Corn Production

A 4-H PROJECT

Corn is the most important grain crop in Missouri both in acreage and volume of production. The value of the crop is usually two or more times that of the combined values of wheat, oats, rye and barley crops. While it is best adapted to the fertile upland and good

bottomland soils, it is grown on approximately 90 per cent of all the farms in the state.

In the early agricultural development of the state, corn was one of the easiest and most profitable crops to grow, so the acreage devoted to it increased rapidly, reaching a peak of slightly over 8 million acres in 1917. Since that time, because soil erosion became a serious problem where corn was grown frequently on sloping land, the acreage was gradually reduced, averaging in recent years slightly less than 5 million acres. Despite this trend, however, corn will continue to be a very important crop because of its great value as a feed for livestock.

The average yield of corn for the state as a whole is seldom more than 30 bushels per acre and the best corn growing counties rarely exceed an average of 40 bushels. Individual growers, however, frequently have crops making 75 to 100 bushels and occasionally as much as 125 bushels per acre. These high yields are the result of using good seed, soil and cultural practices. Members of 4-H clubs who go into corn club work should do so with the idea of using the best practices possible under the circumstances to insure, in so far as they can, the highest practical yield of corn. Under a given price and cost set up for corn, raising the yield per acre is one of the most practical ways of increasing profits.

The following discussion is based upon those principles and practices of corn production which usually give the highest practical yields under a given set of circumstances. It is believed that by following recommended procedures 4-H corn club members can secure yields higher than the average of their community.

**Soil Fertility Requirements of Corn**

High yields of corn are obtained only on deep fertile soils or where fertility has been built up to a high state. Corn draws heavily on the soil for nitrogen, phosphorus and potash. A 50-bushel corn crop takes from the soil approximately twice as much nitrogen, one-third more phosphorus, and three times as much potassium as a 25 bushel wheat crop. To meet these heavy demands the soil must be able to deliver a generous supply of these nutrients throughout the growing period.

**Mineral and Nitrogen-Rich Organic Soils Best for Corn**

Soils rich in decaying organic matter or humus are best equipped to deliver sufficient nutrients for high corn yields. Soils which have been used in crop rotations with legumes or legumes and grasses, and have been treated with lime and mineral fertilizers and enriched by the return of crop residues and farm manures, are usually the highest in organic matter content. Such soils permit a more rapid intake of rainfall and reduce runoff of water and erosion, and, therefore, can deliver more moisture and nutrients to the growing plant.
On many soils a mineral fertilizer is needed to provide a balanced plant food supply throughout the growing season. Where nitrogen is supplied through legumes, phosphate fertilizer is usually all that is needed. However, on light colored soils which have been limed and have grown several crops of legumes, a phosphate-potash fertilizer may be needed.

**When to Plow Under Green Manure**

Green manure such as sweet clover should be plowed under when 10 to 12 inches high and while it is still green and succulent. When plowed under in this state the green manure will begin decomposing quickly and furnish the young corn plant nutrients in its early life, enabling it to grow rapidly, which in turn will make the first cultivation less tedious and often reduce the number of cultivations needed.

**Applying Fertilizer**

By broadcasting the greater part of the fertilizer on the surface and plowing it under, or drilling it in deeply after plowing, the nutrients will react more quickly on the soil, and become available to the plant. Moreover, plowing the fertilizer under or drilling it deeply into the soil will put it in the feeding zone of the plant roots. Plenty of available nutrients near the feeder roots hastens growth and makes the plant less susceptible to insect damage. It is usually advisable to use some fertilizer in the row to supply the young corn plant available nutrients. With the exception of the deep black fertile soil, the row application should be used in conjunction with the heavier plow-under or drilled applications.

A summary of the good soil practices to use for obtaining high yield and quality of corn is as follows:

**I. Supply decaying organic matter by one of the following practices:**

A. Plow under a green manure crop of either sweet clover, red clover, vetch or crimson clover.

B. Plow under pasture or meadow sod or lespedeza.

C. Plow under 6 to 10 tons of manure per acre.

**II. Use mineral fertilizers.**

A. On dark colored soils, where legumes have recently grown or manure has been applied, use 100 to 125 pounds of superphosphate in the row at planting time. Where legumes have not been grown the previous year or manure recently applied, use 4-12-4 or some other complete fertilizer instead of superphosphate.

B. On light colored limed soils which have grown legumes, apply 200 pounds of 0-20-10 and plow under or drill in deeply after plowing. In addition, apply 100 pounds per acre of a complete fertilizer such as a 4-12-4 in the row.
at planting time. Where manure is applied, add 25 to 40 pounds of superphosphate per ton as the manure is spread and plow under or drill in the phosphate after plowing. In addition, apply 100 to 125 pounds of 4-12-4 in the row at planting time. Where other grades of fertilizer are used, apply equivalent amounts of plant food. For example, if 0-14-7 is used instead of 0-20-10 the rate per acre should be increased to 285 pounds per acre to apply the same amount of plant food as in 200 pounds of 0-20-10.

