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ABSTRACT 

 

 School productivity was not perfectly estimated because of the sampling error and the 

measurement error. The traditional Ordinary Least Square (OLS) leaves the estimation of school 

productivity questionable. Moreover, Hierarchical Linear Model (HLM) encounters a large 

proportion of the variance unexplained in the level-1 equation. In the paper, I will first introduce 

the Kalman Filter (KF) algorithm together with the Bayesian random draw mechanism to 

simulate the accurate school effects, and then compare the simulated results with the estimates 

generated from OLS and HLM. The comparison of the school effects will conclude that the 

Kalman Filter is more reliable and accurate for the educators and school administrators to 

supervise the allocation of the school resources for school improvement.  

 

 



Introduction 

 The current focus of American K-12 education is to raise students’ academic 

performance. When we look back, American K-12 education has endured many changes, 

and the investment per student has increased in the past four decades. Within the school, 

data show that class size gets smaller. Most of the states have experienced the increasing 

teacher-pupil ratio since 1960s. In addition, the spending per student in K-12 education 

increased remarkably. However, student performance was stagnating, and concern about 

education quality was intensely argued by the school teachers, principals, and students’ 

parents.  

 The simple production theory uses student performance as a measure of output 

changes when putting educational inputs into a school. Will we increase spending in 

schools? Did we invest enough money to achieve the desired changes for student 

achievement? The more proper argument is that the spending in K-12 education is 

inefficient and misused by schools. In other words, the current educational policies are 

ineffective to raise the school quality, especially in increasing student test scores. In order 

to establish an effective educational policy for students’ academic performance, the 

economists should begin looking for the accurate estimate of the school effects within a 

school district and across multiple districts since schools affect student performance.  

 When thinking of schooling as the investment for the human capital, we 

understand that the inputs the students have today will influence their future productivity. 

Generally speaking, education benefits students and economic growth. Two facts come 

out from the empirical study of labor economics. The first fact is that wage is strongly 

correlated with the student’s educational level. Another one is that China’s economy grew 
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at scorching pace when China had a tremendous number of Masters and PhD students in 

its local labor market.  

 Where do our students go to obtain their best education? How do we know which 

institutions provide the best education? This is a common issue within classrooms. 

Parents care about the quality of the school. Even though students go to schools near their 

living places, classroom arrangement happens all the time. Parents frequently influence, 

pressure, or request school administrators for a specific teacher or classroom assignment.  

The school principals, however, only have limited capability in identifying the school 

personnel’s performance. For example, principals will not know the quality of the new 

incoming hiree until he/she is hired for teaching. In addition, parents have much less 

knowledge about teacher and school capacity than these educators. Therefore, this paper 

will find a way to present an estimate of school productivity in order to purify the school 

effects and to raise the effectiveness of the education policy in working for the 

improvement of the education quality. In addition, the paper opens a quantitative method 

in the future study of the teacher effects.  

To carefully look at the reasons why K-12 students did not have much change on 

their performance, this paper pays much more attention on the school productivity which 

creates the differences across the schools within one medium-size school district. The 

estimates of the school productivity will present the effect of the overall school on 

student performance by years. The result is not to lead the parents to pick a school for 

their children. The primary purpose of this paper is to use the sophisticated statistical 

method to evaluate the school productivity. This paper is supposed to explain the 
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estimation method to the school administrators and educators using the less technical 

terms.  

When observing the school as a whole, the estimate of school effects will have 

more accuracy in the contribution to students’ performance by using the Kalman Filter 

and Bayesian methods. From the statistics point of view, these sophisticated statistical 

methods take into account the measurement error on the test scores, the small sample 

issue on the test takers within schools, and the recursive estimation on smoothing school 

productivity. The simulation results generated from a large number, at least from the 

economics point of view, are more reliable than other estimates generated from 

traditional Ordinary Least Square (OLS), and much dependable than Hierarchical Linear 

Model (HLM) analysis. The school principals and educators shall be made aware by the 

implications of the paper of how to self-examine education inputs, such as teacher 

turnover, curriculum design, and school characteristics. When looking at the estimation 

results, these people have the ability to identify school performance when holding student 

demographic factors constant. We will see the differences of school effects crossing all 

possible years between schools. The higher quality school raises the students test score 

above the z-score mean, but the lower quality school pushes down the test performance.   

 This paper enables to extension to the study of teacher effects across schools. As 

far back as the “Coleman Report”, which states the family effect as the significant source 

of contribution to student performance, the current research finds that school matters to 

students. Many researches went beyond the school level data, and studied the teacher 

effects within and across schools. Rivkin, Hanushek and Kain (2005) find that the large 

variation between schools matters to student achievement. Aaronson, Barrow and Sander 
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(2003) also reached the same conclusion concerning the educational and statistical 

significance of teachers. They focused on the relationship between teacher effects and 

student mathematical achievement at 9th grade. However, evaluating teacher effects is 

constrained by the lack of data and the uncertain usage of the sophisticated statistical 

mechanisms. In addition, the unobservables of school and student status are driving much 

of the dispersion in teacher quality (Rivkin, Hanushek and Kain, 2005). The lack of data 

and noise of the student and teacher individual data cause this research progress slowly. 

In this paper, the school data allows me to estimate the school productivity. When well 

establishing the iteration and prior setting at school level, the paper will be the baseline 

for estimating the teacher effects.  

 This paper focuses on school productivity, and reports these estimates by schools 

by years within a school district. There are three questions raised and addressed in this 

paper.  

 1. What estimates of school effects are precise enough?   

 2. Is the methodology transparent enough to the policy-makers and educators?

 3. What does the paper suggest to raise student performance through educational   

      policy?  

 This paper examines the school productivity on student academic performance for 

elementary school students at 3rd, 4th and 5th grades. The model in use is the value-added 

model following Todd and Wolpin (2003), which is a general cumulative model for 

student achievement. The idea is to have the student prior one-year-test score as the key 

control variable and to estimate the current one year school productivity based on the 

student prior performance. In my paper, the current and prior tests are not the same type 
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but they belong to the same subject because of the lack of test scores taken in the 

continuous grade span. This paper, for example, studies MAP Math test for the 4th grade 

test takers regressed on TerraNova Math for the 3rd grade identical test takers. The student 

test data shows that the students only take MAP Math test in 4th, 8th, and 10th grade levels 

in any years before 2006. Moreover, the students only take TerraNova Math at 3rd, 5th, 6th, 

7th, and 8th grade level, but I only have the data available in both 2004 and 2005. I also 

have other test combinations, which depend on the available tests the students could have 

in the data set. However, it is not likely to have the same test for estimating the school 

productivity crossing all the school years.  

 As many papers mentioned, the noise within the student and school data would be 

the one-time event to the students, the large sample variation and the measurement error 

of the test scores. This paper is working on simulating the school effects from the well-

known distribution at large times and on filtering out the test score noise and small 

sample issue. The traditional OLS regression will cause inaccurate estimates because the 

data noise is more likely to miscompute the magnitude of the school productivity. 

