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ABSTRACT 
 

Path planning problem, including maze navigation is a challenging topic in 

robotics. Indeed, a significant amount of research has been devoted to this problem in 

recent years.     

Genetic algorithm is a popular approach that searches for an optimal solution in given set 

of solutions. Considering via points as genes in a chromosome will provide a number of 

possible solutions on a grid map of paths. In this case, path distances that each 

chromosome creates can be regarded as a fitness measure for the corresponding 

chromosome. In some cases, a solution path passes through an obstacle. Assuming that 

the shape of an obstacle is a circle, such random solutions can easily be eliminated by 

setting-up simple equation between a line created by two via points and the obstacle.  

The ant colony optimization algorithm is another approach to solve this problem.  

Each ant drops a quantity of artificial pheromone on every point that the ant passes 

through. This pheromone simply changes the probability that the next ant becomes 

attracted to a particular grid point. Since each ant will make a decision at every grid point 

that it encounters, it is possible that an ant may wander around the grid map or may 

become stuck among local grid points. In order to prevent this phenomena the proposed 

solution adapted a global attraction term which guides ants to head toward the destination 

point.    

This thesis addresses methods of the path finding problem using these two 

different approaches. Both algorithms are tested and compared in the result section. The 

experiment results demonstrate that these two methods have a great potential to solve the 

proposed problem. 



 1 

1.0 Introduction 

1.1 Path Planning 
 
         The robot path planning problem is a very challenging problem in robotics. 

The main goal of this problem is to construct a collision-free path from a starting position 

to an end or destination position. However, this navigation problem includes several 

difficult phases that need to be overcome, such as obstacle avoidance, position 

identification, and so forth. As Ibrahim [17] pointed out, this problem can be broken in to 

several subtasks. A reliable navigation algorithm must be able to 1) Identify the current 

location of the robot, 2) Avoid any collisions, 3) Determine a path to the object. For this 

reason, mobile robot navigation problem is a challenging problem, and a number of 

studies have been attempted, resulting in a significant number of solutions. Three major 

concerns in regard to robot navigation problems are efficiency, safety and accuracy. The 

efficiency of the algorithm is considered as an important matter since one of the main 

concerns is to find the destination in a short time. Accordingly, a desirable path should 

result from not letting the robot waste time taking unnecessary steps or becoming stuck in 

local minimum positions. Furthermore, a desirable path should avoid all known obstacles 

in the area. This safety issue is another critical part of the algorithm. Once the optimum 

collision-free path is constructed, then it is a matter for the robot to accurately follow the 

pre-determined path. The main scope of the path finding problem involves the efficiency 

and safety issues. A number of algorithms have been proposed to address these two 

important issues. D Huh, J. Park, U. Huh and H. Kim [4] approached the path finding 

problem by combining global path planning and local path planning.  They used the 

Dijkstra algorithm for global path planning and the potential field method for local path 
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planning.  S. Lee and G. Kardaras, [5] used via points (VP) to find the optimum path.  

They developed a “smart” algorithm which could change the number of via points in 

response to a different level of complexity of the map upon which paths would be 

generated.  N. G. Bourbakis and L. Vlachavas [6] presented a path planning algorithm 

that uses a neural network and a skeletonization technique.  N. Sadati and J. Taheri [7] 

presented a combination method consisting of a Hopfield Neural Net ((NN) and a genetic 

algorithm (GA).  Thus, numerous approaches to solving the path finding problem have 

been published, including those indicated previously. This thesis will apply two 

approaches to solving the path finding problem: 1) a genetic algorithm (GA) and 2) an 

ant colony optimization algorithm (ACO). 

 The remainder of this thesis is organized into five major chapters. In the 

following chapter, Chapter 2 discusses historical reviews of the Genetic Algorithm and 

the Ant Colony Optimization algorithm. Chapter 3 describes the proposed problem. 

Chapter 4 introduces two proposed solutions (GA, ACO) for the proposed problem. In 

Chapter 5, the proposed solutions are implemented and demonstrated through computer 

simulations. Then, the simulation results are presented. Chapter 6 provides a conclusion. 
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2.0 Historical overview of the GA and ACO algorithm 

2.1 Genetic Algorithm 

     An evolutionary computational strategy was first proposed by Rechenberg and 

Schwefel in 1965 [1] as a numerical optimization technique.  In the mid 1960’s, Fogel 

proposed the first evolutionary program. These two steps can be considered as pioneering 

works in the discipline of evolutionary computation.  However, the current frame-work 

of the so-called “genetic algorithm” or GA was developed by John Holland in 1975 [2].  

His pioneering book, Adaptation in Natural and Artificial Systems presented an 

evolutionary method that involves natural selection, crossover, and mutation.  The 

genetic algorithm has become a well-known technique for optimization, intelligent search 

and machine learning.  For example, the GA represents a feasible approach to the 

classical traveling salesman problem, flowshop optimization, job shop scheduling, and 

the like [3].These problems bear a strong similarity in that the main objective of these 

problems is that of optimizing or selecting the best solution out of a number of possible 

solutions. Thus, GA has a reasonable motive of being employed in a path optimizing 

problem.  

2.3 Ant Colony Optimization 

The Ant Colony Optimization (ACO) method is a more recent, but very active research 

area in the discipline of computational intelligence.  The first ACO algorithm, called the 

ANT System, was developed by Marco Dorigo and his colleagues [10].  This algorithm 

takes inspiration from the social behavior of ants.  The central concept of this algorithm 

is based on the pheromone trail and the following behavior of real ants.  Based on 

biological studies, some species, such as ants are stimulated by how well they have 
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performed (certain) tasks. The stimulation in the world of the ant can be equivocated to 

their pheromone trail. In the ACO algorithm, a collection of artificial ants construct 

potential solution to a problem requiring optimization based on this pheromone 

(feedback) information. The constructed solutions are then evaluated by their quality in 

terms of the performance achieved.  Then, the pheromone trail is updated in accordance 

with this evaluation. The so-called “ant cycle algorithm” of Dorigo [8] was based on the 

above principle. His algorithm was applied to the classical traveling salesman problem 

along with the asymmetrical traveling salesman problem (ATSP) and the job scheduling 

problem. The results achieved, as reported in his paper [14], demonstrated the 

algorithm’s versatility as well as its robustness.  Similar to other biologically inspired 

algorithms, such as Particle Swarm Optimization [18], the ACO algorithm performs well 

in several different optimization problems. From the early 90’s, after the first ACO or AS 

[10] algorithm(s) were proposed, a significant number of successful applications became 

available. Examples of these applications include a classical TSP, telecommunication 

routing problems, and the “single machine total weighted tardiness scheduling problem” 

(SMTWTP) [8]. The algorithm performs well in finding an optimal path or an optimal 

sequence of ants’ steps that defines a path. In fact, M. Dorigo and M. Birattari [9] 

presented a theoretical approach to a classical traveling salesman problem. Thus, it is 

claimed that the ACO algorithm is a feasible approach to the proposed path planning 

problem. A significant portion of this report shows how the ACO meets such expectation.  
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3.0 Problem description 

Consider a 2-D square map overlaid with a uniform pattern of grid points. The 

size of a map can be changed arbitrarily; here, the map consists of a 20 x 20 grid. The left 

bottom corner of the map is the starting point for a path while the right top corner of the 

map is the destination point for a path. The shape of an obstacle is always a circle, but the 

size of the obstacle is variable from 1 to 5 grid points. The positions of the obstacles are 

randomly selected and can be located at any grid point in the map except at points close 

to the starting point region or close to the goal point region (say 5 grid points away.) 

