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ABSTRACT

The focus of the current thesis is an experimental and numerical investigation

of subcritical bifurcations in milling. More specifically, several researchers have re-

ported results indicating that the secondary Hopf bifurcations of turning processes

are subcritical. However, fewer results are available for milling - especially results

that provide any substantial experimental evidence. Therefore, experimental cutting

tests are performed on a relatively long aluminum workpiece. The atypical length

of the work piece will be used so that the depth of cut may be slowly increased or

decreased during the cutting process. This provides visual evidence of hysteresis in

the bifurcation diagram and the existence of multiple stable periodic solutions. The

importance of this exploratory experimental effort is that multiple attractors may

exist (stable periodic solutions) for the same cutting speed and depth of cut, but

only one of these solutions would be the chatter free case. An important outcome

from these results is that a small perturbation in the desirable stable solution near

the borders of the stability diagram could result in a jump to the unstable cutting

condition.

iii



Contents

ACKNOWLEDGEMENTS ii

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES viii

1 Introduction 1

1.1 Motivation and Current Knowledge . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modeling Machining Dynamics 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Cutting Forces in Machining . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Cutting Force Expression in Turning . . . . . . . . . . . . . . 9

iv



2.3 Cutting Force Model for Milling . . . . . . . . . . . . . . . . . . . . . 14

2.4 Structural Dynamics of the tool . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Experimental Modal Testing . . . . . . . . . . . . . . . . . . . 21

2.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Study of subcritical bifurcations in milling 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Description of the experimental apparatus . . . . . . . . . . . . . . . 28

3.3 Math Model for Milling . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Cutting Force Expression in Milling . . . . . . . . . . . . . . . 32

3.3.2 Modal Equation of Motion . . . . . . . . . . . . . . . . . . . . 35

3.4 Stability Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Experimental and Numerical Observations . . . . . . . . . . . . . . . 39

3.5.1 Experimental Observation and Data . . . . . . . . . . . . . . 41

3.5.2 Numerical Investigation . . . . . . . . . . . . . . . . . . . . . 48

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Summary 51

4.1 Completed work summary . . . . . . . . . . . . . . . . . . . . . . . . 51

v



4.2 Primary conclusions from thesis . . . . . . . . . . . . . . . . . . . . . 52

4.3 Theoretical subcritical nature predictions . . . . . . . . . . . . . . . . 53

4.4 Role of run-out and stochastic variations in cutting forces . . . . . . . 53

4.4.1 Effects of run-out . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Some future work . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Revised stability diagrams with nonlinear effects incorporated . . . . 56

Bibliography 58

vi



List of Tables

Table page

2.1 Modal parameters for asymmetry study. . . . . . . . . . . . . . . . . 24

3.1 Experimentally identified modal parameters for the cutting tool. . . . 32

vii



List of Figures

Figure page

1.1 Dynamic model of an interrupted milling process. Fig. (a) shows the

up-milling process, and (b) shows a down-milling process. . . . . . . . 2

1.2 Representative subcritical bifurcation diagram for a milling process

plotted as a function of the cutting depth, b. Here, x(nτ) represents

the amplitude of periodic displacement samples found for stable equi-

libria (solid red line). These stable equilibria are experimentally ob-

servable and represent both stable (chatter-free) and stable (chatter-

vibration) equilibria. The dotted blue line represents equilibria that

may be obtained with numerical continuation, but would not appear

in an experimental setting. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A schematic of an orthogonal cutting in an interrupted turning process.

Schematics (a) and (b) shows the orthogonal cutting geometry. . . . . 9

2.2 Cutting force diagram of an interrupted turning process. . . . . . . . 11

viii



2.3 Cutting force diagram of an interrupted milling process. Fig.(a) shows

the top view of an up-milling process, and Fig.(b) shows the top view

of a down-milling process. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Detailed schematic of the motion of the tool for a radial chip thickness,

wp(t) in the x & y direction components. . . . . . . . . . . . . . . . 16

2.5 Detailed schematic of the force distribution for radial chip thickness,

wp(t) with respect to the tool motions in the x- and y- direction com-

ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Schematic diagram of experimental modal testing. . . . . . . . . . . . 22

2.7 Overlay of the theoretical frequency response (solid line) onto the ex-

perimental frequency response (denoted with dots). Graphs are labeled

to agree with the math model directions of Fig. 3.4. Estimated modal

parameters are given in Table 3.1. . . . . . . . . . . . . . . . . . . . . 23

3.1 Schematic shows the stroboscopic map of the chosen states, X(τn) and

X(τn + ∆t). This shows the mapping of the periodic displacement

samples to the torus and sectioned to provide a Poincaré map. . . . . 27
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Chapter 1

Introduction

Milling is a traditional machining operation which is widely used in industry to

manufacture mechanical components. In general, it is classified into end milling, face

milling, and peripheral milling operations [1, 2]. In peripheral milling, the milled

surface is generated by teeth located on the periphery of the cutter body and the

axis of cutter rotation is generally in a plane parallel to the workpiece surface being

machined. In face milling, the milled surface results from the action of cutting edges

located on the periphery and face of the cutter and the cutter is mounted on a spindle

having an axis of rotation perpendicular to the workpiece surface. In end milling, the

milling surface is generated by the teeth located on both the periphery and the tip

of the cutter body and the cutter rotates on an axis perpendicular to the workpiece [2].

End milling is the most versatile form of milling and it is used to machine slots,

contours, profiles etc. Due to the interrupted nature of end milling, these teeth are

usually made helical to reduce the impact that occurs when each tooth engages the

workpiece. Depending on the nature of the feature to be machined, the axis of rotation

of the end mill may be either perpendicular or parallel to the finished surface. It can
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also be said that an end milling operation is a combination of peripheral milling and

face milling operations. Milling operations can also be classified into up-milling and

down-milling according the direction of the rotation with respect to the feed direction

(see Fig. 1.1).

of forces1.jpg

Figure 1.1: Dynamic model of an interrupted milling process. Fig. (a) shows the

up-milling process, and (b) shows a down-milling process.

1.1 Motivation and Current Knowledge

Material removal processes, such as metal cutting are used to achieve desired

surface finishes, tolerances or shapes that are difficult to obtain otherwise. Increased

economic importance and competition in the machining industry has lead to the

need to optimize manufacturing processes. This provides the ability to improve the

dimensional accuracy, process efficiency and manufacturing quality. Dynamic models

provide the ability to predict surface accuracy and regions of stable cutting for a

large combination of process parameters. Hence, the typical industrial trial and error

results can be minimized and the selection of the optimum machining parameters

can be implemented for best manufacturability and cost reduction.
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The stability of the interrupted machining processes has become an incredibly

significant research area in the early 20th century [3]. However, significant advances

only started in the 1960s, when it was realized that machining can only be modeled

accurately by accounting for the so-called regenerative effect [4]. Specifically, the

tool cuts an already machined surface produced in the previous cutting period, and

hence the chip thickness depends on the previous positions of the tool tip as well as

on the current one. In other words, it can be said that the forces are coupled to the

tool motion.

The focus of many recent works has been the occurrence of new bifurcation

phenomena in interrupted cutting processes [5]. In addition to Neimark-Sacker or

secondary Hopf bifurcations, period-doubling bifurcations have been analytically

predicted in references [5–11] and confirmed experimentally in references [6–8, 12–17].

Other investigations have shown additional physical mechanisms which may influence

the relative oscillations between the tool and the workpiece [18]. For instance, the

thermoplastic behavior of chip formation has been reported in reference [19] and

frictional effects at the tool chip interface have been examined in the reference [20].

The focus of the current research stems from an apparent void in the literature

base with regards to the subcritical nature of milling bifurcations. More specifically,

several researchers have reported results indicating that the secondary Hopf bifurca-

tions of turning processes are subcritical [21, 22]. However, fewer results are available

for milling - especially results that provide any substantial experimental evidence.

The goal of the current research project is to provide a novel series of experimental

results that explore the subcritical nature of milling bifurcations.

