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THE SPATIAL CROSS-CORRELATION COEFFICIENT AS AN 

ULTRASONIC DETECTION STATISTIC 

 

RAINA CEPEL 

 

Dr. K. C. Ho & Dr. Steven P. Neal - Thesis Supervisors 

 

ABSTRACT 

 

In ultrasonics, image formation and detection are most commonly based on signal 

amplitude.  Matched filtering is an amplitude independent approach, but requires accurate 

template estimation.  In this work, we introduce the use of the spatial cross-correlation 

coefficient as an additional detection statistic.  The correlation coefficients are calculated 

between A-scans digitized at adjacent measurement positions and can be formed into 

images that are similar to C-scan images.  We also describe an approach for generating 

simulated acoustic noise with a spatial correlation coefficient distribution and maximum 

extreme value (MEV) distribution which matches those distributions for measured 

acoustic noise.  Using the simulated acoustic noise, grain noise and noise-corrupted flaw 

signals are simulated under varying conditions to compare performance.  The spatial 

cross correlation approach is found to outperform gated peak detection at low signal to 

noise ratios.  When the a priori flaw signal prediction is inadequate, the correlation 

approach also outperforms matched filtering.  Techniques to maximize the efficacy of the 

spatial cross correlation approach are suggested. 
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CHAPTER 1 

INTRODUCTION 

 

 

Gated-peak detection, a typical ultrasonic detection in nondestructive evaluation 

(NDE), is amplitude based.  The statistic used for this approach is either the maximum 

absolute value or the maximum peak to peak value of a voltage versus time signal, called an 

A-scan.  An image of these values plotted versus their corresponding lateral spatial positions 

is called a C-scan.  The C-scan image represents a starting point for the application of image 

processing techniques to identify defects as spatial regions of high or low amplitude relative 

to the background amplitude-based noise.  A weakness of amplitude based approaches is 

their direct and inherent sensitivity to non-defect related amplitude changes associated with 

the measurement system or material sample, thus efficacy at low SNR is poor.   

Matched filtering is another detection technique [1,2] that filters each received signal 

with a template that is chosen by the user to be the best match to the expected flaw signal.  In 

effect, matched filtering correlates each measured A-scan with the template.  This approach 

is amplitude independent and as such has the capability to be effective at low SNR, but only 

when an accurate prediction of the flaw signal is used.  In instances where the template is 

significantly different from the flaw signals, the performance of matched filtering degrades.  

Previous work on the use of matched filter for ultrasonic defect detection by Xin et al. [3], 

Chiou et al. [4], and Srinivasan et al. [5] addresses the difficulties in estimating the template 

along with the use of model-based approaches for template estimation. 

In this work, we focus on a complementary technique which relies on the cross-

correlations between adjacent A-scans [6,7] as a basis for detection [8,9].  Spatial cross-



 2 

correlation coefficient images are introduced as signal amplitude independent approach for 

visualizing the similarity in measured A-scans.  Correlation images are created using the 

same A-scans which form the basis of C-scan images.  In either case, the process begins with 

measured A-scans written into a three-dimensional array with the rows and columns of the 

array registered with the measurement locations and time being the third dimension.  

Formation of a correlation image is more complicated than formation of a C-scan image, but 

the basic approach is the same:  establish a time gate, calculate the correlation coefficient 

between adjacent A-scans which were written into the three-dimensional array, write the 

correlations into a two-dimensional array, and form a correlation image based on the 

correlations [9].  Correlation images represent a complimentary starting point for the 

application of image processing techniques to identify defects as regions of high or low 

correlation relative to the background noise.    

Simulation studies are utilized to quantify the usefulness of the spatial cross-

correlation as an ultrasonic detection technique.  Simulated A-scans typically include a target 

signal (e.g., a flaw or weld plane signal) plus noise.  In some cases, the degree of average 

correlation between adjacent A-scans can have a significant influence on detection [10-14].  

Therefore, to accurately simulate signals, they must be constructed with correlated grain 

noise. Uncorrelated grain noise is easily generated using a normal random number generator 

with filtering used to achieve the desired frequency content.  To create correlated noise, each 

noise signal is created as a weighted sum of a random signal and the signals in adjacent 

measurement locations.  

With accurate simulated grain noise, noise-corrupted flaw signals can be created 

under varying conditions in order to quantitatively compare the performance of the spatial 
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cross-correlation method to the gated peak-detection and matched filtering approaches.  This 

will aid decisions about when the spatial cross-correlation detection statistic should be used 

in addition to gated-peak detection or matched filtering. 

The results of this work are presented in the next three chapters, each of which is 

written as a self-contained paper.  Chapter 2 was published in IEEE Transactions on 

Ultrasonic & Ferroelectric Frequency Control [15] and describes the process of correlation 

image formation in more detail, including complications which arise from initial alignment 

of A-scans, local alignment of signals, skipping signal measurement positions, and image 

formation using matrices with blank elements.  It also shows examples of correlation images 

with complimentary C-scan images, and qualitatively compares the spatial cross-correlation 

coefficient to matched filtering. 

Chapter 3 was published in The Journal of Nondestructive Evaluation [16] and 

describes the approach for generating simulated acoustic noise with a correlation coefficient 

distribution and maximum extreme value (MEV) distribution (i.e, the gated peak-value 

distribution) which matches the distributions determined for measured acoustic noise.  Each 

correlated noise signal is created as a weighted sum of a random signal and the signals in 

adjacent measurement locations, with an iterative procedure for determining the weights 

resulting in a set of spatially correlated noise signals. 

Chapter 4, which has not yet been submitted for publication, noise-corrupted flaw 

signals are created under varying conditions in order to quantitatively compare the 

performance of the spatial cross-correlation method to the gated peak-detection and matched 

filtering approaches.  For each set of conditions, a receiver operating characteristic curve is 

calculated for each detection statistic and the area under the curve is used as a basis for 
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comparing each detection approach.  Some conclusions are made about under which 

circumstances the use of spatial cross-correlation should be considered, and 

recommendations are made to aid in maximizing the efficacy of this detection approach 

given certain invariant experimental conditions 
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CHAPTER 2 

SPATIAL CORRELATION COEFFICIENT IMAGES FOR ULTRASONIC 

DETECTION 

 

by 

Raina Cepel, K. C. Ho, Brett A. Rinker, Donald D. Palmer, Jr., Terrence P. Lerch, and  

Steven P. Neal 

 

Abstract: 

In ultrasonics, image formation and detection are generally based on signal amplitude.  In 

this paper, we introduce correlation coefficient images as a signal amplitude independent 

approach for image formation.  The correlation coefficients are calculated between A-scans 

digitized at adjacent measurement positions.  In these images, defects are revealed as regions 

of high or low correlation relative to the background correlations associated with noise.  

Correlation coefficient and C-scan images are shown to demonstrate flat-bottom-hole 

detection in a stainless steel annular ring and crack detection in an aluminum aircraft 

structure.   
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I. Introduction 

Typical ultrasonic detection in nondestructive evaluation (NDE) is amplitude based.  

C-scan images are used to display peak-amplitudes throughout a scan.  The C-scan image 

represents a starting point for the application of image processing techniques to identify 

defects as regions of high or low amplitude relative to the background amplitude-based noise.  

A weakness of amplitude based approaches is their direct and inherent sensitivity to non-

defect related amplitude changes associated with the measurement system or material 

sample.  In this paper, we focus on a complementary image formation approach which relies 

on the correlations between adjacent A-scans [1,2] as a basis for detection [3,4].  Correlation 

coefficient images are introduced as signal amplitude independent approach for visualizing 

the similarity in measured A-scans.  Correlation images represent a complimentary starting 

point for the application of image processing techniques to identify defects as regions of high 

or low correlation relative to the background noise.   

Correlation images are created using the same A-scans which form the basis of C-

scan images.  In either case, the process begins with measured A-scans written into a three-

dimensional array with the rows and columns of the array registered with the measurement 

locations and time being the third dimension.  Formation of a correlation image is more 

complicated than formation of a C-scan image, but the basic approach is the same:  establish 

a time gate, calculate the correlation coefficient between adjacent A-scans which were 

written into the three-dimensional array, write the correlations into a two-dimensional array, 

and form a correlation image based on the correlations [4].  As will be discussed, 

complications arise from initial alignment of A-scans, local alignment of signals, skipping 

signal measurement positions, and image formation using matrices with blank elements. 
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The correlation approach addressed here contains at least an element of matched 

filtering [5,6].  As applied to defect detection using ultrasonics, implementation of a matched 

filter is comparable to calculating the cross-correlation between the expected defect signal, 

denoted the filter’s impulse response or template, and each windowed A-scan [7-12].  An 

image of matched filter correlations could then be constructed.  The efficacy of this approach 

as applied to ultrasonics is directly related to the quality of the template; in essence, the 

efficacy is controlled by the operator’s ability to predict the signal distortion caused by 

scattering at an unknown defect.  Specifically as related to defect detection in ultrasonics, 

Xin et al. [7], Chiou et al. [8], and Srinivasan et al. [9] address the difficulties in estimating 

the template along with the use of model-based approaches for template estimation.  Eriksson 

et al. [10] address the problem of correlation-based time-of-flight estimation when the signals 

have undergone unknown non-linear distortions.  In the correlation approach, each signal is 

correlated with its nearest neighbors, with resultant correlations used as a basis for 

correlation image formation.  In essence, each gated A-scan is taken to be a template for 

application of matched filtering to neighboring A-scans.  A more detailed comparison of the 

matched filter and correlation approaches is pursued below.   

The remainder of this paper deals with the details associated with correlation image 

formation including measurement procedures, correlation calculations, and image formation 

alternatives.  Examples of correlation images are presented based on measured A-scans.  

Companion C-scan images are presented for comparison purposes.  The paper closes with a 

summary and discussion section. 



 9 

II. Ultrasonic measurements  

 A-scans were measured in an immersion mode using two samples:  a stainless steel 

annular ring with nominal inside and outside diameters of 40 mm and 70 mm, respectively; 

and an aluminum sample fabricated to represent an aircraft structure.  The annular ring 

sample was machined to add five equal-depth flat bottom holes.  A Panametrics 15 MHz, ½” 

diameter, 6” focal length transducer was used in a polar scan at normal incidence on the 

annular sample with 2° between radial scan lines and 0.762 mm between circumferential scan 

lines.  Data from the annular sample was used to show polar correlation images and to 

present correlation images for flat-bottom-hole signals within grain noise.  The aluminum 

sample was comprised of two aluminum plates fastened together with a sealant between the 

two plates.  Electric discharge machined (EDM) notches of various lengths were machined to 

extend radially from selected fastener holes.  For the aluminum sample, oblique incidence 

pitch-catch measurements were made using a pair of Panametrics 10 MHz, ½” diameter 

transducers, one flat and one with a focal length of 3”.  Transducers were arranged 5° from 

normal.  The aluminum sample with simulated cracks was used to demonstrate the use of 

correlation images for the detection of cracks based on lack of correlation in transmitted 

signals. 

III. The correlation approach and formation of correlation images 

A. Model formulation and relationship to the matched filter 

 In this section, enough detail is given to provide a framework for introduction of the 

correlation approach and to facilitate a first order comparison between the correlation 

approach and a matched filter approach.  We start by stating a convolution-based model for a 

backscattered signal, ( )txi , measured at the thi  measurement position in a line scan: 
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( ) ( ) ( ) ( )
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(i.e., the inverse Fourier transform of the flaw’s scattering amplitude), and the noise, ( )tni , is 
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Fig. 1.  Representation of noise and signal + noise distributions for: (a) matched filter (upper) 

and (b) correlation approach (lower). 

 

 

where for ease of notation, the time delay between )(tsmi  and )(txi  has been accounted for 

and mβ  is the maximum value of the matched filter output.  Furthermore, we assume that the 

flaw signals all have unit energy and that all processes are zero mean.  A measure of the 

quality of the matched filter template is given by the similarity in ( )tsmi  and ( )tsi  as 

quantified by mα .  Given the unit energy assumption, 1=mα  for the ideal case where 

( ) ( )tsts i
m
i = .  In this simplified development, mα  is taken to be deterministic.  Now 

consider two cases:  no flaw signal nm αβ =⇒ , resulting in the noise distribution; and flaw 

signal present nmm ααβ +=⇒ , resulting in the signal + noise distribution.  Figure 1(a) 

shows a representation of the distributions for mβ  with and without a signal.  Assuming 
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further that the measurement position spacing is great enough that adjacent noise signals are 

uncorrelated [13-15], the noise distribution will have zero mean with variance driven solely 

by nα .  Similarly, the signal + noise distribution will have mean mα  with the same variance 

as that for the noise distribution.  Thinking in terms of a receiver operator characteristic 

(ROC) analysis, the performance of the filter will be essentially controlled by the amount of 

overlap between the two distributions.  The degree of overlap is controlled by the width of 

the distributions (which are both controlled by the noise variance) and by the position of the 

signal + noise distribution (which is controlled by the quality of the template).  For the ideal 

case where the template “matches exactly” the flaw signal, 1=mα , and the matched filter 

approach reaches its best performance.  In practice, ( )thi  may be calculated reasonably well 

(at least for isotropic materials), ( )tri  is generally difficult to estimate, and ( )tsmi  therefore 

does not “match well” with ( )tsi  [7-10].  As a result, mα  is less than 1, the distribution of 

mβ  moves to the left, and the matched filter performance degrades.  Finally, we note that 

while not typically done in practice, mβ  could be used to form a matched filter following the 

basic concepts described below. 

