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ABSTRACT

Path planning problem, including maze navigation is a chalenging topic in
robotics. Indeed, a significant amount of research has been devoted to this problemin
recent years.
Genetic algorithm is a popular approach that searches for an optimal solution in given set
of solutions. Considering via points as genes in a chromosome will provide a number of
possible solutions on a grid map of paths. In this case, path distances that each
chromosome creates can be regarded as a fitness measure for the corresponding
chromosome. In some cases, a solution path passes through an obstacle. Assuming that
the shape of an obstacle is a circle, such random solutions can easily be eliminated by
setting-up simple equation between aline created by two via points and the obstacle.

The ant colony optimization algorithm is another approach to solve this problem.
Each ant drops a quantity of artificial pheromone on every point that the ant passes
through. This pheromone simply changes the probability that the next ant becomes
attracted to a particular grid point. Since each ant will make adecision at every grid point
that it encounters, it is possible that an ant may wander around the grid map or may
become stuck among local grid points. In order to prevent this phenomena the proposed
solution adapted a global attraction term which guides ants to head toward the destination
point.

This thesis addresses methods of the path finding problem using these two
different approaches. Both algorithms are tested and compared in the result section. The
experiment results demonstrate that these two methods have a great potential to solve the

proposed problem.



1.0 Introduction
1.1 Path Planning

The robot path planning problem is a velmallenging problem in robotics.
The main goal of this problem is to construct disioin-free path from a starting position
to an end or destination position. However, thisigetion problem includes several
difficult phases that need to be overcome, sucholbstacle avoidance, position
identification, and so forth. As Ibrahim [17] paaak out, this problem can be broken in to
several subtasks. A reliable navigation algorithostrbe able to 1) Identify the current
location of the robot, 2) Avoid any collisions, Betermine a path to the object. For this
reason, mobile robot navigation problem is a cinglieg problem, and a number of
studies have been attempted, resulting in a saamfinumber of solutions. Three major
concerns in regard to robot navigation problemsedfieiency, safety and accuracy. The
efficiency of the algorithm is considered as anomignt matter since one of the main
concerns is to find the destination in a short tilecordingly, a desirable path should
result from not letting the robot waste time takimmnecessary steps or becoming stuck in
local minimum positions. Furthermore, a desiraldéhghould avoid all known obstacles
in the area. This safety issue is another crifi@at of the algorithm. Once the optimum
collision-free path is constructed, then it is aterafor the robot to accurately follow the
pre-determined path. The main scope of the pathiffgnproblem involves the efficiency
and safety issues. A number of algorithms have l@eposed to address these two
important issues. D Huh, J. Park, U. Huh and H. Kdghapproached the path finding
problem by combining global path planning and lopath planning. They used the

Dijkstra algorithm for global path planning and thetential field method for local path



planning. S. Lee and G. Kardaras, [5] used viatgofVP) to find the optimum path.
They developed a “smart” algorithm which could daparthe number of via points in
response to a different level of complexity of ttiap upon which paths would be
generated N. G. Bourbakis and L. Vlachavas [6] presentgehth planning algorithm
that uses a neural network and a skeletonizatidmique. N. Sadati and J. Taheri [7]
presented a combination method consisting of a idlmpNeural Net ((NN) and a genetic
algorithm (GA). Thus, numerous approaches to sglthe path finding problem have
been published, including those indicated previudihis thesis will apply two
approaches to solving the path finding problema Denetic algorithm (GA) and 2) an
ant colony optimization algorithm (ACO).

The remainder of this thesis is organized intce fimajor chapters. In the
following chapter, Chapter 2 discusses historieaiaws of the Genetic Algorithm and
the Ant Colony Optimization algorithm. Chapter 3sdebes the proposed problem.
Chapter 4 introduces two proposed solutions (GAOAGor the proposed problem. In
Chapter 5, the proposed solutions are implementeddemonstrated through computer

simulations. Then, the simulation results are presk Chapter 6 provides a conclusion.



2.0 Historical overview of the GA and ACO algorithm
2.1 Genetic Algorithm

An evolutionary computational strategy was firsogowsed by Rechenberg and
Schwefel in 1965 [1] as a numerical optimizatioohtaque. In the mid 1960’s, Fogel
proposed the first evolutionary program. These $teps can be considered as pioneering
works in the discipline of evolutionary computatiorHowever, the current frame-work
of the so-called “genetic algorithm” or GA was dieyed by John Holland in 1975 [2].
His pioneering book,Adaptation in Natural and Artificial Systems presented an
evolutionary method that involves natural selectionossover, and mutation. The
genetic algorithm has become a well-known techniqueptimization, intelligent search
and machine learning. For example, the GA reptssanfeasible approach to the
classical traveling salesman problem, flowshopmjtation, job shop scheduling, and
the like [3].These problems bear a strong simyairt that the main objective of these
problems is that of optimizing or selecting thettssution out of a number of possible
solutions. Thus, GA has a reasonable motive ofgeimployed in a path optimizing
problem.

2.3 Ant Colony Optimization

The Ant Colony Optimization (ACO) method is a moeeent, but very active research
area in the discipline of computational intelligenc The first ACO algorithm, called the
ANT System, was developed by Marco Dorigo and bikagues [10]. This algorithm
takes inspiration from the social behavior of ant§he central concept of this algorithm
is based on the pheromone trail and the followiefdvior of real ants. Based on

biological studies, some species, suchaat are stimulated by how well they have



performed (certain) task¥he stimulation in the world of the ant can be gquoated to
their pheromone trail. In the ACO algorithm, a eotion of artificial ants construct
potential solution to a problem requiring optimipat based on this pheromone
(feedback) information. The constructed solutiore then evaluated by their quality in
terms of the performance achieved hen, the pheromone trad updated in accordance
with this evaluationThe so-called “ant cycle algorithm” of Dorigo [8Ja& based on the
above principle. His algorithm was applied to thassical traveling salesman problem
along with the asymmetrical traveling salesman l@mmb(ATSP) and the job scheduling
problem. The results achieved, as reported in rapep [14], demonstrated the
algorithm’s versatility as well as its robustnes&imilar to other biologically inspired
algorithms, such as Particle Swarm Optimization],[il& ACO algorithm performs well
in several different optimization problems. Frore garly 90’s, after the first ACO or AS
[10] algorithm(s) were proposed, a significant nembf successful applications became
available. Examples of these applications includelassical TSP, telecommunication
routing problems, and the “single machine totalghéed tardiness scheduling problem”
(SMTWTP) [8]. The algorithm performs well in findinan optimal path or an optimal
sequence of ants’ steps that defines a path. Itp FAc Dorigo and M. Birattari [9]
presented a theoretical approach to a classicatling salesman problem. Thus, it is
claimed that the ACO algorithm is a feasible apphoto the proposed path planning

problem. A significant portion of this report shotwew the ACO meets such expectation.