Furthermore, multiple obstacles are possible. Figure 3.1 shows an example of such an 

arrangement.  

 

Fig 3.1: problem configuration (S: starting point, O1, O2: obstacles, D: destination point) 
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The goal is to construct a shortest path from the starting point, S, to the destination (goal 

point,) D, which avoids every obstacle in the map; (a path cannot touch any obstacle)  In 

order to solve this problem, two approaches, 1) the genetic algorithm and 2) the ACO 

algorithm will be proposed in the next section. 

4.0 Proposed solutions 

4.1 Genetic algorithm 

� Definitions of keywords [16] 

Chromosome: a set of parameters (genes) which define a possible solution of the 

proposed problem. 

Fitness: Performance of each chromosome in terms of its output performance evaluated 

by a fitness function. 

Selection: Survival of chromosome that is the best fit in current generation. 

Crossover: Exchange of bits between two parents. 

                                                                                                                                       
 

 
 
 
 
 
 
 

parent1    parent2 
 
 
       

 
 

offspring1   offspring2 
 
 

Fig 4.1a: Example of a single point crossover in third bit position from 
the LSB 

1 0 1 0 1 1 0 0 1 

1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 

1 1 0 1 0 1 0 1 0 
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Mutation: Random change of one or more bits in chromosome.   
 
 
 
 
 
 
 
 
 
 
 

Fig 4.1b Example of a mutation (mutation of a chromosome at the 6th bit) 
 

In the proposed algorithm via points for a path represent genes or bits in each 

chromosome. Since the algorithm searches for the best path, these bits are changeable. 

However, the left most chromosome is always the staring point (0, 0) and the right most 

chromosome is the destination point (20, 20). For example, if a path has 3 via points (1, 

1) (5, 5) (10, 5), the 5 genes chromosome for this path is [(0, 0) (5, 4) (9, 7) (18, 17) (20, 

20)]. Each grid point, (x, y) represent a gene of a chromosome. Fig 4.1c shows this 

configuration. 

1 0 1 0 1 1 0 1 0 1 

1 0 1 0 1 0 0 1 0 1 
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Fig 4.1c: A chromosome (path) with 3 genes (via points) 

 
The proposed genetic algorithm consists of 3 main steps: natural selection, crossover, and 

mutation. The methodologies associated with these steps are described in subsection i) 

through subsection v). Subsection vi ) explains the obstacle avoidance technique. 

Subsections vii) through viii) show other important features of the proposed algorithm 

such as the rules and assumptions, and the entire program sequence.  

i) Natural selection 

At each generation (iteration), all the chromosomes will be updated by their fitness. In 

other words, if a particular chromosome has better fitness (shorter path distance) than 

other chromosomes, then that particular chromosome is more likely to win the 

competition and clone itself. Thus, a chromosome with good fitness has a much higher 

probability than other inferior chromosomes to appear in the next generation.  
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ii) Crossover 

A group of chromosome undergoes crossover at each generation. Furthermore, all the 

crossover events are controlled by a predetermined Pc (crossover rate). In other words, 

the algorithm creates a random number in [0 1] for each chromosome. If the generated 

number is less than Pc, the chromosome is a candidate for the crossover event. The left 

most genes and the right most genes will avoid the crossover event since these two points 

cannot be eliminated. For the purpose of diversity, the crossover point bit is randomly 

selected in each generation. 

iii) Mutation 

Unlike the crossover event, mutation is performed on a bit by bit basis. That is, if the 

given mutation rate is Pm=0.01, the population is expected to perform a 1% bit mutation. 

For example, if 20 chromosomes exist with 5 bits in each one, then a 20 X 5 X 0.01=1 bit 

mutation is expected to happen. 

iv) Fitness function 

The fitness of each chromosome is evaluated in terms of its path distance. Thus, the 

smaller that the distance is, the better that corresponding chromosome will be. The fitness 

function used in this particular problem is
)(

1
)(

kd
kft = , where d(k) is the path length for 

the kth chromosome. 

v) Elitism 

In order to keep the best chromosome from each generation, the elitism method is 

employed. The main goal of the elitism rule is to keep the best chromosome from the 

current generation. Thus, under this rule, the best chromosome from each generation will 
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not undergo any mutation or crossover event and will safely move onto the next 

generation. 

vi) Obstacle avoidance 

New chromosomes appear in every generation. Even if the performance based on (path 

distance) of a new chromosome is acceptable, it could be a useless solution if the 

corresponding path passes through any of the obstacles. Since via points cannot lie on 

any of obstacles, a line created by two via points either passes through an obstacle or not. 

Knowing this fact, one can check all the lines created between via points. For example, 

consider a chromosome with 1 via point: (0, 0) (10, 10) (20, 20). Also, say an obstacle is 

located at a position of (12, 12) with a radius of 2. Then, starting from the first line 

created by two via points: (0, 0) (10, 10), the algorithm checks if the line passes through 

the obstacle. The obstacle can be expressed as 4)12()12( 22 =−+− yx  (4.1.1). 

Furthermore, the line equation is given by y = x, where 0<x<10  (4.1.2) Combining 

Eqs. (4.1.1) and (4.1.2) and will yield two possible solutions. If the X coordinate of the 

obstacle lies between two given via points and the two solutions are real numbers, then 

the algorithm declares that this line will pass through the obstacle and will then eliminate 

this chromosome. Fig 4.1.2 depicts this concept. Although chromosome 1 has better 

performance compared to chromosome 2, only chromosome 2 will survive because the 

chromosome 2 passes through the obstacle.,  
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Fig 4.1.1: Obstacle avoidance example 

 
vii) Rules and assumptions 

� Only integers are employed to locate positions on the map. The size of the map is 

20 X 20 grid points. The starting point is (0, 0), the goal point is (20, 20), and 

none of obstacles can include the starting point or the goal point. 

