
 

 

APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN DETECTING AND 

MAPPING SERICEA LESPEDEZA IN MISSOURI 

 
 
 
 
 

A Thesis 
Presented to 

The Faculty of the Graduate School 
University of Missouri-Columbia 

 
 
 
 
 

In Partial Fulfillment  
Of the Requirements for the Degree 

 
Master of Arts 

 
 
 
 
 
 

by 
 

BO ZHOU 
 

 
Dr. Cuizhen Wang, Thesis Supervisor 

 
 

May 2007 
 

 
 
 
 

 



The undersigned, appointed by the dean of the Graduate School, have examined the 

thesis entitled 

 
 
 
APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN DETECTING AND 

MAPPING SERICEA LESPEDEZA IN MISSOURI 

 

presented by Bo Zhou 

a candidate for the degree of Master of Arts 

and hereby certify that in their opinion it is worthy of acceptance. 

 

 

 

Cuizhen Wang 
Assistant Professor 

Department of Geography 
 
 
 
 

C. Mark Cowell 
Associate Professor 

Department of Geography 
 
 
 
 

R. David Larsen 
Associate Professor 

Department of Forestry 



 
Acknowledgements 

 
 
It is a great accomplishment for me to finish this research. I am very proud of myself. But 

deep in my heart, I am extremely grateful for those who have helped me all the way to 

this point for whom I can not do without.  To mention everyone who helped me will take 

up a substantial space. My parents are the ones to be thanked in the first place for making 

me who I am and for supporting me to do what I want. I will always be grateful to their 

unconditional and overwhelming love. My parents are the ones who supported my ideas 

and my dreams. 

 

Professor Susan Wang, my advisor, is the person who makes everything possible for me. 

Before I came to the United States, I had some initial contact with Dr. Wang who showed 

great interests in my research experience and tried very hard to bring me here for my 

Master’s study. Dr. Wang also helped me tremendously when I first came here who was 

able to make life easier for me as it should be for a new comer to a completely new 

environment and society. It is a great experience to work with Dr. Wang as her TA 

through which I learned tremendous knowledge and experience that could be applied to 

my future research. Dr. Wang is always available when I need her help and she is so 

approachable as teacher, so resourceful as a mentor and so considerate as a person. I still 

remember vividly last year when we were both out into the fields collecting ground data 

and explore the possibility of using hyperspectral imagery to detect weeds. Whenever I 

encountered any problem that stopped me from progressing in my research, she was able 

to figure out a way that drag me out of trouble and put me on the right track. Overall, Dr. 

 ii



Wang is the single most important reason that I was able to accomplish anything in my 

research. I am extremely grateful to her help in all sorts of ways. 

 

I would also like to thank my committee members, Dr. Mark Cowell and Dr. David 

Larsen, who unconditionally agreed to be on my committee and gave me great support 

with suggestions together with their perspectives toward my research. I am grateful to 

their valuable time and patience toward a Master’s student like me. 

 

I should also direct my thanks to Dr. Harlan Palm for organizing to acquire the image that 

is used in this research. Without the image my research could have never been done. Dr. 

Palm is the person who brought in the issue of sericea invasion as the start point of my 

thesis study. He also guided Dr. Wang in locating feasible study areas in Mid-Missouri. 

Besides Dr. Palm, Ms. Becky Erickson in the Regional Office of Missouri Department of 

Conservation (MDC) should also be given huge credits to for spending a whole day 

showing us fields invaded by sericea. She was the person who showed us the study area 

that we later picked in my research. I really admire her professionalism and her devotion 

to her work and her passion to share her knowledge with us without asking any reward.   

 

I will also thank the Geography department of University of Missouri-Columbia for 

supporting me my TAship for my Master’s study, for giving me the opportunity to study 

and research in a good environment without having to worry about how to survive, and 

for sponsoring me my field work during last summer. I would also like to thank the 

Graduate Professional Council (GPC) of University of Missouri-Columbia for supporting 

 iii



my travel to the 2007 Annual meeting of the Association of American Geographers 

(AAG) in San Francisco, CA. to present my research and broadcast my findings in the 

effort to control weeds in the state of Missouri. Finally, I would like to thank the 

Geography Resource Center (GRC) of Geography department for allowing me accessing 

the ENVI software in my research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv



 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS................................................................................................II 

LIST OF FIGURES .......................................................................................................... IX 

LIST OF TABLES ...........................................................................................................XII 

ABSTRACT................................................................................................................... XIII 

CHAPTER 

1. INTRODUCTION ....................................................................................................... 1 

1.1 Sericea 

1.1.1 What is sericea 

1.1.2 Sericea invasion 

1.2 Remote Sensing 

1.2.1 Current situation 

1.2.2 Sensor limitations 

1.2.3 Hyperspectral substitution 

1.3 Research objective 

2. LITERATURE REVIEW........................................................................................... 10 

2.1 Multispectral remote sensing in agriculture 

2.1.1 Crop mapping 

2.1.2 Invasive species detection 

2.2 Hyperspectral remote sensing in agriculture 

 v



2.2.1 Image Spectrometry 

2.2.2 Invasive species detection 

2.3 Hyperspectral data analysis 

2.3.1 Atmospheric correction 

2.3.1.1 Scene-Based Empirical Approaches 

2.3.1.2 Radiative Transfer Modeling Approaches 

2.3.1.3 Hybrid Approaches 

2.3.1.4 Data collection considerations with various atmospheric correction 

schemes 

2.3.2 Geometric Corrections 

2.3.3 Mapping and classification 

2.3.3.1 Band ratio 

2.3.3.2 SAM 

2.3.3.3 MNF and MTMF 

3. METHODOLOGY .................................................................................................... 25 

3.1 Study area and data collection 

3.1.1 Description of the study area 

3.1.2 Field spectra acquisition (ASD) 

3.1.3 Image acquisition (AISA) 

3.2 Data preprocessing 

3.2.1 ASD spectra preprocessing 

3.2.1.1 Noise reduction 

3.2.1.2 ASD spectra resampling 

 vi



3.2.2 AISA Image Preprocessing 

3.3 Image Classification 

3.3.1 Band Ratio 

3.3.1.1 Narrow-band (10nm) Indicator: band selection (reduction) 

3.3.1.2 NDVI image classification 

3.3.2 SAM 

3.3.2.1 Classification approach 

3.3.2.2 Endmember(s) selection 

3.3.3 MNF and MTMF joint approach 

4. RESULTS .................................................................................................................. 47 

4.1 Sericea mapping 

4.1.1 Band ratio 

4.1.1.1 Threshold identification 

4.1.1.2 Low commission error approach 

4.1.1.3 Low omission error approach 

4.1.1.4 Balanced approach 

4.1.2 SAM 

4.1.3 MNF and MTMF 

4.1.3.1 MNF Image and endmember 

4.1.3.2 MTMF mapping 

4.2 Accuracy assessment 

5. DISCUSSION AND CONCLUSION........................................................................ 70 

5.1 Discussion 

 vii



5.1.1 ASD derived endmember versus AISA derived endmember 

5.1.2 Geometric match between ground sites and image 

5.1.3 Mapping methods evaluation 

5.1.3.1 Endmember selection 

5.1.3.2 Mapping 

5.2 Conclusion 

5.2.1 Filter for noise removal in ASD ground measurement 

5.2.2 Optimal spectral bands 

5.2.3 Mapping approaches 

5.2.4 Major findings 

5.2.5 Future research 

REFERENCES ................................................................................................................. 78 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 viii



 

LIST OF FIGURES 

 

FIGURE                                                                                                                                                      PAGE

1-1: A TRACT OF PASTURE LAND DOMINATED BY SERICEA (CEDAR CREEK RANGER 

DISTRICT, MARK TWAIN NATIONAL FOREST, MISSOURI. PHOTOGRAPHED BY BO ZHOU, 

JULY 2006).................................................................................................................... 3 

1-2: SPECTRUM COMPARISON BETWEEN MULTI- AND HYPER-SPECTRAL SIGNATURES (ENVI 

2002) ............................................................................................................................ 6 

1-3: SIDE-VIEW OF SERICEA (CEDAR CREEK RANGER DISTRICT, MARK TWAIN NATIONAL 

FOREST, MISSOURI. PHOTOGRAPHED BY BO ZHOU, JULY 2006)..................................... 7 

1-4: CLOSE-UP VIEW OF SERICEA FROM ABOVE (CEDAR CREEK RANGER DISTRICT, MARK 

TWAIN NATIONAL FOREST, MISSOURI. PHOTOGRAPHED BY BO ZHOU, JULY 2006)........ 8 

2-1: SAMPLE SPECTRAL PLOT FROM JPL SPECTRAL LIBRARY (ENVI 2002)........................ 13 

2-2: SAM ALGORITHM ILLUSTRATION PLOT (ENVI 2002) ................................................. 23 

3-1: THE BASKET WILDLIFE RESEARCH AREA (BWRA), UNIVERSITY OF MISSOURI......... 26 

3-2: THE STUDY AREA WAS HIGHLIGHTED IN THE RED BOX IN AERIAL PHOTO OF BWRA OF 

2005............................................................................................................................ 27 