3.0 Problem description

Consider a 2-D square map overlaid with a unifoatigyn of grid points. The
size of a map can be changed arbitrarily; herepthp consists of a 20 x 20 grid. The left
bottom corner of the map is the starting pointagrath while the right top corner of the
map is the destination point for a path. The sldf@ obstacle is always a circle, but the
size of the obstacle is variable from 1 to 5 gdhgs. The positions of the obstacles are
randomly selected and can be located at any gritt pothe map except at points close
to the starting point region or close to the gamhpregion (say 5 grid points away.)
Furthermore, multiple obstacles are possible. [Eigut shows an example of such an

arrangement.

]

D

Fig 3.1: problem configuration (S: starting poi@tl, O2: obstacles, D: destination point)



The goal is to construct a shortest path from thgisg point, S, to the destination (goal

point,) D, which avoids every obstacle in the m@ppath cannot touch any obstacle)
order to solve this problem, two approaches, 1pteetic algorithm and 2) the ACO
algorithm will be proposed in the next section.

4.0 Proposed solutions

4.1 Genetic algorithm

® Definitions of keywords [16]

Chromosome: a set of parameters (genes) which define a possible solution of the
proposed problem.

Fitness: Performance of each chromosome in terms of its output performance evaluated
by a fitness function.

Selection: Survival of chromosome that is the best fit in current generation.

Crossover: Exchange of bits between two parents.

. .

110101010 101011001
parentl parent2

110101001 10101010
offspringl offspring2

Fig 4.1a: Example of a single point crossover irdthit position from
the LSB

In



Mutation: Random change of one or more bits in chromosome.

|

1010110101

|

1010100101

Fig 4.1b Example of a mutation (mutation of a chosome at the'Bbit)
In the proposed algorithm via points for a pathrespnt genes or bits in each
chromosome. Since the algorithm searches for thegdath, these bits are changeable.
However, the left most chromosome is always thenggoint (0, 0) and the right most
chromosome is the destination point (20, 20). kangple, if a path has 3 via points (1,
1) (5, 5) (10, 5), the 5 genes chromosome forghtk is [(0, 0) (5, 4) (9, 7) (18, 17) (20,
20)]. Each grid point, (x, y) represent a gene ofidmmosome. Fig 4.1c shows this

configuration.



the best chromomosome found at the 10th generation
20 T T T I I T T I I
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0 2 4 6 8 10 12 14 16 18 20

Fig 4.1c: A chromosome (path) with 3 genes (viaf®)i
The proposed genetic algorithm consists of 3 mi@pss natural selection, crossover, and
mutation. The methodologies associated with theegessare described in subsection i)
through subsection v). Subsection vi ) explainsaibgtacle avoidance technique.
Subsections vii) through viii) show other importéedtures of the proposed algorithm
such as the rules and assumptions, and the endigegon sequence.
i) Natural selection
At each generation (iteration), all the chromosomiisbe updated by their fitness. In
other words, if a particular chromosome has béitieess (shorter path distance) than
other chromosomes, then that particular chromosem®re likely to win the
competition and clone itself. Thus, a chromosonté good fithess has a much higher

probability than other inferior chromosomes to appa the next generation.



i) Crossover

A group of chromosome undergoes crossover at eaadrgtion. Furthermore, all the
crossover events are controlled by a predeternfhoe@rossover rate). In other words,
the algorithm creates a random number in [0 1gBrh chromosome. If the generated
number is less than Pc, the chromosome is a caedmiathe crossover event. The left
most genes and the right most genes will avoictthesover event since these two points
cannot be eliminated. For the purpose of diversiitg,crossover point bit is randomly
selected in each generation.

iii) Mutation

Unlike the crossover event, mutation is performeddit by bit basis. That is, if the
given mutation rate is Pm=0.01, the populatiorxjgeeted to perform a 1% bit mutation.
For example, if 20 chromosomes exist with 5 biteach one, then a 20 X 5 X 0.01=1 bit
mutation is expected to happen.

iv) Fitness function

The fitness of each chromosome is evaluated ing@frits path distance. Thus, the

smaller that the distance is, the better that spording chromosome will be. The fitness

function used in this particular problemfigk) :ﬁ , Wwhere d(k) is the path length for

the kth chromosome.

v) Elitism

In order to keep the best chromosome from eachrggome, the elitism method is
employed. The main goal of the elitism rule is é2f the best chromosome from the

current generation. Thus, under this rule, the biesimosome from each generation will



not undergo any mutation or crossover event andsafely move onto the next
generation.

vi) Obstacle avoidance

New chromosomes appear in every generation. Evibe fherformance based on (path
distance) of a new chromosome is acceptable, ltddmia useless solution if the
corresponding path passes through any of the dbst&kince via points cannot lie on
any of obstacles, a line created by two via pagittser passes through an obstacle or not.
Knowing this fact, one can check all the lines t¥ddetween via points. For example,
consider a chromosome with 1 via point: (0, 0) @@, (20, 20). Also, say an obstacle is
located at a position of (12, 12) with a radiu2oThen, starting from the first line
created by two via points: (0, 0) (10, 10), theoalllpm checks if the line passes through

the obstacle. The obstacle can be expressed @s—12)> +(y-12)> =  (4.141).

Furthermore, the line equation is given by y = keve 0<x<10 (4.1.2) Combining
Egs. (4.1.1) and (4.1.2) and will yield two possibblutions. If the X coordinate of the
obstacle lies between two given via points andwesolutions are real numbers, then
the algorithm declares that this line will pas®otigh the obstacle and will then eliminate
this chromosome. Fig 4.1.2 depicts this concepghdgh chromosome 1 has better
performance compared to chromosome 2, only chromesbwill survive because the

chromosome 2 passes through the obstacle.,

10



chromosome2:
(0,00 (5,13 (20,200

(20,200

chromosomed:
(0,00 (10,10} {20, 203

Fig 4.1.1: Obstacle avoidance example
vii) Rules and assumptions

® Only integers are employed to locate positionshenmhap. The size of the map is
20 X 20 grid points. The starting point is (0, ©§)e goal point is (20, 20), and
none of obstacles can include the starting poitih@mgoal point.