� The first bit and the last bit of a chromosome is (0, 0) and (20, 20) respectively. 

If 3 via points are chosen, then the chromosome may look like [(0, 0), (x1, y1), 

(x2, y2), (x3, y3), (20, 20) ]. 

� The shape of an obstacle is a circle with a radius of 1 or 1.5 grid points most of 

the time. However, a few of the experiments are done with a radius of 5 grid 

points. 

� A via point cannot be the starting point, the end point, and any point inside of an 

obstacle. 

viii) Program sequence 
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Choose the size of the population (the number of chromosomes) 

Choose the size of a chromosome 

Create the number of obstacles and their positions (Xo, Yo) 

Choose the mutation rate (Pm) and the crossover rate (Pc) 

Initialize the population at the chosen size, 100, for example 

Do For generation=1, 2, ….. N 

Compute the fitness (the distance of the path from (0,0) to (20,20) ) of the 

chromosomes 

 

Apply cloning and natural selection to each chromosome 

Apply a crossover technique to each chromosome 

Apply mutation 

  

 Eliminate all chromosomes (paths) that pass through any of the obstacles. 

If the size of current population < the size of the original population 

   Generate extra chromosomes which avoid all obstacles. 

  End if  

End for 

4.2 ACO (Ant Colony Optimization) algorithm 

� Definitions of keywords [10] 

Artificial ant: Ant artificial agent which makes movements based on the attraction of 

pheromone.  
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Pheromone: Chemical substance deposited by an ant when walking; each ant 

probabilistically prefers to follow a direction rich in pheromone rather than a poorer 

one. 

  

i) Methodology 

The TSP (Travel salesman problem) is a paradigmatic optimization problem since it is 

used to demonstrate the original AS (Ant System) problem. Since then it has often been 

used as a benchmark to test the new ACO concept. The proposed path-finding algorithm 

employs the original concept of the ACO algorithm with some modification. The idea of 

the proposed algorithm is as follows. 

Starting from the grid point (0, 0), an ant iteratively moves from a grid point to one of its 

neighboring grid points. When at the ith grid point (x,y), ant k can choose the next (jth) 

grid point by choosing one of its 8 neighbor locations: [ (x+1, y+1), (x+1,y), (x, y-1), ….. 

] ∈N, where N in general is the set of all neighboring locations of the current location. 

The ant takes its next step randomly, based on the probability given by 

)(*
)(

)( t
t

t ij

Nl il

ijk
ij Ω+=

∑ ∈

α
τ

τ
ϕ    (4.2.1) 

Where )(tijτ is accumulated pheromone on the jth grid point when the ith grid point is the 

ant’s current location at time t. The quantityilτ  indicates every possible lth neighbor 

point when the ant is in ith position. )(tijΩ  is the dot product of the vector from i to j 

with the vector i to destination point. The first term is associated with the pheromone 

amount in the 8 neighboring grid points (a local pheromone). The second term is 

associated with a global attraction, where α  is a scale parameter. The global term is 
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defined as the dot product of the agent’s heading direction and the food (destination) 

direction. The purpose of the global term is to guide the agent in the desired direction so 

that a large number of ants can reach the goal point in a limited number of steps 

(x-1, y+1) (x, y+1) (x+1,y+1) 

(x-1, y) (x, y) (x+1, y) 

(x-1, y-1) (x, y-1) (x+1, y-1) 

 
Fig 4.2.1: An agent’s current position (bold) with 8 possible next positions (italic) 

 
The solution construction ends after each ant reaches the destination or the ant took too 

many steps (50 or 100 steps, for example). However, the pheromone will be deposited 

only if the ant reaches to the destination position in less than a certain number of steps. 

Thus, after a group of agents finished its tour, the pheromone in the entire map will be 

updated by 

 ∑
=

∆+−=+
m

k

k
ijijij ttt

1

)()(*)1()1( γτρτ  (4.2.2) 

Where 0 < ρ < 1 is the pheromone forgetting parameter. This parameter prevents the 

map from unlimited accumulation of the pheromone. The quantity k
ijγ∆  is the amount of 

pheromone that ant k deposits on the map. It is defined as 

)(/1)( tLt kk
ij =∆γ    (4.2.3) 

Where )(tLk  is the length of the kth ant’s tour (path). When the kth ant cannot reach the 

destination in a certain number of steps, let the )(tLk =Infinity. 

i) The elitist strategy 
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The main idea of the elitist strategy is to give a significant additional weight to the best 

tour constructed from a group of agents. In other words, each time the pheromone trails 

are deposited, those belonging to the grid points of the group’s best tour get an additional 

amount of pheromone. For these grid points, equation (4.2.4) becomes:    

)(/)( tLet gbgb
ij =∆γ   (4.2.4) 

Again, the gbL represents the length of the tour, and e is a positive integer which 

reinforces the global best path. 

Algorithm pseudo code 
Do For iteration=1, 2, ….. N 
 Do For ant=1,2, …. K 
  Do For step=1,2, …. M 

Compute the probability of the kth ant’s next locaton. 
Move to a next grid point by the computed probability 
Store the history of past location points in an array 
If the current location is equal to the destination 
 Break the step loop 
End if 

  End For 
  Store the tour distance made up by kth ant 
  Compute the pheromone amount which is generated by the kth ant 
 End For 
 Update pheromone amount of the entire map 
End For 
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5.0 Results 

 The results of applying the GA (Genetic Algorithm) and ACO (Ant Colony 

Optimization) are presented in this section. This section is divided into two subsections. 

In order to make objective conditions regarding the proposed algorithms, different test 

conditions were set up to create variety of experiments. All simulations were done with 

MATLAB. Appropriate diagrams and graphs are included to help illustrate results.  

5.1 Results with the genetic algorithm. 

 Experiments were performed with a different number of obstacles, mutation 

rates, crossover rates, and the number of chromosome bits. Furthermore, these studies 

include the effect of elitism. In every figure, the circular objects represent the obstacles, 

and the star objects represent the chromosome bits. However, the size of an object in 

diagrams could be smaller than its actual size. 

Experiment 1: When obstacles do not block the optimum path of the map 

• Parameter specifications for the Experiment 1 

Pc (crossover rate) 0.25 

Pm (mutation rate) 0.2 

No. of obstacle 2 

Radius of the obst
acles 

1 

 No. of via points 3 

Elitism usage yes 
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Fig 5.1.1: The best chromosome (solution) at the 10th generation  

 
• Discussion 

The interpretation of the above figures is straightforward. Since neither of the 

obstacles have any influence on finding the best solution, the algorithm found an 

optimum solution at only the 10th generation. 

