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ELASTIC PROPERTY PREDICTION OF

SHORT FIBER COMPOSITES USING A

UNIFORM MESH FINITE ELEMENT METHOD

Elijah Caselman

Dr. Douglas E. Smith, Thesis Supervisor

ABSTRACT

This thesis presents a uniform mesh finite element method to determine the elastic

material non-isotropic properties of fiber reinforced composite materials. This method

employs a uniform array of custom three dimensional displacement based elements

that use an increased number of Gauss points in the elemental stiffness calculation in

order to define the fiber boundaries. The material properties at each Gauss point are

dependent upon whether the Gauss point lies within a fiber or matrix. A correction

factor is developed to account for differences in strain in the fiber and matrix and thus

provide increased accuracy for ”hybrid” elements. This method allows for a significant

reduction in the number of degrees of freedom in the model, resulting in dramatically

reduced memory requirements and computational time. The use of a uniform mesh

also greatly simplifies the meshing procedure and is ideal for implementing periodic

boundary conditions.

The method is compared with continuous and a short single fiber finite element

models found in literature. The method is also used to provide property predictions

for a model consisting of 100 misaligned short fibers randomly placed using a Monte

Carlo algorithm. The predictions are compared with a constant strain orientation

averaging scheme using both the Halpin-Tsai and Tandon-Weng micromechanical

models. The method is shown to be in good agreement with the results from literature.
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CHAPTER 1

INTRODUCTION

Composite materials have become increasingly important in engineering due to their

higher strength and stiffness to weight ratios when compared with traditional engi-

neering materials. These enhanced properties are the result of combining two or more

materials. A typical composite consists of a continuous phase known as the matrix

and interdispersed inclusions known as fibers. The matrix binds the fibers together

and provides durability for the overall composite while the fibers provide the stiffness

and strength and carry the structural load.

Three different fiber geometries are often used: discontinuous fibers, continuous

fibers, and woven fibers. Discontinuous fibers are charaterized by their aspect ratio,

or ratio of length to diameter. Fibers with aspect ratios less than 100 are known as

short fibers and fibers with aspect ratios greater than 100 are known as long fibers.

Discontinuous fiber composites are widely used because they can be manufactured

into very complex parts using injection molding, compression molding, and extrusion

techniques [3]. Continuous fibers are gathered together into tapes or tows and aligned

in one direction. This allows for greater fiber volume fractions to be achieved thus

providing greater in-plane property enhancement over discontinuous fibers. The fiber

tows can also be interlaced and interlocked in two- and three-dimensions to form wo-

ven composites. Woven composites offer enhanced in- and out-of-plane strength and

stiffness [3]. However, these composites are more difficult and expensive to manufac-

ture and can only be used for parts with low complexity.
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The effective properties of fibrous composite materials are dependent upon several

factors which include:

• The material properties of the fiber and matrix

• The ratio of the fiber length to fiber diameter, or aspect ratio

• The ratio of the fiber volume to the total volume of the composite, or volume

fraction

• The spatial arrangement of the fibers

• The orientation of the fibers

Unfortunately, the various manufacturing processes inevitably result in composites

with fibers of varying length, complex or random fiber arrangements, and varying

fiber orientations. Therefore, reliable yet cost effective methods for determining the

effective properties of composite materials are of utmost importance to the composite

industry. Determining the effective properties of discontinuous fiber composites, more

specifically short fiber composites, will be the focus of this research.

1.1 Organization of Thesis

Chapter One provides an introduction to composite materials and provides the re-

search objective of this thesis. A review of the analytical and numerical methods

currently used to predict elastic properties of short fiber composites is given in Chap-

ter Two. The development and implementation of the uniform mesh finite element

method is provided in Chapter Three. Chapter Four oulines the procedure for finding

2



the effective elastic properties from the finite element results and provides validation

of the method with conventional finite elements. In Chapter Five, the method is

compared with single fiber continuous and short fiber finite elements models found

in literature. The method is then used to predict the elastic properties of a model

consisting of 100 short fibers and compared with an orientation averaging scheme us-

ing both the Halpin-Tsai and Tandon-Weng micromechanical models in Chapter Six.

Finally, Chapter Seven provides conclusions and recommendations for future work.
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CHAPTER 2

LITERATURE REVIEW

Due to the variability in the effective properties of fibrous composites, property pre-

diction methods have drawn considerable attention in literature over the past several

decades. The methods can be divided into two main categories: analytical and nu-

merical. The analytical methods are often employed due to their ease of use but

these methods are limited in their application due to their underlying simplifying

assumptions. Numerical methods have seen increasing use with the increase in com-

putational power. These methods are much more flexible in their application, but

require increased preparation and are limited by the amount of computer memory

available. An overview of the strengths and weaknesses of these methods is given

below.

2.1 Analytical Property Prediction

Numerous micromechanical models have been developed to predict the elastic prop-

erties of aligned short fiber composites [4]. All of the micromechanical models have

the same basic assumptions [4]:

• The fibers and matrix are linear elastic, the matrix is isotropic and the fibers

are either isotropic or transversely isotropic.

• The fibers are axisymmetric, identical in shape and size, and fully aligned.

• The fibers and matrix are well bonded at their interface.
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Although these assumptions allow many of the micromechanical models to be

expressed in very concise, easy to use formats, they are not consistent with ”real”

materials. It is impossible to obtain fully aligned samples and real composites always

exhibit a degree of misalignment and variability in fiber aspect ratio. However, due

to their popularity, several of the most common micromechanical models will be

presented.

2.1.1 Halpin-Tsai Model

The Halpin-Tsai [5] model is one of the most widely used micromechanical models for

the prediction of elastic properties in short fiber composites. This model (as shown in

equations 4.30-4.33 and table 4.1) is based on the self-consistent approach of Hill [6]

and the solutions of Hermans [7]. Halpin and Tsai [5] made a few additional assump-

tions to reduce Hermans solutions for the elastic constants which provides a simpler

analytical form. The appeal of the Halpin-Tsai equations is that only one equation is

needed to find all the composite moduli and the longitudinal Poisson’s ratio is sim-

ply found from the rule of mixtures. The Halpin-Tsai equations are semi-empirical

in that one of the parameters (ζ) was found by fitting the equations to numerical

results. The Halpin-Tsai equations provide reasonable results for E11 and G12 at low

volume fractions, but underpredicts these properties at higher volume fractions. He-

witt and Malherbe [8] suggested ζ should be a function of volume fraction in order

to obtain better results for G12. They proposed a new equation for ζ based on com-

parisons with two-dimensional finite element results for G12. Lewis and Nielson [9]

modified the Halpin-Tsai equations to achieve better results for the elastic moduli at
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higher volume fractions by taking into account the maximum volume fraction. A new

function was added so that the shear modulus prediction approaches infinity as the

volume fraction approaches the maximum volume fraction. The Lewis-Nielson mod-

ification has been shown to provide better results for E11 at higher volume fractions

for short fibers [10]. The Halpin-Tsai equations have been found to provide a very

poor prediction for the transverse Poisson’s ratio, sometimes giving predictions 2 to

3 times higher than numerical and experimental results [4, 11].

2.1.2 Mori-Tanka Model

The Mori-Tanaka model [12] is based on the work of Eshelby [13] who developed a

solution for a single ellipsoidal inclusion in an infinite matrix. The Eshelby solution is

therefore only accurate for very dilute volume fractions. Mori and Tanaka extended

the ideas of Eshelby to include interactions between fibers, thus providing more accu-

rate results at higher volume fractions. The Mori-Tanaka model assumes the fiber in

a concentrated composite experiences the average strain of the matrix. Tandon and

Weng [14]used the Mori-Tanaka approach to develop equations for a complete set of

elastic constants (as shown in equations 4.35-4.53). Tandon and Weng’s equations in-

cluded a coupling between the bulk modulus K23 and longitudinal Poisson’s ratio ν12

which must be solved iteratively. Tucker and Liang solved this problem by providing

an alternative equation for ν12 to avoid the iteration process [4]. Several authors have

found that the Tandon-Weng model provides the most accurate predictions for short

fiber composites [4,11,15]. In particular, the Tandon-Weng model provides a consider-

ably more accurate prediction for the transverse Poisson’s ratio than the Halpin-Tsai
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model. The model has been found to be very accurate for low volume fractions and

high aspect ratios, but the accuracy decreases as the volume fraction and ratio of the

fiber Young’s modulus to the matrix Young’s modulus (Ef/Em) increases [16]

2.1.3 Bounding Models

The bounding models make assumptions on either the stress or strain field and the

unknown field is found through variational principles. As the name suggests, the

bounding models only provide upper and lower bounds for the stiffness of the com-

posite. Two of the earliest bounding models are the Voigt and Reuss bounds [4].

The Voigt model assumes the fiber and matrix both experience the same uniform

strain. The calculated stiffness with this assumption represents an upper bound and

the actual stiffness must be less than or equal to the Voigt result. The Reuss model

assumes the fiber and matrix both experience the same uniform stress. The results

of this model represent a lower bound and the actual stiffness with be greater than

or equal to the Reuss result. The Voigt and Reuss models are known to only provide

isotropic results which is not representative of continuous or short fiber composites.

Also, if the matrix and fiber have very different stiffnesses, the Voigt and Reuss results

will be far apart and give little information about the stiffness of the composite.

Hashin and Shtrikman [17] developed bounding model for heterogeneous materials

using a different variational principle. Their results provide both a lower and upper

bound on the composite stiffness. They introduced the idea of a reference material,

and by choosing either the matrix or the fiber as the reference material, both bounds

can be found. The Hashin-Shtrickman model provides tighter bounds than the Voigt
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and Reuss models. There method was extended by Walpole to include anistropic ma-

terials and Willis [18] extended the results of Walpole to short fiber composites. The

Mori-Tanaka result is equivalent to the Hashin-Shtrickman-Willis lower bound and

can also be used to obtain the Hashin-Shtrickman-Willis upper bound by assuming

the fiber is the continuous phase and the matrix is the dispersed phase. Lielens et

al. [19] noted that the results should be equivalent to the Hashin-Shtrickman-Willis

lower bound, or Mori-Tanaka approach, at low volume fractions and approach the

upper bound at high volume fractions. Lielens et al. developed a new model to in-

terpolate between the Hashin-Shtrickman-Willis bounds thus providing better results

over the entire range of volume fractions.

2.1.4 Orientation Averaging

When a misaligned long fiber introduces anisotropy, the orientation of the fiber must

be accounted for in the averaging process [20]. Two step fiber orientation averaging

schemes for calculating the properties of short fiber composites have been proposed

by Ward [21], Advani and Tucker [20] and Camacho et al. [22]. The first step in

the orientation averaging procedure is to reduce the composite into a set of units, or

aggregates, with aligned fibers and having the same volume fraction as the compos-

ite. Each aggregate is then homogenized using one of the micromechanical models

described above, and the average properties of the aggregate are found. In the second

step, the individual aggregates are homogenized by applying an orientation average

to account for the spatial orientation of each aggregate, to obtain a single anisotropic

material. The orientation averaging only takes into account the orientation of the
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fibers but neglects the spatial separation between the fibers. The orientation average

is applied assuming a distribution for the stress and strain between the aggregates. If

the Voigt assumption of constant strain is assumed, then a summation of the stiffness

constants is performed. The Voigt assumption is used in the procedures of Advani

and Tucker [20] and Camacho et al. [22]. A Reuss assumption of constant stress be-

tween the aggregates can also be used and a summation of the compliance constants

is performed. Ward [21] provides results using both assumptions. A Mori-Tanaka as-

sumption of mean strain over the aggregate has also been used by Lielens et. al. [19].

However, Lielens et. al. [19] found that using the Mori-Tanaka assumption can result

in stiffnesses above the Voigt upper bound when the fibers are stiffer than the matrix

and result in stiffnesses below the Reuss lower bound when the matrix is stiffer. As a

result, Lielens et. al. also suggested using the Voigt assumption. The use of the Voigt

assumption has been validated by Lusti et. al. [15] and Hine et. al. [23] in that they

found the Voigt assumption provides much better results than the Reuss assumption

when comparting orientation averaging results with misaligned finite element models.

The orientation averaging procedure has also been extended to textile composites.

In the fabric geometry model (FGM) by dividing the composite into layers. Each

layer is modeled as a unidirectional lamina and the layer is homogenized using a

continuous fiber micromechanical model. Therefore, the fabric is broken up into

layers of varying orientation. By assuming constant strain between the layers, an

orientation average is performed and the effective stiffness is found as the weighted

sum of the layers [24,25]. The FGM has been shown to give reasonable results for the

in-plane elastic constants for woven and braided composites but greatly overpredicts
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the moduli for knitted fiber composites [26, 27]. The main difference between woven

and knitted composites is knitted fiber composites contain curled fiber yarns which

reduce the property enhancements of the fibers. Gommers et al. [26] and Huysmans et

al. [28] have accounted for the fiber curvature by dividing the fibers tows into segments

and each segment is treated as an inclusion. An equivalent aspect ratio is found from

the curvature of the fiber tow and used for all the inclusions. The segments are

then homogenized using a Mori-Tanaka micromechanical model. Gommers et al. [26]

successfully used a modified Mori-Tanaka assumption for the orientation averaging

procedure to ensure the effective stiffnesses remain within the Voigt and Reuss bounds.