® The first bit and the last bit of a chromosomeOis@) and (20, 20) respectively.
If 3 via points are chosen, then the chromosome lmaly like [(0, 0), (x1, y1),
(x2, y2), (x3, y3), (20, 20) ].

® The shape of an obstacle is a circle with a radfuk or 1.5 grid points most of
the time. However, a few of the experiments areedeith a radius of 5 grid
points.

® A via point cannot be the starting point, the endhfy and any point inside of an
obstacle.

viii) Program sequence

11



Choose the size of the population (the number afrabsomes)
Choose the size of a chromosome
Create the number of obstacles and their posi{)§asYo)
Choose the mutation rate (Pm) and the crossove(Pal
Initialize the population at the chosen size, I60example
Do For generation=1, 2, ..... N
Compute the fitness (the distance of the path @) to (20,20) ) of the

chromosomes

Apply cloning and natural selection to each chroonos
Apply a crossover technique to each chromosome

Apply mutation

Eliminate all chromosomes (paths) that pass thr@mny of the obstacles.
If the size of current population < the size of thiginal population
Generate extra chromosomes which avoid all clesta

End if

End for

4.2 ACO (Ant Colony Optimization) algorithm

® Definitions of keywords [ 10]

Artificial ant: Ant artificial agent which makes movements based on the attraction of

pheromone.

12



Pheromone: Chemical substance deposited by an ant when walking; each ant
probabilistically prefers to follow a direction rich in pheromone rather than a poorer

one.

i) Methodology

The TSP (Travel salesman problem) is a paradignoatimization problem since it is
used to demonstrate the original AS (Ant Systeraplem. Since then it has often been
used as a benchmark to test the new ACO conceptpiidposed path-finding algorithm
employs the original concept of the ACO algorithmhveome modification. The idea of
the proposed algorithm is as follows.

Starting from the grid point (0, 0), an ant itevaty moves from a grid point to one of its
neighboring grid points. When at the ith grid pdijly), ant k can choose the next (jth)
grid point by choosing one of its 8 neighbor looa8: [ (x+1, y+1), (x+1,y), (X, y-1), .....
] N, where N in general is the set of all neighbotimgations of the current location.

The ant takes its next step randomly, based opritteability given by

Iy ®)
ZIDN L

Wherer; (t) is accumulated pheromone on the jth grid point wherith grid point is the

¢ilj((t) = +a*Qy(t) (4.2.1)

ant’s current location at time t. The quantify indicates every possible Ith neighbor
point when the ant is in ith positiorQ; (t) is the dot product of the vector fromito

with the vector i to destination point. The firetr is associated with the pheromone
amount in the 8 neighboring grid points (a locatm@mone). The second term is

associated with a global attraction, where is a scale parameter. The global term is

13



defined as the dot product of the agent’s headirggtion and the food (destination)
direction. The purpose of the global term is tadguihe agent in the desired direction so

that a large number of ants can reach the goat poalimited number of steps

(X':L’ y+ 1) (X! y+ 1) (X+ 11y+ 1)

(x-1,y) x,y) (x+1,y)

(X']-! y'l) (X, Y- 1) (X+ 1’ y'l)

Fig 4.2.1: An agent’s current position (bold) w@lpossible next positions (italic)
The solution construction ends after each ant esatie destination or the ant took too
many steps (50 or 100 steps, for example). Howekrerpheromone will be deposited
only if the ant reaches to the destination positioless than a certain number of steps.
Thus, after a group of agents finished its tous,gheromone in the entire map will be

updated by

r(t+)=1-9 %1, () + gAyg ) (422
Where 0 < p< 1 is the pheromone forgetting parameter. Thiaipater prevents the
map from unlimited accumulation of the pheromonse Tquantitﬁyijk is the amount of
pheromone that ant k deposits on the map. It ineéfas
Ay (t) =1/ L (t) (4.2.3)
Where L“(t ) is the length of the kth ant’s tour (path). Whee kth ant cannot reach the

destination in a certain number of steps, let ttfgt =Infjnity.

i) The elitist strategy

14



The main idea of the elitist strategy is to giv@gnificant additional weight to the best
tour constructed from a group of agents. In otherds, each time the pheromone trails
are deposited, those belonging to the grid poihteegroup’s best tour get an additional

amount of pheromone. For these grid points, equgt®.4) becomes:

AyP(t) =el L®(1) (4.2.4)

Again, the L® represents the length of the tour, and e is aipesitteger which
reinforces the global best path.

Algorithm pseudo code
Do For iteration=1, 2, ..... N
Do For ant=1,2, .... K
Do For step=1,2, .... M
Compute the probability of the kth ant’s next larat
Move to a next grid point by the computed probapili
Store the history of past location points in amgarr
If the current location is equal to the destination
Break the step loop
End if
End For
Store the tour distance made up by kth ant
Compute the pheromone amount which is generatélebkth ant
End For
Update pheromone amount of the entire map
End For

15



5.0 Results

The results of applying the GA (Genetic Algorithamd ACO (Ant Colony
Optimization) are presented in this section. Thigtisen is divided into two subsections.
In order to make objective conditions regardingpghgposed algorithms, different test
conditions were set up to create variety of expenits. All simulations were done with
MATLAB. Appropriate diagrams and graphs are incldide help illustrate results.

5.1 Resultswith the genetic algorithm.

Experiments were performed with a different numifesbstacles, mutation
rates, crossover rates, and the number of chromeéas Furthermore, these studies
include the effect of elitism. In every figure, tbiecular objects represent the obstacles,
and the star objects represent the chromosomeHatgever, the size of an object in
diagrams could be smaller than its actual size.

Experiment 1. When obstacles do not block the optimum path of the map

» Parameter specifications for the Experiment 1

Pc (crossover rate 0.25
Pm (mutation rate 0.2
No. of obstacle 2

Radius of the obst 1
acles
No. of via points 3
Elitism usage yes

16



the best chromomosome found at the 100th generation

20 T T T
18+
16+

14~

o O

path length =28.2843

20

Fig 5.1.1: The best chromosome (solution) at tH&dgheration

* Discussion

The interpretation of the above figures is strdmyfard. Since neither of the

obstacles have any influence on finding the bdstisa, the algorithm found an

optimum solution at only the fGyeneration.