Experiment 2: When two obstacles block the shortest path 

• Parameter specifications for the scenario 2 

Pc 0.25 

Pm 0.2 

No. of obstacle 2 

Radius of the obst
acles 

1 

No. of via points 3 

Elitism usage yes 
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Fig 5.1.2: The best solution at the 10th generation   

 
Fig 5.1.3: The best solution at the 100th generation 
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• Discussion 

Again, an optimum solution was found in a relatively few numbers of 

generations. Note that there is no difference between the 10th generation solution 

and the 100th solution. 

Experiment 3: When a multiple obstacle exists 

• Parameter specifications for experiment 3 

Pc 0.25 

Pm 0.4 

No. of obstacle 9 

Radius of the obst
acle 

1  

No. of via points 4 

Elitism usage Yes 

 
Fig 5.1.4: The best path at the 10th generation  
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Fig 5.1.5: The best path at the 100th generation 

 
• Discussion 

As the number of obstacle increases, the algorithm needs more generations to find the 

best solution. In general, if the map complexity increases in terms of the number of 

obstacles as well as its distribution pattern, it is necessary to increase the number of bits 

in a chromosome. Such a consequence was expected in the sense that similar 

characteristics are easily found in other computational intelligence algorithms. For 

example, an artificial neural network requires a large number of hidden neurons if the 

network has to deal with high uncertainty situations or nonlinearities.  

It is verified that the best solution at the 100th generation is better than that at the 10th 

generation.  

Experiment 4: A large obstacle with a different number of chromosomes. 

• Parameter specifications for the Experiment 4 
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Pc 0.25 

Pm 0.2 

No. of obstacle 1 

Radius of the obst
acle 

5  

No. of via points 1, 2, 3 

Elitism usage yes 

 

 
Fig 5.1.6: One via point 

 



 22 

 
Fig 5.1.7: Two via points 

 

 
Fig 5.1.8: Three via points 
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• Discussion 

The purpose of the experiment 4 is to see if the number of via points has an effect on 

the performance. Theoretically, more via points should lead to shorter paths. Indeed, as 

shown in the above figures (fig 5.1.6 through 5.1.8), the performance with three via 

points (33.1798) is better than for the other two cases. However, as the number of via 

points increases, the algorithm requires a larger number of generations to converge.  

Experiment 5: Elitism effects on the performances 

Pc range 0 ~ .5 

Pm range 0 ~ .8 

No. of obstacle 1 

Radius of the obst
acle 

5  

No. of via points 1, 2, 3 

Elitism usage Yes 

 
It is interesting to see how the performance of the algorithm varies due to 

employing elitism. The following two Figures demonstrate the effect on the performance 

of the algorithm due to changing the crossover rate or the mutation rate. Both results are 

achieved by averaging 10 experiments for each case.  
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Fig 5.1.9: Path distance vs. crossover rate, Pc 

 
Fig 5.1.10: Path distance vs. mutation rate, Pm 
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• Discussion 

The size and the number of obstacles in this experiment were the same as in 

Experiment 4. Fig 5.1.9 shows how the performance (path distance) varies as the 

crossover rate increases. Fig 5.1.10 shows how the performance varies as the mutation 

rate increases. Pm=0 in the Fig 5.1.19 and Pc=0 in Fig 5.1.20. Both of the figures 

compare the case with elitism and the case without elitism. According to Fig. 5.1.19, the 

crossover rate has little influence on the elitism. Figure 5.1.20 shows that a higher 

mutation rate will lead to better performance, which is not true for the case without 

elitism. Notice that employing elitism gives stable and better results in both cases in 

terms of its path distance.   

5.2 Results with the ant colony optimization 

With the ACO algorithm, the staring point is (1, 1) and the destination point is (20, 20). 

The obstacles can be located at any place on the map except at the starting point and at 

the destination point. The experiments were done with a different number of obstacles, 

different population sizes, and a different number of iterations. Furthermore, these studies 

include the effects of elitism. In every Figure, the circular objects represent the obstacles 

(there is some discrepancy between the actual obstacle and the apparent obstacle size in 

the figure.) 

 Experiment 1: When obstacles do not exist in the map (W/O elitism) 
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Fig 5.2.1: The best tour found at the 50th iteration   
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Fig 5.2.2: Best tours at each iteration (minimum distances at each iteration) 

 

 

Fig 5.2.3: Deposited pheromone in 3D space  
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Fig 5.2.4: Deposited pheromone in 2D contour map (Red > yellow > blue) 

 

Experiment 2: When obstacles does not exist in the map (W/ elitism) 
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Fig 5.2.5: The best tour found at the 50th iteration   

 

Fig 5.2.6: Best tours at each iteration 
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Fig 5.2.7: Pheromone accumulation in 3D  

 

Fig 5.2.8: Map pheromone contour map (red > yellow > blue) 
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Discussion of the experiment 1 and 2: 

It is noted that a significant difference exists between the maximum value and the 

minimum value in the pheromone map employing in which elitism is employed while the 

pheromone map for the original ACO is more evenly distributed. Also, the variation in 

the optimum solution settles down as the number of iterations increases as shown in the 

Fig 5.2.2.  

Experiment 3: When an obstacle blocks the optimum path in the map (W/O elitism) 

 

Fig 5.2.9: The best tour found at the last iteration 
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Fig 5.2.10: Deposited pheromone in 2D contour map 

Experiment 4: When an obstacle blocks the optimum path in the map (W/ elitism) 
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Fig 5.2.11: Deposited pheromone in 2D contour map (red > yellow > blue) 
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Fig 5.2.12: The best path found by Genetic Algorithm 

Discussion of the Experiment 3 and 4: 

It is clearly shown that employing the elite strategy reinforces narrow region of the map. 

This means that the pheromone is mostly distributed on the best path of the map while the 

other regions on the map receive little or nothing. Fig 5.2.12 is the result achieved from 

the previous algorithm (GA). Comparing Fig 5.2.12 with Fig 5.2.9, the GA produced a 

better result in terms of the path distance. This is because the ACO algorithm in this 

application has to deal with much more uncertainty than in the GA case. In other words, 

the GA method chooses the best via points (most of the time 3 or 4, points at most 6) 

while the ACO algorithm makes a decision at every grid point. 

Experiment 5: When multiple obstacles block the optimum path on the map (W/ elitism) 

 

Fig 5.2.13: Best tour found at the last iteration 
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Fig 5.2.14: Map pheromone configuration 

 

Discussion of the Experiment 5:  The problem becomes more complicated as the 

number of obstacles increases. However, since every decision is made at the grid point 

level, the algorithm always finds an optimized solution which is not necessarily true for 

the GA method. For example, in the GA case, if the user does not choose a sufficient 

number of via points, the algorithm will require a significant amount of time to find a 

best solution or even may fail to find a solution. Thus, the proposed ACO algorithm is 

better in that sense since the proposed ACO algorithm will find a solution in any case.   

