computational infrastructure that can be fully understood and uti-

lized by involved personnel. As the demand for the integration and analysis of such data

has been growing steadily, the first effort toward connecting scattered data materialized

as a data movement by a different community, i.e., the Linked Open Data (LOD) [8].

In order to extract a cohesive structure and semantics, it is essential to know what

information exists and what significant relationships are among the related domains. The

Semantic Web is able to provide a platform of information exchanges for different knowl-

edge bases. Increasingly, we are also seeing the emergence of cross domains among

different datasets. Especially, in the biomedical informatics domain, data normalization

plays an important role to integrate heterogeneous resources for further analysis (i.e.,
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Bio2RDF [10], OBO [112], LinkedCT [50]). For example, the Semantic Web Health Care

and Life Sciences Interest Group (HCLSIG [23]) was formed to “improve collaboration,

research and development, and innovation in the information ecosystem of the health care

and life science domains using Semantic Web technologies.” Under this drive, the large

amounts of data have been specified and shared via machine-readable formats, such as a

Resource Description Framework (RDF) [66] and Ontology Web Language (OWL) [9].

The ontologies are developed to easily extend the work of others and share across different

domains. The Semantic Web technologies make it easier and more practical to integrate,

query, and analyze the full scale of relevant data from various domains.

1.2 Motivation

To make seamless interoperability and interchanges among heterogeneous datasets,

significant difficulties still exist. There are some existing promising semantic approaches

for linking different datasets; however, they are computationally expensive and imprac-

tical for large scale ontologies since these works may still require human intervention.

Furthermore, as the size of data increases drastically, it is difficult to discover informa-

tion from structured/unstructured data in a single domain or cross domains, especially for

those researchers with expertise in a specific domain. Thus, we need to reduce human

intervention with the help of process automation in the extraction and integration of se-

mantics from structured or unstructured data.

For extraction of a cohesive structure and semantics from structured or unstruc-

tured data, identification of meaningful linking, either together within or across a large
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number of ontologies, is necessary. Especially in biomedical informatics domains, vS-

parQL [105] was introduced to enable application ontologies to be derived from these

large, fragmented sources such as the FMA [104]. A series of queries might be generated

using large ontologies like the NCI thesaurus by extracting relevant information that is

desired for applications [83]. The GLEEN project aims to develop a useful service for

simplified, materialized views of complex ontologies [30]. However, these works are lim-

ited due to the lack of the comprehensive semantic analysis of large sources and the usage

of the knowledge for query processing. We need to connect related information through a

reference ontology that becomes a platform to link together multiple ontologies that cover

a broad range of related information. Advanced techniques are needed to analyze these

larger reference ontologies, rather than simply getting a slice of a reference ontology and

applying it for a query process or decision support [83]. There is also some related work

on using K-Means and Fuzzy C-Means for clustering microarray data [114] [29], but nei-

ther of them are concerned about the semantics of data nor hierarchical clustering.

Today is the world of information explosion. With the increase of research in

big data, more and more datasets from different domains have been added to the existing

LOD (e.g., DBPedia [12]), which makes highly complex relationships and condensed in-

terlinks among the large number of these knowledge bases. To some extent, the speed of

data growing in terms of multiple domains is much faster than that of the large amount

of knowledge people can acquire and consume in their daily lives. In other words, since

different datasets are physically grouped instead of semantically clustered, it is extremely
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difficult for people without expertise to extract knowledge from various domains nowa-

days. Therefore, there is a big gap between human limited knowledge and the large

amount of knowledge that can be discovered from this huge amount of data.

1.3 Contribution

In this work, we apply a RDF predicate oriented pattern analysis methodology and

combine the advantages of Machine Learning with the added rigor of machine-readable

semantics in extracting information and generating queries applicable for knowledge dis-

covery. A pattern based predicate oriented similarity measurement gives a close rela-

tionship among predicates and generates a similarity matrix. An unsupervised learning

algorithm works on the similarity matrix to build smaller topics that hold the closest do-

main and knowledge inside. In addition, queries are evaluated by measuring the content

of information, identifying possible extensions or compositions of queries and making a

comparison with an existing query benchmark. We develop a prototype of the GraphKDD

system and evaluate the proposed query model based on predicate oriented clustering with

different domains of datasets. More specifically, the contributions of this work are as fol-

lows:

• A Predicate Oriented Neighborhood Patterns (PONP) analysis model to quantify the

close relationship among different RDF predicates with cross domains knowledge

bases (Chapter 2);

• A Hierarchical Predicate oriented K-Means clustering (HPKM) and a Predicate ori-

ented Hierarchical Agglomerative clustering (PHAL) approach to partition graphs
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into small semantically related sub-graphs with different purposes (Chapter 3);

• A dynamic query generation algorithm from outputs of topic discovery (Chapter 4);

• A topic aware link discovery algorithm to efficiently find paths with a context be-

tween the source and target nodes (Chapter 4);

• An ontology learning framework is proposed to extract keywords from unstructured

data with a natural language processing technique and build an ontology based on

retrieved words for further analysis (Chapter 5);

• Comprehensive experiments and evaluations for the proposed framework using DB-

Pedia [12], Yago [115] and Bio2RDF [10] datasets (Chapters 2-5).

The rest of this dissertation is organized as follows. We first define primary con-

cepts that are the basic building blocks of the Predicate Oriented Neighborhood Patterns

(PONP) and present evaluation results related to the similarity measurement and pat-

tern analysis in Chapter 2. In addition, we elaborate Hierarchical Predicate oriented K-

Means clustering (HPKM) and Predicate oriented Hierarchical Agglomerative clustering

(PHAL) approaches in detail and demonstrate their different features and running pur-

poses in Chapter 3. Moreover, we introduce automatic query generation and topic aware

linking discovery tools with experiment results in Chapter 4. Furthermore, we extend the

functionality of the GraphKDD framework to make it suitable for retrieving information

from unstructured data and adopting ontology building and learning as a further analysis

step in Chapter 5. Finally, we conclude in Chapter 6 with the summary and future work.
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CHAPTER 2

PREDICATE ORIENTED NEIGHBORHOOD PATTERNS

2.1 Introduction

We develop a pattern-based approach, called Predicate Oriented Neighborhood

Patterns (PONP) to measure the similarity of graph. Fig. 1 shows the framework of the

GraphKDD. The fundamental technique of the GraphKDD framework is PONP and its

association similarity. PONP measures predicates similarity and quantifies relationship

among predicates. Basically, the further two predicates locate, the less similarity score

they are assigned.

On top of this base, we apply a top-down and a bottom-up unsupervised learn-

ing approaches to conduct a cluster analysis with similarity matrices generated according

to PONP. Specifically, the top-down approach focuses on global optimization while the

bottom-up approach is suitable for finding local optimization. Based on this observation,

the top-down approach is suitable for single domain dataset clustering and the bottom-up

approach is suitable for cross domains dataset clustering. Both of these techniques play

an important role in divide a predicate space into several topics with similar contexts.

The GraphKDD framework supports full-fledged features of knowledge discov-

ery including topic discovery from ontology, query generation from topics, source target

reachability testing and path finding with context awareness. The topic discovery tool

helps users to find related topics with similar contexts. Queries automatically generated
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from topics can be used to guide users to discover interesting topics of domains. The path

finding tool generates all possible paths between the source and the target nodes based on

the results from topic discovery process. More useful information can be found through

the analysis of the paths starting from the source to the target.

In the GraphKDD framework, the underlying representation of data is based on

“RDF that is a standard model for data interchange on the Web. RDF has features that fa-

cilitate data merging even if the underlying schemas differ, and it specifically supports the

evolution of schemas over time without requiring all the data consumers to be changed.”

As Fig. 1 shows, data from heterogeneous data sources will be converted, integrated and

represented in RDF in GraphKDD. In this chapter, we first conduct a thorough survey of

previous work on graph analysis and compare them with our PONP approach. Further-

more, we give a formal definition of the PONP approach and explain how to measure the

PONP association in details.

2.2 Related Work

In this section, we present the state-of-the-art in graph analytics and then compare

them with our work. In addition, the design of the PONP pattern will be justified.

Among some graph partition algorithms, SEDGE [130] provided a complemen-

tary partition approach to eliminate cross domain edges to facilitate query performance.

SEDGE also proposed an on-demand partition to handle unbalanced query workload.

Unfortunately, the partition is mainly based on physical relationships rather than seman-

tic relationships. Mizan [64] made improvements based on Pregel [79] that is built on
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Figure 1: The GraphKDD Framework
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Table 1: Comparison among Graph Analysis Approaches

Research Methods Limitation

SEDGE [130]
Complementary partition,
On-demand
partition ->query

Physical partition
non-semantic

Mizan [64]
Dynamic
graph partitioning
strategies ->load balance

Physical partition
non-semantic

GoFFish [111]
Subgraph centric.
Connected
component ->graph analytics

Physical partition
non-semantic

Similarity-Driven
Semantic Role
Induction
via Graph
Partitioning [69]

Unsupervised method for
semantic role induction.
Vertex centric clustering to partition

No
cross domain

Bulk Synchronous Parallel (BSP) [40] programming model. Mizan focused on dynam-

ically efficient load balancing in terms of computation and communication among all

worker nodes. It achieved load balancing by using fine-grained vertex migration in a

distributed manner. In Mizan, a vertex centric model was designed, mainly focused on

the size balance load of the graph rather than design of data migration by analyzing the

contexts of work. Goffish [111] is a distributed approach that is sub-graph centric with

connected components and furthermore makes abstraction for a large scale graph for an

efficient graph analytics. This model combined the advantages of both the vertex centric

approach and the shared-memory algorithms. However, Goffish does not support any con-

text awareness. Similarity Driven Semantic Role Induction via Graph Partitioning [69] is

a vertex centric unsupervised method for semantic role induction. But in this work, cross

domains issues were not addressed. Table 1 gives a comparison among these approaches.
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Compared to the existing approaches, the PONP pattern not only provide structure-

based graph analysis but also support context awareness by analysis of topic information

and description. In this sense, the PONP approach provides a better solution to partition

both homogeneous and heterogeneous graphs in a different manner by grouping semanti-

cally related contents as well as similar contexts in sub-graphs.

Pattern based approaches were introduced for data mining and knowledge discov-

ery. Specifically in biomedical informatics domain, Warrender and Lord [125] proposed

an axiom based generalized and localized pattern driven approach in biomedical ontol-

ogy engineering. Wang et al., [124] designed a biomedical pattern discovery algorithm

based on a supervised learning approach. Rafiq et al., [91] developed an algorithm to

discover temporal patterns in genomic databases. Van Leeuwen and Matthijs proposed an

interactive way to do data mining by applying pattern mining in [121]. Gotz et al., [44]

used electronic health record data as a use case to introduce an approach to perform data

mining and visual analysis on clinical event pattern. Meanwhile, WHIDE [44] is a tool

for colocation pattern mining in multivariate bioimages. Huang et al., [55] accomplished

the goal of clinical pathway pattern discovery by using probabilistic topic models. Lasko

et al., [70] introduced a computational phenotype pattern discovery with unsupervised

learning on clinical data.

There are also many related work in general computer science research on pat-

tern analysis and knowledge discovery. Trinity [132] performed graph mining on web

scale RDF data by decomposing SPARQL queries into smaller subsets of triple patterns

and then applied a sequence of graph explorations to come up with the combination of
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different triple patterns. k2-Triples provided a compressed indexing approach to handle

large RDF data in memory. It can also support triple pattern queries on such indexed

RDF representation. RDFPeers [15] is a P2P based scalable distributed repository that

supports disjunctive query pattern and conjunctive query pattern that were built based on

atomic triple patterns. SPARQ2L [3] defined a formal syntax for path pattern expression

to extract subgraph and find path in RDF databases.

However, our approach is different from these work. None of these techniques

support measuring association among nodes. Moreover, none of these approaches handle

both homogeneous and heterogeneous context. In this perspective, the PONP approach

can find patterns within a defined boundary and support different strategies for discov-

ering knowledge in a single domain as well as cross domains. What is more, the PONP

focuses on a more general approach for graph structural pattern analysis and discovery. In

addition, we have combined an unsupervised learning algorithm with a pattern discovery

technique to provide a more dynamic way of knowledge discovery from large amount of

ontologies.

Similar to our approach, there are also several research focus on predicate oriented

approach to perform graph analysis. Shi, Baoxu, and Tim Weninger provided a predi-

cate oriented path finding approach to do fact checking in large knowledge graph [110].

VEPathCluster [134] proposed a combination of vertex-centric and edge-centric approach

for meta path graph analysis to enhance clustering quality of cross domains datasets. In

addition to the path finding feature, the PONP approach formulates the relationship among
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RDF predicates which form the prerequisite of topic discovery and federated query gen-

eration.

Besides predicate oriented graph analysis, there are also many work on concept

based approach. Alani et al., [1] proposed a concept structure based ontology ranking

system. Stuckenschmidt et al., [113] gave a graph partition solution by applying concept

hierarchy. Formica and Anna [39] measured the formal concept analysis similarity by

using ontology based approach. However, we decide to use predicate oriented approach

for the reasons that i) predicate is easy to connect multiple domains which brings more

information; ii) predicate is unique only referring to the unique context in a domain; iii)

predicate maintains the same representation for both schema and data level, which leads

to a easier way to apply schema level learning results to data level.

What is more, some researchers have conducted study on similarity measurements

to do graph analysis and graph partition. Rouzbeh Meymandpour et al., [80] proposed a

feature based semantic information content measurement for linked open data. Positive

Matching Index (PMI) was given by Daniel et al., to measure similarity with optimal

lists of attributes [33]. Other popular similarity measurement approaches such as Sim-

Rank [60] and [86] provided the idea of using neighborhood similarity to define node

similarity, which is similar to PONP. However, our approach mainly focuses on a dy-

namic similarity assignment mechanism based on the boundary and distance of predi-

cates’ neighborhood.

Based on literature review and related work comparison, we propose Predicate

Oriented Neighborhood Patterns (PONP). This approach specifies high connectivity on
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the RDF/OWL graph for information sharing and integration. A predicate P is represent-

ing a binary relation between two concepts (c1 and c2) in ontology. In RDF/OWL, P is

represented as a property to express a kind of relationship (e.g., rdfs:subClassOf) between

domain (subject) and range (object). The subject and object can be either from the same

ontology or from different ontologies. In our study, relationships are defined by the empir-

ical analysis of ontology data. We are particularly interested in predicates (relationships)

that are different from existing approaches like PSPARQL [20] and SPARQLer [21].

Apart from being similar, predicates may share other aspects, e.g., sharing the

same subjects or the same objects as well as the connectivity between predicates. This

forces not only on concepts among graphs but also relationships of the concepts.

2.3 Formal Definition of Pattern and Topic

This research mainly focuses on doing knowledge discovery and ontology learn-

ing from the information network. Here we formally define some related terms that cov-

ered by this research.

• Information Network: The network with the ability to do content information ex-

change and holds complex linked relationship.

• Homogeneous Information Network: The information network shared the same

context and resource. Referred as single domain datasets in this work.

• Heterogeneous Information Network: The information network with different con-

texts and resources. Referred as cross domains datasets in this work.
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Table 2: RDF Notation

Shape Meaning
Circle RDF Concept
Triangle RDF Predicate
Line Relationship
Arrow Direction

In the GraphKDD framework, the knowledge model is defined by levels of ab-

straction: (i) the smallest component is a predicate (relation) from a information network

(RDF graphs), (ii) the intermediate component is a pattern that is defined by groups of

predicates, (iii) at a higher abstraction level, a topic can be discovered from groups of

patterns, and (iv) the highest level of abstraction that can be presented as an analytical

view of multiple ontologies (cross domains). The relationships of ontologies (domains)

can be determined from a comprehensive analysis of the discovered topics and patterns of

predicates.

As the predicates define the relationships between subjects and objects, it is inter-

esting to see that the relationships among subjects and objects are nicely defined through

patterns and topics. In this research, we define the Predicate Oriented Neighborhood Pat-

terns (PONP) that describes the association and collaboration among different predicates

(relationships) and concepts in information networks. There are basically two types of

the PONP patterns: Share Pattern and Connectivity Pattern.

For different patterns introduced below, graph visualization notation is shown in

Table 2.

Definition 1: Share Pattern This pattern describes the resources sharing relationships

between predicates where the resources are concepts from a information network (RDF
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graphs). Given two triples 〈Si, Pi, Oi〉, 〈Sj, Pj, Oj〉, the conditions of the share pattern are

defined as follows:

∀Si ∈ Di, ∀Pi ∈ Di, ∀Oi ∈ Di and ∀Sj ∈ Dj , ∀Pj ∈ Dj , ∀Oj ∈ Dj

(Pi 6= Pj)&&(Si == Sj||Oi == Oj)&&(Di 6= Dj).

where the logical OR operator (||) returns the Boolean value true if either or both operands

is true and returns false otherwise, the logical AND operator (&&) returns the Boolean

value true if both operands are true and returns false otherwise. For all (denoted by ∀) Si,

for all Pi and for all Oi are in a domain Di and for all Sj , for all Pj , and for all Oj are in

a domain Dj , but these two domains Di and Dj are different.

There are three types of Share patterns are defined as follows:

• The Provider pattern describes the relationship with a pair of predicates sharing a

common object, describes the provider role of entity giving information to Con-

sumers. This role has more out-degree edges than in-degree edges.

• The Consumer pattern describes the relationship with a pair of predicates sharing a

common subject, describes the role of entity receiving information from Providers.

Consumer has more in-degree edges than out-degree edges.

• The Reacher pattern describes the relationship with a pair of predicates having a

same concept as a subject and object, describes the role connecting the Provider

role with the Consumer role.

15



Figure 2: Share Patterns
Three share patterns (Provider, Consumer, Reacher) are shown as an example. In this diagram,
the circle represents a concept and the triangle represents a predicate. Different colors indicate

various domains they come from

Fig. 2 shows the share patterns from Bio2RDF datasets such that (a) Provider

pattern: the object hv:resource is shared through two predicates pv:x-hgnc and kv:x-hgnc

(b) Consumer pattern: the subject SIO 001077:Gene is shared with two predicates mgv:x-

ensembl-protein and kv:x-uniprot (c) Reacher pattern: a concept kv:Resource is shared by

two predicates dv:x-kegg and kv:pathway.

Definition 2: Connectivity Pattern This pattern describes the connectivity relationships

at least three predicates in a information network. This Connectivity pattern is defined

using the Reacher pattern from Definition 1. A subject (Si) in a source domain (Di) is

connected to an object (Oi) in a target domain (Dj) through cross domains connectivity

predicates (Pi, Pj ∈ Pc and Di 6= Dj). The pattern of the source domain or the target

domain is defined as a Reacher pattern. There are two types of the Connectivity pattern:
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Figure 3: Connectivity Patterns
Two connectivity patterns (DC and NDC) are shown as an example. In this diagram, the circle
represents a concept and the triangle represents a predicate. Different colors indicate various

domains they come from
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Directional Connector (DC) and Non-Directional Connector (NDC).

• The DC pattern describes the connectivity pattern considering the direction of the

edges between predicates whose distance is higher than equal to 2.

• The NDC pattern is same with the DC pattern in terms of the predicate collaboration

for indirect connectivity, however, the edge directions are not considered in this

NDC pattern.

This Connectivity pattern is formally defined as follows: Given a Reacher pattern

〈Ss, Ps, Os〉 and a new triple 〈Si, Pi, Oi〉, the conditions of the connectivity pattern are as

follows:

∀Ss ∈ Ds, ∀Ps ∈ Ds, ∀Os ∈ Ds and ∀Si ∈ Di, ∀Pi ∈ Di, ∀Oi ∈ Di

(Ps 6= Pi)&&(Os == Si)&&(Ds 6= Di).

where the logical AND operator (&&) returns the Boolean value true if both operands are

true and returns false otherwise. For all (denoted by ∀) Ss, for all Ps and for all Os are

in a domain Ds and for all Si, for all Pi, and for all Oi are in a domain Di, but these two

domains Ds and Di are different.

Fig. 3 shows the Connectivity patterns in Bio2RDF datasets such that the subject

and object are connected through three predicates: (a) Directional Connector (DC) among

three predicates dv:x-hgnc, hv:x-omim, ommimv:x-mgi (b) Non-Directional Connector

(NDC) among three predicates mgv:x-refseq-transcript, ctdv:pathway, and ctdv:disease.
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We build topics based on different pattern predicates draw. We formally define

topic and topic boundary in Definition 3 and 4.

Definition 3: Topic The topic describes bounded contexts through association patterns of

both shared and connected predicates in a information network. Different topics may have

completely different associations among any common predicates. In a graph to represent

the topic (called the topic graph), a group of predicates collaborate each other to share

and connect information through the predicates of the PONP patterns.

Definition 4: Topic Boundary The topic boundary (denoted as B) defines the scope

of context in which the information can be associated and shared, and connected in a

information network. The association and collaboration of information is described in

terms of sets of concepts and relations within the given boundary on the information

network.

Topic boundary can be depicted by topic radius and topic centrality defined by

Definition 5 and 6.

Definition 5: Topic Radius The topic radius (denoted as R) defines the distance D be-

tween topic center to any other target nodes within one topic.

Definition 6: Topic Centrality The topic centrality (denoted as C) defines the center

node for each topic. The center is calculated as the mean value of all predicate nodes

within one topic. Boundary B can be determined by centrality C and radius R.

Boundaries between contexts (topics) can be determined by various factors. Usu-

ally the dominant one is strongly associated with others so that this can be measured

by high in-degree/out-degree and distance in a information network. This boundary can
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be set differently depending on the domains of interest. Multiple contexts can be found

within the same domain context and similarly a single context can be found across multi-

ple domains.

Based on five basic patterns, we give Theorem 1 and 2 with proof to demonstrate

the relationship among different patterns.

Theorem 1. For ∀ Reacher pattern
{

R
}

and DC pattern
{

D
}

. if
{

R
}

and
{

D
}

share the

same predicate P , then
{

R
}
$
{

D
}

.

Proof. Suppose ∀ concepts C, Pa and predicate P form a Reacher pattern, so that

Pa→C→P and
{
C, P , Pa

}
=
{

R
}

. Suppose ∀ concepts C, Cb and predicate P , Pa,

Pb form a DC pattern, so that Pb→Cb→Pa→C→P and
{
Pb, Cb, Pa, C, P

}
=
{

D
}

. Be-

cause
{
C, P , Pa

}
⊂
{
Pb, Cb, Pa, C, P

}
, therefore,

{
R
}
⊂
{

D
}

. Because the number

of predicates in
{

R
}

is less than k, and the number of predicates in
{

D
}

is larger than or

equal to k, so
{

R
}
6=
{

D
}

. Therefore,
{

R
}
$
{

D
}

.

Theorem 2. For ∀ Provider pattern
{

V
}

and Consumer pattern
{

C
}

, and NDC pattern{
N
}

, if they share the same predicate P , then
{

V
}
$
{

N
}

and
{

C
}
$
{

N
}

.

Proof. Suppose ∀ concept Ca and predicates P , Pa form a Provider pattern, so that

Pa→Ca←P and
{
Ca, P , Pa

}
=
{

V
}

. Suppose ∀ concept Cb and predicates P , Pb form a

Consumer pattern, so that P←Cb→Pb and
{
Cb, P , Pb

}
=
{

C
}

. Suppose ∀ concepts Ca,

Cb and predicates Pa, Pb, P form a NDC pattern, so that Pa→Ca←P←Cb→Pb and
{
Ca,

Cb, P , Pa, Pb

}
=
{

N
}

. Because
{
Ca, P , Pa

}
⊂
{
Ca, Cb, P , Pa, Pb

}
,
{
Cb, P , Pb

}
⊂{

Ca, Cb, P , Pa, Pb

}
, so

{
V
}
⊂
{

N
}

and
{

C
}
⊂
{

N
}

. Because the number of predicates
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in
{

V
}

and
{

C
}

is less than k, and the number of predicate in
{

N
}

is larger than or equal

to k, so
{

V
}
6=
{

N
}

and
{

C
}
6=
{

N
}

. Therefore,
{

V
}
$
{

N
}

and
{

C
}
$
{

N
}

.