Experiment 2: When two obstacles block the shortest path

» Parameter specifications for the scenario 2

Pc 0.25
Pm 0.2
No. of obstacle 2
Radius of the obs 1
acles
No. of via points 3
Elitism usage yes

17



20

18

16

14

12

10

the best chromosome found at the 10th generation

Fig 5.1.2: The best solution at thé™generation

the best chromomosome found at the 100th generation

18

20

Fig 5.1.3: The best solution at the TGfeneration

18

20

18



» Discussion
Again, an optimum solution was found in a relatywiw numbers of
generations. Note that there is no difference betvtae 18 generation solution
and the 109 solution.
Experiment 3: When a multiple obstacle exists

» Parameter specifications for experiment 3

Pc 0.25
Pm 0.4
No. of obstacle 9
Radius of the obst 1
acle
No. of via points 4
Elitism usage Yes

the best chromosome found at the 10th generation
20 T T T T T T

0 2 4 6 8 10 12 14 16 18 20

Fig 5.1.4: The best path at theé™@eneration

19



the best chromomosome found at the 100th generation
20 T T T T T T T

path length =30.093

0 2 4 6 8 10 12 14 16 18 20

Fig 5.1.5: The best path at the fageneration

» Discussion
As the number of obstacle increases, the algontbatds more generations to find the
best solution. In general, if the map complexitgréases in terms of the number of
obstacles as well as its distribution patterrs inecessary to increase the number of bits
in a chromosome. Such a consequence was expedtes sense that similar
characteristics are easily found in other compoiteti intelligence algorithms. For
example, an artificial neural network requiresrgéanumber of hidden neurons if the
network has to deal with high uncertainty situagion nonlinearities.
It is verified that the best solution at the T@feneration is better than that at th& 10
generation.
Experiment 4: A large obstacle with a different fu@mof chromosomes.

» Parameter specifications for the Experiment 4

20



20

Pc 0.25
Pm 0.2
No. of obstacle 1
Radius of the obs 5
acle
No. of via points 1,2, 3
Elitism usage yes

the best chromosome found at the 10th generation

path length =33.7431

Fig 5.1.6: One via point

20
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20

18

16

14

1z

10

20

the best chromosome found at the 10th generation

T T T T T
path length =33.4289

Fig 5.1.7: Two via points

the best chromomosome found at the 10th generation

20

T T T T T
path length =33.1798

Fig 5.1.8: Three via points

20
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» Discussion

The purpose of the experiment 4 is to see if thraber of via points has an effect on
the performance. Theoretically, more via pointsustidead to shorter paths. Indeed, as
shown in the above figures (fig 5.1.6 through 95,1tl8& performance with three via
points (33.1798) is better than for the other twees. However, as the number of via
points increases, the algorithm requires a largerber of generations to converge.

Experiment 5: Elitism effects on the performances

Pc range 0~ .5
Pm range 0~ .8
No. of obstacle 1
Radius of the obst 5
acle
No. of via points 1,2, 3
Elitism usage Yes

It is interesting to see how the performance ofalgerithm varies due to
employing elitism. The following two Figures demumase the effect on the performance
of the algorithm due to changing the crossover oathe mutation rate. Both results are

achieved by averaging 10 experiments for each case.

23



Path distance vs crossover rate plot
48

46

N square ===> without elitism
Ve

star ===> with elitism

path distance

28 | 1 1 | 1 1 | 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
crossover rate
Fig 5.1.9: Path distance vs. crossover rate, Pc
Path distance vs mutation rate plot
42 T T T
m
I
40 % square ===> without elitism -
}
Y
1‘l
38 star ===> with elitism 8
L
4
1
‘:
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S 36 ! /}Kf R
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28 1 1 1
0

0.1 0.2 0.3 04 0.5

0.6 07 0.8
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Fig 5.1.10: Path distance vs. mutation rate, Pm



» Discussion

The size and the number of obstacles in this exysri were the same as in
Experiment 4. Fig 5.1.9 shows how the performapegh(distance) varies as the
crossover rate increases. Fig 5.1.10 shows howetfermance varies as the mutation
rate increases. Pm=0 in the Fig 5.1.19 and PcEyi®.1.20. Both of the figures
compare the case with elitism and the case witaltigm. According to Fig. 5.1.19, the
crossover rate has little influence on the elitisigure 5.1.20 shows that a higher
mutation rate will lead to better performance, vhi not true for the case without
elitism. Notice that employing elitism gives stahled better results in both cases in
terms of its path distance.
5.2 Resultswith the ant colony optimization
With the ACO algorithm, the staring point is (1,al)d the destination point is (20, 20).
The obstacles can be located at any place on tpesreept at the starting point and at
the destination point. The experiments were dortle svdifferent number of obstacles,
different population sizes, and a different numtfaterations. Furthermore, these studies
include the effects of elitism. In every Figureg ttircular objects represent the obstacles
(there is some discrepancy between the actualadbsiad the apparent obstacle size in
the figure.)

Experiment 1: When obstacles do not exist in the map (W/O elitism)
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20

The best tour found in the last group

path length =32.9706

Fig 5.2.1: The best tour found at the 50th iteratio
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Best tour at the each iteration
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Fig 5.2.2: Best tours at each iteration (minimustatces at each iteration)

Map pheromone amount

25

Fig 5.2.3: Deposited pheromone in 3D space
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Pheromone ameunt contour map
T T T T

Fig 5.2.4: Deposited pheromone in 2D contour magd(R yellow > blue)

Experiment 2: When obstacles does not exist in the map (W/ elitism)
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Best tour found by an agent
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Fig 5.2.5: The best tour found at the 50th iteratio
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Fig 5.2.6: Best tours at each iteration
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Map pheromone amount

Fig 5.2.7: Pheromone accumulation in 3D

Pheromone amount contour map
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Fig 5.2.8: Map pheromone contour map (red > yekollue)
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Discussion of the experiment 1 and 2:

It is noted that a significant difference existemen the maximum value and the
minimum value in the pheromone map employing incktelitism is employed while the
pheromone map for the original ACO is more evemyributed. Also, the variation in
the optimum solution settles down as the numbé&eadtions increases as shown in the
Fig 5.2.2.