2.2 Numerical Property Prediction

Numerical methods, such as the finite element and boundary element methods, have

also been extensively used in literature to predict the elastic properties of short fiber

composites. Numerical models provide a way to accurately predict the properties of

short fiber composites with complicated geometries and avoid the limiting assump-

tions of the micromechanical models. However, modeling a composite with many short

fibers using numerical methods presents several problems. The numerical methods

require the discretization of the fibers and matrix through a meshing process. How-

ever, due to the complexity of the model, it is very difficult to obtain a reliable mesh.

The meshing process can often result in a poor quality mesh in which the aspect

ratio of the elements is much greater than one. This can lead to convergence issues

during the solution process. Also, tetrahedral elements must be used due to their

flexible geometry. However, tetrahedral elements are a constant strain element and
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in order to obtain a physically accurate solution, a very fine mesh must be used. This

presents a second problem with numerical models, that of computational power. As

the number of elements increases, so does the number of degrees of freedom of the

system thus requiring more computer memory to solve the finite element or boundary

element equations. These two methods have seen extensive use in literature and are

reviewed below.

2.2.1 Finite Element Method

The finite element is particularly susceptible to computer memory limitations because

this method requires the entire volume of the constituents to be discretized. There-

fore, many techniques have been developed in order to reduce the size of the numerical

model. One such technique is the use of a unit cell or representative volume element

(RVE). This technique views the overall composite as a periodic array of RVE’s and

each RVE is chosen such that it has the same fiber volume fraction as the composite.

Finite elements are then used to find the elastic properties of the RVE and these are

assumed to be equivalent to the effective properties of the composite. For simplicity,

single fiber RVE’s have been used in the past [1,4,29,30] but these models inherently

make the same assumptions as the micromechanical models: uniform fiber geometry

and aspect ratio; fully aligned fibers of uniform spatial separation. Therefore, these

models cannot accurately predict the elastic properties of real materials.

The minimum number of inclusions needed in an RVE to accurately model a

real composite has been investigated by numerous authors [31–36]. They have found

that by averaging the results for a number of random spatial fiber arrangements, a
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surprisingly small RVE can accurately predict the effective properties of discontinuous

composite. RVE’s with approximately 30 fibers produced mean values within a couple

of percent of the true value. However, the standard deviation using 30 fibers is

relatively large and by increasing the number of fibers even further, more accurate

means with lower standard deviations were obtained. Hine et. al. [34] concluded that

RVE’s with approximately 100 fibers produced very accurate mean values with very

little standard deviation.

Advances in computational power have led to increased use of multiple inclusion

RVE’s. The multiple inclusion finite element procedure of Gusev [32,33] has been used

extensively in recent literature [11,15,16,23,34,37,38]. The approach of Gusev begins

by placing the desired number of inclusions in the periodic unit cell. The coordinates

of the centroid are then randomly translated using a Monte Carlo algorithm. The

Monte Carlo procedure continues until no overlap occurs between the inclusions. This

procedure has been used successfully for spherical inclusions and aligned short fibers.

However, for misaligned fibers it becomes nearly impossible to randomly place them

in a periodic unit cell, even at low volume fractions. Lusti et.al. [15] modified the

packing procedure for misaligned fibers by increasing the size of the unit cell until

the volume fraction was around 0.1%. The unit cell was then step-wise compressed

during the Monte Carlo procedure until the desired volume fraction was achieved

while keeping the fiber orientations constant. Once the inclusions have been placed,

a custom periodic morphology adaptive quality mesh generator is used to mesh the

geometry with constant strain tetrahedral elements.

The effect of the fiber length distribution (FLD) on the effective elastic properties
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of aligned short fiber composites has been investigated by Hine et al. [34]. The

fiber lengths of 27,500 fibers of an injection moulded composite were measured. A

model consisting of 100 fibers was assigned fiber length values by seeding a Monte

Carlo procedure with the measured FLD data. The results of this model were then

compared with models consisting of constant fiber lengths equal to the weight and

number average of the real FLD, the rms average, and the skewed number average.

Hine et al. [34] concluded that the number average length provides accurate results

over a range of aspect ratios and could be used in place of the FLD.

A similar approach was used by Gusev et al. [11] to determine the effects of the

fiber diameter distribution (FDD) and spatial orientation on the elastic properties of

a unidirectional short fiber composite. The experimental elastic constants of the uni-

directional composite were found using an ultrasonic velocity method. Image analysis

was used to find the fiber diameters from a transverse cross-section of the composite.

The data was then used to seed a Monte Carlo algorithm for assigning the fiber diam-

eters to the model. They also used three different packing arrangements: randomly

packed, hexagonal array, and a square array. They concluded that the fiber diameter

distribution had little effect on the elastic properties but the spatial arrangement

of the fibers did effect the transverse Young’s modulus, Poisson’s ratio, and shear

modulus (E22,G23,ν23). The randomly packed models resulted in the most accurate

predictions, thus validating the randomness of actual composites. The results were

also compared with micromechanical models and it was determined that the microme-

chanical models do not provide reliable predictions for the transverse properties due

to their inability to account for the spatial distribution of the fibers.

13



Textile composites also possess a very complex microstructure consisting of multi-

ple structural and scale levels: fibers (10−5m), tows/yarns (10−3m), fabrics (10−1m),

composites (100m) [39]. These multiple levels complicate the modeling procedure

of textile composites because information from smaller scales must be incorporated

into larger scale models. The mesostructure, or fabric, can often be very complex

and difficult to define let alone model. Textile composites are further complicated by

contact between the fiber tows and the nonlinear behavior of the constituents. The

meshing and computational issues of short fiber composites are also major factors in

modeling textile composites.

Several methods have been developed to simplify the meshing procedure and re-

duce the number of elements in the finite element model. Whitcomb and cowork-

ers [40, 41] have used a local/global method in which separate meshes are used for

local and global analyses. For the global analysis a very coarse mesh is used along

with homogenized properties to obtain global displacement and forces. A local analy-

sis is then performed in a region of interest and a fine mesh is used to model a unit cell

containing the woven microstructure. The displacements and forces computed from

the global model are applied to the mesh of the local model as boundary conditions.

However, the two meshes do not contain the same number of nodes, therefore it is

difficult to properly apply the globally obtained displacements and forces to the local

model.

Cox et al. [42] developed a binary model which used one-dimensional line ele-

ments to represent the tow properties. The one-dimensional elements were fixed
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within three-dimensional elements, known as ”effective medium” elements, that rep-

resented the matrix-dominated properties. The line elements were used to obtain an

approximation of the curved tow paths and the effects of tow waviness on the elastic

properties were investigated.

Zeng et al. [43] simplified the meshing process by dividing the RVE into a regular

array of subcells. Gauss quadrature was used to solve the elemental stiffness matrix

and the fiber geometry was defined by varying the material properties at each Gauss

point. If the Gauss point was in the fiber volume, then the fiber material property

matrix was used, otherwise the matrix material property matrix was used. Effective

property results were compared with available literature with limited success, in that

the out of plane modulus was found to be stiffer than that from literature. A similar

method will be used and expanded upon in this research for the analysis of short

fibers.

In order to deal with the multiple length scales, a homogenization method is often

employed [44,45]. The microstructure, or fiber tows, consist of thousands of continu-

ous fibers bound together with a polymer matrix. This homogenization method first

homogenizes the microstructure by obtaining the effective properties of a continuous

fiber unit cell through the finite element method. The homogenized properties of the

microstructure are then used in the analysis of the mesostructure. A finite element

model of an RVE containing the fabric architecture is then used to homogenize the

mesostructure. Peng and Cao [45] used this technique to obtain the nonlinear elastic

moduli of a plain weave composite as a function of elemental strains.
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2.2.2 Boundary Element Method

The boundary element method has been extensively used because it only requires the

boundaries or surfaces of the constituents to be discretized. This greatly simplifies

the meshing process as well as reduces the number of elements and corresponding

degrees of freedom [46]. By decreasing the degrees of freedom, larger models can be

solved before memory limitations are reached. Over a decade ago, Papathanasiou and

Ingber [10, 46, 47] successfully modeled short fiber composites with up to 200 fibers

using the boundary element method and parallel supercomputer. They were able to

analyze the effects of fiber orientation and spatial arrangement on the elastic proper-

ties of short fiber composites which could not be analyzed by micromechanical models

and single fiber finite element models. They concluded that single fiber models and

micromechancial models provide good approximations at low volume fractions, but

become increasingly less accurate at higher volume fractions [10,47] due to increased

fiber interaction. They also were able to show that aligned fibers provide a significant

increase in the longitudinal modulus over randomly aligned fibers [46]. Unfortunately,

Papathanasiou and Ingber did not use the periodic RVE approach when generating

random fibers, and as a result, interactions with the edge of the container often oc-

cured resulting in artificial fiber alignment. They were also limited to composites with

an incompressible matrix and rigid fibers in order to simplify the boundary integral

calculations of the BEM.

A new method for solving the boundary integral equations, known as the fast

multipole method or FMM (see, e.g. Nashimura [48]), has been developed that greatly
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accelerates the solution time and efficiency of the BEM method. As a result the

solution time for a BEM problem has been reduced from O(N2), for conventional

BEM, to O(N) using the fast multipole solution method, where N is the number of

equations [49]. The computer memory requirements have also been greatly reduced

using the fast multiple method through the use of iterative solvers that do not require

the storing of the entire matrix. Lui. et. al [49] used RVEs with up to 5832 fibers

and over ten million degrees of freedom to find the elastic moduli of short and long

fiber composites with aligned and random orientations. The method of Lui et. al [49]

allows for an elastic matrix, but is still limited by the assumption of rigid fibers.

Advanced boundary element methods have been recently developed to solve the more

complicated problem of nonrigid fibers [50]. Chen and Liu [50] developed a BEM

code using quadratic elements to model short fiber composites with an elastic matrix

and fiber, thus removing the limitations of earlier boundary element methods. The

method was used to find the effective modulus of composites with short fibers and

spherical inclusions. However, Chen and Liu [50] were limited to models with only a

few thousand elements or several tens of fibers due to the use of a conventional BEM

solution approach.
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CHAPTER 3

FINITE ELEMENT MODEL

A uniform mesh finite element method will be developed and used for elastic property

prediction of continuous and short fiber composites. This method uses a regular

array of parallelepiped elements for the finite element calculations, thus eliminating

the problems associated with geometry and mesh creation. The model differs from

others used in literature, in that an increased number of Guass points are used when

calculating the stiffness matrix in order to provide the spatial refinement needed for

representing the fiber/matrix microstructure. The Guass points are then assigned

the material properties of the matrix if the Gauss point lies within the matrix or the

material properties of the fiber if the Guass point lies within a fiber. The solution is

refined by increasing the number of Gauss points instead of the number of elements.

Therefore, the number of degrees of freedom are greatly reduced and very complex

models can be run on a desktop computer with minimal memory requirements. This

chapter presents the derivation and implementation of the custom element.

3.1 Finite Element Derivation

The finite element equations can be derived using Hamilton’s principle, which states

[51]

∫ t2

t1

δLdt = 0 (3.1)

where δ is the variational operator. The Lagrangian, L, is the given by [51]

L = T − Πp (3.2)
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where T is the kinetic energy and Πp is the potential energy of a system. For a static

elastic body the kinetic energy is equal to zero and the potential energy is equal to [51]

Πp = Π−Wp (3.3)

where Π is the strain energy and Wp is the work done by external forces. The strain

energy and work done by external forces can be expressed respectively as [51]

Π =
1

2

∫

V

εT σdV (3.4)

and

Wp =

∫

V

bTUdV +

∫

S

tTUdS (3.5)

where ε is the strain vector, σ is the stress vector, b is the body force vector, U is the

displacement vector, t is a vector of surface tractions, V is the volume of the body,

and S is the surface of the body. Hooke’s law provides a relationship between stress

and strain through the following

σ = [C]ε (3.6)

If the individual constituents of the composite are assumed to be isotropic, then the

material stiffness tensor [C] is given by [52]

[C] =
1

E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)




−1

(3.7)
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where E is the Young’s Modulus and ν is the Poisson’s ratio of the material. Com-

bining equations 3.4 and 3.6 and applying the variational operator yields

δΠ =

∫

V

1

2
δεT [C]ε +

1

2
εT [C]δεdV

=

∫

V

1

2
δεT [C]ε +

1

2
δεT [C]T εdV

=

∫

V

δεT [C]εdV (3.8)

Applying the variational operator to Wp yields

δWp =

∫

V

bTδUdV +

∫

S

tTδUdS (3.9)

Combining equations 3.1,3.2,3.3,3.8,3.9 results in the following expression

∫ t2

t1

∫

V

−δεT [C]ε + bTδUdV +

∫

S

tTδUdSdt = 0 (3.10)

Next, the domain V is divided into Ne finite elements. The displacement vector

U over the element domain Ve becomes

U =




N1 0 0 N2 . . . 0

0 N1 0 N2 . . . 0

0 0 N1 N2 . . . N8







u1

v1

w1

u2

...

w8




= [N ]d(e) (3.11)

where d(e) is the elemental displacement vector and [N ] is the shape function matrix.
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The components of [N ] for the 8-noded solid element in figure 3.1 are given by [52]

N1 = 1
8
(1− ξ)(1− η)(1− ζ)

N2 = 1
8
(1 + ξ)(1− η)(1− ζ)

N3 = 1
8
(1 + ξ)(1 + η)(1− ζ)

N4 = 1
8
(1− ξ)(1 + η)(1− ζ)

N5 = 1
8
(1− ξ)(1− η)(1 + ζ)

N6 = 1
8
(1 + ξ)(1− η)(1 + ζ)

N7 = 1
8
(1 + ξ)(1 + η)(1 + ζ)

N8 = 1
8
(1− ξ)(1 + η)(1 + ζ)

(3.12)

where ξ,ν and ζ are natural coordinates and −1 ≤ ξ, η, ζ ≤ 1.