Moreover, by applying multilevel analysis, HLM still leaves a large proportion of the 

variance unexplained. To reduce the inaccurate estimate, we import the computation 

method before each simulation loop in adjusting the measurement error for the test 

score(s). The comparison across OLS, two-level HLM and KF simulation results will 

provide the dispersion of the noise to the accurate school effects.  

 By doing so, the paper attempts to address two major estimation issues. First, the 

current research fails to correct the measurement error within test scores. Moreover, most 

studies of school productivity encountered the sampling variation and one-time factors 
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issues (Kane and Staiger, 2001) that can contaminate the student test measures. The other 

concern about contaminating the estimates is that students have extra learning hours 

outside of school.1 These student test scores will benefit from extra study done by 

studying effort outside of school. Second, the current methods do not have the strong 

confidence on isolating the school productivity from other potential factors that influence 

test scores. The correlation between schools and these factors that are kept in the linear 

model is further likely to counteract the school productivity estimated by test score 

measures. 

 There is another significant issue to this type of research. The administrative 

student data is not easily accessed by economic researchers. My data is provided from 

one medium-size K-12 school district with 19 elementary schools. The longitudinal data 

allows me to control for the student cognitive ability, sex, race and Free/Reduced Lunch 

participation in the test score regression and simulation. The current test score depends on 

the prior one-year test score and the students’ endowed capacity in learning. In addition, 

the school effects absorb the achievement gain when holding other students’ 

characteristics constant2.  

 Once we have the confident estimate from the economics analysis, we could play 

around with these schools to raise student achievement. For instance, the high-performing 

school will have the better educational inputs than these low-performing ones. When 

carefully identifying these differences across schools, the policy-makers will set up a 

clear method to provide the effective educational inputs to the poor schools in order to 

                                                 
1 This issue is obvious when estimating the language/reading test score. This paper does not provide any 
analysis for any other test subjects except Mathematics.   
2 The selection about the test score or percentile rank in determining the student achievement gain is a 
debatable issue. I use test score measures because the student test data do not provide the percentile rank 
for the most tests.  
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raise student achievement gain. The implication of the future American K-12 educational 

policy will not progress the student performance when the policy cannot in practice 

directly focus on the estimation of school productivity and the factors causing the 

differences in test scores across schools.  

 The paper is organized in the following way. The next section briefly summarizes 

the existing literatures. The motivation emphasizes the importance of quantitative 

analysis in education. The description of the data explains the student data structure 

paired by test grades. The methodology comparisons were established in the model and 

theory portion. The follow-up sections report the results of school fixed effects in 

predicting mathematics test score for elementary school students, and open the discussion 

for the policy implication. The conclusion is the last section.  

 

Literature Review 

 School productivity can be measured as the effect to student learning within a 

fixed period of time. The study of school effects helps identify the effective schools and 

facilitate school improvement. Raudenbush and Willms (1995) define two types of the 

school effects. One can be viewed as an effect through the observation of parents picking 

out a school for a child.  Another one can be viewed as an effect favoring the school 

administrators that evaluate the performance of the school. Their studies mainly examine 

the latter of the school effects.  

 In their quasi-experiments of school effects, they estimate both school effects and 

their variance by looking at the school practice, school context, and student background. 

The model allows for the interaction of effects between school practice and context 
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crossing all students in a school. The decomposition of the variations between and within 

schools for the school effects provides an indication for either parents in choosing the 

optimal school or school administrators in estimating the school system.  

 Raudenbush and Willms apply the above variance decomposition techniques to 

the survey data from Scotland to estimate the school effects between and within schools. 

They conclude that determining those effective schools with these unbiased school effects 

requires randomly assigning students with similar backgrounds to the different 

treatments.  

 Another paper from Raudenbush and Bryk (1986) applies the hierarchical linear 

model (HLM) to estimate school effects for a longitudinal study. As their paper quoted 

from other early papers, “Methodologists have warned that the use of traditional linear 

models to study multilevel phenomena can produce misleading results (p. 1)”. The study 

utilizes the slope-as-outcomes approach. The random-coefficient regression model 

estimates the variability of the regression coefficients for both intercepts and slopes. 

 Assume the normal distribution of the dependent variable(s) and the level-one 

coefficient(s). Researchers frequently employ the hierarchical linear model in social and 

psychological researches. HLM enables the study of longitudinal data with multiple 

levels. The Raudenbush and Willms’ paper provides three motives for employing HLM in 

school effects research. HLM is natural in analyzing the multiple levels data. Its analysis 

separates the parameter and sampling variances. The covariance matrix of the coefficients 

explains the relationships among the within-group coefficients.  

 Here is an example of a two-level HLM study. In a school district, we are 

interested in the individual students’ test score regressed on their characteristics, such as 
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gender, race, and social-economic status. The level-one equation estimates the within-

school effects of the individual students’ characteristics on test scores. Furthermore, HLM 

allows that the coefficients in the level-one equation vary across schools. Therefore, the 

between-school level shows that each coefficient in the within-school level is the 

dependent variable regressed on the school-level independent variables.  

 In reality, Raudenbush and Bryk’s (1986) paper studies the Coleman et al.’s 

assertion that Catholic schools are more effective than public schools. They use the High 

School and Beyond Data (HSB) survey in running two-level HLM regressions. The 

model studies the SES-achievement relationship across all schools. The dependent 

variable is the standardized mathematics achievement score; the independent variable is 

the student social-economic status (SES). They report the parameter and sampling 

variances for the level-one parameter(s) with random effects. The ratio of the parameter 

variance to the observed variance indicates the reliability of the parameter. “Stated 

somewhat differently, the traditional measure for the adequacy of a regression model, 2R , 

cannot exceed [the reliability of the parameters] (p. 8)”. The reliability of the level-one 

parameter(s) shows evidence for the necessity of random effects within the parameter(s) 

if the reliability is large enough.  

 In addition to HLM analysis for school effects research, most of the recent 

researchers apply the value-added assessment method to estimate school performance. 

Some of them even further go to estimate the teacher effects by using value-added-like 

analysis.  

 Ballou (2005, p. 272) wrote that “The central idea of value-added assessment is 

straightforward: educators are to be evaluated based on the progress of their students, or 
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the difference between incoming and outgoing levels of achievements”. The Tennessee 

Value-Added Assessment System (TVAAS) provides an explicit example for value-added 

analysis. TVAAS studies the outcomes of the students in two adjacent grades. A particular 

student, however, scores higher than the district average at grade t , and scores much 

higher at grade . The progress contributed by the school effects (or even further at 

the teacher level) is measured by the additional gain at both grade levels between t

students’ test score and the district average.  