Based on Theorem 1 and 2, we also give Lemma 1, which indicates that DC pattern

must be composed by Reacher pattern and NDC pattern must be composed by Provider

or Consumer patterns.

Lemma 1. DC pattern must be composed by Reacher pattern and NDC pattern must be

composed by Provider or Consumer patterns.

Proof. if ∃ a DC pattern, as Theorem 1 shows, there must be a Reacher pattern share

a common predicate P with DC pattern. Therefore, DC pattern must be composed by

Reacher pattern. Similarly, if ∃ a NDC pattern, as Theorem 2 shows, there must be a

Provider pattern or Consumer pattern share a common predicate P with NDC pattern.

Therefore, NDC pattern must be composed by Provider or Consumer pattern.

Based on Theorem 1, 2 and Lemma 1, we conclude that in any RDF graph, Predi-

cate oriented Patterns can cover all the predicate neighborhood cases as shown in Theorem

3.

Theorem 3. In ∀ RDF graph, predicate oriented Provider pattern, Consumer pattern,

Reacher pattern, DC pattern and NDC pattern cover all the predicate neighborhood cases.

Proof. In ∀ RDF graph G, the basic component is triplet. Suppose ∀ predicate neigh-

borhood triplet in G as
{
Pa, C, Pb

}
, there are four cases with different combination of

directions: 1) Pa→C→Pb;2) Pa→C←Pb;3) Pa←C→Pb;4) Pa←C←Pb. As Definition 1

and 2 shows, Case 2) belongs to Provider pattern, Case 3) belongs to Consumer pattern,
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Case 1) and 4) belong to Reacher pattern. Therefore, three shared patterns cover all the

basic cases. In addition, as Lemma 1 shows, DC pattern is composed by Reacher pattern,

NDC patterns can be composed by Provider, Consumer and Reacher pattern, therefore,

five patterns are enough to cover all predicate neighborhood cases.

As a summary, Table 3 gives notations of each pattern. In this table, S denotes

subject, P denotes predicate and O denotes object. In general, there are two patterns:

Share pattern and Connectivity pattern. Specifically, general patterns involves Provider

pattern, Consumer pattern and Reacher pattern. Triple properties examples for these three

patterns are described in Table 3. Similarly, Connectivity pattern includes a Directional

Connector pattern and a Non-directional Connector pattern. In Table 3, we use examples

with three predicate notations to demonstrate them.

2.4 Association Measurements for Predicate Oriented Neighborhood Patterns

We now define the measurement for the Predicate Oriented Neighborhood Patterns

(PONP) in terms of sets of concepts and relations (predicates) within a single domain or

cross domains. For this purpose, we describe how to quantify associations between dif-

ferent predicates. It is based on the PONP pattern describing the relationships between

predicates Pi and Pj through a concept C.

The association measurement for the PONP patterns varies based on different

neighboring levels for each pair of predicates. Basically, we give a higher shared score

to predicates with more shared concepts and lower scores to predicates with less shared

concepts. Similarly, we give a higher connection similarity score to closer predicates and
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Table 3: Summary of Patterns

General Pattern Specific Patterns Triple Properties

Share Pattern Provider
Si->Pi->Oi &
Sj->Pj->Oj &
Oi = Oj

Consumer
Si->Pi->Oi &
Sj->Pj->Oj &
Si = Sj

Reacher
Si->Pi->Oi
& Sj->Pj->Oj &
Oi = Sj | Oj = Si

Connectivity Pattern Directional Connector Pattern

Si->Pi->Oi &
Sj->Pj->Oj &
Sk->Pk->Ok &
(Oi = Sj, Oj =Sk) |
(Oj = Si, Oi = Sk) |
(Oi = Sk, Ok = Sj) |
(Oj = Sk, Ok = Si)

Non-Directional Connector Pattern

Si->Pi<-Oi &
Sj->Pj->Oj &
Sk->Pk<-Ok &
(Oi = Sj, Oj =Sk) |
(Oj = Si, Oi = Sk) |
(Oi = Sk, Ok = Sj) |
(Oj = Sk, Ok = Si)

lower scores to further predicates.

The patterns are discovered with the bounded contexts which are a central concept

in knowledge discovery. The clustering technique is applied to partition a large and com-

plex network into multiple smaller topics in the same context in an optimal manner. The

bounded contexts are specifically tailored for a set of cross domains patterns. The bound-

ary B is determined based on the distance L (without considering direction) between any

two predicates.
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We formally define the association measurement and its related concepts in Defi-

nition 7-12.

Definition 7: Degree of Association The degree of association is defined to measure the

degree of the association between predicates in a information network. The degree is de-

fined with a weight assigned to links between predicates. The weight can differentiate the

degree of the association between predicates. The rationale is to capture cross domains

relations between predicates by giving a higher weight to the links across domains while

giving a lower weight to links in a single domain. The degree is strongly related to the

topic boundary B. As we are mainly interested in the relationships within the boundary,

the weight strategy will be changed depending on the topic boundary.

In this research, we set the topic boundary B as 3 after heuristic evaluation and

testing. In other words, the maximum distance between predicates (without considering

the direction) in a topic is 3. Formal definition of ontology association and association

distance are shown in Definition 8 and 9.

Definition 8: Ontology Association The Ontology Association defines the association

among ontologies that depicts a high level of views on cross domains collaboration. Based

on the predicate collaboration in the PONP patterns, the ontology association and collab-

oration model can be defined. For each pattern, the top K predicates are considered to

build the ontology association model that represents the abstract relationships between

these topics.

Definition 9: Topic Association The Topic Association indicates the distance between

topics that describes the relationship and association among topics. It is calculated by
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measuring the distance or dissimilarity between center nodes for each topic.

Definition 10: Association Distance The association distance defines the distance be-

tween associated predicates in a information network. Given a directed graph G(C,P ),

concepts C denote subject S and object O and P predicate in a RDF schema graph, re-

spectively. Let d(Pi,Pj) represent the number of concepts C between Pi and Pj . r(Pi,Pj)

determines if a predicate Pi is reachable from another predicate Pj where the domain Di

of Pi is not the same from the domain Dj of Pj , i.e., Di 6= Dj , without considering the

direction of links). l(Pi,Pj) indicates the shortest distance between Pi and Pj .

l(Pi, Pj) =



0 Pi = Pj

1 d(Pi, Pj) = 1

L1 + L2 L1 = d(Pi, Pk), L2 = d(Pk, Pj)

r(Pi, Pk) = true, r(Pk, Pj) = true, r(Pi, Pj) = true

(2.1)

The direct association describes the direct relationship between Pi and Pj in the

distance L = 1 that is within the boundary B. The indirect association describes any

relationship between Pi and Pj in distance L computed by Eq. (2.1) within the boundary

B, i.e., 1 < L ≤ B. The share pattern is the directed association while the Connectivity

pattern is the indirect association. We now define these two probability based similarity

scores: i) [SA](Pi, Pj) is defined a share pattern of any two predicates Pi and Pj ii)

[CA](Pi, Pj) for a Connectivity pattern of any two predicates.

Definition 11: Share Association Given predicates Pi and Pj in a directed RDF schema

graph G(C,P ). Let C(Pi) and C(Pj) denote the entities (subjects or objects) that are

directly connected to Pi and Pj . l(Pi, Pj) is the reachability test for the given predicates

Pi, Pj . SA(Pi, Pj) indicates the probability-based association matrix for a share pattern
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between Pi and Pj .

SA(Pi, Pj) =


1 l(Pi, Pj) = 0

0 l(Pi, Pj)→∞(nolink)

(|C(Pi)|∩|C(Pj)|)2
|C(Pi)|∗|C(Pj)| otherwise

(2.2)

Definition 12: Connectivity Association For a connectivity pattern of any two predicates

Pi and Pj , CA(Pi, Pj) defines the probability-based association for a connectivity pattern

between Pi and Pj based on the share pattern. For the given share associations SA(Pi, Pk)

and SA(Pk, Pj) and the distance between the predicates l(Pi, Pj), the connectivity asso-

ciation can be computed as follows:

CA(Pi, Pj) =

SA(Pi, Pk).SA(Pk, Pj) l(Pi, Pj) = 2

max1≤k<j CA(Pi, Pk).CA(Pk, Pj)) l(Pi, Pj) > 2
(2.3)

The definition is influenced by the chain matrix multiplication problem (a kind of

dynamic programming) of determining the optimal sequence for performing a series of

operations. After we get the similarity score for all pairs of predicates, we use the formula

in Eq. (2.2) and Eq. (2.3) to generate a predicate association matrix for clustering.

Definition 13: Predicate Association Matrix Given the total number of predicates n and

the probability-based association score for share patterns SA(Pi, Pj) and connectivity

patterns CA(Pi, Pj) between predicatesPi and Pj , PA[Pi, Pj] indicates an association

matrix for all pairs of predicates Pi and Pj

PA[Pi, Pj] =

CA(Pi, Pj) l(Pi, Pj) >= 2

SA(Pi, Pj) Otherwise
(2.4)

Fig. 4 shows an example of the predicate similarity computation for shared pat-

terns and connection patterns with the consideration of direction. In this example, a shared
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pattern is identified between predicates P1 and P2 and connection patterns are identified

between P1 and P3, P1 and P4, P1 and P5. Based on the PONP patterns, PA[Pi, Pj] is

computed as shown in Fig. 4.

Similarly, we apply the same strategy on concept to conduct the comparison study.

In the same RDF graph, Fig. 5 gives a simple example to explain how to compute con-

cept oriented similarity in level1, level2 and level3. In this example, we use notation Nk

to indicate nodek. N1 and N4, N4 and N6 are located on the first level because there is

only one predicate between a pair of concepts. Based on Eq. (2.2), the similarity score

PSs(N1, N4) and PSs(N4, N6) are 0.5 and 0.25, respectively. N1 and N6 are in the sec-

ond level, their similarity score is calculated by combine PSs(N1, N4) and PSs(N4, N6),

which is 0.125. N1 and N7 are in the third level, their similarity score PSc(N1, N7) is

the maximum score from PSs(N1, N4) ∗ PSc(N4, N7), PSc(N1, N6) ∗ PSs(N6, N7) and

PSc(N1, N8) ∗ PSs(N8, N7), which is 0.03125.

Specifically, for cross domains datasets, we give weight optimization to predicate

neighborhood association in order to make cross domains predicates relationship out-

standing. Cross domains weight optimization is defined below.

Definition 13: Cross Domains Weight Optimization For ∀ topic Ti with average sim-

ilarity association score Ti, if predicates pair Pi,Pj forms a cross domains relationship

with association score tij , we define t′ij as an optimized association score between Pi and

Pj , such that

t′ij =


tij+Ti

2
tij <

tij+Ti

2

tij tij >
tij+Ti

2

(2.5)
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Figure 4: PONP and Similarity Matrix (Directional Based)
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Figure 5: Concept based Neighborhood Similarity (Directional Based)
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2.5 Evaluation and Results

In this evaluation, we first conduct a comparison experiment between predicate

based similarity association and concept based similarity association. We then analyze

the patterns we discover in the GraphKDD framework.

2.5.1 Data Specification

In this study, we use DBpedia, YAGO and Bio2RDF 9 domains datasets as use

cases. All datasets schema are downloaded from the datahub repository, which is at the

address https://datahub.io/dataset/. Format of each dataset is RDF N-triple. A summary

of predicates, concepts, schema and instance for each dataset is given in Table 4. From

the table, it is obvious that DBpedia has a dominant number of predicates but maintain a

relative small number of concepts. YAGO also contains more predicates than concepts.

Bio2RDF 9 domains dataset has more concepts than predicates.

2.5.1.1 Predicate oriented Similarity and Concept oriented Similarity

We compare the predicate association scores with the concept association scores

for each dataset. Both the predicate oriented and the concept oriented approaches are

evaluated in the GraphKDD framework. For each approach, we calculate the similarity

association matrix. We compute the average similarity score for predicate and concept

based approach as shown in Table 5. In general, we find that the predicate based similarity

holds a higher association score than concept based approach for all three cases. However,

for DBpedia and YAGO, the predicate based average similarity score is low. Compared
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Table 4: Datasets Summary

# Predicates # Concepts # Schema Triple # Instance Triple
DBpedia 943 104 1837 3,000,000,000
YAGO 119 30 943 120,000,000
Bio2RDF 9 domains 330 374 126 795,329,244

Table 5: Average Similarity Measurement

Average
Predicate
Similarity

Average
Concept
Similarity

Average
Predicate
Similarity (SimRank)

Average
Concept
Similarity (SimRank)

DBpedia 0.07 0.01 0.0075 0.0058
YAGO 0.12 0.04 0.0346 0.0285
Bio2RDF 9
domains 0.51 0.04 0.43 0.01

to the high similarity score with Bio2RDF 9 domains datasets, the reason is that DBpedia

and YAGO are single domain dataset, so there are not much association among nodes.

In addition, it is because both predicate and concept based similarity are not directly

proportional to the size of predicates and concepts. From the evaluation, we found out

that the large number of predicates or concepts does not mean there is a high level of

interconnection among them.

The SimRank based experiment with predicate and concept oriented similarity

measurements is also conducted. The results are shown in Table 5. Similar to the PONP

outputs, the predicate oriented approach performs better than the concept based approach,

and Bio2RDF 9 domains datasets show the highest similarity score. The GraphKDD

framework performs a lot better than SimRank in all cases.
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2.5.1.2 Ranking of Patterns and Topics in Cross Domains

We also conduct an analysis experiment to illustrate each specific pattern involved

in cross domains ontology. In this study, we use Bio2RDF with 9 domains datasets to

interpret the pattern based evaluation. First of all, we compute the rankings of predicates,

patterns, and topics discovered from our knowledge discovery process and also summa-

rize the relationships among ontologies based on the discovered patterns and topics.

Predicate and Concept Ranking: The predicates, the primary atomic component in

GraphKDD, and their associated concepts are ranked based on their in-degree and out-

degree. From this analysis, we find out the roles of ontologies for cross domains collab-

oration in a information networks. As shown in Fig. 6(b), among 330 predicates, top

predicates such as dv:source and dv:calculated.properties are from three ontologies such

as DrugBank, ClinicalTrials, and PharmGKB. Similarly, among 374 concepts, top con-

cepts such as clinv:Resource, kv:Resource, dv:Resource, phv:Resource are shown in in

Fig. 6(a). These predicates and concepts are mainly from the primary ontologies includ-

ing ClinicalTrials, KEGG, DrugBank, and PharmGKB.

Cross Domains Predicate and Concept Ranking: The contents of cross domains are

ranked based on the in-degree/out-degree of cross domains concepts and predicates. We

observe the cross domains rankings with predicates and concepts is different from the

previous ranking. However, the ontologies playing important roles are similar. Fig. 7

shows 40 cross domains concepts and predicates. Among them, SIO:Drug, kv:Resource

and SIO:Gene are top 3 cross domains concepts of PharmGKB (SIO normalized), KEGG,

and DrugBank (SIO normalized). kv:pathway, clinv:arm.group and dv:x.kegg are top 3
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Figure 6: Top Concepts and Predicates: (a) Top 10 Concepts (b) Top 25 Predicates

The prefixes describe the domain of the concepts and predicates. clinv:
http://bio2rdf.org/clinicaltrials vocabulary dv: http://bio2rdf.org/drugbank vocabulary kv:

http://bio2rdf.org/kegg vocabulary mgv: http://bio2rdf.org/mgi vocabulary omimv:
http://bio2rdf.org/omim vocabulary phv: http://bio2rdf.org/pharmgkb vocabulary

33



Table 6: Top 3 Predicates for 5 Top Topics with Bio2RDF 9 Domains

Num of Topic Num of Predicate Top 3 Predicates

Topic 16 119
dv:source; dv:calculated.properties;
clinv:arm.group

Topic 25 72
dv:calculated.properties; clinv:arm.group;
phv:annotation.type

Topic 23 39
dv:calculated.properties; clinv:arm.group;
kv:pathway

Topic 22 36
dv:calculated.properties; clinv:arm.group;
kv:pathway

Topic 26 24
clinv:arm.group; kv:pathway;
mgv:x.genbank

Table 7: Top 2 Unique Predicates for 5 Top Topics Bio2RDF 9 Domains

Num of Topic Num of Predicate Top 2 Unique Predicates
Topic 16 119 phv:drug; phv:disease
Topic 25 72 phv:association; phv:article
Topic 23 39 clinv:group; kv:module
Topic 22 36 pathway; dv:x.uniprot
Topic 26 24 dv:transporter; dv:target

cross domains predicates of KEGG, ClinicalTrials, and DrugBank, respectively.

Topic Ranking with Cross Domain Features: These patterns are ranked according to

primary features such as cross domains predicates, predicate popularity (in-degree/out-

degree of the predicates), and domain verity (the number of ontologies in which the pat-

terns are captured). Fig. 8(a) shows top 5 topics (Topic 16, Topic 25, Topic 23, Topic

22 and Topic 26) computed by the cross domains features. Table 6 and 7 show the top 3

predicates and top 2 unique predicates of these topics.

Topic Ranking with Cross Domain Neighborhood Patterns: Topics are ranked based

on the PONP patterns. Fig. 8(b) shows top 5 topics (Topic 16, Topic 25, Topic 23, Topic
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Figure 7: Cross Domain Concept and Predicate Ranking: (a) Top 40 Concepts (b) Top 40
Predicates

The prefixes describe the domain of the concepts and predicates. clinv:
http://bio2rdf.org/clinicaltrials vocabulary ctdv:http...bio2rdf.org.ctd vocabulary dv:
http://bio2rdf.org/drugbank vocabulary hv: http://bio2rdf.org/hgnc vocabulary kv:
http://bio2rdf.org/kegg vocabulary mgv: http://bio2rdf.org/mgi vocabulary omimv:
http://bio2rdf.org/omim vocabulary phv: http://bio2rdf.org/pharmgkb vocabulary sider:
http://bio2rdf.org/sider vocabulary
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Figure 8: Cross Domain Topic Ranking: (a) Feature-based Ranking (b) Pattern-Based
Ranking

Popularity is measured by In-degree/Out-degree of predicates. Verity is measured by the number
of ontologies involved. The numbers in the bar graph are the topic ID (ranged: 1 - 43).
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22 and Topic 26). The ranking based on the counts of the PONP patterns (Provider,

Consumer, Reacher, CD and NCD patterns) is very similar to the ranking computed by

the predicate popularity, cross domains predicate, and variety shown in Fig. 8(a). This

confirms that the proposed pattern-based approach reflects an excellent understanding of

the important features of the network such as density, verity, and popularity.

2.5.1.3 Ontology Patterns in Cross Domains

Based on top five PONP patterns (Provider, Consumer, Reacher, Directional Con-

nector, Non-Directional Connector) as case studies, we analyze the collaboration between

ontologies as shown in Fig. 9, 11, 13, 15 and 17. Topic graphs are depicted in 10, 12, 14,

16 and 18. In each graph, a color is assigned to each ontology as follows: DrugBank: Red;

HGNC: Pink; MGI: Green; PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue;

SIDER: Gray; KEGG: Orange; CTD: Magenta. Semanticscience Integrated Ontology

(SIO) represents the normalized name for integrated medical ontologies. For each case

study, we now show its topic pattern graph of concepts and predicates and the instances

of concepts/predicates in this topic graph.

Case 1: Provider Patterns in Ontology Collaboration Five ontologies (DrugBank,

PharmGKB, ClinicalTrials, KEGG and CTD) are involved in the collaboration of the

provider pattern. In this collaboration, we find that DrugBank and KEGG are a Provider,

CTD is a Balancer, and PharmGKB is a Consumer as well as a Bridger. ClinicalTrials

is its Consumer. Fig. 9 shows an ontology collaboration graph for the given provider
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Figure 9: Ontology Provider Pattern

Figure 10: Topic 25: Provider Pattern Graph
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Table 8: Provider Pattern in Topic 25

phv:Resource hv:Resource SIO 001077:Gene

epidermal growth factor receptor

Gene Symbol for EGFR
EGFR, ERBB,
ERBB1, HER1, PIG61,
mENA; epidermal growth
factor receptor (EC:2.7.10.1);
K04361 epidermal growth
factor receptor [EC:2.7.10.1]

complement component 1,
r subcomponent Gene Symbol for C1R

C1R; complement component 1,
r subcomponent (EC:3.4.21.41);
K01330 complement component 1,
r subcomponent [EC:3.4.21.41]

complement component 1,
q subcomponent, B chain Gene Symbol for C1QB

C1QB; complement component 1,
q subcomponent, B chain;
K03987 complement C1q
subcomponent subunit B

complement component 1,
s subcomponent Gene Symbol for C1S

C1S; complement component 1,
s subcomponent (EC:3.4.21.42);
K01331 complement component 1,
s subcomponent [EC:3.4.21.42]

interleukin 2 receptor, beta Gene Symbol for IL2RB
IL2RB, CD122, IL15RB, P70-75;
interleukin 2 receptor, beta;
K05069 interleukin 2 receptor beta

pattern. Fig. 2(a) shows a provider pattern in Topic 25. This pattern describes the collab-

oration of two predicates, namely phv:x-hgnc and kv:x-hgnc to integrate information from

three domains. Specifically, PharmGKB Resource links to KEGG Gene (SIO normalized)

through HGNC Gene symbol. Table 8 shows 5 instances of the concepts in the provider

pattern of Topic 25.

Case 2: Ontology Collaboration with Consumer Patterns Five ontology, namely KEGG,

OMIM, DrugBank, CTD, and PharmGKB are involved. We find that CTD is a consumer
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Figure 11: Ontology Consumer Pattern

Figure 12: Topic 15: Consumer Pattern Graph
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Table 9: Consumer Pattern in Topic 15

SIO 001077:Gene ensev:Resource unv:Resource

Brd7 ENSMUSP00000034085
Bromodomain-containing
protein 7

C1qbp ENSMUSP00000077612
Complement component 1 Q
subcomponent-binding
protein, mitochondrial

Ddx21 ENSMUSP00000042691 Nucleolar RNA helicase 2

Kcnab1 ENSMUSP00000047480
Voltage-gated potassium
channel subunit beta-1

Nip7 ENSMUSP00000034392
60S ribosome subunit
biogenesis protein
NIP7 homolog

of KEGG, OMIM and PharmGKB. DrugBank are a balancer with KEGG. Fig. 11 shows

an ontology collaboration graph for the consumer pattern, CTD. Fig. 2(b) shows a con-

sumer pattern in Topic 15. This consumer pattern shows the collaboration between pred-

icates mgv:x-ensembl-protein and kv:x-uniprot as a consumer of the PharmGKB concept

(SIO normalized), SIO 001077:Gene. The collaboration is established across three do-

mains such as KEGG, MGI and PharmGKB. In this pattern, due to the collaboration of

these two consumer predicates, the Uniprot concept resource is linked to the Ensemble

concept Resource through PharmGKB concept Gene (SIO normalized). Table 9 shows 5

instances of the concepts in the consumer pattern of Topic 15.