Fertilizer Grades

Fertilizer grades are known by the nutrients they contain. In listing the grades of fertilizers nitrogen is given first, phosphoric acid second, and potash last. For example, a fertilizer grade listed as 4-12-4 means that the fertilizer contains 4 per cent nitrogen, 12 per cent phosphoric acid and 4 per cent potash. One hundred pounds of this grade of fertilizer would contain 4 pounds of nitrogen, 12 pounds of phosphoric acid and 4 pounds of potash. Likewise, 0-20-0 known as superphosphate contains no nitrogen, 20 pounds of phosphoric acid and no potash. The remaining part of the 100 pounds consists of inert material used as filler to carry the fertilizer nutrients.

Selection of Hybrid or Variety

Hybrid corn has so well demonstrated its superiority in drought resistance, standing ability, disease resistance and productive capacity as compared to open pollinated varieties that it is rapidly replacing such varieties. In 1943, more than 70 per cent of all the corn in Missouri was planted to hybrid seed and in some counties over 95 per cent of the acreage was in hybrid corn. A hybrid should be selected which is known to perform well in the locality and on the type of soil being used. The county agent can advise with local leaders and club members on the selection of good hybrids. Since all good hybrid seed has been tested, graded and treated, the seed is ready for planting when secured. The grade, or size of kernel, to be used will be determined solely by the ability of the machinery available to plant that size uniformly. In other words, one size is as good as another if they can be planted with equal success.

Methods of Planting

Where soil depth and drainage will permit, corn should be listed or planted with furrow openers. On shallow or poorly drained soils or those having tight subsoils, surface planting is preferable to either listing or the use of furrow openers. The use of listers and furrow openers where adapted gives increased yields over surface plantings. This is probably due to the fact that weeds are more
easily controlled and cultivations are not so likely to damage the feeder roots.

**Plant on the Contour**

In all cases where soil erosion is a problem, corn should be planted on the contour if at all practicable. There is ample evidence that erosion losses can be reduced as much as one-half by a good job of contouring. This method of planting also increases the soaking in of water, and yields are increased by about 10 per cent on the average. Since corn permits as much erosion as any crop generally grown in the state, the saving of soil fertility and water by contouring becomes especially important as a management factor. There are very few fields on sloping land which should be put in corn unless the cultivation is all done on the contour.

**Rate of Planting**

The rate of planting is dependent largely upon the productivity of the soil where the crop is being planted. On soils of medium or lower fertility, a two-stalk per hill rate of planting is preferred. On highly fertile land, which holds moisture well, a three or even a four-stalk rate may be used. If the corn is drilled, the number of stalks per hill are distributed evenly in the space between hills. There seems to be no advantage to checking corn in hills over drilling except that of easier weed control. Drilling, on the other hand, will usually give higher yields and permit listing or contouring where these practices are desired. The width of row should be such as to permit easy operation of cultivating machinery, usually not more than 42 inches and seldom less than 36 inches.

**Cultivation of Corn**

The principal reason for cultivating corn is to control weeds; however, the fact that cultivated land will soak up more moisture and release more plant food is also important. Weeds compete with the corn for both moisture and plant food. Therefore, the yield secured may very well be in proportion to the control of weeds.

Since weed control is essential, the whole cultivation program should be built around getting this job done well. Land that is relatively free from weeds will obviously present less of a problem than one heavily infested. Therefore, careful attention to weed control in the whole farming system is a step toward satisfactory corn yields. Weed control can start with early spring plowing unless the corn is to be listed. This early plowing encourages weed seed germination, thus permitting destruction of many weeds before the corn is planted. Frequently, the ordinary harrow can be used to advantage between planting and the time the corn reaches a height of 3 to 4 inches. Regular cultivation can then be started and continued as necessary.
Corn develops many of its principal feeding roots in the top 5 to 6 inches of the soil. These roots develop rapidly and, by the time corn is in tassel, are usually throughout the soil between and in the rows. Any cultural practice which interferes with the development of these roots may materially reduce yields. It is easy to see that the depth and extent of cultivation must be limited by the root development. Therefore, cultivation should be only as deep as necessary to control weeds. The number and frequency of cultivations should be determined by the requirements to control weeds and prevent the formation of a hard crust on the soil.

4-H Club members can normally use to good advantage the tools already on the farm if care is taken to avoid deep, late cultivation, and the ridging so frequently done at the last cultivation.

**Harvesting and Storing**

4-H corn club members will want to harvest and crib their corn in most instances. This can be done either by hand or with a corn picker. However, there may be a few who would like to put their corn in the silo for feeding in that form. Either procedure is satisfactory, depending upon the primary need. Corn can usually be safely cribbed when the moisture content is 25-30 per cent or less.

Missouri produces annually 5,000,000 acres of corn which is used for both grain and forage.
Unless the corn is stored in a good crib protected from rodents, the loss is likely to be quite high from weathering, rotting, rats and general waste.