Figure 3.1: 8-noded solid element

For a uniform array of rectangular elements, the physical coordinates are related
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to the natural coordinates through the following:

x = x̄ + ξ
lx
2

y = x̄ + η
ly
2

(3.13)

z = x̄ + ζ
lz
2

where x̄, ȳ and z̄ are the coordinates of the centroid of the element and lx,ly and lz

are the lengths of the x,y and z edges of the rectangular elements. The infinitesi-

mal physical coordinates dx,dy,and dz are then related to the infinitesimal natural

coordinates dξ,dη, and dζ through the following [52]

dx =
∂x

∂ξ
dξ =

lx
2

dξ

dy =
∂y

∂η
dξ =

ly
2

dη (3.14)

dz =
∂z

∂ζ
dξ =

lz
2

dζ

The infinitesimal elemental volume, dV (e) then becomes

dV (e) = dxdydz =
lx
2

ly
2

lz
2

dξdηdζ (3.15)

The strain vector ε can then be written as [52]

ε =





εxx

εyy

εzz

γxy

γyz

γxz





=




∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z




=




∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

∂
∂x

0








u

v

w





= [B]d(e) (3.16)

where the [B] matrix in the element domain is given by [52]

[B] = [[B1][B2] . . . [B8]] (3.17)
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where

[Bi] =




2

lx

∂Ni

∂ξ
0 0

0
2

ly

∂Ni

∂η
0

0 0
2

lz

∂Ni

∂ζ
2

ly

∂Ni

∂η

2

lz

∂Ni

∂ξ
0

0
2

lz

∂Ni

∂ζ

2

ly

∂Ni

∂η

2

lz

∂Ni

∂ζ
0

2

lx

∂Ni

∂ξ




, i = 1, 8 (3.18)

Combining equations 3.10,3.11,3.16 and summing over all the elements we obtain

Ne∑
e=1

∫ t2

t1

∫

V

δd(e)T

[B][C][B]d(e) − δd(e)T

bT [N ]dV (e) (3.19)

−
∫ (e)

S

δd(e)T

tT [N ]dS(e)dt = 0 (3.20)

Next, we define the elemental stiffness matrix, [K(e)], and force vector, P(e) as

[K(e)] =

∫

V (e)

[B]T [C][B]dV (e) (3.21)

P(e) =

∫

V (e)

bT[N ]dV (e) +

∫

S

tT[N ]dS(e) (3.22)

Combining 3.19,3.21,3.22 we obtain the following

Ne∑
e=1

∫ t2

t1

δd(e)T
(
[K(e)]d(e) −P(e)

)
dt = 0 (3.23)

Since δd(e)T is an arbitrary vector, the expression in the brackets must equal zero and

the matrix equation becomes

[K]D = P (3.24)
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where [K] is the assembled global stiffness matrix, D is the assembled global displace-

ment vector, and P is the assembled global force vector given by

[K] =
Ne∑
e=1

[K(e)] (3.25)

P =
Ne∑
e=1

P(e) (3.26)

D =
Ne∑
e=1

d(e) (3.27)

where summation implies an assembly or expansion of the elemental matrices to form

the global matrices. After combining 3.21,3.15, [K(e)] can be evaluated numerically

using Gauss-Legendre quadrature with Ngp gauss points, ξi, ηi, ζi, and weights, Wi,

through the following

[K(e)] =

∫

V (e)

[B]T [C][B]
lx
2

ly
2

lz
2

dξdηdζ (3.28)

=

Ngp∑
n=1

Ngp∑
m=1

Ngp∑

l=1

[B(ξn,ηm,ζl)]T [C(ξn,ηm,ζl)][B(ξn,ηm,ζl)]
lx
2

ly
2

lz
2
WlWmWn (3.29)

3.2 Correction Factor

The main difference between the uniform mesh method and conventional finite ele-

ments is that an element in the uniform mesh method may contain both fiber and

matrix while in the conventional method each element contains only one material.

Therefore, a ”hybrid” uniform mesh element must be able to account for the dif-

ferences in strain in the two materials in order to accurately predict the effective

properties.
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3.2.1 One-Dimensional Analysis

One dimensional spring or bar elements are employed to investigate the transverse

modulus of the composite. This is done by finding the effective modulus of two

conventional bar elements in series, one representing the matrix and the other repre-

senting a fiber. The effective modulus of two conventional elements in series can be

derived from the fact that the forces exerted on each bar are equivalent:

F =
EmA

Lm

u1 =
EfA

Lf

u2 =
EeffA

Leff

(u1 + u2) (3.30)

where Leff and Eeff are the effective length and Young’s Modulus. The lengths of

the fiber and matrix, Lf and Lm, are related to the effective length and fiber length

fraction, β, as follows

Leff = Lf + Lm (3.31)

β =
Lf

Leff

(3.32)

Lf = βLeff (3.33)

Lm = (1− β)Leff (3.34)

Combining equations 3.30 and 3.31 yields

EfA

βLeff

u2 =
EmA

(1− β)Leff

u1

u2 =
Emβ

Ef (1− β)
u1 (3.35)

Substituting equation 3.35 into equation 3.30 results in an expression for the effective

modulus in terms of the fiber length fraction β

Eeff =
EmEf

Emβ + Ef (1− β)
(3.36)
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The displacement for a one-dimensional linear bar element will be a linear function

of x as shown in figure 3.2, where the axial strain, ε is equivalent to the slope of the

displacement.

 

2
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e ffε
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Figure 3.2: Displacement diagram using 2 conventional elements and 1 hybrid element

For two bar elements in series, the strain over the matrix εm is greater than the

strain over the fiber εf . However, when a single element is used over the same region,

the strain is constant over the entire element, εeff . Equation 3.30 can be written in

terms of the strain as

F = EfAεf = EmAεm = EeffAεeff (3.37)

therefore

εm

εeff

= Eeff/Em (3.38)

εf

εeff

= Eeff/Ef (3.39)
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This equation provides a relationship between the strain over the uniform mesh ele-

ment, and the strains over the conventional fiber and matrix elements.

The strain is equal to the strain-displacement matrix [B] times the elemental

displacement vector as shown in equation 3.16. Therefore, in order to account for

various strain values within a single hybrid element, a correction factor is applied to

the strain-displacement matrix:

[B] = α[B] (3.40)

where the correction factor α is computed from equations 3.38 and 3.39. If the Gauss

point lies within the matrix the correction factor is equal to:

α =
Ef

Emβ + Ef (1− β)
(3.41)

and if the Gauss point lies within the fiber the correction factor is equal to

α =
Em

Emβ + Ef (1− β)
(3.42)

3.2.2 Three-Dimensional Analysis

The uniform mesh method in this thesis will use custom three-dimensional linear 8-

node elements. The displacement over a conventional tri-linear element is defined by

equation 3.12. Therefore, in order to apply the one-dimensional correction factor in 3

dimensions, the fiber length fraction in each of the three coordinate directions must

be found. At each Gauss point, all other Gauss points will be checked in the x,y, and

z directions and a fiber length fraction βx,βy and βz will be obtained in each direction
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using the following equations

βξ =

Ngp∑
W ′

ξ

Ngp∑
Wξ

(3.43)

βη =

Ngp∑
W ′

η

Ngp∑
Wη

(3.44)

βζ =

Ngp∑
W ′

ζ

Ngp∑
Wζ

(3.45)

where W ′ is the Gauss weight of each Gauss point that lies within a fiber. This is

illustrated in two dimensions in figure 3.3. The figure represents a two-dimensional

element with ten Gauss points in each direction. The blue x’s are Gauss points that

lie with fiber and the red circles are Gauss points that lie with matrix. From figure

3.3, it is shown that the fiber length fractions at the current Gauss point would be

βξ = 0 and βη = 0.5.

Correction factors for the x,y, and z directions αξ, αν and αζ are obtained at

each Gauss point, where αξ is calculated using βξ, αη is calculated using βη, and αζ is

calculated using βζ . The correction factors are then applied to the strain-displacement

matrix, [B]

[B] = [[B1][B2] . . . [B8]] (3.46)
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Figure 3.3: Calculation of the fiber length fraction

where

[Bi] =




2

lx
αξ

∂Ni

∂ξ
0 0

0
2

ly
αη

∂Ni

∂η
0

0 0
2

lz
αζ

∂Ni

∂ζ
2

ly
αη

∂Ni

∂η

2

lz
αξ

∂Ni

∂ξ
0

0
2

lz
αζ

∂Ni

∂ζ

2

ly
αη

∂Ni

∂η

2

lz
αζ

∂Ni

∂ζ
0

2

lx
αξ

∂Ni

∂ξ




, i = 1, 8 (3.47)
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3.3 Periodic Boundary Conditions

Our uniform mesh method will assume the composite has a periodic structure and the

average elastic properties of the composite can be found by modeling a representative

volume element (RVE). Hori and Nemet-Nasser [53] have shown the the effective

elastic properties vary depending on the boundary conditions applied to an RVE.

Bounds for the effective moduli can be found by applying uniform traction or uniform

displacement boundary conditions, where uniform traction results in a lower bound

and uniform displacement results in an upper bound [53]. This is a direct result of

the bounds produced by the Voigt constant strain assumption and Reuss constant

stress assumption discussed previously. The uniform strain and traction boundary

conditions are also sensitive to the size of the unit cell [36, 54] and approach the

actual value as the size of the RVE increases. Several authors [1,29] have also shown

for longitudinal and transverse shear loading case, uniform displacement boundary

conditions in which the boundary remains plane, represent an over constrained case

and overestimate the effective shear moduli. Xia et. al. [29] have also shown that

uniform displacement boundary conditions for an RVE with sides lx,ly and lz in the x,y

and z directions respectively, may violate the following stress and strain periodicity

conditions [29]

σ(x, y, z) = σ(x + lx, y + ly, z + lz) (3.48)

ε(x, y, z) = ε(x + lx, y + ly, z + lz) (3.49)

Therefore, uniform displacement boundary conditions are not appropriate for the

analysis of a periodic RVE.
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Appropriate periodic boundary conditions must ensure each RVE has the same

deformation mode such that there is no separation or overlap between adjacent RVE’s

[29]. These conditions are met by the following displacement field [29]

ui = ε̄ikxk + u∗i (3.50)

where ui is the ith component of the displacement vector, ε̄ik is the average strain

tensor, xk is the kth component of the coordinate vector, and u∗i is the ith component

of the periodic displacement vector and is generally unknown. Note that the indices

i, j, k ∈ {1, 2, 3}, and repeated indices imply summation in the usual manner. For

parallelepiped RVEs the displacements on opposite boundary surfaces are written

as [29]

uj+
i = ε̄ikx

j+
k + u∗i (3.51)

uj−
i = ε̄ikx

j−
k + u∗i (3.52)

where j+ and j− refer to the positive and negative xj boundary surfaces respectively.

Subtracting the above equations yields [29]

uj+
i − uj−

i = ε̄ik(x
j+
k − xj+

k ) = cj
i (3.53)

where cj
i is a constant corresponding to the average deformation of the RVE. There-

fore, this equation specifies the difference in displacement between corresponding

points on opposite boundary surfaces. Note that the displacement is still a function

of the coordinates and therefore does not specify that the boundary surfaces remain

plane [29]. This boundary condition will ensure that there is no seperation or overlap

beween adjacent RVEs and satisfy stress and strain periodicity.
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3.4 Finite Element Implementation

As mentioned earlier, ABAQUS 6.5 will be used to illustrate the uniform mesh method

described above with a custom parallelepiped element for predicting the properties

of short fiber composites. In order to run linear analysis in ABAQUS, the user must

first generate an input file that contains: the nodal coordinates, element connectivity,

material assignment, boundary conditions, and specify the required output. A Fortran

subroutine is used to generate a regular array of parallepiped elements as shown in

figure 3.4.

Figure 3.4: Uniform Mesh

The uniform mesh does not define the boundaries of the fibers and greatly simplifies

the meshing process. The mesh is defined by the number of elements in the x,y and
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z directions and the length of the element in each direction.

The boundary conditions given in equation 3.53 are then applied to the model.

Equation 3.53 relates the displacements of corresponding points on opposite boundary

surfaces. Therefore, the x2 and x3 coordinates must be the same for a pair of nodes on

the positive and negative x1 boundary surfaces. Similarly, the x1 and x3 coordinates

must be the same for the x2 boundary nodes, and the x1 and x2 coordinates must

be the same for the x3 boundary nodes. This requirement on the node placement

makes the uniform mesh method ideal for the application of the periodic boundary

conditions. Conversely, it is nearly impossible to fully apply the periodic boundary

conditions on a complex part containing an irregular mesh. Next, text files containing

the mesh and fiber data must be generated. The mesh file simply contains the number

of elements in each direction, the number of Gauss points to be used for the elemental

stiffness matrix calculation, and the dimensions of the model.