 For the correlation approach, the correlation between adjacent signals is calculated.  

This is in contrast to the matched filter which basically utilizes the correlation between the 

template and each signal.  Continuing with the same development format and with the same 

simplifying assumptions, we can write a key relationship supporting the correlation approach 

as follows: 
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Again, cα  is considered deterministic.  For the correlation approach, three cases must be 

considered:  no flaw signal nnm αβ =⇒ , resulting in the noise distribution;  flaw signal 

present in both signals nnnncc ααααβ +++=⇒ 21 , resulting in a signal + noise 

distribution; and a flaw signal in only one signal nnncc αααβ ++=⇒ 1 , resulting in a 

second signal + noise distribution.  This last case will exist only at the border of a flaw with 

one A-scan on the flaw and one missing the flaw; therefore, this case will be ignored for 

discussion purposes.  Figure 1(b) shows a representation of the distributions for cβ  with and 

without a signal.  The noise distribution will have zero mean and variance driven only by the 

variance of nnα .  The signal + noise distribution will have mean at cα , but the variance of 

distribution will now be driven by the variance of nnnn ααα ++ 21 .  As a result of using what 

is essentially a noise-corrupted template, the correlation approach shows more noise than the 

matched filter.  The overlap in distributions, however, will also be influenced by mean of the 

signal + noise distribution as represented by cα .   

 Given these models, we can state that the rationale behind the correlation approach is 

that the potential exists for the similarity between flaw signals from adjacent measurement 

positions to be greater than the similarity between the template and either measured flaw 

signal; implying that mc αα > .  Even given this rationale, for enhanced performance, the 
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positive effect of mc αα >  must overcome the effect of an increase in noise due to the use of, 

in essence, a noise-corrupted template.  Considering the issues behind mc αα >  in more 

detail:  with wave propagation effects difficult to calculate in real materials, ( )thi  and ( )thi 1+  

may be better estimates of each other than ( )thmi  is of either; with scattering amplitudes 

difficult to know a priori (and difficult to calculate except for families of idealized shapes), 

( )tri  and ( )tri 1+  may be better estimates of each other than ( )trmi  is of either; therefore, the 

potential exists for ( )tsi  and ( )tsi 1+  to “match” better than ( )tsmi  “matches” either [7-10]. 

 A more complete comparison of the correlation and matched filter approaches reveals 

the following first order observations:  1) the correlation approach can be implemented 

without a priori calculation of a template, that is, without estimating the signal distortion 

effects due to scattering at the flaw and without accounting for attenuation, transmission, 

mode conversion, and diffraction [7-10] – effects that can be argued are inherently contained 

within adjacent A-scans; 2) the correlation approach has additional noise beyond that of the 

matched filter; 3) the correlation approach requires the presence of the flaw signal in adjacent 

A-scans whereas detection for the matched filter approach can be based on a flaw signal in a 

single A-scan; and 4) when flaw signals are present in adjacent A-scans and the flaw signals 

are knowable (i.e., 1→mα ), the flaw signals in the adjacent A-scan must also be similar, 

implying 1→cα .   

Finally, while the measurement position spacing was assumed to be large enough 

such that adjacent noise signals are uncorrelated, this may not always be the case.  Recall that 

for the correlation approach applied in backscatter, the noise distribution (see Fig. 1(b)) is 

given by the correlation distribution between adjacent noise signals.  Thompson et al. [13] 
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provide a theoretical framework for the correlation between adjacent noise signals, and Cepel 

et al. [14] give example correlation coefficient distributions for different measurement 

position spacings.  In fact, the correlation between adjacent backscattered noise signals is 

influenced by measurement position spacing, by beam field characteristics, and may be 

influenced by internal material structures (e.g., grain structure) except at long wavelength 

[2,3,13].  Relative to performance of the correlation approach, with reference to Fig. 1, as the 

measurement spacing is decreased, the mean of the noise correlation distribution moves to 

the right [14], resulting in the potential for increased overlap between the noise and signal + 

noise distributions.  This issue is addressed again at the end of the next section. 

B. Correlation coefficient calculations 

The correlation approach is now developed more formally for a set of measured 

signals, building on the models introduced above.  The correlation of interest is the spatial 

cross-correlation calculated between gated A-scans measured at adjacent measurement 

positions.  Consider an N x M scan with each A-scan T points long and using the array 

( ) 1...0...1...1 −==== TtMjNitx i,jx  to hold the A-scans.  Calculation of the 

correlation coefficient between A-scans is then given by the following equation where 

( )τδδρρ ,,,,ˆˆ crji=  is a sample estimate of the associated expected value [1-5]: 
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Normalization removes the scale dependence and restricts ρ̂  to the range -1 to 1.  In Eq. (4), 

the summation range in the time-domain defines the portion of the signal (the time window 

or gate) of interest, m  is the mean value calculated over the gate, τ  controls the lag or 

temporal shift between the two signals, and δ  is a spatial shift parameter.  Throughout the 

paper, t  is used as a discrete index referring to the temporal direction.  For clarification, T 

gives the number of points in each A-scan as digitized and as written into the initial data 

array; it  and ft  define the element numbers corresponding to the start and end, respectively, 

of the time gate or time window for analysis.  With 0,1 == cr δδ , “row correlations” are 

calculated between adjacent A-scans, that is, A-scans measured at the thj  and 1+thj  

positions in the thi  scan row.  Similarly, with 1,0 == cr δδ , “column correlations” can be 

calculated.  Correlations for all possible adjacent signal combinations in an N x M raster scan 

can be calculated using a computation loop over i and j with the spatial shift applied 

sequentially to i and j.   

Before leaving this section, the role of measurement position spacing and the spatial 

shift parameter, δ , deserve more attention [3,13,14].  The spatial shift parameter can be used 

to establish an “effective” measurement position spacing or step size that is an integral 

multiple of the actual step size.  For example, if a Cartesian scan is done in 0.1 mm steps, the 

“effective” step size for correlation of adjacent signals can be increased in 0.1 mm 

increments by increasing rδ  and cδ  in unit steps.  The driving issue here is that the 

correlation approach requires a balance between reducing the measurement step size and 

resisting this reduction.  Reducing the step size is motivated by the following:  a flaw signal 

must be present in at least a pair of adjacent signals to allow detection – motivating a reduced 
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step size to increase resolution; as the similarity between adjacent flaw signals increases (i.e., 

as the similarity between )(tsi  and )(1 tsi+  increases), the mean of the signal + noise 

distribution (see Fig. 1(b)) increases, leading to less overlap between the noise and signal + 

noise distributions – also motivating a reduced step size to improve performance.  

Conversely, avoiding reduction in the step size is motivated by the following:  at some point, 

as the step size is reduced, the correlation between noise signals increases and the mean of 

the noise distribution shifts to the right (see Fig. 1(b)), leading to greater overlap between 

noise and signal + noise distributions – motivating avoidance of a step size reduction in order 

to improve performance.  In terms of achieving this balance, we note that focused probes 

allow for reducing the step size in order to enhance performance while avoiding the critical 

step size at which noise correlations will increase and performance will degrade.  Beyond 

this observation, we would say that while parameters which affect performance have been 

identified, a methodology for optimally selecting these parameters has not yet been 

established. 

C. Signal alignment 

 Measured signals can be aligned globally and locally.  Global signal alignment for 

backscatter is done by aligning the leading edge of each front surface reflection.  Global 

alignment yields B-scan images aligned at the front surface reflection, providing a basis for 

evaluating the remaining systematic or random misalignment within the image.  This global 

alignment is only achieved easily and unambiguously under favorable measurement 

configurations and sample geometries.   

Local signal alignment can be used to form locally aligned B-scan images or to form 

correlation coefficient images based on maximum correlations.  In either case, the core  
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Fig. 2.  Example cross-correlelogram along with a pair of signals as-measured and aligned 

 

 

process involves forming a cross-correlelogram between two signals [1].  The cross-

correlelogram is given by a plot of ( )τρ̂  versus τ .  An example of a cross-correlelogram 

along with a pair of signals as-measured and aligned is shown in Fig. 2.  Signals were 

measured in backscatter from a stainless steel inertial weld sample.  From this plot, the 

maximum correlation, ( )max
ˆ τρ , can be extracted along with the shift, maxτ , to the 

maximum correlation.  To perform local signal alignment for B-scan images, each signal is 

shifted in time by maxτ for that signal to achieve alignment with a signal chosen as the 

reference signal.  An example of B-scans as-measured and after alignment is shown in Fig. 3, 

again based on data from the inertial weld sample.  To perform local signal alignment to be 

used in correlation images, ( )τρ̂  is calculated as given in Eq. (4) between each gated signal 

and its nearest row and column neighbors.  For each pair of signals, ( )max
ˆ τρ  is written into a  
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Fig. 3.  Example B-scans as-measured and aligned. 

 

 

new array which is used as a basis for correlation image formation.  With the correlation 

approach, signals are typically allowed to shift over a very limited range under the 

assumption that adjacent flaw signals will vary in phase by a limited amount.  In contrast, in 

application of matched filtering, the template may be allowed to shift over a wide range in 

searching for flaw signal.  Also note that while local alignment can reveal high correlations 

in adjacent signals that would have been missed without alignment; the alignment procedure 

also attempts to align noise signals since the procedure is applied throughout the image.  As a 

result, both the noise and signal + noise distributions shown in Fig. 1(b) generally move to 

the right, each with reduced variance.  The influence of local alignment on detection 

performance must therefore be considered on a case by case basis. 

D. Image display issues 

Given A-scans from an N x M scan which have been written into the array ( )tx ji,=x , 

correlation image formation proceeds as follows:  establish a time gate, calculate the 

correlation coefficient between adjacent A-scan in the three-dimensional array, and write 

these correlations into one or more two-dimensional arrays.  Correlations can be calculated  

As-measured AlignedAs-measured Aligned
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Fig. 4.  Schematic representation of Cartesian and polar scans.  Open circles represent 

measurement positions.  R’s and C’s represent the conceptual positions of row and column 

correlations for a Cartesian scan and radial and circumferential correlations for a polar scan. 

 

 

with alignment, ( )max
ˆ τρ , or without alignment, ( )0ρ̂ .  For an N x M scan where correlations 

are calculated without signal skipping ( 0=iδ ), there will be ( )1−MN row correlations 

and ( )MN 1−  column correlations, for a total number of NMNM −−2  correlations.  Figure 

4 shows a schematic representation of a 4 x 4 scan (top figure) with open circles at the 16 
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measurement positions.  The R’s and C’s are used to represent the positions conceptually 

assigned to the correlation between adjacent row signals and adjacent column signals, 

respectively.  Also shown in the figure is a portion of a polar scan (bottom figure) with the 

R’s and C’s now representing the positions assigned to radial and circumferential 

correlations, respectively, and the open circles again at the measurement positions.  At this 

point, the easiest approach would be to make two correlation images:  one based on an N x 

(M-1) row correlation array, given by the equation ( ) ( )1,, ,ˆ, += jiji xxjiimagerow ρ , and one 

based on an (N-1) x M column correlation array, given by the equation 

( ) ( )jiji xxjiimagecol ,1, ,ˆ, += ρ .  Similarly, radial and circumferential correlation images 

could be made for a polar scan.  This approach is useful in that two images are created which 

allow separate evaluation of row and column correlations.  However, formation of a single 

correlation image is generally desirable. 

 The issues associated with forming a single correlation image can be addressed by 

first thinking in terms of writing the row and column correlations into a single array.  In 

general terms, the NMNM −−2  row and column correlations are written into a 

( ) ( )1212 −− MxN  array, leaving 12 +−− MNNM  blank elements.  For the 4 x 4 example 

(see Fig. 4), the open and filled circles represent the blank element positions in the 

correlation array.  An image could be created based directly on an array containing blank 

elements, with each blank element assigned the same value; however, the image would be 

visually unsatisfying with useful correlation values displayed within a regular array of mono-

colored pixels.   

A variety of solutions exist to this image display problem.  One potential solution 

would be to assign each blank element an average of nearest neighbor values.  The resultant  
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Fig. 5.  Example correlation images using the diamond region approach for a polar scan.  

Each diamond region represents either a radial or circumferential correlation coefficient.  

Images are shown at high magnification in order to reveal pixelization details. 