At the time the corn is harvested the yield per acre should be determined. This is best done, of course, by weighing all the corn as it is harvested. Where this is possible, 100 pounds of corn can be dried thoroughly and weighed to determine the dry weight. This corn can then be shelled to get the shelling percentage. The harvested weight times this shelling percentage and divided by 56 gives the bushels of dry shelled corn. This figure divided by the acreage will then give the yield in terms of dry shelled corn per acre.

If the entire plot cannot be harvested and weighed, the following plan will give the approximate yield with less labor.

Select in the field at representative and separate places a total of six rows. Measure off 175 feet on each row and husk the corn from the measured portion. Weigh the corn and determine the yield of dry shelled corn as stated above. The result is the yield in bushels of dry shelled corn from the selected rows.

Decide from the following table what fractional part of an acre the six rows represent.

<table>
<thead>
<tr>
<th>Distance between rows</th>
<th>Fractional figure*</th>
<th>Distance between rows</th>
<th>Fractional figure*</th>
<th>Distance between rows</th>
<th>Fractional figure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 feet 0 in</td>
<td>20.748</td>
<td>2 feet 9 in</td>
<td>15.086</td>
<td>3 feet 5 in</td>
<td>12.156</td>
</tr>
<tr>
<td>2 feet 1 in</td>
<td>19.913</td>
<td>2 feet 10 in</td>
<td>14.642</td>
<td>3 feet 6 in</td>
<td>11.862</td>
</tr>
<tr>
<td>2 feet 2 in</td>
<td>19.147</td>
<td>2 feet 11 in</td>
<td>14.224</td>
<td>3 feet 7 in</td>
<td>11.577</td>
</tr>
<tr>
<td>2 feet 3 in</td>
<td>18.488</td>
<td>3 feet 0 in</td>
<td>13.829</td>
<td>3 feet 8 in</td>
<td>11.314</td>
</tr>
<tr>
<td>2 feet 4 in</td>
<td>17.779</td>
<td>3 feet 1 in</td>
<td>13.435</td>
<td>3 feet 9 in</td>
<td>11.068</td>
</tr>
<tr>
<td>2 feet 5 in</td>
<td>17.167</td>
<td>3 feet 2 in</td>
<td>13.101</td>
<td>3 feet 10 in</td>
<td>10.822</td>
</tr>
<tr>
<td>2 feet 6 in</td>
<td>16.694</td>
<td>3 feet 3 in</td>
<td>12.782</td>
<td>3 feet 11 in</td>
<td>10.592</td>
</tr>
<tr>
<td>2 feet 7 in</td>
<td>16.059</td>
<td>3 feet 4 in</td>
<td>12.446</td>
<td>4 feet 0 in</td>
<td>10.371</td>
</tr>
<tr>
<td>2 feet 8 in</td>
<td>15.677</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This number will be the number below the line in the fraction which shows the part of an acre six rows, 175 feet long, make of the width given opposite.

Multiply the weight of the dry shelled corn from the six rows by this fractional figure. The result will be the number of bushels of dry shelled corn per acre.

Six rows each 175 feet in length (1050 feet of row) represent the following fractional part of an acre. The fraction in each case is one over the number given; thus 1/20.743.

To illustrate the method of determining the yield per acre we will suppose the following case:

The weight of ear corn husked from the six rows is 380 pounds. The distance between the corn rows is three feet, four inches. The 100 pounds of ear corn when dried out and shelled weighs 78 pounds, which is the shelling per cent. Seventy-eight per cent of 380 pounds is 296.4 pounds.
Completing the calculation: 296.4 pounds divided by 56 equal 5.29 bushels; 5.29 bushels multiplied by 12.446 (fractional part of an acre which the six rows 3 feet, 4 inches apart represent) equals 65.84 bushels of dry shelled corn produced per acre on the field under consideration.

Control of Diseases and Insects

The corn plant is subject to the attacks of many insects and diseases. The total loss from these sources will vary from year to year but the average annual loss is significant. The Illinois Agricultural Experiment Station estimates the average annual loss from disease alone in that state amounts to at least 20 per cent.

Since corn is so generally grown and so many diseases and insects are harbored in old corn plant refuse and in the soil, sanitation and crop rotation are essential in disease and insect control. Club members who start out their project on legume or sod ground have taken a very effective first step in controlling diseases. The use of good hybrid seed is recommended as a second step. The use of good cultural practices and soil treatments to insure favorable conditions for growth could very well constitute the third step. The fourth step is careful observation to note the appearance of special insects such as cutworms, army worms, chinch bugs and grasshoppers. When these insects appear, local leaders and the county agent can give specific steps to take at that time.

UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AND THE UNITED STATES DEPARTMENT OF AGRICULTURE COOPERATING

J. W. BURCH, Director, Agricultural Extension Service

Distributed in furtherance of the Acts of Congress of May 8, and June 30, 1914