Case 3: Ontology Collaboration with Reacher Patterns Only two predicates from two

ontology PhargGKB and ClinicalTrials are involved in the Reacher pattern. From this

pattern analysis, we find that PharmGKB plays a Provider and ClinicalTrials a Consumer

from this collaboration. Fig. 13 shows the ontology collaboration with the reacher pattern

between PharmGKB and ClinicalTrials. Fig. 2(c) shows a reacher patterns in Topic 22.
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Figure 13: Ontology Reacher Pattern

Figure 14: Topic 22: Reacher Pattern Graph
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Table 10: Reacher Pattern in Topic 22

SIO 010038:Drug kv:Resource SIO 001107:Pathway

L-Lysine
L-Lysine; Lysine acid;
2,6-Diaminohexanoic acid ABC transporters

Succinic acid
Succinate; Succinic acid;
Butanedionic acid;
Ethylenesuccinic acid

Citrate cycle (TCA cycle)

Glycine Glycine; Aminoacetic acid; Gly
Biosynthesis of
amino acids

Pyruvic acid

Pyruvate; Pyruvic acid;
2-Oxopropanoate;
2-Oxopropanoic acid;
Pyroracemic acid

Pentose phosphate pathway

L-Glutamic Acid
L-Glutamate; L-Glutamic acid;
L-Glutaminic acid; Glutamate

Biosynthesis of
secondary metabolites

This reacher pattern is generated by predicates kv:pathway and dv:x-kegg, across four

domains (PharmGKB, DrugBank, KEGG, CTD). Through the collaboration of these two

predicates in this pattern, the PharmGKB concept Drug (SIO normalized) is linked to the

KEGG concept Resource and the KEGG concept Resource is linked to the CTD concept

Pathway (SIO normalized). Table 10 shows 5 instances of the concepts in the reacher

pattern of Topic 22.

Case 4: Ontology Collaboration with Directional Connector Patterns From the pat-

tern analysis with top 40 predicates, all nine ontologies have the Directional Connect

(DC) patterns. Fig. 15 shows the ontology collaboration through the DC patterns with

54 links among these ontologies. We find that CliniclalTrials, DrugBank and SIDER play

the role of Provider and CTD, HGNC, KEGG, MGI, OMIM, PharmGKB Consumer. Fur-

thermore, KEGG, PharmGKB, SIDER, HGNC play the role of Bridger. The connection

among the ontologies are established through the Bridger pattern. Fig. 3(a) shows a DC
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Figure 15: Ontology Directional Connector Pattern

Figure 16: Topic 16: Directional Connector Pattern Graph
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Table 11: Directional Connector Pattern in Topic 16

SIO 010343:Enzyme hv:Resource omimv:Resource mgv:Resource

Prostaglandin G/H
synthase 2

Gene Symbol
for PTGS2

PROSTAGLANDIN-
ENDOPEROXIDE
SYNTHASE 2; PTGS2

Ptgs2

Vitamin K-dependent
protein C

Gene Symbol
for PROC PROTEIN C; PROC Proc

Cytochrome
P450 2C9

Gene Symbol
for CYP2C9

CYTOCHROME P450,
SUBFAMILY IIC,
POLYPEPTIDE 9;
CYP2C9

Cyp2c65

CYP3A
Gene Symbol
for CYP3A7

CYTOCHROME P450,
SUBFAMILY IIIA,
POLYPEPTIDE 7; CYP3A7

Cyp3a13

Cob(I)yrinic acid a,
c-diamide
adenosyltransferase,
mitochondrial

Gene Symbol
for MMAB MMAB GENE; MMAB Mmab

pattern in Topic 16. In this DC pattern of Topic 16, three predicates such as dv:x-hgnc,

hv:x-omim and omimv:x-mgi are used to connect concepts across five domains (KEGG,

DrugBank, HGNC, OMIM, MGI). In this pattern, the KEGG concept Enzyme (SIO nor-

malized) links to the HGNC concept Resource. The HGNC concept Resource links to

the OMIM concept Resource, and the OMIM concept Resource links to the MGI con-

cept Resource. All the paths within the bounded context (the maximum distance between

predicates, B = 3) can be determined by the DC patterns. From this pattern, we find

many paths. One of them is the path 〈SIO 010343:Enzyme→ dv:x-hgnc→ hv:Resource

→ hv:x-omim→ omimv:Resource→ omimv:x-mgi→ mgv:Resource〉. Table 11 shows 5

instances of the concepts in the DC pattern of Topic 16.

Case 5: Ontology Collaboration with Non-Directional Connector Patterns In the
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Figure 17: Ontology Non-Directional Connector Pattern

Figure 18: Topic 23: Non-Directional Connector Pattern Graph
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Non-directional Connector (NDC) patterns discovery, all the 9 ontologies are fully par-

ticipated. Fig. 17 shows the ontology collaboration through the NDC patterns. These 9

ontologies are connected with 72 links, which means all of them are fully connected. In-

terestingly, all of them have the same number of in-degree and out-degree, so that they are

well balanced. Thus, no bridge pattern is required in this collaboration. Fig. 3(b) shows

an ontology collaboration graph generated from the non-directional connector pattern

(NDC) in Topic 23. This NDC pattern is composed with four predicates such as mgv:x-

refseq-transcript, ctdv:pathway and ctdv:disease that are used to connect nine different

domains (KEGG, DrugBank, MGI, HGNC, SIDER, PharmGKC, ClinicalTrials, OMIM,

CTD). Specifically, in this pattern, those three predicates are used to connect six concepts

such as KEGG Gene (SIO normalized), Refseq resource, KEGG Resource, CTD Chemi-

cal, KEGG Pathway (SIO normalized) and CTD Chemical-disease-association. Table 12

shows 5 instances of the NDC pattern in Topic 23.

2.6 Summary

We have defined five different patterns to elaborate the structural relationship for

predicates in RDF graph based on basic Share pattern and Connectivity pattern. In ad-

dition, we have defined topic and topic boundary in information network based on pat-

terns. Moreover, we have designed a Predicate Oriented Neighborhood Patterns (PONP)

to measure the similarity among predicates. A dynamic programming based algorithm

is designed to calculate the similarity association according to the distance and probabil-

ity of shared concepts between each pair of predicates. Specifically, for cross domains
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datasets, we also developed an optimization solution to enhance the cross domains predi-

cate similarity scores.

We conducted a comparative study to evaluate the predicate oriented and concept

oriented approaches. The evaluation was conducted using DBpedia, YAGO and Bio2RDF

9 domains datasets. The results showed that PONP is better than the concept based ap-

proach. A similar experiment was conducted with the SimRank algorithm. The predicate

oriented approach also performs better than SimRank for Bio2RDF 9 domains datasets.

For the cross domains pattern analysis using Bio2RDF 9 domains datasets, these results

showed some cross domain topics were discovered. Based on the discovered topics, in-

teresting relationships among ontologies were discovered.
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Table 12: Non-Directional Connector Pattern in Topic 23

SIO 001077,
(Gene) refv:Resource v:Resource

Chemical-
Disease-
Association

Chemical SIO 001107,
(Pathway)

Fbxl12 NM 001002846 SDKD

1,10-phenanthroline
(C025205) &
Plasminogen
Activator
Inhibitor-1
Deficiency

Plasminogen
Activator
Inhibitor-1

p53
signaling
pathway

Gjb6 NM 001010937 SDKD

2-nitro-4-
phenylenediamine
(C014706) &
Interleukin
2 Receptor,
Alpha,
Deficiency of

Interleukin 2,
Receptor
Alpha

Cytokine-
cytokine
receptor
interaction

Dclre1b NM 001025312 SDKD

2-
(methylamino)
isobutyric
acid (C017911) &
Insulin-Like
Growth Factor
I Deficiency

Insulin-Like
Growth
Factor I

Oocyte
meiosis

BC053393 NM 001025435 SDKD

2-methoxy-5-
(2’,3’,4
-trimethoxyphenyl)
tropone
(C030370) &
Combined
Saposin Deficiency

Combined
Saposin Lysosome

Maf NM 001025577 SDKD

2-
methoxy-5-
(2’,3’,4’
-trimethoxyphenyl)
tropone
(C030370) &
Krabbe
Disease, Atypical

Combined
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CHAPTER 3

UNSUPERVISED LEARNING ON PONP ASSOCIATION MEASUREMENT

3.1 Introduction

In this chapter, we first give some background information of data clustering,

graph partition and topic discovery. Then we conduct a comprehensive literature sur-

vey of previous work on knowledge discovery from different perspective of algorithms.

In addition, we introduce innovated top-down and bottom-up unsupervised learning. In

the end, we conduct evaluation and make result discussion on these two approaches.

We start to apply a systematic way of building topics from ontology after gener-

ating PONP association measurement. The workflow of the GraphKDD is shown as Fig.

19. As Chapter 2 introduces, first two steps are about applying predicate oriented pattern

analysis on integrated RDF/OWL data and build predicate associate measurement ma-

trix. Then the GraphKDD will apply clustering algorithms on such matrix. There are two

different clustering algorithms, one is a bottom-up approach and another one follows top-

down approach. The GraphKDD will apply different algorithms for different purposes of

managing and extracting knowledge of data. We will discuss the detailed methodology

and evaluation of clustering approaches in this chapter. In addition, knowledge discovery

applications can be made based on clustering outputs, which will be covered in Chapter

4.
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Figure 19: Workflow of the GraphKDD Framework

3.2 Background

We live in an era of information explosion. The manual process for discovering

knowledge from such big data is not possible. Therefore, unsupervised learning algo-

rithms are very effective for extracting useful information from big data. In this chapter,

we present our clustering algorithms, named Hierarchical Predicate oriented K-Means

(HPKM) and a Predicate oriented Hierarchical Agglomerative (PHAL) clustering, that

are the extensions of existing unsupervised algorithms, i.e., K-Means clustering and hier-

archical clustering algorithms. To validate these clustering algorithms, we compare them

with K-Means [49], Pam [120], Clara [63], Hierarchical Clustering [62] in the evaluation

part. The supervised and unsupervised learning are defined below.
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• Supervised Learning provides a automatic way to infer knowledge based on training

data.

• Unsupervised Learning is one of the machine learning approach that make clusters

of datasets based on observed relationship that is not labeled explicitly.

In addition, here we introduce the definition of global similarity optimization and

local diversity optimization at the beginning of this chapter. Specifically, HPKM is suit-

able for global similarity optimization and PHAL is suitable for local diversity optimiza-

tion. These two concepts will be used to compare HPKM and PHAL.

• Global Similarity Optimization: The guiding principle is to minimize inter-cluster

(inter-topic) similarity and maximize intra-cluster (intra-topic) similarity, based on

the similarity measure for the PONP patterns. The PONP pattern-based similarity

and the silhouette width (SW) are computed for achieving the objective of the clus-

tering which is maximizing intra-cluster similarities and minimizing inter-cluster

similarities. If the SW of a topic is higher than α, this topic will be clustered into K

smaller topics. For each topic, we computed the average sw(pi) over all data of a

topic as a measure of how tightly grouped all the predicates in the topic are. Thus

the average sw(pi) over all predicates of the entire dataset is a measure of how ap-

propriately the predicates have been clustered. The details on the global similarity

optimization are available in [107].

• Local Diversity Optimization: The diversity optimization aims to determine the

center and boundary of a topic. We address the diversity optimization as a local
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approach considering local and diverse properties (i.e., cross domains properties

and concepts) so that a center of topic needs to be determine.

Graph partition works directly on graph data and aims at partitioning graph into

smaller components with specific properties. The focusing of graph partition is different

from which of clustering algorithm. In this research, we map graph data into metric spaces

and apply unsupervised clustering algorithm on it to find correlation among RDF predi-

cates and generate small context topic of information. To validate the optimal branching

factor of our unsupervised learning approach, we also include existing graph partition al-

gorithm implemented by GraphX (Random Vertex Cut, Canonical Random Vertex Cut,

Edge Partition 1D and Edge Partition 2D) [128]. Definition of branching factor and four

random graph partition algorithms are shown below.

• Branching Factor defines the number of out-degree children successor nodes at

each predecessor in a hierarchical manner.

• Random Vertex Cut follows vertex cut approach and considers source for applying

hash function. In this algorithm, directions are considered.

• Canonical Random Vertex Cut follows vertex cut approach. It is similar toRandomV ertexCut,

but directions are not considered.

• Edge Partition 1D follows edge cut approach. Hash function is applied on source

vertex ID. Edges are assigned to to the partitions according to the source vertices.

• Edge Partition 2D follows edge cut approach. Hash function is applied on both

source vertex id and destination vertex ID.
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Knowledge discovery is the unique feature of the GraphKDD framework. Based

on PONP and unsupervised HPKM and PHAL approaches, the GraphKDD is able to find

context awareness topic with predicates and concepts inside. To validate the knowledge

discovery results coming out from the GraphKDD framework, we use Latent Dirichlet

allocation (LDA) [14] to generate topics with the same datasets and compare the outputs

for both approaches.

• Latent Dirichlet Allocation is able to find similar group of information by analyz-

ing a set of observations in document. Let α represents the per-document topic

distribution, β indicates the per-topic word distribution, θi represents the topic dis-

tribution for document i, ϕk indicates the word distribution for topic k, Zij points

out the topic for the jth word in document i, and Wij indicates the specific word,

the equation of LDA is shown as below:

P (W,Z, θ, ϕ, ;α, β) =
K∏
i=1

P (ϕi; β)
M∏
j=1

P (θj;α)
N∏
t=1

P (Zjt|θj)P (Wjt|ϕZjt)

(3.1)

To validate the outputs among topics, we also analyze similarity among them.

Specifically, we use Cosine [116], Jaccard [57] and Probabilistic Similarity [71] to make

the comparison. Formal definition and equation for each of the similarity measurement is

shown below.

• Cosine Similarity (CS) is used as a measure of similarity between two vectors of

an inner product topic space that measures the cosine of the angle between topics.

Given two vectors of topics, Ta and Tb, the cosine similarity is computed using a
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dot product and magnitude using the formula defined as follows:

cos(θ) =

n∑
i=1

aibi√
n∑

i=1

a2i

√
n∑

i=1

b2i

(3.2)

where ai and bi are components of vector Ta and Tb, respectively.

• Jaccard Similarity Coefficient (JSC) is defined as the size of the intersection divided

by the size of the union of the sample sets as follows:

JSC(Ta, Tb) =
|Pred(Ta) ∩ Pred(Tb)|
|Pred(Ta) ∪ Pred(Tb)|

(3.3)

where Pred(T ) returns the list of predicates in given topic T and 0 ≤ JSC(Ta, Tb) ≤

1. If Ta and Tb are both empty, we define JSC(Ta, Tb) = 1.

• Probabilistic Similarity (PS) defines the degree of association between topics Ta

and Tb as follows [107]:

PPS(Ta, Tb) =
(|Pred(Ta) ∩ Pred(Tb)|)2

|Pred(Ta) · Pred(Tb)|
(3.4)

where Pred(T ) returns the list of predicates in given topic T .

3.3 Related Work

We compare the GraphKDD clustering approach with existing similarity and ran-

dom based partition algorithm as shown in Table 13. In addition to neighbor measure-

ment, structural analysis, data locality and dynamic/static discovery, the GraphKDD has

an unique strength to do latent pattern discovery that other four partition algorithms are
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Table 13: The GraphKDD with Graph Partition Algorithms

Neighbor
Measurement

Structural
Analysis

Data
Locality

Dynamic/
Static
Discovery

Latent
Pattern
Discovery

Neighbor
Matching [86] Yes Yes No Yes No

SimRank [60] Yes Yes Yes Yes No
Rand Vertex
Cut [128] No Yes Yes Yes No

Rand Edge
Cut [128] No Yes Yes Yes No

GraphKDD Yes Yes Yes Yes Yes

Table 14: The GraphKDD with Clustering Algorithms

Top
Down

Bottom
Up Optimization Fuzzy Context

Aware
K-Means [49] Yes No No No No
FCM [11] Yes No No Yes No
Pam [120] Yes No No No No
Clara [63] Yes No No No No
Hierarchical
Clustering [62] Yes Yes No No No

GraphKDD Yes Yes Yes Yes Yes

not capable of doing.

Because the GraphKDD adopts unsupervised learning approach, we compare the

GraphKDD with some of the famous existing clustering algorithms as Table 14 shows.

Each one can perform top-down approach to clustering graph. However, only the GraphKDD

and Hierarchical Clustering [62] are able to apply a bottom-up solution as well. More-

over, only the GraphKDD and Fuzzy C-Means clustering (FCM) [11] are able to make

fuzziness output for each cluster. The GraphKDD has the unique features of optimization

support and context awareness.
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3.4 Hierarchical Predicate Oriented K-Means Clustering

The clustering approach we propose here is based on the similarity association

measurement of the Predicate Oriented Neighborhood Patterns (PONP) inherent in the

ontologies. We posit that predicate oriented clustering is a required step for efficient

query processing involving the alignment and integration of ontologies. Given that predi-

cates are more closely related to some predicates than others, predicates can be clustered

for efficient query processing - the task of classifying a collection of predicates into clus-

ters (or topics). The guiding principle is to minimize inter-cluster (inter-topic) similarity

and maximize intra-cluster (intra-topic) similarity, based on the similarity measure for the

PONP.

The degree of diversity is defined to measure the degree of the association between

predicates from different domains in a heterogeneous information network. The diversity

degree is defined with an optimal weight assigned to links between predicates from dif-

ferent domains. The weight can optimize the degree of the diverse association between

diverse predicates from different domains. The rationale is to capture diverse relations

between predicates from multiple domains by giving a higher weight to the links across

domains while giving a lower weight to links in a single domain. The details on the local

and diverse weight optimization are available in [106].

We first present our top-down clustering algorithm, called the Hierarchical Pred-

icate oriented K-Means clustering (HPKM) that is designed by combining the divisive

hierarchical clustering algorithm [62] and K-Means algorithm [49] for generating K top-

ics level-by-level in an optimal manner. Similar to the K-Means algorithm, the HPKM
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is an unsupervised learning approach partitioning ontologies into k topics by clustering

each predicate in the ontologies with the nearest mean. Similar to the divisive hierarchical

clustering algorithm [62], the HPKM clusters ontologies into smaller topics in a hierar-

chical manner. The PONP similarity association score and the silhouette width (SW) are

computed for achieving the objective of the clustering which is maximizing intra-cluster

similarities and minimizing inter-cluster similarities [22]. If the SW of a topic is higher

than α, this topic will be clustered into K smaller topics. The value of silhouette sw(pi)

can be ranged between -1 and 1. For each predicate pi, we compute the following two

similarity: inter-cluster similarity and intra-cluster similarity.

Intra-cluster similarity a(pi): This measure refers to the similarity of data in a

single cluster. Let a(pi) be the average dissimilarity of pi (taking the inverse of the SM

matrix computed from the PONP algorithm) with all other data within the same cluster.

It can be validated how well pi is assigned to its cluster according to a(pi) such as the

smaller the value, the better the assignment. We then define the average dissimilarity

of predicate pi to a cluster C as the average of the distance from pi to predicates in Ci.

Inter-cluster similarity b(pi): This measure refers to the similarity between clus-

ters. Let b(pi) be the lowest average similarity of pi to the sibling clusters Cj that has

the same parent cluster with Ci of which pi is not a member. The cluster with this lowest

average similarity is said to be the “sibling (neighboring) cluster”, Cj , of p(i) because it

is the next best fit cluster for predicate pi.

A silhouette width can be computed as follows:
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sw(pi) =
b(pi)− a(pi)

max(a(pi), b(pi))
(3.5)

More specifically, it can be defined as follows: There are three possible cases

about the silhouette width: (i) If the silhouette width sw(pi) is close to one, this means

that the predicate pi is appropriately clustered. (ii) If sw(pi) is close to a negative one,

then the predicate p would be not appropriate here but would be more appropriate if it is

clustered in its neighboring cluster Cj . (iii) If sw(pi) is near zero then this means that the

predicate pi is on the border of two natural clusters, namely Ci and Cj .

sw(pi) =


1− a(pi)

b(pi)
ifa(pi) < b(pi)

0 ifa(pi) = b(pi)

b(pi)
a(pi)
− 1 ifa(pi) > b(pi)

(3.6)

For each topic, we compute the average sw(pi) over all data of a topic as a measure

of how tightly grouped all the predicates in the topic are. Thus the average sw(pi) over

all predicates of the entire dataset is a measure of how appropriately the predicates have

been clustered.

With the Bio2RDF Drugbank dataset as an example, Fig. 20 shows the average

sw(pi) over all predicates of each topic at each level. For example, at level 1, K= 2

is computed using the SW. Furthermore, after partitioning into two topics, the silhou-

ette widths, 0.89 (for 20 predicates) and 0.71 (for 43 predicates) are computed for each

topic. At level 2, for the left topic, K= 5 and for the right topic, K = 2 are computed,

respectively. After clustering, silhouette widths, 0.52 (for 4 predicates) and 0.7 (for 6

predicates), 0.59 (for 3 predicates), 0.92 (for 4 predicates), and 0.38 (for 3 predicates) and
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Figure 20: Silhouette Width and Number of Topics in Topic Hierarchy

two silhouette widths, 0.76 (for 35 predicates) and 0.66 (for 8 predicates) are computed

for each topic. At level 3, one of the topics are partitioned into two (K= 2). Two silhou-

ette widths, 0.77 (for 20 predicates) and 0.65 (for 15 predicates) are computed for each

topic. If there are too many or too few topics, as may occur when a poor choice of k in

each level is used in the hierarchical K-Means algorithm, some of the topics will typically

display much narrower silhouettes than the rest. Thus silhouette averages are used to de-

termine the number of topics within a dataset. In the HPKM, a topic of interest is further

clustered into K subtopics (the optimal K subtopics) using a heuristic algorithm, Neigh-

borhood Silhouette Width (NSW). NSW is similar to the silhouette method that validates

the consistency checking by examining how well each predicate fits some uniformity cri-

terion in its cluster, whereas Neighborhood Silhouette Width (NSW) is the average of the

weighted SW for the (neighbored) topics at a specific level that have the same parents.

The Neighborhood Silhouette Width (NSW) is computed by the sum of the multiplication
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of silhouette width and the number of predicates in a particular topic,NumP (Ti), divided

by the total number of predicates in the neighboring topics. The optimal k for a topic Tl

at level l will be determined based on the highest Neighborhood Silhouette Width nsw(Tl)

sw(pi) =

∑k
i=1 sw(Ti) ∗NumP (Ti)∑k

i=1NumP (Ti)
(3.7)

For example, for the given sw(T1 1) is 0.89 andNumP (T1 1) is 20 and sw(T1 2)

is 0.71 andNumP (T1 1) is 43, the first level’s Neighborhood Silhouette Width nsw(T1 1)

is computed as follows

nsw(T1 1) = (0.89∗20+0.71∗43)
(20+43)

= 0.77

Therefore, at level 1, the highest NSW value is 0.77 and the optimal K is deter-

mined as 2. Similarly, the second level’s Neighborhood Silhouette Width nsw(T2 1) is

computed as follows

nsw(T2 1) = (0.52∗4+0.7∗6+0.59∗3+0.92∗4+0.38∗3)
(4+6+3+4+3)

= 0.64

nsw(T2 2) = (0.76∗35+0.66∗8)
(35+8)

= 0.74

Therefore, the highest NSW for T2 1 and T2 2 at level 2 is T2 1 =0.64, T2 1

=0.74 and the optimal K is determined as 5 and 2, respectively.