 

 

image would be composed of pixels associated with row correlations and column correlations 

and pixels which are an average of row and column correlations.  A second approach is to 

shift the column correlations up one row, with the resulting image formation equations being 

-1  

-0.8

-0.6

-0.4

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

x axis (mm)

y
 a
x
is
 (
m
m
)

correlation plot between all points - X26

15 20 25 30

-10

-5

0

5

-1  

-0.8

-0.6

-0.4

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

x axis (mm)

y
 a
x
is
 (
m
m
)

correlation plot between all points - X26

20 21 22 23 24

-6

-5

-4

-3

-2

-1

x axis (mm) 

30 20 15 

-5 

0 

5 

y 
ax
is 
(m
m) 

25 

x axis (mm) 

23 21 20 22 24 

-10 

-5 

-1 

-6 

-4 

-3 

-2 

y 
ax
is 
(m
m) 

y axis 
(mm) 

y axis 
(mm) 



 23 

( ) ( )jiji xxjiimage ,1, ,ˆ12, +=− ρ  and ( ) ( )1,, ,ˆ2, += jiji xxjiimage ρ .  This approach 

compromises spatial registration somewhat; however, the resultant images are useful for 

qualitative evaluation.  A third approach which preserves spatial registration is to consider 

each correlation value as being centered in a diamond-shape region (see Fig. 4).  To facilitate 

display, the diamond regions are discretized using a large number of Cartesian elements with 

each element assigned a value based on which diamond that element falls within.  As shown 

in the blown-up polar correlation image in Fig. 5, a close look at a correlation image reveals 

the diamond shaped regions and the discretization. 

IV. Results 

Two example results are show which cover polar and Cartesian scans and detection 

based on decreased and increased correlation, respectively.  In each case, companion C-scan 

images are shown for comparison purposes. 

 Figure 6 shows a C-scan image (top) and correlation image (bottom) for the stainless 

steel annular ring.  Data were measured in a polar scan with the correlation image displayed 

using the diamond region format.  Starting from the top and moving clockwise, there are 

three 1/16”, one 2/16”, and one 3/16” diameter flat-bottom-holes.  In both images, the five 

flat-bottom-holes are clearly visible; however, for the smaller holes the contrast between the 

flat-bottom-hole region and the background noise is greater in the correlation image than in 

the C-scan image.  Note that the background noise in the correlation image is associated with 

correlation coefficients for grain noise signals.  Detection of the flat-bottom-holes is possible 

due to relatively high correlations between signals containing echo signals from a given flat-

bottom-hole; that is, correlations that are high relative to correlations associated with grain 

noise signals.  In general, as depicted in Fig. 1(b), there will be an overlap between the noise  
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Fig. 6.  Example correlation image (bottom) and C-scan image (top) showing 5 flat bottom 

holes in a stainless steel annular ring.  The correlation image was formed using the diamond 

region approach.  The darker regions in the images represent high correlations and high 

amplitudes, respectively. 

 

 

and signal + noise distributions.  As such, there is a chance for false-calls, and the choice of a 

detection threshold must strike a balance between false-calls and missed-defects.  In this 

particular example, even though there are additional regions around the annular image that 

appear rather dark on the grey-scale image, the correlations associated with each flat-bottom- 
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Fig. 7.  Example A-scans from a flat-bottom-hole region (left) and a grain noise region 

(right).  The center signal in a group of 5 signals is shown in solid line.  In the correlation 

approach, this signal is correlated with each of its 4 closest neighboring signals (shown in 

dashed line).  By observation, the correlation between adjacent signals measured from the 

flat-bottom-hole region is significantly higher than the correlations between adjacent grain 

noise signals. 

 

 

hole are substantially higher than any of the other groupings of correlations around the 

image.  Finally, note that image processing routines can be applied to each image to provide 

some degree of enhancement.   

As a concrete example of the increased similarity between flat-bottom-hole echo 

signals relative to the similarity in grain noise signals, Fig. 7 shows A-scans from a flat-

bottom-hole region and from a grain noise region.  In this example, two groups of 5 gated A-    
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 Fig. 8.  Example of crack detection in pitch-catch based on decreased correlations.  Darker 

regions in the C-scan image represent decreased amplitude.  Darker regions in the correlation 

image (formed using the interleaving approach) represent decreased correlations. 

 

 

scans are shown.  In each case, the center signal in the group of 5 is shown in solid line along 

with its 2 neighboring signals radially and its 2 neighboring signals circumferentially (all 

shown in dashed line).  The basis for correlation image formation is the correlation 

neighbors.  Figure 7 provides visual insight into the contrast in correlation between signals 

from a flat-bottom-hole region and signals from a grain noise region.  In this example, the 

signals from the flat-bottom-hole region (left column) clearly show a higher correlation than 

the signals from the grain noise region (right column).   

 The second example is based on measured oblique incidence pitch-catch data from 

the aluminum sample.  The schematics in Fig. 8 show the sample geometry.  The sample is 

made up of two aluminum plates joined together with two rows of eight fasteners with 

sealant between the two plates.  EDM notches were machined to extend from four of the 

fastener holes in the outer aluminum plate (the skin) at four different lengths as shown in the 



 27 

figure.  Images are based on the interface reflection (signal B) at the faying layer.  Similar 

results are obtained by monitoring signal C from the back surface of the substructure.  In this 

case, interaction of the acoustic beam with the EDM notches causes amplitude reduction and 

distortion of the transmitted signal.  The reduction in amplitude makes the presence of the 

notches apparent in the C-scan image.  The distortion leads to a reduction in signal 

correlation, making the notches detectable in the correlation image.  The three longer notches 

are easily detected and sized in either image with the 1 mm notch difficult to detect without 

ambiguity.  The vertical striping, especially prominent in the C-scan image, is likely 

associated with aluminum fabrications processes.  Again, image processing techniques can 

be applied to enhance either image.   

V. Summary and discussion 

 The correlation approach outlined in this paper is attractive as a potential compliment 

to the classical C-scan approach for a number of reasons including:  the correlation approach 

is scale independent; the correlation approach relies on signal shape, while the C-scan 

approach uses only the peak value; correlations are calculated based on the same A-scans 

used in forming C-scan images; correlation images have a qualitatively similar appearance to 

C-scan images, facilitating inspector acceptance; and correlation images can be formed 

without the expertise required to deal explicitly with wave propagation and scattering effects.   

 In terms of additional development on the correlation approach, work is underway in 

two areas.  First, a formal ROC analysis, which is in progress, should shed light on the 

performance of the correlation approach in comparison to the C-scan and matched filtering 

approaches [4].  As part of this analysis, data fusion is being used to assess performance of 

the correlation, C-scan, and matched filtering approaches combined.  We note, however, that 
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any simulation or model based performance comparison will be heavily influenced by 

underlying assumptions related to signal distortion.  Specifically, with reference to the model 

development section, relative performance will be substantially controlled by the amount of 

scattering based distortion allowed, through ( )tri ; by the extent to which ( )trmi  is allowed to 

“match” ( )tri ; and by the extent to which ( )tri  and ( )tri 1+  are allowed to “match.”  And 

finally, the correlation approach is amplitude independent but is not measurement system or 

material independent.  Preliminary assessment has shown very weak dependence of 

correlation values on the beam field near the focal region of a focused transducer.  Future 

work will include a more in depth study of the influence of beam field variations, frequency 

content, and material morphology on the correlation approach. 
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CHAPTER 3 

STATISTICAL ANALYSIS AND COMPUTER GENERATION OF 

SPATIALLY CORRELATED ACOUSTIC NOISE 

 

by 
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 Dominic Ho,

 
 and Steven P. Neal 

 

 

Abstract: 

In ultrasonic NDE, simulation studies can play an important role in complimenting 

experimental validation of techniques under development.  The utility of such simulations 

depends, in part, on the degree to which the simulated defect and noise signals are 

representative of the measured signals.  In this paper, we describe an approach for generating 

simulated acoustic noise with a spatial correlation coefficient distribution and maximum 

extreme value (MEV) distribution which matches those distributions for measured acoustic 

noise.  The procedure for generating noise signals is outlined for a line scan and for a raster 

scan.  The basic approach forces the correlation of neighboring signals to the desired 

correlation by creating each signal as the sum of appropriately scaled neighboring signals 

plus a new random signal.  For the line scan where each interior position has only two 

neighbors, this process is done sequentially without iteration.  For the raster scan where each 

interior point has four nearest neighbors, iteration is required to simultaneously achieve the 

desired correlations with row and column neighbors.  The MEV distribution is controlled in 

an outer iterative loop with the shape and position of the distribution dictated by spectral 

content of the noise signals and by controlling the signal energy, respectively.  Results are 

shown which demonstrate the effectiveness of the approach.  With this approach, a limited 

number of measured signals can be used to establish the correlation coefficient and MEV 

distributions which drive the computer generation of a large number of simulated acoustic 

noise signals.  
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I. Introduction 

Simulation studies are routinely used in ultrasonic nondestructive evaluation (NDE) 

to complement experimental studies during the development of new inspection approaches.  

Simulated A-scans typically include a target signal (e.g., a flaw or weld plane signal) plus 

noise.  The noise of interest lies between the front and back surface reflections in an A-scan 

and is comprised of electronic plus acoustic noise.  In certain cases, the degree of correlation 

between A-scans can have a significant influence on detection.
(1-4)

  These correlations can be 

quantified in terms of the spatial cross-correlation, at zero lag, between gated A-scans.
(4,5)

  

Uncorrelated noise A-scans are easily generated using a normal random number generator 

with filtering used to achieve the desired frequency content.  Margetan et al. have gone a step 

further using an independent scatterer model to generate simulated grain noise A-scans with 

correlations between A-scans controlled to some degree through use of an experimentally 

determined spatial correlation length parameter.
(2)
  Using their approach, the average, 

maximum, and standard deviation of gated peak-values are also controlled.  In the current 

paper, we describe an approach for generating simulated acoustic noise with a correlation 

coefficient distribution and maximum extreme value (MEV) distribution (i.e, the gated peak-

value distribution) which matches those distributions determined for measured acoustic 

noise.   

 The motivation for this project finds its origin in research associated with kissing 

bond detection for inertial welding of two stainless steel pieces.  Kissing bonds can be very 

difficult and expensive to fabricate in a controlled fashion, providing motivation for 

simulation studies which utilize simulated noise signals with realistic correlation coefficient 

distributions.  The basic approach being developed relies on the correlation coefficients 
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between adjacent A-scans to detect low signal-to-noise ratio (SNR) kissing bond signals.  

This approach finds its genesis in the work of Nagy and Adler on this same problem.
(6)
  

Without going into the analysis details, suffice it to say that an inspection approach can be 

formulated which relies heavily on the comparison between correlation coefficient 

distributions associated with backscattered signals from the weld being inspected and from a 

known set of acceptable welds.
(7)
  More recently the correlation approach has been extended 

to crack detection in both pulse/echo and pitch/catch.
(8)
 

Computer generation of correlated random variables with a desired mean correlation 

coefficient is straightforward.  For example, the thi  random sample can be generated based 

on the 1i th −  random sample as follows: 
(5)
 

 

( ) ( ) ( )1ibxiaix −+=            (1) 

 

where b  is an adjustable scale factor, ( )ia  is the output of a random number generator, and 

the x’s are the computer generated samples of the random variable, x.  The single scale factor 

can be adjusted to yield the desired mean correlation coefficient value, but, in general, the 

scale factor cannot be adjusted such that desired correlation coefficient mean and distribution 

(width and shape) are achieved.  The natural relationship between the mean and shape dictate 

that as b  is increased, correlation values are forced closer to the limiting value of 1.0, the 

distribution breadth decreases, and the distribution becomes increasingly skewed with a fat 

lower tail.  The primary task addressed in this paper is to extend the approach represented in 

Eq. (1) so that vectors of random numbers (simulated A-scans) can be generated that show 
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the desired distribution of correlation coefficient values.  These simulated signals will also be 

forced to the desired MEV distribution. 

Simulation of data with specified correlation structure arises in many fields.  In the 

physical sciences, scientists often use Shewhart Control Charts to monitor a process.  In this 

setting, data are a time-indexed series of averages or counts taken at regularly spaced time 

intervals.  Padgett, Thombs and Padgett 
(9)
 present a method to generate such one-

dimensional data with specified mean and variance structure so that the performance of such 

charts can be studied via simulation.  In this paper, the generated data are two dimensional, 

with emphasis on both the correlation within and between series, as well and the maximum 

extreme value distribution.  

 Two dimensional spatial time series data with correlation structure is common in 

many other areas, including meteorology, hydrology and ecological and environmental 

studies.  In the area of ecology and wildlife studies, observations such as animal counts are 

typically observed at irregularly-spaced locations.  Neighboring observations are likely to be 

correlated, and the paper by Brooker 
(10)

 represents one of the first attempts to generate such 

data.    