3-3: DATA COLLECTION IN FIELD USING THE ASD SPECTRORADIOMETER........................... 29 

3-4: THE AISA IMAGE AND GROUND SITES FOR ASD MEASUREMENT ................................ 30 

3-5: THE AISA IMAGE CUBE WITH 63 BANDS, GENERATED IN ENVI SOFTWARE................. 32 

3-6: EXAMPLE OF SPECTRUM DENOISE PROCEDURES: (A) RAW SPECTRUM, (B) DENOISED 

SPECTRUM WITH MEAN FILTER, AND (C) DENOISED SPECTRUM WITH SGOLGY FILTER. 35 

 ix



3-7: ASD SPECTRAL SIGNATURES (350 NM – 2,500 NM) AT THE 37 GROUND SITES ............. 35 

3-8: DENOISED ASD SPECTRA (SERICEA ONLY) .................................................................. 36 

3-9: ASD SPECTRAL SIGNATURES IN THE RANGE OF 400 NM – 970 NM (SERICEA ONLY) ..... 37 

3-10: RESAMPLED AND RESCALED ASD SPECTRA (SERICEA ONLY) .................................... 38 

3-11: CORRELATION BETWEEN ASD-MEASURED AND AISA-RETRIEVED REFLECTANCE .... 39 

3-12: BAND SELECTION OF THE BEST TWO BANDS IN RED AND NEAR INFRARED REGION..... 42 

3-13: ILLUSTRATION OF ENDMEMBER SELECTION IN SAM ALGORITHM ............................. 45 

4-1: HIGHEST POSSIBLE GRASS NDVI VALUE ..................................................................... 48 

4-2: HIGHEST AND LOWEST POSSIBLE SERICEA NDVI VALUE ............................................. 48 

4-3: ROI FOR OBTAINING LOWEST NDVI OF TREE ............................................................. 49 

4-4: LOW COMMISSION THRESHOLDS SHOWN IN BREAKPOINT EDITOR................................ 50 

4-5: LOW OMISSION THRESHOLDS SHOWN IN BREAKPOINT EDITOR..................................... 51 

4-6: BALANCED THRESHOLDS SHOWN IN BREAKPOINT EDITOR........................................... 52 

4-7: SERICEA MAP WITH LOW COMMISSION APPROACH....................................................... 53 

4-8: SERICEA MAP WITH LOW OMISSION APPROACH............................................................ 54 

4-9: SERICEA MAP WITH BALANCED COMMISSION AND OMISSION APPROACH ..................... 55 

4-10: SAM ENDMEMBER (AVERAGED SERICEA SPECTRUM)................................................ 56 

4-11: SAM SERICEA MAP AT THRESHOLD ANGLE OF 0.03 ................................................... 57 

4-12: SAM SERICEA MAP AT THRESHOLD ANGLE OF 0.04 ................................................... 58 

4-13: MNF ROTATED SERICEA ENDMEMBER....................................................................... 59 

4-14: MNF IMAGE WITH COMPONENTS 4, 5, 6 DISPLAYED IN RGB MODE .......................... 60 

4-15: MTMF SCATTER PLOT (HIGHLIGHTED POINTS HAVE RELATIVELY HIGH MF AND LOW 

INFEASIBILITY SCORES)............................................................................................... 62 

 x



4-16: MTMF MAPPED SERICEA HIGHLIGHTED IN RED ON TOP OF THE AISA IMAGE............ 63 

4-17: MTMF SERICEA MAP ................................................................................................ 64 

4-18: MTMF SERICEA MAP AFTER MAJORITY FILTERING .................................................... 65 

4-19: VALIDATION SITES OVERLAID ON THE AISA IMAGE................................................... 68 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xi



 

LIST OF TABLES 

 

TABLE                                                                                                                         PAGE

3-1: DRR BAND SELECTION PROCEDURES.......................................................................... 41 

4-1: ERROR MATRIX ........................................................................................................... 67 

4-2: ERROR MATRIX FOR CLASSIFICATION ON BAND RATIO IMAGE...................................... 69 

4-3: ERROR MATRIX FOR CLASSIFICATION ON SAM IMAGE ................................................ 69 

4-4: ERROR MATRIX FOR CLASSIFICATION ON MNF IMAGE ................................................ 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 xii



 

ABSTRACT 

APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN DETECTING AND 

MAPPING SERICEA LESPEDEZA IN MISSOURI 

 

When conservationists in Missouri realized that sericea lespedeza was taking its toll by 

threatening the healthy growth of economic vegetation, they decided to start controlling 

the invasion of this species. A major challenge encountered is to map the extent of its 

spatial spread. While satellite remote sensing and aerial photography have been available 

for many years, newer detection technologies such as hyperspectral sensors have made it 

possible to acquire large-scale laboratory-like spectra of sericea patches and surrounding 

natural grasses in the air. In this study, sericea was mapped using the Airborne Imaging 

Spectrometer for Application (AISA) sensor that records images at high spectral (9nm 

bandwidth, visible-infrared) and spatial (~1m) resolution. Ground spectra were measured 

using the FieldSpecPro Full Range (FR) spectroradiometer from Analytical Spectral 

Devices (ASD, 2006). The study area is a grass field within the Mark Twain National 

Forest. The AISA images were processed with three different classification methods, and 

the results are validated based on field surveys. Major findings include: (1) the averaged 

sericea spectra is more accurate for mapping purposes; (2) moderate spectral response 

instead of strong spectral response is better in sericea mapping for they have less 

confusion with other classes; and (3) the MNF (Minimum Noise Fraction) and MTMF 

(Mixture Tuned Matched Filtering) approach is the best for mapping sericea. 

Key words: Hyperspectral remote sensing, weed invasion, classification. 
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CHAPTER 1 

INTRODUCTION 

 

Plant invasions are a current threat to biodiversity conservation, second only to habitat 

loss and fragmentation (Yates 2004). Plant invasions are usually caused by non-native 

species that are introduced to a native environment. All species on the Missouri noxious 

weed list are invasive plants; that is, they have been introduced into an environment in 

which they did not evolve and often have no natural enemies to limit their reproduction 

or spread (Fishel 2002). Of the more than 2,500 plant species in Missouri, about 25 

percent are considered as nonnative and are called noxious weeds (Fishel 2002). 

 

There are several reasons that these non-natives are a threat to the native ecosystem. First, 

they are superior competitors in disturbed environments, and will contend for light, water, 

nutrients and space (Fishel 2002). Second, noxious weed species interfere with 

agriculture, cause human health problems, and degrade the environment (Fishel 2002). 

Finally and most importantly, noxious weeds reduce land value (Fishel 2002). As a result, 

they need to be controlled or eliminated based on their threat level to the native 

ecosystem. Herbicides are sometimes used to fulfill this task. Herbicides make up the 

vast majority of pesticide inputs to Missouri agronomic productions. The Missouri 

Department of Agriculture estimates that corn produced in 1999 applied about 97 percent 

of their pesticide inputs, by weight, in herbicides (Fishel 2002). To improve the efficiency 

of herbicide application, it is better through mapping the distribution of noxious weeds 
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and then spraying only on areas with the existence of noxious weeds. Weeds often cluster 

in patches. Several physical and chemical soil properties, such as pH, nutrient levels, 

organic matter content, and cation exchange capacity are believed to contribute to 

“patchy” weed distributions (Koger 2003). This patchy pattern could be detected with 

remotely sensed images. In this research, a specific noxious weed type commonly named 

sericea lespedeza with a scientific name of Lespedeza cuneata L. (USDA plants database 

2007) hereafter referred to as sericea, is mapped in grass fields in Mid-Missouri using an 

airborne image. 

 

1.1  Sericea 
 
Sericea is recognized as “Missouri’s silent thief” (Bové 2004). In pastures, sericea has 

been found to have allelopathic qualities that hinder germination or growth of both warm 

and cool season grasses typical of pastures (Dudley 2003). Though it was not officially 

categorized as an invasive species in Missouri until most recently, the damage is already 

present in a large portion of this state (Bové 2004). 

 

1.1.1 What is sericea 

Sericea is a warm-season, perennial legume native to eastern Asia (Figure 1-1). It was 

intentionally introduced into the United States in the late 1890s (Brush 2001). Sericea is a 

deep-rooted perennial that can grow 18 to 40 inches tall. Stems are either single or 

clustered with many branches. Mature stems are coarse or woody in appearance. Leaves 

are a trifoliate with short petioles. Flowering occurs from mid-July to early August 

(Brush 2001).  

 2



 

Figure 1-1: A tract of pasture land dominated by sericea (Cedar Creek Ranger District, Mark Twain 
National forest, Missouri. photographed by Bo Zhou, July 2006) 

 

1.1.2 Sericea invasion 

Sericea was first introduced to Missouri by the Missouri Department of Transportation 

(MoDOT) to control highway road-side erosion in the 1930s (Brush 2001; Bové 2004). It 

was later found by the Missouri Department of Conservation (MDC) that sericea’s 

disadvantages far outweigh any possible benefits due to several innate features of this 

plant (Bové 2004). Sericea succeeded in creeping across the fence into fields of pasture 

or hay ground (Brush 2001). Once you know what to look for, you’re sure to spot it 

everywhere you go in Missouri, especially along roads (Bové 2004). Because of its 

highly competitive nature, poor forage quality and invasiveness, sericea was put on 

Kansas’s noxious weed list in July 2000. It was not put on the noxious weed list in 
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Missouri until 2004 (Bové 2004), due to the fact that too much sericea has been sown for 

erosion control, and there are some areas in the state where seed is grown and harvested 

and sold for use in other states (Brush 2001). 

 

Land managers with MDC currently scout statewide conservation land for sericea and the 

Missouri Prairie Foundation has been spraying herbicide on sericea in its land as well on 

selected MDC lands. But due to the persistence of this species, people sometimes attempt 

to control it by burning the fields (Bové 2004). 

 

1.2  Remote Sensing  
 
1.2.1 Current situation 
 
Remote sensing is the science and art of obtaining information about the properties of 

electromagnetic waves emitted, reflected or diffracted without touching the object 

(Campbell 2002). Remote sensing provides a unique perspective in mapping and 

monitoring large areas because it measures emitted or reflected energy at wavelengths 

with a wider range than human vision (e.g., infrared, microwave, etc.). 

 

Remote sensing is widely explored as a tool for detection and mapping of weeds in 

agricultural crops (Lamb and Brown 2001). Remote sensing-based approaches have been 

developed for operational monitoring of weed invasion (Thorp and Tian 2004). Weeds 

often cluster together to form “patchy” effects that could be identified using remotely 

sensed images (Thorp and Tian 2004). In past studies classification algorithms were often 

applied to delineate weed patches based on statistical variability in the different spectral 

response of vegetation and non-vegetation canopies. However, for post-emergence weed 
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sensing, the effectiveness of classification is weakened since weeds and crops exhibit 

similar spectral characteristics (Lamb and Brown, 2001). 

 

1.2.2 Sensor limitations 

Application of multi-spectral remote sensing in weed detection is limited because of its 

spectral configuration and sometimes low spatial resolution. The low spatial resolution of 

satellite image such as Landsat Thematic Mapper (TM) is not feasible for weed detection 

since there may be too much confusion inside a pixel. The spectral response of a single 

pixel is often a mixture among several targets (Thorp and Tian 2004). Airborne photos or 

satellite images with high spatial resolution (e.g., IKONOS, QuickBird), on the other 

hand, have problems with the lack of a sufficient number of narrow spectral bands to 

detect minor differences between different type of vegetation. Still other sensors with 

high spectral resolution like Moderate Resolution Imaging Spectroradiometer (MODIS) 

are not capable of weed detection because of their low spatial resolution. 