The fibers are assumed to be cylinders of constant length and diameter as shown

in figure 3.5. Therefore, the orientation of a fiber is defined by the unit vector,

p(θ, φ) [20]

p(θ, φ) =





sin θ cos φ

sin θ sin φ

cosθ





(3.54)

where θ is the angle between the fiber and the x3 axis and φ is the angle between

the fiber and the x1 axis as shown in figure 3.6. The spatial distribution of a fiber is

defined by the coordinates of its centroid. Thus, the fibers are completely defined in

the fiber file by specifying: the number of fibers, the aspect ratio and length of the
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Figure 3.5: Short fibers with constant length and diameter

fibers, the centroid coordinates of each fiber, and the θ and φ angles of each fiber.

The elemental matrix equations were written into a user defined element subrou-

tine, or UEL, within ABAQUS 6.5. The UEL subroutine is written in Fortran code

and allows the user to develop custom elements not found in the ABAQUS element

library. ABAQUS makes a call to the subroutine at the beginning and end of every

iteration for every element. The current elemental nodal displacement vector, nodal

coordinates, and the specified material properties are passed into the subroutine and

the elemental stiffness matrix and force vector must be calculated and output to

ABAQUS. ABAQUS then assembles the global stiffness matrix and force vector and

solves the finite element equation 3.24.

Files may be opened and closed at the beginning of the analysis through the use

of a user external database subroutine. The mesh and fiber files are opened using

the user external database UEXTERNALDB in order to read in the mesh and fiber
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Figure 3.6: The fiber angles θ and φ and unit vector p(θ, φ)

data. Once the fiber data has been obtained, a subroutine is used to loop over all the

elements and determine whether each Gauss point lies within the matrix or a fiber.

This is done by first converting the Gauss point to the global coordinate system using

equation 3.13. The vector from the fiber centroid to the Gauss point Dgp is used to

calculate distance between the Gauss point and the fiber centroid dgp and projected

onto the fiber to find the longitudinal distance dl

Dgp =





X − FX

Y − FY

Z − FZ





(3.55)

dgp =

√
Dgp

TDgp (3.56)

dl = DT
gpp (3.57)
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Figure 3.7: Geometry of the Gauss point and fiber

where X, Y, Z are the coordinates of the Gauss point and FX, FY, FZ are the coor-

dinates of the fiber centroid as shown in figure 3.7.

The radial distance between the Gauss point and the fiber, dr, is then calculated

dr =
√

d 2
gp − d 2

l (3.58)

The following conditions can then be used to determine whether the Gauss point lies

within a fiber

dl ≤ L

2

dr ≤ R (3.59)

where L is the length of the fiber and R is the radius of the fiber. If both conditions

are met then the Gauss point lies within a fiber. Otherwise, the Gauss point lies

within the matrix. These equations are calculated for each fiber.
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The volume fraction, vf , is then calculated as follows

vf =

N∑
ve

f

N
(3.60)

where N is the number of elements and ve
f is the volume fraction of a single element

given by

ve
f =

1

8

Ngp∑ Ngp∑ Ngp∑
W ′

ξW
′
ηW

′
ζ (3.61)

where W ′
ξ, W

′
η,W

′
ζ are the Gauss weights corresponding to the Gauss points that lie

within a fiber. Equation 3.60 represents the volume fraction in the uniform mesh

model. If this volume fraction is different than the actual volume fraction of the

composite within a specified limit, then the number of Gauss points needs to be

increased to more accurately determine the fiber boundaries.

Once all of the Gauss points have been assigned to fiber or matrix and the volume

fraction has been determined, then the elemental stiffness matrix and force vector

are calculated. The elemental stiffness matrix is evaluated using equation 3.28. The

Young’s modulus and Poisson’s ratio used in the calculation of the stiffness matrix

given in equation 3.7 are dependent upon whether the current Gauss point has been

assigned to the matrix or fiber. If the Gauss point lies within the matrix then the

matrix Young’s modulus and Poisson’s ratio are used and if it lies with a fiber then the

fiber properties are used. The location of the Gauss point also determines the value

of the correction factor. If the Gauss point lies within matrix the correction factor is

evaluated using equation 3.41 and if the Gauss point lies within fiber the correction

factor is evaluated using equation 3.42. Since the current elemental displacement
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vector is passed into the subroutine, the elemental force vector can be found by

simply multiplying the elemental stiffness matrix with the displacement vector as

shown in equation 3.24.

The UEL procedure must be modified slightly in order to plot the element con-

nectivity as well as the stress, strain, and other parameters using ABAQUS. Since

the uniform mesh method uses a modified linear eight node brick element, the con-

nectivity of the elements can only be plotted by overlaying the uniform mesh with a

conventional eight node brick element C3D8 used by ABAQUS. The same nodes and

connectivity are used for both sets of elements so that the ABAQUS elements accu-

rately show the UEL deformation. The ABAQUS elements must be assigned a very

small value for the Young’s modulus so that they do not effect the UEL calculations.

The UVARM subroutine in ABAQUS allows the user to plot calculated variables at

the Gauss points of the conventional elements. However, since the ABAQUS and

uniform mesh elements do not have the same number of Gauss points, only average

element parameters may be plotted. The average strain and stress over the element

are calculated as:

ε̄(e) =

Ngp∑
n=1

Ngp∑
m=1

Ngp∑

l=1

[B(ξn, ηm, ζl)]d
(e) lx

2

ly
2

lz
2

WlWmWn (3.62)

σ̄(e) =

Ngp∑
n=1

Ngp∑
m=1

Ngp∑

l=1

[C][B(ξn, ηm, ζl)]d
(e) lx

2

ly
2

lz
2

WlWmWn (3.63)

where d(e) is the elemental displacement vector passed into the UEL subroutine by

ABAQUS. The volume fraction of each element can also be plotted using equation

3.61.
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CHAPTER 4

ELASTIC PROPERTY PREDICTION

The uniform mesh method and periodic boundary conditions were derived in the

previous chapter. In this chapter, the method for obtaining the effective properties

from the finite element results and two micromechanical models will be presented.

The effective properties obtained using the uniform mesh method will be compared

with a simple composite consisting of two conventional elements in series in order to

validate the solution process and the application of the correction factor.

4.1 Effective Elastic Properties

The effective elastic properties can be found once the average stress and strain are

known through Hooke’s Law as shown in equation 3.6. The average strain is defined

as

ε̄ij =
1

V

∫

V

εijdV (4.1)

where V is the volume of the RVE. The strain tensor can be written in terms of

displacement as:

εij =
1

2
(ui,j + uj,i) (4.2)

where ui,j implies differentiation of ui with respect to xj. The average strain is related

to the boundary displacements using equation 4.2 and the Gauss Theorem as [1]

ε̄ij =
1

2V

∫

S

(uinj + ujni)dS (4.3)
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where nj is the jth component of the unit normal to the boundary surface S of the

RVE. For a parallelepiped in which the boundary faces surfaces are normal to the

coordinate axes, the normal will have only one non-zero component and equation 4.3

can be reduced to the following [29]

ε̄ij =
1

2V

[∫

Sj

(uj+
i − uj−

i )dS +

∫

Si

(ui+
j − ui−

j )dS

]

=
1

2V
(cj

iSj + ci
jSi)

=
cj
i lxlk + ci

jljlk

2liljlk

=
1

2

cj
i li + ci

jlj

lilj
(4.4)

where li refers to the length of the RVE in the xi direction, and cj
i is the constant

defining the periodic boundary condition given in equation 3.53. Therefore, the aver-

age strain is simply found from the dimensions of the RVE and the applied boundary

conditions.

Similarly, the average stress is defined as

σ̄ij =
1

V

∫

V

σijdV (4.5)

In the absence of body forces the equations of equilibrium are

σij,j = 0 (4.6)

Using the equilibrium equation it can be shown that [55]

(σikxj),k = σik,kxj + σijxj,k

= σijδjk

= σij (4.7)
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Therefore, combining equations 4.5,4.7 and using Gauss theorem yields

σ̄ij =
1

V

∫

S

σikxjnk dS (4.8)

Due to periodicity, the stress at two corresponding points on opposite surfaces

must be equal. Similar to the derivation of equation 4.4, the average stress can be

reduced to [29]

σ̄ij =
1

S

[∫

S+
m

σ+
imx+

j −
∫

S−m
σ−imx−j

]

=
1

V

∫

S+
m

σ+
im(x+

j − x−j )dS (4.9)

When m 6= j, the coordinates x+
j = x−j , and when m = j, x+

j −x−j = lj, therefore [29]

σ̄ij =
lj
V

∫

Sj

σijdS =
Rij

Sj

(4.10)

where Rij is the sum of the reactions forces on the boundary face Sj and there is no

summation over j.

Once the average stress and strain have been obtained, the effective elastic prop-

erties are evaluated from

σ̄ = [C̄]ε̄ (4.11)

where [C̄] is the average or effective stiffness matrix of the composite, σ̄ is the effective

stress vector, and ε̄ is the effective strain vector. For an orthotropic composite,

the average stiffness tensor is related to the average material properties through the
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following

[C̄] =




1/Ē11 −ν21/Ē22 −ν̄31/Ē33 0 0 0

−ν̄12/Ē11 1/Ē22 −ν̄32/Ē33 0 0 0

−ν̄13/Ē11 −ν̄23/Ē22 1/Ē33 0 0 0

0 0 0 1/Ḡ12 0 0

0 0 0 0 1/Ḡ23 0

0 0 0 0 0 1/Ḡ13




−1

(4.12)

From equation 4.12 it is shown that for an orthotropic material there are nine inde-

pendent material properties (E11, E22, E33, ν12, ν23, ν13, G12, G23, G13). Therefore, nine

independent equations are needed to solve for the nine independent material proper-

ties. The nine equations are obtained from six independent strain conditions defined

by six sets of deformation constants, cj
i :

set 1 : c1
1 = 0.05lx, all other cj

i = 0 (4.13)

set 2 : c2
2 = 0.05ly, all other cj

i = 0 (4.14)

set 3 : c3
3 = 0.05lz, all other cj

i = 0 (4.15)

set 4 : c2
1 = 0.025ly, c1

2 = 0.025lx, all other cj
i = 0 (4.16)

set 5 : c3
2 = 0.025lz, c2

3 = 0.025ly, all other cj
i = 0 (4.17)

set 6 : c3
1 = 0.025lz, c1

3 = 0.025lx, all other cj
i = 0 (4.18)

The six strain sets represent three uniaxial extension conditions and three pure shear

conditions. From the three uniaxial extension conditions nine nontrivial equations

will be obtained, only six of which are independent, and from the three pure shear

conditions the three remaining independent equations will be obtained.

To ensure the effective stiffness matrix is of the form in equation 3.7, Lagrange

multipliers are used when solving equation 3.6 to impose the necessary symmetry
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constraints. This is done by first forming average stress and strain matrices from the

average stress and strain vectors obtained from the six finite element runs so that

equation 3.6 becomes:

[σ] = [C][ε] (4.19)

By multiplying both sides of equation 4.19 by the transpose of the average strain

matrix [ε]T the following unconstrained least squares equation is obtained:

[ε]T [σ] = [C][ε]T [ε] (4.20)

Equation 4.20 can then be expanded as follows:




εT
ikσk1

εT
ikσk2

...

εT
ikσk6




36×1

=




εT
ikεkj 0ij 0ij 0ij 0ij 0ij

0ij εT
ikεkj 0ij 0ij 0ij 0ij

0ij 0ij εT
ikεkj 0ij 0ij 0ij

0ij 0ij 0ij εT
ikεkj 0ij 0ij

0ij 0ij 0ij 0ij εT
ikεkj 0ij

0ij 0ij 0ij 0ij 0ij εT
ikεkj




36×36




C11

C12

C13

...

C66




36×1

(4.21)

or

b = [A]C (4.22)

where i and j are the components of the stress and strain matrices and i, j ∈ 1, 2, .., 6.

The least squares form is needed when the system is overdetermined. For example,

this occurs when predicting transversely isotropic and isotropic stiffness matrices in

which there are fewer than nine independent properties.

The 6 × 6 orthotropic stiffness matrix contains x non-zero constants. Due to

symmetry the number of constants is reduced to 9 as described above. Therefore, 27
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constraints must be applied to the solution process. These constraint equations are

combined with equation 4.22 as follows [56]


 b

0




63×1

=


 [A] [X]′

[X] [0]




63×63


 C

λ




63×1

(4.23)

(4.24)

where λ is a vector of lagrange multipliers, and [X] is a matrix of symmetry and zero

constraints. Therefore, the modified C vector can be found as follows


 C

λ




63×1

=


 [A] [X]′

[X] [0]



−1

63×63


 b

0




63×1

(4.25)

The regression correlation coefficient is then calculated to determine the quality

of the least squares solution. The regression coefficient R is given by

Ri =

√
s1

i − s2
i

s1
i

(4.26)

where s1
i and s2

i are given by:

s1
i =

n∑
j=1

(σ̄ji − σm
i )2 (4.27)

s2
i =

n∑
j=1

(σ̄ji − (Cjkε
T
ki)

T )2 (4.28)

The mean stress vector, σm
i , is defined as

σm
i =

1

n

n∑
j=1

σ̄ij (4.29)
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4.2 Micromechanical Models

The Halpin-Tsai and Tandon-Weng models have been widely used in literature and

will be used for comparison with the finite element results. The Halpin-Tsai equations

for the elastic constants are given by [5]

P

Pm

=
1 + ζηvf

1− ηvf

(4.30)

η =
(Pf/Pm)− 1

(Pf/Pm) + 1
(4.31)

ν12 = νfvf + νm(1− vf ) (4.32)

ν23 = −1 +
E22

2G23

(4.33)

where P represents any one of the moduli, Pm and Pf are the corresponding moduli of

the matrix and fiber. The parameter ζ is dependent upon the moduli being calculated

as shown in table 4.1.