According to the optimal k determined by nsw(Tl), the level of the hierarchy that

can represent topics at multiple tasks will be constructed at different levels until there is
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no further change in the hierarchy. At the first level partition, we get an highest initial

silhouette width s, which can be used as a global silhouette width threshold. For each of

the m topics in the second level, we start doing second level partition again. If the high-

est silhouette width for each topic sm ≥ s, we continue doing clustering on this specific

branch. Here we name sm as local silhouette width optimization threshold. Otherwise

such topic is not able to be split any more. In addition, for any level n > 2, to determine

whether split a topic or not, we no longer compare the highest silhouette snm with global

threshold s, but only compare snm with their own local optimization sm. Similarly, if snm

≥ sm, clustering could be continued. We do a heuristic test for topics at all levels until

there is no new topics been generated any more. In this way, we can achieve the HPKM

objective of maximizing intra-cluster similarities and minimizing inter-cluster similari-

ties. The algorithm of Hierarchical Predicate oriented K-Means clustering (HPKM) in

terms of global and local optimization are given in Algorithm 1 and 2 respectively.
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Algorithm 1 Hierarchical Predicate-based K-Means Clustering (HPKM) Part 1 with

Global Optimization

/* P is an n * n predicate similarity matrix, n is the number of predicates in

ontologies */

/* δ is the global silhouette width threshold Cij */

Input: P, δ

Output: C={C11, C12 . . . , Cij}
i=1

while Change1==true and sw2 >= δ do
sw1= nsw(ci)

k= OptimalK(Ci, sw1)

Change1=false

if k > 1 then
Change1=true

end

for j = 1 to k do
µij= RM(pj1,pj2 . . . , pjm)

end

for each pij ∈Pi do
µij = Argmin(pij , µij), j ∈ 1 . . . k

end

Go to Algorithm 2

end
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Algorithm 2 Hierarchical Predicate-based K-Means Clustering (HPKM) Part 2 with Lo-

cal Optimization

/* P is an n * n predicate similarity matrix, n is the number of predicates in

ontologies */

/* λ is the local silhouette width threshold Cij */

Input: P, λ

Output: C={C11, C12 . . . , Cij}
while Change2==true and and sw2 >= λ do

for each µij ∈Ui do
UpdateCluster(µij)

end

for each pij ∈Pi do

NCen = Argmin(pij , µij), j ∈ 1 . . . k if NCen 6=muij then
µij=NCen Cij=Cij ∪pij

changed2=true
end

sw2 = SilhouetteWidth(Cij)

end

end

Algorithm 1 describes the situation when the first level clustering happens. We

first calculate and pick the highest silhouette width and make it as the global optimization

threshold δ. In Algorithm 2, we then consider each branch individually and make local

optimization threshold λ to determine the stop point for each topic specifically. Both

algorithms stop running when there is no more new topics are generated.
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3.5 Predicate Oriented Hierarchical Agglomerative Clustering

There are various different approaches in clustering information networks. As we

discuss in last section, one solution is Hierarchical Predicate oriented K-Means cluster-

ing (HPKM) algorithm for discovery of relevant topics from integrated multiple sources

and forms a topic hierarchy. The HPKM algorithm is an excellent way to summarize a

integrated view of multiple datasets. For example, Fig. 21 presents a clustering solution

provided by HPKM on 9 Bio2RDF cross domains datasets. However, we observe that

HPKM is not suitable for cross domains knowledge discovery from heterogeneous infor-

mation network. The reason is that the HPKM’s top-down approach focuses on global

clustering based on homogeneous perspectives, however, ignoring the diverse and local

perspectives of the network.

In this research, to handle heterogeneous datasets, we design a new algorithm,

called the Predicate oriented Hierarchical Agglomerative Clustering (PHAL), for topic

discovery from the heterogeneous information network of the multiple ontologies. PHAL

is a hierarchical bottom-up clustering algorithm by applying Hierarchical Agglomerative

clustering (HAC) [62] to the heterogeneous information network of cross domains ontolo-

gies. PHAL starts with each predicate as a singleton cluster and then successively merge

pairs of clusters while traversing up through its ancestors in the hierarchy. To find better

cross domains patterns, we use a approach which described in Definition 13 to make cross

domains predicates relationship outstanding.

Fig. 22 shows a topic hierarchy generated from the PHAL algorithm based on

Bio2RDF nine domains data. The PHAL algorithm has four phases as shown below and
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Figure 21: Top-Down Topic Hierarchy
top-down topic hierarchy with three levels and 7 topics at the third level. The number assigned to the
edges indicates the distribution of predicates to its child node. The sum of the numbers should be one

(e.g., 0.17+0.83 at the top level). A color is assigned to each ontology as follows: DrugBank: Red;
HGNC: Pink; MGI: Green; PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray;

KEGG: Orange; CTD: Magenta.
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Figure 22: Bottom-Up Topic Hierarchy
Bottom-up topic hierarchy with 43 topics. Topic ID is assigned to each cluster in this hierarchy. A color is

assigned to each ontology as follows: DrugBank: Red; HGNC: Pink; MGI: Green; PharmGKB: Cyan;
ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta.

the pseudo codes are shown in Algorithms 3, 4, 5 and 6.

Phase 1: This phase focuses on clustering predicates from the heterogeneous information

network of the given ontologies using Hierarchical Agglomerative Clustering [62]. This

algorithm is an incremental and interactive bottom-up approach to build a hierarchy of

topics based on the PONP until all predicates in the network belong to a topic group. The

results from this learning process are a set of topics (InitialMap) in a hierarchical tree

structure (similar to the topics shown in Fig. 22).

Phase 2: Given the tree from Phase 1, we first compute the mid-level of the tree (i.e., Mid

= H/2, where H is the height of the hierarchy generated from Phase 1). The topics at the

mid-level Mid are assigned to InitialTopicSet. If there is no topic at the level Mid, then go

upward until find any topic groups on the subsequent level of the Mid (i.e., Mid-1) in the

hierarchy. Among 43 topics shown in Fig. 22, Topics 2-11 are the topic groups captured
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at the level Mid.

Phase 3: This phase illustrates the constructing of topics for the left-over topic groups

(called the ’disjoint’ topics), which do not belong to the topic groups InitialMap. Starting

from the level Mid - 1, we start traversing the tree upward to construct a new topic group

with each topic at the the subsequent level of the Mid level (i.e., Mid - 1) and assign it to

FinalTopicSet. Repeat this step at Mid - 2 until reaching to the root. Topics 12-43 in Fig.

22 are newly constructed during this phase. In addition, we have made a special topic

group (i.e., Topic1) that is a collection of the singleton topics whose size is 1.

Phase 4: There are some cases such that relevant concepts are disconnected. This is due

to the hard partition in which a predicate is not allowed to join more than one topic. To

handle the issue, a refinement process is conducted to construct a more complete topic

model with the respective predicates and their neighborhood. More precisely, for any

two pairs of predicates, if they form a Connectivity pattern and then we include their

intermediate predicates to the topic and update those topics in FinalTopicSet. From this

refinement process, a predicate may join more than one topic group that results into fuzzy

clustering.
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Algorithm 3 Hierarchical Heterogeneous Clustering
Input: X ={x1, . . . xn}
Output: Topic Set T = {t1, . . . , tk}

/* Phase 1: Hierarchical agglomerative clustering */

Define level L = 0

Consider each element in X as a topic, save them in InitialMap with level L = 0

Put pair 〈L,X〉 to InitialMap

while true do

if all objects belong to one topic then
break

else
In current level L, extract all topics from InitialMap

Calculate the minimum average distance for any two topics p and q with formula
1

|p|∗|q|
∑

m∈p
∑

n∈q d(m,n)

Save all pairs to set M

L = L+ 1

for each pair of topic p and q in set M do
merge p and q into a new topic u

put u to set Y

put 〈L, Y 〉 to InitialMap
end

end

end
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Algorithm 4 Initial Topic Groups at Level Mid
Input: X ={x1, . . . xn}
Output: Topic Set T = {t1, . . . , tk}

/* Phase 2: Initial Topic Groups at Level Mid */

Define the height of the tree H = L ; // H is the height of the tree

from Phase 1

Get the middle level Mid = Roundup (L/2) while true do

if InitialMap has any topic at level Mid then

extract Y at level Mid ; // by checking 〈Mid, Y〉 from InitialMap

InitialTopicSet = Y

reak
else

Mid = Mid-1

end

end
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Algorithm 5 Disjoint Topic Construction
Input: X ={x1, . . . xn}
Output: Topic Set T = {t1, . . . , tk}

/* Phase 3: Disjoint Topic Construction */

Define FinalTopicSet = InitialTopicSet

Define set Z that contains all the other disjoint topics

Initialization of topic index = 2 ; // excluding the special topic T1

for each element in InitialTopicSet do

for each topic zi in Z do

if zi.size=1 then
Add zi to the special topic Topic1
Update the special topic Topic1 in FinalTopicSet

else
Add zi to Topicindex
Add Topicindex to FinalTopicSet

index++
end

end

end

return FinalTopicSet
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Algorithm 6 Hierarchical Topic Refinement
Input: FinalTopicSet ={t1, . . . , tk}
Output: FinalTopicSet ={t′1, . . . , t′k} ; // refined topics with new

predicates

/* Phase 4: Topic Refinement */

for each topic t in FinalTopicSet do

for any two predicates pi and pj in topic t do

if pi and pj are connected through a Connectivity pattern & d(pi,pj) = 2 then
find the intermediate predicate pt between pi and pj
add predicate pt to topic t

end

if pi and pj are connected through a Connectivity pattern & d(pi,pj) = 3 then
find the two intermediate predicates pm and pn between pi and pj
add predicate pm to topic t

add predicate pn to topic t
end

end

end

Theorem 4 shows that both HPKM and PHAL don’t miss any predicates after

clustering the original graph.

Theorem 4. Assume
{
PR
}

contains all predicates in RDF graph G,
{
PRT1

}
,
{
PRT2

}
,

. . .,
{
PRTk

}
represent predicates maintained in topic T1, T2, . . ., Tk generated by HPKM

or PHAL. so that:

{
PRT1

}
∪
{
PRT2

}
∪ . . . ∪

{
PRTk

}
=
{
PR
}
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Proof. For each level of HPKM, the algorithm is argminS

∑k
i=1

∑
x∈Si
|x−µi|2, where S

represents all topics so that S =
{
S1, S2, . . ., Sk

}
, k indicates number of topics, x indicates

predicates (x1, x2, . . ., xn), µi indicates mean of points in each cluster. Because this

algorithm runs recursively for each predicate x and cluster them into k topics, therefore,

predicates (x1, x2, . . ., xn) are divided into topics
{
S1, S2, . . ., Sk

}
without any missing.

For PHAL, the algorithm is 1
|A||B|

∑
a∈A

∑
b∈B d(a, b), where A and B maintain any two

topics of predicates and d(a,b) indicates the distance between predicate a and b. Because

this algorithm runs recursively until all the predicate a ∈ A and b ∈ B are visited, so there

is no missing of predicates. Therefore,
{
PRT1

}
∪
{
PRT2

}
∪ . . . ∪

{
PRTk

}
=
{
PR
}

Based on Theorem 4, we also give Lemma 2 to demonstrate that the union result

of topics make the original graph.

Lemma 2. Assume
{
G
}

is a RDF graph,
{
GT1

}
,
{
GT2

}
, . . .,

{
GTk

}
represent graph

maintained in Topic T1, T2, . . ., Tk generated by HPKM or PHAL. so that:{
GT1

}
∪
{
GT2

}
∪ . . . ∪

{
GTk

}
=
{
G
}

Proof. In
{
PRTk

}
, ∀ predicates P, it links to subjects and objects and form graph

{
GTk

}
so that

{
PRTk

}
$
{
GTk

}
. Based on Theorem 4, because

{
PRT1

}
∪
{
PRT2

}
∪ . . . ∪{

PRTk

}
=
{
PR
}

, therefore,
{
GT1

}
∪
{
GT2

}
∪ . . . ∪

{
GTk

}
=
{
G
}

3.6 Evaluation and Results

In this section, we conduct a comprehensive evaluation on GraphKDD framework

with PONP, HPKM and PHAL approaches. We use different datasets and use cases to

validate the processing results.
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Table 15: Data Statistics

Domain Dataset #Concepts #Predicates #Triples (Schema) #Triples (Instance)
Bio2RDF PharmGKB 60 48 386 278,049,209

DrugBank 92 63 728 3,672,531
KEGG 61 72 457 50,197,150
CTD 19 14 141 326,720,894

HGNC 16 14 84 3,628,205
OMIM 30 35 253 8,750,774
SGD 83 33 792 12,494,945
Sider 14 15 126 17,627,864

Affymetrix 33 20 190 86,942,371
Irefindex 74 15 1478 48,781,511
Biomodel 54 12 472 2,380,009

GO 9 12 67 97,520,151
MGI 20 13 132 8,206,813

Web DBpedia 168 943 943 3,000,000,000
YAGO 44 119 126 120,000,000

3.6.1 Data Specification

We introduce different datasets from different domain for the purpose of evalu-

ation. Specifically, we include computer science datasets DBpedia and YAGO for the

purpose of single domain datasets evaluation and imported 13 datasets from linked life

science datasets Bio2RDF for cross domains validation. Table 15 gives the detailed statis-

tics for each dataset.

3.6.2 Single Domain Analysis

In this section, we introduce various case studies on three different datasets: Drug-

Bank, DBpedia and YAGO. We give results and evaluation for each case to validate

HPKM approach.

74



Table 16: DrugBank Ontology

Features Num
Num of Total Concepts 116

Sum of in-degree and out-degree (|E|) 519
Num of Unique Concepts in DrugBank (C) 93

Num of Triples 737
Num of Total Predicates 68

Num of Domain Specific Triplets (T) 401
Num of Unique Domain Specific Predicates (P) 63

Density (D) 0.043

3.6.2.1 DrugBank Case Study

For DrugBank case study, we demonstrate topic hierarchy, statistics of top predi-

cates and concepts, validation of Hierarchical K-Means Clustering (HPKM), topic gener-

ation output and topic discovery and query generation results.

Topic Hierarchy Generated using HPKM Approach

In this case study, we demonstrate the details of knowledge discovery as well as

query generation in the proposed framework. We are particularly interested in generating

interesting queries using the proposed PONP model and HPKM algorithms. In addition,

the experiments have been conducted to validate the correctness of our approach. Table

16 shows the details of the DrugBank Ontology. In this case study, the unique concepts

(C) of DrugBank ontology, excluding the duplicates, are considered. Only the domain

specific predicates (P) excluding built-in predicates are considered. The number of edges

in the graph (|E|) is computed as the sum of in-degree and out-degree. The overall density

is computed based on the vertices (P+C) and the edges (E).
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Table 17: Short Notation for DrugBank and Related Domains

prefix Domain URL
ahv: http://bio2rdf.org/ahfs vocabulary:
av: http://bio2rdf.org/atc vocabulary:
bv: http://bio2rdf.org/bindingdb vocabulary:
cv: http://bio2rdf.org/chemspider vocabulary:
dv: http://bio2rdf.org/drugbank vocabulary:

dpv: http://bio2rdf.org/dpd vocabulary:
gv: http://bio2rdf.org/genbank vocabulary:
gav: http://bio2rdf.org/genatlas vocabulary:
gcv: http://bio2rdf.org/genecards vocabulary:
giv: http://bio2rdf.org/gi vocabulary:
gtv: http://bio2rdf.org/gtp vocabulary:
hv: http://bio2rdf.org/hgnc vocabulary:
iv: http://bio2rdf.org/iuphar vocabulary:
kv: http://bio2rdf.org/kegg vocabulary:
owl: http://www.w3.org/2002/07/owl#
pcv: http://bio2rdf.org/pubchem.compound vocabulary:
pdv: http://bio2rdf.org/pdb vocabulary:
psv: http://bio2rdf.org/pubchem.substance vocabulary:
pv: http://bio2rdf.org/pubmed vocabulary:
uv: http://bio2rdf.org/uspto vocabulary:
chv: http://bio2rdf.org/chebi vocabulary:
nv: http://bio2rdf.org/ndc vocabulary:

phv: http://bio2rdf.org/pharmgkb vocabulary:
unv: http://bio2rdf.org/uniprot vocabulary:

The base URL of predicates is http : //bio2rdf.org/drugbank vocabulary. How-

ever, the concepts are from 24 different domains as shown in Table 17. Interestingly, all

predicates are from the same domain and that gives us a good basis for linking concepts

together either from same or different domains. This is one of the reasons we propose a

predicate oriented approach. The concepts’ domain URLs and their short notations are

shown in Table 17. From the HPKM algorithm for each domain ontology, the topic hi-

76



erarchy is generated. Fig. 23 shows the topic hierarchy generated for a single domain

ontology, DrugBank. As seen in Fig. 23, DrugBank has the number of topics (2:7:8) with

2 topics at the first level, 7 topics at the second level, and 8 topics at the third level. K-

Means clustering is performed in a top-down manner until both global and local clusters’

silhouette width optimization are not reached. The number on each edge in the topic hier-

archy represents the percentage of predicates that the upper level topic graph contributes

to the lower level graph. For example, for the two topics in the first level of DrugBank,

66% of predicates of the DrugBank ontology are contributed to Topic 1 (T1 1) while

34% to Topic 2 (T1 2). The contribution rate is ranged between 0 and 1. Interestingly,

predicates are unique to their topic graph, however, some concepts in a topic may appear

in more than one topics. Moreover, for each topic at 3rd level, top 2 ranked predicates

(computed based on in-degree/out-degree) are selected as a representative term for each

topic.

Top Predicates and Concepts of DrugBank

Table 18 shows the ranks for Top 20 predicates and Top 20 concepts that are

computed in terms of the sum of their in-degree and out-degree. These predicates and

concepts are shown in terms of Predicate Rank (PR), Predicates, Predicate IO (PIO) and

Predicate Topic ID (PIO), corresponding Concepts, Concept Rank (CR), and together

with the description of predicates specified by DrugBank. From this list, many top pred-

icates are from Topic 3 6, Topic 3 7, and Topic 3 1. Many top concepts are from Topic

3 7, Topic 3 2, and Topic 3 3. The prefix dv: of these concepts indicates the domain

http://bio2rdf.org/drugbank vocabulary. Some of the Top 20 Concepts are not directly
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Figure 23: DrugBank Topic Hierarchy.
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Table 18: Top 20 Predicates and Concepts in DrugBank Ontology

PR Predicates PIO TID CR Concepts
1 source 66 T3 6 46 dv:Source
2 calculated-properties 56 T3 6 N/A N/A
3 experimental-properties 28 T3 6 N/A N/A
4 transporter 17 T3 7 7 dv:Transporter
5 target 16 T3 7 6 dv:Target
6 drug 14 T3 4 2 dv:Drug
7 enzyme 13 T3 7 5 dv:Enzyme
8 carrier 12 T3 7 4 dv:Carrier
9 action 11 T3 4 N/A N/A
10 synonym 10 T3 1 21 dv:Synonym
11 brand 9 T3 1 51 dv:Brand
12 category 8 T3 1 21 dv:Category
13 form 8 T3 8 N/A N/A
14 ingredient 8 T3 8 N/A N/A
15 x-genbank 7 T3 7 N/A N/A
16 x-uniprot 7 T3 7 N/A N/A
17 manufacturer 6 T3 1 51 dv:Manufacturer
18 mixture 6 T3 1 45 dv:Mixture
19 toxicity 6 T3 1 51 dv:Toxicity
20 absorption 6 T3 2 51 dv:Absorption

mapped with the predicates in the Top 20 Predicates. These concepts are dv:Enzyme-

Relation, dv:Target-Relation, dv:Carrier-Relation, dv:LogP, dv:LogS, dv:Molecular-Formula,

dv:Molecular-Weight, dv:Transporter-Relation, dv:Water-Solubility, dv:Bioavailability,

dv:Boiling-Point, dv:Caco2-Permeability. These results show that the predicates rank-

ings are not always the same with the concept rankings.

Table 19 shows the duplicated concepts among topics. The total number of in-

stances is 40 and the number of duplicates is 23. dv:Resource and dv:Drug appear in

almost all the topics. According to this analysis, the sets of the topic groups T3 1 and
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Table 19: Duplicated Concepts and their Topic ID in DrugBank Ontology

Concepts Freq Topics
dv:Resource 8 T3 1, T3 2, T3 3, T3 4, T3 5, T3 6, T3 7, T3 8
dv:Drug 6 T3 1, T3 2, T3 3, T3 4, T3 6, T3 7
uv:Resource 2 T3 1, T3 8
dv:Mixture 2 T3 1, T3 8
dv:Patent 2 T3 1, T3 8
dv:Pharmaceutical 2 T3 2, T3 8
dv:Carrier-Relation 2 T3 4, T3 7
dv:Target-Relation 2 T3 4, T3 7
dv:Transporter-Relation 2 T3 4, T3 7
dv:Enzyme-Relation 2 T3 4, T3 7
dv:Carrier 2 T3 5, T3 7
dv:Target 2 T3 5, T3 7
dv:Enzyme 2 T3 5, T3 7
dv:Transporter 2 T3 5, T3 7
uv:Resource 2 T3 1, T3 8
Total 23

T3 8, T3 4 and T3 7, and T3 5 and T3 7 are similar. However, these are quite different

from the outcomes from the predicated-oriented clustering algorithm.

Validation for Hierarchical K-Means Clustering

An experiment has been conducted to find an optimal number of the clusters using

the four different clustering algorithms, K-Means [49], Clara [63], Pam [120], and Hier-

archical Clustering [62]. Fig. 24 shows the results of the optimal K validation algorithm

based on the clustering outcomes by the four different algorithms. As a result, Clara, Pam

and Hierarchical clustering algorithms are not a good approach to find an optimal cluster

number since they show a relative stable silhouette width for varying the number of clus-

ters. The proposed HPKM algorithm determines the most significant number of clusters

at each level such as K = 2 with SW = 0.77 at level 1 and K = 5 with SW = 0.64 and K=2
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with SW = 0.74 at level 2 and K = 2 with SW = 0.72 at level 3. The HPKM algorithm is

validated and compared against other algorithms in terms of the cluster number and the

silhouette width.

Results for Topic Generation

For the DrugBank ontology, we’ve considered 63 concepts, 116 predicates. Figure

25 shows relevance scales of five different rankings and an overall ranking. The overall

rank is computed in terms of the following 5 criteria: i) Top 20 Concepts, ii) Top 20

Predicates, iii) Similarity, iv) Silhouette Width, v) Density. Eight topics ranked from best

to worst as follows: Topic 3 4, Topic 3 7, Topic 3 6, Topic 3 2, Topic 3 1, Topic 3 3,

Topic 3 8, and Topic 3 5. Specifically, Topic 3 4 shows the best ranking for all three

criteria such as Similarity, Silhouette Width and Density. However, Topic 3 7’s Top 20

Concept Ranking, Top 20 Property Ranking, and Similarity Ranking are relatively good.

From the ranking results, we have observed that the proposed ranking system correctly

captured Topic 3 4 and Topic 3 7 as the core topics of DrugBank. Topic 3 5 is ranked the

worst among the eight topics. Since Topic 3 5 is a connector topic whose predicates are

mainly used to connect DrugBank with other domains. It is relatively less important from

a single domain (DrugBank) perspective. However, Topic 3 5 would be very useful from

a cross domains perspective.

3.6.2.2 DBpedia and YAGO Case Study

In this section, we apply the GraphKDD framework on DBpedia and YAGO

datasets respectively to evaluate the single domain analysis with data in computer science
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Figure 24: Optimal K Validation using Multiple Clustering Techniques.
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Figure 25: Topic Rankings for DrugBank.

domain. We conduct experiments to validate the optimal radius boundary and clustering

partition point. In addition, we conduct comparison evaluations on the following specific

aspects to validate the better performance of our predicated oriented HPKM approach: 1)

topic ranking in terms of in-degree/out-degree, page ranking, topic size and Entropy; 2)

predicate oriented approach with entity oriented solution; 3) HPKM with random graph

partition approach; 4) Topic generation with LDA algorithm.

Optimal Predicate Neighbourhood Radius Boundary

In this research, we refer predicate neighbourhood radius boundary as the number

of neighbour we considered for each predicate. We evaluate the optimal radius boundary

for two datasets based on silhouette width, topic number and topic size. In each case, we

apply a heuristic approach on radius varying from 1 to 5 and try to find at which point

we can get the optimal silhouette width, topic number and topic size. Fig. 26 shows the
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Figure 26: Optimal Radius with Silhouette Width

relationship between radius and silhouette width. Both datasets got the highest silhouette

width when radius at 1. However, with the increasing of radius, silhouette width doesn’t

increase. Especially for YAGO, silhouette width even dropped when radius is larger than

3. Although radius at 1 gave the best silhouette width, we’d like to find more than one

neighbourhood to expand predicates’ relationship network, that is why we choose radius

at 3 as the optimal one. Fig. 27 gives the association between boundary radius with num-

ber of topic. DBpedia got its maximum number of topic when radius is 2 while YAGO got

its biggest number of topic when radius is 3. For both datasets, number of topic doesn’t

increase even if we increase the radius. From this evaluation, we concluded that radius at

3 is the best for both datasets. Similarly, as Fig. 28 shows, radius at 3 gives the optimal

size of topic for both datasets.
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Figure 27: Optimal Radius with Number of Topic

Figure 28: Optimal Radius with Topic Size
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Table 20: Clustering Comparison

Clustering Algorithms
HPKM
Fuzzy C-means
Pam
Clara
Hierarchical Clustering

Figure 29: DBpedia:Optimal Branching with Clustering Algorithms

Optimal HPKM Branching Factor

To validate the optimal solution provided by HPKM algorithm, we compare HPKM

with several clustering methods listed in Table 20. In addition, to decide the optimal

branching factor for each algorithm, we conduct a heuristic approach by varying the num-

ber of branching factor from 1-20. Fig. 29 shows the optimal first level branching factor

evaluation for DBpedia dataset. HPKM gets the highest silhouette width than other ap-

proaches when branching factor is 9. Similarly, as Fig. 30 represents, the optimal first

level branching factor for YAGO dataset is 7. Therefore, GraphKDD divides DBpedia and

YAGO as 9 clusters and 7 clusters at first level respectively. We apply the same strategy

for each level until it meets the stop criteria.