Experiment 6: Effect of the number of ants (agents) 
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The number of 

ants 

10 100 500 

Average path di

stance of 10 tri

als 

45.357 38.6223 36.237 

Table 5.2.1 

 

 

Fig 5.2.15: An example path with the number of ant = 10 
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Fig 5.2.16: A path example with the number ant = 100 

 

Fig 5.2.17: A path example with the number of ant = 500 
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Discussion of the experiment 6: 

Comparing Fig 5.2.15 and Fig 5.2.16 leads us to the conclusion that a larger size group is 

better than a smaller size group. If the group size is too small, not only does the number 

of ants that can reach the destination get smaller but also the amount of pheromone 

accumulation decreases. However, it is not always true that large number of ants is 

always the best. As it is shown in table 5.2.1, if the group size is greater than some 

minimum need, there is not much improvement in performance. Indeed, a large 

difference of performance exists between 10 ant and 100 ants while not much 

improvement presents between 100 ants and 500 ants 

 

6.0. Conclusion 

In this thesis, the results of detailed investigation of the GA and ACO algorithms being 

applied to a path optimization problem have been presented. It has been demonstrated 

that both approaches have a great potential of being a solution to the proposed problem. 

In addition, it has been discovered that employing elitism led the algorithms to find a 

solution more easily. However, in a majority of cases the GA found a better solution than 

did the ACO algorithm in terms of the performance. Such a result is due to the fact that in 

the ACO algorithm each ant only proceeds 1 grid point at a time while this is unnecessary 

in the GA case. Despite the good performance for both algorithms, some limitations were 

found. Overcoming these limitations represent a challenge for future research. The three 

subsections describe some of the limitations of the proposed algorithms along with 

possible future work  
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6.1 Limitation in Genetic Algorithm 

In order to guarantee obstacle avoidance, it is necessary to impose another constraint on 

the algorithm. That is, looking for any intersection point created by the path line and the 

obstacles can create a significant amount of computation. If only a few obstacles block 

the optimal path, this computation issue can be ignored. However, when a large number 

of obstacles exist in the map, this algorithm will require a significant amount of 

computation time. Although it turned out that GA is better than ACO algorithm in terms 

of finding an optimal path, GA algorithm may pay for that advantage in terms of 

computation time; this limitation needs to be addressed.  

6.2 Limitation in Ant Colony Optimization. 

As it is mentioned previously, the ACO algorithm has an advantage over the Genetic 

algorithm in terms of the algorithm execution time. No matter how many obstacles are 

present, this algorithm does not devote an in ordinate amount of time in iteration process. 

However, as it was discussed in the results section, this method is inferior to GA method 

in the sense that ACO approach takes some unnecessary steps, so that the algorithm does 

not return the best solution. Furthermore, a global attraction term had to be added to lead 

ant to reach the goal point. Eliminating this term may cause not only the ant wander 

around in the map, but also the ant may become stuck at a point.  

6.3 Scope for future work 

Perhaps, a more effective and reliable solution can be found if one can adapt only 

positive phases of the two algorithms. In other words, the best approach in the path 

finding problem would be an algorithm that converges rapidly toward a meaningful 

solution. Such a topic can be considered as a challenging problem for future work. 
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Moreover, applying this algorithm to real robot can be a challenging topic. Because, in a 

real environment, the algorithm has to be able to deal with nonlinear factors such as 

noise. In addition, the 3D path finding problem is also challenging topic. Such an 

application may be found more easily than some 2D application; as for example, aircraft, 

underwater vehicles, and so forth.  
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Appendix A 
 
MATLAB code 
 
clc 
clear all 
 
for  aa=1:3 
%%%%%%%%%%%%%%%%%%%% Define globally used variables 
%%%%%%%%%%%%%%% 
tic; 
pop=100  ;           %%% size of the population 
Lg=[1 2 4 ];                %%% Define the length of the gene ( the number of via 
points) 
ra=5;               %%%% Define the radius of the obstacle 
map_size=20; 
 
Sp= [0; 0]            %%%% Define the starting point 
Op=[ 10, 10; 10 , 10]   ; 
%Op=[ 3,3; 10,10; 14,10; ; 14 , 4  ; 8, 14; 6, 18]'%; 4,10; 16,14; 10, 16]'; %%%% 
Define the position of the obstacle 
Ep=[map_size; map_size]            %%%% Define the destination point 
 
%%%%%%%%%%%% create the possible locations in the map 
%%%%%%%%%%%%%% 
pos=[]; 
for k=1:map_size+1 
    for l=1:map_size+1 
        pos_t=[l-1; k-1]; 
        pos=[pos pos_t]; 
    end 
end 
%  
% figure(1) 
%  plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*28 ) 
%  hold on 
%  ezplot( '(x-10)^2 + (y-10)^2 - 2.25', [0 20 ]) 
%  axis( [0 20 0 20] ) 
 
 
%%%%%%%% Make sure that the via points is not the staring point and goal 
%%%%%%%% point. Furthermore, it should not be lying on the obstacles. 
no_via_ind1= find(  ( pos(1,:) ==Sp(1) & pos(2,:)== Sp(2) )  |   ( pos(1,:)== Ep(1) & 
pos(2,:)==Ep(2)  )  ); 
no_via_ind2=[]; 
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for i=1: size (Op,2) 
    no_via_ind2=[no_via_ind2  find( (pos(1,:) - Op(1,i) ).^2 + ( pos(2,:) -Op(2,i) ).^2 
<= ra^2 ) ];  %% find points which are inside of the obstacle circle 
end 
 
no_via = union ( no_via_ind1, no_via_ind2 ); 
pos( :, no_via )=[];  
 
% figure(2) 
% plot( pos(1,:), pos(2,:), 'ro' ); 
% title( 'possible via points' ); 
 
[ Xch, Ych   ]= gen_ch ( pop , Lg(aa), pos, Sp, Op, Ep, ra);  %%% generate possible 
solutions to start the algorithm 
 
    ch_dist=[]; 
    for i=2:Lg(aa)+2 
        ch_dist(:,i-1)= sqrt(  ( Xch(:,i-1)- Xch(:,i) ).^2 + ( Ych(:, i-1)-  Ych(:, i ) ).^2  
); 
    end 
     
    ch_fitness = sum( ch_dist')'; 
    best_ch_ind=  find( ch_fitness == min( ch_fitness) ); 
     
    ch_order = [ [1:length(ch_fitness)']'  ch_fitness] ; 
    ch_order = sortrows( ch_order, 2)     %%%% reoder the chromosomes in terms 
of their fitness 
 