3



Figure 1.2: Representative subcritical bifurcation diagram for a milling process plot-

ted as a function of the cutting depth, b. Here, x(nτ) represents the amplitude of

periodic displacement samples found for stable equilibria (solid red line). These sta-

ble equilibria are experimentally observable and represent both stable (chatter-free)

and stable (chatter-vibration) equilibria. The dotted blue line represents equilib-

ria that may be obtained with numerical continuation, but would not appear in an

experimental setting.

The importance of understanding whether the bifurcations are sub critical is ex-

plained by the bifurcation diagram of Fig. 1.2. This graph shows the vibration am-

plitudes (or equilibria solutions) plotted as a function of the axial cutting depth, b.

Starting from a location of a small cutting depth and slowly increasing, this param-

eter will result in a single stable equilibria solution which will also be free of chatter

vibrations. As the bifurcation parameter, the depth of cut, is further increased, the

chatter free equilibria solution will enter region where multiple stable equilibria coex-

ist - both the chatter-free and a chatter-vibration solution. Towards the end of this

region, the tool will reach the bifurcation point which will cause a jump in the re-
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sponse of the tool to the stable chatter-vibration equilibria solution. The amplitude of

the chatter vibrations will then continue to grow with an increase in the axial depth.

Reversing this process by starting at a relatively larger cutting depth and progressing

towards a smaller depth will result in hysteresis near the region of the multiple stable

equilibria. In essence, the stable equilibria representing chatter vibration are a limit

cycle that collapses to a stable chatter-free solution once the bifurcation parameter

has decreased beyond the region where the multiple attractors exist. While one can

argue that this method of cutting may be atypical, the relevance becomes more clear

when the influence of a small perturbation is considered [23]. In particular, small

perturbations within the region of coexisting stable attractors can cause the cutting

tool to jump back and forth between the regions (the basins of attraction) which

delineate the chatter and chatter-free equilibria.

1.2 Thesis Organization

In Chapter 2, an introduction to modeling and machining dynamics is discussed,

which leads to the estimation of the cutting forces. Since a typical machine-tool

structures may have multiple structural modes, the sections of this chapter extend

the cutting force estimation to form the math model for the milling process. Chapter 3

explains the experimental system that was constructed to investigate the subcritical

nature of the bifurcation diagrams. In the subsequent sections of this chapter, the

math model is discussed which includes the influence of the structural modes and

the cutting forces. Next, the stability border trends are studied for the experimental

system for several radial immersions and helix angles. Since the goal was to focus on

the experimental behavior, some of the analysis details have been omitted with the

appropriate references cited. However, a numerical comparison of the experimental

bifurcation diagrams is formulated which describes the results of the experimental
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testing along with the methods used to visualize and process the experimental time

series. The final chapter summarizes the contributions from this research and outlines

the potential opportunities for future work.
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Chapter 2

Modeling Machining Dynamics

2.1 Introduction

The significance of high speed machining and especially high speed milling in

production has increased since new machines and tools are able to apply high

material removal rates. High speed machining enables the possibility to reduce

process time and improves workpiece accuracy. High speed machining is mostly

related to the application of high cutting speeds, which are almost three times higher

than the conventional cutting process. Within this range of cutting speeds, the

cutting force decrease with increasing cutting speeds [24, 25]. At very high cutting

speeds, however, the cutting forces increases due to inertia forces [25]. This chapter

presents the methods for modeling the cutting forces of a cutting process.

7



2.2 Cutting Forces in Machining

During a cutting process, large forces are exerted between the tool and the workpiece

which often results in undesirable vibrations in the process. These naturally have an

impact on the operation of the tool and the workpiece. In order to understand the

tool motion and the dynamics of the cutting process, it is important to study the

methods to model the cutting forces in a machining process. Some of the assumptions

in the cutting forces depend upon the following factors: 1) the cutting geometry, 2)

the relative displacement between the tool and the workpiece, 3) workpiece material

properties. Additional influences includes frictional effects, thermal effects between

the tool and the workpiece.

In literature, several models have been proposed to model the cutting force as a

function of the cutting parameters, such as the depth of cut, the uncut chip thickness,

which together can be called as the uncut chip area [1, 2, 25, 26]. In order to get a

better understanding of the force-area relationship, we assume the cutting forces,

Fc(A) to be a function of the uncut chip area, A0, which can be written in a Taylor

series expansion as

Fc(A) ≈ Fc(A)︸ ︷︷ ︸
static

+
∂Fc(A)

∂A
(A− A0)︸ ︷︷ ︸

dynamic

. (2.1)

This is a general equation for the cutting forces with, Fc as the resultant cutting

force. Here, the cutting forces are separated into static and dynamic cutting force

components. Figure 2.1, shows an interrupted turning process for orthogonal cutting

[25]. Since the mathematical model for turning is much simpler than milling, one

could get a better understanding orthogonal cutting mechanics involved in the cutting
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process [25, 27]. For this reason, the turning process is the best for investigation

because it has a single-edged tool and thus the arrangement of the tool and the

workpiece is simpler to describe (see Fig. 2.1).

Figure 2.1: A schematic of an orthogonal cutting in an interrupted turning process.

Schematics (a) and (b) shows the orthogonal cutting geometry.

2.2.1 Cutting Force Expression in Turning

Obtaining an expression for the cutting forces involves several physical parameters.

Starting with Eq.(2.1), the cutting force in turning can be expressed as follows,

Ft(A) ≈ Ft(A)︸ ︷︷ ︸
static

+
∂Ft(A)

∂A
(A− A0)︸ ︷︷ ︸

dynamic

. (2.2)

Rewriting the resultant force vector as two perpendicular force vectors, Ft and Fn,
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Ft(A) ≈ Ktb(h+ [y(t)− y(t− τ)]) , (2.3)

Ft(A) ≈ Ktbh︸ ︷︷ ︸
static

+Ktb[y(t)− y(t− τ)]︸ ︷︷ ︸
dynamic

. (2.4)

where A0 is the uncut chip area, A is the instantaneous chip area, b is the depth of

cut, and, h is the instantaneous chip thickness. From Eq.(2.4), it is apparent that

the cutting force is proportional to the cutting pressure, Kt and the area, A0 and

it is assumed to have “no vibration” in the static force component. In the dynamic

part of Eq.(2.4), the cutting force is related to the tool displacement at the current

time and the tool displacement from the previous tooth passage. Here, we have

assumed that the tool is only compliant in the y-direction.

The force distribution of an orthogonal cutting process is shown in Fig. 2.2. The

resultant cutting force, Fc, is at an angle βa, which is sometimes called as the aver-

age friction angle between the tool’s rake face and the moving chip [26]. The chip

thickness ratio, rc, and the shear plane angle, φs, can be obtained from the following

relationships

rc =
h

hc
, (2.5a)

φs = arctan
rc cos(αr)

1− rc sin(αr)
. (2.5b)

where αr is the rake angle.

10



Figure 2.2: Cutting force diagram of an interrupted turning process.

It is also assumed that the cutting edge of the tool is sharp and the deformation

takes place at infinitely thin shear plane. Further assumptions include constant shear

stress, τs, resultant cutting force, Fc, and shear angle, φs.