As a result, the hierarchical topic visualization for DBpedia and YAGO is shown
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Figure 30: YAGO:Optimal Branching with Clustering Algorithms

Figure 31: DBpedia Topic Hierarchy

as Fig. 31 and 32 respectively. DBpedia has three level with 9 topics in second level and

12 topics in third level. YAGO has three level in total with 7 topics in second level and 8

topics in third level.

Topic Ranking

For each topic, we first summarize the total number of predicates and concepts

for DBpedia and YAGO as shown in Fig. 33 and 34 respectively. We then use different
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Figure 32: YAGO Topic Hierarchy

measurements to quantify the importance of different topics for both datasets. Summa-

tion of in-degree and out-degree (I/O) captures how many entities directed connected to

each predicates for each topic. Page rank describes the significant predicates for each

topic by counting the number of predecessor entities that directly connected. Size of

topic illustrates how many predicates are involved in each topic. Entropy explains the

expected value of the information contained in each topic. Ranking detailed for DBpedia

and YAGO are shown in Fig. 35 and 36 respectively. From Fig. 35 we conclude that for

DBpedia, Topic 9 is ranked as top 1 for each criteria, which is consistent with the max-

imum number of predicates and concepts shown in Fig. 33. From this perspective, we

find that with a bigger number of predicates and concepts, a topic is more likely to have

higher I/O, page rank, topic size and entropy. We get the same conclusion for YAGO, of

which Topic 1 has the most predicates and concepts as well as highest ranking.

88



Figure 33: DBpedia Topic Summary

Figure 34: YAGO Topic Summary
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Figure 35: DBpedia Topic Ranking

Figure 36: YAGO Topic Ranking
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Figure 37: Visualization of DBpedia Topic 9 and YAGO Topic 1

We visualize Topic 9 of DBpedia and Topic 1 of YAGO in Fig. 37. We also list

detailed predicates in these 2 topics in Fig. 38. Topic 9 of DBpedia talks about civil

engineering and Topic 1 of YAGO introduces country related information.

Evaluation between Predicate Oriented and Concept Oriented Approach

In this section, we conduct several evaluations to compare predicate and concept

oriented neighbour pattern analysis. Different from predicate oriented approach, concept

oriented one considers each concept as a node and counts in-degree/out-degree predi-

cate to calculate the similarity among concepts and applies HPKM algorithm on concepts

based similarity matrix. For topic outputs generated by predicate oriented and concept
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Figure 38: Contents of DBpedia Topic 9 and YAGO Topic 1
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oriented approaches, we evaluate similarity score among topics with three different sim-

ilarity measurements (Cosine [116], Jaccard [57] and Probabilistic Similarity [71]), re-

spectively.

Specifically, for concept oriented approach, concepts play an important role to

partition graph into smaller topics. To calculate the similarity among topics, we not only

count concepts for each topic but also include their connected predicates. Therefore, in

Eq. (3.2), concept oriented approach considers ai or bi as both concepts and predicates; in

Eq. (3.3) and (3.4), concept based approach takes Pred(Ta) or Pred(Tb) as both concepts

and predicates. However, concept has a more dominant influence on the topic generation

results. Similarly, for predicate oriented approach, predicate means more to each topic,

but we also include their connected concepts to calculate the similarity score. As a result,

in Eq. (3.2), ai or bi is considered as predicates and concepts; in Eq. (3.3) and (3.4),

Pred(Ta) or Pred(Tb) is considered as predicates and concepts as well. However, in

predicate based solution, predicates have a stronger ability to determine clustering results

than concepts.

Fig. 39 gives similarity measurements for DBpedia data. The left side shows con-

cept oriented approach with cosine, jaccard and probabilistic similarity while the right

side gives predicate oriented approach for each measurement. From Fig. 39, we find that

topics generated from concepts oriented approach have more overlapped contents than

topics produced from predicates oriented one, which shows the confusion between topic

and topic. For predicate oriented similarity measurements, cosine similarity gives some

overlaps between topics. For example, Topic 3 and Topic 4 are overlapped a little bit as
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the angle for two topics shown in Fig 39. Jaccard similarity gives a more clear topic par-

tition. However, as Fig. 39 shows, the style of line for Topic 3, Topic 4, Topic 10, Topic

11 are still thick, which shows the unclear for these topics. Probabilistic similarity gives

the best output. From Fig. 39, we find that the style for each line is thinner than other two

similarity measurements, which means probabilistic similarity is easier to generate topics

with clear contents and boundary. This result shows that predicate leads a better way to

categorize and group similar contents into one groups than concept.

Similarly, for YAGO topic, Fig. 40 shows similarity measurement for predicate

and concept oriented approaches. Concept oriented similarity shows the confusion among

topics. But among all three similarity measurements, probabilistic similarity creates min-

imum overlap while cosine similarity generates maximum overlap. It shows that proba-

bilistic similarity sets a high criteria to define similarity. That is why we choose proba-

bilistic similarity to generate the PONP association matrix, because it can filter out lots of

unnecessary relationships but promote outstanding associations. Same as DBpedia result,

predicate oriented approach for YAGO also gives strictly separation for each topic for

each similarity measurement. It shows the uniqueness of predicate and it proves predicate

performs better to find topics for single domain datasets.

As a summary, for DBpedia and YAGO with the GraphKDD, average similarity

scores for different similarity measurements are shown in Table 21. The smaller similarity

score among topics, the more clear each topic is, and the less confusion among topics. It

gives another evidence that for each dataset, concept based approach gives more confu-

sion than predicate approach. Furthermore, probabilistic similarity gives optimized topic
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Figure 39: DBpedia Similarity Measurement with GraphKDD
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Figure 40: YAGO Similarity Measurement with GraphKDD

96



Table 21: Average Topic Similarity Comparison for GraphKDD

Cosine
Concept

Jaccard
Concept

Prob
Concept

Cosine
Predicate

Jaccard
Predicate

Prob
Predicate

DBpedia 0.23 0.17 0.13 0.1 0.088 0.083
YAGO 0.34 0.27 0.19 0.158 0.141 0.126

relationship for both concept and predicate approach.

In addition, to perform a comparison study with our approach, we also use Sim-

Rank measurement to build the predicate and concept oriented similarity matrix for DB-

pedia and YAGO respectively. We apply the same HPKM algorithm on the generated

similarity matrix. For DBpedia, we get 2 topics for both predicate and concept oriented

approach. For YAGO, we get 5 topics for predicated oriented approach and 3 topics for

concept oriented approach.

Fig. 41 and Fig. 42 show the topic similarity measurement results in terms of pred-

icate/concept based approach respectively. As a summary, for DBpedia and YAGO with

SimRank, corresponding average similarity scores for different similarity measurements

are shown in Table 22. It gives another evidence that for each dataset with SimRank,

concept based approach gives more confusion than predicate approach. Furthermore,

probabilistic similarity gives optimized topic relationship for both concept and predicate

approach.

Similar to the GraphKDD approach, for DBpedia and YAGO, SimRank concept

oriented approach gives fuzzier results than predicates one, which shows the advantage

of using predicates to make good categorization of topics. Moreover, even for less op-

timized SimRank concept oriented approach, probabilistic similarity gives less overlap
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Table 22: Average Topic Similarity Comparison for SimRank

Cosine
Concept

Jaccard
Concept

Prob
Concept

Cosine
Predicate

Jaccard
Predicate

Prob
Predicate

DBpedia 0.013 0.001 0.0009 0.006 0.001 0.000035
YAGO 0.38 0.34 0.31 0.26 0.23 0.21

among topics, the results prove that probabilistic similarity is capable of finding “real

close” relationships among predicates. However, in terms of the number of topics, the

GraphKDD gives more number of topics (12 for DBpedia, 8 for YAGO) than SimRank

(2 for DBpedia, 5 for YAGO). It shows that the GraphKDD is able to give more specific

group of information.

Evaluation between GraphKDD and Graph Partition Algorithms

We also conduct an experiment to compare the GraphKDD algorithm with four

existing random graph partition algorithm: Random Vertex Cut, Canonical Random Ver-

tex Cut, Edge Partition 1D and Edge Partition 2D implemented by Apache Graphx [128].

We use the same number of topic generated by GraphKDD (e.g., 12 for DBpedia and 8

for YAGO) to run four random graph partition algorithm and built topic distribution visu-

alization for each case as shown in Fig. 43 and 44. In both figures, we use different colors

to represent different topics, so there are 12 color in each case of Fig. 43 and 8 color

in each case of Figure 42. In Fig. 44. We find that topics generated by GraphKDD are

distributed in an organized manner except yellow topic (Topic 9) is quite separated. The

reason is that Topic 9 has the highest ranking in terms of in-degree/out-degree, page rank,

topic size and entropy. Therefore, concepts in Topic 9 has a higher chance to overlap with

which in other topics. While for four random graph partition algorithm, topic distribution
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Figure 41: DBpedia SimRank Similarity Measurement
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Figure 42: YAGO SimRank Similarity Measurement
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Figure 43: GraphKDD vs. Graph Partition on DBpedia

are quite mixed, which shows the random cut result without consider context awareness.

Similarly, in Fig. 44, YAGO topics generated by GraphKDD is more organized com-

pared to other four random approaches. In general, GraphKDD provides a better context

awareness topic generation feature and knowledge discovery output than random graph

partition approaches.

Evaluation between GraphKDD and LDA

We also conduct a comparison study between GraphKDD and Latent Dirichlet

allocation (LDA) [14]. LDA is a statistical topic modeling algorithm that is able to find
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Figure 44: GraphKDD vs. Graph Partition on YAGO
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unobserved topics by analyzing observed co-occurrence of words in the document.

We first convert triplets to text input for LDA and give LDA the same number of

topic generated by GraphKDD (12 for DBpedia and 8 for YAGO). We then measured the

similarity among topics generated by the GraphKDD and LDA for DBpedia and YAGO

respectively. Results are shown in Fig. 45.

For DBpedia, we find that the GraphKDD is able to give clear partition of topics

while LDA gives blurred topic generation results. Similarly, the GraphKDD produced

non-overlapped topics but give highly overlapped and confusion topic results for YAGO.

The reason for the less optimized output is that LDA usually accepts human language as

input and decides topic based on co-occurrence among word characters. However, we

give triplets as input to LDA, which makes more duplication than normal text input and

leads to the confusion among topics.

3.6.3 Cross Domain Analysis

In this section, we target on the evaluation with cross domains datasets. In addition

to HPKM, we also evaluate on Predicate oriented Hierarchical Agglomerative Clustering

(PHAL).

3.6.3.1 Bio2RDF 9 domains Case Study

As Table 29 shows, we select 9 bio2rdf datasets (ClinicalTrials, CTD, Drug-

Bank, HGNC, MGI, OMIM, PharmGKB and Sider) to show a cross domains case study.

Specifically, this section includes 1) compare PHAL with PHKM on Bio2RDF 9 domains

datasets; 2) topic discovery in Bio2RDF 9 domains datasets; 3) ranking of patterns and
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Figure 45: GraphKDD vs. LDA
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topics in cross domains.

PHAL with HPKM

The case studies involve the comparative analysis with the HPKM and PHAL al-

gorithms and experiments with the both algorithms to confirm the effectiveness of the

proposed method. For the given nine ontologies shown in Table 29, we conduct the topic

discovery by applying the proposed PHAL algorithm and the HPKM algorithm. In Ta-

ble 29, each ontology is assigned with a color (for example, the color of ClinicalTrials is

yellow) that is used in a topic/patten graph. P represents Predicates, C represents Con-

cepts and T represents Triples. Some of the built-in OWL/RDF concepts and predicates

are omitted in this work. The information in Table 29 is extracted from the Bio2RDF

project http : //download.openbiocloud.org/release/3/release.html. As mentioned

previously, HPKM is an excellent way to summarize an integrated multiple cross-domain

datasets, as shown in Fig. 21. However, HPKM could not capture interesting patterns

from heterogeneous information networks of cross domains. From the HPKM analysis

in Table 23, only seven coarse grained topics are discovered and two of them are cross

domains. It is because predicates from a single domain are strongly related compared to

ones from cross domains. From the PHAL analysis in Table 23, we find 43 topics from

the heterogeneous information networks of the given cross domains and 93% of the dis-

covered patterns (40 are cross domains and 3 are single domain) are cross domains. In

addition, we compute the average predicate number per topic, the average in-degree and

output-degree per topic, the average density per topic and the association score per topic.

The density is computed using D = 2E
N(N−1) where N is the number of nodes (concepts
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Table 23: Cross Domain Clustering: PHAL vs. HPKM

PHAL HPKM
Topic # 43 7
Cross Domain Topic # 40 2
Average Diversity (Domain#) 4.14 2.28
Total Predicate Size 539 330
Average Predicate Size per Topic 12.5 47.14
Average In-degree and Out-degree per Topic 45(I) 30(O) 142(I) 89(O)
Average Density per Topic 252 490
Average Predicate Association Score 0.42 0.70

Comparison between Top-down Clustering (HPKM - Hierarchical Predicate-based K-Means
Clustering) and Bottom-up Clustering (PHAL - Predicate-based Hierarchical Agglomerative
Clustering). In PHAL, the fuzzy clustering is allowed for predicates so that the predicates may
appear in more than one topic. The density is computed using D = 2E

N(N−1) where N is the
number of nodes (concepts and predicates) and E is the number of edges (links between nodes).
The association score are computed by the Predicate Association formula Eq. (2.4). Zero is
defined as the smallest number. The closer to zero, the smaller it is.

and predicates) and E is the number of edges (links between nodes). The association

score are computed by the Predicate Association formula Eq. (2.4). Zero is defined as

the smallest number. The closer to zero, the smaller it is. The results demonstrate the

PHAL algorithm provides superior outcomes compared with HPKM in topic discovery

from heterogeneous information network.

Table 24 shows that there are 330 unique predicates and 275 unique concepts.

Interestingly, about 88% of the predicates and 65% of the concepts are cross domains.

Fig. 6(a) and Fig. 6(b) show top 10 concepts and top 25 predicates, respectively. Fig. 7(a)

and Fig. 7(b) show the top 40 cross domains concepts and predicates, respectively. The

nine ontologies used in our case study show high potentials to be used for cross-domain

analysis and linking for semantic interoperability.

As seen in Table 24, about 26% of concepts (99 out of 374) appear in more than
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Table 24: Cross Domain Concepts and Predicates before/after Clustering

Before
Clustering

After
Clustering

PONP
Pattern

Count
per Topic

Unique Total
Cross
Domain

Total Share Connectivity Average Max Min

Predicates 330 330 291 539 329 330 12.5 119 2
Concepts 275 374 243 1745 275 374 40.6 181 2

The predicate/concept count before and after clustering. Many of them are cross domains that
can be easily associated with concepts/predicates from other domains. After the clustering, both
concepts and predicates are duplicated (fuzzy clustering). The concepts/predicate counts for
share and connectivity patterns are reported. In addition, average, min and max of concepts and
predicates per topic are reported.

one ontology even before the clustering while all 330 predicates are unique (this means

each predicate appear in only one ontology among 9 ontologies). Specifically, a generic

concept like Resource appears 92 times and pubmed vocabulary:Resource appears in all

9 domains. This indicates that concepts like Resource are mainly used for high level

mapping between different domains. Thus, these concepts are too abstract to interpret

such integrated data. For the data integration, data normalization is performed to map

30 Semanticscience Integrated Ontology (SIO) concepts to domain concepts. In addition,

about 45% (149 of 330 predicates) are named with a prefix x. This indicates that the pred-

icates are also too abstract to provide meaningful relationships between concepts. After

clustering, the size of predicates became doubled and the concepts quintupled. All the

predicates except sider vocabulary:reported.frequency are fully contributed to the inte-

gration of cross domains and discovery of relevant patterns. Through the normalization

and clustering, relevant concepts and predicates are integrated and clustered according to

their contexts.
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Table 25: Cross Domain Neighborhood Patterns

Share Pattern Connection Pattern
Patterns Provider Consumer Reacher DC NDC Total
Cross Domain 842 2690 1432 1990 14434 21388
Total 1676 5953 3572 1990 14434 27625

Cross Domain Patterns per type of the PONP patterns (Provider, Consumer, Reacher, Directional
Connector and Non-Directional Connector

Topic Discovery in Bio2RDF 9 domain datasets

Table 25 shows the Predicate Oriented Neighborhood Patterns (PONP) discovered

from 43 topics: 1676 Provider Patterns, 5953 Consumer Patterns, 3572 Reacher Patterns,

1990 Directional Connector patterns and 14434 Non-Directional Connector patterns. In-

terestingly, 77% of the PONP patterns we discovered are cross domains (50% of the

Provider patterns, 45% of the Consumer Patterns, 40% of the Reacher Patterns, 100%

of the Directional Connector patterns, and 100% of the Non-Directional Connector pat-

terns). The lower level share patterns are part of the higher level Connectivity patterns.

From these results, we can see that the PONP patterns play a significant role in integrating

data and finding cross domains topics from heterogeneous information networks.

3.6.3.2 Bio2RDF 13 domains Case Study

We select top 13 most frequently used Bio2RDF datasets to demonstrate another

cross domains case study. Specifically, we include 1) Bio2RDF statistics with HPKM

and PHAL; 2) Topic Ranking for Bio2RDF with HPKM and PHAL; 3) predicate oriented

approach with concept oriented output.

Statistics of Bio2RDF with HPKM and PHAL
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Table 26: Bio2RDF HPKM vs. PHAL

HPKM PHAL
Num of Topic 5 47
Topic Size 73 91
Average Silhouette Width 0.43 0.52
Similarity Score 0.02 0.54

We apply a top-down algorithm HPKM and a bottom-up algorithm PHAL on 13

integrated Bio2RDF datasets. As Table 26 shows, HPKM only generated 5 topics while

PHAL produced 47 topics, which is much more than HPKM. In addition, average topic

size for HPKM is 73 and which for PHAL is 91. Moreover, average silhouette width for

each topic generated by HPKM is 0.43 while which for PHAL is 0.52. What is more,

PHAL also achieves a higher similarity score 0.54 than HPKM (0.02)

In terms of cross domains topic generation, PHAL also performs better. Fig. 46

shows all Bio2RDF topic visualization with HPKM and partial topic visualization with

PHAL (different color represent different domain). We find that HPKM only produces

60% (3 out of 5) cross domains topics while PHAL generates 100% (47 out of 47) cross

domains topics. In general, we conclude that for cross domains datasets, PHAL gives a

better performance than HPKM.

Topic Ranking for Bio2RDF with HPKM and PHAL

We first count the number of predicates and concepts for each topic generated

by Bio2RDF with HPKM and PHAL respectively as Fig. 47 shows. From Fig. 47, we

also find that for HPKM, Topic 4 is the dominant topic while for PHAL, Topic 25 is the

dominant one.

We also conduct a topic ranking evaluation based on I/O, page rank, topic size
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Figure 46: Bio2RDF 13 domain Topic Visualization with HPKM and PHAL

rank and entropy rank for Bio2RDF HPKM and PHAL as Fig. 48 shows. We find that this

ranking is consistent with predicate count and concept count statistics for both datasets.

In HPKM, Topic 4 has the most I/O, page rank, topic size and entropy. In PHAL, Topic 25

holds the most I/O, page rank, topic size and entropy. From here we conclude that there

is no necessary relationship between predicate/concept number with topic ranking. How-

ever, if one topic has larger size of predicate/concept, it is more like to have higher I/O,

page rank, topic size and entropy. Detailed topic visualization and contents for HPKM

Topic 4 and PHAL Topic 25 are shown in Fig. 49 and 50.

Compare Predicate oriented Approach with Concept oriented Approach

For predicate and concept oriented topics generated by HPKM and PHAL, we

apply three similarity measurements (Cosine, Jaccard and Probability Similarity) to test
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Figure 47: Bio2RDF Topic Statistics with HPKM and PHAL
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Figure 48: Bio2RDF Topic Ranking with HPKM and PHAL
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Figure 49: Bio2RDF Dominant Topic Visualization with HPKM and PHAL
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Figure 50: Bio2RDF Dominant Topic Content with HPKM and PHAL

the overlap among topics. As Fig. 51 shows, for 5 topics generated by HPKM, con-

cepts oriented approach gets highly overlapped topics than predicate oriented for all three

measurement. Similarly in Fig. 52, for 47 topics generated by PHAL, predicate ori-

ented approach gives better hard partition of topics than concept oriented one. In general,

predicate oriented approach gives more clear topic generation without much overlap and

confusion.

As a summary shown in Table 27, Bio2RDF with bottom-up approach (PHAL)

generate a higher topic similarity score in terms of concepts than Bio2RDF with top-

down algorithm (HPKM). It is because PHAL is a fuzzy algorithm but HPKM provides

only hard clustering solution. From this point, we conclude that PHAL is more suitable

to find topic with more cross domains information. In addition, we plot a graph based

on Table 27 as shown in Fig. 72. We find that for predicate based approach, Bio2RDF
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Table 27: Average Topic Similarity Comparison for Cross Domain GraphKDD

Cosine
Concept

Jaccard
Concept

Prob
Concept

Cosine
Predicate

Jaccard
Predicate

Prob
Predicate

Bio2RDF
bottom-up 0.473 0.367 0.265 0.196 0.109 0.07

Bio2RDF
top-down 0.43 0.34 0.25 0.22 0.21 0.2

bottom-up approach gives less similarity scores for all three measurement when com-

pared with top-down approach. It proves that compared with concept, predicate is more

easier to differentiate topic and create less confusion among topics. As a result, for cross

domains datasets, PHAL combined with predicate oriented clustering algorithm give the

best output.

3.6.4 Classification Performance

In this section, we build classifier based on training topics generated by DBpedia

HPKM, YAGO HPKM, Bio2RDF HPKM and Bio2RDF PHAL. In addition, we apply

10 fold cross-validation on the training model and give precision, recall and F-measure

for each case. We try to predict which predicate belong to which topic by using super-

vised learning approach. Table 28 gives the detailed classification evaluation results with

Naive Bayes algorithm. We find that for single domain hard partition topic generation ap-

proach (DBpedia, YAGO and Bio2RDF HPKM), we get relative higher precision, recall

and F-Measure outputs. However, for cross domains fuzziness topics (Bio2RDF PHAL),

performance is relative low. The reason is that for HPKM results, all predicates are hard

partitioned, there is no duplication of predicates across topics, which makes the prediction
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Figure 51: Bio2RDF Topic Similarity with HPKM
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Figure 52: Bio2RDF Topic Similarity with PHAL
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Figure 53: Bio2RDF Topic Similarity with HPKM and PHAL

Table 28: Classification Evaluation

Num of Topics Precision Recall F-Measure
DBpedia HPKM 12 0.75 0.83 0.78
YAGO HPKM 8 0.63 0.75 0.67
Bio2RDF HPKM 5 0.7 0.8 0.73
Bio2RDF PHAL 47 0.06 0.15 0.08

easier. However, for PHAL approach, one predicate belongs to more than one topic,which

make the decision making difficult. Naive Bayes cannot handle such multiple label case

very well, that is why precision, recall and F-Measure do not give an optimal output.