1t +

he 

 Nevertheless, the estimation of the school/teacher effects requires being unbiased 

and precise. In practice, the teachers are not freely assigned to the students. When 

controlling for the students’ demographic and social-economic status, there is little work 

on correcting the bias issue. Ballou’s paper reports the strong correlations between the 

original and modified TVAAS teacher effects. In addition, within a year the one-time 

noise causes the imperfect test score with the uncertain measurement error. Ballou (2005, 

p. 276) observed: “The actual progress of a student will deviate from measured progress 

due to test error”. With only three-year teachers in the sample, the percentage of teachers 

significantly different from the average is close to 60% for the grade 7-8 at the 10% 

significant level from Ballou’s study. In addition to the significant identification for 

teachers, Ballou points out that the imprecision will produce the instability for the teacher 

effects, together with school effect, even if the true effects are stable over time.    

 Ladd and Walsh (2000) write a summary paper for the implementation of the 

value-added approach to measure school performance, especially in student achievement. 

The student test score is applied to measure the learning of students, and the value-added 

study is implemented as the policy tool for increasing the school performance. Instead of 
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studying the levels of the student performance, the researchers focus on the achievement 

gains from one year to the next within one school.  

 The basic model in measuring the school effectiveness in Ladd and Walsh’s paper 

is to decompose the school characteristics. The educational production function has the 

following variables:  

 1. Lagged test score; 

 2. Family background characteristics; 

 3. School resources; 

 4. Effectiveness of school’s staff and administration.  

 As the paper mentions, the lagged test score picks up the effect of the prior 

schools and family characteristics. The family background, especially the income level, is 

difficult to collect from the census data. Instead, the student social economic status (SES) 

is an alternative estimate separating the receivers and non-receivers of the free reduced 

lunch. Other student characteristics are too unclear to be included in the analysis. For 

example, the race variable explains “the relative effectiveness of school serving 

minorities (Ladd & Walsh, 2000, p. 8)”, but vaguely interprets the educational logic in 

student achievement. In addition, there is no significant school resources data available 

for the individual schools. “In general, the state maintains data on resources and spending 

only at the level of the school district (Ladd & Walsh, 2000, p. 9)”. Therefore, the current 

studies associated with the value-added approach did not collect all the above variables in 

the analysis for the evaluation of school performance. For instance, the model does not 

study the effectiveness of the school when the school resources are dropped from the 

educational production function. In other words, the estimated school effect in the 
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incomplete model is explained as “all the effects on student learning with each school (p. 

11)”.  

 Regardless the effectiveness estimated from the full production model, the 

measurement error causes the imprecise estimate of the school effects in any value-added 

studies. “Measurement error can arise for many reasons, including the limited ability of 

statistical agencies to collect accurate information, and the deviation between the 

variables specified on economic theory and those collected in practice (Angrist & 

Krueger, 2001, p. 3)”. However, we consider the case that two students who learn the 

same amount of the knowledge are likely to have different test scores. The test score does 

not reflect the students’ knowledge and testing ability. Any events occurring on the test 

day will affect the test score. Other possible one-time factors sensitive to the test score 

are “a dog barking in the playground on the day of the test, a severe flu season, one 

particularly disruptive student in a class or favorable “chemistry” between a group of 

students and their teacher (Kane & Staiger, 2001, p. 1)”. Therefore, the test score itself 

has a random error adjusted by the unobservable factors.  

 Ladd and Walsh’s paper suggests that the measurement error issue can be solved 

by using the instrumental variable. For example the test score at lower-level grade is the 

instrument for the prior test score in the regression to predict the current test score. The 

comparison between the regression with or without the correction of the measurement 

error shows the significant changes in the estimated school effects to the upper and lower 

tail students. In their paper, the measurement error biases downwards to the schools 

serving the low-performing students and upwards to the one serving the high-performing 

students. Therefore, the policy implication with the inaccurate estimate will not reduce 
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the gap between the low- and high-performing students. The true purpose of the 

educational accountability will not work on the school improvement properly.  

 In the more recent year, Todd and Wolpin (2003) present a cumulative model 

showing the school performance and student achievement relationship. The conceptual 

framework of the model considers the input from parent(s) and school(s), and is a 

function of the student age. The entire history of both parents’ and schools’ contribution 

affects the students’ current test scores. Moreover, the model allows the student endowed 

capacity to pick up the effect of learning. However, “the lack of data on input histories 

and endowed capacity has led researchers to adopt what has been called value-added 

approach to estimating achievement production functions (Todd and Wolpin, 2003, p. 

F19)”. If assuming the inputs are age-invariant and the student endowed capacity is 

constant, the simplified model only includes the current school input, the lagged test 

score, and the student’s fixed effect(s).   

 When considering the causal effects in education, the current studies decompose 

the school resources within the educational production function. In general, the 

educational resources are teachers-pupil ratio, teacher education, teacher experience, 

teacher salary, expenditure per pupil, administrative inputs, and facilities. In collecting 

the estimated effects for these school resources, the studies show that there is no 

systematically consistent conclusion for any of those resources. Hanushek (1997) 

presents a table listing the 377 studies of the key resources affecting student performance. 

There is no evidence for the consistency of either statistically significant (or insignificant) 

positive or negative effects on the student test scores.  
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 Webbink (2005) concludes that the existence of the inconsistent estimates is due 

to the endogenous bias. The endogeneity bias occurs when the intervention variable is 

correlated with the unobserved factor(s) in the error term. For example, the motivated 

parents tutor their child when the class size is small in one school. The effect of the class 

size is biased for the student achievement gain since the parents’ motivation cannot be 

observed in the equation.  

 Webbink points out that one of the methods dealing with endogeneity is to 

randomly assign the students in both controlled and treatment classrooms. The most well-

known examples are the project Student/Teacher Achievement Ratio (STAR) in 

Tennessee and the experiments with vouchers in New York, Dayton Ohio and 

Washington. Although the randomized experiment solves the endogeneity bias, 

researchers will not always exploit the random assignment because the innate structure of 

the education system and the cost and time-consuming issues. Another method constructs 

the instrumental variables (IV) to produce the unbiased estimate from the regression. IV 

is considered to be a variable correlated with the intervention but independent from the 

unobserved factors and the test score. Other methods in the recent studies are institutional 

rules and natural variation, which create the exogenous variation in the analysis.  

 Later on, the paper provides the estimates with the correction of the endogeneity 

bias. Webbink constructs a table presenting the stronger consistency of the estimates 

when dealing with the endogeneity bias crossing the board for the school resources 

analysis. He concludes that 1) Endogeneity bias misleads the estimates; 2) The estimates 

of school resources tend to be consistent when exploiting exogenous variation; and 3) 

Achievement gain for the students varies with the school resources and incentives.  
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 Regardless the endogeneity bias, the school accountability system based on test 

scores is contaminated by the sampling variance. The small number of students in the 

elementary grade levels produces a large variability in the performance by years. Kane 

and Staiger (March 2001) employ the variance component and empirical Bayesian 

“filtered” prediction to decompose the sampling variance and the variance between (and 

among) schools. Controlling for the student characteristics including the year dummies, 

the school-specific effect is the true school performance along with a noise component. 