%%%%%%%%%%%% iteration begions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for generation = 1:500 
    generation 
 
     
    %%%%%%%%%%%%%%% divide the chromosomes into 10 groups 
%%%%%%%%%%%%%%%%%5 
     
    %%%%%%%%%%%%%%% Do crossover and mutation for the 10 groups 
%%%%%%%%%%%% 
    %%%%%%%%%%%%% Variate Pc and Pm by the fitness of the group 
    %%%%%%%%%%%%% Good fitness group <== low Pc and Pm 
    %%%%%%%%%%%% Bad fitness group <== high Pc and Pm 
    Pc=.2; %[ .05,  .1, .2, .2, .3, .3, .35, .35, .4, .5 ]; 
    Pm=.2; %[ .001, .01, .05, .05, .1, .15, .2, .2, .2, .5]; 
     
    %for i=1:10  
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    elite= ch_order(1,:); 
   Xe=Xch( elite(:,1), : ); 
   Ye=Ych( elite(:,1), :); 
     
    order=ch_order(2:end,:); 
     
    %order= ch_order( 1 + 10*(i-1) : 10*i, :) ; 
    bit=round( rand*(Lg(aa)-1) ); 
     
    [ Xchild1, Ychild1 ] = crossover ( order, Xch, Ych,  Pc , bit, Op, ra, Lg(aa));   
%%% Perform the X over 
    chn_size=0; 
    chn_size= pop- size(Xchild1,1); 
    [ Xchdn2, Ychdn2   ]= gen_ch ( chn_size, Lg(aa), pos, Sp, Op, Ep, ra ) ;   %%% 
Make up the current population up to the number of the staring population  
    Xchild1=[ Xchild1; Xchdn2]; 
    Ychild1=[ Ychild1; Ychdn2]; 
    [ Xchild2, Ychild2 ] = mutation( Xchild1, Ychild1, pos, Pm, Op, ra ); 
     
    %end 
     
    %%%%%%%%%%%%%%%%%% Update all chromosomes  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Xchn=  Xchild2; %Xch_new; 
    Ychn=  Ychild2; %Ych_new; 
     
    %%%%%%%%%%%%%% In case that the size of chromosome is short... make up 
    %%%%%%%%%%%%%% chromosome.. 
    chn_size=0; 
    chn_size= pop- size(Xchn,1); 
    [ Xchn2, Ychn2   ]= gen_ch ( chn_size, Lg(aa), pos, Sp, Op, Ep, ra) ;  
     
    Xch_t= [Xchn ; Xchn2];, Xch(2:end,:)= Xch_t(1:pop-1,:);, Xch(1,:)=Xe 
    Ych_t= [Ychn ; Ychn2];, Ych(2:end,:)= Ych_t(1:pop-1,:);  Ych(1,:)=Ye 
    %%%%%%%%%%%%%%%%%%%% chromosome re evaluation   
%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    ch_dist=[]; 
    for i=2:Lg(aa)+2 
        ch_dist(:,i-1)= sqrt(  ( Xch(:,i-1)- Xch(:,i) ).^2 + ( Ych(:, i-1)-  Ych(:, i ) ).^2  
); 
    end 
     
    ch_fitness = sum( ch_dist')'; 
    best_ch_ind=  find( ch_fitness == min( ch_fitness) ); 
     



 44 

    ch_order = [ [1:length(ch_fitness)']'  ch_fitness] ; 
    ch_order = sortrows( ch_order, 2)     %%%% reoder the chromosomes in terms 
of their fitness 
     
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
     
    if generation==10 
        Xch10=Xch; 
        Ych10=Ych; 
        order10=order; 
        best10= best_ch_ind; 
         
        figure(1) 
        plot( Xch10(best10(1),:), Ych10(best10(1),:), 'g*' ) 
        hold on 
        line( Xch10(best10(1),:), Ych10(best10(1),:) ) 
        plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*27 ) 
        title('the best chromosome found at the 10th generation') 
        text(12,19, ['path length =', num2str( order10(1,2) )] ) 
        hold off 
         
       print ('-dtiff',[ 'ob3_10_',num2str(aa)]) 
    end 
     
    if generation==50 
        Xch50=Xch; 
        Ych50=Ych; 
        order50=ch_order; 
        best50=best_ch_ind; 
 
%         figure(2) 
%         %plot( Xch50(best50(1),:), Ych50(best50(1),:), 'g*' ) 
%         hold on 
%         line( Xch(best50(1),:), Ych(best50(1),:) ) 
%         plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*28 ) 
%         hold off 
%         title('the best chromosome found at the 50th generation') 
% text(12,19, ['path length =', num2str( ch_order50(1,2) )] ) 
%         print -dtiff fig_50 
    end 
     
    if generation==100 
        Xch100=Xch; 
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        Ych100=Ych; 
        order100=ch_order; 
        best100=best_ch_ind; 
 
%         figure(2) 
%         plot( Xch100(best100(1),:), Ych100(best100(1),:), 'g*' ) 
%         hold on 
%         line( Xch100(best100(1),:), Ych100(best100(1),:) ) 
%         plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*28 ) 
%         hold off 
%         title('the best chromosome found at the 50th generation') 
%          
% text(12,19, ['path length =', num2str( order10(1,2) )] ) 
%         print -dtiff fig_100h4 
    end 
     
 
end 
 
toc; 
 
figure(4) 
plot( Xch(best_ch_ind(1),:), Ych(best_ch_ind(1),:), 'g*' ) 
hold on 
line( Xch(best_ch_ind(1),:), Ych(best_ch_ind(1),:) ) 
plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*27) 
title(' the best chromomosome found at the 100th generation' ) 
text(12,19, ['path length =', num2str( ch_order(1,2) )] ) 
hold off 
%  
  print ('-dtiff',[ 'ob3_100_',num2str(aa)]) 
   
end %of aa 
 
 
 
function [ Xch, Ych   ]= gen_ch  ( N , Lg, pos, Sp, Op, Ep, ra) 
 
i=1; 
Xch=zeros(N, Lg+2); 
Ych=zeros(N, Lg+2); 
  while i < N+1 
         
    chs_ind=ceil( rand(1,Lg)*length(pos) );  %%% pop size of  possible combinations  
    ch_t=[ Sp pos(:,chs_ind) Ep ] ;  
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     [ test_result ]=test_chromosome( ch_t(1,:), ch_t(2,:) , Op, ra )  ; 
      
     if test_result == 1 
         Xch (i,:)= ch_t(1,:); 
         Ych (i,:)= ch_t(2,:); 
         i=i+1; 
     end 
 end 
  
end 
 
 
 