 In spatial statistics, point patterns are observed on variables such as temperature and 

rainfall, so that the data often include a (third) component, time.  See Cressie 
(11)

 for more 

information on the statistical aspects of fitting models to such data.  A recent contribution by 

Kyriakidis et al.
(12)

 proposes an algorithm for generating spatio-temporal precipitation data, 

with emphasis on preserving the distribution of the original data set.  Data are both space-

indexed (e.g., longitude and latitude) and time indexed.   
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 The methodology presented in the current paper is distinct from these related 

approaches for generating dependent data in that both the correlation and the MEV 

distribution are controlled.  The paper proceeds by first establishing representative 

correlation coefficient and MEV distributions associated with measured backscattered noise.  

The methodology for generation of simulated acoustic noise with the desired correlation 

coefficient and MEV distributions is then described for a line scan and for a raster scan.  

Results are presented which validate the approach for the experimentally established 

correlation coefficient and MEV distributions.  The paper closes with a brief summary 

section. 

II. Measurement Procedure 

Backscattered grain noise signals were measured and used as a basis for calculating 

associated correlation coefficient and MEV distributions.  The ultrasonic measurement 

system used in these measurements consists of a water tank filled with degassed tap water at 

approximately 19
o
C, a three dimensional scanning bridge that holds a transducer, a pulser-

receiver unit, and a 12 bit data acquisition card with a sample rate of 100 MS/s.  A dedicated 

PC collects data from the acquisition card and controls the motor controller that moves the 

scanning bridge.  A separate PC is employed for data analysis. 

The transducer used to make measurements was a focused ½” transducer with a 10 

MHz center frequency and a 4” focal length.  The settings on the pulser-receiver and the data 

acquisition card were typically set at values such that the front and back surface reflections 

were blown off the screen in order to enable proper digitization of the grain noise.  In each 

measurement position, 64 signals were taken and averaged together in order to reduce 

electronic noise. 
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The sample used in all measurements was a stainless steel plate with the dimensions 

10.1 x 5 x 1.9 cm.  A leveling plate was used to ensure that the specimen was aligned with 

the transducer’s scan plane.  The transducer was normalized in relation to the front face of 

the sample.  Data was taken at a single water path such that the focal point of the transducer 

would be approximately at the sample mid-plane.  Signals were measured on a 3.2 x 2.4 cm 

grid with 0.5 mm between measurement positions. 

After the data was collected, pre-processing was done on the raw signals.  First, the 

front surface reflections of each signal were aligned with one another.  Then all of the signals 

were averaged together in order to identify any non-random component associated with the 

front surface reflections.  This mean signal was subtracted from each of the individual signals 

so that spatial correlations between adjacent noise signals could be calculated with minimal 

influence from front surface reflection ringing.
(2)
  Finally, each signal was gated to extract a 

time window of 51 points (0.50 µs) with the gate positioned to correspond closely with the 

location in the sample where the transducer was focused.   

III. Statistical Analysis of Measured Noise 

A. Maximum Extreme Value Distributions 

 Vectors of data representing maximum extreme values (maximum absolute values) 

for the measured noise were extracted from the gated signals.  Figure 1 shows 2 histograms 

based on this MEV data.  The lower histogram is for all measured signals, that is, for a 

measurement position spacing of 0.5 mm.  The upper histogram is for every 3rd signal, 

corresponding to a measurement spacing of 1.5 mm.  The histograms are fundamentally the 

same with the number of observations being the only significant difference.  An extreme  
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Fig. 1.  Histograms of maximum extreme values for 1.5 mm (upper) and 0.5 mm (lower) 

measurement position spacing. 

 

value distribution based on the absolute value of the difference between min and max values 

could have been utilized instead.
(2)
 

B. Spatial Correlation Coefficient Distributions 

The correlation of interest is the spatial cross-correlation calculated at zero lag 

between gated A-scans measured at adjacent measurement positions.  For discussion 

purposes, consider an N x M scan with the A-scan (each T points long) written into the matrix 

( ) 1,0,1,1,, −==== TtMjNitjixx  (see Fig. 2).  Calculation of the correlation coefficient 

between A-scans is then given by the following equation where ( )crfi ttji δδρρ ,,,,,= :   
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Fig. 2.  Representation of measurement positions and associated data matrix. 
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In Eq. (2), the summation range in the time-domain defines the portion of the signal (the time 

window or gate) of interest, m  is the mean value calculated over the gate, and δ  is a spatial 

shift parameter.  Throughout the paper, t  is used as a discrete index referring to the temporal 

direction.  With 01 == cr δδ , row correlations are calculated between adjacent A-scan, that 

is, A-scans measured at the thj  and 1+thj  positions in the thi  scan row.  Similarly, with 

10 == cr δδ , column correlations can be calculated.   Correlations for all possible adjacent 

signal combinations in an N x M raster scan can be established using a computation loop over 

i and j with the spatial shift applied sequentially to i and j. 

In order to define desired distributions of spatial correlation coefficients for simulated 

noise, conditional correlation coefficient distributions were established based on the pre-

processed measured noise signals.  In this section, we begin by considering the overall  

N x M raster scan N x M x T data matrix:  x(i,j,t) 

i 

j 

t 

transducer 

measurement spacing 
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Fig. 3.  Histograms of spatial correlation coefficients and associated fits for 2 mm (upper), 1 

mm (middle), and 0.5 mm (lower) measurement position spacing. 

 

 

distribution of correlation coefficients.  Conditional distributions are addressed below.  The 

first step was to calculate the correlation coefficient (Eq. 2) between each signal and its row 

and column neighbors (see Fig. 2) and write these values into a single vector.   This 

calculation was done separately for three measurement spacings:  0.5 mm spacing (every 

signal), 1 mm spacing (every 2nd signal), and 2 mm spacing (every 4
th
 signal).  The 

correlation coefficient histograms for these measurement spacings are shown in Fig. 3.  The 

influence of measurement spacing on both the mean and the shape of the correlation 

coefficient distribution is apparent.  Conditional correlation coefficient distributions show the 

same basic characteristics as these overall distributions.   
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Fig. 4.  Variations in spatial correlation coefficients along a line scan for 0.5 mm (upper) and 

1 mm (lower) measurement position spacing. 

 

Probability density function fits to the distributions were considered.  The normal and 

gamma distributions were found to be the two common distributions that yielded the best fit 

to the correlation distributions.  The normal distribution works best when the average 

correlation value is near zero and the distribution is symmetric; however, as is apparent from 

the figure, the distribution tends to show a suppressed peak and fatter tails than the normal 

distribution.  The gamma distribution works well for skewed distributions with higher 

average correlations.  In some cases, a standard distribution which shows reasonable fit to the 

histogram cannot be found; however, an interpolation of the histogram can be used to 

approximate the actual distribution of the correlation coefficient values.  The interpolation 

approach utilizes the Matlab routine randsample to randomly choose a bin and then randomly 

select a value from each bin based on a linear probability density function defined between 

the edges of each bin.
(13)

  Superimposed on each histogram in Figure 3 is a normal or gamma 

distribution fit along with the interpolation fit. 
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Fig. 5.  Stem plots of overall and conditional correlation coefficient distributions.  The 

conditional distribution is for an adjacent correlation coefficient of 0.58. 

 

 

In general, correlation coefficient values are not randomly distributed in space.  That 

is, the correlation coefficient between a given pair of signals depends on the correlation 

coefficients between surrounding pairs of signals.  As an example, Fig. 4 shows the variation 

in correlation values along a line scan with relatively low (upper graph) and high (lower 

graph) measurement spacing.  As demonstrated in the figure, the dependence of correlation 

values on adjacent values decreases with increasing measurement spacing.  A graphical 

example of a conditional histogram is shown by the stem-plot in Fig. 5.  The overall 

distribution is given by stems terminating in light circles, and the conditional distribution, 

assuming an adjacent correlation value of 0.58, is given by the stems terminating in dark 

circles. 
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Fig. 6.  Steps used in creating spatially uncorrelated acoustic noise with the desired 

frequency content:  (a) white noise signal generated using a standard normal random number 

generator; (b) spectrum of white noise signal; (c) filter determined based on the average 

magnitude spectrum of the measured acoustic noise signals; (d) spectrum after filtering; and 

(e) inverse Fourier transform of filtered spectrum. 

 

 

IV. Generation of Spatially Correlated Noise 

A. Generation of Spatially Uncorrelated Acoustic Noise 

A number of equally effective approaches could be taken to generate uncorrelated 

acoustic noise.  As depicted in Fig. 6, the basic steps in the process as implemented here are 

as follows:  1) using a standard normal random number generator, create a time-domain 

white noise signal, T points long, for each (simulated) measurement position; 2) Fourier 

transform each signal to the frequency domain; 3) filter each signal using a filter (with unit 
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yield A-scans which are spatially uncorrelated with appropriate frequency content.  Note that 

the correlated noise creation step described below involves sums of scaled A-scans.  This 

process changes the average power spectrum from the desired spectrum associated with these 

initial spatially uncorrelated signals.  An iterative correction approach will be outlined which 

brings the average power spectrum back to the desired shape while still achieving the desired 

correlation distribution was implemented. 

B. One Dimensional Generation of Spatially Correlated Noise 

We begin by establishing the approach for a line scan and then expand the procedure 

for application to an xy raster scan in the next section.  Starting at the noise measurement 

stage, assume that a line scan is performed, acoustic noise signals are measured and pre-

processed, the average power spectrum is estimated, and the overall and conditional 

correlation coefficient distributions are established.  The line scan of measured signals are 

written in a two-dimensional matrix, denoted mx , with average power spectral density 

function estimate and associated magnitude spectrum given by ( )2fmX  and  ( )fmX , 

respectively.   

For discussion purposes, assume that an N position line scan is to be simulated.  

1−N  correlation coefficients are randomly generated with the first value coming from the 

overall distribution and subsequent values drawn from conditional correlation coefficient 

distributions.  These 1−N  correlation coefficients, denoted ( ) Nii ,2~ =ρ , will dictate the 

correlations between simulated noise signals. 

Clarification of the overall and conditional correlation coefficient distributions is in 

order.  The overall distribution is the probability density function associated with the 

probability ( )( )iP ρ , that is, for the entire set of correlation coefficients given that these  
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Fig. 7.  Representation of the notation and steps involved in creating a simulated line scan of 

spatially correlated signals. 

 

correlation coefficients are not independent.  Before addressing conditional distributions, 

recall the notation:  ( )iρ  gives the correlation between ( )tix ,  and ( )tix ,1− ; ( )1−iρ  gives 

the correlation between ( )tix ,1−  and ( )tix ,2− ; and ( )1+iρ  gives the correlation between 

( )tix ,1+  and ( )tix , .  Considering only nearest neighbors, the conditional probability density 

function for ( )iρ  is associated with the probability:  ( ) ( ) ( )( )1and1| +− iiiP ρρρ .  In 

practice, during the sequential generation of correlated signals, the correlation coefficient 

( )iρ  is drawn from the distribution associated with ( ) ( )( )1| −iiP ρρ  since ( )1+iρ  does not 

yet exist.   

The process of creating correlated noise signals involves several steps.  We begin by 

describing the procedure used to force the desired correlation between to two given signals.  

This approach is then incorporated into an iterative procedure used to simultaneously match 
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described in the previous section, the first step is to create a set of N uncorrelated acoustic 

noise signals, represented by the matrix ( ) 1,0,1, −=== TtNitiaa .  The output matrix, 

i.e., the set of correlated signals, is denoted ( ) 1,0,1, −=== TtNitixx .  The next step is to 

set ( )tx ,1  equal to ( )ta ,1 , that is,  ( ) ( ) 1,0,1,1 −== Tttatx .  Throughout the remainder of the 

paper, all operations will be implicitly carried out over the range of t, for example, 

( ) ( ) ( ) ( ) 1,0,1,1,1,1 −==⇒= Tttatxtatx .  The second signal, ( )tx ,2 , is then to be 

determined so that the correlation between ( )tx ,2  and ( )tx ,1  is equal to the desired 

correlation, ( )2~ρ .  Consistent with approach of Eq. (1), the method used to calculate ( )tx ,2  

is to add ( ) ( )txb ,12  to the uncorrelated signal ( )ta ,2 :  ( ) ),1(2),1(),2( txbtatx += .  The key is 

to find the value of ( )2b  which forces the correlation between ( )tx ,1  and ( )tx ,2  to be equal 

to ( )2~ρ .  This process will be repeated for each signal, that is:  

 

( ) Nitixibtiatix ,2),1(),(),( =−+=      (3) 

 

Note that ( )tix ,  will be appropriately correlated with both of its neighbors, ( )tix ,1−  and 

( )tix ,1+ , since the process forces correlations between ( )tix ,  and ( )tix ,1−  and between 

( )tix ,1+  and ( )tix , . 

The process for establishing the scale factor, ( )ib , can be described as follows.  We 

begin by using the correlation coefficient between ( )tia ,  and ( )tix ,1−  to calculate the 

inherent similarity between the two signals that will be used to create the output signal. 
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In order to simplify the notation, the mean subtraction step will be implicit in future 

correlation equations.  For ease of calculations, the following substitutions will be used. 
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The goal is to force the correlation between ),( tix  and ),1( tix −  to be equal to ( )iρ~ . This 

correlation can be calculated as follows. 
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To relate this correlation to the scale factor, ( )ib , we proceed with manipulations of 

Eq. (3).  First, both sides of Eq. (3) are multiplied by ),1( tix −  to give the top equality in Eq. 