Experiment 3: When an obstacle blocks the optimum path in the map (W/O €litism)

The best tour found in the last group
20 -

path length =40.0416

Fig 5.2.9: The best tour found at the last iteratio
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Pheromone amount contour map

@ i

e

Fig 5.2.10: Deposited pheromone in 2D contour map

Experiment 4: When an obstacle blocks the optimum path in the map (W/ €elitism)

20

The best tour found in the last group

ngth =38.1421
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Pheromone amount contour map

Fig 5.2.11: Deposited pheromone in 2D contour meg ¢ yellow > blue)

the best chromomosome found at the 10th generation
20 T T T T T T T

path length =33.1798

0 z 4 6 8 10 12 14 16 18 20
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Fig 5.2.12: The best path found by Genetic Alganith
Discussion of the Experiment 3 and 4:
It is clearly shown that employing the elite stgpteeinforces narrow region of the map.
This means that the pheromone is mostly distribotethe best path of the map while the
other regions on the map receive little or nothiig.5.2.12 is the result achieved from
the previous algorithm (GA). Comparing Fig 5.2.1ighwFig 5.2.9, the GA produced a
better result in terms of the path distance. Thisecause the ACO algorithm in this
application has to deal with much more uncertaih&n in the GA case. In other words,
the GA method chooses the best via points (masteofime 3 or 4, points at most 6)
while the ACO algorithm makes a decision at everg goint.

Experiment 5: When multiple obstacles block the optimum path on the map (W/ elitism)

The best tour found in the last group
20+

path length =38.6274

141

12F

10F

Fig 5.2.13: Best tour found at the last iteration
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Pheromone amount contour map

Fig 5.2.14: Map pheromone configuration

Discussion of the Experiment 5 The problem becomes more complicated as the
number of obstacles increases. However, since aeaigion is made at the grid point
level, the algorithm always finds an optimized siolu which is not necessarily true for
the GA method. For example, in the GA case, ifuber does not choose a sufficient
number of via points, the algorithm will requiraignificant amount of time to find a
best solution or even may fail to find a solutidhus, the proposed ACO algorithm is
better in that sense since the proposed ACO algontill find a solution in any case.

Experiment 6: Effect of the number of ants (agents)
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The number of 10 100 500
ants
Average path d 45.357 38.6223 36.237
stance of 10 tri
als
Table 5.2.1
The best tour found in the last group
20 -
path length =42.8701
18 -
16 -
14
12 -
10 -
8 |
6 |
4 |
2L
0 L L L L L L |
0 2 6 8 10 12 14 20

Fig 5.2.15: An example path with the number ofad0
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20

20

The best tour found in the last group

path length =36.3848

Fig 5.2.16: A path example with the number ant & 10

The best tour found in the last group

path length =34.3848

Fig 5.2.17: A path example with the number of a8
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Discussion of the experiment 6:

Comparing Fig 5.2.15 and Fig 5.2.16 leads us tatmelusion that a larger size group is
better than a smaller size group. If the group sizeo small, not only does the number
of ants that can reach the destination get smialiealso the amount of pheromone
accumulation decreases. However, it is not alwayesthat large number of ants is
always the best. As it is shown in table 5.2.1hé group size is greater than some
minimum need, there is not much improvement inqgrenince. Indeed, a large
difference of performance exists between 10 antl&fdants while not much

improvement presents between 100 ants and 500 ants

6.0. Conclusion

In this thesis, the results of detailed investiganf the GA and ACO algorithms being
applied to a path optimization problem have be&sgmted. It has been demonstrated
that both approaches have a great potential ofjylesolution to the proposed problem.
In addition, it has been discovered that emplolitism led the algorithms to find a
solution more easily. However, in a majority of eashe GA found a better solution than
did the ACO algorithm in terms of the performan8ach a result is due to the fact that in
the ACO algorithm each ant only proceeds 1 grishipai a time while this is unnecessary
in the GA case. Despite the good performance ftr blgorithms, some limitations were
found. Overcoming these limitations represent dlehge for future research. The three
subsections describe some of the limitations optlaposed algorithms along with

possible future work
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6.1 Limitation in Genetic Algorithm

In order to guarantee obstacle avoidance, it iesgry to impose another constraint on
the algorithm. That is, looking for any interseatjgoint created by the path line and the
obstacles can create a significant amount of coatiout If only a few obstacles block
the optimal path, this computation issue can berigth However, when a large number
of obstacles exist in the map, this algorithm welfjuire a significant amount of
computation time. Although it turned out that GAestter than ACO algorithm in terms
of finding an optimal path, GA algorithm may pay tbat advantage in terms of
computation time; this limitation needs to be addesl.

6.2 Limitation in Ant Colony Optimization.

As it is mentioned previously, the ACO algorithnsten advantage over the Genetic
algorithm in terms of the algorithm execution tifda matter how many obstacles are
present, this algorithm does not devote an in atéimmount of time in iteration process.
However, as it was discussed in the results sedtigmethod is inferior to GA method
in the sense that ACO approach takes some unnegeassps, so that the algorithm does
not return the best solution. Furthermore, a glaltiahction term had to be added to lead
ant to reach the goal point. Eliminating this temay cause not only the ant wander
around in the map, but also the ant may becomé siiua point.

6.3 Scope for futurework

Perhaps, a more effective and reliable solutionteafound if one can adapt only
positive phases of the two algorithms. In otherdsothe best approach in the path
finding problem would be an algorithm that convergapidly toward a meaningful

solution. Such a topic can be considered as aestwilg problem for future work.
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Moreover, applying this algorithm to real robot d@na challenging topic. Because, in a
real environment, the algorithm has to be ablestl @ith nonlinear factors such as
noise. In addition, the 3D path finding problenaiso challenging topic. Such an
application may be found more easily than some @ieation; as for example, aircraft,

underwater vehicles, and so forth.
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Appendix A

MATLAB code

clc
clear all
for aa=1:3

%%%%%%%%%% %% %% %% %%%% Define globally used variables
%%%%%%%%% %% %% %%

tic;

pop=100 ; %% % size of the population

Lg=[124]; %% % Define the lengthtioe gene ( the number of via
points)

ra=>5; %%%% Define the radius of thstacle

map_size=20;

Sp=[0; 0] %%%% Define the starting foin

Op=[ 10, 10; 10, 10] ;

%0p=[ 3,3; 10,10; 14,10; ; 14,4 ; 8, 14; 6,%8]4,10; 16,14, 10, 16]"; %%%%
Define the position of the obstacle

Ep=[map_size; map_size] %%%% Definedéstination point

%%%%%%%%%%%% create the possible locations in éyg m
%%%%%%%% %% %% %%
pos=[];
for k=1:map_size+1
for [=1:map_size+1
pos_t=[I-1; k-1];
pos=[pos pos_t];
end
end
%
% figure(1)
% plot( Op(1,:), Op(2,:), 'ro', 'markersize', r&p
% hold on
% ezplot( '(x-10)"2 + (y-10)"2 - 2.25', [0 20 ])
% axis([020020])