Referring to Fig. 2.2, the resultant force is formed from the tangential and normal

forces as follows

Fc =
√
F 2
t + F 2

n . (2.6)

Also, the shear force, Fs, can be correlated with the resultant cutting force as follows,

11



Fc =
Fs

cos(φs + βa − αr)
. (2.7)

But, the shear force can be further related to the shear stress and the uncut chip area

which is expressed as,

Fs = τs
bh

sin(φs)
. (2.8)

where

τs =
Fs
As

, (2.9)

As = b
h

sin(φs)
. (2.10)

Therefore, substituting Eq.(2.8)- Eq.(2.10) into Eq.(2.7), we get a new equation for

the resultant cutting force represented as

Fc = τsbh
1

sin(φs) cos(φs + βa − αr)
. (2.11)

Now, the tangential and normal cutting forces can be written in terms of the

resultant cutting force as follows

Ft = Fc cos(βa − αr) , (2.12a)
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Fn = Fc sin(βa − αr) . (2.12b)

Substituting Eq.(2.11) into Eqs.(2.12a)& (2.12b), we get

Ft = bh

[
τs

cos(βa − αr)

sin(φs) cos(φs + βa − αr)

]
, (2.13a)

Fn = bh

[
τs

sin(βa − αr)

sin(φs) cos(φs + βa − αr)

]
, (2.13b)

where τs is the material shear stress:

τs = Fc
sin(φs) cos(φs + βa − αr)

bh
. (2.13c)

In metal cutting literature, the cutting forces are related to the cutting parameters,

known as the cutting coefficients

Kt =

[
τs

cos(βa − αr)

sin(φs) cos(φs + βa − αr)

]
, (2.14a)

Kn =

[
τs

sin(βa − αr)

sin(φs) cos(φs + βa − αr)

]
. (2.14b)

As mentioned earlier in the section, the resultant cutting force, shear stress and

shear angle are assumed to be constant, but the equations derived above shows the
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cutting coefficients as a functions of the shear stress, rake angle and, shear angle,

etc. The empirical formulation of the cutting forces in the tangential and normal

directions are commonly written in the literature as

Ft = Ktbh , (2.15a)

Fn = Knbh . (2.15b)

2.3 Cutting Force Model for Milling

The cutting force estimation in a turning process was studied in order to gain intu-

ition which could be potentially beneficial in modeling the cutting forces in milling.

Also, the modeling of a milling process is much more difficult than turning since it

is a multi-point cutting tool. Furthermore, the tangential and normal forces change

direction with cutter rotation. The schematics of Fig. 3.4 show a typical up-milling

and down-milling operation and provide illustrations of the directional cutting forces

for a milling process. This diagram also shows that milling is an interrupted cutting

process - meaning that the tool enters and exits the workpiece during cutting. There-

fore, the resulting math model must account for the fact that the tool has a finite

entry and exit angle. Although the authors acknowledge that the shape of the chip

will be trochoidal [28], the results that follow use the common approximation of a

circular tool path.

Recalling Eq. (2.1) from section 2.2.1, the force-area relationship for milling can

be expressed as,
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Figure 2.3: Cutting force diagram of an interrupted milling process. Fig.(a) shows the

top view of an up-milling process, and Fig.(b) shows the top view of a down-milling

process.

Ft(A) ≈ Ft(A)︸ ︷︷ ︸
static

+
∂Ft(A)

∂A
(A− A0)︸ ︷︷ ︸

dynamic

, (2.16a)

Ft(A) ≈ Ktbwp(t) . (2.16b)

where A is the instantaneous chip area, A0 is the uncut chip area , Kt is the cutting

coefficient in the tangential direction.

The instantaneous chip area, wp, when the pth tooth is in contact, is given by:
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wp(t) = h sin θ(t)︸ ︷︷ ︸
static

+ [x(t)− x(t− τ)] sin θ(t) + [y(t)− y(t− τ)] cos θ(t)︸ ︷︷ ︸
dynamic

. (2.17)

where h is the feed/ tooth, τ = 60
NΩ

, is the tooth pass period with Ω, as the spindle

speed and N , the number of cutting teeth, and x(t) and y(t) are the tool motions

along the respective directions.

The instantaneous chip width mainly depends on the following factors: 1) the

feed per tooth, h 2) the cutter rotation angle, θ, and, 3) regeneration in the com-

pliant structure directions. The tool motion in the x and y directions can be better

illustrated using Fig. 2.4.

Figure 2.4: Detailed schematic of the motion of the tool for a radial chip thickness,

wp(t) in the x & y direction components.

With reference to Fig. 2.4, the radial chip thickness can be obtained by projecting

the difference between the current tool displacement, described by x(t) and y(t),
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and the displacements of the cutting tool on the previous tooth passage, x(t− τ) or

y(t − τ), onto the radial direction. This represents the dynamic part of the cutting

force model expressed in Eq. (3.1).

In order to obtain the math model for milling which is discussed here, one would

need to resolve the forces. These forces should be translated from the rotational frame

onto the fixed co-ordinate frame.

Figure 2.5: Detailed schematic of the force distribution for radial chip thickness, wp(t)

with respect to the tool motions in the x- and y- direction components.

From Fig. 2.5, we could resolve the tangential and normal forces and translate

them into Fx and Fy in the fixed frame co-ordinate as:

17



Fx
Fy

 =

− cos θ − sin θ

sin θ − cos θ

Ft
Fn

 . (2.18)

It has been evident from the discussions earlier in this section that the cutting are

not active throughout the process. For a better understanding of the cutting process,

we introduce a switching function, which is also called the Heaviside step function,

to Eq. (3.2). Therefore, we rewrite the equations for the cutting force components in

the x & y directions on the pth tooth as follows,

Fxp = −gp(t) [Ftp cos θ + Fnp sin θ] , (2.19a)

Fyp = gp(t) [Ftp sin θ − Fnp cos θ] . (2.19b)

where, gp is the switching function and the subscript p denotes the active teeth; i.e.

gp(t) =


1, if the pth tooth is active ;

0, if the pth tooth is not cutting .

(2.20)
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The tangential and normal cutting force components for the pth tooth, Ftp and Fnp

are considered to be the product of the linearized cutting coefficients, Kt, and Kn,

the axial depth of cut, b, and the instantaneous chip thickness, wp. Their expressions

are given by

Ftp = Ktbwp(t)
γ , (2.21a)

Fnp = Knbwp(t)
γ , (2.21b)

where the superscript, γ, represents the nonlinear relationship between the cutting

force and the feed rate. Within this thesis, the linear relationship is only considered

(i.e. γ = 1). Thus, the linear model for regeneration is used for the analytic

prediction of stability [29].

In the above, a linear cutting force model has been studied which depends on the

tool motion at the entry and exit of the cut. However, the cutting forces shown in

Eq. (3.4) are considered to be a function of the cutting coefficients, the axial depth

of cut and the chip thickness. If more than one cutting tooth is engaged in the cut,

the total cutting force along each direction can be written as the summation over the

total number of cutting teeth

Fx(x, y, θ(t), τ)

Fy(x, y, θ(t), τ)

 =
N∑
p=1

gp(t)b

h
−Ftp(x, y, θ(t), τ)

−Fnp(x, y, θ(t), τ)

 . (2.22)

Since these expressions couple the cutting forces to the tool motion, they pave way
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for stability prediction.

2.4 Structural Dynamics of the tool

The experimental study of structural dynamics has provided major contributions

to understand many vibration phenomena. Modal analysis is a process whereby a

structure is described in terms of its natural characteristics which are frequency,

damping and mode shapes, that can be often referred to as the dynamic properties.

The natural frequencies and mode shapes occur in all the structures that are

designed. Basically, there are characteristics that depend on the mass and stiffness

of the structure which set the natural frequencies and the shape distribution of the

mode shapes. Understanding the mode shapes and how the system behaves under

dynamically loading conditions aids the design engineer in the development of better

structures.

Modal analysis is the study of the natural characteristics of structures. It is used

to help design all types of structures including automotive and aircraft structures,

computers, tennis rackets, to name a few. However, there is no single test or analysis

procedure which is best for all cases and so it is very important that a clear objective

is defined before any test is undertaken. It is also important that a clear distinc-

tion is made between free vibration and forced vibration analysis. Typically, with

vibration studies, there are two types of systems associated, they are single degree-

of-freedom (SDOF) systems and multiple degree-of-freedom (MDOF) systems. For

a SDOF system, a free vibration analysis yields its natural frequency and damping

factor, whereas a forced excitation leads to the definition of the frequency response

function (FRF) [30]. The FRF is simply the ratio of the output frequency response of
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a structure to the positive frequency response of the applied force. The applied force

and the response of the structure due to the applied force are measured simultane-

ously. The response measured can be displacement, velocity or acceleration. Now,

the measured time data is transferred from the time domain to the frequency domain

using Fast Fourier Transform (FFT) algorithm. Due to this transformation, the func-

tion will become complex, i.e:, functions containing real and imaginary components

or magnitude and phase components to describe the function.