 

The problem with most widely used multispectral systems is that they only have a limited 

number of bands with each covering a very wide region in the spectrum (> 100nm). 

Within such a wide spectral region a lot of subtle information is averaged, generalized or 

even concealed. Figure 1-2 shows how the information is lost by using multispectral RS. 

Unique spectral features of a weed species, such as reflectance peaks or absorption 

troughs in the spectrum, are often lost in broad-band spectral reflectance.  
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Figure 1-2: Spectrum comparison between Multi- and Hyper-spectral signatures (ENVI 2002) 
 

1.2.3 Hyperspectral substitution 

Hyperspectral sensors can capture data in contiguous, narrow bands in the 

electromagnetic spectrum. The large numbers of bands provide researchers with vast 

quantities of information (Goetz 1985). Hyperspectral data can often capture the unique 

spectra or ‘spectral signature’ of an object. This signature can be used to differentiate and 

identify materials (Goetz 1985).  

 

Hyperspectral remote sensing integrates imaging and spectroscopy in a single system 

which often includes large data sets due to the fine narrow subdivision of bands and the 

“hyper” number of bands in the spectrum. A "band" is defined as a portion of the 
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spectrum with a narrow spectral width such as 10nm. Hyperspectral remote sensing 

records more detailed spectral information for weed detection and other applications of 

target identification. However, the large size of data set takes up more storage space and 

requires new and more complicated processing algorithms (Goetz et al. 1985). 

 

Different ground objects tend to have different ‘spectral signatures’ corresponding to their 

identity. In this study, hyperspectral imagery is used to detect and map sericea based on 

its unique spectral response. Figure 1-3 and 1-4 show the side and top views of sericea. 

Also note the patchy effect of sericea in Figure 1-3.   

 

 

Figure 1-3: Side-view of sericea (Cedar Creek Ranger District, Mark Twain National forest, Missouri. 
photographed by Bo Zhou, July 2006) 
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Figure 1-4: Close-up view of sericea from above (Cedar Creek Ranger District, Mark Twain National 
forest, Missouri. photographed by Bo Zhou, July 2006) 

 

Good results from hyperspectral analysis are possible in this study because it is suggested 

that hyper-spectral RS might be more successful for weed species delineation than multi-

spectral RS (Varner 2000).  

 

1.3  Research objective 

Sericea encroachment has been serious in Missouri. Although it was introduced and 

treated as a boon for wildlife and erosion control, it is now the subject of eradication 

efforts (Bové 2004). Before conservationists can start removal of these noxious weeds, 

they will first need a distribution map to guide the task. Although field surveys are 

accurate, they are very time consuming and accessibility is an issue because huge parts of 
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Missouri pastures are private lands. A newer and more effective approach is called for. In 

this research the feasibility of hyperspectral remote sensing for mapping sericea in 

Missouri will be tested. To fulfill this goal, several research objectives will be 

accomplished: 

(1) Select optimal bands in hyperspectral images that are most useful in classification,  

(2) Identify optimal endmember, signature spectrum that represents a certain class, for 

sericea classification, and  

(3) Test effective classification algorithms to accurately map sericea. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Multispectral remote sensing in agriculture 

2.1.1 Crop mapping 

Agricultural fields during the growing season have distinctly different color, pattern and 

texture from other land cover types such as forest and water. As a result, large-area crop 

mapping can be easily conducted from multispectral images at medium to coarse 

resolution. More detailed information can be extracted from multispectral images at high 

resolution to meet the requirements of site-specific farming (Barnes 1996). 

 

Perhaps the most widely accepted method for image-based crop monitoring is to extract 

greenness and healthiness information by calculating band ratios or vegetation indices 

(Thorp and Tian 2004). Vegetation indices can be used to estimate soil properties such as 

organic matter (Dalal and Henry 1986; Shonk et al. 1991). Vegetation indices are also 

used for water stress detection (Barnes 1996). Many of these indices have been developed 

for use in remote sensing research over the past 30 years. Among them the most widely 

used one is the normalized difference vegetation index (NDVI; Ashley and Rea 1975). In 

addition to the NDVI, the other two most basic vegetation indices (VI) are ratio 

vegetation index (RVI; Jordan 1969) and difference vegetation index (DVI; Tucker 

1979). These basic vegetation indices can easily separate vegetation spectra from other 
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spectra such as soil and water. However, they are highly affected by soil background and 

other geometric/systematic factors. Several more advanced VIs are introduced such as 

Soil Adjusted Vegetation Index (SAVI; Huete 1988) and a similar Transformed Soil 

Adjusted Vegetation Index (TSAVI; Baret 1989) that reduces soil effect in the calculated 

VIs. Later a more advanced Modified Soil Adjusted Vegetation Index (MSAVI; Qi 1994) 

is introduced to interactively adjust for soil effect in each area instead of using a constant 

soil factor value as in SAVI. Vegetation indices have always been widely applied in 

agricultural studies. 

 

2.1.2 Invasive species detection 

Because of the small size of invading weeds and the spectral similarity with crops in the 

fields, the application of multispectral remote sensing in weed detection has been limited.  

Fitzgerald (2000) examined the possibility of using multispectral remote sensing in 

detecting spider mite on cotton in California. He also tested the feasibility of early 

detection using multitemporal data. A lot of techniques were compared in his research, 

such as principal components analysis, classification and change detection. The 

implications of this research are bi-fold in that it tested the critical cut-off time of 

detecting invasive species and also looked at the trend of invasion by examining data in a 

series of time. 

 

Low altitude and higher-resolution systems have potential to characterize weed texture 

(Smith 2003), but only after full growth when vegetation texture is formed. Although it is 

desirable to detect invasive species in early stage to allow corrective actions to be taken, 

multispectral remote sensing has limited capability of detecting infestation in very early 
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stages (Smith 2003). It might be more useful in late-season weed infestation detection. 

Koger (2003) found that late-season weed infection in soybean fields could reach an 

accuracy of over 90% with NDVI derived from multispectral image.  

 

The primary limit in detecting weed invasion with multispectral remote sensing comes 

from its broad band settings that conceal a lot of minor variation inside the real 

continuous spectra. In previous research, it was found that some of the background 

effects could be substantially reduced using narrow-band derivative-based vegetation 

indices (Elvidge 1995). Therefore hyperspectral remote sensing is more desirable when 

subtle spectral variation is needed in agricultural studies. 

 

2.2 Hyperspectral remote sensing in agriculture 

2.2.1 Image Spectrometry  

Image spectrometry, a new technique for remote sensing of the earth, is technically 

feasible from aircraft and spacecraft platform. The airborne and spaceborne sensors are 

capable of acquiring images simultaneously in 100 to 200 contiguous spectral bands 

depending on application necessity and system configuration. The ability to acquire 

laboratory-like spectra remotely is a major advance in remote sensing capability. It is now 

possible to remotely identify a surface material on a pixel basis by examining its 

absorption features in the continuous reflectance spectrum (Goetz 1985). An example of 

material identification is shown in the following Figure 2-1. The spectral resolution of the 

library spectra is 1 nm. All of the five materials are completely separable given good 

band selection and combination. If hyperspectral remote sensors can obtain images with  
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Figure 2-1: Sample spectral plot from JPL spectral library (ENVI 2002) 
 

such high spectral resolution, the image could be directly referenced to the library spectra 

to perform material identification. 

 

A considerable number of spaceborne or airborne spectroscopic devices with as many as 

200 spectral bands are now flying in a number of countries. Despite the much narrower 

spectral bands being used, they can provide signal-to-noise ratios supporting 10-12 bit 

data systems with spatial resolutions of a few 10’s of meters IFOV (Instantaneous Field 

Of View) from orbit and roughly 1 meter resolution for airborne sensors (Landgrebe 

1993). 

 

2.2.2 Invasive species detection 

The most extensive hyperspectral remote sensing agricultural application is perhaps 

precision farming. In precision farming, scientists care most about the healthy growth of 

economic vegetation. Therefore they will need hyperspectral remote sensing as tool to 
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detect any phenomenon that is hampering the healthy growth of economic vegetation. 

Problems related to precision farming like malnutrition, pest invasion and weed 

infestation in a particular crop can be observed in a unique spectrum which is distinctly 

different from healthy vegetation (Gat, Erives, Maas and Fitzgerald 1999). Various 

approaches of hyperspectral data processing have been developed for invasive weed 

detection. For example, Garegani, et al. (2000) applied Minimum Noise Fraction (MNF) 

approach to detect stressed crops. Zhang (2003) used hyperspectral data to detect stress in 

tomatoes induced by late blight disease in California by using MNF rotated spectra as an 

input to Spectral Angle Mapper (SAM) classification. More well-rounded invasive 

species detection and mapping application was done by Ustin (2002) and Underwood 

(2003) in California’s Mediterranean ecosystems. In their studies, several classification 

methods were investigated and compared: (1) continuum-removal, (2) MNF, (3) band 

ratios, and (4) SAM each with different justification and consideration. The first one was 

used to pick up the water absorption features in the spectrum, while the second approach 

took advantage of the information in full image spectrum and still able to reduce the 

dimensionality of the hyper-bands. The third method was selected on the basis that band 

ratio is very sensitive to biochemical and biophysical properties of vegetation, and the 

last approach took advantage of the dimension of the hyperspectral dataset to come up 

with an angle measurement plotted in the multi-dimensional space by each individual 

vegetation spectrum. The accuracy was very high although it varied over different test 

sites.  

 

Other advanced approaches have been previously explored. Vrindts, et al. (2002) 
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developed a statistical approach toward invasive species detection. Fitzgerald (2004) 

applied the Spectral Mixture Analysis (SMA), also called linear un-mixing approach, to 

de-correlate each pixel into several basic components to enhance classification accuracy. 

The temporal consideration in hyperspectral remote sensing was also discussed by 

Dennison (2003) in which he found that there was a negative correlation between the 

increase of non-photosynthetic vegetation (NPV) and soil water balance decrease. He 

also reported that variation in water deficit image resulted in large confusion in 

classification. A larger number of endmembers were suggested to enhance the 

classification accuracy while the seasonal variation in the spectral response should be 

taken into account in vegetation classification. Among these studies the MNF or MNF 

combined approach yields very good result in crop mapping. The MNF approach is also 

utilized in this thesis research. 