3.7 Summary

We have formally introduced a Hierarchical Predicate oriented K-Means (HPKM)

and a Predicate oriented Hierarchical Agglomerative (PHAL) unsupervised approaches

to cluster data and generate topics. For HPKM, we have described algorithms of HPKM

with global optimization, HPKM with local optimization. For PHAL, we have introduced
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four phases algorithms involved: hierarchical heterogeneous clustering, middle level ini-

tial topic groups generation, disjoint topic construction and hierarchical topic refinement.

Specifically, we use HPKM to deal with single domain dataset while use PHAL to handle

cross domains knowledge discovery.

In evaluation, we first conducted an experiment on a single domain dataset (Drug-

Bank, DBpedia and YAGO). For DrugBank data, we gave statistics of topic predicates

and concepts in terms of predicate in-degree and out-degree and duplicated concepts and

their topic ID in DrugBank. Moreover, we validated HPKM optimal branching factor and

listed DrugBank topic generation results . For DBpedia and YAGO data, we first con-

ducted an experiment to determine the optimal predicate neighbourhood radius boundary

by a heuristic study. All the results have showed the optimal solution provided by the

GraphKDD HPKM approach.

In addition, we also tested the optimal HPKM branching factor, topic ranking

in terms of in-degree/outdgree, page rank, size of topic and entropy, predicate oriented

approach with concept oriented approach with similarity measurement, compare HPKM

with graph partition algorithms, compare HPKM with LDA algorithm. Secondly, we

adopted a analysis for cross domains datasets. As a use case study, we selected Bio2RDF

13 domains datasets. We have compared the topic ranking for HPKM and PHAL and

predicate oriented with concept oriented approaches. All the outputs have showed that

PHAL is more suitable to handle cross domains datasets than HPKM, and predicate ori-

ented approach gives better outputs.

Furthermore, we have trained four different topic results (DBpedia with HPKM,
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YAGO with HPKM, Bio2RDF with HPKM, Bio2RDF with PHAL) and applied naive

bayes algorithm on them to perform 10-fold cross validation. Results have showed that

single domain topic classifier has a better performance on predicting topic than cross do-

mains one.
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Table 29: Case Study Datasets: Ontologies

Ontology P# C# T# Description

ClinicalTrials
(Yellow) 56 62 486

a registry and results database of publicly
and privately supported clinical studies
of human participants conducted around the world.

CTD
(Magenta) 14 19 74

cross-species chemical-gene/protein interactions
and chemical- and gene-disease relationships to illuminate
molecular mechanisms underlying variable susceptibility
and environmentally influenced diseases.

DrugBank
(Red) 63 92 401

a bioinformatics and chemoinformatics resource that
combines detailed drug (i.e. chemical, pharmacological and
pharmaceutical) data with comprehensive drug
target (i.e. sequence, structure, and pathway) information.

HGNC
(Pink) 14 16 34

The HGNC gives unique and meaningful names to
every human gene.

KEGG
(Orange) 72 61 299

an integrated database resource consisting of 16
main databases, broadly categorized into biological
systems information, genomic information, and
chemical information.

MGI
(Green) 14 20 68

This includes data on gene characterization,
nomenclature, mapping, gene homologies, among
mammals sequence links, phenotypes, allelic
variants and mutants, and strain data.

OMIM
(Light Green) 35 30 175

a comprehensive, authoritative, and timely
compendium of human genes and genetic phenotypes.
The full-text, referenced overviews in OMIM contain
information on mendelian disorders and over 12,000 genes.
OMIM focuses on the relationship between
phenotype and genotype.

PharmGKB
(Cyan) 47 60 218

PharmGKB curates primary genotype and phenotype
data, annotates gene variants and gene-drug-disease
relationships via literature review, and summarizes important
PGx genes and drug pathways.

SIDER
(Gray) 15 14 82

SIDER contains information on marketed medicines
and their recorded adverse drug reactions. The information
include side effect frequency, drug and side effect classifications
and links to further information

Total 330 374 1837 Cross domain data model based on these 9 datasets
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CHAPTER 4

QUERY GENERATION AND TOPIC AWARE LINK DISCOVERY

4.1 Introduction

Some applications are derived from the GraphKDD framework. Query generator

and path finding tools are two of knowledge discovery applications. In this chapter, we

first introduce some related work in developing knowledge discovery applications. Then

we formally introduce our query generation and path finding model. In addition, we con-

duct evaluations on both applications to give performance analysis and result discussion.

4.2 Related Work

Knowledge discovery from RDF data mainly focuses on information extraction.

Query generation is one of the approach. SP2Bench [102] proposed a query design system

focusing on generating queries with combination of different operations. But this query

generation was not designed from a semantic perspective for cross domains. LUBM [45]

and BSBM [13] generated benchmarks on university and ecommerce respectively, but

neither benchmark was based on more than one domain. FedBench [101] provided a

benchmark suite for federated queries on semantic data which can cover semantic mul-

tiple domains data use cases. However, query benchmarks were manually generated by

authors. Our approach provides a way to automatically help people find the semantic re-

lationship without acquiring knowledge explicitly.

122



For query processing, H2RDF+ [87] provided a scalable distributed RDF store

to facilitate query processing performance. Trinity [132] presented a RDF management

framework over a distributed in-memory key-value store. There are still some other index-

ing approaches for speeding query processing like RDF-3X [84] and gStore [28], which

can reduce graph searching space and avoid looking up unnecessary blocks. However,

neither of them works on a cross domains and semantic perspective. Indexing technology

in GraphKDD provides semantic meaning for graphs. Some other ontology query related

researches, such as [76] [17] [43]. Queries can often be difficult to formulate across these

datasets [75]. In particular, the work from [76] has a similar approach to our work in terms

of detecting recurring query patterns based on the distance among RDF graph patterns and

identifying query templates from the analysis of the RDF graph structure. However, this

work focuses more on concepts of the instance level of RDF graphs for the pattern iden-

tification and template extraction. Unlike this work, we focus on a new paradigm, such

as predicate based similarity patterns, at the schema level for topic discovery and query

suggestion.

Biomedical data contributors have provided public SPARQL endpoints to query

the datasets. However, Quilitz and Leser [90] and Alexander et al., [2] merely provided

the statistical information on the datasets instead of conceptual analysis for knowledge

discovery from biomedical datasets. There is little effort for the schema level analysis

of the concepts and their relationships in these datasets with respect to systematic and

semantic querying. Seaborne and Prudhommeaux [89] pointed out the difficulty with the

SPARQL syntax and expression, because the precise details of the structure of the graph

123



should be specified for queries in the triple pattern through the various heterogeneous

schemas. In reality, users may not be familiar with the details of datasets, and it is hard

to express the precise relationships between concepts in the SPARQL syntax and expres-

sions. Thus, this can be a bottleneck for users to query through the endpoints of medical

ontologies.

Callahan et al., [17] provided a SPARQLed web application for SPARQL query

generation by suggesting context sensitive IRI. However, they could not provide strong

associated queries as we do. Unlike this work, we can provide not only valid but also

meaningful query suggestions in a dynamic manner according to users’ interesting topics.

Godoy et al., [43] presented a collaborative environment to allow user to register queries

manually through wiki pages and share and execute the queries for linked data. A series

of desired queries might be generated using large ontologies like the NCI thesaurus by

extracting relevant information [83]. The GLEEN project aims to develop a useful ser-

vice for simplified, materialized views of complex ontologies [30].

There also exist some knowledge discovery applications in bioinformatics domain.

Most of the work has mainly focused on building or using ontologies for data normaliza-

tion, bridging and reasoning. Widely used medical ontologies are Bio2RDF [10], TMO

(Translational Medicine Ontology) [77], Chem2Bio2RDF [20], SIO (Semanticscience In-

tegrated Ontology) [34], ATC (Anatomical Therapeutic Chemical) and DrugBank integra-

tion [21], Linked Life Data [82].

However, these works lack the ability to design specific queries from topics and

are not able to perform the comprehensive context awareness and semantic analysis of
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large sources and the usage of the knowledge for query processing. Unlike these works,

the GraphKDD based query generator is to automate query generation through predicate

neighborhood pattern-based topic discovery without any human intervention.

Drug discovery research heavily relies on multiple information sources to validate

potential drug candidates as shown in the Open PHACTS project [127]. In complicated

domains, it takes time to develop and maintain ontologies [7] [135]. There have been

various studies on using semantic techniques to improve data integration and share infor-

mation. DrugBank is one of the key resources which provide bioinformatics and chemin-

formatics studies with complete information on drug and drug targets.

However, these efforts merely support physical integration of multiple biomedical

ontologies without considering semantic integration of data. In particular, human inter-

vention is strongly required so that these are not suitable for comprehensive and accurate

knowledge discovery especially from a large amount of data. Furthermore, semantic in-

teroperability is difficult to achieve in these systems as the conceptual models underlying

datasets are not fully exploited.

There also exist some RDF path finding tools. LIMES [85] proposes a efficient

large scale link discovery tool by using the similarity optimization to filter out unneces-

sary path in advance. Freek Dijkstra et al., [31] investigated a RDF-based shortest path

finding tool in multi-layer network, which is able to find more valid paths than single-layer

path vector algorithms like BGP [93], OSPF-TE [68] and SS7 [41]. Silk [123] proposed

a way to find entities between different web data sources by utilizing owl:sameAs links
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and other types of RDF links. It also supports using SPARQL language to specify con-

ditions. Viswanathan and Krishnamurthi [122] presented a modified bidirectional BFS

algorithm to find paths between entities and is able to give path ranking based on users’

specific needs. BRAHMS [58] is an efficient RDF storage system that designed for fast

association discovery.

However, compared with the GraphKDD path finding tool, these research work

lack the ability to aware context for discovered paths. In addition, the GraphKDD pro-

poses a predicated based path finding approach that also supports efficient path finding

solution through predicate oriented topic association.

4.3 The GraphKDD System

The GraphKDD system is implemented using Java in Eclipse Juno Integrated De-

velopment Environment [4]. Apache Jena API [61] is used to parse OWL/RDF datasets

and retrieve triple information. We use R computing environment [54] for our experi-

mental validation. We implemented a software plugin for query and schema graph vi-

sualization using CytoScape 3.0.2 [103]. In addition, we have built a SPARQL query

endpoint on a single machine that is hosted at the UMKC Distributed Intelligent Comput-

ing (UDIC) lab. The OPEN LINK Virtuoso server version 6.1.3 is installed and different

ontologies are imported into the graph domain http : //Bio2RDF.com#. The endpoint

for SPARQL query services is http : //134.193.129.248 : 8890/isparql/.

Fig. 54 shows how to perform the SPARQL query only for Bio2RDF Drugbank
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Figure 54: SPARQL Endpoint: Query Example.

Figure 55: GraphKDD Interactive Query Tool
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generated from one of the topic. Fig. 55 shows how to use the GraphKDD tool for brows-

ing the generated topics and performing interactive design and processing of queries. Here

we still use DrugBank dataset as the use case. Step 1 shows the list of topics for a given

ontology (DrugBank). Step 2 shows the list of NLP questions for a selected topic (Topic

7). Step 3 shows the automatically generated SPARQL query and the query results. Step

4 shows the topic and query graphs for the selected query. The steps for the query gener-

ation and processing using GraphKDD tool are explained as follows:

Step1: A user first selects a dataset (e.g., DrugBank) to be analyzed, then choose an al-

gorithm to generate a topic hierarchy (e.g., three level hierarchy). In Fig. 55, a clustering

algorithm (e.g., Hierarchical K-Means Clustering) button is selected for the construction

of a topic hierarchy (DrugBank). Topics generated from the topic hierarchy construction

are listed in the top left box. In this example, the eight topics are shown with the detailed

description including a list of the highest ranked predicates and their concepts (with high

in-degree/out-degree).

Step2: The user selects a topic (e.g., 7th topic) to view, then this allows users to explore

top ten natural language queries automatically generated by the proposed query genera-

tion algorithm.

Step3: A query can be selected and modified through the interactive query editor based

on the topics or predicates shown in Step 2. Once the design of a query is complete, the

corresponding natural language query expressions and the corresponding SPARQL query

will be generated.

Step4: After choosing the natural language query expressions (e.g., what are the enzyme,
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target and transporter-relation of a drug?), the add query button can be clicked to select

its corresponding SPARQL query into the bottom left box.

Step5: When the query button is clicked, the SPARQL query will be executed and the

query output will be shown in the bottom right box.

Step6: When the show query cluster button is clicked, the corresponding cluster graph

will be displayed on the canvas in the right panel. Moreover, by clicking the show query

graph button, the relevant concepts and predicates in the SPARQL query will also be

highlighted as seen in Fig. 55.

4.4 Query Generation

From the HPKM and PHAL clustering algorithm, topic hierarchies are generated.

The Query Generation algorithm will start crawling the leaf nodes (the topics at on the

bottom level) in a given topic hierarchy and generate a query that is a part of a particular

topic TG (a RDF graph) in the topic hierarchy. The algorithm will crawl the topic graph

TG to generate a query graph QG; QG is a subset of the TG. Many variation of queries

can be generated from this process. In this work, we first give the relationship among

variable, query, topic and graph in Definition 14.

Definition 14: ∀ G, topic T , query Q and variable V , V ⊂ Q ⊂ T ⊂ G.

Fig. 56 shows how the query generation algorithm generates queries. The topic

graph shown in this figure has three predicates, namely drug from the Sider domain (in

pink), affected-organism from the DrugBank domain (in red) and x-pubchem-substance

from the PharmGKB domain (in green).
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We start to generate a query by traversing the predicate that has the highest rank δ

(the highest sum of the in-degree and out-degree of the predicate) and traverse its neigh-

bors level-by-level (Breadth-first Search) in the descending order of the similarity in the

SM computed by the PONP algorithm. For this traversal, we consider the neighbors

whose similarity scores are higher than threshold β. In this example, we start with the

best predicate drug and then visit its neighbors whose similarity scores are higher than

the threshold (β = 0.2) in a descending order. In Fig. 56, for drug, its nearest neighbor,

x-pubchem-substance with the similarity score 0.5, thus we expand drug with an addi-

tional predicate, x-pubchem-substance. And then drug’s next nearest neighbor is affected-

organism with the similarity score 0.1. Since the similarity score is less than the threshold

β, (i.e., 0.1≤ 0.2), we terminate the navigation. The algorithm runs until there is no more

neighboring predicates to be considered. The generated query includes triples with two

predicates, drug and x-pubchem-substance, and their subject variables (?E and ?D) and

object variables (?D and ?R) as seen in Fig. 56. The type of variable ?E is known as

Drug Effect, ?D as Drug, and ?R as PharmGKB Resource. This can be converted to a

triplet form such as
〈
?D typeof Drug

〉
. Fig. 56 shows an example of the automatically

generated SPARQL query for a topic graph. Corresponding query generation algorithm

is also shown in Algorithm 7

130



Figure 56: Automatic Query Generation
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Algorithm 7 Query Generation
Input: Topic T = {t1, . . . tn}
Output: Query Q = {q1, . . . , qk}

Define Queue U

for each topic tk in T do
Sort predicates by descending order of their in-degree+out-degree, save in S

for each predicate p in S do
U.push (p)

end

while U is not empty do
p = U.pull

Get all p’s neighbors pn, sort them by descending order of similarity score, save

in N

Find shared concepts between p and pn, generate triples, save in T

Replace T with variables, save results in Q

U.push (N )
end

end

return Q

4.5 Topic Aware Link Discovery

We now describe how to process topic aware link discovery. In the topic aware link

discovery in TopicGraph, topic connects of topics are used to find a path from source to

target through topic links. There are three cases of topic aware link discovery as follows:

• Case 1: For given two topics Topicx and Topicy, Topicx has a direct relationship

(i.e., the distance D with Topicy through the connectors Px and Py where the dis-

tance between Px and Py,D(Px,Py)= 1 and Px={Px1, Px2, . . .} and Py={Py1, Py2, . . .}.
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• Case 2: For given two topics Topicy and Topicz, Topicy has a direct relationship

(i.e., the distance D between Py and Pz, D(Py,Pz)= 1) with Topicy through the

connectors Py and Pz where Py={Py1, Py2, . . .} and Pz={Pz1, Pz2, . . .}.

• Case 3: For given three topics Topicx, Topicy and Topicz, Topicx has an extended

relationship with TopicZ through Topicy (i.e., the distance D between Px and Pz,

D(Px,Pz)= 2).

The topics are discovered with the bounded contexts which are a central concept

in the knowledge discovery. The clustering technique is applied to partition a large and

complex network into multiple smaller topics in the same context in an optimal man-

ner. The bounded contexts are specifically tailored for a set of cross domains patterns.

Fig. 57 shows two cases of the topic aware link discovery: (i) link from omimv:x-ncbigene

to omimv:mapping-methodin in Topic 5 (ii) link from dv:drug in Bio2RDF Topic 2 to

dv:toxicity in Bio2RDF Topic 3.
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(a) Topic Path from Source: omimv:x-ncbigene to Target: omimv:mapping-

method in Bio2RDF Topic 5

(b) Topic Path from Source: dv:drug in Bio2RDF Topic 2 Target: dv:toxicity in

Bio2RDF Topic 3

Figure 57: Topic Aware Link Discovery

The Topic Aware Link Discovery algorithms have three cases: source and target

are within the same topic; source and target belong to different topics but they are a con-

nection pair; source and target are in different topics and they do not form a connector

pair. Detailed algorithm for each case are shown in Algorithm 8, 9, and 10.
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Algorithm 8 Topic Aware Link Discovery - Case1
Input: TopicMap [T1, . . . , Ti], Source s, Target t

Output: Paths between s and t P = [P1, . . . , Pn], Topics per path Tp = [< Ti, . . . Tj >]

Let CM< s, t > be ConntectorPairMap

Let PM [< PLs, PLt >,PathList] be PathMap

Let IM< s, t > be InnerPairMap

/* Case1: s and t belong to the same topic group */

for each topic Ti not in T do

if Ti contains s and t then

if s reaches t then
pathList = PM.get(< PLs, PLt >) //get the path from PathMap

P.add(pathList) // add paths and eliminate duplicate paths

Tp.add(< Ti >)

end

end

end
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Algorithm 9 Topic Aware Link Discovery - Case2
Input: TopicMap [T1, . . . , Ti], Source s, Target t

Output: Paths between s and t P = [P1, . . . , Pn], Topics per path Tp = [< Ti, . . . Tj >]

/* Case2: s, t belong to different topics but they are a connector pair */

for any two topics Ti and Tj do not exist in T do

if Ti contains Pm and Tj contains Pn then

if CM contains < s,t > then
pathList = s →t

P.add(pathList) // add paths and eliminate duplicate paths

Tp.add(< Ti, Tj >)

end

end

end

136



Algorithm 10 Topic Aware Link Discovery - Case3
Input: TopicMap [T1, . . . , Ti], Source s, Target t

Output: Paths between s and t P = [P1, . . . , Pn], Topics per path Tp = [< Ti, . . . Tj >]

for any topic Ti and Tj exist in T do

if Ti contains s and Tj contains t then

if CM doesn’t contain < s,t > then
if IMi contains pair < s,m > and CM contains < m,t >) or (CM contains

pair < s,m > and IMj contains < m,t > then
pathList = s →m →t

P.add(pathList) // add paths and eliminate duplicate paths

Tp.add(< Ti, Tj >)

end

if < s,m > exist in IMi and NOT < m1,t > exist in CM and < m2,t > exist

in IMj then

if < m1,m2 > exist in CM then
pathList = s →m1 →m2 →t

P.add(pathList) // add paths and eliminate duplicate paths

Tp.add(< Ti, Tj >)

if < m1,m2 > does not exist in CM then
Go to the next Topic Tx, try to find a path Px between Pm1 and

Pm2

// Tx represents multiple topics, Px represent multiple paths

if Px exists then
pathList = Ps →Pm1 →Px →Pm2 →Pt

P.add(pathList) // add paths and eliminate duplicates

Tp.add(< Ti, Tj, Tx >)

end

end

end

end

end

end

end
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Based on Algorithm 8, 9, and 10, Theorem 5 also indicates that if pi and pj are

reachable, our path finding algorithm will never miss any such cases.

Theorem 5. ∀ predicates pi and pj , if pi and pj are reachable with any direction, the

GraphKDD can always find this reachable pair (pi, pj).

Proof. If pi and pj are in the same topic, based on Algorithm 8, the GraphKDD is able

to find all paths between pi and pj . If pi and pj are in different topics but they form a

connector pair, based on Algorithm 9, the GraphKDD is capable of retrieving all paths

between pi and pj . If pi and pj are in different topics and they do not form a connector

pair, based on Algorithm 10, the GraphKDD can extract all paths between pi and pj .

Therefore, the GraphKDD is able to find ∀ pairs (pi, pj) if pi and pj are reachable with

any direction.

4.6 Complexity Analysis

In this section, we give a brief review of complexity for each phase of the GraphKDD

framework. Matrix generation is the first step. The complexity of matrix generation is

based on the total number of predicates. Assume m is the total size of predicates, the

GraphKDD will traverse all m’s neighbor to complete the matrix, therefore, the total

complexity is O(m(m−1)) = O(m2−m). For both HPKM and PHAL, matrix generation

has the same complexity. Topic generation step is conducted based on matrix generation.

This step has different complexity depending on different approaches we use. K-Means

has complexity O(ndk+1 log2 n) [49], where n is the number of objects to be clustered,

d is the dimension and k is the number to cluster. HPKM applies K-Means algorithm
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Table 30: Complexity for HPKM and PHAL

Matrix
Generation

Topic
Generation

Query
Generation

Link
Discovery

HPKM O(m2 −m) O(ndk+1 log2 n) O(mk) O(c)
PHAL O(m2 −m) O(n3) O(mk) O(c)

on different level, so the complexity of HPKM is also O(ndk+1 log2 n). Similarly, PHAL

applies the same complexity O(n3) as hierarchical clustering [62]. Complexity for query

generation is also same for both HPKM and PHAL. Assume m is the number predicates,

k is the number of linked predicates for each predicate, the time to build query is O(mk).

In addition, link discovery find paths between source and target based on pre-processed

neighborhood map. Therefore, time complexity to extract paths is a constant c, which is

O(c).

4.7 Evaluation and Results

In this section, we list results for query generation and conduct performance ex-

periment for topic aware link discovery.

4.7.1 Query Generation Outputs

In this section, we use DrugBank as a use case to demonstrate query generation

and processing results for each topic. Specifically, we show four best topic graphs at level

3 of DrugBank topic hierarchy as follows: Topic 3 4, Topic 3 7, Topic 3 6, and Topic

3 2. In addition, the automatically generated query and query results of each topic are

also shown.

Rank 1: Topic 3 4 (T3 4): This topic consists of 6 predicates and 12 concepts
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with 72 in-degree and out-degree. Among 12 concepts, five concepts (dv:Resource;

dv:Drug, dv:Carrier, dv:Enzyme, dv:Target) are ranked among Top 20 Concepts and

all 6 predicates of this topic are ranked among Top 20 Predicates. In particular, there

are two groups of predicates; one is with four predicates such as transporter, target, en-

zyme, carrier with concepts dv:Target-Relation, dv:Target-Relation, dv:Enzyme-Relation,

dv:Carrier-Relation, respectively. Another group of predicates such as x-genbank and

x-uniprot is a connector predicate group that is mainly used to connect between in-

ternal concepts (e.g., dv:Drug, dv:Enzyme) and external concepts (e.g., gv:Resource,

unv:Resource). Specifically, T3 4 shows very high rankings for Similarity, Silhouette

Width, and Density while showing a relatively low ranking for Top 20 Concepts. The

T3 4’s overall rank is 1st (together with T3 7) among 8 topics. Fig. 58 shows the T3 4

topic graph. In this graph, concepts are represented as a circle, predicates as a triangle,

and links as an arrow. In addition, the dark red items are the predicates and concepts

mentioned in Query-1.