2.4.1 Experimental Modal Testing

This section describes a series of experimental modal tests that were used to obtain

math model parameters that describe the experimental system that is discussed in the

future sections. A schematic diagram of the experimental setup is shown in Fig. 2.6.

Modal testing of the cutting tool was done using a instrumented hammer to impact,

and hence excite the structure.

Impact testing is a fast, convenient, and a low cost way of finding the modes of

structures and machines. The following equipment is needed to perform an impact

test: 1) an impact hammer with a load cell attached to its head to measure the

input force; 2) an accelerometer to measure the response acceleration at a fixed

point and direction; and 3) a multi channel data acquisition system to compute FRFs.

A PCB model 086C02 impact force hammer with a calibration constant of 83.19

N/Volt was used to excite the structure. For response measurement, a PCB model

352B10 accelerometer and NIDAQ 6036E national instruments data acquisition

system were used for this experiment to measure the FRF. Different sized hammers

are required to provide the appropriate impact force, depending on the size of the
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Figure 2.6: Schematic diagram of experimental modal testing.

structure; small hammers for small structures, large hammers for large structures.

The selection of the hammer tip can have a significant effect on the measurement

acquired. The input excitation frequency range is controlled mainly by the hardness

of the tip selected [30, 31]. The tip needs to be selected such that all the modes of

interest are excited by the impact force over the frequency range to be considered.

The number of samples per second is called the sampling rate (or sampling fre-

quency), referred to here as SR in units of Hz. The sampling rate directly affects the

highest frequency that is analyzed in the computer, conventionally called the Nyquist

limit frequency (fnyquist), which is exactly equal to one-half the sampling rate. For
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most measurements, the frequency band ranges from approximately 20 Hz to 20 KHz

and for this experiment, a sample rate of 5 KHz was chosen. The Nyquist frequency

can be expressed as

fnyquist = SR/2. (2.23)

Figure 2.7: Overlay of the theoretical frequency response (solid line) onto the exper-

imental frequency response (denoted with dots). Graphs are labeled to agree with

the math model directions of Fig. 3.4. Estimated modal parameters are given in

Table 3.1.

The Frequency Response Function (FRF) is a fundamental measurement that isolates

the inherent dynamic properties of a mechanical structure [31, 32]. Experimental

modal parameters such as natural frequency, damping and mode shapes are obtained

from a set of FRF measurements. Fig. 2.7 shows the spectral amplitude as a

function of frequency for x− and y−directions of the experimental system. Modal

tests were performed at the cutting tool tip using a PCB model 086C02 impact
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force hammer to excite the structure. For the response measurement, a PCB model

352B10 accelerometer was used. A gradient based optimization method was used in

combination with a modal parameter fitting scheme to obtain the modal parameters

that are listed in Table 3.1.

Parameters mx,y (Kg) cx,y (Ns/m) kx,y (N/m)

X-direction 0.0372 2.2841 8.51e5

Y-direction 0.0398 0.9948 8.94e5

Table 2.1: Modal parameters for asymmetry study.

2.5 Summary and Conclusions

In this chapter, cutting force model for a two degree of freedom system was presented.

The cutting force expressions are correlated to the math model obtained from the

experimental modal parameters. In addition, the structural dynamics of the tool are

also studied which contributes to the understanding of many vibration phenomena.
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Chapter 3

Study of subcritical bifurcations in

milling

3.1 Introduction

Large-amplitude vibrations known as chatter are a primary impediment to improv-

ing the productivity of machining processes [2]. The recognized mechanism for

chatter vibrations is known to be the relative motions between a cutting tool and

workpiece system. More specifically, the relative motions can cause chatter due to

self-excitation of the system’s structural modes [29]. Unless avoided, these regions of

large-amplitude chatter vibration may cause excessive dynamic loads on the machine

spindle and table structure, damage to the cutting tool, and a poor surface finish.

The most common approach for modeling the cutting forces for machining

processes is to write the forces as being functions of the uncut chip area. When

these expression(s) include the tool motions, which couples the tool motions to the
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cutting forces, the model is said to become a non-ideal energy source. Models using

delay equations to describe the relative motion between consecutive passages of the

cutting tool first appeared in the works of Koenigsberger and Tlusty [4] and Tobias

[33]. These authors pioneered the stability analysis of regenerative chatter in the

early 1960s. A particularly important result from these analyses was the ability

to identify stable cutting regions in which relatively large material removal rates

could be obtained by cutting at higher spindle speeds. Following these works, a key

strategy has been to apply analytical and numerical methods to predict parameter

domains where instabilities exist.

Stability predictions from many early analysis are only approximate for the case

of milling since they rely on the fundamental assumption of continuous cutting.

In milling, the cutting forces change direction with tool rotation and cutting is

interrupted as each tooth enters and exits the workpiece [34, 35]. This requires

the cutting force expressions for milling to contain an additional term, such as a

Heaviside step function, that will turn on the cutting forces as the tool enters into

the cut and then turn them off as the tool exits the workpiece.

The focus of many recent works has been the occurrence of new bifurcation

phenomena in interrupted cutting processes [5]. In addition to Neimark-Sacker or

secondary Hopf bifurcations, period-doubling bifurcations have been analytically

predicted in references [5–11] and confirmed experimentally in references [6–8, 12–17].

Other investigations have shown additional physical mechanisms which may influence

the relative oscillations between the tool and the workpiece [18]. For instance, the

thermoplastic behavior of chip formation has been reported in reference [19] and

frictional effects at the tool chip interface have been examined in the reference [20].
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The focus of the current thesis stems from an apparent void in the literature

base with regards milling bifurcations. More specifically, several researchers have

reported results indicating that the secondary Hopf bifurcations of turning processes

are subcritical [21, 22]. However, fewer results are available for milling - especially

results that provide any substantial experimental evidence. The goal of the current

paper is to provide a novel series of experimental results that explore the subcritical

nature of milling bifurcations.

Figure 3.1: Schematic shows the stroboscopic map of the chosen states, X(τn) and

X(τn + ∆t). This shows the mapping of the periodic displacement samples to the

torus and sectioned to provide a Poincaré map.

The schematic of Fig. 3.1 shows a transverse sectioning of the phase plane

that has been mapped to the torus. Here, the sectioning of the continuous flow

generates a Poincaré mapping by plotting X(τn) versus X(τn + ∆t). This cor-

responds to the stroboscopic sampling of the velocity and displacement. With

reference to Fig. 3.1, the stroboscopic map of milling time series can often be used

to qualitatively distinguish between chatter-free and a chatter-vibration behavior [35].

The importance of understanding whether the bifurcations are subcritical is ex-

plained by the bifurcation diagram of Fig. 3.2. This graph shows the vibration am-
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plitudes (or stroboscopic samples) plotted as a function of the axial cutting depth,

b. Starting from a location of a small cutting depth and slowly increasing, this pa-

rameter will result in periodic motions which will also be free of chatter vibrations.

As the bifurcation parameter, the depth of cut, is further increased, the chatter free

vibration solution will enter region where multiple stable equilibria coexist - both

the chatter-free and a chatter-vibration solution. Towards the end of this region, the

tool will reach the bifurcation point which will cause a jump in the response of the

tool to the stable chatter-vibration equilibria solution. The amplitude of the chatter

vibrations will then continue to grow with an increase in the axial depth. Reversing

this process by starting at a relatively larger cutting depth and progressing towards a

smaller depth will result in hysteresis near the region of multiple periodic attractors.

In essence, the periodic attractor representing chatter vibration is a limit cycle that

collapses to a stable chatter-free solution once the bifurcation parameter has decreased

beyond the region of multiple attractors. While one can argue that this method of

cutting may be atypical, the relevance becomes more clear when the influence of a

small perturbation is considered [23]. In particular, small perturbations within the

region of coexisting stable attractors can cause the cutting tool to jump back and

forth between the regions (the basins of attraction) which delineate the chatter and

chatter-free attractors. This very phenomenon is what we explore in the pages that

follow.