The true school effect can be separated by the persistent component occurring over years 

and the non-persistent component, like these one-time factors occurring on the day of the 

test. The current persistent component is a linear function of the prior one with an error 

term. The authors employ Optimum Minimum Distance (OMD) method to choose the 

sample moment for the theoretical moment, and compute the goodness-of-fit as a 

measure of the objective function.  

 One finding from Kane and Staiger’s paper is that the math score is the better 

indicator than reading for the school performance since the non-persistent component is 

larger for the reading test. Parents are more likely to provide the efforts for students’ 

reading than to teach them math during the off-school time. Moreover, the comparison 

between test score levels and achievement gain shows that the gain score is a better 

approach for the value-added study. Lastly, the filtering approach collects the history 

information for the school estimates. Kane and Staiger mention that “the filtered 

estimates are far more accurate than more naïve estimates of school performance (p. 5)”.  
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Motivation 

 As Sherman Dorn (1998) wrote that “statistical accountability systems are 

important because numbers are visible power in public debate (p. 2)”. The policy-makers 

and educators seek the accurate inference from the educational studies to improve the 

educational quality. However, the educational accountability system based on test scores 

does not provide convincing evidence for school improvement. The past and recent 

educational programs for increasing the students’ test score are cost-inefficient and 

discourage the incentives to the school personnel. Moreover, spending associated with 

school resources does not significantly matter to the school performance because of the 

implementation of the imprecise accountability for the school evaluation. Therefore, the 

studies of school productivity require either to correct the estimation error from the past 

educational studies or to establish an advanced approach to evaluate school performance. 

 We will think about the school-student level analysis by applying the recursive 

prediction method. Our goal is to seek the high-performing school(s) that students score 

higher within the school(s) than other students do in other schools controlling for the 

student learning ability. The indicator of the students endowed capacity is the CogAT test 

score. Both 2nd and 4th graders before the academic year 2005 in this median size school 

district take this IQ test, but since the year 2005 the 5th graders will take the test instead 

of the 4th graders. Moreover, the study of the CogAT test shows that there is no 

significant difference between two CogAT test scores for the individual students.  

 With the school performance accountable, the scenario is that the high-performing 

school raises the student standardized test score above the mean or at least higher than the 

students in the low-performing school holding the students’ characteristics and the 
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endowed capacity constant. Moreover, the school effects vary slightly across years. There 

is no huge change for the school ranking since the test score does not dramatically 

fluctuate by years. Each individual school shares the same fixed effect with the school 

district, but separately, schools have their own specific effects to the student learning 

within a year. Therefore, conditional on the student characteristics and the learning ability, 

we will know the increase of the standardized score contributed by schools.   

 The students took the test at both incoming and outgoing years, respectively. After 

adjusting the measurement error in test scores, we expect to see that identical students 

gain more when learning at the more productive school and less at the less productive one. 

Within the school, there is no classroom effect, and assume that the students benefit or 

lose the same amount of test score from the school. Nevertheless, the best and poorest 

students might be the exception because the best will learn nothing or the poorest cannot 

learn anything in schools. I suggest that equalizing the school productivity, at least in the 

district level, will shrink the gap across students for whichever school they attend. The 

identification of the school productivity is necessary for the school principals and 

administrators to go further onto rewarding and sanctioning the school personnel, and to 

shift the school resources for the equity of the education.   

 

Data 

 The median size school district provides the student test scores and demographic 

data from their administration data base. The student administrative data contain the 

student characteristics, including schools attended, mobility status, retained information, 

sex, race, Free/Reduced lunch, student gifted status, and English learner conditions. The 
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test data consists of Missouri Assessment Program (MAP) Test, TerraNova (TN) Test, 

Cognitive Abilities Test (CogAT), GATE, Scholastic Reading Inventory (SRI), Explore, 

PLAN, and Scholastic Aptitude Test (SAT). However, the different tests will only be 

taken in the assigned grade levels, and some tests switched the grade for test takers 

recently. The test scores are more plentiful in both  2004 and 2005. The K-12 students in 

the data set studied in 31 different schools within one school district (3 special schools, 

19 elementary schools, 3 middle schools and 6 high schools). 

 I use student number, year and the grade level to link between the students’ 

characteristics and test scores. The link is nearly perfect. I have the students who were 

retained at the same grade taking the test more than one time, but the last test score will 

be kept only for the analysis. Moreover, the race and gender in the most recent year’s data 

are changed for uncertain reason(s). I will assign the most recent value showing in the 

gender and race variables to update the data in prior years.  

 I do not have any tests taken by students in more than two continuous years. In 

the analysis, I will use the standardized test scores (z-scores) from the different tests 

within the same subject to assign the student’s current and prior test scores for the value-

added study. The CogAT score is divided by 100 to be consistent with other z-scores. 

Therefore, the sample contains the observations who had all the current, prior and CogAT 

test scores. A few students who did not have prior score were also included with the test 

dummy set to one. There are 5017 student records in all years, roughly 3000 observations 

for the students at 5th grade regressed on 4th grade and 2000 for ones at 4th grade 

regressed on 3rd grade.  
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Methodology and Theory 

Basic Value-Added Model 

The model is well used by the value-added school effects analysis, even in study of 

teacher effects. The school resources are excluded for the estimate of the overall school 

productivity because of the data limitation. Instead, the school dummy variables by years 

are the key components of this type of analysis. The value-added model sets up as 

follows:  

1~ij j ij i i i
t t t t tS Z S A L C ε−+ + + + +  

where  and  are the current and prior test scores for the student  at school ij
tS 1

ij
tS − i j  in 

year , respectively; t j
tZ  is the school specific fixed effect at school j  in year ; t i

tA  is the 

endowed capacity for the student i ;  is Free/Reduced Lunch (F/RL) dummy; and  is 

the student demographic status. The error term has the property of normality, 

i
tL iC

thi

2~ (0, )N σ Ι . The model fits the value-added analysis, using the student achievement 

gain to estimate the school productivity between schools.  

 Following the cumulative educational production function in Todd and Wolpin’s 

paper in 2003, I employ the CogAT test score as the indicator of the student endowed 

capacity. Todd and Wolpin’s paper only presents the student current test score as the 

function of the student prior test score and other student’s characteristics. However, I see 

the most recent value-added model includes the student previous one year test score and 

his/her cognitive test score as the kernel components to predict the current test 

performance. We will see that the one year prior test and student ability score explain the 

most variation of the student current performance in the basic OLS regression model.  
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H chical Linear Model 

 Another famous modeling structure is the two-level HLM for the school-student 

level data. The first student level sets up just like the basic OLS regression model. At the 

school level, the model allows the random effects to adjust the measurement error 

occurring at the test scores. M

ierar

oreover, the school-level variables are included to estimate 

e effe

ced Lunch, and the dummies of gender, race and school for the individual 

udents:  

 Level-1 Model (with the last school dummy dropped): 

Y  = B  + B *(CogAT) + B *(Score ) + B *(F/RL) + B *(Female) 

 + B *(Scodum) + B *(White) + B *(Black) + B *(Asian)  

u nt in

th cts between schools.  