Query-1: The following query is automatically generated from Topic 3 4 (one

of the top ranked topics) by our query generation algorithm. This query allows users

to find the most relevant drugs in terms of their target, enzyme, enzyme relation, and

target relation. The SPARQL format of Query-1 is automatically generated by the Query

Generation algorithm considering the top predicates and their concepts in Fig. 59. This

query can be translated as following: For any two drugs which share the same target and

transporter enzyme, what are all the possible drugs, enzyme, target, enzyme relations,

target relations?
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Figure 58: Topic 3 4 (T3 4) Graph in DrugBank.

Figure 59: Query-1 SPARQL in DrugBank.
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Figure 60: Query Results of Query-1 in DrugBank.

The Query-1 results include Gemcitabine, Fluorouracil, Ribavirin as the relevant

drugs, Thymidylate synthase and Adenosine kinaseas as the target and Equilibrative nu-

cleoside transporter 1 as the enzyme. Fig. 60 shows the partial outputs of Query-1.

Rank 2: Topic 3 7 (T3 7): This graph is composed of 7 concepts represented as

a circle and 3 predicates as a triangle with 31 in-degree and out-degree. In T3 7, three

predicates, drug, action, reference, whose in-degree and out-degree are 14, 11, and 6,

respectively, are all nicely connected with 7 concepts. The predicates drug and action

are ranked at 6th, 9th and many of the concepts in this topic are ranked among Top 20

Concepts. For T3 7, the rankings for Top 20 Concepts, Top 20 Predicates, Similarity,

Silhouette Width, and Density are very good. T3 7’s overall rank is 1st among 8 topics

(together with T3 4). Fig. 61 shows the T3 7 topic graph. In this graph, concepts are

represented as a circle, predicates as a triangle, and links as an arrow. In addition, the
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Figure 61: Topic 3 7 (T3 7) Graph in DrugBank.

dark red items like drug and reference are the predicates mentioned in Query-2

Query-2: The query graph is automatically generated from Topic 3 4 (one of

the top ranked topics) to depict the query information. This query allows users to find

the relevant drugs that have common Target-Relation, Carrier-Relation and Transporter-

Relation and also provide their PubMed references for relations of target, transporter, and

carrier with these drugs. The SPARQL format of Query-2 is automatically generated

by the Query Generation algorithm considering the top predicates and their concepts in

Fig. 62. This query can be translated as: For any two drugs which share the common

target-relation, carrier-relation and transporter-relation, what are all the possible com-

binations? What are the pubmed references for these target-relations, carrier-realtion

and transporter-relation ?

Fig. 63 shows the partial results from the query about some drugs like Phenytoin

(DrugBank:DB00252), Lepirudin (DrugBank:DB00001) and Deferasirox (DrugBank:DB01609).
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Figure 62: Query-2 SPARQL in DrugBank.

Rank 3: Topic 3 6 (T3 6): This topic consists of 3 predicates and 34 concepts

with a very high sum of in-degree and out-degree, 150. Fig. 64 shows the T3 6 topic

graph in which concepts are represented as a circle, predicates as a triangle, and links

as an arrow. In particular, there are two subgraphs; one is with two predicates such as

source and calculated-properties with concepts dv:Boiling-Point and dv:Bioavailability,

respectively. Another predicate experimental-properties is connected with concepts such

as dv:Water-Solubility. Specifically, T3 6 highly ranked in Top 20 Predicates and Silhou-

ette Width while being lowly ranked in Similarity. This means each predicate has their

own concepts while having the least common concepts with other predicates. Since the

similarity ranking of this topic is low, the shared information is limited. Interestingly, this
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Figure 63: Results of Query-2 in DrugBank.
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Figure 64: Topic 3 6 (T3 6) Graph in DrugBank.

graph shows a connection pattern from dv:experimental-properties to dv: source. The

overall rank is 3rd among the eight topics. In this graph, the dark red items like source

and calculated-properties are the predicates mentioned in Query-3.

Query-3. The query graph is automatically generated from Topic 3 6 to depict

the query information. This query allows users to find drugs and all their experimental

properties and calculated properties which have LogP experimental properties (octanol-

water partition coefficient). The SPARQL format of Query-3 is automatically generated

by the Query Generation algorithm considering the top predicates and their concepts in

Fig. 65. This query can be translated as: For any drug, what are all its experimental

properties and calculated properties which contain octanol-water partition coefficient?
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Figure 65: Query-3 SPARQL in DrugBank.

As the Query-3 results, the relevant drug and their experimental and calculated-

properties are reported as (L-Histidine, logP: -3.32 from CHMELIK,J ET AL. (1991),

logP: -3.1 from ALOGPS) and (L-Phenylalanine, logP: -1.38 from AVDEEF,A (1997),

logP: -1.4 from ALOGPS). Fig. 66 shows the details of the partial results from Query-3.

Rank 4: Topic 3 2 (T3 2): The unique pattern in T3 2 is two dominant concepts,

Resource and Drug, whose in-degree and out-degree are 46 and 33, respectively, are fully

connected to the remaining 17 concepts via 20 different predicates such as absorption,

protein-binding. The rankings for Top 20 Concepts and Silhouette Width are relatively

good while the rankings for Top 20 Predicates and Density are poor. The overall rank is

4th among the eight topics. Fig. 67 shows the T3 2 topic graph. In this graph, concepts

are represented as a circle, predicates as a triangle, and links as an arrow. The dark red

items like abortion and product are the predicates and dv:Drug and dv:Pharmaceutical are

the concepts mentioned in Query-4.

Query-4: The query graph is automatically generated from Topic 3 2 to depict the

topic and query information. This query allows users to find drugs and their absorption,
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Figure 66: Results of Query-3 in DrugBank.
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Figure 67: Topic 3 2 (T3 2) Graph in DrugBank.
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Figure 68: Query-4 SPARQL in DrugBank.

affected-organism, clearance pharmacokinetic measurement, pharmaceutical information,

and protein binding information. The SPARQL format of Query-4 is automatically gener-

ated by the Query Generation algorithm considering the top predicates and their concepts

in Fig. 68. This query can be translated as: For any two drugs which share the same

absorption, affected-organism, clearance and pharmaceutical, what are all the possible

combinations?

The Query-4 results on any relevant drugs and their pharmaceutical information

include (Gemcitabine, Lepirudin, Gemzar 1 gm Solution Vial), (Tiotropium, Lepirudin,

Spiriva 18 mcg Capsule). Fig. 69 shows the partial results from Query-4.

4.7.2 Performance for Topic Aware Link Discovery

We conduct several comparison experiments between the GraphKDD and existing

path finding and query processing tools to validate the optimized solution provided by the
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Figure 69: Results of Query-4 in DrugBank.
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GraphKDD.

4.7.2.1 GraphKDD vs. LIMES

In this section, we make a comparison study between GraphKDD and LIMES link

discovery tool in terms of running performance and context aware ability. GraphKDD is

able to find paths between source and target nodes efficiently with topic context. In this

experiment, we include 4 different datasets and their topic generation results: DBpdia

HPKM, YAGO HPKM, Bio2RDF HPKM and Bio2RDF PHAL. For each topic result,

we randomly select 10% source/target pairs and test with both GraphKDD and LIMES.

Specifically, we test their preprocessing time, processing time, topic context awareness.

Because LIMES has four different optimization to measure the similarity (Trigram, Co-

sine, Jaccard and Levenshtein Siilarity), we compare GraphKDD with each optimiza-

tion solution. Fig. 70 shows the size for each dataset. YAGO is the smallest dataset in

terms of predicate size, concept size and triple size, DBpedia has the most predicate while

Bio2RDF has the most triple.

Correspondingly, we evaluate pre-processing running performance for each case

as shown in Fig. 71. In general, pre-processing is divided into two parts: association

matrix generation time and topic generation time. YAGO has the smallest size, so it

has the minimum pre-processing time. Bio2RDF HPKM and Bio2RDF PHAL have the

same association matrix generation time. However, Bio2RDF HPKM needs more time

to generate topics because HPKM needs more time to run multiple iterations to generate

hierarchy of topics. DBpedia has the most predicates, so it needs more time to generate
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Figure 70: Size for Each dataset
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Figure 71: Pre-Processing Performance for GraphKDD

matrix as well as topics.

In addition, we compare pre-processing time between GraphKDD and LIMES.

Fig. 72 gives the logarithmic time evaluation for each case. From the evaluation, it is

obviously to see that GraphKDD needs more time to prepare association matrix and topic

generation while LIMES needs less time to indexing datasets with four optimization solu-

tions. The reason is that GraphKDD spends more time on collecting context information

from all topics and which could be useful to recognize context for source and target nodes.

Furthermore, we compare processing time between GraphKDD and LIMES. Fig.

73 shows the time evaluation for each case. We find that GraphKDD has the best per-

formance to find paths between source and target nodes compared to all 4 optimization

similarity measurement provided by LIMES.

What is more, we also list topic awareness statistics for source/target finding for
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Figure 72: Pre-Processing Performance between GraphKDD and LIMES

Figure 73: Processing Performance between GraphKDD and LIMES
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Table 31: Topic Awareness Statistics for GraphKDD

# Pairs
(source, target)

# Pairs
in
1 topic

# Pairs
in
2 topics

# Pairs
in
3 topics

DBpedia HPKM 8892 4880 2439 811
YAGO HPKM 1416 247 778 220
Bio2RDF HPKM 1600 932 358 107
Bio2RDF PHAL 1600 462 477 426

each dataset as Table 31 shows. DBpedia HPKM has the most pairs in one topic. YAGO

HPKM has the most pairs in 2 topics. Bio2RDF HPKM has the most pairs in one topic

and Bio2RDF PHAL has the most pairs in 2 topics.

4.7.2.2 GraphKDD vs. SLAP

We also conduct an experiment combining query generation and path finding. As a

comparison, we introduce the Semantic Link Association Prediction (SLAP) [19], which

is a drug target association detection framework published on 2012. Datasets covered by

the SLAP are Pubchem, CHEBI, DrugBank, UniProt, UniProtKB-GOA, HGNC, SIDER,

OMIM, KEGG, HPRD, ChEMBL, TTD, BindingDB, CTD and POSP. We use Bio2RDF

9 domains dataset to demonstrate such comparison, which has 6 datasets (DrugBank,

HGNC, SIDER, OMIM, KEGG, CTD) overlap with datasets that the SLAP uses. The

detailed steps of comparison are described as follow.

Step1: Because we focus on the results of interaction and association between drug and

target, we first try to find how many topics are necessary to cover both drug, target and

gene information. From Bio2RDF 9 domains topic distribution outputs, we find that Topic

16 and 27 contain both concepts dv : Drug(SIO 010038), dv : Target(SIO 010423)
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Figure 74: Bio2RDF 9 Domains Topic 16

and dv : Gene(SIO 001121) in schema level. Fig. 74 and 75 show specific topic

visualization for Topic 16 and 17 respectively. In addition, from predicates’ perspec-

tive, to find the link among dv : Drug(SIO 010038), dv : Target(SIO 010423) and

dv : Gene(SIO 001121) is about finding the path between predicates dv : target

and dv : x − genecards as shown in Fig. 76. The path shown in Fig. 76 is dv :

Drug(SIO 010038)− > dv : target− > dv : Target(SIO 010423)− > dv : x −

genecards− > dv : Gene(SIO 001121).

Step2: A specific query related to dv : Drug(SIO 010038), dv : Target(SIO 010423)
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Figure 75: Bio2RDF 9 Domains Topic 27
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Figure 76: Path between Topic 16 and 27
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Figure 77: Drug Target Association Query.

and dv : Gene(SIO 001121) is generated for Topic 16 and 27. An example is shown

in Fig. 77 with YASGUI query endpoint (http : //legacy.yasgui.org/). Partial query

outputs are also shown in Fig. 78 with drug name, target name and gene name. The

total number of drug is 6071. For each drug, it initiates an association relationship with

1 or many targets. We sort drug by the descending order of amount of related targets and

genes. Table 32 gives top 5 drug in terms of their corresponding number of targets and

gene. As Table 32 shows, 1 drug has m targets, and m targets relates to n genes where

m>n>0.

Step3: Fig. 79 gives the interface of the SLAP service. Each drug listed in Table 32 is

given to the SLAP as compound input. By running the SLAP framework, target nodes

and paths of each drug will be given as well. We then compare the query results from the

SLAP and the GraphKDD.
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Figure 78: Drug Target Association Query Results.

Figure 79: The SLAP Interface
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Table 32: Top 5 Drug Instances

Drug Name Unique
# of Target

Unique
# of Gene

NADH [drugbank:DB00157] 143 141
Beta-D-Glucose [drugbank:DB02379] 90 11
Flavin adenine dinucleotide [drugbank:DB03147] 80 15
Pyridoxal Phosphate [drugbank:DB00114] 66 54
Citric Acid [drugbank:DB04272] 64 12

Table 33 gives a comparison between the GraphKDD and the SLAP framework

in terms of the number of gene detected for top 5 drug. For NADH , the GraphKDD

is able to find 141 genes, which include BLV RB, HSD17B2, ADH5, EHHADH

and so on. However, SLAP is not able to find any gene for NADH . For Beta − D −

Glucose, the GraphKDD is able to find 11 genes, which includes IFNB1, LGALS7,

GCK, SFTPD, GNPDA1, AMY 1A, HK1, LCTL and so on. However, SLAP is

still not able to find gene for Beta − D − Glucose. For Flavinadeninedinucleotide,

the GraphKDD detects 15 different genes, which includes CY B5R3, NQO2, MAOB,

DAO, ACOX1 and so on. While the SLAP gives 3 possible genes HMOX2, ACOX1

and HMOX1. For PyridoxalPhosphate, the GraphKDD is able to find 54 genes (e.g.,

DDC, GIG18, PY GL) while the SLAP is capable of catching 56 genes (e.g., GOT1,

PDXK, GAD1). For CitricAcid, the GraphKDD can find 12 different genes (e.g.,

GNMT , BHMT , AKR1B1), but the SLAP cannot find any genes.

Because SLAP focuses on predicting link for path patterns betweenChemicalCompounds

andGenewith specific predicates including bind, hasGo, hasSubstructure, hasPathway,

hasT issue and PPI . However, the GraphKDD focuses on finding approved existing link
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for path pattern between Drug and Target through target predicate, we not only focus

on ChemicalCompound but also pay attention to a more general Drug information.

Therefore, for NADH , Beta − D − Glucose and CitricAcid, they have all approved

existing links but no predicting links, thatâs the reason why the GraphKDD is able to find

more genes than the SLAP. For Flavinadeninedinucleotide, it has a smaller portion of

predicting links than approved existing links, so the GraphKDD can find more gene paths

than the SLAP. However, for PyridoxalPhosphate, it contains a large number of pre-

dicting links, so the SLAP can find more gene paths than the GraphKDD. As a summary,

we conclude that SLAP is a good tool to predict link and get association between drug

and gene. However, it overlooks some existing links between Drug and Gene.

In addition, for single domain knowledge discovery, as Table 32 shows, GraphKDD

is able to retrieve drug-target-gene path. Compared to SLAP drug-gene path, GraphKDD

gets more information. For example, with GraphKDD, drug NADH has 143 unique

Targets and 141 unique Genes for single domain drugbank knowledge discovery.

Moreover, compared to the SLAP, the GraphKDD can provide topic awareness

features. For example, for NADH , Beta−D−Glucose, Flavinadeninedinucleotide,

PyridoxalPhosphate and CitricAcid, they across two topics (Topic 16 and 27) with 8

domains (DrugBank, ClinicalTrials, KEGG, SIDER, OMIM, CTD, HGNC and CTD).
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Table 33: Comparison Results Between GraphKDD and SLAP

Drug Name GraphKDD
# of Genes

SLAP
# of Genes

NADH [drugbank:DB00157] 141 0
Beta-D-Glucose [drugbank:DB02379] 11 0
Flavin adenine dinucleotide [drugbank:DB03147] 15 3
Pyridoxal Phosphate [drugbank:DB00114] 54 56
Citric Acid [drugbank:DB04272] 12 0

4.8 Summary

We have formally introduced important concepts and essential algorithms involved

in query generation and topic aware link discovery. Based on this theory, we have con-

ducted evaluations on both applications.

Specifically, for query generation, we have used DrugBank data as an use case

to show query generation results coming from top 4 ranking topics. For the topic aware

link discovery tool, we applied a performance evaluation with different single domain and

cross domain datasets to demonstrate the efficiency and topic awareness feature of it.
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CHAPTER 5

THE GRAPHKDD ONTOLOGY LEARNING FRAMEWORK

5.1 Introduction

In this chapter, we demonstrate ontology learning ability of the GraphKDD. Based

on the GraphKDD framework, we have extended it to extract useful information from

unstructured data (e.g., text format) and convert them into RDF/OWL to be accepted. We

have implemented a prototype system [108] [109] and evaluated the proposed model in

biomedical informatics domain with colorectal surgical cohort from the Mayo Clinic. The

framework is shown in Fig. 80.

We first introduce related work on ontology learning, then introduce basic com-

ponent included in the GraphKDD ontology learning framework. Evaluation and results

are also given to demonstrate the function of the GraphKDD.

5.2 Related Work

The motivation of this research is to perform dynamic learning and knowledge

discovery from ontology. As mentioned in paper [133], open issues existing in ontology

learning include but not limit to learning specific relation, evaluation benchmark, incre-

mental ontology learning etc. GraphKDD framework is able to handle these problems.

First of all, GraphKDD is capable of breaking large ontology into smaller topics. Each

165



Figure 80: The GraphKDD Framework
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topic contains nodes with close relationship and represents a specific group of informa-

tion. In addition, from each topic, GraphKDD is able to build benchmark evaluation

query in a systematical way. What is more, GraphKDD also provides incremental ontol-

ogy building and integration from unstructured data (e.g., text format data).

There exist many different direction of research on ontology learning. Zhou and

Lina [133] points out three dominant categories of ontology learning algorithms.

The first one is statistics based approach. Mutual information is widely used to extract

cooccurrence relations [24] [73] [53] [27]. Pereira et al., [88] and Glover et al., [42] pro-

posed a clustering based approach to group various of words. Li and Abe [72] provided a

Minimum Description Length (MDL) principle based word clustering solution. Sander-

son and Croft [99] and Doan et al., [32] proposed conceptual mapping based approach to

build ontology from text. Tari et al., [117] indicated a reverse engineering methodology

to build ontology schema from relational database.

The GraphKDD also applies mutual information to extract key words from data

repository and build ontology. Above statistics approaches mainly focus on building the

ontology but lacking of find specific relations. However, in addition to these approaches,

GraphKDD works directly on graph to break the large ontology down into smaller pieces,

which represent specific groups of information. What is more, by using our top-down

Hierarchical Predicate oriented K-Means clustering (HPKM) and bottom-up Predicate

oriented Hierarchical Agglomerative clustering (PHAL) approaches, context aware top-

ics are able to be made.

167



The second essential category of ontology learning algorithm is rule-based ap-

proach. Some researchers designed heuristic patterns to construct rules for semantic lex-

icon [18] [51] [52] [95] [6] . Ruge and Gerda [97] built rules based on term dependency

and association. Many researchers combined both syntactic and semantic ways to gener-

ate rules [126] [46] [47] [92]. Califf et al., [16] and Riloff et al., [94] used pattern and

dictionary based approach respectively to do information extraction from documents. Jan-

nink, Jan and Wiederhold [59] developed a ArcRank based algorithm in directed graph to

get relationship among nodes. Schlobach and Stefan [100] merged knowledge discovery

method into knowledge representation system to build criteria for calculating concepts.

Missikoff et al., [81] and Ciravegna et al., [26] conducted information extraction from

corpus and used such information to annotate ontology.

Compared with static rule-based approaches, the GraphKDD proposes a pure un-

supervised learning approach with dynamic knowledge discovery and ontology learning

features. We analysis ontology based on our own defined neighborhood relationship and

quantify the relationship with neighborhood association measurement.

The last popular research direction of ontology learning is hybrid approach. Roark

and Eugene [96] combined the advantage of clustering and heuristic pattern. Similarly,

[37], [5], [38], [118] and [25] combined clustering approach and natural language process-

ing techniques (e.g, phrase chunker, syntax regulation) to acquire knowledge from ontol-

ogy. Kietz et al., [65] and Maedche and Staab [78] mined and built ontology from text by

parsing cohort and analyzing association rules. Xu et al., [129] used GermaNet [48] to

168



analysis lexico-syntactic pattern from documents and applied clustering technique to ex-

tract information. Some other researchers also used supervised classification approaches

to achieve information retrieval goal [56] [98].

Although both supervised and unsupervised learning are widely used in discov-

ering ontological concepts and relations, the majority of techniques that been used in

ontology learning and knowledge discovery are still unsupervised learning. As Zhou and

Lina [133] pointed out, the reason is that usually training data that used to annotate on-

tology are not available. That provides one support reason that we choose unsupervised

learning approaches to do knowledge discovery from ontology. In this research, we also

apply hybrid approach. Specifically, we use both top-down unsupervised approach Hi-

erarchical Predicate oriented K-Means clustering (HPKM) and bottom-up unsupervised

approach Predicate oriented Hierarchical Agglomerative clustering in this research. But

different from the above hybrid methodologies, we used different solutions for various

purposes. After evaluation, we found that top-down solution focuses on global optimiza-

tion which is more suitable for single domain dataset knowledge discovery and bottom-

up solution is good at finding local optimization and is a better option for cross domains

dataset knowledge discovery.

5.3 Methods

Researchers and health care practitioners prefer to conduct research in an evidence-

based practice by using available research results when making decisions in health care.

The main challenge we are facing to support evidence-based research is the big data
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problem along with large, complex, and dynamic medical data (e.g., clinical research

data, EHRs, ontologies). A lot of medical ontologies and tools have been developed for

biomedical research and applications. However, these are not sufficient for integrating or

mapping unstructured data to structured data that will be significant for evidence-based

research. It is mainly due to the lack of the ability to integrate data from such a va-

riety of sources and extract both a cohesive structure and semantics from structured or

unstructured data to support evidence-based research. Under this drive, we extend the

GraphKDD framework with ontology learning feature that supports the ability to learn

from text based unstructured doctor notes and patient records to build semi-structured on-

tology for semantic analysis and knowledge discovery.

The extended framework is based on the following steps: 1) extracting key words

from report; 2) converting unstructured (free text) data to semantically structured (RDF/OWL)

data; 3) arranging them into groups in a semantically meaningful manner; 4) generating

queries for evidence-based practice; and 5) providing visualization based query analytics

tool.

As seen in this Fig. 80, the Free Text Normalizer component first reads unstruc-

tured free text documents from doctors’ notes and patients’ records then uses MedTag-

ger [119] to filter unnecessary terms out and convert free text terms to normalized ones.

The Graph Generator component then applies TextRunner [131] on each unstructured

normalized document and simplifies the term to generate a RDF triplet.

We first explain how to convert unstructured data to a linked data structure (RDF).

A slight different from the GraphKDD is that instead of using Hierarchical Predicate
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Figure 81: The GraphKDD Data Flow

oriented K-Means (HPKM) clustering, in this ontology learning specific framework, we

apply a Hierarchical Predicate oriented Fuzzy C-means (HFCM) clustering algorithm on

data. The basic between HPKM and HFCM are same, only different is HFCM gives soft

clustering outputs while HPKM can only give hard clustering results. The reason we use

a top-down based HFCM algorithm in this specific study is because we want to find cross

domains correlation while maintain the global view of the datasets. The data flow of the

GraphKDD framework is shown in Fig. 81. The detailed phases are described as follow.
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Phase1:Feature Selection and Concept Annotation.

We extract various free text reports and then perform preprocessing to maintain

terms consistently and exclude irrelevant terms, using filtering. Inequality of the likeli-

hood holds between two different values to describe their correlations. To get the inequal-

ity of the likelihood between any pairs of words, we then extract co-occurring terms from

free text clinical notes, and calculated the inequality score to cluster them into a different

category (domain). In this study, we use MedTagger [131], which is an open source con-

cept detection and normalization tool through open health natural language processing.