3.2 Description of the experimental apparatus

The experimental system described within this section was developed to capture the

desired bifurcation behavior. Milling tests were performed on a three-axis Cincinnati

CFV 1050 SI CNC machine (see Fig. 3.3). The procedure for the experiment

consisted of up-milling a 1016 mm long aluminum 6061-T6511 workpiece at a radial
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Figure 3.2: Representative subcritical bifurcation diagram for a milling process plot-

ted as a function of the cutting depth, b. Here, x(nτ) represents the amplitude of

periodic displacement samples found for stable equilibria (solid red line). These sta-

ble equilibria are experimentally observable and represent both stable (chatter-free)

and stable (chatter-vibration) equilibria. The dotted blue line represents equilib-

ria that may be obtained with numerical continuation, but would not appear in an

experimental setting.
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immersion of 3% and feed rate of h = 0.2032 (mm/tooth). Since the goal was to

obtain experimental bifurcation diagrams, which require the quasi-static variation

of a control parameter, the axial depth of cut was slowly increased by cutting along

an incline as shown in Fig. 3.3. Here, both an incline and decline cutting operation

were used to investigate the potential role of hysteresis.

In order to investigate several regions of the parameter space, the spindle speed

was changed for each set of incline/decline tests. In addition, for multiple cutting

tests, clean up passes were performed prior to every recorded cut to create standard

reference for the next pass. A 12.75 (mm) diameter, two flute, solid carbide end mill

with a 30◦ helix angle was used during all stability tests (see modal parameters in

Table 3.1). Tool displacements, measured approximately 5 (mm) from the tool tip,

were recorded at a sample rate of 25 KHz using a laptop data acquisition system and

Lion Precision capacitance probes. A once per revolution timing signal was obtained

using a laser tachometer that was created by heat shrinking an aluminum sleeve onto

the tool.

To study the dynamic behavior of a particular milling process (i.e. tool, tool

holder, and spindle combination), modal parameters of the specific system are

required. Modal tests were performed at the cutting tool tip using a PCB model

086C02 impact force hammer to excite the structure. For the response measurement,

a PCB model 352B10 accelerometer was used. A gradient based optimization

method was used in combination with a modal parameter fitting scheme to obtain

the modal parameters that are listed in Table 3.1.

In the section that follow, stability predictions are provided for the experimental

system. Here, the governing equations are first described prior to presenting the
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Figure 3.3: Schematic diagram of the experimental system that was used to generate

experimental bifurcation diagrams. The 1016 (mm) long workpiece was machined

along an incline/decline to create depth of cut sweeps.
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Parameters mx,y (Kg) cx,y (Ns/m) kx,y (N/m)

X-direction 0.0372 2.2841 8.51e5

Y-direction 0.0398 0.9948 8.94e5

Table 3.1: Experimentally identified modal parameters for the cutting tool.

results of the stability analysis.

3.3 Math Model for Milling

During a machining process, large forces are exerted between the cutting tool and

the workpiece. This can often result in undesirable vibrations that may damage

the tool or the workpiece. In this section, the model for a two degree of freedom

milling process is derived. In addition, this section provides a brief explanation for

the dynamic forces in milling which can lead to instability. In this section, we apply

a model that is in agreement with the prior works of references [10, 12, 14, 29, 36].

However, a brief derivation is provided for completion. Those familiar with milling

process may wish to proceed to Section 3.4.

3.3.1 Cutting Force Expression in Milling

The schematics of Fig. 3.4 show a typical up-milling and down-milling operation

and provide illustrations of the directional cutting forces for a milling process. This

diagram also shows that milling is an interrupted cutting process - meaning that the

tool enters and exits the workpiece during cutting. Therefore, the resulting math

model must account for the fact that the tool has a finite entry and exit angle.

Although the authors acknowledge that the shape of the chip will be trochoidal [28],

the results that follow use the common approximation of a circular tool path.
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Figure 3.4: Schematic diagrams of the math models for: (a) up-milling; and (b)

down-milling processes. The directional cutting forces are defined as Ft and Fn in

the tangential and normal directions. The term Fc is used to describe the resultant

cutting force.

The instantaneous radial chip thickness, wp, on the pth tooth can be approximated

as

wp(t) = h sin θp(t) + [x(t)− x(t− τ)] sin θp(t) + [y(t)− y(t− τ)] cos θp(t) , (3.1)

where h is the feed per tooth, θ is the cutter rotation angle, τ = 60
NΩ

, is the tooth

pass period, and Ω, is the spindle speed. The number of cutting teeth is denoted by

N , and x(t) and y(t) are the tool motions along the respective directions.

The radial chip thickness can be obtained by projecting the difference between the

current tool displacement, described by x(t) and y(t), and the displacements of the

cutting tool in the previous tooth passage, x(t−τ) and y(t−τ), onto the radial direc-

tion. This represents the dynamic part of the chip thickness expressed in Eq.(3.1) [26].
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In order to obtain the math model for milling, the forces in the tangential and

normal components must be transformed from the rotating reference frame of the

tool into the fixed frame. The tangential and normal forces Ft and Fn can be resolved

and transformed into Fx and Fy in the fixed frame as follows

Fx
Fy

 =

− cos θ − sin θ

sin θ − cos θ

Ft
Fn

 . (3.2)

The tangential and normal cutting force components for the pth tooth, Ftp and Fnp

are considered to be the product of the linearized cutting coefficients, Kt, and Kn,

the axial depth of cut, b, and the instantaneous chip thickness, wp. Their expressions

are given by

Ftp = Ktbwp(t)
γ , (3.3a)

Fnp = Knbwp(t)
γ , (3.3b)

where the superscript, γ, represents the nonlinear relationship between the cutting

force and the feed rate. Within this paper, the linear relationship is only considered

(i.e. γ = 1). Thus, the linear model for regeneration is used for the analytic

prediction of stability [29].

In the above, a linear cutting force model has been studied which depends on the

tool motion at the entry and exit of the cut. However, the cutting forces shown in

Eq. 3.4 are considered to be a function of the cutting pressures, the axial depth of
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cut and the chip thickness. If more than one cutting tooth is engaged in the cut,

the total cutting force along each direction can be written as the summation over the

total number of cutting teeth

Fx(x, y, θ(t), τ)

Fy(x, y, θ(t), τ)

 =
N∑
p=1

gp(t)b

h
−Ftp(x, y, θ(t), τ)

−Fnp(x, y, θ(t), τ)

 . (3.4)

The switching function, gp(t), acts as a square wave to provide a discontinuity in the

cutting forces by assuming a value of one when the pth tooth is active and zero when

it is not cutting. These expressions for the cutting forces pave way to the prediction

of the local stability.

For the analysis of a tool with a non-zero helix angle, there exists different force

expressions for each cutting situation, i.e. entry, middle and exit, and each case

[26]. The cutting situation is important because the depth of cut will depend on the

rotation position. Also, the different cases depend on whether or not the tool fully

enters the cut before exiting. More details are provided by Edes [37] in addition to

the force expression derivation.

3.3.2 Modal Equation of Motion

Combining the cutting forces of the previous section with the math model for the

structural dynamics results in the final governing equation. Assuming either a com-

pliant tool or a compliant structure, a summation of forces gives the following equation

of motion for a two degree of freedom system
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mx 0

0 my

ẍ(t)

ÿ(t)

+

cx 0

0 cy

ẋ(t)

ẏ(t)

+

kx 0

0 ky

x(t)

y(t)

 =

Fx(x, y, θ(t), τ)

Fy(x, y, θ(t), τ)

 , (3.5)

where the terms mx,y, cx,y, and kx,y are the modal mass, damping, and stiffness in

the respective directions of the system. The equations for the milling process can be

expressed in more compact form, here the consolidated force expression becomes

Fx(x, y, θ(t), τ)

Fy(x, y, θ(t), τ)

 =
N∑
p=1

gp(t)b

(
h

−Ktsc −Kns
2

Kts
2 −Knsc

+

Ktsc−Kns
2 −Ktc

2 −Knsc

Kts
2 −Knsc Ktsc−Knc

2

x(t)− x(t− τ)

y(t)− y(t− τ

) , (3.6)

where s = sin θ(t), c = cos θ(t), N is the number of teeth, and τ is the time delay

between consecutive tooth passages. Eq.(3.5) can now be rewritten as

M ~̈X(t) + C ~̇X(t) + K ~X(t) = Kc(t)b
[
~X(t)− ~X(t− τ)

]
+ ~f0(t)b , (3.7)

where ~X(t) = [x(t) , y(t)]ᵀ is the position vector and M, C, and K are the modal mass,

damping, and stiffness matrices. The terms Kc(t) and ~f0(t) are compact notation for

Kc(t) =
N∑
p=1

gp(t)

−Ktsc−Kns
2 −Ktc

2 −Knsc

Kts
2 −Knsc Ktsc−Knc

2

 , (3.8a)

~f0(t) =
N∑
p=1

gp(t)h

−Ktsc−Kns
2

Kts
2 −Knsc

 , (3.8b)
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as noted in [27].