 The within-school equation will have the coefficients for test scores, 

Free/Redu

st

 

ijt 0 1 2 t-1 3 4

5 6 7 8

ijt jt ijt  +  + B *(SCH ) +  + RL L

where ijtY  is the current math score for the st de  school  i  j  in year t , j0B  is

mean math ac vement gain for the school 

 the 

hie j , 1 8B B  are the test score related 

coefficients, ijtB  is the school dummy for student i  in school 

L

j  in year t , and ijtR  is the 

error of estimate for student i  in school j  in year t . Within the student control variables,

the receiver of the lunch is coded as 1, and otherwise F/RL = 0; gender is coded to be 1 

for female, and 0 = male; the score dummy is 1 when the student does not have the prior 

 

test score, and 0 for otherwise; the race variable is set to be 1 if the student has the race in 
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the corresponding race variable, and 0 for others; the school dummy is 1 when the student 

 attended in school i j , and 0 in any other cases. 

 

 Level-2 Model (for the level-one parameters with the random effect and with the  

   school-level regressor only): 

1 10B  = G  + U ,1

2

2

 

2 20B  = G  + U ,  

3 30 31B  = G  + G *(%F/RL),  

4 40 41B  = G  + G *(%Female),  

where  are the ground mean for the CogAT and prior Math test score across 

all schools, respectively;  are the random effects of school 

10 20G  and G

1U  and U j  on both the 

CogAT and prior test score associated with the current math score; 

 are computed by schools and by years. The full model in the 

mixed form will be provided in the Appendix I.  

%FRL and %FEMALE

  

Kalman Filter Algorithm Method 

 Kalman Filter algorithm consists of the basic value-added model and a dynamic 

equation of school effect. This method was well-established by Hamilton (1994). The 

first stage of Kalman Filter algorithm is the measurement equation:  

( 1)( 1) ( ) ( 1) ( ) ( 1)
,

t t t t

j j j
t t t t t

kxI x I xJ Jx I xk I x
S A z M β ε= + +  

where tI  is the number of the students in year , and  is the number of the schools.  

is the test score by students at school 

t J j
tS

j  in year , and t tM  is the matrix of the prior test 
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score, CogAT score and students’ characteristics.  represents the school dummy matrix 

in which the element, , is one when  student is in the 

j
tA

ijta thi thj  school in year  and zero 

in any other cases. 

t

β  is the covariance vector assumed to be the same across all the years 

and schools.  is the school productivity measurement at school j
tz j  in year . The 

residual, 

t

tε , is the Gaussian White noise with mean zero and variance-covariance 2

( )t t

t
I xI
σ Ι . 

 The second stage is the state equation:  

1
( 1) ( 1) ( 1)

j j
t t t

Jx Jx J
z z

x
η υ−= +  

where η is the coefficient of the lag operator. If 1η < , there is a covariance-stationary 

process for the school productivity. If 1η ≥ , the school productivity accumulates rather 

than dies out over time. The school productivity is a random work when 1η = . In 

addition, η  will be the same crossing all years. The residual, tυ , is the Gaussian White 

noise with mean zero and variance-covariance 
( )JxJ
Ω . The school productivity is the 

dynamic consequences of events over time.  

 The Kalman Filter method updates and smoothes the school productivity based on 

the initial parameters, such as 2, , , andβ σ η Ω . We use the Bayesian method to compute 

the posterior distribution of these parameters based on the estimated school productivity 

from the current iteration. The posterior distributions are computed by 

1 2 1 2 1 2( , | ) ( ) ( ) ( | , ),y f yπ θ θ π θ π θ θ θ=  

1 2 1 1 2( | , ) ( ) ( | , ),y f yπ θ θ π θ θ θ=  

2 1 2 1 2( | , ) ( ) ( | , )y f y ,π θ θ π θ θ θ=  
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where 1( )π θ  and 2( )π θ  are independent. The posterior distribution of the school 

productivity can be derived from its prior distribution. This method was well proved by 

many empirical analyses. In my case, there are four sets of parameters, , 

and the distribution algorithm is provided in the Appendix II.

2( , , , )θ β σ η= Ω

3  Once we know the 

distribution of the unknown parameters, the random draw constructs a large number of 

the data for the individual parameters. Based on the large number theory, the mean of the 

drawn values converges to the true value of the real parameter. Within the Bayesian 

method, I use Gibbs sampler algorithm to compute the parameters by the consequence 

that provides the quickest computation.  

 Here is the summary of the Kalman Filter and Bayesian iterations. First of all, I 

set up the initial values for the covariance parameters, such as 2, ,β σ η andΩ , and the 

parameters in the prior distributions, such as   and . Using these 

initial values, I update the school productivity of schools by years. Next, to filter out the 

noise, I smooth the school productivity back to the starting year 

2 2
0 0 0, , , , , ,mσ υ η κΞ % 0q 0Λ

1t =  from  . The 

idea is to use all the previous information to project the current value; therefore I start 

smoothing back at   and end at 

1T −

1T − 1t = . In the Kalman Filter algorithm, the procedure 

starts with the initial value in year one conditional on year zero. The attempts are to 

obtain the predicted value based on the estimates of the previous year. The filter updates 

the value to the last possible year, T , in the data. Therefore, the value of these estimates 

is overall conditional on the assigned parameters and initial values. Smoothing the school 

productivity backwards using the estimates from the updated values generates one set of 

                                                 
3 Dr. Shawn Ni taught and helped build up the algorithm from the book “Time Series Analysis” written by 
Hamilton (1994).  
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school effects by years. I kept the set of school productivity in the further Bayesian 

distribution calculation and Gibbs sampler algorithm. At the third step, with the posterior 

distribution setting, I compute all the assigned parameters, and update these parameters 

for the next iteration. The last iteration step is to compute the mean of the iterated values 

from the large number of iterations based on the Kalman Filter smoothing and on the 

random draws of the posterior distributions. The mean of the estimates of the last 

thousands iterations will be the true value for school productivity because the beginning 

iterations have the large diversion from the true estimates. I keep the iterated values when 

the generated values have the small and stable fluctuation. The mean of other parameters 

in the measurement model are also provided in the analysis of this paper.  