(7).  Second, both sides of Eq. (3) are squared to give the middle equality in Eq. (7).  This 

equation is then multiplied by ∑ − 2),1( tix  to yield the lower equality in Eq. (7).  Each 

equality in Eq. (7) is written in terms of the parameters defined in Eq. (5). 
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Equation (6) can now be re-written as follows. 
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To obtain the desired correlation, the correct scale factor must be chosen by solving 

Eq. (8) for ( )ib .  To solve for ( )ib , both sides of Eq. (8) are squared, the resultant equation is 

rearranged into a quadratic polynomial, and solved as follows. 
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If the desired correlation is positive ( ( ) 0~ >iρ ), the maximum value of ( )ib  is chosen; if the 

desired correlation is negative ( ( ) 0~ <iρ ), the minimum value of ( )ib  is chosen.  In the 

discussion given below, the argument of the radical is shown to be non-negative. 

 At this point, the correlation part of the line scan problem is solved.  With ( )ib  

calculated as given in Eq. (9) and following the procedure outlined above culminating in Eq. 

(3), simulated acoustic noise signals can be created with a correlation coefficient distribution 

which matches the desired distribution. 

C. Matching the Maximum Extreme Value Distribution 

A secondary point of emphasis was to force the simulated noise to match the MEV 

distribution for the measured noise.  When using a normal random number generator 

approach to create simulated acoustic noise signals, the mean of the MEV distribution is 

controlled by the standard deviation of the random number generator.  As discussed below, 

the mean of the MEV distribution was handled at the end of the correlated noise creation step 
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by scaling each signal to control the average signal energy.  The shape of the MEV 

distribution depends on the correlation between points in each A-scan; in other words, the 

shape is controlled by the autocorrelation function or average power spectrum of the noise.  

As described above, the initial set of uncorrelated noise signals ( ( ) Nitia ,1, = ) are filtered to 

force an average magnitude spectrum which matches that of the measured noise.  The 

summation process depicted in Eq. (3) alters the average spectrum for the output correlated 

signals ( ( ) Nitix ,1, = ).  Unfortunately, correcting the average spectrum of the correlated 

signals back to the desired spectrum would alters signal correlations and associated 

correlation coefficient distribution; thus, motivating the implementation of an iterative 

approach.  The goal is to filter the noise going in to the correlation process so that the noise 

coming out of the correlation process will have the desired average power spectrum and, 

therefore, the desired MEV distribution shape.   

Additional notation is needed to describe the iterative approach.  The output of the 

correlation process for the thk  iteration will be denoted ( ) Nitixkk ,1, ==x  with average 

power spectrum and magnitude spectrum given by ( )2fkX  and ( )fkX , respectively.  The 

filters will be denoted ( )fkF  with the initial filter, ( )f1F , based directly in the magnitude 

spectrum for the measured noise:  ( ) ( )ff mXF =1 .  The initial filter, ( )f1F , is the filter used 

in creating the uncorrelated signals ( ( ) Nitia ,1, ==a ).  The goal is then to make the output 

spectrum, ( )fkX , equal to the desired spectrum, ( )fmX , to within some acceptable error.  

Defining xE  to be the sum of squared errors between ( )fkX  and ( )fmX  over some 

frequency range and xε  to be the acceptable error level, the iterative process will continue 
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until xxE ε≤ .  The filter is updated after each iteration based on the ratio of the desired and 

output spectra:  ( ) ( )ff km XX . 

For a line scan, the iterative approach used to achieve the desired correlation 

coefficient distribution and frequency spectrum can be summarized in algorithm form as 

follows: 
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 Empirical evidence shows that the final filter shape is strongly dependent on the 

desired magnitude spectrum and weakly dependent on the desired conditional correlation 

coefficient distributions.  As such, for a given desired magnitude spectrum, we generally run 

through the iterative process one time to establish the appropriate filter shape.  This filter is 

then used for all additional runs to generate correlated noise signals, regardless of the desired 

output correlation coefficient distributions. 

Finally, the signals are scaled to achieve the desired mean MEV, that is, the mean 

MEV associated with the measured acoustic noise signals, denoted mevm .  As indicated 
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earlier, when generating uncorrelated noise signals ( ( ) Nitia ,1, ==a ) using a standard 

normal random number generator with 1=σ  will force the mean MEV for the signals in a to 

unity.  The mean MEV for the correlated noise signals ( ( ) Nitix ,1, ==x ) can also be forced 

to 1 by making the energy of each correlated noise signal equal to the energy of the 

associated uncorrelated signal.  The desired mean MEV can then achieved by scaling by the 

mean MEV of the measured noise, denoted mevm .  This can be done in the computational 

loop or as a post-processing step as follows:  ( ) mevxa mσσxx =  where aσ  and xσ  are the 

standard deviation of the uncorrelated and correlated noise, respectively.  Note that scaling 

the signals does not change the correlation coefficient distribution since the correlation 

coefficient is scale independent. 

 We close the section by showing that ( )ib  is purely real and by considering some 

special cases.  To prove that ( )ib  will never be imaginary, the value under the square root 

must be shown to be non-negative.  There are three values under the square root ( )i2~ρ , 

( ))~1( 2 iρ− , and )( 2

iii rzs − .  Since ρ  is always between –1 and 1, the first two quantities are 

clearly greater than or equal to zero.  To show that the third quantity is always positive, 

consider the following manipulations of Eq. (6?), noting that ( ) 0~2 ≥iρ . 

 

( ) ( ) iiiiii
ii

i zsrzsir
zs

r
i ≤⇒=⇒= 222 ~ρρ     (10) 

 

A few special cases should be examined.  The first case is where the desired 

correlation is 1± .  From Eq. (9), it can be seen that setting the desired correlation to 1±  
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makes the denominator under the square root equal to 0, forcing ( )ib  to ∞± .  With reference 

to Eq. (3), this makes sense because ( ) 1~ ±=iρ  implies ( ) ( )tixtix ,1, −±=  which can only be 

approximated with ( ) ±∞=ib  ( ( ) 0, ≠tia ).  If the desired correlation were ± 1, ( )tix ,  should 

simply be set to ( )tix ,1−± .   

A second special case would arise if the original correlation (Eq. (5)) were equal to 

± 1.  For this case, iii zsr =2  and the numerator under the radical in Eq. (9) goes to zero.  This 

eliminates the influence of the desired correlation value, ( )iρ~ , and results in ( ) ii zrib −= .  

We note from Eq. (8?) that ( ) ( ) iiii zibrzrib −=⇒−=  will merely set the output correlation 

to 0.  However, when dealing with randomly generated noise, it is exceedingly unlikely that 

we will come across two signals that have a correlation of 1.  If this case were to occur, the 

problem could be solved by generating a new ( )tia , . 

D. Two Dimensional Generation of Spatially Correlated Noise 

The procedure for generating correlated A-scans which simulate an xy raster scan 

follows directly from the procedure for a line scan.  Figure 8 defines some of the notation 

used in this section.  For the two dimensional case, the correlated signals are created in an 

inner iterative loop with a second outer iterative loop used to simultaneous satisfy the 

correlation distribution and frequency content requirements.   We again begin by assuming 

that a set of data is taken by measuring backscattered signals at N x M equally spaced 

measurement positions (see Fig. 1).  The correlation coefficients between neighboring signals 

can be used to define the overall and conditional correlation coefficient distributions.  These 

distributions can be used to generate ( )1−MN  correlation coefficients between signals in a 

row, denoted ( )jir ,~ρ , and ( )MN 1−  correlation coefficients between signals in a column,  
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Fig. 8.  Representation of the notation and steps involved in creating a simulated raster scan 

of spatially correlated signals. 

 

denoted ( )jic ,~ρ .  These are the desired correlation values that will be used in determining 

the scale factors, similarly denoted ( )jibr ,  and ( )jibc , .   As with the line scan case, desired 

correlation coefficients can only be drawn from distributions conditioned on correlation 

coefficient values between previously generated signals. 

The procedure again starts with the generation of a set of uncorrelated acoustic noise 

signals, now written into a thee-dimensional matrix: ( ) MjNitjia ,1,1,, ===a .  The first 

row and the first column are treated as line scans.  The first output signal, ( )tx ,1,1 , is set 

equal to ( )ta ,1,1 .  The procedure described above for a line scan is then used to find the scale 

factors, ( ) M2jjbr ,,1 =  and ( ) N2iibc ,1, = , and the associated simulated signals, 

( ) Mjtjx ,2,,1 =  and ( ) Nitix ,2,1, = . 
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The remainder of the correlated signals are created in an iterative fashion starting 

with ( )tx ,2,2 .  Each new signal is simultaneously forced toward the desired correlation with 

two neighboring signals.  In general notation (see Fig. 12), ( )tjix ,,  is iteratively forced 

toward the desired correlation with ( )tjix ,,1−  and ( )tjix ,1, −  by using the sum of 

appropriately scaled versions of these two signals plus ( )tjia ,, .   

To generate the signal ( )tjix ,, , the algorithmic loop can be summarized as follows: 

1. Calculate the scale factors required to force the desired correlation between ( )tjix ,,  

and ( )tjix ,,1− , denoted ( )jic ,~ρ , and between ( )tjix ,,  and ( )tjix ,1, − , 

denoted ( )jir ,~ρ :    
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2. Calculate the output signal using both scale factors and all three signals: 

 

),,1(),(),1,(),,(),,(),,( tjixjibtjixjibtjiatjix cr −+−+=    (12) 

 

3. Calculated the actual correlation coefficient between ( )tjix ,,  and ( )tjix ,,1− ,denoted 

( )jic ,ρ , and between ( )tjix ,,  and ( )tjix ,1, − , denoted ( )jir ,ρ , 
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4. Calculate the correlation coefficient error and compare with the acceptable error 

level, ρε : 

 

( ) ( ) ( ) ( ) ( ) ( )jijijijijiji rrrccc ,,~,,,~, ρρδρρρδρ −=−=   (14) 

If ( ) ( ) ρρ εδρεδρ ≤≤ jiandji rc ,,  then stop; else go to step 5. 

 

5. Use the current output signal as a new starting signal:  ( ) ( )tjixtjia ,,,, = .  Return to 

step 1. 

 

The loop is repeated until ( )MNNM +−  correlated acoustic noise signals have been 

generated.  Note that ( )tjix ,,  is correlated with each of its four neighbors since ( )tjix ,,  is 

calculated based on its correlation with ( )tjix ,,1−  and ( )tjix ,1, − , and ( )tjix ,,1+  and 

( )tjix ,1, +  are calculated based on their correlations with ( )tjix ,,  (see Fig. 8). 
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 Finally, the MEV distribution shape and position are addressed.  As with the line 

scan, an outer iterative loop is used to force the generated signals to have the desired 

frequency content, and thus the MEV distribution shape, while maintaining the desired 

correlation coefficient distribution.  This iterative process follows directly from the steps 

outlined for a line scan in the previous section with only notational changes required to 

account for three-dimensional rather than two-dimensional matrices.  The position of the 

MEV distribution for the simulated signals is again dealt with by scaling of the simulated 

signals, following the approach outlined for the line scan:  ( ) mevxa mσσxx = .  

IV. Results 

A. Implementation 

The MEV distributions (Fig. 1) and conditional correlation coefficient distributions 

associated with the overall distributions shown in Fig. 3 were used as the desired 

distributions to demonstrate implementation of the noise generation approach.  A 

periodogram approach was used to estimate the average magnitude spectrum of the measured 

noise for use in creating acoustic noise signals with the desired MEV distribution shape.  

Desired correlation coefficients were drawn from interpolation-based conditional probability 

density functions which were based on conditional histograms constructed from the 

measured noise.  Spatially correlated acoustic noise A-scans, each 51 points long, were 

generated to simulate a 50 x 50 raster scan at a digitization rate of 100 MS/s (10 ns/point). 

B. Results 

We begin by showing an example of the evolution of correlation coefficients and 

signals toward the desired result for the middle distribution shown in Fig. 3.  The two dashed 

lines in Fig. 9 show examples of the how the actual correlation values, ( )jir ,ρ  and ( )jic ,ρ ,     
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Fig. 9.  Example of the progression of row (upper) and column (lower) correlation 

coefficients toward the desired values during the iterative process. 

 

move toward the desired values, ( )jir ,~ρ  and ( )jic ,~ρ , with each iteration.  Figure 10 shows 

how one uncorrelated noise signal, ( )jia ,  (solid lines, upper graphs), can start at an arbitrary 

correlation coefficients with its neighboring signals (dashed lines in the upper and lower 

graphs) and then after iteration evolve to a correlated noise signal, ( )jix ,  (solid lines, lower 

graphs), showing the desired correlations with its neighbors. 