To analyze the dynamics of a milling process, it is essential to study the stability

behavior of the system. The section that follows will discuss the asymptotic sta-

bility borders from the cutting force models derived in this section. In an effort to

focus on the experimental observations, the analytical details of solving the governing

equations are omitted. Instead, the authors cite the appropriate references.

3.4 Stability Prediction

The local stability of the milling process can be obtained using the temporal finite el-

ement analysis (TFEA). This method can be used to analytically predict the stability

of a milling process. While details of this solution technique have been omitted for the

sake of brevity, the interested reader can consult references [8, 11, 12, 17, 27, 29, 38].

The stability of the dynamic map equation and the system it describes is determined

from the eigenvalues of the transition matrix Q = A−1B [11, 12, 14, 39]. If the mag-

nitude of any eigenvalue is greater than one for a given spindle speed (Ω) and depth

of cut (b), the milling process is considered unstable. Two distinct types of instability

are illustrated by eigenvalue trajectories in the complex plane: 1) a flip bifurcation or

period-doubling phenomenon occurs when a negative real eigenvalue passes through

the unit circle; and 2) a Hopf bifurcation occurs when a complex eigenvalue obtains

a magnitude greater than one [11, 12, 14, 39].

Figure 3.5 shows the stable and unstable cutting regions used in the experiments

as a function of spindle speed and depth of cut. The dots in this figure represents

the experimental cases described in Section 3.5. The parameters chosen for stability

predictions are those listed in Table 3.1. The applied values of cutting coefficients, Kt
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Figure 3.5: Stability chart for the studied experimental system predicted from charac-

teristic multiplier magnitudes. Figure shows the stability predictions from the modal

parameters listed in Table 3.1. The dots in this figure represents the experimental

cases described in Section 3.5. The experimental cases described in the next section

are for Ω values of 13500, 14000, 15314, and 15350 (rpm) with depth of cut values

varying from 0− 3 (mm).
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and Kn were chosen as 5.36× 108 (N/m2), and 1.87× 108 (N/m2), respectively [40].

The type of instabilities that occur by characteristic multiplier (CM) trajectories in

the complex plane are illustrated in Fig. 3.6. Two unstable behaviors such as Hopf

bifurcation and flip bifurcation are shown for different experimental cases. The top

two graphs (i.e., a, and b) showing the eigenvalues projecting out of the unit circle is

plotted for a spindle speed of Ω = 13, 500 (rpm),and Ω = 14, 000 (rpm), respectively

with the depth of cut varying from 0− 3 (mm). Cases c, and d are plotted for values

of Ω = 15, 314 (rpm),and Ω = 15, 350 (rpm), respectively. For cases c, and d, even

though it shows a flip bifurcation or period doubling bifurcation in the complex plane,

the experimental results that follow could not capture these effects. The authors

suspect that this could be due to the existence of either stochastic variations in the

cutting forces or the chip dynamics which were not taken into account to determine

stability. Another possible reason could be the effect of cutter run-out in a milling

process which had appeared in the data making it difficult to distinguish from period-

doubling behavior.

3.5 Experimental and Numerical Observations

This section describes the results of the experimental cutting tests performed to

investigate the bifurcation behavior of the milling process. Experimental bifurcation

diagrams were created for different cutting conditions to investigate the presence of

hysteresis and the presence of multiple periodic attractors. Measurement responses

obtained from the experiments were used to create the bifurcation diagrams and

Poincaré sections that provide insight into the qualitative behavior of the system.

39



Figure 3.6: Characteristic multiplier magnitudes plots for the experimental system

discussed in Section 3.2. Different unstable parameter combinations penetrates the

unit circle in the complex plane: (a and b) characteristic multiplier trajectories for

a secondary Hopf bifurcation for spindle speed values of Ω = 13, 500 (rpm),and Ω =

14, 000 (rpm), respectively; and (c and d) characteristic multiplier trajectories for a

flip bifurcation for spindle speed values of Ω = 15, 314 (rpm),and Ω = 15, 350 (rpm),

respectively with the depth of cut varying from 0− 3 (mm).
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3.5.1 Experimental Observation and Data

Bifurcation studies involve the qualitative change of the system behavior under the

quasi-static variation of a control parameter. Figure 3.7 shows the experimental

vibration signals measured at a spindle speed of 13500 (rpm). To capture a once per

revolution timing signal, a laser tachometer was used to sense a black-white transition

on the rotating tool holder. Figure 3.7 (a) shows a zoomed view of the tachometer

signal, where each square wave represents one cutter revolution. The black dot denote

the once per revolution timing pulse. Cases (b) and (c) show the raw displacement

signal in the x− and y−directions. These signals were periodically sampled at the

tooth passage frequency to create the Poincaré sections and bifurcation diagrams that

follow (see Figs. 3.8 and 3.10).

In Fig. 3.8, a secondary Hopf or Neimark-Sacker bifurcation was observed in the

experimental measurements for both forward and reverse sweep cases. This graph

was generated by varying the axial depth of cut as a control parameter during the

experimental investigation. Results from these experiments verify the presence of

hysteresis. The two dimensional circle maps shown in Fig. 3.10 provides an insight on

the criterion used to locate the bifurcation points. This schematic illustrates different

snapshots in time of the bifurcation diagram of Fig. 3.8, progressing from a larger

cutting depth to a smaller one. It is apparent that the once per period samples

begin to slowly vary from a chatter-vibration solution to a chatter-free solution (see

Fig. 3.10). Also, from visualization it could be noted that the forward sweep starts at a

zero depth with the onset of chatter vibration at approximately 0.55 (mm). Whereas,

in case (b) (i.e. the reverse sweep), the cutting process starts at a larger depth which

is already in the unstable region and becomes stable at around 0.4 (mm). This

accounts to the fact that starting from a smaller cutting depth and slowly increasing

the control parameter will result in a single stable equilibria solution which will be
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Figure 3.7: Experimental signals acquired during the experiment: a) Laser tachome-

ter, b) and c) capacitance probe measurement in the x− and y−directions. In case

(a), the measured response from the tachometer was used to capture a once per rev-

olution timing signal, where each square wave represents one cutter revolution and

the black dot denotes once per revolution timing pulse. Whereas, cases (b) and (c),

the raw displacement signal in the x− and y−directions are acquired using the ca-

pacitance probes. These experimental results are obtained for an down-milling case

at a spindle speed of 13500 (rpm) and varying depth of cut, recorded for a forward

sweep.
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a chatter-free solution (see Fig. 3.2). However, if the control parameter is increased

further, the chatter-free solution (trivial solution) looses stability giving way to small

limit cycles [12]. Consequently, the system response is attracted to a large-amplitude

limit cycle [12, 41]. This phenomena is usually referred to as a subcritical bifurcation.

Subcritical bifurcation instabilities are one of the most difficult nonlinear phenomena

to deal with because even a small perturbation can cause the system to jump from a

small to large amplitude vibration [42].