 There is a measurement error issue involved within the test scores. The true scores 

are observed with an error. Before each loop for simulating the school effects and other 

unknown parameters, a Bayesian treatment of measurement errors is applied to correct 

the errors for the prior year test and CogAT scores (See Appendix III for the full 

computation method). Zellner (1971) describes the n-mean problem related to the “errors-

in-the variables”. Consider n independent observations drawn from n normal distributions 

with different means, 1 2 ( , , , )nX x x x′ L , and the same variance, 2
τσ . With the 2

τσ  known, 

we could make inferences about the elements of X . Applying Zellner’s method (1971), 

the true score, ix , is a simple linear regression on the observed score, *
ix , with the 

unobserved factors, τ . The true test score is defined as follows: 

* ,i ix x τ= +  

where *
ix  and ix  are the test score with and without measurement error, respectively; 

 for the prior and CogAT test scores, respectively; and 1 or 2i = 2~ (0, )N ττ σ . Using the 
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simulated parameters in the previous loop, I will compute the true scores conditional on 

the overall available information. The true score will have the following posterior 

distribution when , for instance:  1i =

2 *
1 1 1 12 2

1 2 2
1 1

( ) ( )1( | D, Z,b, , ) exp [ ] ,
2

tIT
jt j t j t j t

t j

u x b x x
x τ

τ

π σ σ
σ σ= =

2⎧ ⎫− −⎪ ⎪∝ − +⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑  

where . I will compute the true CogAT score, and then calculate the 

prior math score. The two true scores will be replaced in the simulation data set before 

the next iteration occurs.  

2

m
jt jt k jktk

u y b x
=

= −∑

 Other computation issues will be provided in the Appendix IV. SAS allows to 

generate random numbers from a specific distribution, excluding Inv-gamma and Inv-

wishart related to the random draws in the KF iteration. The alternative method to 

generate ~Inv-gamma( , )θ α β  is to compute the inverse value randomly generated from 

Gamma( , 1)α β =  and times the scalar. The Wishart is a matrix-variate random variable 

and ultimately requires the draws from the standard normal distribution. For 

0~Inv-wishart( , )T qθ + Λ , I apply the cholesky decomposition to obtain the lower triangle 

matrix multiplied by the random vector, . The estimated  will be the 

inverse of the sum of the above multiplications with at least 

~ (0, )iiz N I Λ

0T q+  times. In order to 

shorten the computation time for each loop, I use an updating formula to simplify the 

matrix inverse with several steps computed before the KF iteration. In addition, the initial 

setup and the theory behind it are attached in the Appendix V and IV, respectively.  

 

 25



Results 

Traditional OLS and HLM analysis 

 Different from other value-added analysis for school productivity, my model 

includes the student endowed capacity measured as the CogAT test score. With the 

CogAT score, the overall model is able to explain 71.9% of the variation, but only 64.5% 

variation for the regression without the CogAT score. The summary (Table 1) of OLS 

regressions presents the estimates of the covariance variables and the number of the 

significant school effects. The Free/Reduced Lunch, gender, and race variables are 

consistent in the column 1, 7 and 8. A student who receives Free/Reduced Lunch and 

female students will score significantly worse on the Math test. White and black students 

will score much less than Asian but not statistically significant. There is a positive effect 

on the prior Math and CogAT test. One standard deviation increase in the prior Math and 

CogAT test scores will raise 0.4 and 0.46 standard deviation, respectively, to the current 

math score. The highest proportion of the school effects that are significant is 62.3% in 

the column 8 with one school in one year dropped due to the colinearity of the model.  

 Table 2 presents the detail estimation of the school effects in the unconstrained, 

constrained and error-in-variance adjustment OLS regression results. I construct a 

constrained regression by summing all school effects equal to zero. In Column 2, the 

change across years for each school is huge, and 14 out of 54 schools by years are 

significant at .  p < 0.05

 With the measurement error in mind, I rerun the regression by assigning the 

reliability, equal to 0.9, for the prior and CogAT test scores. I have 33 out of 53 schools 

by years (the last school dummy dropped from the regression) that show statistical 

 26



significance at . However, the downside is that I end up with the big negative 

intercept and all positive school effects.  

p < 0.05

 In the multilevel analysis, the summary (Table 3) presents the fixed effects of 

covariance variables in both the level-one and two HLM analysis, and the random effect 

associated with the level-one variables. The effects of the covariance variables are as 

similar as the OLS regression results. The proportion of the significant school effects are 

more than the proportion in the OLS regression. The nonlinear feature of two-level HLM 

reports the reliability of the random effects for the level-one variables. The specific level-

two variables, like %F/R Lunch and % Female within schools, capture the effects 

between schools. 

 I assign the random effects to both the prior and CogAT test scores, and provide 

the %F/R Lunch and %Female for the school-level analysis. The reliability for both the 

prior and CogAT test scores is 0.602 and 0.626, respectively. Table 4 shows HLM results 

for both test scores. I have two random effects at level-2 in the model. Both variances are 

closed to each other in the variance-covariance matrix. However, the negative covariance 

means that the higher than average values of the CogAT score tend to be paired with 

lower than average values of prior math score. The proportion of either component is the 

percentage of level-2 variance in each slope. I have 24.89% of level-2 variance is 

explained by the variance of the CogAT score, and 30.16% by prior math score. There is 

still a lot of variance in the outcomes unexplained by the model due to the small 

proportion of the overall level-2 variance components. The percentage of level-2 variance 

components is only 5.78% with statistically significant variability for both the prior and 

CogAT test scores.  
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Kalman Filter and Bayesian Simulation 

 The prior and initial values for the unknown parameters are important to the 

results simulated from the KF algorithm. The school effects vary with the subjective 

understanding for the model. Assume the school productivity is invariant across years and 

the measurement error for test scores is less than 0.04 standard deviation. In addition, to 

check the stability of the simulation numbers, I plot the simulated school effects for each 

school by years. Figure 1 shows that the simulated values for school effects have the 

normality properties after the large number of the random draws. The starting 3000 

simulation are deleted before computing the mean and variance for the school effects. 

The effects of the school by years are smoother than the results from OLS and HLM 

regressions. Figure 2 compares the results generated from the OLS, HLM and KF 

methods. When thinking that KF generates the true value for each school, OLS results 

understate the school effects by having lots of larger negative values, and HLM always 

overstates with all positive effects. For now, the variance of the measurement equation is 

smaller than the level-1 equation in HLM. The predicted current test score is correlated 

with the true current test score at 85%. In addition, the standard error for school effects is 

much smaller than the one in OLS and HLM.  

 The comparison between the regression and simulation results is the most 

interesting topic to discuss. We strongly believe that Bayesian method is more accurate to 

estimate the school effects than any other method. The current result shows from the 

3000 simulations that school productivity is worse off to the students in our data. Most of 

the school effects are negative, and vary from -0.2 to +0.3 standard deviation. The 

 28



parameters of the control variables are the similar as the results from OLS, HLM and the 

iterations. As the number of the simulations increases, the school productivity will be 

stable within a small range, and the simulated numbers will have the normal distribution 

for each school in each year.  

 School effects estimated from the Kalman Filter and Bayesian methods allow for 

the adjustment of the measurement error on the test scores, the large number generation 

on the small sample estimation, and the filter of the smooth school productivity. 

However, the estimation of school effects is not precise until the set of the initial and 

prior values best fits the school data. It is rarely likely to have one set of initial and prior 

values be better than any others. Knowledge of the school district does not guarantee this 

setting issue. The estimate results depend on the attitude the researchers to the overall 

knowledge of the school district.  