The method outlined for creating correlated noise was tested for each of the overall 

correlation coefficient distributions shown in Fig. 3.  Given the stochastic nature of this 

problem, each time a set of correlated noise signals is generated, the resultant histograms 

represent one realization of noise generation process.  In this section, we show example 

histograms for one realization of the process, and we give chi-squared analysis results that 

quantify the average agreement between the desired and output histograms. 
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Fig. 10.  Example of a signal, initially having arbitrary correlations with adjacent signals, 

evolving during the iterative process to have the desired correlations with the adjacent 

signals. The top row shows the original signal to be modified (solid lines) along the adjacent 

signals (dashed lines).  After the iterative process, the final modified signal (solid line) is 

shown with the adjacent signals (dashed lines). 

 

 

Desired and actual histograms are given in Fig. 11 for overall correlation coefficient 

distributions and in Fig. 12 for the MEV distributions.  The histograms in each figure show 

the desired correlation distributions (Fig. 3) and MEV distributions (Fig. 1).  The star data 

points superimposed on the histograms represent the bin values for the histograms 

determined from the simulated noise.  For each distribution, signals were generated to 

simulate a 50 x 50 scan, yielding 2500 signals, and 4900 nearest-neighbor correlations.  The 

success of the approach is witnessed by the agreement between the histograms for measured  
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Fig. 11.  Example histograms of spatial correlation coefficients for measured and simulated 

noise signals at 2 mm (upper), 1 mm (middle), and 0.5 mm (lower) measurement position 

spacing. 

 

 

and created noise signals.  Again note that each set of simulated signals will give a slightly 

different correlation coefficient histograms and MEV distributions. 

The results were also evaluated quantitatively using a chi-squared test.  The test is 

based on the agreement between histogram bin values associated with the generated and 

measured noise, with the measured-noise based histograms representing the desired values.  

Using the vector ch  and mh  to hold the bin values for the calculated and measured noise, 

respectively, the chi squared error between the two histograms can be written as follows: 
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Fig. 12.  Example histograms of maximum extreme values for measured and simulated noise 

signals at 1.5 mm (upper) and 0.5 mm (lower) measurement position spacing. 

 

where k  represents the number of bins.  This statistic was looked up in a standard chi 

squared table with 1−k  degrees of freedom.  The resulting p-value is the probability that the 

same error would result if both histograms were indeed from the same distribution.  Thus if 

we pick a cutoff value, such as 0.05, any p value above this cutoff is deemed acceptable. 

This process was done on 10 sets of 20 x 20 of simulated noise.  For the MEV 

histogram shown in Fig. 1, the average p-value was 0.325, with a standard deviation of 

0.233.  For the overall correlation histogram, the average p-value was 0.557, with a standard 

deviation of 0.340.  For the conditional correlation histogram, the average p-value was 0.220 

with a standard deviation of 0.404.  These quantitative results indicate that on the average for 

MEV, overall correlation, and conditional correlation distribution, the distributions for the 

simulated noise are consistent with the desired distributions based on the measured noise. 
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V. Summary 

An approach has been outlined for generating simulated acoustic noise with a 

correlation coefficient distribution and MEV distribution which matches those distributions 

for measured acoustic noise.  With this approach, a limited number of measured signals can 

be used to establish the correlation coefficient and MEV distributions which drive the 

computer generation of a large number of simulated acoustic noise signals.  Signals 

simulated in this manner are being used in the development of a scale independent 

correlation based approach to defect detection.
(7,8)
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CHAPTER 4 

A QUANTATIVE ANALYSIS OF THE USE OF SPATIAL CROSS-

CORRELATION FOR FLAW DETECTION 

 

by 

Raina Cepel, Dominic Ho,
 
 and Steven P. Neal 

 

Abstract: 

 

The use of the spatial cross correlation coefficient between adjacent windowed A-scans has 

been proposed as a flaw detection method to complement gated peak detection and matched 

filtering.  To quantitatively compare the methods, grain noise and noise-corrupted flaw 

signals are simulated under varying conditions.  Receiver operating characteristic curves are 

calculated for each detection statistic and the area under the curve is used to compare 

performance.  The spatial cross correlation approach is found to outperform gated peak 

detection at low signal to noise ratios.  When the a priori flaw signal prediction is 

inadequate, the correlation approach also outperforms matched filtering.  Techniques to 

maximize the efficacy of the spatial cross correlation approach are suggested. 
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I. Introduction 

The typical flaw detection method used in ultrasonic nondestructive evaluation 

(NDE) is gated peak-detection.  The statistic used for this approach is either the maximum 

absolute value or the maximum peak to peak value of a voltage versus time signal, called an 

A-scan.  An image of these values plotted versus their corresponding lateral spatial positions 

is called a C-scan.  From here, a simple threshold can be applied to the image for flaw 

detection.  Image processing techniques can also be applied to the C-scan in order to enhance 

flaw detection.  This approach is inherently amplitude dependent, thus is effective at high 

signal to noise ratios (SNR), but exhibits poor performance at low SNR where flaw signals 

have amplitudes on the order of the background noise.   

Matched filtering is another detection technique [1,2] that filters each received signal 

with a template that is chosen by the user to be the best match to the expected flaw signal.  In 

effect, matched filtering correlates each measured A-scan with the template.  This approach 

is amplitude independent and as such has the capability to be effective at low SNR, but only 

when an accurate prediction of the flaw signal is used.  In instances where the template is 

significantly different from the flaw signals, the performance of matched filtering degrades.  

Previous work on the use of matched filter for ultrasonic defect detection by Xin et al. [3], 

Chiou et al. [4], and Srinivasan et al. [5] addresses the difficulties in estimating the template 

along with the use of model-based approaches for template estimation. 

The spatial cross-correlation coefficient between adjacent A-scans [6,7] has been 

proposed as a complementary detection statistic[8-10].  The new method uses the same A-

scans from which the gated peak-detection and matched filtering statistics are calculated.  

The detection statistic is calculated as the cross-correlation between each pair of adjacent 
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gated A-scans.  These values can be formed into an image which is qualitatively similar to 

the C-scan image [9,10].  Like the matched filter approach, the correlation approach is 

amplitude independent, relying instead on the similarity of signals.  However, unlike 

matched filtering, the spatial cross-correlation coefficient does not require the prediction of 

an a priori estimate of the flaw signal template.  Instead, each signal is essentially used as a 

matched filtering template for each of its neighbors.   

To quantitatively compare the performance of the spatial cross-correlation method to 

the gated peak-detection and matched filtering approaches, simulated grain noise and noise-

corrupted flaw signals are created under varying conditions.  For each set of conditions, a 

receiver operating characteristic curve is calculated for each detection statistic and the area 

under the curve is used as a basis for comparing each detection approach.  Some conclusions 

are made about under which circumstances the use of spatial cross-correlation should be 

considered, and recommendations are made to aid in maximizing the efficacy of this 

detection approach given certain invariant experimental conditions. 

II. Measurement Procedure 

Several sets of ultrasonic data were measured and used as a basis for the simulation.  The 

ultrasonic measurement system that was used in these measurements consists of a water tank 

filled with degassed tap water at approximately 19°C, a three dimensional scanning bridge 

that holds the transducer, a pulser-receiver unit, and a 12 bit data acquisition card with a 

sample rate of 100 MS/s.  A PC collects data from the acquisition card and controls the motor 

controller that moves the scanning bridge.  A leveling plate was used to ensure that the 

specimen was aligned with the scan plane of the transducer and the transducer face was also 
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normalized in relation to the scan plane.  At each measurement position, 64 signals were 

taken and averaged together in order to reduce electronic noise. 

The first set of data collected consists of backscattered grain noise signals from a 

stainless steel plate with the dimensions 10.1 x 5 x 1.9 cm.   Signals were taken over a 3.2 x 

2.4 cm grid with 0.5 mm between measurement positions.  The pulser-receiver and data 

acquisition card settings were chosen such that the front and back surface reflections were 

larger than the digitization range and the grain noise was properly digitized. The transducer 

used to make these measurements was a focused ½” diameter transducer with a 10 MHz 

center frequency and a 4” focal length.  The water path of the transducer was chosen such 

that the focal zone was at the approximate mid-plane of the sample. 

The second set of data collected was from a piece of 60 grit sandpaper of the dimensions 

6 x 6 cm sandwiched between two pieces of Plexiglas.  Signals were taken over a 5 x 5 cm 

grid with 0.25 mm between measurement positions.   The same ½” diameter focused 

transducer with a 10 MHz center frequency and a 4” focal length was used.  The water path 

of the transducer was chosen such that the focal zone was at the approximate mid-plane of 

the sample. 

The third set of data collected was from a copper plate with the dimensions 7.5 x 7.5 x .5 

cm.  Signals were taken over a 1 x 1 cm grid with 1 mm between measurement positions.  

The transducer used to make these measurements was a focused ½” diameter transducer with 

a 15 MHz center frequency and a 3” focal length, with the focal zone not at any particular 

plane.  For both of these sets of data, the pulsar-receiver and data acquisition card settings 

were chosen such that the front and back surface reflections were within the digitization 

range. 
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III. Detection Statistics and Simulated Grain Noise 

The goal of the simulation and ROC analysis given below is to quantitatively 

compare the performance of the proposed spatial cross-correlation approach to the classical 

gated-peak detection method and to matched filtering.  This section describes each detection 

statistic in detail. 

The first detection statistic is the maximum extreme value, or MEV, which is a 

commonly used type of gated peak-detection that is found by taking the maximum of the 

absolute value of each gated A-scan.  Often a threshold value is chosen based on calibration 

experiments, and any signal that breaches that threshold is deemed to contain a flaw.  A 

spatial image of these values is called a C-scan and can be used for flaw detection.   

Creating realistic simulated grain noise to be used in an analysis of the MEV statistic 

is a relatively simple procedure.  A standard normal random noise generator is used to create 

a time domain white noise signal which is then filtered based on the frequency spectrum of 

the measured grain noise.  This procedure is repeated independently at each measurement 

position.  A detailed discussion of the computer generation of grain noise whose MEV 

distribution matches that of measured grain noise is given in Ch. 2. 

The new detection statistic is the spatial cross-correlation coefficient.  This statistic is 

found by calculating the correlation coefficient between gated A-scans at adjacent 

measurement positions.  Consider an N x M scan with each A-scan T points long and using 

the array ( ) 1...0...1...1 −==== TtMjNitzz i,j  to hold the A-scans.  Calculation of the 

correlation coefficient between A-scans is then given by the following equation where 

( )τδδρρ ,,,,ˆˆ crji=  is a sample estimate of the associated expected value: 



 69 

 

( )( ) ( )( )

( )( ) ( )( )

, , , ,

22

, , , ,

ˆ

f

c r c r

i

f f

c r c r

i i

t

i j i j i j i j

t t

t t

i j i j i j i j

t t t t

z t m z t m

z t m z t m

δ δ δ δ

δ δ δ δ

τ

ρ

τ

+ + + +
=

+ + + +
= =

− − −

=

− − −

∑

∑ ∑

   (1) 

 

Normalization removes the scale dependence and restricts ρ̂  to the range -1 to 1.  In 

Eq. (1), the summation range in the time-domain defines the portion of the signal (the time 

window or gate) of interest, m  is the mean value calculated over the gate, τ  controls the lag 

or temporal shift between the two signals, and δ  is a spatial shift parameter.  Throughout the 

paper, t  is used as a discrete index referring to the temporal direction. With 0,1 == cr δδ , 

“row correlations” are calculated between adjacent A-scans, that is, A-scans measured at the 

thj  and 1+thj  positions in the thi  scan row.  Similarly, with 1,0 == cr δδ , “column 

correlations” can be calculated.  These correlation values can be formed into an image 

comparable to the C-scan.  A discussion of the procedure for forming an image is given in 

Ch. 1. 

Creating realistic simulated grain noise to be used in an analysis of the spatial cross 

correlation coefficient is a more complex procedure.  A detailed discussion of the computer 

generation of grain noise with a given MEV distribution is given in Ch. 2.  Because the 

correlation coefficient measures the similarity of two adjacent signals, it can no longer be 

assumed that noise at any one measurement position is independent of its neighbors.  

Experiments show that below a certain measurement spacing, adjacent grain noise signals 

have an average correlation coefficient greater than zero [11,12].  Physically this is due to the 

fact that the grain noise signal is created by the reflections from many small grains over the 
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volume that is within the beam field of the transducer.  Thus when the transducer moves only 

a small amount, some of the same grains that contributed to the grain noise at the adjacent 

location will still be within the transducers beam field at the new location.  Any simulation 

that attempts to accurately evaluate the efficacy of the correlation coefficient statistic must 

use simulated grain noise whose underlying spatial cross correlation coefficient distribution 

matches that of the measured grain noise being used as a template.  In each measurement 

position a grain noise signal, ),,( tjix , is calculated as a weighted sum of a randomly 

generated signal, ),,( tjia , and the previously created signals in adjacent measurement 

positions.  