Figure 3.8: Down-milling bifurcation diagram for the experimental system described

in Section 3.2. The periodic samples in the x−direction, labeled as Xn, for a cutting

speed, Ω = 13, 500 (rpm). The axial depth of cut, b, which varied from 0−3 (mm)

was used as the control parameter. The bifurcation points in the case of a forward

sweep is approximately 0.55 (mm), whereas, in case (b), it is close to 0.4 (mm). This

predicts subtle effect of hysteresis in the bifurcation diagrams when comparing the a)

forward sweep; and b) reverse sweep cases.

Repeated experimental tests were conducted to ensure the consistency in the

variation of the bifurcation parameter to obtain the same results for both forward and

reverse sweeps. Although, the authors claim the effect of hysteresis in Fig. 3.8, one
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could argue that it is not very prominent. Figure 3.9 presents another down-milling

experimental result where there effect of hysteresis are very subtle. However, there

are several other experimental tests which show a more dominant hysteresis effect.

These experimental cases will be discussed further after presenting some Poincaré

sections from the results of Fig. 3.8.

Figure 3.9: Experimental bifurcation diagram for a spindle speed of Ω = 14, 000 rpm.

The axial depth of cut, b, was kept as the bifurcation parameter in this case as well,

which varied from 0−3 (mm). The periodic samples in the x−direction are labeled

as Xn, which shows forward and reverse sweep cases. This result was obtained for a

down-milling case where there the hysteresis is effect is not very prominent.

Mappings are frequently invoked as models to analyze the qualitative behavior of

Poincaré sections. Some illustrations of this are shown in Fig. 3.10, which presents

a two-dimensional circle map (Poincaré section) of the bifurcation diagram shown in

Fig. 3.8. Six different snapshots in time were used from the bifurcation diagram of

Fig. 3.8 (a) to create the Poincaré sections of Fig. 3.10. In the first diagram (case

a), the Poincaré section was plotted between b−values of 2.7 and 2.8 (mm). For the

other unstable cases (i.e., b, c, and d), the Poincaré sections capturing the depths

44



between 2.3 and 2.4 (mm), 1.7 and 1.8 (mm), and 1.2 and 1.3 (mm), respectively were

used. Case f is a snapshot in the stable cutting region which shows a stable attractor

capturing the depths between 0.2 and 0.3 (mm). These are snapshots in time of the

bifurcation diagram which begin to grow as the control parameter is slowly increased

and jumps to another final attractor. Case e is particularly interesting because the

circle maps are plotted in the transition region; i.e. from a stable region to an unstable

region. Here, it is apparent that the system grows in the center and starts to spiral

out to another attractor as the control parameter is slowly increased. Mapping of

this diagram was captured between depth values of 0.5 and 0.6 (mm).

Figure 3.10: Poincaré sections plotted for the bifurcation digram of Fig. 3.8. Cases

a − d show the slices for an unstable secondary Hopf bifurcation, case e shows the

transition from a stable region to an unstable region, and case f shows the mapping

in the stable region. Six snapshots were randomly chosen with equal intervals in

between to represent once per tooth passage samples. The range for different cases (a

− f respectively) are: (a) 2.7 − 2.8 (mm); (b) 2.3 − 2.4 (mm); (c) 1.7 − 1.8 (mm);

(d) 1.2 − 1.3 (mm); (e) 0.5 − 0.6 (mm); and (f) 0.2 − 0.3 (mm).
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The experimental results for two additional cases are shown in Figs. 3.11 and 3.12.

The parameter combinations used to create the bifurcation diagram in Fig. 3.11 was

chosen to be, Ω = 15, 350 (rpm) where the axial depth of cut was varied from 0 −

3 (mm). The effect of hysteresis in this figure, is much more dominant than the

bifurcation diagrams of Figs. 3.8, and 3.9, even though the exact location of the

bifurcation point is not obvious. In particular, the reverse sweep case (see Fig. 3.11

(b)) shows sensitivity to small perturbations resulting in a switching between the

chatter-free and chatter-vibration solutions. In this case, it is quite apparent that the

onset of chatter begins at a cutting depth of approximately 1 (mm), but as the control

parameter increases further, it starts to move back and forth between solutions and

increases above a certain value giving birth to a Hopf bifurcation and leading to a

limit cycle [43].

Figure 3.11: Experimental bifurcation diagram for a different parameter combination

is shown. The periodic samples in the x−direction, labeled as Xn, for a cutting

speed, Ω = 15, 350 (rpm). The axial depth of cut, b, which varied from 0−3 (mm)

was used as the control parameter. This predicts dominant effects of hysteresis when

comparing the a) forward sweep; and b) reverse sweep cases.
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Another interesting result which shows multiple attractors is shown in the bi-

furcation diagram of Fig. 3.12. This diagram was obtained by varying the control

parameter from 0 − 3 (mm) with a spindle speed, Ω = 15, 314 (rpm). It can be

seen that, in the forward sweep as the bifurcation parameter is slowly increased, the

chatter-free solution enters a region where multiple solutions coexist. On the other

hand, reversing this process will result in hysteresis near the region of the multiple

stable equilibria. At this point, the relevance become more obvious that there exist

a small domain of attraction which is very sensitive to small perturbations. These

results provide experimental evidence of a sensitivity to small perturbations and the

coexistence of multiple attractors for certain parameter combinations.

Figure 3.12: Experimental bifurcation diagram for a spindle speed of Ω = 15, 314

(rpm). The axial depth of cut, b, which varied from 0−3 (mm) was used as the

control parameter. The periodic samples in the x−direction are labeled as Xn, which

shows forward and reverse sweep cases with dominant effects of hysteresis.
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3.5.2 Numerical Investigation

Since the motion dependent discontinuity of chatter vibrations must account for the

cutting tool jumping out of the cut, numerical simulation was used to study the

milling process bifurcation behavior. This sub-section embarks a brief overview of

the numerical strategies used for solving time delay equations in milling. Since nu-

merical methods for delay differential equations (DDE) are intended for problems

with solutions that have several continuous derivatives, discontinuity in lower order

derivatives is also a major issue that requires special attention. The analystical so-

lutions of DDE suffer discontinuity which affect the numerical methods employed to

solve them [44–46]. In Fig. 3.13 the bifurcation diagram is captured numerically for

the down-milling experimental case illustrated in Fig. 3.8. This shows presence of

hysteresis in the bifurcation diagrams for both forward and reverse sweep cases.

Figure 3.13: Numerical bifurcation diagrams for the experimental system for a cutting

speed,Ω = 13, 500 (rpm) and varying depth of cut (b = 0−3 (mm)). The model

illustrates hysteresis in the bifurcation diagrams for forward and reverse sweeps.

Figure 3.14 is obtained by numerical simulation to capture the experimental bi-
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furcation behavior shown in Fig. 3.9. In this numerical study, the nonlinearity in the

cutting depth variation is not considered. Also, motion dependent discontinuity of

the tool is another potential application to the numerical investigation which requires

further study.

Figure 3.14: Numerical bifurcation diagrams for the experimental system for a cutting

speed,Ω = 14, 000 (rpm) and varying depth of cut (b = 0−3 (mm)). The model

illustrates hysteresis in the bifurcation diagrams for forward and reverse sweeps.

3.6 Summary

In this chapter, the nonlinear behavior of a highly interrupted cutting process which

illustrates secondary Hopf and flip bifurcations were discussed. In particular, a

two degree of freedom fixed frame model for low radial immersion up-milling was

experimentally verified to investigate the subcritical nature of bifurcation behavior.

Stability predictions were carried out using the temporal finite element method

which forms an approximate solution by dividing the time in the cut to a finite

number of elements. The characteristic multipliers (CM) are used to determine the
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stability of the system. The stability condition requires that the CM be less than

one for given spindle speed and depth of cut.

At the time of this research, the authors believe the experiments reported within

this thesis to be the first experimental bifurcation diagrams for milling data. This

served as the motivation for the current study. Our conclusions are that the data

shows a sensitivity to small perturbations which may result in a switching between

multiple equlibria solutions. Furthermore, the experimental observations provide in-

teresting results of hysteresis in the bifurcation diagrams (see Figs. 3.11 and 3.12).