%%%%%%%% Make sure that the via points is not taerg point and goal
%%%%%%%% point. Furthermore, it should not be lyamgthe obstacles.
no_via_ind1=find( (pos(1,:) ==Sp(1) & pos(2,:)Sp(2)) | (pos(l,)==Ep(1l) &
pos(2,:)==Ep(2) ) );

no_via_ind2=[];
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for i=1: size (Op,2)

no_via_ind2=[no_via_ind2 find( (pos(1,:) - @p) ).*2 + ( pos(2,:) -Op(2,i) )."2
<=ra™2)]; %% find points which are inside oétbbstacle circle
end

no_via = union ( no_via_ind1, no_via_ind2);
pos( :, no_via)=[];

% figure(2)
% plot( pos(1,:), pos(2,:), 'ro*);
% title( 'possible via points');

[ Xch, Ych  ]=gen_ch (pop, Lg(aa), pos, Sp, 6p, ra); %%% generate possible
solutions to start the algorithm

ch_dist=[];
for i=2:Lg(aa)+2
ch_dist(;,i-1)=sqrt( ( Xch(:,i-1)- Xch:).*2 + (Ych(:, i-1)- Ych(,i))."2

end

ch_fitness = sum( ch_dist")"
best_ch_ind= find( ch_fithess == min( ch_f#ag);

ch_order = [ [L1:length(ch_fitness)']' ch_fiasg;
ch_order = sortrows( ch_order, 2) %%%% eedde chromosomes in terms
of their fitness

%%%%%%%%%% %% iteration begions
%%%% %% %% % %% % %% %% % %% % %% % %% %% % %% % %%
for generation = 1:500

generation

%%%%%%%%%%%%%%% divide the chromosomes intgr&Qps
%%%%% %% %% %% % %% %% %5

%%%%%%%%%%%%%%% Do crossover and mutatiorhi®il0 groups
%%%%%%%%% %% %

%%%%%%%%%%%%% Variate Pc and Pm by the fitoé#ise group

%%%%%%%%%%%%% Good fitness group <== low PcRmd

%%%%%%%%%%%% Bad fitness group <== high PcRamd

Pc=.2; %[ .05, .1,.2,.2,.3,.3,.35,.35,5];

Pm=.2; %[ .001, .01, .05, .05, .1, .15, .2,22,5];

%for i=1:10
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elite= ch_order(1,:);

Xe=Xch( elite(;,1), : );
Ye=Ych( elite(;,1), 3);

order=ch_order(2:end,:);

%order= ch_order( 1 + 10*(i-1) : 10%, :) ;
bit=round( rand*(Lg(aa)-1) );

[ Xchild1, Ychildl ] = crossover ( order, Xc¥ich, Pc, bit, Op, ra, Lg(aa));

%%% Perform the X over

chn_size=0;
chn_size= pop- size(Xchild1,1);
[ Xchdn2, Ychdn2  ]=gen_ch ( chn_size, Lg(g®@s, Sp, Op, Ep,ra); %%%

Make up the current population up to the numbehefstaring population

Xchild1=[ Xchild1; Xchdn2];

Ychild1=[ Ychild1; YchdnZ2];

[ Xchild2, Ychild2 ] = mutation( Xchild1, Ychdll, pos, Pm, Op, ra);
%end

%%%%%%% %% %% %% % %% %% Update all chromosomes

%%%0%%%%% %% %% % %% %% %% % %% % %% %

Xchn=Xchild2; %Xch_new;
Ychn=Ychild2; %Ych_new;

%%%%%%%%%%%%%% In case that the size of chromess short... make up
%%%%%%%%%%%%%% chromosome..

chn_size=0;

chn_size= pop- size(Xchn,1);

[ Xchn2, Ychn2  ]=gen_ch ( chn_size, Lg(aes, Sp, Op, Ep, ra) ;

Xch_t=[Xchn ; Xchn2];, Xch(2:end,:)= Xch_t(Zp-1,:);, Xch(1,:)=Xe
Ych_t=[Ychn ; Ychn2];, Ych(2:end,:)= Ych_t(ip-1,:); Ych(1,:))=Ye
2%0%%%% %% %% %% %% %% %%%%% chromosome re evaluation

%%%%% %% %% %% %% %% %% %% % %% % %%

ch_dist=[];
for i=2:Lg(aa)+2

ch_dist(:,i-1)=sqrt( ( Xch(:,i-1)- Xch{:).*2 + ( Ych(;, i-1)- Ych(;,i)).”2
end

ch_fitness = sum( ch_dist")"
best _ch_ind= find( ch_fithess == min( ch_f#ag);
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ch_order = [ [L1:length(ch_fitness)']' ch_fiasg;
ch_order = sortrows( ch_order, 2) %%%% eedde chromosomes in terms
of their fitness

%%%0%% %% % %% % %% %% %% %% % %% % %% % % %% % %% % %% %% %% % % %%
%%%%%%% %% %% %% %% %% %% %%

if generation==10
Xch10=Xch;
Ych10=Ych;
orderl0=order;
best10= best_ch_ind;

figure(1)

plot( Xch10(best10(1),:), Ych10(best10(1)g*')

hold on

line( Xch10(best10(1),:), Ych10(best10(1),:

plot( Op(1,:), Op(2,:), 'ro’, 'markersiza*27 )

title('the best chromosome found at thén Héneration’)
text(12,19, ['path length =", num2str( oddX1,2) )] )
hold off

print ('-dtiff',[ 'ob3_10_',num2str(aa)])
end

if generation==50
Xch50=Xch;
Ych50=Ych;
order50=ch_order;
best50=best_ch_ind;

% figure(2)
% %plot( Xch50(best50(1),:), Ych50(best5Qf1'g*")
% hold on
% line( Xch(best50(1),:), Ych(best50(1),:)
% plot( Op(1,:), Op(2,:), 'ro', 'markersjza*28 )
% hold off
% title('the best chromosome found at i Heneration’)
% text(12,19, ['path length =', num2str( ch_ordét5®) )] )
% print -dtiff fig_50
end

if generation==100
Xch100=Xch;
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Ych100=Ych;
order100=ch_order,
best100=best_ch_ind;

% figure(2)

% plot( Xch100(best100(1),:), Ych100(be&{19,:), 'g*')
% hold on

% line( Xch100(best100(1),:), Ych100(be&1),:) )

% plot( Op(1,:), Op(2,:), 'ro', 'markersjza*28 )

% hold off

% title('the best chromosome found at i Heneration’)