 Furthermore, any tiny change of the individual initial or prior values will alter the 

estimate results. Some initial or prior changes may cause that the simulation fails to 

converge after generating a large number of times. For example, when assigning 1|0
ˆ 2P = , 

the scatter points for school effects keep going upwards, and do not turn backwards. 

Moreover, when  is larger than 1500 and 0m 2
00σ  is smaller than 0.001, the school effects 

keep going downwards with the tiny changes. In this case, the covariance variables are 

completely inconsistent with the results in OLS and two-level HLM.  

 The flexibility of choosing proper initial and prior values allow me to lower the 

variance of the residual in the measurement equation. With the much smaller 2σ , some of 

the covariance variables will not show the expected sign. The lunch participants is 

assumed to have the negative effects to the predicted math test score in the common 
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sense. When estimated  holding other values constant, the estimate of 

Free/Reduced Lunch is 0.0012 with 0.0014 standard deviation. In addition, the 

correlation between the outcomes and predicted outcomes does not change due to the 

small variance of the residuals. The researcher concludes that the unobservable factor(s) 

does(do) exist in the residual term. The current model with only the prior and CogAT 

scores as the key predictors needs to be modified further. The precise estimates of school 

effects will not be achieved without other factor(s) taken into account.      

2 0.152σ =

 

Implication for policy 

 The empirical study shows that the smart students are easy to teach and get 

progressed, but the poor ones are not. The estimates without including the students’ initial 

ability will understate the school productivity. Moreover, the extra learning hours after 

school contribute to the achievement gain to make the estimates imprecise. Assume the 

model reduces these unobservable factors that raise the achievement gain for students. 

The estimates will be useful to narrow the gaps across schools. Furthermore, the unequal 

education across schools and classrooms will disappear when considering inputting the 

same school resources.  

 The implication for American K-12 educational policy is to enforce the high and 

equal productivity to the schools at the district level, and to manipulate the education 

inputs for the schools to raise the student performance. The redistribution of the school 

resources will benefit overall K-12 students; at least, those students in each school at the 

district level have the same achievement progress. In addition, school administrators 
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could well accomplish “No Child Left Behind”. In the future, there are no conceptual 

good or poor schools based on the student achievement point of view.  

 Assume that poor initial ability is not the reason that these poor students always 

score lower. The policy might reward the schools who raise the poor students’ test score 

comparative to the regular students. The extra payment for these poor students will be the 

future goal to raise the overall student performance. These poor students who hid behind 

the average score will contribute to the further improvement of school productivity. The 

general picture is to raise the American student academic performance and the student 

learning capability and to establish equal and productive schools for students to 

accumulate their human capital. In this way, we will see the truth that there is no child 

left behind.  

 

Conclusion 

 The result will be closer to the true value of school productivity. However, sample 

selection, model comparison and the prior value setup remain issues. The attempt of this 

paper is to use alternative statistical mechanisms to establish the advanced measurement 

model. The comparison between the estimates from other methodologies will shed light 

on reducing noise data and constructing the sophisticated school productivity model.  

 I suggest that American K-12 educational policy needs to focus on the allocation 

of the educational inputs. Investment in the current poor achievement schools will narrow 

the performance gaps between schools within the school district. In the future, the 

measurement of school productivity could be used to balance the difference across states. 

The assumption is that the one standard deviation increase of the student achievement at 
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different schools will require the same educational inputs for the poor and smart students. 

Although the test score is different for both poor and smart students, the same school 

productivity ensures that the changes of student performance are kept constant. The next 

step is to think about the way to especially raise the poor student performance by 

inputting extra educational inputs.   

 The estimate of school productivity is to measure the school performance after a 

student starts his/her learning. School productivity should be easily evaluated and 

manipulated by the school educators and principals. The school that raises the student 

achievement gain more than others will take the responsibility to assist other schools in 

having the improvement of school productivity. I hope that the pure school productivity 

will not be affected by the different initial ability and extra education the students could 

obtain based on the family status.  
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Appendix I – HLM Full Model in the Mixed Form 
 
The two-level HLM analysis for school productivity study in the mixed form:  
 

t ij 0 1 ij 2 t-1 ij 3 ij 4 ij

5 ij 6 ij 7 ij 8 ij

ijt jt 31 j ij 41

(Score )  =  + *(CogAT)  + *(Score )  + *(F/RL)  + *(Female)  

+ *(Scodum)  + *(White)  + *(Black)  + *(Asian)

 +  + *(SCH)  +  + *(%F/RL) *(F/RL)  + *(%Femal

γ γ γ γ γ

γ γ γ γ

γ γ γL L j i

1 ij 2 t-1 ij ij

e) *(Female)  

       
       + u *(CogAT)  + u *(Score )  + r

j

 

 
where the school dummies that are equal to 0 are excluded. The mixed model uses the 
level-two parameters, *γ , instead of the level-one parameters, .  *B
 
 
Appendix II – Kalman Filter Algorithm & Bayesian Computation 
 
The model estimates school effects of the students’ Math performance over the course of 
the academic year. The sample period is 1, ,t T= L .  
 
In year , each of the observed students, t 1, , ti I= L , is assigned to one of the  schools. 
The score vector is 

J

1( , , )t t ItS S S ′= L . The school effect is 1( , , )t t Jtz z z ′= L . The covariate 
matrix is 1( , , )t t Itx x x ′= L , with  covariates for each student per year (scores of the 
previous year, race, gender, lunch status, etc). Let  be an 

k

tA tI xJ  matrix. The  row and thi
jth column of  is one if the  student is in the tA thi thj  school in year  and is  

otherwise. Let vector 
t 0

k − β  be the parameter of the covariate effect. The measurement 
model is: 
 

t t t tS A z x tβ ε= + + .                                                          (1)     
 
The state equation is:  
 

1t tz z tη υ−= + .                                                              
 
The stacked error terms are 2~ (0,t N )ε σ Ι  and ~ (0, )t Nυ Ω . If the covariance matrix Ω  
shows strong cross-school correlation, then it may be indicative of district effect. The 
model is designed to deal with the problem of large noise in the observations (i.e., large 

). The structure of the state variable, if correctly reflecting the nature of data-generating Σ
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process, helps extract the signal from the noisy data. The state  can be viewed as a 
generalization of fixed effect (if 

tz
0Ω =  and 1η = ) and random effect (if 0η = ).  