However, there are only subtle effects for some parameter combinations (see Fig. 3.8).

Lastly, the authors hope that the presented experimental results will act as motivating

examples for future theoretical investigations.
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Chapter 4

Summary

4.1 Completed work summary

The importance of understanding whether the bifurcations are subcritical was the

main focus of this thesis. As the bifurcation parameter, is further increased, the

chatter-free equilibria solution will enter a region where multiple stable equilibria

coexist - both the chatter-free and a chatter-vibration solution. Towards the end of

this region, the tool will reach the bifurcation point which will cause a jump in the

response of the tool to the stable chatter-vibration equilibria solution. The amplitude

of the chatter vibrations will then continue to grow with an increase in the axial depth.

Reversing this process by starting at a relatively larger cutting depth and progressing

towards a smaller depth will result in hysteresis near the region of the multiple stable

equilibria. In essence, the stable equilibria representing chatter vibration are a limit

cycle that collapses to a stable chatter-free solution once the bifurcation parameter

has decreased beyond the region where the multiple attractors exist. While one can

argue that this method of cutting may be atypical, the relevance becomes more clear

when the influence of a small perturbation is considered [23]. In particular, small
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perturbations within the region of coexisting stable attractors can cause the cutting

tool to jump back and forth between the regions (the basins of attraction) which

delineate the chatter and chatter-free equilibria.

4.2 Primary conclusions from thesis

In this thesis, the nonlinear behavior of a highly interrupted cutting process which

illustrates secondary Hopf and flip bifurcations were discussed. In particular, a

two degree of freedom fixed frame model for low radial immersion up-milling was

experimentally and numerically verified to investigate the subcritical nature of

bifurcation behavior. Stability predictions were carried out using the temporal finite

element method which forms an approximate solution by dividing the time in the

cut to a finite number of elements. The characteristic multipliers (CM) are used to

determine the stability of the system. The stability condition requires that the CM

be less than one for given spindle speed and depth of cut.

At this time, we believe that the experiments reported within this thesis to be the

first experimental bifurcation diagrams for milling data. This served as the motivation

for the current study. The main conclusions are that the experimental data shows a

sensitivity to small perturbations which may result in a switching between multiple

equlibria solutions. Furthermore, the experimental observations provide interesting

results of hysteresis in the bifurcation diagrams. However, there are only subtle effects

for some parameter combinations. Lastly, the hope is that the presented experimental

results will act as motivating examples for future theoretical investigations.
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4.3 Theoretical subcritical nature predictions

From engineering viewpoint, one of the most dangerous dynamic phenomena is the

presence of an unstable limit cycle in the phase space. Engineers usually design

machines and systems with linear methods. If a desired motion or stationary state

is linearly stable, it may still have only a small domain of attraction, that is, it

may still be sensitive for perturbations if otherwise undetectable unstable oscillations

which are close to the desired states. In this thesis, the experimental investigation

of this phenomena is addressed with maximum efficiency. However, there are several

other factors which also needs to be considered in the future studies. Apart from

experimental and numerical studies, theoretical predictions also plays an important

role for this type of behavior. Researchers have addressed the theory in machining

processes such as turning as reported by [21, 22]. But, further theoretical background

is necessary in milling to completely support the other set of studies.

4.4 Role of run-out and stochastic variations in

cutting forces

4.4.1 Effects of run-out

Cutter run-out is a common phenomenon affecting the cutting performances in

milling operations. It is a common problem in most interrupted machining opera-

tions. It may arise from a number of sources such as cutter axis offset, cutter axis

tilt, errors in the grinding of the cutter, lack of dynamic balancing, irregularities

in the cutter pockets, insert size, or the setting of the inserts. Run-out remains an

important issue in machining because commercially-available cutter bodies often

53



exhibit significant variation in the teeth radial locations; therefore, the chip load on

the individual cutting teeth varies periodically [47]. This varying chip load influences

the machining process and can lead to premature failure of the cutting edges. Several

previous run-out studies are available in the literature, interested reader may consult

references [48].

It has previously been shown in many literatures such as references [47–49], that

run-out creates a greater problem for the dimensional accuracy of parts created by

a milling process. It appears that run-out also has a more significant effect on the

surface quality of end milled parts. It influences the machined surface accuracy and

tool life greatly [26]. The presence of cutter run-out causes chip load to vary over

the rotation of a multi-tooth cutter. This varying chip load will alter the average

forces, peak forces and instantaneous force profile to varying degrees depending on

the cutting conditions, cut geometry and degree and nature of the run-out. This

will, of course, impact the problems of cutter breakage, cutter wear, the surface error

generation mechanism and the dynamic behavior of the machine tool and cutting

process. The surface roughness traces reveal large peak to valley variations with a

period of twice the chip load [49]. This means that one of the two cutting edges on the

tool creates a deeper cut than the other. So, it is important that improving machine

tool run-out will have a very significant effect on the surface quality of end-milled

parts. In an effort to minimize the role of run-out in the cutting process, we hope to

implement an experimental and numerical study as a part of the future research.

4.4.2 Some future work

The role of perturbation methods and bifurcation theory in predicting stability and

complicated dynamics of machining has become an important area of research in
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the recent years. Initial investigations found in literature [43, 50] which followed

linear theory to predict stability where the bifurcation parameter, the cutting

depth, which increases above a certain value giving birth to a Hopf bifurcation

and leading to a limit cycle [43]. As the cutting depth is further increased, it

results large-amplitude limit cycles, hysteresis, multiple attractors, and subcritical

instability. These periodic solutions undergo a secondary Hopf bifurcation, leading

to a two-period quasi-periodic motion (two-torus) [51]. As the bifurcation parameter

increases furthermore, the torus breaks down, resulting in chaotic motion.

Manufacturing engineering needs accurate predictions of machine-tool perfor-

mance to select operating parameters, such as spindle speed, tool feed, etc., that lead

to the best possible part created in the most efficient manner. In order to provide

that, a perturbation method may be employed to the future research to reveal the

dynamics of self-excited oscillations that occur during a single-point machining of

metals. This phenomenon which is commonly known as chatter-vibrations, is a

dynamic instability of inherent in the cutting process. Chatter-vibrations limits the

operating regions available to the machine-tool user, since combinations of spindle

speeds and feeds that makes unstable cuts must be avoided to prevent damage to

the machine tool, the workpiece, or the operator. Vibrations of any kind in the

machine-tool system can cause poor surface finish, introducing machining errors.

Chatter may also increase the dynamic loading of the machine-tool structure where

the tool break or the workpiece is damaged beyond salvage.

As a part of future research, we hope to perform experimental investigations where

perturbations are induced to excite the system under study. With the current knowl-

edge and skills in this field, we hope to minimize the effect of dynamic instabilities.

Sufficient theoretical and numerical investigations are also included in the future in-
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vestigations to support the experimental findings.

4.5 Revised stability diagrams with nonlinear ef-

fects incorporated

Since the primary intend of a stability chart is to convey the regions of chatter-free

cutting, the authors believe that the including the regions of multiple attractors

would be a beneficial addition to the asymptotic stability charts. The stability crite-

ria discussed in this thesis does not account for the cutter run-out and the possible

stochastic variations in the cutting forces or the chip dynamics. Stable cutting tests

were determined with respect to the tool position and velocity at instances separated

by tooth passage periods converging to a constant value. Considering the fact that

the stochastic variation in the cutting forces, a revised stability chart is needed to

address the problem.

Figure 4.1 shows the stability diagram which qualitatively accounts for the effect

of stochastic variations in the cutting forces. The special zone in between the lobes

is were the machining operation should be done with care. While performing cutting

tests in this region, it is possible that even a small perturbation could result in a

jump between chatter-free and chatter-vibration solution. Future investigations will

also include the chip dynamics in the stability diagrams and also would consider for

the run-out effects.
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Figure 4.1: Schematic diagram of the revised stability chart with nonlinear effects

incorporated. This qualitative analysis provide further insight into the effects of

stochastic components in the cutting forces. The zone between the two stability

lobes is where is future investigation plays an important role in determining stable

cutting borders.
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