%
% text(12,19, ['path length =', num2str( order12)}] )
% print -dtiff fig_100h4

end

end
toc;

figure(4)
plot( Xch(best_ch_ind(1),:), Ych(best_ch_ind(1)g), )
hold on
line( Xch(best_ch_ind(1),:), Ych(best_ch_ind(1),:)
plot( Op(1,:), Op(2,:), 'ro', 'markersize’, ra*27)
title(' the best chromomosome found at the 100ttegaion’)
text(12,19, ['path length =', num2str( ch_order)}2
hold off
%
print (-dtiff',[ 'ob3_100_',num2str(aa)])

end %of aa

function [ Xch, Ych  ]J=gen_ch (N, Lg, pos, $m, Ep, ra)

i=1;

Xch=zeros(N, Lg+2);

Ych=zeros(N, Lg+2);
while i < N+1

chs_ind=ceil( rand(1,Lg)*length(pos) ); %%%ppmize of possible combinations
ch_t=[ Sp pos(:,chs_ind) Ep];
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[ test_result |=test_chromosome( ch_t(1,:),tth:) , Op,ra) ;

if test_result ==
Xch (i,))=ch_t(1,:);
Ych (i,)= ch_t(2,:);
i=i+1,;
end
end

end

function [ test_result ]=test_chromosome( Xc, Yp, @ )
clear test_result;
v_fit=zeros( size(Xc,2), length(Op),size(Xc,1) );

for p=1: size(Xc,1)
for g=2: size( Xc,2)
for r=1: length( Op)
x2= Xc(p,q);, y2=Yc(p,q);, X1=Xc(p,q;1y1=Yc(p,q-1);
x0= Op(1,r);, yO=Op(2,r);

%%%%%%%%%% if x1=x2 then find Ysol {if$%%%%
if x1==x2

poll=1;

pol2= -2*y0;

pol3= y0"2+x172-2*x0*x 1+x0"2-ra"2;

Ysol= roots( [ poll pol2 pol3]) ;
Xsol=[x1; x2];

%%%%% else represent in polynoifoah.. i.e) descending order

of X
else

m=(y2-y1)/(x2-x1);

c=yl-m*x1,

poll= m"2+1;

pol2= (2*m*c-2*y0*m-2*x0);

pol3= c"2-2*y0*c+y0"2+x0"2-ra"2;

Xsol= roots( [ poll pol2 pol3]) ;
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Ysol= m*Xsol + c;
end
sol=[ Xsol, Ysol |;
sol_d = dist( [x1, y1], [Xsol'; Ysob]
obs_d =dist( [x1, y1], [xO;y0]);

if isreal(sol) & ( obs_d > min( sol_&)obs_d <max(sol_d))
v_fit(q,r,p ) = 1;
end
end

if sum(sum( v_fit(;,:;,p) ) ) <1
test_result(p)=1;

else
test_result(p)=0;

end

end

end

end

%%%%%%%%%%% This function performs crossover ferglve chromosome
%%%%%%%%%%%%% Performing 1 point crossover at it position %%%%
function [ Xchild, Ychild ] = crossover ( order, KcYch, Pc, bit, Op, ra, Lg)
%bit=1;
ifbit<O|bit>5

error( ‘choose diff bit number")

return %break
end

% ch_fitness= order(:;,2) - min( order(:,2) )+1,;
% fit_sum=sum(ch_fitness ) ;

% p_t=sum( ch_fitness )./ch_fitness ;

% p= p_t/sum(p_t);

ch_fitness_t = order(:,2)
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ch_fitness= 1./ch_fitness_t
ch_fitness/ sum(ch_fitness)

% fit_sum=sum(ch_fitness_t);
% ch_fitness= fit_sum./ ( ch_fitness_t - sqrt( 2622"2) ) ;

p= ch_fitness/(sum(ch_fitness) ) ;

Xp= Xch( order(:,1), :);
Yp= Ych( order(:,1), 3);

for i=1:length(p)

q(i)=sum( p(1:i) )
end

20%9%%%%%%%%%%%% chromosome clone %% %% %% %% %% %% %% %%
roulet=rand(1,length(p) );

for i=1:length(p)

gk_t=find( g > roulet(i) ) ;, gk(i)=gk_t(1);
%qk_1 t=find( g <roulet(1) );, gk=gk_1_t(end)
end

Xp=Xp(ak,: );

Yp=Yp(ak,:);

%0%%%%%%%%%%%%% chromosome crossover %%% %% %% %% %% %% %%
roulet=rand(1, length(p) );

ve=find( roulet < Pc);

Xparent = Xp ;, X_head= Xparent(vc, 1:Lg-bit);, _t&il=Xparent(vc,Lg-bit+1:end) ;
Yparent = Yp ;, Y_head= Yparent(vc, 1:Lg-bit);, _téil=Yparent(vc,Lg-bit+1:end);
Xchild=Xparent;
Ychild=Yparent;

X_tail= flipud(X_tail);
Y _tail= flipud(Y_tail);

Xchild(ve,:)=[ X_head X_tall ];
Ychild(vc,:))=[ Y_head Y_tail ];

[ test_result ]=test_chromosome( Xchild, Ychild,,®g)
Xchild( find( test_result ==0), : )=[];
Ychild( find( test_result ==0), : )=[];

end
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%%%% %% %% %% % %% %% %% % end of the
crossover %%%%%%%%%%%%%%%%% % %% % %% %% %% % %%

%%%%%% This function performs mutation for the givdhromosome
function [ Xchild, Ychild ] = mutation( Xp, Yp, po$m , Op, ra)

X_head= Xp(:,1);, X_body= Xp(;, 2:end-1);, X_takp(:,end) ;
Y _head=Yp(:;,1);, Y_body=Yp(;, 2:end-1);, Y_tai¥p(;,end) ;

%%%% The mutation will be performed on the bodyhef chomosome %%%%

Ppm=rand( size( X_body,1), size( X_body,2));
m_ind=find( Ppm < Pm);
child_ind=ceil( rand( size( m_ind) )*length(pos); )

X_body( m_ind )= pos( 1, child_ind) ;
Y_body( m_ind) = pos( 2, child_ind);

Xchild=[ X_head X_body X_tail];
Ychild=[Y_head Y_body Y _tail];

[ test_result ]=test_chromosome( Xchild, Ychild,,@@);
Xchild( find( test_result==0), : )=[];

Ychild( find( test_result ==0), : )=[];