 

2.3  Hyperspectral data analysis 

Hyperspectral data analysis can be divided into two categories (Aspinall 2002). One is 

top-down, which essentially uses field maps to train the imagery so as to detect certain 

features of the examined objects. Field survey and geo-referencing are necessary because 

high positioning accuracy is needed in this approach. Atmospheric correction of the 

imagery may not be needed in this approach. Since the high spatial resolution image 

usually does not have large extent coverage, the atmospheric variation within each scene 

is not noticeable.  Associating the ground features directly with the image will enable the 

classifying algorithm to incorporate atmospheric effects into the feature spectra to search 

for similar features on the same image. This approach is not feasible for large physical 
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extent analysis (Aspinall 2002). 

 

The other approach, in contrast, is bottom-up which typically uses ground- or lab- 

measured spectral libraries to identify features in the image. Atmospheric correction is 

essential because atmospheric effects have to be removed from the image before it can be 

quantitatively compared with ground-measured spectra (Kruse 1994). Geo-referencing 

and registration are necessary to match geographic positions of image pixels to ground 

sites. To reduce spectral noise, the absorption regions such as affected by water and 

carbon-dioxide of the spectrum should be removed before further processing. 

 

2.3.1 Atmospheric correction 

Removing atmospheric effect involves calibration and atmospheric correction. 

Calibration adjusts the image by converting raw radiance values of each pixel to top-of-

atmosphere absolute (radiance) or relative (reflectance) values. Atmospheric correction 

then adjusts these values to ground radiance or reflectance at each pixel based on sun-

ground-sensor geometry and atmospheric composition. In general the approaches of 

hyperspectral atmospheric correction could be divided into three categories: (1) Scene-

Based Empirical Approaches, (2) Radiative Transfer Modeling Approaches, and (3) 

Hybrid Approaches (Gao 2006). 

 

2.3.1.1 Scene-Based Empirical Approaches 

During the mid-1980s, several scene-based empirical approaches were developed to 

remove atmospheric effects from hyperspectral image and to derive surface reflectance 

spectra. Among these methods, flat field calibration (Goetz and Srivastava 1985; Roberts 
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et al. 1986) and internal average relative reflectance (IARR; Kruse et al. 1985; Kruse 

1988) could produce relative reflectance spectra. Flat field calibration utilized a known 

area of reflectance on the image, usually defined as a Region of Interest (ROI), to 

normalize the raw radiance. The radiance spectrum from this area is assumed to be 

resulted from pure atmospheric effects. It is then used as normalization factor to divide 

the raw spectra at each pixel of the image. The resultant ratio is the relative reflectance 

and could be compared with laboratory spectra. The IARR Calibration technique is used 

to normalize images with a scene average spectrum. This calibration method is performed 

by calculating an average spectrum from the entire scene which is used as a reference 

spectrum. The apparent reflectance is then calculated by dividing the reference spectrum 

with the pixel value. This technique is often used to convert imaging spectra to relative 

reflectance when ground spectral measurement is not available. It works best in arid areas 

with limited vegetation cover.  

 

Empirical Line correction (Roberts et al. 1985; Conel et al. 1987; Kruse et al. 1990) can 

be used to calculate apparent (absolute) reflectance. The Empirical Line correction 

technique forces image spectra to match selected field reflectance spectra. This method 

requires ground measurements and/or knowledge of the environment (laboratory spectra). 

Two or more ground targets need to be identified and reflectance of each target is 

measured in the field or colleted from laboratory spectra. Usually the targets consist of at 

least one light and one dark area and then identified in the image scene. A linear 

regression is performed to calculate the gain and offset which are used to calculate 

reflectance at each band. This process is equal to removing the solar irradiance and the 
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atmospheric effect. The processed spectra are most comparable to field or laboratory 

spectra. 

 

2.3.1.2 Radiative Transfer Modeling Approaches 

Surface reflectance can also be derived from hyperspectral images using Radiative 

Transfer Functioning (RTF) approaches (Gao 2006). The Atmospheric Removal Program 

(ATREM; Gao and Goetz 1990; Gao et al. 1993) is a RTF-based calibration method to 

calculate absolute reflectance that requires no ground-based measurement. This method 

was first developed for airborne AVIRIS imagery that has 224 bands. It uses water 

absorption bands to calculate the amount of water vapor atop of each pixel. This 

information is then used to calculate surface reflectance in the Simulation of Satellite 

Signals in the Solar Spectrum (5S) model (Tanre 1990). Other RTF models such as 

MODerate resolution atmospheric TRANsmission (MODTRAN) can be used to in this 

process to calculate surface reflectance (Berk et al. 1998).  

 

More atmospheric correction algorithms for retrieving surface reflectance include the 

Atmospheric CORrection Now (ACRON; Berk et al. 1999), and the Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH; Adler-Golden et al. 1999). 

Some approaches include more advanced features, such as spectral smoothing, 

topographic correction, and adjacency effect correction (Gao 2006). 

 

2.3.1.3 Hybrid Approaches 

The atmospheric correction methods mentioned above are isolated approaches, and each 

is tailored to specific conditions. A combination of those methods sometimes can yield 
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good results. For example, Clark et al. (1995) used a combination of ATREM and 

empirical line method to correct model errors in ATREM by calculating normalization 

factors of each pixel and then apply them to the ATREM corrected image. Some methods 

take advantage of ground measurements and MODTRAN to derive an equivalent model 

of empirical line method which has loose requirement on the uniform ground targets of 

different reflectance (Goetz et al. 1998). The best among these methods is the Empirical 

Flat Field Optimal Reflectance Transformation (EFFORT) that bootstraps a linear 

adjustment to apparent reflectance spectra to improve the accuracy (Goetz et al. 1997; 

Boardman 1998). The advantage of this method is that it improves the comparability of 

the corrected reflectance spectra with library-based spectra. 

 

2.3.1.4 Data collection considerations with various atmospheric correction schemes 

Field data may or may not be needed in atmospheric correction of hyperspectral images, 

depending on the analysis that will be utilized (Aspinall 2002). The IARR method 

requires no field data, which eliminates field data collection efforts at the expense of 

accuracy. The ATREM also does not need field data but is more accurate than IARR 

because it does require the sensor capability to capture narrow band width, especially in 

water vapor absorption bands. Flat field calibration only requires spectral data from one 

homogeneous site. Empirical line method requires a minimum of two high-contrast 

ground references sites although more references sites is preferable. MODTRAN requires 

extensive ground-based measurements and the information of atmospheric components, 

thermal structure and water content at different levels. 

 

2.3.2 Geometric Corrections 
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Because the altitude of a flying plane is low enough to be affected by air currency, it is a 

challenge to keep the imaging platform steady. Image quality is not comparable to that of 

satellite platforms (Tong, et al. 2004). As a result airborne remote sensing imagery needs 

to be geo-rectified and registered to ground control points (GCP). This approach is 

expensive and time consuming due to the number of GCPs (Tong, et al. 2004).  Most 

recent and advanced geometric corrections include Position and Orientation System / 

Direct Georeferencing (POS/DG; Reid, et al. 1998) supported by Global Positioning 

Systems (GPS) and Inertial Navigation Systems (INS) aboard the airplane. The combined 

system could provide information such as absolute position (x, y, z) and platform attitude 

parameters, which make it possible for real time geometric correction of airborne images 

using ray tracing to establish the relationship between the pixel and its ground 

counterpart. 

 

Geometric correction is not necessary in this research for several reasons: (1) the weather 

on the image acquisition date was very pleasant which will ensure a more stable flight 

and good imaging quality, (2) the elevation in the research area is relatively stable, only a 

few meters difference negligible as compared to the flying height of the platform, (3) The 

image used in this research was geo-corrected with a C-Migits III GPS/INS unit 

manufactured by Systron Donner (CHAMP 2006). The system records GPS and aircraft 

attitudinal positions (roll, pitch, yaw, speed and heading). The rectification process uses 

the GPS and INS inputs to generate a global lookup table which is applied to the 

uncertified image (Tong, et al. 2004). The hyperspectral image matched very well with 

geo-orthorectified digital airphotos (DOQ). 
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2.3.3 Mapping and classification 

Hyper-spectral imagery presents numerous possibilities for interpretation and analysis 

(Aspinall 2002). A lot of sensors have been developed which can provide a near complete 

spectrum for each pixel using high spectral resolution. Calibrated hyper-spectral data is 

comparable to laboratory spectra to identify ground materials at pure or mixed pixels. 

There are a number of specialized approaches tailored to hyper-spectral dataset that 

extract unique spectral features of different materials. Analysis of hyper-spectral imagery 

usually requires an empirical match between image spectra and reference spectra (end-

members) from either a spectral library or field measurements. 

 

2.3.3.1 Band ratio 

Band ratio can be used to capitalize the spectral difference between different objects 

(Vincent 1997) to support the classification. Band ratios such as Normalized Difference 

Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) have been defined 

in the literature to highlight vegetation properties (Elvidge and Lyon 1985; Huete et al. 

1985; Huete 1988). The use of ratios also removes shadow effects caused by different 

angles of surface illumination. In multispectral remote sensing vegetation indices often 

use broad-wavelength red and near-infrared bands, such as Band 3 and 4 in Thematic 

Mapper (TM) images. Due to enormous pool of bands available in hyperspectral remote 

sensing, band selection is necessary before band ratio could be utilized.  

 

Many approaches have been developed to select optimal bands in hyperspectral remote 

sensing images. Ifarraguerri (2004) measured a specific distance to all bands and then 

displayed the distances in image histogram to visually pick up optimal best bands. Huang 
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(2005) applied a more complicated band selection using feature weighting. It was based 

on the matrix coefficient analysis to assign weights to original bands then to select the 

bands with the largest weights. Keshava (2004) developed Band add-on (BAO) approach 

to exploit a mathematical decomposition of SAM to incrementally select optimal bands. 

This approach increases the angular separability between two classes of spectra.  