 
 
function [ test_result ]=test_chromosome( Xc, Yc, Op, ra ) 
 
clear test_result; 
 
v_fit=zeros( size(Xc,2), length(Op),size(Xc,1)  ); 
 
for p=1: size(Xc,1) 
    for q=2: size( Xc,2 ) 
        for r=1: length( Op ) 
            x2= Xc(p,q);, y2=Yc(p,q);, x1=Xc(p,q-1);, y1=Yc(p,q-1); 
            x0= Op(1,r);, y0=Op(2,r); 
             
            %%%%%%%%%% if x1=x2 then find Ysol first %%%%% 
            if x1==x2 
                pol1=1; 
                pol2= -2*y0; 
                pol3= y0^2+x1^2-2*x0*x1+x0^2-ra^2; 
                 
                Ysol= roots( [ pol1 pol2 pol3] ) ; 
                Xsol= [x1; x2]; 
                 
                %%%%% else represent in polynoimal form.. i.e) descending order 
of X 
            else 
                m=(y2-y1)/(x2-x1); 
                c=y1-m*x1; 
                pol1= m^2+1; 
                pol2= (2*m*c-2*y0*m-2*x0); 
                pol3= c^2-2*y0*c+y0^2+x0^2-ra^2; 
                 
                Xsol= roots( [ pol1 pol2 pol3] ) ; 
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                Ysol= m*Xsol + c; 
            end     
            sol= [ Xsol, Ysol ] ; 
            sol_d = dist( [x1, y1], [Xsol' ; Ysol'] ); 
            obs_d = dist( [x1, y1], [x0 ; y0 ] ); 
             
             
            if isreal(sol) & ( obs_d > min( sol_d) & obs_d < max( sol_d ) ) 
                v_fit(q,r,p ) = 1; 
            end 
        end 
         
        if sum(sum( v_fit(:,:,p) ) ) <1 
            test_result(p)=1; 
        else 
            test_result(p)=0; 
        end 
         
         
    end 
     
     
     
end 
 
end 
 
 
 
 
 
%%%%%%%%%%% This function performs crossover for the give chromosome 
%%%%%%%%%%%%% Performing 1 point crossover at the 1st bit position %%%%  
function [ Xchild, Ychild ] = crossover ( order, Xch, Ych,  Pc , bit, Op, ra, Lg) 
%bit=1; 
if bit < 0 | bit > 5 
    error( 'choose diff bit number' ) 
    return %break 
end 
 
% ch_fitness= order(:,2) - min( order(:,2) )+1; 
% fit_sum=sum(ch_fitness )  ; 
% p_t= sum( ch_fitness )./ch_fitness ; 
% p= p_t/sum(p_t); 
 
ch_fitness_t = order(:,2) 
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ch_fitness= 1./ch_fitness_t 
ch_fitness/ sum(ch_fitness) 
 
% fit_sum=sum(ch_fitness_t); 
% ch_fitness= fit_sum./ ( ch_fitness_t - sqrt( 20^2+20^2 ) ) ;  
 
p= ch_fitness/(sum(ch_fitness) ) ; 
 
Xp= Xch( order(:,1), :); 
Yp= Ych( order(:,1), :); 
 
for i=1:length(p) 
    q(i)=sum( p(1:i) )  ;        
end 
 
%%%%%%%%%%%%%%  chromosome clone %%%%%%%%%%%%%%%% 
roulet=rand(1,length(p) ); 
 
for i=1:length(p) 
qk_t= find( q > roulet(i) ) ;, qk(i)=qk_t(1); 
%qk_1_t=find( q < roulet(1) );, qk=qk_1_t(end) 
end 
 
Xp=Xp(qk,: ); 
Yp=Yp(qk,: ); 
%%%%%%%%%%%%%% chromosome crossover %%%%%%%%%%%%%%%% 
roulet=rand(1, length(p) ); 
vc=find( roulet < Pc ); 
 
Xparent = Xp ;, X_head= Xparent(vc, 1:Lg-bit );,  X_tail=Xparent(vc,Lg-bit+1:end) ; 
Yparent = Yp ;, Y_head= Yparent(vc, 1:Lg-bit );,  Y_tail=Yparent(vc,Lg-bit+1:end); 
Xchild=Xparent; 
Ychild=Yparent; 
 
X_tail= flipud(X_tail); 
Y_tail= flipud(Y_tail); 
 
Xchild(vc,:)= [ X_head X_tail ]; 
Ychild(vc,:)= [ Y_head Y_tail ]; 
 
[ test_result ]=test_chromosome( Xchild, Ychild, Op, ra )  ;  
Xchild( find( test_result == 0 ), : )=[]; 
Ychild( find( test_result == 0 ), : )=[]; 
 
end 
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%%%%%%%%%%%%%%%%%% end of the 
crossover %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%% This function performs mutation for the given chromosome 
 
function [ Xchild, Ychild ] = mutation( Xp, Yp, pos, Pm , Op, ra) 
 
X_head= Xp(:,1);, X_body= Xp(:, 2:end-1 );, X_tail= Xp(:,end) ; 
Y_head= Yp(:,1);, Y_body= Yp(:, 2:end-1 );, Y_tail= Yp(:,end) ; 
 
%%%% The mutation will be performed on the body of the chomosome %%%% 
 
Ppm=rand( size( X_body,1),  size( X_body,2) ); 
m_ind=find( Ppm < Pm); 
child_ind=ceil( rand( size( m_ind) )*length(pos)  );  
 
X_body( m_ind )= pos( 1, child_ind) ;  
Y_body( m_ind) = pos( 2, child_ind); 
 
Xchild= [ X_head X_body X_tail]; 
Ychild= [ Y_head Y_body Y_tail]; 
 
[ test_result ]=test_chromosome( Xchild, Ychild, Op, ra );     
Xchild( find( test_result == 0 ), : )=[]; 
Ychild( find( test_result == 0 ), : )=[]; 
End 
 
 
/// ACO code here // 
 
clc 
clear all 
close all 
 
 
%%%%%%%%%%%%%%%%%%%% Define globally used 
variables %%%%%%%%%%%%%%% 
tic; 
 
ra=1;               %%%% Define the radius of the obstacle 
map_size=20; 
 
Sp= [1 1]            %%%% Define the starting point 
Op=[10; 10]   ; 
%Op=[ 4, 6; 14, 12; 13, 11; 8,10; 10,10; 14,10; ; 14 , 4  ; 8, 14; 13, 14; 4,10; 16,14; 10, 
16; 17,10; 19, 18]'; 
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Ep=[map_size map_size]            %%%% Define the destination point 
 
%%%%%%%%%%%% create the possible locations in the 
map %%%%%%%%%%%%%% 
pos=[]; 
for k=1:map_size 
    for l=1:map_size 
        pos_t=[l ; k ]; 
        pos=[pos pos_t]; 
    end 
end 
 