End

/Il ACO code here //

clc
clear all
close all

%%%%%% %% %% % %% %% %%%%% Define globally used
variables %%%%%%%%%%%%%%%

tic;

ra=1; 2%%%% Define the radius of thetacle

map_size=20;

Sp=[11] %%%% Define the starting point

Op=[10; 10] ;

%0p=[ 4, 6; 14, 12; 13, 11, 8,10; 10,10; 14,104 ;4 ; 8, 14; 13, 14, 4,10; 16,14; 10,
16; 17,10; 19, 18];
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Ep=[map_size map_size] %%%% Define tbstidation point

%%%%%%%%%% %% create the possible locations in the
map %%%%%%%%%%%%%%
pos=[[;
for k=1:map_size
for I=1:map_size
pos_t=[l ; k1];
pos=[pos pos_t];
end
end

%%%%%%%% point. Furthermore, it should not be lyamgthe obstacles.
no_pos_ind1l=find( (pos(1,:) ==Sp(1) & pos(2,:)Sp(2)) );
no_pos_ind2=[];

for i=1: size (Op,2)

no_pos_ind2=[no_pos_ind2 find( (pos(1,:) - OP()."2 + ( pos(2,:) -Op(2,i) )."2
<=ra™2)]; %% find points which are inside oétbbstacle circle
end

Nno_pos = union ( no_pos_ind1l, no_pos_ind2);
pos( :, no_pos )=[];

% figure(1)

% plot( Op(1,:), Op(2,:), 'ro', 'markersize’, r&p

% hold on

% ezplot( '(x-10)"2 + (y-10)"2 - 2.25', [0 20 ])

% axis([0 20 0 20])

% hold off

a=.1;, Q=5; %%%%%% pheromone decay factor
ph_l=zeros(20,20); %%%%%% Initialize local pherar@anap
%tij=(1-p)*tij+dtij  %%%%% Update the pheromone
max_step=50

ant_number=500;

for iteration=1:50
acc=1;
pp_hist=[];
path_length=[];, non_emp_ind=[];, dT=[];

for k=1:ant_number

k
cp=Sp; %%%%%% cp is the curremntmsition
pp=[]; %%%%%% pp is historytbé ant positions
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%ph_g=Ep; %%%%%% Global pheroenon

Im=0;
dm=0;

for step=1:max_step%100%%%%%% repeat fatigyrocess until the kth
ant reach the goal position

xp=cp(1);

yp=cp(2);

pp=[pp;cp]; %%%% pphe past path points

nps=[ xp+1 yp; xp+1 yp+1;xp yp+1; Xp4d+1;xp-1 yp; xp-1 yp-1; Xp yp-
1; xp+1 yp-11]; %%% np neighbor points with respecthe current point

nps=intersect(nps, pos', 'rows');

%mem_ind=ismember( intersect(nps, posivs' ), nps, 'rows') ;

%nps( find(~mem_ind ) ) =[]; %%%%e ant's next location must
be the one of the possible postions in the map

%%%%%%%%%%%%%% Determine the ant's pegition by
probabilty based on the pheromone %%%%%%%%%%%%

clear t;
for i=1:size(nps,1)

t(i)=ph_I( nps(i,1), nps(i,2) );
end

zindt= ismember( nps, intersect( nps, @wWSs' ), rows’) ;
zind= find( zindt);

head_vector= nps - repmat( cp, [size(p, 1] );
ph_g=dot( head_vector, repmat( (Ep/ri&m ), [size(nps,1),1]),2) ;
ph_g( find(ph_g <=0))=0;

% ph_g= ph_g+abs(min(ph_g)) ;%dist(cp, Ep')+1) ;
%ph_g=0.01;

Ps=t+ph_¢';

Ps(zind) = 0.00001; %% %%e Bint's next movement
should not be one of the past positions unlesseadlhbor positions belong to the past
position

P= Ps/sum(Ps) ; %% %ubRbilities of the ant's
next movement is dependent on the amount of pherenmothe next positions
q=[I;, q_t=0;
for i=1:length(P)
q_t=q_t+P(i);
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position

then

end
%

a=[q a_tJ;

end

roullete=rand ;

gk=find(g > roullete) ; %% % w4l of the fortune... :)
np_ind=qgk(1) ;

np=nps(np_ind,:); %%%%igphe finally chosen next

%%%%%%%%%%%%%% %% If the ant moveddaliagonal direction

%0%%%%%%%% %% % %% %% increment dm. Otharwisrement Im;
if dist(cp, np’) > 1
dm=dm +1;
else
Im=Im +1;
end

cp=np;
if cp ==[20 20]; %%% the ant reacladhe destination
ppP=[pp ; cp];

break
end

%%% end of the max number steps

Lk= dm*sqrt(2) + Im;

%
%

figure(1)
line( pp(:,1), pp(:,2) )

if step < max_step

else

end

path_length( k) = Lk;
dT(k)= Q/(Lk-20*sqrt(2)) ;
pp_hist{k,1}=pp ;
pp_hist{k,2}=dT(k) ;
non_emp_ind(acc)=k ;
acc=acc+1;

path_length( k) = Inf;
dT(k)=0;

end %%% end of a group travel
elite_ind=find( path_length == min( path_leng}h
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best_Lk(iteration)=path_length( elite_ind(1));

%%%%%%% Update local pheromone
map %%%%%%%%% %% %% %% % %% %%
for n=1:length( non_emp_ind)
c_pp= cell2mat( pp_hist( non_emp_ind(r) ) )
c_dT=dT( non_emp_ind(n));
for m=1:size(c_pp,1)

indi=sub2ind(size(ph_I), ¢c_pp(m,1), p(p,2) ) ;

ph_I(indi)= ph_I(indi)* (1- a) + c_dT;
end
end

end %%% end of the iteration
best_path= pp_hist{elite_ind(1),1} ;
Lk= dm*sqrt(2) + Im;
figure(2)
line( best_path(:,1), best_path(;,2) )

text(12,19, ['path length =', num2str( be&{iteration) )])

hold on

%ezplot( '(x-10)"2 + (y-10)"2 - 25',[0 20 ])

plot( Op(1,:), Op(2,:), 'ro', 'markersizei*28 )
title('The best tour found in the last group’)
figure(3)
plot( 1:iteration, best_Lk(1:iteration))
title('Best tour at the each iteration’)
xlabel('iteration’)
ylabel('Best tour found by an agent')
figure(4)

bar3(ph_I)
title( ' Map pheromone amount ')

figure(5)
contour(ph_l)
title('Pheromone amount contour map')
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