 

Among these approaches, principle components analysis (PCA; Jensen, 1996) is the most 

popular one. PCA has been effectively used in multispectral data to reduce the number of 

bands by compressing bands into fewer, independent bands orthogonal to each other. The 

first component contains the largest variance that decreases with the sequence of 

components. The principle components transformation helps removing image redundancy 

with a de-correlation process. The inherent noise could also be reduced by excluding of 

low variance components. 

 

2.3.3.2 SAM  

The Spectral Angle Mapper (SAM; Kruse et al. 1993) matches pixel spectra to reference 

spectra using a similarity measure of angle, formed by the vectors of spectra in an n-

dimensional space where n equals to the bands of image (Figure 2-2). In the SAM 

approach a smaller angle indicates a closer match. It is an exhaustive measure that 

compares each pixel vector with all available end-members and then classifies the pixel 

as the material with the smallest angle. The advantage of this approach is that it is 

insensitive to effects of illumination and albedo since only the angle between the vectors 

are measured instead of  the length of them.  

 22



 

Figure 2-2: SAM algorithm illustration plot (ENVI 2002) 
 

2.3.3.3 MNF and MTMF 

Minimum Noise Fraction (MNF) was first introduced by Lee et al. (1990). This algorithm 

was developed to improve the principal components transformation’s inability to reliably 

separate signal and noise components in multi-band images. The MNF was derived as an 

analogue of the principle components transformation which, instead of maximizing the 

variance of the data, maximizes the noise content of each component. Then it is reversed 

to obtain maximum signal-to-noise ratio (SNR) of each component. It is equals to 

transforming original data using noise covariance matrix as the identity matrix, followed 
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by a principle component transformation (Lee, J. B. et al. 1990). Mixture-Tuned Matched 

Filtering (MTMF) does not require the knowledge of all the endmembers. It maximizes 

the response of a known endmember and suppresses the response of the composite 

unknown classes (background) to match the known signatures (Chen and Reed 1987; 

Stocker et al. 1990; Yu et al. 1993; Harsanyi and Chang 1994). This approach is similar to 

un-mixing, but it does not require heavy computation as well as the knowledge of all the 

endmembers. This approach may introduce high commission error for pixels that are rare 

in the image (ENVI 2002). 

 

MTMF is a hybrid method based on both signal processing and linear mixture theory 

(Boardman 1993). It combines the advantage of both the Matched Filter method 

explained above and physical constraints imposed by mixing theory to reduce 

commission error (Boardman 1993). MTMF results are presented as two sets of images, 

the Matched Filter image (MF) and the Infeasibility images with values from 0 (no match 

and feasible) to 1 (perfect match and infeasible). These results give a way to estimate 

relative degree of match to the reference spectrum and the Infeasibility image, where a 

high MF score and low infeasibility score represents a good match (ENVI 2002). 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Study area and data collection 

3.1.1 Description of the study area 

Fieldwork was conducted within the Basket Area at the University of Missouri (UM-

BWRA). It is located in southern Boone County about 30-minutes driving distance from 

campus (Figure 3-1). Although most of this 2,250-acre unit is covered by forests, there 

are some open areas where sericea patches in various sizes were observed. The study area 

is a piece of public grassland of the Cedar Creek Ranger District, Mark Twain National 

Forest (hereafter referred to as MTNF) inside the UM-BWRA (Figure 3-2). This field 

was selected because it represents less-managed public grasslands which have very high 

degree of sericea invasion. Since sericea spreads mostly in pastures and un-managed 

open lands, this study focuses on identifying sericea from surrounding grass. The study 

area is dominated by tall grass. Sericea patches in various sizes and height can be 

observed. 

 

During field survey, ground sites of sericea and grass were selected. Depending on the 

dominance, the size of selected sericea patches varies but all sample sites were larger than 

1×1 meter to be matched with 1-meter hyperspectral image. There are a total of 37 data 

collection sites in the study area, among which 12 are over grass and 25 over sericea. 
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Figure 3-1: The Basket Wildlife Research Area (BWRA), University of Missouri 
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Figure 3-2: The study area is highlighted in the red box in this 2005 aerial photo of BWRA 
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Field survey and ground data collection was conducted by Dr. Wang (my advisor) and me 

on the following six dates: June 15, July 5, August 2, and August 24 2006. The August 2 

data were used in this research because they are closest to the AISA imagery acquisition 

date of July 19. Data at other dates can be used for future research and they are also good 

sources for building spectral library of sericea at different stages of the growing season. 

Details of field data collection are discussed in the next section. 

 

3.1.2 Field spectra acquisition (ASD) 

A FieldSpecPro Full Range (FR) spectroradiometer from Analytical Spectral Devices, 

Inc. (ASD 2006) was used to measure reflectance (in the white reference mode) on the 

ground. Reflectance is the percentage of light reflected by a target as compared to the 

incident light on the same target. The rationale for using reflectance instead of radiance is 

because it minimizes the effect of different illumination conditions, thus allowing a better 

quantitative measurement of the ground object. To account for the variation of 

instantaneous illuminating conditions, white reference of a spectralon panel (which 

assumes a 100% reflectance) was collected several times during ASD data collection. The 

radiance measurements were converted to surface reflectance by dividing them with the 

white reference and recorded automatically in the field. The resulted reflectance ranges 

from 0.0 to 1.0 (0.0 stands for no reflectance and 1.0 stands for 100% reflectance). The 

ASD spectrometer unit incorporates 3 spectrometers to cover the whole range from 350 

to 2,500 nm with a spectral resolution of 1 nm. Therefore it measures an approximately 

continuous spectral signature of the target. The spectra were collected at about 1.5 meter 

atop of the ground (Figure 3-3) during each field visit.  The spatial distribution of the 

ground sites were displayed in Figure 3-4. 
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Figure 3-3: Data collection in field using the ASD spectroradiometer 
 

 

3.1.3 Image acquisition (AISA) 

One scene of the Airborne Imaging Spectrometer for Applications (AISA) hyperspectral 

image acquired on July 19, 2006 over the study area is shown in Figure 3-4. The image 

acquisition was through the collaborative effort of Dr. Harlan Palm (Plant Science 

Division, University of Missouri-Columbia) from his contract with the Center for 

Advanced Land Management Information Technologies (CALMIT 2006), in cooperation 

with the University of Nebraska-Lincoln (UNL) Department of Electrical Engineering 

and the University of Nebraska-Omaha (UNO) Aviation Institute. CALMIT's airborne 

remote sensing activities are centered on a suite of instruments associated with an AISA  
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Figure 3-4: The AISA image and ground sites for ASD measurement 
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Eagle hyperspectral imaging system. This specific program is identified as CALMIT 

Hyper-spectral Aerial Monitoring Program (CHAMP 2006).  

 

With a pixel size of approximately 1 × 1 m, the ASIA image covers a spectral region of 

400-970 nm with an interval of approximately 9 nm which has considerable overlap with 

the ASD spectral characteristics. It contains 63 bands with a swath width of 520 m. The 

image delivered to us was radiometrically corrected and geometrically rectified. To 

reduce data size and computation time, only the subset area covering the MTNF field was 

processed in the following analysis. Figure 3-5 is a color cube of the subset image with 

the top layer shown in a color composition of band 31, 41 and 63 (as R, G, and B). Some 

features can be directly picked up via visual interpretation: (1) sericea is discerned by its 

brighter greenish color than grass, (2) trees are interpreted by their color and texture, (3) 

soil identified by its brownish orange color, and (4) different type of roads are 

discriminated by the color and the linear feature.   

 

3.2 Data preprocessing 

3.2.1 ASD spectra preprocessing 

The ASD field spectra were analyzed in the Environment for Visualizing Images (ENVI) 

software (Version 3.6, Research Systems, Boulder, CO). A spectral library was built to 

store all field spectra. Later they were exported to ASCII format for further processing by 

ENVI, Interactive Data Language (IDL) software (a build-in programming language in 

ENVI), and Excel software (Microsoft, Seattle, WA).  
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Figure 3-5: The AISA image cube with 63 bands, generated in ENVI software 
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3.2.1.1 Noise reduction 

Noise in field spectra comes primarily from water vapor absorption in the air and the 

calibration error of the instrument. It obscures distinct spectral features such as reflecting 

peaks, and absorbing valleys of different target which makes spectral comparison 

between ASD measurement and the AISA image difficult. The ASD spectra need to be 

filtered to reduce noise while remaining the absorption and reflection features that are 

innate with the spectra of the target. Both Mean and Savitsky Golay (Sgolay) filter were 

used in the IDL program to smooth the spectra.  The two filters were compared based on 

the criteria that it should smooth out high frequency noise while maintaining the smallest 

features associated with spectral features of grass and sericea.  

 

The Mean filter is a simple approach which essentially does a local average on the 

spectra. The Sgolay filter is more complicated in that this method seeks to preserve the 

shape of reflectance peaks and absorption troughs. It performs a local polynomial 

regression to determine the smoothed value for each data point. An example of ASD field 

spectra is shown in Figure 3-6a. Noise in the forms of local peaks or troughs can be 

observed in the figure. A smoothed spectra based on Mean filter is displayed in Figure 3-

6b and the one based on the Sgolay filter is shown in Figure 3-6c. It was found that the 

Sgolay method was superior to mean filter because it preserved local features of target 

that was lost in the mean filtered spectra.  

 

Therefore, the Sgolay filter will be used in processing all the field acquired spectra to 

remove the noise. 
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B: Mean filter spectrum 
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C: Sgolay denoised spectrum 
 

Figure 3-6: Example of spectrum denoise procedures: (A) raw spectrum, (B) denoised spectrum with Mean 
filter, and (C) denoised spectrum with Sgolgy filter 

 

 

Figure 3-7: ASD spectral signatures (350 nm – 2,500 nm) at the 37 ground sites 
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Figure 3-8: Denoised ASD spectra (sericea only) 
 

The ASD spectra of all the ground sites are shown in Figure 3-7. The Sgolay denoised 

sericea spectra are shown in Figure 3-8, the wavelength regions dominated by noise are 

cut off manually before Sgolay denoising process. Compared with the original spectra, 

the denoised spectra are not only smoother but retain the spectral feature of the original 

ASD spectra.  