 

( , , ) ( , , ) ( , ) ( , 1, ) ( , ) ( 1, , )r cx i j t a i j t b i j x i j t b i j x i j t= + − + −     (2) 

 

The weights, rb and cb , are independently calculated for each neighboring signal by algebraic 

manipulation of the correlation coefficient equation.  Applying this procedure iteratively 

results in a noise signal that has a specified cross correlation with each of its neighbors.  The 

specified cross correlations are drawn from the correlation coefficient distribution of the 

measured grain noise.  Previous work by Cepel et al. [10] describes this procedure for 

creating spatially correlated grain noise in more detail including the calculation of the 

statistics of the measured grain noise, the procedure for creating the randomly generated 

signals, ),,( tjia , the equations for the weights, rb and cb , the iterative algorithm to create 

the correlated grain noise itself, and the method for ensuring that the created noise also 

matches the MEV distribution of the measured noise. 
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Spatial cross correlation is comparable to matched filtering.  For matched filtering, 

the expected flaw signal, ( )tsmi  , is correlated with each gated A-scan, which consists of a 

flaw signal and grain noise, )()( tnts ii + . The maximum value of the resulting signal is used 

as a detection statistic.   

( ) ( ) ( ) ( ) ( ) ( ) ( )m m m

m i i i i i i

t t

m n

s t x t s t s t s t n tβ τ τ τ τ

α α

= − = − + −

= +

∑ ∑ ∑

  (3) 

Here mβ  is the matched filter output and we assume that the flaw signals all have unit energy 

and that all processes are zero mean.  The variable τ  sweeps the matched filter over the A-

scan in time.  The maximum value of ( )mβ τ  is used as the matched filter detection statistic.  

A measure of the quality of the matched filter template is given by the similarity in ( )tsmi  

and ( )tsi  as quantified by mα .  Given the unit energy assumption, 1=mα  for the ideal case 

where ( ) ( )tsts i
m
i = .  Under these circumstances, matched filtering will always perform better 

than correlation because there is noise in only one of the two signals being used for each 

correlation calculation.  However, in cases where the expected flaw signal does not equal the 

actual flaw signal, 1<mα , and the spatial cross-correlation approach may perform better 

than matched filtering.    A more robust mathematical comparison between matched filtering 

and spatial cross correlation is found in [10] (se Ch. 1).  The same grain noise signals that are 

used for analysis of the cross-correlation statistic can be used for analysis of the matched 

filtering statistic. 
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IV. Simulation and ROC Analysis 

Simulated grain noise signals and flaw signals corrupted with grain noise were used 

to facilitate the quantitative comparison of the three detection statistics using receiver 

operating characteristic (ROC) analysis.  A robust ROC analysis requires an accurate 

distribution of each statistic, both with and without the presence of a flaw signal.  Because it 

is difficult to collect experimental data ranging over all possible conditions, a simulation is 

advantageous in that it allows the creation of a large number of signals under varying 

measurement and analysis conditions.  This section addresses the formation of noise-

corrupted flaw signals and describes the conditions varied during ROC analysis.   

The creation of grain noise signals was dealt with briefly in this previous section.  To 

create noise-corrupted flaw signals, Gaussian damped sinusoids were used to simulate defect 

signals with the desired frequency content, which matched the frequency content of the grain 

noise.  In some cases, experimental data was used directly to simulate flaw signals.  To 

simulate defects with variable aspect ratios and at variable signal to noise ratios, the defect 

signals were scaled over certain spatial regions and added to the simulated grain noise 

signals.  This process is represented in equation form for a signal measured at the ij position 

in a simulated raster scan:   

 

( ) ( ) ( ) ( )( )jityjiBtjintjix ,,,,,, τ−+=      (4) 

 

where ( )tjix ,,  is the final noise-corrupted defect signal, ( ), ,y i j t  is the flaw signal, and 

( )tjin ,,  represents the simulated grain noise with unity power, which was generated to 

mimic the maximum extreme value (gated peak value) distribution and correlation 
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coefficient distribution associated with measured noise.  Flaw signals can be shifted in time 

relative to one another with ( )ji,τ .  The SNR at each ij position is controlled by ( )jiB , , a 

scale factor which can be varied over lateral space.   

 A ROC based comparison of the spatial cross-correlation with gated peak-detection 

was done over a more complete set of variable conditions than for the comparison between 

the correlation approaches and matched filtering.  This was done because the relative 

performance of the correlation and gated peak-detection approaches varies significantly with 

a large number of conditions, whereas the performance of the matched filtering approach 

depends largely on the accuracy of the template used, and very little on any other variables.   

Measurement conditions, which are controlled by the experimental set-up and sample 

characteristics, were simulated.  The following measurement conditions were varied during 

the simulation:  1) SNR was varied by weighting the flaw signals with ( )jiB , .  2)  The 

measurement spacing between simulated grain noise signals was varied, based on measured 

noise that was collected at variable measurement spacings.  3)  Lateral flaw size was varied 

using ( )jiB , , whose values were set to vary with lateral space. At each ij location where B is 

non-zero, a noise-corrupted flaw signal is created, and at each ij location where B is set to 

zero, the signal contains only noise.  4)  The misalignment of adjacent flaw signals in time 

(i.e., a phase shift) was achieved by varying ( )ji,τ  over lateral space.  5)  Flaw signals were 

varied over lateral space such that ( ) ( ), , , ,r cy i j t y i j tδ δ≠ + + .  6) The value of mα , which 

quantifies the similarity between the matched filter template and the flaw signal, was varied.  

Analysis conditions, or the settings that control the analysis of the data, were also varied as 

follows:  7) The maximum value of τ , the time shifting parameter used to calculate the  
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Fig. 1. The effects of spatial averaging are shown in this figure.  The top left panel shows a 

C-scan image containing a difficult to see flaw.  In the top right panel, spatial averaging 

using a 10 by 10 window size has been applied and the flaw is clearly apparent.  The bottom 

left panel shows an image of correlation-coefficients, and the bottom right panel again shows 

the image after the application of spatial averaging. 

 

spatial cross-correlation in Eq. (1), was allowed to vary.  8) Spatial averaging, a common 

image processing technique [13] where each individual statistic is averaged with a number of 

adjacent neighbors, was applied with the number of statistics averaged over lateral space 

variable.  Figure 1 shows an example of spatial averaging.  The top left panel shows a C-scan 

containing a flaw that is difficult to discern from the background noise.  The application of a 

10 x 10 averaging window, which averages 100 statistics together in each lateral position, is  
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Fig. 2. The use of Receiver Operating Characteristic (ROC) curves.  The top left distribution 

shows a noise and noise + flaw distribution that are well separated.  The ROC curve on the 

top right plots the true positive fraction (TPF), or fraction of noise-corrupted flaw signals that 

would be accurately characterized as containing a flaw, versus the false positive fraction 

(FPF), or fraction of noise signals that would be inaccurately characterized as containing a 

flaw.  Because the distributions are well separated, the ROC curve is ideal and the area 

beneath it is one.  In the bottom left panel, the distributions overlap significantly and the 

ROC curve in the bottom right panel reflects this, resulting in a small area beneath the curve.  

 

shown in the top right panel, where the flaw is now easily seen.  A similar procedure is 

shown in the lower panels with the correlation statistic. 

Receiver operating characteristic curves [14] were used to provide a quantitative 

measure of the effectiveness of each signal at differentiating noise corrupted flaw signals 

from grain noise signals.  Qualitatively, the set of distributions, one for noise-corrupted flaw 

signals and one for noise signals, in the top left panel of Figure 2 look more separated than 

the set of distributions in the bottom left panel.  ROC curves based on these sets of 

distributions have been calculated and are shown on the right.  The detection threshold is 

varied over its range of possible values, and at each point the true positive fraction (TPF), or 

fraction of noise-corrupted flaw signals that would be accurately characterized as containing 

a flaw, is plotted versus the false positive fraction (FPF), or fraction of noise signals that 
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would be inaccurately characterized as containing a flaw.  The area under the ROC curve can 

be used as a single value to compare two sets of distributions.  When the distributions are 

completely separated, the ROC curve is ideal and the area under it is unity.  When the 

distributions overlap, the area under the ROC curve is between 0.5 and 1, reflecting the 

tradeoff between missed flaw detections and false calls.  

The simulation creates two sets of signals, one set that contain only grain noise and 

one set that contain flaw signals and grain noise.  The detection statistics are computed for 

each case and the noise and noise-corrupted flaw distributions are compared using ROC 

analysis.  In the results section, the area under the ROC curve is plotted versus the variable 

being investigated for each detection statistic. 

 

V. Results 

The results section compares the performance of the newly proposed spatial cross-

correlation approach with gated peak-detection and with matched filtering, using the area 

under the ROC curve as a basis of comparison.  This analysis is intended to help guide 

decisions as to under what conditions it might be advantageous to use the correlation based 

approach in addition to alternative techniques.  Additionally, the analysis aims to provide 

guidance as to how the measurement and analysis variables should be chosen to maximize 

the benefit of the correlation approach. 

A. Comparison of Cross-Correlation and Gated Peak-Detection 

The first condition varied was the signal to noise ratio, which was changed by scaling 

the flaw signals with ( )jiB ,  before the grain noise was added, while the measurement 

spacing of the grain noise was held constant at 1.75 mm.  The value of ( )ji,τ  was held  
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Fig. 3. The area under the ROC curve of the maximum value and correlation statistics as the 

signal to noise ratio varies.   Measurement spacing is held constant at 1.75 mm, flaw size is 

infinite, and no misalignment, averaging, or realignment is done. 

 

constant at zero, ( )jiB ,  and ( ), ,y i j t were held constant over lateral space, and no 

averaging or realignment was done during analysis.  The results are shown in Figure 3, where 

“correlation” refers to the spatial cross-correlation statistic and “maximum value” refers to 

the maximum extreme value statistic, which is a type of gated peak-detection.  A cubic spline 

has been fit through the data points for visualization purposes.  The SNR is plotted on the x-

axis and was calculated as the ratio of the extreme value of the flaw signal to the average 

extreme value of the grain noise signals.  The figure shows that as the SNR increases the  
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Fig. 4. The area under the ROC curve of the maximum value and correlation statistics as the 

measurement spacing varies.   Signal to noise ratio is held constant at 1.0, flaw size is 

infinite, and no misalignment, averaging, or realignment is done. 

 

efficacy of both detection statistics increases, but that the relative performance of the 

correlation statistic is better at low SNR. 

The next condition varied was the spacing between adjacent measurement positions.  

The measurement spacing of the grain noise was varied while the signal to noise ratio was  

held constant at 1.0.  The value of ( )ji,τ  was held constant at zero, ( )jiB ,  and ( ), ,y i j t were 

held constant over lateral space, and no averaging or realignment was done during analysis.   

The results are shown in Figure 4.  Varying measurement spacing has very little effect on the 

signals) increases as the measurement spacing decreases because adjacent noise signals are  
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Fig. 5. The area under the ROC curve of the maximum value and correlation statistics as the 

flaw size increases.   Flaw size is indicated on the x-axis as the number of signals collected 

from each flaw.  Measurement spacing is held constant at 1.75 mm, SNR at 1.0, and no 

misalignment, averaging, or realignment is done. 

 

 

maximum extreme value, but the efficacy of the correlation statistic as a defect detector 

increases significantly as the measurement spacing increases.  This is explained by the effects 

of smaller measurement spacing on the correlation noise distribution.  The mean of the noise 

distribution (the distribution of spatial cross correlations between adjacent grain noise more 

dependent on one another.  This increase moves the noise distribution towards the flaw 

distribution, resulting in less separation between the two and a less ideal ROC curve.   

Flaw size is another condition that was varied, and the results for this simulation are 

shown in Figure 5.  To uncouple the results of this simulation from the effects of changes in 
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measurement spacing, the flaw size was not used for the x-axis, but rather the total number of 

received A-scans, or signals, indicating a flaw.   In this simulation, flaws were created to be 

square; hence if 25 signals comprise a flaw and the measurement spacing is 1.75, the flaw 

size can be calculated as being 8.75 mm square.  The SNR was held constant at 1.0 and the 

measurement spacing at 1.75 mm.  The value of ( )ji,τ  was held constant at zero, 

( ), ,y i j t was held constant over lateral space, and no averaging or realignment was done 

during analysis.   The results for the maximum value do not vary significantly with the 

number of signals.  This is expected since it is necessary for only one A-scan to contain the 

flaw signal for the MEV statistic to detect a flaw.  However, for the correlation statistic to 

work as a detection method there must be adjacent signals each containing a flaw signal to 

produce a high correlation, thus flaws are not detected when only one signal is collected from 

each flaw.  Beyond that point, there is no significant variation in the efficacy of the 

correlation method based on the number of A-scans collected from the flaw. 