Specifically, this tool identifies phrases present in MedLex, a general semantic lexicon

created for the clinical domain [67]. The point-wise mutual information is used to assess

the inequality of the likelihood for given terms [74] as Eq. (5.1) shows.

Inequality(c, o) = log2(N(c, o) ∗ log2
N(c, o) + 0.01

N(o)
− log2

N(c)

N
(5.1)

N is the number of observations (e.g., the number of cases for all patients), N (c)

is the number of cases having the concept c, N(c,o) is the concept c and the number of

cases with a specific complication o, and N(o) is the number of cases with a specific com-

plication o.

As the example shown in Fig. 81, a given input text, ”the patient was UCI’d with

plans to have the catherter indwelling”, MedTagger recognized the uci and catheter

concepts and we also find these terms come from ILEUS report. Then we use the

point-wise mutual information measurement to calculate any inequality likelihood be-

tween these concepts (uci and catheter) and ILEUS. For example, the total number
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Table 34: Clinical Free Text

Clinical Free Text
1 Patientâs abdominal wound was exacerbated by dressing changes
2 Any problems including increased erythema around the wound
3 The residual,urine levels drop below certain level
4 There is substantial,further elevation in patientâs troponins

5
More,hypotension requiring initiation of pressor, to achieve satisfactory
blood,pressure

of cases is 1980, number of ILEUS cases is 400, the number of concept uci among all

cases is 600, and the number of concept uci along with ILEUS cases is 500. Based on

equation, the inequality between uci and ILEUS is 1.69. We do the same for all other

concepts and ranked these concepts by their inequality score and only chose the top 60

of them. Then for any free text which contains top 60 concepts with inequality score, we

use OpenIE [35] to get the triple (S, P, O) from the free text annotated with the concepts

recognized by MedTagger. For this purpose, we first get a triple
{
thepatient, UCI ′d,

catherterindwelling
}

. To make the triple normalized, we looked up the MedTagger

concept in the dictionary again and converted the triple to
{
patient, uci, catherter

}
. For

each complication case, we do the same work above in order to generate ontologies, re-

spectively.

In Table 34, we list some examples of clinical free text. Correspondingly, we also

list how to map among clinical free text, MedTagger normalized terms and triplets in

Table 35.

Phase2: RDF Graph Construction.

First, the top K concepts are selected and each sentence with these concepts in the
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Table 35: Mapping among Clinical Free Text, MedTagger Terms and RDF Triples

MedTagger Terms RDF Triples

1
Abdominal wound exacerbated
by dressing change

{abdominal wound, exacerbated by,
dressing change}

2
Problems,including
erythema around wound

{problems,,erythema, wound}

3 Urine drop,below level {urine, drop,,below level}
4 Place has,further elevation in troponins {place,,elevation, troponins}
5 Hypotension requiring,blood {hypotension,,requiring, blood}

datasets is annotated with the selected terms. We then extract the assertions (RDF/OWL

triples) from a given free test dataset considering the top K concepts of each domain and

generated RDF/OWL triples, respectively. We use OpenIE to extract the triples from the

free text. The OpenIE that is based on TextRunner, ReVerb [36] using (PoS) patterns, ex-

tracts a significant relation without any relation-specific input. OpenIE uses a conditional

random field (CRF) classifier to automatically extract triples representing binary relations

(Arg1, Relation, Arg2) from sentences. The triples generated from OpenIE are connected

to generate RDF graphs.

Phase3: Assertion Clustering and Query Generation.

Our assumption for the Predicate Oriented Neighborhood Patterns (PONP) is that

a predicate plays an important role in sharing information and connecting entities among

heterogeneous data. For any given domain, the number of unique relations is much less

than the number of concepts. Thus, this is another scalable approach for mapping do-

mains than the concept-centric approach. A group of terms (subjects) can be connected to

a group of terms (objects) through a single predicate unlike the concept-driven approach.

From the unit of
〈
subjects-predicate-objects

〉
, a specific context can be discovered from
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the associated concepts (subjects, objects). From the neighbors of the predicates, a spe-

cific context can be discovered from the association of predicates and their subjects and

objects. We can infer/predict missing predicates or missing concepts based on existing

contexts. Therefore, we generate a hypothesis that when a graph can be clustered based

on PONP patterns, data in the same clustered group have a closer relationship than when

in different ones. Predicate neighboring patterns are important to link data together with

a variety of domains.

After executing the above three steps, we will use the GraphKDD framework to

handle input as RDF data to analysis the predicate pattern and conduct unsupervised learn-

ing approach as mentioned in previous chapters.

5.4 Evaluation and Results

In this section, we use Mayo Clinic colorecal cohort as a case study to demonstrate

the GraphKDD ontology learning.

5.4.1 Case Study

As a case study, the Mayo Clinic’s colorectal surgical reports are used to gener-

ate queries by categorizing relationships among six colorectal post-surgical complications

(deep vein thrombosis/pulmonary embolism, bleeding, wound infections, myocardial in-

fraction, ileus and abscess/leak). Post-surgical complications are related to general or

certain type of surgeries. Clinical data of six complications after colorectal surgery are

attempted, analyzed to find interesting patterns/associations in a single or multiple com-

plications, and generated comprehensive cross domains queries that might be useful in
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conducting evidence-based practice by using available research results. We assume six

post-surgical complications represent six domains. Predicate profiles and association pat-

terns are important to link data together with a variety of domains.

5.4.2 Convert Colorectal Surgical Cohort to Ontology

Our case study has 1,980 colorectal surgical cases for 1,416 patients between 2005

and 2013 enrolled at the Mayo Clinic in Rochester, MN. We use our previous work,

MedTagger to extract concepts from clinical notes written about any complications within

30 days after surgery in cohort. The top 60 concepts (by their inequality scores) are used

for information extraction. The definition of the 6 complications is shown in Table 36.

We build six ontologies based on the top 60 terms ranked by their inequality

scores. Fig. 82 gives visualizations for each of the six ontologies. We use different

colors to indicate different domains, so that ABSCESS is in green, BLEED is in gray,

DV TPE is in blue, ILEUS is in pink, MI is in red and INFECTION is in orange.

Table 37 shows the statistics of each ontology. Among the six ontologies, there are a total

of 445 subjects, 83 predicates, 482 objects and 1210 triples involved. We then integrate

six ontologies together to make them interlinked and prepared to apply a Hierarchical

Fuzzy C-Means clustering algorithm on it.

5.4.3 Hierarchical Fuzzy C-Means (HFCM) Clustering Approach

We apply Hierarchical Fuzzy C-Means (HFCM) clustering for integrated ontology

on an input predicate similarity matrix with size 83*83. As a result, we get eight different

topics. The hierarchical clustering graph is shown in Fig. 83. The original integrated
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Figure 82: Visualization of 6 Complication Ontologies

ontology is partitioned into three intermediate sub-topics based on the optimal Silhouette

Width. In addition, three intermediate sub-topics can be further split into eight smaller

topics with the best Silhouette Width. Because eight topics cannot be further clustered,

then the GraphKDD framework stops the HFCM algorithm and produced eight topics as

the final output. We collect the top five predicates for each topic by their total in-degrees

and out-degrees and summarized each topic with those predicates. What is more, out of

the top five ranked predicates, we also select top two unique predicates with the most in-

degrees and out-degrees for each topic. Unique predicates indicate those predicates that

appear in only one topic. Therefore, some topics have unique predicates but some do not.

Based on the top predicates and unique predicates, we generate a signature for each topic

to summarize the content of each topic.
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Figure 83: Visualization of Hierarchical Fuzzy C-Means Clustering

Fig. 84, 85, 86 and 87 show Topics 1-4. Topic 1 includes 3 complications (AB-

SCESS, BLEED and INFECTION) with 24 predicates in total. The top five predicates for

Topic 1 are abv : developed, inv : healing, abv : drainage, bv : anemia and bv : blood,

and the top two unique predicates for Topic 1 are abv : abscess and abv : replacement.

By analyzing the signature of Topic 1, we find that Topic 1 describes the close relationship

among drainage, anemia, blood and incisionhealing. Similar to Topic 1, Topic 2 also

covers three complications (ABSCESS, BLEED and INFECTION ) with 16 pred-

icates. Top 5 predicates for Topic 2 are abv : developed, bv : held, inv : discontinued,

inv : packed and bv : drop, and there are no unique predicates for Topic 2. From this

signature, Topic 2 explains that the drop of some life indicators (e.g., hemoglobin) for a

patient may be related to the complication (e.g., abscess) developed by such patient; the

patientâs wound infection is discontinued for the reason that the infection area is packed
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with gauze. Topic 3 introduces four complications (ABSCESS, BLEED, DV TPE

and MI) with 13 predicates. Top 5 predicates for Topic 3 are mv : held, bv : held,

mv : signs, abv : drainage and bv : blood, and the unique predicates for Topic 3 are

none. This signature illustrates BLEED and MI might hold the same symptoms, which

are also related to drainage and blood. Topic 4 mentions three different complications

(BLEED, DV TPE and ILEUS) with 30 predicates. The top five predicates for Topic

4 are bv : held, bv : drop, ilv : clamp, ilv : fluid and ilv : dilated, and the top two

unique predicates for Topic 4 are dv : therapeutic and ilv : bolus. From this signature,

we conclude that fluid has a potential relationship with the dilated, drop of life indicator

and ng tube; therapeutic is associated with bolus.

Fig. 88, 89, 90 and 91 show Topics 5-8. Topic 5 describes 5 complications

(ABSCESS, DV TPE, INFECTION , ILEUS andMI) with 23 predicates. The top

5 predicates for Topic 5 are abv : developed, inv : healing, abv : drainage, bv : anemia

and bv : blood. The top 2 unique predicates for Topic 5 are mv : normalized and

mv : aggressive. The top 5 predicates for Topic 5 convey the exact same informa-

tion as Topic 1 does. However, unique predicates from Topic 5 tell us that the patient’s

pain remained poorly-controlled even with an aggressive multimodal; meanwhile, the pa-

tientâs hypotension had normalized systolic pressure. Topic 6 indicates 4 complications

(ABSCESS, BLEED, DV TPE and ILEUS) with 29 predicates. The top 5 pred-

icates for this topic are ilv : ng, ilv : remove, ilv : distension, abv : nausea and

abv : ct. The top 2 unique predicates are ilv : experienced and ilv : pulled. This
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Figure 84: Detailed Information for Topic 1
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Figure 85: Detailed Information for Topic 2
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Figure 86: Detailed Information for Topic 3
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Figure 87: Detailed Information for Topic 4
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signature summarizes the scenario that a patient’s ng tube was pulled out, and this pa-

tient also felt nausea and distension. Topic 7 covers 2 complications (ABSCESS and

ILEUS) with 11 predicates. The top 5 predicates under Topic 7 are inv : discontinued,

inv : packed, ilv : clamp, ilv : fluid and ilv : diurese. The top 2 unique predicates

are none. This topic is also very similar to Topic 2 and Topic 4 but with more informa-

tion on diuresis. Topic 8 is related to 3 complications (ABSCESS, BLEED and MI)

with 16 predicates. The top 5 predicates involved in this topic are bv : bleed, abv : pelvis,

bv : sedated, abv : transferred and abv : read. The top 2 predicates aremv : intubated

and bv : extubated. This topic describes the bleeding situation of the patientâs pelvis;

such patient was sedated; intubated and extubated operations are also applied on this pa-

tient.

We also conduct an experiment among different clustering algorithms to validate

that HFCM is the optimal approach to do topic discovery. Silhouette width is a method of

validation of consistency within clusters of data. Fig. 92, 93, 94 and 95 show validation

for four partitions for each level (one first level and three second levels) with five differ-

ent clustering algorithms (Hierarchical Fuzzy C-means [29], K-Means [114], Clara [63],

Pam [120], and Hierarchical Clustering [62]) on the similarity matrix. Fig. 92 shows the

splitting from the original ontology to intermediate clusters. Clara, Pam and Hierarchi-

cal clustering algorithms showing a relatively stable Silhouette Width for many cases and

could not find an optimal cluster number. Both HFCM and K-Means give the highest Sil-

houette Width 0.65 when the cluster number is 3. That shows the reason why the original

ontology is split in-to three intermediate clusters. Similarly, Fig. 93, 94 and 95 present
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Figure 88: Detailed Information for Topic 5
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Figure 89: Detailed Information for Topic 6
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Figure 90: Detailed Information for Topic 7
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Figure 91: Detailed Information for Topic 8
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Figure 92: Predicate Oriented Clustering Decision Making on Different Levels (A)

highest Silhouette Width for level 2-1, level 2-2 and level 2-3 splitting, which are 0.52,

0.55 and 0.58 with HFCM, respectively. This explains the reason why the Intermediate

1 Cluster is split into 3 clusters, Intermediate 2 Cluster is split into three clusters and

Intermediate 3 Cluster is split into two clusters.

5.4.4 Validation of Clustering Results with Golden Standard

For those eight generated topics, we use a golden standard file provided by a

medical expert, Dr. David W. Larson, in the Colon and Rectal Surgery department at the

Mayo Clinics to validate our clustering output. This file lists indications of seven types of

complications for 1505 patients after colorectal surgery from 2005 to 2013. In our study,

we consider six types of complications by treating ABSCESS and LEAK as the same

complication (unlike the golden standard) for the sake of simplicity. A patient may have

had no complications or up to seven complications as the golden standard specified. We

build correlation metrics based on this benchmark to find out which complications showed

189



Figure 93: Predicate Oriented Clustering Decision Making on Different Levels (B)

Figure 94: Predicate Oriented Clustering Decision Making on Different Levels (C)
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Figure 95: Predicate Oriented Clustering Decision Making on Different Levels (D)

a strong positive correlation. Fig. 96 represents the matrices with visualization. The

number in red represents the top 3 relative strongest correlations for each complication. It

is obvious to see that the complications ABCESS, BLEED and INFECTION have

a relative stronger correlation than other complications that verifies that Topic 1 and Topic

2 are valid. ILEUS has a relative stronger relationship with ABSCESS and BLEED,

verifying that Topic 6 is valid. LEAK and ILEUS are also strongly associated, verifying

that Topic 7 is valid. MI is strongly related to ABSCESS and BLEED, and we can

also verify that Topic 8 is valid. DV TPE does not have a very strong relationship with

other complications, but this weak correlation with ILEUS, BLEED and ABSCESS

is captured by Topics 3, 4, 5 and 6. Therefore, the clusters generated by the HFCM follow

the same correlation provided by the golden standard benchmark.
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Figure 96: Correlation Matrices for Golden Standard
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5.4.5 Query Generation and Visualization

The SPARQL queries generated for each cluster are shown in Fig. 97 and 98. For

the predicate graphs across six domains, we use a rectangle to identify the query boundary

out of the whole predicate graph. Queries 1 to 6 are cross domain queries that are auto-

matically generated from each cluster. These queries identify the relationships among

different post-surgical complications. For example, INFECTION , ABSCESS and

BLEED are closely related to each other through the predicates of wound, bleeding or

fever. DV TPE andBLEED are usually related through the predicate clot. ABSCESS

and ILEUS are usually related to each other through abdominal collections and disten-

tion. MI and BLEED are closely related to each other through anemia and coronary.

Queries 7 to 12 are about queries within a single complication. We also find some in-

teresting query patterns for each of the six complications. For instance, in ABSCESS,

sepsis usually comes with drainage. In BLEED, transfusion connects to anemia and

hemoglobin. In DV TPE, coumadin and clot occur together. In ILEUS, ct scan and

pelvis have a close relationship. In INFECTION , patients discontinue wound after the

wound be packed. In MI , pressure and volume overload can be a good treatment for a

problem exacerbated by radiation.

5.5 Summary

In this chapter, we have presented the idea of predicate based pattern analysis, in-

vestigated the use of ontology and applied an unsupervised machine learning approach to

integrate a heterogeneous unstructured resource with a semi-structured knowledge base.
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Figure 97: Cross Complications Queries
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Figure 98: Single Complication Queries
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In application level, we have achieved specific topic based pattern analysis as well as

query generation for cross domain knowledge discovery. The GraphKDD framework

is proposed to process any RDF/OWL datasets from heterogeneous resources. For the

evaluation purpose, we have adopted a case study with colorectal post-surgical complica-

tions and demonstrated that the GraphKDD framework is capable of extracting a cohesive

structure and semantics, as well as interesting patterns from structured/unstructured com-

plication datasets. By using the colorectal surgical reports from the Mayo Clinic and

golden standard, we have successfully validated our clustering results, thereby providing

solid evidence for automatic query generation.
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Table 36: Definition of Colorectal Post-surgical Complication

Post-surgical Complication Description

Abscess/Leak
(ABSCESS)

An abscess is a painful collection of pus, usually
caused by a bacterial infection. Coloanal anastomoses
have the highest rates.

Bleeding
(BLEED)

Minor and major bleeding is common in anastomotic
complications. Epinephrine and saline retention enemas
are used to manage serious bleeding. Surgical intervention
is necessary if situation is getting worse.

Deep vein thrombosis
(DVT)/pulmonary embolism
(PE) (DVTPE)

DVT is a condition wherein a blood clot forms in a vein
of the deep system. A piece of the clot can break off and
travel through the lung, which can cause heart failure,
known as PE.

Ileus
(ILEUS)

Ileus is defined as
bowel obstruction. For small bowel obstruction, 90-100%
sensitivity can be achieved by a CT scan of the
abdomen and pelvis.

Myocardial infraction
(MI)

Myocardial infarction is
commonly known as a heart attack.
It occurs during surgery or within 30 days after surgery.

Wound
infection,(INFECTION)

Wound infections commonly
present around the fifth post-surgical
day and 5-15% of patients have such
complication after colorectal surgery.
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Table 37: Statistics of Six Complication Ontologies

# of Subjects # of Predicates # of Objects # of Unique Triples
ABSCESS 63 13 89 220
BLEED 58 13 73 142
DVTPE 19 10 26 32
ILEUS 227 21 204 624
MI 52 12 53 132
INFECTION 26 14 37 60
Total 445 83 482 1210
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We presented an innovative predicate oriented pattern analysis and knowledge

discovery framework called the GraphKDD. Contributions are summarized as follows.

• A Predicate Oriented neighborhood Patterns (PONP) analysis model to quantify the

close relationship among different RDF predicates with cross domains knowledge

bases;

• A Hierarchical Predicate oriented K-Means clustering (HPKM) and a Predicate ori-

ented Hierarchical Agglomerative clustering (PHAL) approach to partition graphs

into small semantically related sub-graphs with different purposes;

• A dynamic query generation algorithm from outputs of topic discovery;

• A source and target reachable topic aware link discovery algorithm to efficiently

find paths with context between the source and target nodes;

• An ontology learning integrated framework is proposed to extract key words from

unstructured data with a natural language processing technique and build an ontol-

ogy based on retrieved words for further analysis;

• Comprehensive experimental evaluations to validate proposed methodologies of the
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framework using DBPedia [12], Yago [115] and Bio2RDF [10] datasets specifically.

The GraphKDD is proposed based on a Predicate Oriented Neighborhood Patterns (PONP).

PONP is an innovative pattern analysis methodology that performs a similarity measure-

ment for pairwise RDF predicates. PONP applies a predicate based neighborhood simi-

larity strategy to measure the close relationship among predicates in order to partition the

RDF graph based on such a relationship. Specifically, PONP adopts a dynamic neighbor-

hood weightage association measurement to quantify similarity scores between each pair

of predicates in an RDF graph. If two predicates are closer, they maintain a higher simi-

larity score; otherwise, they keep a lower similarity score. Evaluation of PONP shows the

predicate oriented approach gives a better average similarity score than a concept oriented

one. Analysis results of PONP also show the advantage of using a predicate pattern based

approach especially for cross domains data sets.

Based on similarity matrices generated by PONP, the GraphKDD is able to apply

top-down and bottom-up unsupervised clustering on it to partition the RDF graph into

different topics, each topic holds a group of RDF predicates and their related concepts to

form a specific collection of knowledge. For top-down unsupervised learning, we pro-

posed a Hierarchical Predicate oriented K-Means clustering algorithm. This approach

combines the advantages of K-Means clustering and hierarchical clustering to provide

a topic hierarchy solution with global similarity optimization. For bottom-up unsuper-

vised learning, we proposed a Predicate oriented Hierarchical Agglomerative clustering

algorithm. This approach focuses more on local diversity optimization that is able to

find relationships among cross domains predicates in addition to group heterogeneous
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resources. Evaluations showed the best predicate oriented neighborhood radius bound-

ary and branching factor with two different approaches. In addition, our experiment

showed the comparison between a predicate oriented approach and concept oriented ap-

proach with two clustering algorithms. Both show the optimal solution with the predicate

oriented pattern based approach. In addition, to validate the good performance of the

GraphKDD framework on a context aware graph partition, we also conducted a compari-

son study between the GraphKDD and four random graph partition algorithms (Random

Vertex Cut, Canonical Random Vertex Cut, Edge Partition 1D and Edge Partition 2D).

Results also showed the meaningful and reasonable partition results coming from the

GraphKDD when compared to random graph partition algorithms. In addition, as the

comparison result from the GraphKDD with the famous knowledge discovery tool Latent

Dirichlet allocation (LDA) showing, the GraphKDD is better to handle graph data knowl-

edge discovery. Topics generated by the GraphKDD can also be used as a classifier to

categorize new predicates into the right buckets.

The automatic query generation tool and topic aware linking discover tool are two

applications derived from the GraphKDD framework. The automatic query generation

tool is able to compose specific SPARQL queries from each topic that describes several

scenarios within the context of each topic. The topic aware linking discovery tool is ca-

pable of finding all the paths between any source and target nodes with topic context

awareness. We demonstrated two applications with different data sets. Results showed

that both applications are able to discover knowledge in a context aware manner.

As an extension of the GraphKDD framework, we added an ontology learning
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feature to enable the GraphKDD to retrieve keywords from the natural language and con-

vert such keywords to ontology for further semantic analysis. In evaluation, we used

a Mayo Clinic colorectal patients cohort that contains seven types of complications for

1505 patients after colorectal surgery from 2005 to 2013. We applied mutual information

to extract keywords from the cohort and built an ontology based on them. Then we used

PONP to analyzed ontology graph and used Hierarchical Fuzzy-Cmeans (HFCM) cluster-

ing algorithm to find topics. Each topic explained the correlation and association among

certain types of post-surgical complications.

6.2 Future Work

For future work, we will add more semantic analysis features into the GraphKDD

framework. RDF predicates like sameAs, seeAlso, subclassOf , etc. will be added to

construct the semantic analysis pattern to build the bridge between two predicates that

don’t share any k level neighborhood. This semantic analysis could help to find a hidden

relationship. In addition, we will use the GraphKDD schema level topic discovery results

to guide the information extraction process in the RDF/OWL instance level. We will

also provide a big data processing platform to handle large among of RDF instances.

Interactive query generation and query processing tool will also be extended on the current

framework. We will analyze the users’ frequent query to guide the future query generation

and provide a topic/query repository for different users.
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[43] Godoy, M. J. G., López-Camacho, E., Navas-Delgado, I., and Aldana-Montes, J. F.

Sharing and executing linked data queries in a collaborative environment. Bioin-

formatics (2013), btt192.

[44] Gotz, D., Wang, F., and Perer, A. A methodology for interactive mining and visual

analysis of clinical event patterns using electronic health record data. Journal of

Biomedical Informatics 48 (2014), 148–159.

[45] Guo, Y., Pan, Z., and Heflin, J. LUBM: A benchmark for OWL knowledge base

systems. Web Semantics: Science, Services and Agents on the World Wide Web 3,

2 (2005), 158–182.

[46] Hahn, U., and Schnattinger, K. Ontology engineering via text understanding. In

Proceedings of the 15th World Computer Congressâ The Global Information Soci-
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