 

3.2.1.2 ASD spectra resampling 

The AISA image only has a spectral range up to 970 nm. Whileas the ASD spectra have a 

much wide range from 350 nm to 2500 nm. Thus the ASD spectra were cut and only the 

spectra in the range of 400-970nm were analyzed in the following processes (Figure 3-9). 
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The field acquired ASD spectra have a very high spectral resolution of 1 nm while the 

AISA image has a spectral resolution of 9 nm. The spectral resolutions in these two types 

of data have to be matched before they can be effectively compared with each other. 

There are two options for this process: (1) to down sample the ASD data to AISA data, or 

(2) to up sample the AISA data to ASD data. On one hand, up sampling of AISA data 

does not increase information and makes the AISA spectra bulky since certain range of 

wavelengths will have the same value. On the other hand, the AISA data have enough 

spectral resolution to satisfy the application need in this research. Therefore, the first 

approach (down sampling) was applied. The processing was performed in ENVI using 

the spectral resampling tool with AISA data as reference spectra and the spectra from 

previous steps as input. 

 

Figure 3-9: ASD spectral signatures in the range of 400 nm – 970 nm (sericea only) 
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Dots are representing 
resampling points 

Figure 3-10: Resampled and rescaled ASD spectra (sericea only) 
 

The ASD data were stored as decimal numbers ranging from 0 to 1, while the AISA data 

spectra were stored as integers ranging from 0 to 10000. Adjustments are needed to 

standardize their radiometric resolution. The ASD spectra were rescaled to meet the AISA 

radiometric configuration. The adjusted spectra are shown in Figure 3-10. The dots in the 

figure represent resampling points. 

 

3.2.2 AISA Image Preprocessing 

The AISA image has to be compared with ASD ground measurement for degree of 

similarity and conformity before it can be used in classification. The ASD spectra were 

collected on August 2 while the AISA image was collected on July 19. Although the 

weather was very nice on both days (very clear sky with few clouds) the different 
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atmospheric conditions could still play a vital role in the agreement between two dataset. 

To compare the similarity of these two datasets, spectra at each ground site were 

extracted from the image with the coordinates obtained during the field trip.  

 

Pearson correlation was used to investigate the relationship between the airborne AISA 

spectra and hand-held ASD spectra at the same ground sites. The result shows very high 

correlation between ASD and AISA data with an R-square value of 0.9978 (Figure 3-11).  

 

Figure 3-11: Correlation between ASD-measured and AISA-retrieved reflectance 
 
 

The small yet existing inconsistency in the conformity between the two is probably due to 

reasons such as different date of data acquisition, cloud interference and system errors. 

Given the high correlation between them, ASD spectra will be tested in the classification. 

Image spectra will be used as alternative in case the ASD spectra are not effective in 
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classifying sericea pixels in the image. These two approaches each represent bottom-up 

and top-down approaches introduced in chapter two. Both of the approaches will be 

accessed and the better one will be used for final output. It is highly possible that top-

down approach will be used in this research for reasons that vegetation spectra are so 

close and similar to each other and a little alteration can submerge the distinct signatures. 

 

3.3 Image Classification  

Several classification methods were investigated: (1) Band ratios, (2) SAM, and (3) MNF 

& MTMF. These approaches were compared based on the classification accuracy and 

cost effectiveness of their mapping performances. 

 

3.3.1 Band Ratio 

The normalized differential vegetation index (NDVI) using two optimal bands as red and 

NIR was calculated from the AISA image. The optimal bands were identified in the 

following band selection process. 

 

3.3.1.1 Narrow-band (10nm) Indicator: band selection (reduction) 

According to the Hughes phenomenon (Huges 1968), the classification accuracy first 

increases and then decreases when the feature space dimensionality increases but training 

data remain fixed. As a result, band reduction (selection) is crucial in information 

extraction of hyperspectral data (Mathur, et al. 2006). 

 

The ultimate purpose of this research is to identify sericea from the surrounding, 
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predominant grass, in the study area. Here a Difference ratio ranking (DRR) approach 

was used to select the optimal bands which then served as input data to the classification. 

The rationale for this method is to compare the spectra between grass and sericea and 

then normalize the difference with either grass spectra or sericea spectra based on which 

class has higher reflectance in certain bands. Table 3-1 is a portion of the DRR band 

selection procedure. The red columns in the figure are the ratio difference between 

sericea and grass while the highlighted values in these columns represent the best bands 

for each ground sampling sites. The yellow rows stand for the two bands that have the 

most optimal bands for each ground sampling sites.  

 

After the DRR process, the best two bands selected for band ratio classification are 676 

nm (red) and 771 nm (NIR) (Figure 3-12).  

 

Table 3-1: DRR band selection procedures 
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Figure 3-12: Band selection of the best two bands in red and near infrared region 
 

3.3.1.2 NDVI image classification 

The classification was done based on the manipulation of the histogram of the NDVI 

image. Level slicing was used to highlight sericea from grass, trees and other classes. 

Roads and bare soils were easily separated because they have very low NDVI value. The 

classification between sericea and grass was done in three controlled ways: (1) low 

commission error, (2) low omission error, and (3) medium commission and omission 

errors as in a balanced approach. The thresholds for those approaches are determined 

with sericea, grass and tree spectra. Due to the fact that averaged tree spectra will have a 

higher NDVI value than that of sericea which will have higher value than that of grass, 

four thresholds were selected (Table 3-2): highest possible grass NDVI (HG), lowest 

possible sericea NDVI (LS), highest possible sericea NDVI (HS), and lowest possible 
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tree NDVI (LT). The combination of those thresholds will ensure the described 

classification purposes are met. The HG, LS and HS values were determined from field 

measurement spectra plotted in graphs. The LT spectrum was obtained from image 

spectra because there were no ground spectra measurements available for trees.  Due to 

operational consideration, the NDVI image was calculated in ENVI and then export to 

.lan format to be further processed in ERDAS (2005).  

 

Table 3-2: Thresholds for different classification approaches 

Thresholds Low commission Low omission Balanced 

Lower threshold HG LS (HG+LS)/2 

Higher threshold LT HS (LT+HS)/2 

 

3.3.2 SAM  

The Spectral Angle Mapper (SAM) approach compares each pixel in the image with the 

endmember (spectrum represents a specific class) to decide which class it belongs to on 

the similarity (angle) between them. In order to have good SAM classification maps, 

several things need to be considered, they are: (1) classification approach (top-down or 

bottom-up), and (2) endmember selection. Both of them will be discussed in this section. 

 

3.3.2.1 Classification approach 

Unlike mineral identification, vegetation mapping faces more difficulties in separating 

different type of vegetation because they all have similar spectral response (Lamb and 

Brown 2001). In SAM approach the endmember selection is crucial to obtain accurate 

classification results. The field measured ASD spectra were tested and they turned out not 
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usable with SAM. Although they have high correlation with AISA spectra, the reflection 

peaks and troughs of the same target have different features at different acquisition dates 

which are deteriorated by the inaccuracies in atmospheric corrections. So a top-down 

approach is used in this approach. GPS coordinates of sericea from field work were used 

to obtain sericea spectra on the AISA image. These spectra were then used in the 

endmember selection process. 

 

3.3.2.2 Endmember(s) selection 

In the endmember selection process, it is suggested by Dennison (2003) that multiple 

endmembers can be selected to specify several sub-classes of target vegetation each 

representing different combination of patch density, patch size, and percentage cover that 

lead to the fluctuation of reflectance values in the spectra. The resulted sub-classes were 

then combined to obtain the final vegetation class map. The rationale of this approach is 

shown in Figure 3-13; the two green envelope spectra represent tree and grass while the 

red spectra represent different sericea spectral response. Multiple endmembers of sericea 

may be needed in the SAM algorithm in which the assigned threshold angle has to be 

very small to avoid between-class confusion close to the envelopes where different 

spectra meet. 

 

Unfortunately this approach is not effective in this research. The specification of multiple 

endmembers will introduce gaps inside each sericea patch because data variation cannot 

be fully accounted for with such a small threshold angle. The logical way in solving this 

problem is to select the least number of endmember spectra as possible, say, to use one 

endmember; or to take a more complicated approach of specifying different threshold 
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value for different sericea endmember depending on their distance to other class spectra. 

The second alternative is very tedious and hard to achieve good result since it will 

involve a huge amount of adjustment, trial and error. So the first solution will be followed 

in this research. 

 

Tree spectrum

Sericea spectra

Grass spectrum

Figure 3-13: Illustration of endmember selection in SAM algorithm 
 

We selected the average of all sericea spectra as the endmember. The average is a linear 

combination of all spectra of sericea, so it indirectly represents all possible sericea 

spectral signatures. The average spectrum also has least confusion with other classes 

because it has the farthest distance to different class spectra as far as all the sericea 

spectra are concerned. Using the average spectrum in SAM, the threshold could be set 

relatively larger until confusion happens between sericea and other classes, and only a 

limited number of trials could lead to good mapping and classification results.  
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3.3.3 MNF and MTMF joint approach 

In this approach, a forward Minimum Noise Fraction (MNF) rotation will first be applied 

to the AISA image to get the MNF image and statistics. These statistics will then be used 

in the forward rotation of the endmember(s) to get the forward MNF endmember(s). The 

endmember selection in this approach is following the rationale of the SAM approach. So 

it will also be using averaged sericea spectra from the AISA image as the endmember, 

and only one endmember will be used. 

 

In the MNF rotated image only the first 35 MNF bands were selected based on a 90% 

cumulative MNF variance (Glenn N. F. 2005). Then the subset MNF bands together with 

the forward MNF endmember(s) will be used as input in the MTMF mapping algorithm. 

The MTMF algorithm produces two values corresponding to each of the MNF pixel: (1) 

Matched Filter Value (MF); and (2) Infeasibility value both representing sericea. Pixels 

predicted to contain sericea were interactively selected from a scatter plot of MF value 

versus Infeasibility value. The criteria for this interactive process is to locate scatter plot 

pixels with relatively high MF value and low Infeasibility value depending on the 

application. Since the purpose of this application was to find all the possible sericea 

patches the pixels with both low MF and Infeasibility value will be considered. This 

approach will lead to slightly higher commission error which would ultimately lead to 

recommended over-spraying of herbicide on sericea. However, the omission error will be 

greatly reduced, and compared to the common practice of non-discriminatory spraying, a 

slight margin of over application than necessary can still be considered as environmental 

beneficial.  
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CHAPTER 4 

RESULTS 

 

4.1 Sericea mapping 

This research tests three methods of image classification to determine the best means of 

identifying patches of sericea using remote sensing. Results from the first approach, band 

ratio, are very poor due to several factors: (1) the inability of band ratio to separate the 

confusion between tree, sericea and grass, and (2) the fact that ground spectra are only 

acquired from boundary of sericea in the protection of sericea patches. The second 

approach, SAM, produces much better results, effectively identifying sericea patches, but 

confusion with trees still exists. The best approach found is the MNF & MTMF joint 

approach. Not only are the sericea patches identified accurately but the confusion with 

trees is kept to a minimum with the help of a majority filter. The details of these mapping 

results are presented in the following sections. 