P Pf Pm ζ
E11 Ef Em 2(l/d)
E22 Ef Em 2
G12 Gf Gm 1 + 40v10

f

G23 Gf Gm
Km/Gm

Km/Gm + 2

Table 4.1: Halpin-Tsai parameters used for short fiber calculations [1]

The value of ζG12 proposed by Hewitt and Malherbe [8] is used. The bulk modulus

of the matrix, Km, needed for ζG23 is found from:

Km =
Em

3(1− 2νm)
(4.34)
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The Tandon-Weng equations are given by the following [4, 14]:

E11 =
Em

1 + vf (A1 + 2vmA2)/A
(4.35)

E22 =
Em

1 + vf [−2vmA3 + (1− vm)A4 + (1 + vm)A5A]/2A
(4.36)

G12 =
Gm

µm

µf−µm
+ 2(1− vf )S1212

(4.37)

G12 =
Gm

µm

µf−µm
+ 2(1− vf )S2323

(4.38)

ν12 =
νmA− vf (A3 − νmA4)

A + vf (A1 + 2νmA2)
(4.39)

ν23 = −1 +
E22

2G23

(4.40)

The equation for ν12 was derived by Tucker and Liang [4] and provides an alternative

to the iterative equation for ν12 given by Tandon and Weng. The constants Ai are

found using equations 4.41

A1 = D1(B4 + B5)− 2B2

A2 = (1 + D1)B2 − (B4 + B5)

A3 = B1 −D1B3 (4.41)

A4 = (1 + D1)B1 − 2B3

A5 = (1−D1)/(B4 −B5)

A = 2B2B3 −B1(B4 + B5)
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The constants Di and Bi are found from the following

B1 = vfD1 + D2 + (1− vf )(D1S1111 + 2S2211) (4.42)

B2 = vf + D3 + (1− vf )(D1S1122 + S2222 + S2233) (4.43)

B3 = vf + D3 + (1− vf )(S1111 + (1 + D1)S2211) (4.44)

B4 = vfD1 + D2 + (1− vf )(S1122 + D1S2222 + S2233) (4.45)

B5 = vf + D3 + (1− vf )(S1122 + S2222 + D1S2233) (4.46)

D1 = 1 + 2(µf − µm)/(λf − λm) (4.47)

D2 = (λm + 2µm)/(λf − λm) (4.48)

D3 = λm/(λf − λm) (4.49)

where µm, µf and λm, λf are Lame’s constants for the matrix and fiber. Lame’s

constants are related to the elastic constants using equations 4.50 and 4.51

λ =
Eν

(1 + ν)(1− 2ν)
(4.50)

µ =
E

2(1 + v)
(4.51)

Sijkl are components of Eshelby’s tensor for a fiber-like spheriodal inclusion and are
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given by:

S1111 =
1

2(1− νm)

{
1− 2νm +

3α2 − 1

α2 − 1
−

[
1− 2νm +

3α2

α2 − 1

]
g

}

S2222 = S3333 =
3

8(1− νm)

α2

α2 − 1
+

1

4(1− νm

[
1− 2νm − 9

4(α2 − 1)

]
g

S2233 = S3322 =
1

4(1− νm)

{
α2

2(α2 − 1)
−

[
1− 2νm +

3

4(α2 − 1)

]
g

}
(4.52)

S2211 = S3322 = − 1

1(1− νm)

α2

α2 − 1
+

1

4(1− νm

{
3α2

α2 − 1
− (1− 2νm)

}
g

S1122 = S1133 = − 1

2(1− νm

[
1− 2νm − 1

α2 − 1

]
+

1

2(1− νm

[
1− 2νm − 3

2(α2 − 1)

]
g

S2323 = S3232 =
1

4(1− νm)

{
α2

2(α2 − 1)
+

[
1− 2νm − 3

4(α2 − 1)

]
g

}

S1212 = S1313 =
1

4(1− νm)

{
1− 2νm − α2 + 1

α2 − 1
− 1

2

[
1− 2νm +

3(α2 + 1)

α2 − 1

]
g

}

where α is the aspect ratio, and g is given by

g =
α

(α2 − 1)3/2

{
α(α2 − 1)1/2 − cosh−1 α

}
(4.53)

4.3 Results

The method described above will be used to obtain the effective properties of a

simple composite containing two conventional elements in series, one representing the

fiber and the other representing the matrix. The results will be compared with the

effective properties obtained using a single uniform mesh element with and without

the correction factor. The analysis will be performed in both one-dimension and

three-dimensions.
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4.3.1 One-Dimensional Comparison

The stiffness matrix for the 1D bar element is given by:

[K(e)] =

∫

L

[B]T EA [B]
L

2
dξ (4.54)

(4.55)

where A is the cross sectional area of the bar element and L is the length of the bar

element. The strain-displacement matrix [B] for a linear one-dimensional element is

equal to

[B] =




−1

L

1

L


 (4.56)

If E and A are constant, the stiffness matrix for the conventional element reduces to

[K(e)] =
EA

L

[
1 −1

−1 1

]
(4.57)

For the hybrid element, E is not constant and therefore equation 4.57 must be found

using Gauss-Legendre quadrature where the value of E depends on whether the Gauss

point lies within the matrix or fiber. After running the finite element analysis, the

effective modulus can be found from the reaction force R and the strain ε through

the following

Eeff =
R

Aε
(4.58)

Figure 4.1 shows the effective modulus results for the two methods over a range

of volume fractions.
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Figure 4.1: 1D spring results using 2 conventional elements and 1 uniform mesh
element for Ef/Em = 5.55

The ratio between the fiber modulus and the matrix modulus Ef/Em was set

equal to 5.55. The results are given as a ratio of the effective modulus to the matrix

modulus Eeff/Em. From the figure it can be seen that the hybrid element matches the

conventional elements when the elements are both matrix, a volume fraction of zero,

and when the elements are both both fiber, a volume fraction of one, as expected.

However, the hybrid element does a very poor job of predicting the effective modulus

for all other volume fractions. The error in the hybrid results increases as the ratio

of the fiber and matrix moduli increases as shown in figure 4.2.

This is due to the fact that the hybrid element result tends to simply average the

Young’s modulus of the two materials, thus providing the rule-of-mixtures result for
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Figure 4.2: 1D spring results using 2 conventional elements and 1 uniform mesh
element for Ef/Em = 30.0

the effective modulus given below:

Eeff = vfEf + (1− vf )Em (4.59)

When the correction factors in equations 3.41 and 3.42 are used to compute [B], values

of Eeff using a single hybrid element exactly match the results using the conventional

elements as shown in figures 4.3 and 4.4.

4.3.2 Three-Dimensional Comparison

The one-dimensional analysis showed that with the inclusion of a correction factor,

the uniform mesh element could accurately predict the effective transverse modulus

E2. The ability of the uniform mesh element to accurately predict the remaining

elastic constants will now be investigated. A single uniform mesh element will be
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Figure 4.3: Results w/ correction factor for Ef/Em = 5.55

Figure 4.4: Results w/ correction factor for Ef/Em = 30.0
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compared with a simple composite consisting of two conventional 3D brick elements

in series. Periodic boundary conditions were applied to the edges of the model and

the effective properties were found from equations 4.4 and 4.13. The isotropic elastic

properties for the matrix and fiber are given in Table 4.2.

Material E(GPa) ν
F iber 379.3 0.1

Matrix 68.3 0.3

Table 4.2: Elastic properties of matrix and fiber

The effective composite will be transversely isotropic due to the geometry of the

model. The same properties will be obtained in the x1 and x2 directions and only

the results for the x1 direction will be given. The results for effective longitudinal

modulus, E11, using the two conventional elements and the results for the hybrid

element with and without the correction factor are shown in figure 4.5.

From the figure it can be seen that all the models result in the same prediction for

E11. This is due to the fact that the uniform mesh element has a length ratio of one in

the x1 direction at every Gauss point. Therefore, the uniform mesh element produces

the same results with and without the correction factor. The uniform mesh element

and conventional elements both predict an E11 modulus based on the rule-of-mixtures

given in equation 4.59. The results for the E33 modulus are shown in figure 4.6.

The results for transverse modulus are similar to the one-dimensional bar results.

The uniform mesh without the correction greatly overpredicts the modulus. The

uniform mesh element with the correction accurately predicts E33 over the entire

range of volume fractions. The results for the Poissons’ ratios are given in figures 4.7
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Figure 4.5: Effective E11 results

and 4.8.

The uniform mesh element slightly overpredicts ν12 and greatly underpredicts ν23.

However, with the correction, the uniform mesh element accurately predicts both

Poisson’s ratio over the entire range of volume fractions. Finally, the results for the

shear moduli are given in figures 4.9 and 4.10.

All models provide the same predictions for G12. However, uniform mesh element

without the correction greatly overpredicts the G23 shear modulus with a maximum

error over 100%. The uniform mesh prediction with the correction is better but still

overpredicts G23 with a maximum error of approximately 30% occurring at a volume

fraction of about 65%. Therefore, the uniform mesh element with correction accu-

rately predicts all of the elastic constants except for the longitudinal shear modulus.

A more accurate correction factor for the shear modulus needs to be developed in the
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Figure 4.6: Effective E33 results

future. All results in future sections will be given using the uniform mesh element

with correction.
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Figure 4.7: Effective ν12 results

Figure 4.8: Effective ν23 results
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Figure 4.9: Effective G12 results

Figure 4.10: Effective G23 results
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CHAPTER 5

SINGLE FIBER MODELS

In this chapter, the uniform mesh method will be used to predict the elastic properties

of two single fiber models from literature. The first is a continuous fiber model used by

Xia et al. [29] and the second is a short fiber model using using two different packing

arrangements similar to that of Tucker and Liang [4]. The results of the uniform mesh

method will be compared with the literature as well as a conventional finite element

model developed in ABAQUS 6.5. For the short fiber models, the results will also be

compared with the Halpin-Tsai and Tandon-Weng micromechanical models.

5.1 Continuous Fiber Comparison

Xia et al. [29] used a single fiber RVE to model a unidirectional continuous fiber

composite laminate consisting of an aluminum matrix and boron fibers. The results

of Xia et al. will be compared with a conventional finite element model and a uniform

mesh model. A conventional finite element model was developed in ABAQUS in

order to validate the periodic boundary conditions and effective property calculations

developed in Chapter 2. The conventional and uniform finite element meshes is shown

in figure 5.1. The conventional mesh consists of 1640 linear eight node elements and

the uniform mesh consists of 1000 custom eight node elements.

Notice, that the two meshes are periodic and that the planar nodal coordinates are

equal for nodes on opposite boundaries. More specifically, the y and z coordinates are

equivalent for nodes on the positive and negative x boundaries and similar arguments
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Figure 5.1: a)Conventional and b)uniform meshes for the continuous fiber model

can be made for nodes on the y and z boundaries. As described in Chapter 2, this

is required for the periodic boundary conditions. However, even for this simple fiber

model, it was very difficult to obtain an appropriate mesh. This is overcome by the

uniform mesh method that simply uses a regular array of elements.

The material properties used in the model are given in table 5.1 and vf = 0.47.

Material E(GPa) ν
Boron 379.3 0.1

Aluminum 68.3 0.3

Table 5.1: Elastic properties of matrix and fiber [1]

As described in Chapter 3, the effective properties are found by applying six in-

dependent strain conditions through the periodic boundary conditions. Due to the

geometry of the model, similar stress and strain results are obtained for the x2 and
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x3 directions. Therefore, the stress and strain contour plots will only be given for the

x1 and x3 strain conditions.

b)a)

Figure 5.2: σ11 contour plots for a)conventional and b)uniform mesh continuous fiber
models

The stress contour results for the axial strain condition are given in figures 5.2,5.3.

These figures show that the axial strain condition results in boundaries that remain

planer during deformation. This is due to the fact that the boundaries of the single

fiber RVE in figure 5.1 are planes of symmetry for the axial strain conditions. It is

also shown that transverse stresses are induced in the RVE during the axial stain.

In order to ensure no overlap between neighboring RVE’s, zero relative displacement

between transverse boundaries is specified. Without the zero relative displacement

conditions, necking would occur around the edges of the fiber, resulting in separation

between adjacent RVEs.
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b)a)

Figure 5.3: σ22 contour plots for a)conventional and b)uniform mesh continuous fiber
models

The stress and strain for the longitudinal and transverse shear conditions are plot-

ted in figures 5.4-5.7. The deformations appearing in these figures illustrate that the

periodic boundary conditions do satisfy the stress and strain periodicity conditions of

equation 3.50 in that the stress and strain are equal on opposite boundary conditions.

From figures 5.4 through 5.7 it can also be seen that for the shear conditions, the

boundaries do not remain plane.

The results for the effective properties of the composite are given in table 5.2

along with the results from Xia et al. [29] and Sun and Vaidya [1]. The results from

the uniform mesh method are given using 6, 8, and 10 gauss points per element.