%%%%%%%% point. Furthermore, it should not be lying on the obstacles. 
no_pos_ind1= find(  ( pos(1,:) ==Sp(1) & pos(2,:)== Sp(2) )   ); 
no_pos_ind2=[]; 
 
for i=1: size (Op,2) 
    no_pos_ind2=[no_pos_ind2  find( (pos(1,:) - Op(1,i) ).^2 + ( pos(2,:) -Op(2,i) ).^2 
<= ra^2 ) ];  %% find points which are inside of the obstacle circle 
end 
 
no_pos = union ( no_pos_ind1, no_pos_ind2 ); 
pos( :, no_pos )=[];  
 
% figure(1) 
%  plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*28 ) 
%  hold on 
%  ezplot( '(x-10)^2 + (y-10)^2 - 2.25', [0 20 ]) 
%  axis( [0 20 0 20] ) 
% hold off 
a=.1;, Q=5;          %%%%%% pheromone decay factor 
ph_l=zeros(20,20);  %%%%%% Initialize local pheromone map 
%tij=(1-p)*tij+dtij   %%%%% Update the pheromone 
max_step=50 
ant_number=500; 
 
for iteration=1:50 
 
    acc=1 ; 
    pp_hist=[]; 
    path_length=[];, non_emp_ind=[];, dT=[]; 
     
    for k=1:ant_number 
        k 
        cp=Sp;           %%%%%% cp is the current ant position 
        pp=[];              %%%%%% pp is history of the ant positions 
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        %ph_g=Ep;            %%%%%% Global pheromone 
 
        lm=0; 
        dm=0; 
         
        for step=1:max_step%100%%%%%% repeat following process until the kth 
ant reach the goal position 
  
            xp=cp(1); 
            yp=cp(2); 
            pp=[pp ; cp ] ;             %%%% pp is the past path points 
            nps=[ xp+1 yp; xp+1 yp+1;xp yp+1; xp-1 yp+1;xp-1 yp; xp-1 yp-1; xp yp-
1; xp+1 yp-1 ]; %%% np neighbor points with respect to the current point 
            nps=intersect(nps, pos' , 'rows' ); 
            %mem_ind=ismember( intersect(nps, pos' , 'rows' ), nps, 'rows' ) ; 
            %nps( find( ~mem_ind ) ) = [];   %%%% The ant's next location must 
be the one of the possible postions in the map 
 
            %%%%%%%%%%%%%% Determine the ant's next position by 
probabilty based on the pheromone %%%%%%%%%%%% 
 
            clear t; 
            for i=1:size(nps,1) 
                t(i)=ph_l( nps(i,1), nps(i,2) ); 
            end 
 
            zindt= ismember( nps, intersect( nps, pp, 'rows' ), 'rows') ; 
            zind= find( zindt); 
 
            head_vector= nps - repmat( cp, [size(nps,1) , 1] ); 
            ph_g=dot( head_vector, repmat( (Ep/norm(Ep) ), [size(nps,1),1 ] ), 2 )  ; 
            ph_g( find(ph_g <=0 ) )=0 ; 
           % ph_g=  ph_g+abs( min( ph_g ) )  ;%/  (dist( cp, Ep' ) + 1 )  ; 
            %ph_g=0.01; 
             
            Ps= t+ ph_g' ; 
            Ps(zind) = 0.00001;              %%%% The ant's next movement 
should not be one of the past positions unless all neighbor positions belong to the past 
position 
            P= Ps/sum(Ps) ;                  %%%% Probabilities of the ant's 
next movement is dependent on the amount of pheromone in the next positions 
 
            q=[];, q_t=0; 
            for i=1:length(P) 
                q_t=q_t+P(i); 
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                q=[q q_t]; 
            end 
            roullete=rand ; 
            qk=find(q > roullete)  ;         %%% wheel of the fortune... :) 
            np_ind=qk(1) ; 
 
            np=nps(np_ind,:);               %%%% np is the finally chosen next 
position 
 
            %%%%%%%%%%%%%%%% If the ant moved to its diagonal direction 
then 
            %%%%%%%%%%%%%%%% increment dm. Otherwise increment lm; 
            if dist(cp, np') > 1 
                dm= dm +1; 
            else 
                lm= lm +1; 
            end 
 
            cp=np; 
 
            if cp == [20 20];   %%% the ant reached at the destination 
                  pp=[pp ; cp]; 
                break 
            end 
 
        end  %%% end of the max number steps 
        % 
       
        Lk= dm*sqrt(2) + lm; 
        %     figure(1) 
        %     line( pp(:,1), pp(:,2) ) 
        if step < max_step 
            path_length( k ) = Lk; 
            dT(k)= Q/(Lk-20*sqrt(2)) ; 
            pp_hist{k,1}=pp ; 
            pp_hist{k,2}=dT(k) ; 
            non_emp_ind(acc)=k ; 
            acc=acc+1; 
        else 
            path_length( k ) = Inf; 
            dT(k)= 0; 
        end 
     
 
    end %%% end of a group travel 
    elite_ind=find( path_length == min( path_length) ); 
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    best_Lk(iteration)=path_length( elite_ind(1)); 
     
    %%%%%%% Update local pheromone 
map %%%%%%%%%%%%%%%%%%%% 
    for n=1:length( non_emp_ind ) 
        c_pp= cell2mat( pp_hist( non_emp_ind(n) ) ); 
        c_dT= dT( non_emp_ind(n)); 
        for m=1:size(c_pp,1) 
            indi=sub2ind(size(ph_l), c_pp(m,1), c_pp(m,2) ) ; 
            ph_l(indi)= ph_l(indi)* (1- a) + c_dT; 
        end 
    end 
 
end %%% end of the iteration 
     best_path= pp_hist{elite_ind(1),1} ; 
     Lk= dm*sqrt(2) + lm; 
     figure(2) 
     line( best_path(:,1), best_path(:,2)  ) 
      text(12,19, ['path length =', num2str( best_Lk(iteration)  )] ) 
          hold on 
      %ezplot( '(x-10)^2 + (y-10)^2 - 25', [0 20 ]) 
      plot( Op(1,:), Op(2,:), 'ro', 'markersize', ra*28 ) 
     title('The best tour found in the last group') 
     figure(3) 
     plot( 1:iteration, best_Lk(1:iteration)) 
     title('Best tour at the each iteration') 
     xlabel('iteration') 
     ylabel('Best tour found by an agent') 
     figure(4) 
      
      bar3(ph_l) 
      title( ' Map pheromone amount ' ) 
       
      figure(5) 
      contour(ph_l) 
      title('Pheromone amount contour map' ) 
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