 

4.1.1 Band ratio 

4.1.1.1 Threshold identification 

The grass NDVI values corresponding to field grass sites are plotted to identify the 

highest grass NDVI value (HG) in Figure 4-1. In the same way, the highest sericea NDVI 

(HS) and lowest sericea NDVI (LS) are identified in Figure 4-2. Due to the lack of 

ground data, the lowest tree NDVI (LT) is identified in the NDVI image (Figure 4-3). 
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Figure 4-1: Highest possible grass NDVI value 
 

 

Figure 4-2: Highest and lowest possible sericea NDVI value 
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Figure 4-3: ROI for obtaining Lowest NDVI of tree 
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4.1.1.2 Low commission error approach 

The two thresholds identified as High Grass (HG) and Low Tree (LT) are 195 and 221 as 

shown in breakpoint editor of ERDAS software dialogue (Figure 4-4). 

 

Figure 4-4: Low commission thresholds shown in the breakpoint editor 
 

The low commission error approach as shown in Figure 4-7 managed to rule out the 

influence of other classes especially tree class since only a very small portion of trees is 

highlighted in the class map. But it failed to identify sericea patches; instead it outlines 

the boundary of sericea patches which may need further work and human interference to 

fill the patches to come up with a better output of sericea map.  

 

4.1.1.3 Low omission error approach 

The two thresholds identified as Low Sericea (LS) and High Sericea (HS) are 189 and 

235 as shown in breakpoint editor of ERDAS software dialogue (Figure 4-5). 
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Figure 4-5: Low omission thresholds shown in the breakpoint editor 
 
 
The low omission approach in Figure 4-8 included more tree classes and overestimated 

the boundary of sericea but still was not able to pick up the whole patches of sericea. The 

cause for this problem is bi-fold, (1) the field measured sericea spectra is not 

representative enough to cover the whole range of possible sericea spectra; and (2) the 

NDVI of sericea has so wide range of values that cause the confusion with other 

vegetation. The first cause is partly due to the fact that field spectra are only acquired at 

the boundary of sericea patches in the protection of the uprightness of sericea, since once 

stepped on the sericea will have different spectral response because of a different looking 

angle. This problem could be solved by either acquiring field data with a certain 

mechanical device that could stretch the ASD pistol to be above the middle of a sericea 

patch or by acquiring mid-patch spectra from ROI tool applied on the image. The second 

problem is more difficult to tackle, and probably the only way out of it is to either use the 
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balanced approach and tolerate the relatively low accuracy of classification or explore 

other band combinations that have fewer between class confusion.  

 

4.1.1.4 Balanced approach 

The two thresholds as the average of commission and omission approaches are 192 and 

228 (Figure 4-6). 

 

The balanced approach as shown in Figure 4-9 also has the problem as the low 

commission error approach does. Therefore, it seems narrow band indicator is not very 

effective in picking up whole sericea patches.  

 

 
 

Figure 4-6: Balanced thresholds shown in breakpoint editor 
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Figure 4-7: Sericea map with low commission approach 
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Figure 4-8: Sericea map with low omission approach 
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Figure 4-9: Sericea map with balanced commission and omission approach 
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4.1.2 SAM 

The endmember spectrum used in the SAM classification is shown in Figure 4-10. 

 

Figure 4-10: SAM endmember (averaged sericea spectrum) 
 

Various threshold angles have been tried with the SAM approach and only one was 

applied in this research and described below. Two maps with different threshold values in 

SAM classification were shown in Figure 4-11 and 4-12. Figure 4-11 uses 0.03 as the 

threshold angle which is very effective in depicting sericea patch without much confusion 

with other vegetation such as trees, but it results in relatively high omission error. 

Although most of the sericea sites fall inside the classified sericea patches, there are a lot 

of sites fall outside of the patches (Figure 4-11). Figure 4-12 uses 0.04 as threshold angle 

which turned out very good sericea patch delineation, less sericea sites fall outside the 

classified patches, but it results in high commission error. Because a lot of obvious tree 

patches are classified as sericea. Since the threshold change from 0.03 to 0.04 does not 

increase sericea patches significantly and introduced a lot of confusion with trees. Only 

Figure 4-11 was used in accuracy assessment. 
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Figure 4-11: SAM sericea map at threshold angle of 0.03 
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Figure 4-12: SAM sericea map at threshold angle of 0.04 
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4.1.3 MNF and MTMF  

4.1.3.1 MNF Image and endmember 

Figure 4-14 is showing the effectiveness of MNF transformation that different 

vegetations all showed up in different colors. Especially the sericea patches that are 

showing very light greenish color that are very different with other colors representing 

different vegetation classes.  

 

The statistics by-product of MNF transformation of the image is used in forward rotation 

of the sericea endmember spectrum. The MNF rotated endmember is shown in Figure 4-

13.  The sudden reduction in oscillation on the value is showing that most of the data 

variation was contained in first a few bands. But more bands will be used in MTMF 

mapping to satisfy the criteria of a 90% cumulative MNF variance (Glenn N. F. 2005). 

 

Figure 4-13: MNF rotated sericea endmember 
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Figure 4-14: MNF image with components 4, 5, 6 displayed in RGB mode 
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4.1.3.2 MTMF mapping 

Both of the MNF image and the MNF rotated endmember will be used as the input of 

MTMF mapping. The output has two sets of scores of MF and infeasibility corresponding 

to each pixel on the input image.  

 

The two values were used in a 2-D scatter plot to interactively identifying sericea. In 

order to make the mapping result more visual friendly, the whole process was performed 

using the original AISA image as background (Figure 4-16). Figure 4-15 shows the 

scatter plot of MF score versus Infeasibility score of MNF rotated average sericea 

spectrum. The triangle shaped highlight area corresponds to the identified sericea pixels. 

The rationale for the triangle shape is the linear incremental effects of MF score versus 

Infeasibility score that when MF score is very low, it indicates the spectrum to be unlike 

sericea, the Infeasibility score will also be very low to ensure classifying it as sericea is 

unlikely to be wrong. These two criteria working together will ensure low omission and 

commission error in sericea classification.  

 

Due to the subjectivity of this mapping method, a trial and error approach is taken. 

Multiple ROI specifications are tried on the 2-D scatter plot by changing the starting 

point and the slope of the ROI. Adjustments are made until the desired outcome is 

reached. The criteria for selecting the most appropriate ROI are: (1) all the visible sericea 

patches on the background image are covered, and (2) confusions with other class such as 

trees and grass are kept to minimum. 
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Figure 4-15: MTMF scatter plot (highlighted points have relatively high MF and low Infeasibility scores) 
 

Figure 4-16 shows sericea patches highlighted in red which corresponds to the area 

highlighted in the scatter plot.  This approach is so effective that almost all the visible 

sericea patches are picked up. More importantly, small patches of sericea are also picked 

up and some of the grass patches inside big sericea patches are excluded. Moreover, the 

confusion with trees is kept to minimum. Overall, this approach shows very promising 

results for identifying sericea from the hyperspectral image, at least from a visual 

interpretation. A sericea map is also extracted from this result and shown in Figure 4-17. 

 

The sericea binary map is very noisy. So a majority filter was applied to the image and 

the output shown in Figure 4-18.  
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Figure 4-16: MTMF mapped sericea highlighted in red on top of the AISA image 
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Figure 4-17: MTMF sericea map 
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Figure 4-18: MTMF sericea map after majority filtering 
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4.2 Accuracy assessment 

Visual inspection of the three classification results (Figures. 4-9, 4-11, and 4-18) shows 

similar sericea spatial distribution with differences in the shape coverage of the sericea 

patches. In the sericea map, the omission error is a major concern of classification 

accuracy due to the nature of sericea invasion; that if they are not killed once and for all 

they will come back again in a few years (Bové 2004 and Brush 2001). So the validation 

of sericea maps will only be performed on classified sericea to examine the producer’s 

accuracy (omission error). 

 

For the purpose of validation, an independent set of sericea ground sites were visited in 

April, 2007. These points were randomly scattered in the MTNF field (Fig 4-19). 

Accuracy assessment was performed based on the calculation of an error matrix. Two 

sources of information are compared in error matrix: (1) class value from the classified 

map, and (2) ground reference class value (which may have error). The relationship 

between these two sets of information is summarized in an error matrix or confusion 

matrix (Jensen 2005). Table 4-1 shows a sample error matrix which is used to assess the 

remote sensing classification accuracy of k classes. The columns represent the ground 

reference values and the rows are corresponding to the class values. The intersection of 

columns and rows summarize the number of sampled points assigned to a particular class. 

The total number examined is N. The diagonal of matrix summarizes points that were 

correctly classified. All the errors related to ground reference are summarized in the off-

diagonal cells of the matrix. Each error is both an omission from the correct class and a 

commission to a wrong class. The column and row totals around the margin of the matrix 
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are used to compare errors of omission and commission. Omission error is calculated by 

each diagonal value divided by the corresponding column total and commission error is 

calculated by each diagonal value divided by the corresponding row total (Jensen 2005). 