From the table it is shown that the conventional element results are in agreement

with the literature, thus validating the periodic boundary conditions and solution
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b)a)

Figure 5.4: σ12 contour plots for a)conventional and b)uniform mesh continuous fiber
models

b)a)

Figure 5.5: ε12 contour plots for a)conventional and b)uniform mesh continuous fiber
models
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b)a)

Figure 5.6: σ23 contour plots for a)conventional and b)uniform mesh continuous fiber
models

b)a)

Figure 5.7: ε23 contour plots for a) conventional and b) uniform mesh continuous
fiber models
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process. The uniform mesh method results are slightly higher than the conventional

mesh results but the error remains within a few percent. The error also decreases

with an increasing number of gauss points as expected. The uniform mesh method

provides a reasonable result for the transverse shear modulus G12. Although hybrid

elements will overpredict G12, a relatively fine mesh was used for the current analysis,

thus only a small percent of the total elements contained both fiber and matrix.

Elastic Xia Sun and Conventional Uniform Uniform Uniform
constants et al. V aidya mesh mesh 6gp mesh 8gp mesh 10gp
E11 (GPa) 214 215 214.4 216.1 215.5 215.9
E22 (GPa) 143 144 143.7 147 144.9 146.7
G12 (GPa) 54.2 57.2 53.9 56.4 57.4 56.3
G23 (GPa) 45.7 45.9 45.4 45.6 46 45.6

ν12 0.195 0.19 0.195 0.194 0.196 0.194
ν23 0.253 0.29 0.253 0.244 0.238 0.244

Table 5.2: Effective elastic property results for the continuous fiber model
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5.2 Short Fiber Comparison

Tucker and Liang [4] used a single short fiber RVE to model short fiber compos-

ites with several different packing arrangements over a range of aspect ratios and

compared them with numerous micromechanical models. The regular and staggered

packing arrangements were chosen and conventional and uniform mesh models were

developed for an aspect ratio of 8. These models will then be compared with the

results of Tucker and Liang as well as the Halpin-Tsai and Tandon-Weng microme-

chanical models. The conventional and uniform meshes for the regular and staggered

packing arrays are shown in figures 5.8 and 5.9 respectively.

Although Tucker and Liang [4] used a one-quarter model for the regular array, a

full model is used in this analysis in order to apply the periodic boundary conditions.

The periodic boundary conditions will make it possible to calculate the effective shear

moduli which were not calculated by Tucker and Liang for a regular array. A one-

quarter model is used on the staggered array and symmetry boundary conditions are

applied as was done by Tucker and Liang. Therefore, the shear moduli will not be

calculated for the staggered array. The symmetry boundary conditions are given in
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b)

a)

Figure 5.8: a)Conventional and b)uniform meshes for the regular short fiber model

Viewport: 2     ODB: C:/Documents and Settings...uare_stag/pullz_uvarm.odb

1 2

3

Viewport: 1     ODB: C:/Documents and Settings...square_stag/pullz_ar8.odb

Figure 5.9: a)Conventional and b)uniform meshes for the staggered short fiber model
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equation 5.1.

set 1 : u(0, ly, lz) = 0 v(lx, 0, lz) = 0 w(lx, ly, 0) = 0

u(lx, ly, lz) = 0.05lx v(lx, lx, lz) = 0 w(lx, ly, lz) = 0

set 2 : u(0, ly, lz) = 0 v(lx, 0, lz) = 0 w(lx, ly, 0) = 0 (5.1)

u(lx, ly, lz) = 0 v(lx, lx, lz) = 0.05ly w(lx, ly, lz) = 0

set 3 : u(0, ly, lz) = 0 v(lx, 0, lz) = 0 w(lx, ly, 0) = 0

u(lx, ly, lz) = 0 v(lx, lx, lz) = 0 w(lx, ly, lz) = 0.05lz

The material properties used in the models are given in table 5.3 at a volume

fraction vf = 0.2 and aspect ratio l/d = 8.

Material E(GPa) ν
F iber 300 0.2

Matrix 10 0.38

Table 5.3: Elastic properties of matrix and fiber for single short fiber model

The contour plots for the longitudinal strain case for the two models are given in

figures 5.10,5.11,5.12 and 5.13 and longitudinal shear results for the regular array are

given in figures 5.14 and 5.15. From the figures, it can be seen that stress and strain

periodicity is again satisfied and the boundaries do not remain plane during shear.

Figures 5.10-5.13 also show the effect of the fiber array on the stress and strain. The

stress and strain fields are fairly uniform over the fiber in the regular array. For the

staggered array, the stress and strain are at a minimum at the center where the fibers

are staggered and the stress and strain increase in the regions where the fibers are

not staggered as expected.
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a)

b)

Figure 5.10: σ11 results for the regular array under longitudinal strain using a a)
conventional and b) uniform mesh

a)

b)

Figure 5.11: ε11 results for the a)regular array under longitudinal strain using a a)
conventional and b) uniform mesh
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a)

b)

Figure 5.12: σ11 results for the staggered array under longitudinal strain using a a)
conventional and b) uniform mesh

a)

b)

Figure 5.13: ε11 results for the staggered array under longitudinal strain using a a)
conventional and b) uniform mesh
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a)

b)

Figure 5.14: σ12 results for the staggered array under shear strain using a a) conven-
tional and b) uniform mesh

a)

b)

Figure 5.15: ε12 results for the staggered array under shear strain using a a) conven-
tional and b) uniform mesh
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The effective property results for the two models are given in tables 5.4 and 5.5

along with the results of Tucker and Liang [4]. The effective properties calculated

using the Halpin-Tsai and Tandon-Weng micromechanical models are also given. All

the results are given assuming the fiber is aligned with the x1 direction.

Elastic Tucker & Halpin Tandon Conv. Uniform Uniform Uniform
constants Liang Tsai Weng mesh mesh 6gp mesh 8gp mesh 10gp
E11/Em 4.2 3.45 3.37 3.97 4.11 4.06 4.04
E22/Em 1.55 1.66 1.51 1.62 1.72 1.67 1.67
G12/Em n/a 0.53 0.54 0.53 0.55 0.54 0.53
G23/Em n/a 0.50 0.51 0.49 0.48 0.48 0.48

ν12 0.335 0.344 0.362 0.338 0.333 0.338 0.338
ν23 0.48 0.652 0.49 0.487 0.467 0.471 0.471

Table 5.4: Effective property results for the regular packing array

Elastic Tucker & Halpin Tandon Conv. Uniform Uniform
constants Liang Tsai Weng mesh mesh 6gp mesh 8gp
E11/Em 4.2 3.45 3.37 4.07 4.18 4.19
E22/Em 1.5 1.66 1.51 1.51 1.56 1.56
G12/Em n/a 0.53 0.54 n/a n/a n/a
G23/Em n/a 0.50 0.51 n/a n/a n/a

ν12 0.345 0.344 0.362 0.347 0.343 0.343
ν23 0.52 0.652 0.49 0.522 0.513 0.515

Table 5.5: Effective property results for the staggered packing array

Table 5.4 shows that the conventional mesh provides results for E11 slightly lower

than those givein in Tucker and Liang [4] and results for E22 that are slightly higher.

The results using the uniform mesh and 6 gauss points are slightly higher than the

conventional mesh. The largest error occurs in the prediction for E22 and is approxi-

mately 6%. By increasing the number of gauss points to 8, the uniform mesh results

approach that of the conventional mesh and the error for E22 is reduced to around
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3%. The Halpin-Tsai and Tandon-Weng micromechanical models underpredict E11.

The Halpin-Tsai prediction for E22 is close to that using the conventional and uniform

meshes, while the Tandon-Weng prediction for E22 is close to the Tucker and Liang

result. Both models provide similar results for the shear moduli and are in close

agreement with the conventional and uniform mesh results. The Halpin-Tsai and

Tandon-Weng models slightly overpredict ν12 with Halpin-Tsai providing the better

prediction. The Tandon-Weng model provides a very good prediction for ν23 while

the Halpin-Tsai result for ν23 is over 30% higher than the other models.

Table 5.5 gives the results using the staggered array. The conventional and uni-

form mesh results are in very good agreement with the Tucker and Liang results for

the staggered array. Table 5.5 shows that the packing array does have an effect on

the effective properties of the composite. Tucker and Liang’s results for the Poisson’s

ratios increase slightly for the staggered array. The conventional and uniform mesh

results also predict a slight increase in the Poisson’s ratios as well as E11. The con-

ventional and uniform mesh results also show a slight decrease in E22. Note that the

Halpin-Tsai and Tandon-Weng results are independent of the packing arrangement

due to their inability to account for the spatial distribution of the fibers. It also

worth noting that all of the models predict a transverse Poisson’s ratio ν23 greater

than 0.5. Although the Poisson’s ratio for isotropic materials must be less than 0.5,

the Poisson’s ratios for orthotropic materials may exceed this value and the limiting

values are dependent upon the ratio of the Young’s moduli [57].

72



5.3 Uniform Mesh Convergence Analysis

A convergence analysis of the uniform mesh elements was run by predicting the ef-

fective properties of a multiple fiber composite model using an increasing number of

elements and gauss points. By investigating the convergence of the uniform mesh

elements, the maximum element size and minimum number of gauss points needed

to obtain reliable results can be determined. The multiple fiber model was created

by forming a 5x5 array of continuous fiber RVEs as shown in figure 5.16. Since the

RVE is periodic and periodic boundary conditions are used, the effective properties

of the 5x5 array of continuous fibers will be equivalent to the effective properties of

the single RVE given in table 5.2.

Figure 5.16: Continuous fiber model used in the convergence analysis

The continuous fiber composite was modeled with 2,3,5,6 and 7 uniform mesh
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elements in each direction using between 2 and 20 Gauss points. The results for the

effective properties are given in figures 5.17-5.22. The total number of elements used

and the size of the element relative to the fiber diameter are given in the figures.

Figure 5.17: E11 convergence

The figures show the uniform mesh results oscillate about the actual solution. The

effective properties are highly dependent upon the volume fraction of the composite.

The uniform mesh method determines the volume fraction based on the number of

Gauss points that lie within the fiber and is given in equations 3.60 and 3.61. Varying

the number of Gauss points changes the total number of Gauss points that lie within

fiber, resulting in a change in the volume fraction. Since the Gauss points are not

uniformly distributed across the element, an increase in the number of Gauss points

could lead to a decrease in the volume fraction and the opposite is also true. This

causes the oscillations in the effective properties shown in the figures. However,
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Figure 5.18: E22 convergence

by increasing the number of Gauss points and elements, the volume fraction will

eventually approach the actual volume fraction and the solution will converge. All

of the effective properties converge to the actual solution except G12 which converges

to a value slightly higher than the actual. This was expected due to the correction

factors inability to accurately predict the longitudinal modulus.

Figures 5.17-5.22 show that either a large number of elements with few Gauss

points can be used or a large number of Gauss points with few elements. Increasing

the number of elements increases the amount of computer memory needed to run the

analysis, but increasing the number of Gauss points greatly increases the computa-

tional time. The amount of computational time needed to run an analysis is plotted

versus the number of elements and Gauss points in figure 5.23.

Figure 5.23 shows that the number of Gauss points has a greater effect on the
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Figure 5.19: G12 convergence

computational time than the number of elements. The computational time shows

approximately a linear dependence on the number of elements. Therefore, doubling

the number of elements approximately doubles the computational time. However,

increasing the number of Gauss points from 6 to 10 approximately triples the compu-

tational time. Therefore, the number of Gauss points should be kept to a minimum.

From figures 5.17,5.18,5.19,5.20,5.21 and 5.22 it is seen that when the element is ap-

proximately the size of the fiber, the solution remains within a few percent of the

actual when using 8 or more Gauss points.
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Figure 5.20: G23 convergence
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Figure 5.21: ν12 convergence
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Figure 5.22: ν23 convergence

Figure 5.23: Computational time
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CHAPTER 6

MULTIPLE FIBER MODELS

The single fiber models are limited because they can only be used to model fully

aligned composites with a uniform array of fibers. However, real injected molded

composites will always contain a certain degree of misalignment and the fibers are

randomly dispersed throughout the matrix. Therefore, multiple fiber RVE’s must be

used to account for the fiber orientation and arrangement of real composites. In this

chapter, a composite with an assumed fiber orientation distribution function will be

modeled over a range of fiber volume fractions using the finite element method and

the results will be compared with an orientation averaging scheme.

6.1 Fiber Orientation

In order to model the orientation of a real injection molded composite, a way of

characterizing the orientation must first be specified. If one assumes the fibers are

rigid cylinders, uniform in length and diameter, and that the fibers are spatially

uniform, then the orientation of a single fiber is defined by the angles φ and θ as

shown in figure 3.6 [20]. The orientation state at a point in the composite can be

characterized in terms angles by a probability distribution function ψ(θ, φ) or in terms

of the fiber unit vector, p̄ as ψ(p̄), where p̄ is given in equation 3.54 [20]. A more

convenient way of representing the fiber orientation is through orientation tensors,

aij.., which are defined as

aij.. =

∮
pipj..ψ(p̄)dp̄ (6.1)

79



As described in Chap. 2, the effective properties of a misaligned composite can

be found through a two step homogenization procedure [20–22] as shown in figure

6.1. This is done by first decomposing the composite into a set of fully aligned cells

Figure 6.1: Two step homogenization procedure taken from Jack and Smith [2]

or aggregates containing the same volume fraction as the composite. Each aggregate

is then homogenized using an appropriate micromechanical model discussed in Chap.