Spatial averaging is a common image processing technique that increases the 

probability of detection.  Each detection statistic is replaced with the average of itself and a 

number of its neighbors.  This effectively applies low-pass filtering to the image and removes 

spatial noise, making flaws more easily discerned.  Spatial averaging can be applied to any of 

the detection images as shown in Figure 1.  For this simulation, the size of the averaging 

window was varied from a 1 x 1 window (effectively resulting in no averaging) to a 10 x 10 

window (averaging 100 samples in each position), while the SNR was held constant at 1.0, 

the measurement spacing was 1.75 mm, the value of ( )ji,τ  was held constant at zero, ( )jiB ,  

and ( ), ,y i j t were held constant over lateral space, and no realignment was done during 

analysis.   Figure 6 shows the results.  Spatial averaging improved the likelihood of detection  
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Fig. 6. The area under the ROC curve of the maximum value and correlation statistics as the 

window size of spatial averaging is increased.  Measurement spacing is held constant at 1.75 

mm, SNR at 1.0, flaw size is infinite, and no misalignment, or realignment is done. 

 

 

for both the maximum value and correlation statistic, but did not change their relative 

efficacy.   

It is interesting to note that in Figure 6, the likelihood of detection continues to 

increase as the number of signals averaged increases.  Since a large number of signals were  

simulated while ( )jiB ,  was held constant over lateral space, the effective flaw size was much 

larger than the maximum averaging window.  In Figure 7, the results of a similar simulation 

are shown where ( )jiB ,  was set to vary such that the flaw size was 8.75 x 8.75 mm with a 

1.75 mm step size, meaning that there were 25 A-scans containing a flaw signal.  These 

results show that the ideal averaging window size is slightly larger than the flaw size.   
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Fig. 7. The area under the ROC curve of the maximum value and correlation statistics as the 

window size of spatial averaging is increased.  In this case, the size of the flaw is 5 x 5, such 

that 25 signals are collected from each flaw.  Measurement spacing is held constant at 1.75 

mm, SNR at 1.0, and no misalignment, averaging, or realignment is done. 

 

 

Beyond this, the likelihood of detection decreases slightly for the spatial correlation statistic, 

and decreases more significantly for the maximum extreme value statistic. 

Misalignment of flaw signals is another issue that changes the efficacy of the 

correlation detection statistic.  An uneven flaw surface can cause the times at which adjacent  

flaw signals are received to be slightly misaligned, which will reduce the flaw correlation 

distribution mean.  To reduce these effects, one can allow the lag,τ , in  Eq. (1) to vary, and 

the maximum value of the correlation, ˆ( )ρ τ , will be the detection statistic.  To simulate this 

situation, the flaw signals were misaligned by allowing ( )ji,τ  in Eq. (4) to randomly vary  
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Fig. 8. The area under the ROC curve of the maximum value and correlation statistics as the 

maximum amount of realignment is increased.  In this case, misalignment is randomly 

applied to the simulated signals such that the maximum number of steps in time that two 

adjacent signals can be misaligned is 5. Measurement spacing is held constant at 1.75 mm, 

SNR at 1.0, flaw size is infinite, and no averaging is done. 

 

from -2 to +2 points (which equates to +/-.02 µs).  This means that the maximum amount that 

two adjacent signals could be misaligned from one another was 5 points; assuming one was 

misaligned by +2 and one by -2.  The SNR was held constant at 1.0, the measurement 

spacing was 1.75 mm, ( )jiB ,  and ( ), ,y i j t were held constant over lateral space, and no 

averaging was done.  The maximum amount of lag 
max

τ  used in the correlation equation 

was varied and the results are shown in Figure 8.  The variation of the lag has no effect on  
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Fig. 9. The area under the ROC curve of the maximum value and correlation statistics as the 

maximum amount of misalignment is increased.  The maximum amount of realignment is set 

to its ideal value, based on the previous figure. Measurement spacing is held constant at 1.75 

mm, SNR at 1.0, flaw size is infinite, and no averaging is done. 

 

the MEV, but the correlation is maximized when 
max

τ is exactly the maximum 

misalignment.  Beyond this point, the efficacy of the correlation statistic slowly drops.   

Figure 9 shows the results for a similar simulation that instead varied the maximum 

amount of misalignment possible using ( )ji,τ , while setting 
max

τ to be equal to the 

maximum misalignment possible.  The results again show very little effect by the variation  

on the maximum value statistic, but the efficacy of the correlation statistic drops as the 

maximum misalignment increases, even when realignment is done to maximize the results.  

When looking at the individual grain noise and noise corrupted flaw distributions, it can be 
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Fig. 10. The area under the ROC curve of the matched filter and correlation statistics as 

quality of the matched filter template decreases.   The quality of the template is plotted on the 

x-axis as the similarity (or correlation between) the actual flaw signal and the template.  

Measurement spacing is held constant at 1.75 mm, SNR at 1.0, the flaw size is infinite, and 

no misalignment, averaging, or realignment is done. 

 

seen that while allowing 
max

τ to increase such that the mean of the flaw distribution is 

maximized, it also increases the mean of the noise correlation distribution, creating more 

overlap between them and a poorer ROC curve. 

B. Comparison of Cross-Correlation and Matched Filtering 

The spatial cross-correlation detection method was also compared to matched 

filtering.  Matched filtering performs ideally when the expected flaw signal is perfectly 

known, such that 1mα = .  There are many reasons why the chosen matched filter template 
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might not accurately represent the flaw signal; improperly calculated diffraction and 

attenuation effects could result in different frequency content from the actual flaw signal, and 

the actual scattering function of the flaw could significantly change the pulse shape from 

what is expected.  To simulate improperly calculated diffraction and attenuation effects, the 

matched filter template used, denoted ( )tsmi  in Eq. (3), was varied while the flaw signal, 

( )is t , remained the same.  The SNR was held constant at 1.0 and the measurement spacing 

at 1.75 mm.  The value of ( )ji,τ  was held constant at zero, ( )jiB ,  and ( ), ,y i j t were held 

constant over lateral space, and no averaging or realignment was done during analysis.  The 

set of signals used as ( )y t  for this simulation were the front surface and four subsequent 

back surface reflections from a copper plate.  Each reflection was at a different place in the 

diffraction field and had a different amount of attenuation. The area under the ROC curve is 

plotted versus the value of mα  in Figure 10.  As can be seen, there is little effect on the 

efficacy of the correlation coefficient performance.   The matched filter template can be 

somewhat different than the actual flaw signal and the matched filter still performs well, but 

if the template is significantly different than the actual flaw signal, performance suffers and 

the correlation coefficient statistic is a better detector.   

In some cases, flaws do not produce the same signal over their entire extent, but 

rather have laterally variable scattering functions.  To simulate this situation, the simulation 

was changed slightly such that the flaw signals, ( ), ,y i j t , were variable over the 

measurement grid.  The data used to simulate this type of flaw were collected from a piece of 

sandpaper sandwiched between two pieces of Plexiglas.  A strong front surface reflection 

was received from the sandpaper, but the pulse was distorted and the signal varied  
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Fig. 11. The area under the ROC curve of the matched filter and correlation statistics as the 

amount of lateral distortion increases.   The lateral distortion is plotted on the x-axis as the 

average similarity (or correlation between) adjacent flaw signals.  Measurement spacing is 

held constant at 1.75 mm, SNR at 1.0, the flaw size is infinite, and no misalignment, 

averaging, or realignment is done. 

 

significantly as the transducer moved laterally.  The measurement spacing between adjacent 

signals was increased to simulate a flaw with more lateral distortion.  A typical signal from 

this set was chosen to be used as the matched filter.  Figure 11 shows the results of this 

simulation.  In this plot, the x-axis shows the average correlation between adjacent flaw 

signals before the addition of grain noise, thus in effect measures how quickly the flaw signal 

changes with lateral space.  The increase in lateral distortion (corresponding to a decrease in 

the average correlation between adjacent flaw signals) reduces the likelihood of detection for 
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both matched filtering and correlation, but the effect is much more pronounced with matched 

filtering.  

VI. Summary 

The use of the spatial cross-correlation coefficient for flaw detection is suggested as 

an alternative to more commonly used detection statistics under certain circumstances.  It 

must be remembered when interpreting the data presented in this paper that these particular 

results provide concrete decision points only when all the experimental and analysis variables 

are similar to those used in these simulations.  Because so many variables affect the 

performance of the correlation coefficient, and because they are likely to vary widely from 

those presented here, no concrete conclusions can be made about exactly when the spatial 

cross-correlation statistic should be used as a flaw detection method.  However, some general 

guidelines can be presented, with the caveat that its use should also be evaluated based on the 

particular experimental conditions.   

Generally, the use of the new correlation method should be considered as a 

complementary analysis technique to gated peak-detection when the signal-to-noise ratio is 

so low that the performance of the latter begins to suffer.  The correlation method has the 

capability to out-perform gated peak-detection in this case.  Additionally, the new correlation 

method has the capability to outperform matched filtering when an accurate template cannot 

be determined or when the flaw signal varies widely.   

These results also suggest guidelines to be followed when choosing experimental and 

analysis variables such as measurement spacing, averaging window size, and realignment 

parameters.  The measurement spacing should be chosen to be as large as possible to 

minimize the average value of the correlation noise distribution, yet still be small enough to 
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collect more than one signal from each flaw.  If spatial averaging is to be applied, the 

measurement spacing should be such that as many signals as possible are collected from each 

flaw, while minimizing the average value of the correlation noise distribution.  The balance 

between these conflicting motivations for choosing measurement spacing will need to be 

determined experimentally based on the particular flaw, material, and transducer 

characteristics.  If flaw surfaces are uneven, resulting in variable times for adjacent flaw 

signals, the maximum amount of lag will also need to be chosen carefully to account for 

uneven arrival times without allowing too large of an increase in the distribution of grain 

noise correlations.  Spatial averaging (and likely other image enhancement techniques) can 

be applied to correlation images, as to C-scan images, and will improve the likelihood of 

detection in a similar manner for all statistics, but the windowing size must also be carefully 

chosen based on the  number of signals received from each flaw.   
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CHAPTER 5 

CONCLUSION 

 

 

 The correlation approach outlined in this work is attractive as a potential compliment 

to the classical C-scan approach for a number of reasons including: the correlation approach 

is scale independent; the correlation approach relies on signal shape, while the C-scan 

approach uses only the peak value; correlations are calculated based on  same A-scans used 

in forming C-scan images; the correlation images described here have a qualitatively similar 

appearance to C-scan images, facilitating inspector acceptance; and correlation images can be 

formed without the expertise required to deal explicitly with wave propagation and scattering 

effects.   

 However, while the correlation approach is amplitude independent, it is not 

measurement system or material independent.  To assess its usefulness in a variety of 

circumstances, simulation studies were utilized.  To ensure the accuracy of the simulations, 

simulated acoustic noise was created whose correlation coefficient distributions and 

maximum extreme value distributions match those of measured acoustic noise.  

Based on limited simulations, the use of the spatial cross-correlation coefficient for 

flaw detection is suggested as an alternative to more commonly used detection statistics 

under certain circumstances.  Generally, the use of the new correlation method should be 

considered as a complementary analysis technique to gated peak-detection when the signal-

to-noise ratio is so low that the performance of the latter begins to suffer.  The correlation 

method has the capability to out-perform gated peak-detection in this case.  Additionally, the 
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new correlation method has the capability to outperform matched filtering when an accurate 

template cannot be determined or when the flaw signal varies widely.   

The simulation results also suggest guidelines to be followed when choosing 

experimental and analysis variables such as measurement spacing, averaging window size, 

and realignment parameters.  The measurement spacing should be chosen to be as large as 

possible to minimize the average value of the correlation noise distribution, yet still be small 

enough to collect more than one signal from each flaw.  If spatial averaging is to be applied, 

the measurement spacing should be such that as many signals as possible are collected from 

each flaw, while minimizing the average value of the correlation noise distribution.  The 

balance between these conflicting motivations for choosing measurement spacing will need 

to be determined experimentally based on the particular flaw, material, and transducer 

characteristics.  If flaw surfaces are uneven, resulting in variable times for adjacent flaw 

signals, the maximum amount of lag will also need to be chosen carefully to account for 

uneven arrival times without allowing too large of an increase in the distribution of grain 

noise correlations.  Spatial averaging (and likely other image enhancement techniques) can 

be applied to correlation images, as to C-scan images, and will improve the likelihood of 

detection in a similar manner for all statistics, but the windowing size must also be carefully 

chosen based on the  number of signals received from each flaw.   

When interpreting the data presented in this paper, it must be remembered that these 

particular results are applicable only when all the experimental and analysis variables are 

similar to those used in these simulations.  Because so many variables affect the performance 

of the correlation coefficient, and because they are likely to vary widely from those presented 

here, no firm conclusions can be made about exactly when the spatial cross-correlation 
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statistic should be used as a flaw detection method under dissimilar experimental conditions.  

Future work on this problem will extend the comparison between the three detection 

methods, both through more extensive simulations and by further development of the 

matched filtering and correlation models.  

  

  

 