 

Table 4-1: Error matrix 

 

 

A comparison of the overall accuracy results shows that the supervised MNF and MTMF 

joint approach performed the best with 75.00% overall classification accuracy, compared 

to 60.71% of the SAM approach, and 32.14% of the band ratio approach (Tables 4-2, 4-3, 

and 4-4). 
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Figure 4-19: Validation sites overlaid on the AISA image 
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Table 4-2: Error matrix for classification on band ratio image  

Classified Data Unclassified Sericea Row Total 

Unclassified 0 19 19

Sericea 0 9 9

Column Total 0 28 28

   

ACCURACY TOTALS   

Class Prod. Acc. (%) Users Acc. (%)   

Sericea 32.14% 100.00%   

  

Overall Classification Accuracy = 32.14%  
 

Table 4-3: Error matrix for classification on SAM image  
Classified Data Unclassified Sericea Row Total 

Unclassified 0 11 11

Sericea 0 17 17

Column Total 0 28 28

    

ACCURACY TOTALS   

Class Prod. Acc. (%) Users Acc. (%)   

Sericea 60.71% 100.00%   

  

Overall Classification Accuracy = 60.71%  
 

Table 4-4: Error matrix for classification on MNF image  
Classified Data Unclassified Sericea Row Total 

Unclassified 0 7 7

Sericea 0 21 21

Column Total 0 28 28

    

ACCURACY TOTALS   

Class Prod. Acc. (%) Users Acc. (%)   

Sericea 75.00% 100.00%   

    

Overall Classification Accuracy = 75.00%  
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

 

This study explores classification approaches using hyperspectral imaging to map 

invasive weeds in the grasslands of Missouri. Considering the ecological and economical 

impacts of invasive species, mapping their extent is a critical issue for many 

conservationists (Brush 2001, Bové 2004, Fishel 2002, Yates 2004). The contribution of 

this research is to map sericea in Missouri at a relatively high accuracy which cab in turn 

be used to limit the widespread application of herbicides. More importantly this research 

evaluated three different approaches of classification using airborne hyperspectral 

imagery.  

 

5.1 Discussion  

5.1.1 ASD derived endmember versus AISA derived endmember 

Utilizing ASD field spectra measurement in endmember selection turned out to be a 

failure in this research. Although the spectra were preprocessed carefully with noise 

reduction, wavelength match, and resolution match to come up with a very high Pearson 

correlation with AISA spectra, the classification with the ground spectra was ineffective. 

The reasons may come from: (1) ASD measurement and AISA image acquisition were on 

different dates; (2) vegetation spectra are very similar (Lamb and Brown 2001) so that the 

spectra are sensitive to minor variation. A top-down approach was applied as an 
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alternative which utilized image spectra by extracting the Z-profile (ENVI 2002) with 

fieldwork acquired GPS coordinates. Then all sericea spectra were averaged to come up 

with the endmember in mapping out the sericea distribution in this research. 

 

There are several considerations for extracting ASD-based endmembers in future 

applications. (1) field data and imagery should be acquired on the same date and under 

similar solar conditions; (2) atmospheric correction needs to be applied to image spectra 

and adjustment needs to be made to the corrected spectra if necessary, and (3) more 

endmembers in the same class could be selected to cover a huge variety of spectra, for 

example, endmembers of sericea at different density, color, height, and mixed cluster. It 

could be combined later to reach the maximum classification accuracy as was done in this 

research.  

 

5.1.2 Geometric match between ground sites and image 

In the process of endmember selection, the sericea patches recorded in May 2006 were 

found to be off the target of the image. It is probably due to the positional accuracy of the 

GPS unit used. The user’s manual claimed to have a positional accuracy of 1~3 meters 

(Trimble 2005) based on single unit measurement. When plotted together with the image 

using more trustworthy points such as road intersections, the distance off seems to be 

around 5 pixels which correspond to 5 meters on the ground. The errors have a trend 

toward southeast. All ground sites are adjusted to northwest to counter the GPS 

measurement errors. 

Accuracy assessment was performed using validation sites recorded in April, 2007. Only 
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28 sericea patches were identified (Figure 4-15), less than the 50 points per class 

suggested by Jensen (2000). The reason for the limited number of validation points is 

because the MTNF field was mowed in late fall of 2006. During the visitation this April, 

it is found that sericea is not recognizable in this early season. And the limited validation 

points were identified from dry stems of last year. With these limited validation sites, the 

accuracy was not high enough to conform to visual interpretation, especially with the 

MNF and MTMF approach that revealed very effective sericea patch mapping. 

 

The GPS positioning error may also contribute to the low accuracy in the assessment. 

The mis-match between ground sites and the image affected small-size sericea patches 

the most. The positioning error could easily go beyond the diameter so that sericea site on 

the ground was mis-assigned as grass. In order to retain the objectivity of this research 

the validation points were not manually adjusted to match the visible sericea patches on a 

one by one basis, instead the same adjustment as applied to the field data was used. 

Provided with better GPS measurement such as Differential GPS (DGPS), the validation 

will show better results.     

 

5.1.3 Mapping methods evaluation 

5.1.3.1 Endmember selection 

The rationale for band selection described in chapter 3 is as follows:  

(1) In band ratio approach, only two bands were needed in the analysis, mostly one in red 

and the other in near-infrared based on past studies. In this study the two optimal bands in 

red and near-infrared were picked up; 

(2) In SAM approach, band selection was based on the Hughes phenomenon and the fact 
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that less number of bands shortens the processing time although SAM with all bands is 

also tried; and  

(3) The MNF-MTMF approach takes advantage of the MNF rotation on the available 

bands and information that is inherently in all bands. The MTMF algorithm produces two 

values for each pixel in an image: a Matched Filter value (MF) and an Infeasibility value. 

Pixels predicted as sericea were interactively selected based on a scatter plot of both MF 

scores and infeasibility scores. Pixels with high MF values and low infeasibility values 

were considered as sericea. The advantage of this approach is that the omission and 

commission error can be manually controlled and adjusted depending on the application. 

For example, in case pure sericea is desired, the classifier can set a very low infeasibility 

threshold to ensure low commission error. If small patches of sericea are also desired, 

both low MF threshold and low infeasibility threshold are set to reduce the omission 

errors in classification. 

 

5.1.3.2 Mapping 

Effective controlling of invasive species requires advanced knowledge of their spatial 

distribution and density (Underwood 2003). The MNF-MTMF joint approach on 

averaged sericea spectra has better result than band ratio and SAM methods. 

Performances of the three methods were summarized in this section.  

 

Band ratio is only effective in picking up the outlines of sericea patches. Serious 

confusion is observed between different vegetation classes. If higher omission error is 

pursuit, commission error will increase rather rapidly as shown in (Figure 4-4, 4-5 and 4-

6). The disadvantage of this approach is innate with the fact that it is using only a few 
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bands. Although this approach is the easiest one, it might not be feasible for application 

in mapping invasive species.  

 

SAM is similar to MNF- MTMF joint approach, but in several aspects it is inferior to the 

latter: (1) the ability to pick up pixel size patches is limited, and (2) the ability to limit 

commission error while increase omission error is also limited as shown in Figure 4-8. 

The SAM approach is not optimal because it does not take advantage of the linear 

mixture theory (Boardman 1993) to reduce commission error while maintain low 

omission error. At a threshold angle of 0.03, the classification result has relatively smaller 

patch size than the ones of MNF-MTMF approach. Assigning a larger threshold angle 

dramatically increased the commission error. A lot of trees were then mis-classified as 

sericea. Both of these two approaches are using all available bands to be compared 

equally.  

 

The MNF-MTMF joint approach has very clear patch delineation and very low confusion 

with other classes. It picks up small patches as shown in Figure 4-13 which are not 

identified in the other two approaches. Given more time to explore the MTMF scatter 

plot the mapping result could be further improved. 

 

5.2 Conclusion 

5.2.1 Filter for noise removal in ASD ground measurement  

A spectral filtering technique is applied to ground-measured ASD spectra to reduce the 

noise from extensive water vapor absorption and system calibration errors. Two filters, 

 74



Mean filter and Savitsky Golay, are compared for their ability to remove noise in the data 

while maintain sharp spectral absorption/reflectance features. Savitsky Golay is a better 

than mean filter to reduce noise while preserving the spectral features of ground targets. 

 

5.2.2 Optimal spectral bands 

A Difference Ratio Ranking (DRR) is applied in this research to pick up optimal bands 

for sericea mapping. This approach itself is not questionable since it tries to capture the 

largest between-class variation in different bands. But for the purpose of vegetation 

differentiation, a few optimal bands may not be enough because different vegetation 

types may have similar spectral response (Lamb and Brown 2001). Exploring all bands in 

classification seems to be a better and more feasible option.   

 

5.2.3 Mapping approaches 

The band ratio approach is not an effective mapping approach because it results in high 

omission error when trying to keep low commission error. The SAM approach is very 

effective in picking up large sericea patches although small patches are often lost. The 

MNF-MTMF joint approach is most promising in identifying both large and small sericea 

patches while maintaining a relatively low commission error. 

 

5.2.4 Major findings 

The best way for endmember selection in classification of different vegetations is to use 

only one endmember to represent the target vegetation. In this research, the endmember is 

specified by averaging all the available spectra for sericea. The rationales to do so are: (1) 

average is the linear combination of all the spectra of sericea, it represents indirectly all 
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the possible sericea spectral signatures, (2) the average spectrum will have the least 

confusion with other classes since it has the farthest distance to other class spectra, and 

(3) the threshold can be set relatively larger until confusions happens between different 

vegetation classes.  

 

A very interesting finding derived from this study is moderate spectral response of a 

specific class might be more effective for mapping purpose. It is believed that the most 

effective way of ground data collection is to use the ground object that has the strongest 

response, for example, in this research more measurements were contributed to high 

density, bright color and health sericea patches in the hope of locating more significant 

sericea signatures. But it was later found that these high density sericea spectra have the 

most confusion with trees. In view of the fact that this research uses the averaged sericea 

spectra as endmember, moderate sericea spectral response which is similar to averaged 

spectrum represented by lower density and greenness sericea patches may be more 

effective in identifying sericea with higher accuracy (low commission and omission 

error).  

 

5.2.5 Future research 

The next step for this study is to test the feasibility of these approaches toward a larger 

extent covering more habitat types and higher vegetative variation. More complicated 

approaches could also be examined. An exhaust of band combinations can be tried, and 

results can be plotted and compared. Then a threshold can be identified when the 

mapping accuracy does not increase with the increase of bands. This threshold can be 
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used to guide future mapping application. 

 

More in depth research could be done toward a better understanding of vegetation spectra 

on multiple spatial and temporal dimensions. Ground spectra could be collected at 

different time, place and solar conditions to examine various factors that influence 

spectral signatures and later to be removed from spectra. A spectral library could be built 

to serve as reference in specific circumstances.   
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