2. The second step involves homogenizing the aggregates into a single anisotropic

material by performing an orientation average. The second step is done assuming a

distribution of stress and strains between the aggregates.

Advani and Tucker [20] derived an orientation average of the effective stiffness
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tensor, 〈Cijkl〉, in terms of the second and fourth order orientation tensors as:

〈Cijkl〉 = B1aijkl + B2(aijδkl + aklδij) + B3(aikδjl + ailδjk + ajkδil + ajlδik)

+B4(δijδkl) + B5(δikδjl + δilδjk) (6.2)

where the constants, Bi, are related to the unidirectional stiffness components, C ′
ij,

through the following [20]

B1 = C ′
11 + C ′

22 − 2C ′
12 − 4C66

B2 = C ′
12 − C ′

23

B3 = C ′
66 + 1/2(C ′

23 − C ′
22) (6.3)

B4 = C ′
23

B5 = 1/2(C ′
22 − C ′

23)

Expressions for 〈Cijkl〉 have also been derived by first rotating the homogenized

stiffness tensor of a single aggregate in the local coordinate system to the global

composite coordinate system using the following expression [21]

C
(n)
ijkl = Qqi(θn, φn)Qrj(θn, φn)Qsk(θn, φn)Qtl(θn, φn)C ′

qrst (6.4)

where Q(θ, φ) is the rotation tensor and is given by

Q(θ, φ) =




sin θcosφ sin θ sin φ cos θ

− sin φ cos φ 0

− cos θ cos φ − cos θ sin φ sin θ


 (6.5)

Assuming constant strain between the aggregates, the mean effective stiffness tensor,

mijkl can be found by summing the stiffness of the rotated aggregates [2]

mijkl =
1

N

N∑
n=1

(
Qqi(θn, φn)Qrj(θn, φn)Qsk(θn, φn)Qtl(θn, φn)C ′

qrst

)
(6.6)
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where N is the number of units or aggregates. Jack and Smith [2] have shown that

as N →∞ then the mean, mijkl, approaches the orientation average

〈Cijkl〉 =

∮
Qqi(θn, φn)Qrj(θn, φn)Qsk(θn, φn)Qtl(θn, φn)C ′

qrstψ(θ, φ)dS (6.7)

6.1.1 Monte Carlo Algorithm

The fiber angles were obtained using a Monte Carlo algorithm to generate random an-

gle pairs (θn, φn) sampled from a given orientation distribution function. An Accept-

Reject Generation Algorithm is used in order to ensure the random angle pairs accu-

rately represent the fiber orientation distribution function as was done by Jack and

Smith [2]. Once the fiber angles have been generated, they are then randomly placed

inside a periodic box. A Monte Carlo algorithm was also used for the fiber placement

and a flowchart of the algorithm is shown in figure 6.2.
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Figure 6.2: Monte Carlo algorithm
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The fibers are initially placed inside a box at a very dilute volume fraction (vf <

0.1%) by randomly generating the centroid coordinates of each fiber using a uniform

random number generator. A check is then performed to determine whether any of

the fibers extend beyond the boundaries of the box. If a fiber does extend beyond the

boundaries, a copy of the fiber is added by translating the original fiber a distance

equal to the dimensions of the box. For example, if a fiber extends beyond the positive

x face of the box, a copy added and placed a distance x− lx from the original fiber.

If a fiber extends beyond more than one face, then multiple copies are made. This is

done to ensure the box is periodic.

Next, the fibers are checked to ensure no overlap occurs. If a fiber overlaps another

fiber, then the coordinates of the centroid of the fiber are randomly moved a small

distance. Since the fiber has now moved it must be rechecked to determine whether it

extends beyond the box boundaries and whether it overlaps any fibers. This process

continues until no overlap occurs or the maximum number of iterations has been

reached. If no overlap is achieved, then the box dimensions are decreased slightly,the

fiber coordinates are scaled accordingly, and the process is repeated until the desired

box dimensions are achieved. If the maximum number of iterations is achieved, then

all the fibers are replaced inside the box at the dilute volume fraction and the entire

process is repeated. This is done to ensure that an impossible fiber configuration is

not obtained and to keep the algorithm constantly moving.

It was impossible to randomly place fibers without overlap for volume fractions

greater than approximately 10 %. Therefore, models with larger volume fractions will

possess a certain degree of overlap. As the box collapses, the volume fraction increases
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because the number of fibers is held constant. In order to minimize the overlap for

large volume fractions, the fibers were randomly moved to ensure no overlap up until

the volume fraction inside the box exceeded 10%. Once the volume fraction exceeded

10%, the box was allowed to collapse to the desired dimensions without checking for

overlap. This ensures that the fibers are spread out and in a desirable configuration

before the box collapses to its final size. For a volume fraction of 30%, this method

kept the overlap to less than 2%.

6.2 Results

For this analysis it is assumed the fiber distribution function is of the form [2]

ψ(θ, φ) = c sin2nθcos2nφ (6.8)

where c is a constant chosen to satisfy a normalization condition. The value of n

determines the degree of fiber alignment in that as n increases, the the alignment

of the fibers with the x1 axis increases. In this example, the values for c and n are

taken from Jack and Smith [2] where n = 4 resulting in c = 9/4π. The Monte Carlo

algorithm was used to generate random angle pairs from the orientation distribution

function in equation 6.8. The fibers were then placed in a periodic box and the

effective stiffness was found using the uniform mesh method over a range of volume

fractions. The material properties are the same as those used in the previous chapter

and given in table 5.3. The aspect ratio for this example was AR = 10, the diameter

of the fiber was D = 10µm and the dimensions of the box were lx = ly = lz = 200µm.

Figure 6.3 shows a sample periodic box at a volume fraction of 5%.
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Figure 6.3: Sample periodic box with vf = 5%

Due to the random nature of the fiber placement and fiber orientation, 10 separate

configurations were modeled at each volume fraction. The mean effective stiffness of

the 10 configurations was found and the 95% confidence interval was calculated and

presented as error bars, where the 95% confidence interval refers to the statistical

reliability of the data using the given method. The mean and confidence interval are

found through the following

¯[C]eff =
1

N

N∑
i=1

[C]eff (6.9)

(
¯[C]eff − tα/2,N−1

s√
N

)
≤ ¯[C]eff ≤

(
¯[C]eff + tα/2,N−1

s√
N

)
(6.10)

where tα/2,N−1 is found from the student t table and the variance, s2, is given by

s2 =
1

1−N

N∑
i=1

[[C]
(i)
eff − ¯[C]eff ]

2 (6.11)
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The results were compared with an orientation averaging scheme using both the

Halpin-Tsai and Tandon-Weng micromechanical models for finding the unidirectional

properties of the aligned aggregates. The orientation average was approximated using

equation 6.9 for the angle pairs generated during the uniform mesh analysis. The

mean and confidence interval of were also calculated for the orientation averages of

the 10 configurations.

The composite with volume fraction vf = 0.10 was modeled using 2 different

element sizes and two sets of Gauss points in order to check for converge. The results

are shown in table 6.1

Elastic 8000 elem 8000 elem 27000 elem 27000 elem 64000 elem
constants 6gp 10gp 6gp 10gp 6gp
E11/Em 1.938 1.928 1.972 1.964 1.980
E22/Em 1.362 1.354 1.351 1.346 1.345
G12/Em 0.543 0.541 0.552 0.551 0.551
G23/Em 0.432 0.430 0.439 0.438 0.444

ν12 0.363 0.364 0.369 0.369 0.373
ν23 0.423 0.424 0.426 0.426 0.427

Table 6.1: Convergence analysis

The table shows that for a given number of elements there the solutions vary by less

than 0.5% when using 6 and 10 Gauss points. It is also shown that the effective

property results using 8000 elements and 27000 elements are within approximately

1.5% of each other. The results using 27000 elements and 64000 elements are within

less than 1% and 4 of the 6 constants are within 0.5%. The calculated 95% confidence

intervals are up to 1% of the mean. Therefore the results obtained using 27000 and

64000 elements are statistically indistinguishable. All of the results will be ran using
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27000 elements and 6 Gauss points.

Several components of the mean effective stiffness matrix are shown in figures

6.4,6.5,6.6 and 6.7 and the mean mechanical properties are given in figures 6.8,6.9,6.10

and 6.11

Figure 6.4: Mean C11 results

Figures 6.4 and 6.5 show that at low volume fractions, all of the models predict

similar results for the effective stiffness components. However, as the volume fraction

increases, the Halpin-Tsai model greatly overpredicts the other two models for C11

and C22. At a volume fraction of 30%, the Halpin-Tsai result for C11 is approximately

39% stiffer than the Tandon-Weng result and 26% stiffer than the uniform mesh result.

The Halpin-Tsai result for C22 is over 120% stiffer than the C22 results for the Tandon-

Weng and uniform mesh models. The Tandon-Weng and uniform mesh results for

C11 and C22 are in a good agreement over the entire range of volume fractions. At the
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Figure 6.5: Mean C22 results

highest volume fraction the uniform mesh results for C11 and C22 are approximately

10% higher than the Tandon-Weng results. The large disparity in the Halpin-Tsai

model is a result of its poor prediction for the transverse Poisson’s ratio, ν23, as shown

in figure 6.11. For the transverse Poisson’s ratio, the Halpin-Tsai model overpredicts

the Tandon-Weng model by as much as 52% at the highest volume fraction. The

uniform mesh result for ν23 remains with 13% of the Tandon-Weng result with the

largest disparity occurring at the highest volume fraction. Both micromechanical give

similar predictions for the longitudinal Poisson’s ratio and Young’s modulus, ν12 and

E11 as shown in figures 6.10 and 6.8. The Halpin-Tsai result for E22 lies between the

uniform mesh and Tandon-Weng results.

Tables 6.6 and 6.7 show that the Halpin-Tsai and Tandon-Weng models provide

similar predictions for C44 and C55 over the entire range of volume fractions. These
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Figure 6.6: Mean C44 results

models give predictions for C44 slightly below those of the uniform mesh method at

higher volume fractions with a maximum disparity of approximately 6%. The uniform

mesh result for C55 is up to 15% stiffer than the micromechanical models. This is a

result of the uniform mesh method’s overprediction of the longitudinal modulus as

discussed in the previous chapters.

The increasing disparity between the uniform mesh results and the orientation av-

eraging results at higher volume fractions is a result of the basic assumptions inherent

in the orientation averaging procedure. The orientation averaging assumes there is

no interaction between fibers and only accounts for the fiber orientation. Therefore,

the fiber separation and spatial arrangement are not accounted for. These factors are

accounted for in the uniform mesh method. As the volume fraction increases the fiber

interaction becomes increasingly important and a disparity between the two methods
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Figure 6.7: Mean C55 results

occurs.

The confidence intervals, shown as error bars in the figures, tend to increase with

increasing volume fraction. Overall, the confidence intervals are very small since so

many fibers were used in the model. There is also a slight jump in the confidence

intervals for volume fractions greater than 12% due to the possibility of fiber overlap.

However, even at the highest volume fraction, the confidence intervals are still within

a few percent of the mean. Fiber overlap does not have a large effect on the effective

properties in that the results appear to follow the same trend over the entire range

of volume fractions. The transverse Poisson’s ratio ν23 does peak around 10 − 12%

and then decrease but similar a trend is predicted by the Tandon-Weng model. This

trend in the transverse Poisson’s ratio over a range of volume fractions has also been

noted in literature [11,34].
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Figure 6.8: Mean E11 results

Figure 6.9: Mean E22 results
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Figure 6.10: Mean ν12 results

Figure 6.11: Mean ν23 results
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The effective properties of composite materials are highly are dependent upon many

different factors and highly variable. Therefore, developing cost effective, yet reliable,

methods for determining the effective properties of composite materials remains an

active area of research. Numerous analytical and empirical micromechanical mod-

els have been developed over the years, but they all make many assumptions about

the microstructure of the composite and are therefore limited in their application.

Numerical methods, such as finite elements and boundary elements, have seen in-

creased composite modeling due to their flexibility in solving very complex problems.

However, numerical models require that a high quality mesh be obtained over all

the constituents in order provide accurate results. This remains a very difficult and

time intensive task and after a quality mesh is obtained, the user must have sufficient

computer memory in order to solve the problem.

A uniform mesh finite element method was developed in order to greatly simplify

the meshing procedure and reduce the degrees of freedom of the model, thus reduce

the computer memory requirements. The main difference between the uniform mesh

method and conventional finite elements is that uniform mesh elements can contain

more than one material. A correction factor was developed in order to account for

the differences in the strain in the two materials within a single element. A single

uniform mesh element was compared with two conventional finite elements and it

was shown that with the addition of the correction factor, the uniform mesh element
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could accurately predict all of the elastic constants except the transverse shear moduli.

Although the inclusion of the correction factor decreased the error for the longitudinal

shear moduli, the uniform mesh element provides a stiffer result than that of the

conventional elements.

The uniform mesh element was then compared with a continuous and single fiber

models from literature. The results of the uniform mesh method were in close agree-

ment with the literature. The uniform mesh method was then used to predict the

elastic constants of a composite with a given orientation distribution and the results

were compared with an orientation averaging scheme using both the Halpin-Tsai and

Tandon-Weng models over a range of volume fractions. A Monte-Carlo algorithm

was written to provide random fiber angle pairs sampled from the fiber orientation

distribution. The fibers were then randomly placed inside a periodic box. Up to

a volume fraction of 10%, the fibers were placed such that no overlap occured. At

volume fractions above 10%, a certain degree of overlap was unavoidable. It was

found that all three methods provided similar results for the stiffness components at

low volume fractions. However, the Halpin-Tsai was much stiffer than the uniform

mesh and Tandon-Weng models at higher volume fractions. This was due to the

Halpin-Tsai’s poor predictions for the transverse Poisson’s ratio. The uniform mesh

and Tandon-Weng results were within 10% over the entire range of volume fractions.

The disparity in the two models is most likely a result of the inability of the orien-

tation averaging procedure to account for fiber interactions which become increasing

important at higher volume fractions.

The following recommendations are made for future work:
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• The correction factor needs to be adjusted in order to increase the accuracy of

the longitudinal shear moduli prediction.

• A more efficient packing algorithm needs to be developed in order to obtain

higher volume fractions without fiber overlap.

• Image analysis needs to be performed on a composite sample in order to ex-

perimentally determine the fiber orientation and length distributions. This

information could then be used to seed the Monte Carlo algorithm in order to

obtain a realistic uniform mesh model. The effective elastic constants of the

uniform mesh model could then be compared with the experimentally obtained

elastic constants

• The uniform mesh method needs to be adapted model to textile composites.

Currently, the only two fibers angles are required for each fiber and all fibers

are assumed to have the same length. For woven composites, a similar approach

could be taken, in that only the orientations of the individual fiber tows would

need to be specified and the fiber tows could be assumed infinite in length.

However, for knitted fabric composites, both the orientation and curvature of

the individual fiber tows would need to be specified. Since the curvature is

not constant, the fiber tows would need to be divided into segments, and each

segment would be defined by a separate curvature and orientation. These values

would then be used to determine whether each Gauss point lies within a fiber

tow or matrix.
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• The elemental stiffness matrix calculations also need to be modified to incorpo-

rate fiber tows and fibers that are non-isotropic. This would involve rotating the

local material stiffness matrix to the global coordinate system at Gauss points

that lie within the non-isotropic fibers or fiber tows.

96



BIBLIOGRAPHY

[1] Sun, C.T. and R.S. Vaidya. Prediction of Composite Properties from a Rep-
resentative Volume Element. Composites Science and Technology, 56:171–179,
1996.

[2] Jack, D.A. and D.E. Smith. Elastic Properties of Short-Fiber Polymer Com-
posites, Derivation and Demonstration of Analytical Forms for Expectation and
Variance from Orientation Tensors. Journal of Composite Materials, accepted,
2007.

[3] Advani, S.G. and E.M. Sozer. Process Modeling in Composites Manufacturing.
Marcel Dekker, Inc., New York, NY, 2003.

[4] Tucker III, C.L. and E. Liang. Stiffness predictions for unidirectional short-
fiber composites: Review and evaluation . Composites Science and Technology,
59:655–671, 1999.

[5] Halpin, J.C. and J.L. Kardos. The Halpin-Tsai Equations: A Review. Polymer
Engineering and Science, 16(5):344–352, May 1976.

[6] Hill, R. Theory of Mechanical Properties of Fibre-Strengthened Materials: I
Elastic Behavior. J. Mech. Phys. Solids, 4:280–282.

[7] Hermans, J.J. The elastic properties of fiber reinforced materials when the fibers
are aligned. Proc. Koninkl. Nederl. Akademie Van Wetenschappen-Amsterdam
B, 65:1–9.

[8] Hewitt, R.L. and M.C. de Malherbe. An Approximation for the Longitudinal
Shear Modulus of Continuous Fibre Composites. Journal of Composite Materials,
59:655–671, 1999.

[9] Lewis, T.B. and L.E. Nielson. Dynamic Mechanical Properties of Particulate-
Filled Composites. Journal of Applied Polymer Science, 14:1449–1471.

[10] Ingber, M.S. and T.D. Papathanasiou. A Parallel-Supercomputing Investiga-
tion of the Stiffness of Aligned, Short-Fiber Reinforced Composites Using the
Boundary Element Method. International Journal for Numerical Methods in
Engineering, 40:3477–3491, 1997.

[11] Gusev, A.A., P.J. Hine, and I.M. Ward. Fiber packig and elastic properties of a
transversely random unidirectional glass/epoxy composite. Composites Science
and Technology, 60:535–541, 2000.

[12] K Mori, T Tanaka. Average stress in matrix and average elastic energy of mate-
rials with misfitting inclusions. Acta Metallurgica, 21:571–574.

[13] Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proc. Roy. Soc. London A, 241:376–396.

97



[14] Tandon, G.P. and G.J. Weng. The Effect of Aspect Ratio of Inclusions on the
Elastic Properties of Unidirectionally Aligned Composites. Polymer Composites,
5(4):327–333, October 1984.

[15] Lusti, R.H., P.J. Hine, and A.A. Gusev. Direct numerical predictions for the
elastic and thermoelastic properties of short fiber composites. Composites Science
and Technology, 62:1927–1934, 2002.

[16] Gusev, A.A., H.R. Lusti, and P.J. Hine. Stiffness and Thermal Expansion of
Short Fiber Composites with Fully Aligned Fibers. Advanced Engineering Ma-
terials, 4(12):927–930, 2002.

[17] Hashin, Z. and S. Shtrikman. A Variational Approach to the Theory of The
Elastic Behavior of Muliphase Materials. J. Mech. Phys. Solids, 11:127–140.

[18] Willis, J.R. Counds and Self-consistent Estimates for the Overall Properties of
Anisotropic Composites. J. Mech. Phys. Solids, 25:185–202.

[19] Lielens, G., P. Pirotte, A. Couniot, F. Dupret, and R. Keunings. Prediction of
thermo-mechanical properties for compression moulded composites. Composites
Part A, 29A:63–70, 1998.

[20] Advani, S.G. and C.L. Tucker III. The Use of Tensors to Describe and Predict
Fiber Orientation in Short Fiber Composites. J. Rheology , 31:751, 1987.

[21] Ward, I.M. Optical and Mechanical Anisotropy in Crystalline Polymers. Proc.
Phys. Soc., 80:1176–1188, 1962.

[22] Camacho, C.W. and C.L. Tucker III. Stiffness and Thermal Expansion Predic-
tions for Hybrid Short Fiber Composites. Polymer Composites, 11(4):229–239,
1990.

[23] Hine, P.J., H.R. Lusti, and A.A. Gusev. On the possiblity of reduced variable
predictions for the thermoelastic properties of short fiber composites. Composites
Science and Technology, 64:1081–1088, 2004.

[24] Naik, R.A. Failure Analysis of Woven and Braided Fabric Reinfored Composites.
Journal of Composite Materials, 29(23):2334–2363, 1995.

[25] J. Vandeurzen, P.and Ivens and I. Verpoest. A Three-Dimensional Microme-
chanical Analysis of Woven-Fabric Composites: II. Elastic Analysis. Composites
Science and Technology, 56:1317–1327, 1996.

[26] Gommers, B., I. Verpoest, and P. Van Houtte. The Mori-Tanaka Method Applied
to Textile Composite Materials. Acta Metallurgica, 46(6):2223–2235, 1998.

[27] Gommers, B., I. Verpoest, and P. Van Houtte. Modelling the elastic properties
of Knitted-fabric-reinforced composites. Composites Science and Technology,
56:685–694, 1996.

98



[28] Huysmans, G., I. Verpoest, and P. Van Houtte. A Poly-Inclusion Approach
for the Elastic Modelling of Knitted Fabric Composites. Acta Metallurgica,
46(9):3003–3013, 1998.

[29] Xia, Z., Y. Zhang, and F. Ellyin. A unified periodical boundary conditions
for representative volume elements of composites and applications. Polymer
Engineering and Science, 40(8):1907–1921, April 2003.

[30] Li, S. On the Unit Cell for Micromechanical Analysis of Fibre-Reinforced Com-
posites. Proc. Roy. Soc. London A, 455(1983), 1999.

[31] Drugan, W.J. and J.R. Willis. A Micromechanics-Based Nonlocal Constitua-
tive Equation and Estimates of Representative Volume Elements Size for Elastic
Composites. J. Mech. Phys. Solids, 44(4):497–524, 1996.

[32] Gusev, A.A. A Fast Boundary Element Method for the Analysis of Fiber-
Reinforced Composites Based on a Rigid-Inclusion Model. J. Mech. Phys. Solids,
45(9):1449–1459, 1997.

[33] Gusev, A.A. Numerical Identification of the Potential of Whisker and Platelet-
Filled Polymers. Macromolecules, 34:3081–3093, 2001.

[34] Hine, P.J., H.R. Lusti, and A.A. Gusev. Numerical simulation of the effects
of volume fraction, aspect ratio and fiber length distribution on the elastic and
thermoelastic properties of short fiber composites. Composites Science and Tech-
nology, 62:1445–1453, 2002.

[35] Michel, J.C., H. Moulinec, and P. Suquet. Effective properties of composite
materials with periodic microstructure: a computational approach. Comput.
Methods Appl. Engr., 172(1999), 1999.

[36] Jiang, M., K. Alzebdeh, I. Jasiuk, and M. Ostoja-Starzewski. Scale and boundary
ocnditions effects in elastic properties of random composites. Acta Mechanica,
148:63–78, 2001.

[37] Gusev, A.A., M. Heggli, H.R. Lusti, and P.J. Hine. Orientation Averaging for
Stiffness and Thermal Expansion of Short Fiber Composites. Advanced Engi-
neering Materials, 4(12):931–933, 2002.

[38] Lusti, H.R. and A.A. Gusev. Finite element predictions for the thermoelastic
properties of nanotube reinforced polymers. Modelling and simulation in mate-
rials science and engineering, 12:S107–S119, 2004.

[39] G. Lomov, S.V.and Huysmans, Y. Luo, R.S. Parnas, A. Prodromou, I. Verpoest,
and F.R. Phelan. Textile composites: modelling strategies. Composite: Part A,
32:1379–1394, 2001.

99



[40] S. Whitcomb, J.and Kanthikannan and C. Shapman. Evaluation of homogeniza-
tion for global/local stress analysis of textile composites. Composite Structures,
31:137–149, 1995.

[41] J. Kanthikannan, S.and Whitcomb and C. Shapman. Model technique for three-
dimensional global/local stress analysis of plain weave composites. Composite
Structures, 39:145–156, 1997.

[42] Xu, J., B.N. Cox, M.A. McGlockton, and W.C. Carter. A Binary Model of
Textile Composites-II. The Elastic Regime. Acta Metallurgica Mater., 43:3511–
3524, 1995.

[43] W. Zeng, T.and Lin-zhi and G. Li-cheng. Mechanical analysis of 3D braided
composites: a finite element model. Composite Structures, 64:399–404, 2004.

[44] Takano, N., Y. Uetsuji, Y. Kashiwagi, and Z. Masaru. Hierarchical modelling
of textile composite materials and structures by the homogenization method.
Modlling Simul. Mater. Sci. Eng., 7:207–231, 1999.

[45] Peng, X. and J. Cao. A dual homogenization and finite element approach for
material characterization of textile composites. Composites: Part B, 33:45–56,
2002.

[46] Papathanasiou, T.D. Stiffness Enhancement in Aligned, Short-Fiber Compos-
ites: A Computational and Experimental Investigation. Composites Science and
Technology, 54:1–9, 1995.

[47] Papathanasiou:94, M.S. Inger, L.A. Mondy, and A.L. Graham. The Effective
Elastic Modulus of Fiber-Reinforced Composites. Journal of Composite Materi-
als, 28(4):289–303, 1994.

[48] Nashimura, N. Fast multipole accelerated boundary integral equation methods.
Appl. Mech. Rev., 55(4):299–324, 2002.

[49] Liu Y.J., Nishimura N, Otani Y, Takahashi T, Chen XL, and Munakata H.
An advanced 3D boundary element method for characterizations of composite
materials. ASME J. Appl. Mech., 72:115–128, 2005.

[50] Chen X.L. and Y.J. Liu. An advanced 3D boundary element method for char-
acterizations of composite materials. Engineering Analysis with Boundary Ele-
ments, 29:513–523, 2005.

[51] Rao, S.S. The Finite Element Method in Engineering. Elsevier Butterworth-
Heinemann, Burlington, MA, 2005.

[52] Gosz, M.R. Finite Element Method: Aplications in Solids, Structures, and Heat
Transfre. CRC Press, 2006.

100



[53] Nemat-Nassar, S. and M. Hori. Micromechanics: Overall Properteis of Hetero-
geneous Materials. Elsavier, 1999.

[54] Hollister, S.J. and N. Kikuchi. A comparison of homogenization and standard
mechanics analyses for periodic porous composites. Computational Mechanics,
10:73–95, 1992.

[55] Aboudi, J. Mechanics of Composite Materials: A Unified Micromechanical Ap-
proach. Elsavier, 1991.

[56] D.S. Cook, R.D.and Malkus and R.J. Plesha, M.E. adn Witt. Concepts and
Applications of Finite Element Analysis. John Wiley & Sons Inc., 2002.

[57] Jones, R.M. Mechanics of Composite Materials. Taylor & Francis, Inc., 1999.

101