 
We define  
 

| 1

| 1

|

| 1 | 1 | 1

| 1 | 1 | 1

ˆˆ ( | 1),
ˆˆ ( | 1),

ˆˆ ( | ),
ˆ [( )( ) | ],
ˆ [( )( ) | 1],

t t t

t t t

t t t

t t t t t t t t

t t t t t t t t

y E y t

z E z t

z E z t

E y y y y t

P E z z z z t

−

−

− − −

− − −

= −

= −

=

′Σ = − −

′= − − −

 

 
where “ ˆ ( | )E t⋅ ” corresponds to the linear projection on  and “1, ,t ty y − L ( | )E t⋅ ” 
corresponds to expectation conditional on . For jointly normal-distributed 

variables, “ ” and “ ” are equivalent.  
1, ,t ty y − L

ˆ ( | )E t⋅ ( | )E t⋅
 
Let the prior be  

2( ) ( ) ( ) ( ) ( ).π θ π β π σ π η π= Ω                                                       (2) 
 
We assume 2 2

0 0 0 0 0 0( ) ~ ( , ), ( ) ~ ( , ), ( ) ~ ( , ),N IG m N 2π β β π σ υ π η η κΞ  and 

0 0( ) ~ ( , ).IW qπ Ω Λ  
 
The posterior is 
 

( , | ) ( , ) ( | , ).Z D Z f D Zπ θ π θ θ∝                                                    (3) 
 
The initial state and  are given. 0 1|0( , )z P
 
Let  
 

1 1 1 1 1( )
, ,

( )T T T T T

s A z x
Y X

s A z x
.

ε
ε

ε

−⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜= =⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

M M

⎞
⎟= ⎟
⎟
⎠

M                                               (4) 

 
Then we rewrite  as (1)
 

.Y X β ε= +                                                                    (5) 
  
Denote the total number of students -- , and 1

T
t tN == Σ I t .t t ty s A z= −  The posterior is  
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2

2
1 0

0 0 02 2( 1) 2

( , | , )
1 1 1 1exp{ ( ) ( )}exp{ ( ) ( )} exp( ).

2 2N m

D Z

Y X Y X

π β σ

υβ β β β β β
2σ σ σ

−
+

′ ′∝ − − − − − Ξ − −
σ

).

 

 
Let 1 1

1 1
( ) ( ) (T T

M t t t tt t
X X X Y x x x yβ − −

= =
′ ′ ′ ′= = ∑ ∑  The conditional likelihood is  

 

0

0

2

2
1 0

0 0 0 2( 1)2 2

2 2
10

0 0 02( 1) 2

( , | , )
1 1 1 1exp{ ( ) ( )}exp{ ( ) ( )} exp( )

2 2
( ) ( )1 1exp{ }exp{ ( ) ( )},

2 2

M M mN

M M
N m

D Z

S X X

π β σ

2
υβ β β β β β β β

σ σ σ
υ β β β β β β β β

σ σ

−
+

−
+ +

′ ′∝ − − − − − Ξ − −

′ ′+ + − − ′∝ − − − Ξ −

σ

) .M

 

 
where  2 2

1 1( ) ( ) (tIT
M M t i it itS Y X Y X y xβ β β= =′= − − = Σ Σ −

 
Regarding the parameters in the state equation, given Z , the posterior is  
 

0
1 2 1

1 1 11 02 2
02

0

( , | )

( ) ( ) ( ) 1exp{ }exp{ } exp{ tr( )}.
2 2 2

t

T
q JT

t t t tt

Z

z z z z

π η

η η η η
κ

− + +
− −− − −=

Ω

− Ω − −
∝ Ω − − Ω − Ω Λ∑

 
 
We are interested in estimating parameters 2( , , , )θ β σ η= Ω , and the latent state 

 given the observed data 1( , , )t t Jtz z z ′= L {( , ), 1, , }.t tD s x t T= = L  The posterior 
“ ( , | )Z Dπ θ ” can be derived in the following steps.  
 
The posterior “ ( , | )Z Dπ θ ” can be derived in the following Markov Chain Monte Carlo 
(MCMC) Gibbs sampling algorithm: suppose before the kt  iteration we have 

 
h

( 1)
0 1|0

ˆˆ, , , .k z P Dθ −

 
 (A) (Kalman Filter) Given  simulate ( 1)

0 1|0
ˆˆ, , , ,k z P Dθ − ( ) ( 1)

1|0 1|0
ˆˆ| , , ,k k ,Z z P Dθ −  where  

        1|0 0ˆ ˆ .z zη=  There 
k t

tz z Pθ − {( , ), 1, , }.t
t tD s x t T= = L

T ,

are two steps in part (A).  

 (A1) (Updating) Obtain   For       

          , given  compute 

( 1)
1|0 1|0

ˆˆ| , , , .D

1, ,t = L ( 1)
| 1 | 1, , ,k t

t t t tz P Dθ −
− −
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2 ( 1)
| 1 | 1

1 (
| | 1 | 1 | 1 | 1

1
| | 1 | 1 | 1 | 1

( 1)
1| |

( 1) 2 ( 1)
1| |

ˆˆ ( ) ,
ˆ ˆˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ,
ˆ ˆ( ) .

k
t t t t t t t

k
t t t t t t t t t t t t t t

t t t t t t t t t t t t

k
t t t t

k k
t t t t

I A P A

z z P A S A z x

P P P A A P

z z

P P

σ

β

η

η

−
− −

− −
− − − −

−
− − − −

−
+

− −
+

′Σ = +

′= + Σ − −

′= − Σ

=

= +Ω

1) ,

 
 
 To sum up, the filter updates | | | 1

ˆ ˆˆ( , , )t t t t t tz P −Σ . The autoregressive structure of the 

 state equation gives the prediction , and completes the recursive loop. 

 When we move to , all the conditional moments are functions of 
1| 1|

ˆˆ( ,t t t tz P+ + )

t T= ( 1)kθ − , 
 initial state  and .  1|0ẑ 1|0P̂

 (A2) (Smoothing) Obtain  From (A1) we draw  from    

         . For 

( 1)
0 1|0

ˆˆ| , , ,k
tz z Pθ − .D

)
Tz

| |
ˆˆ( ,T T T TN z P 1, ,1t T= − L , given ( 1)

1,k
tzθ − ,+  and  compute ,D

 
( 1) 1

| | 1| 1

( 1) 2
| | 1| |

ˆ ˆˆ ˆ( )
ˆ ˆ ˆ ˆ( ) ,

k
t t t t t t t t t t

k
t t t t t t t t t

z z P P z z

P P P P P

η

η

− −
+ + +

−
+

= + −

= −

%

%

1| ,

t tP

 
 
           where . 1T t= +
 
           Draw . The ending result is the drawing  

           data set of 

( ) ( 1)
0 1|0

ˆˆ| ( , , , ) ~ ( , )k k
tz z P D N zθ − %%

( ) ( ) ( )
1( , , )k k k

TZ z z ′= L .  
 
 (B) Draw from the conditional posteriors “ ( ) ( )( | ,k k )Z Dπ θ ”. The part (B) is done  
       via Gibbs sampling algorithm with the vector parameter θ  drawn by sub- 
       vectors, each from the standard distributions.  
 
 (B1) Draw  from the conditional posterior multivariate  
         normal distribution  

( ) 2 ( 1) ( )| (( ) , , )k k kY Xβ σ −

 
( ) 2 ( 1) ( )

( )| (( ) , , ) ~ ( , ),k k k
kY X Nβ σ μ− Ξ  

 
          where  
 

2 ( 1) ( ) 1
0 0

2 ( 1) 1 1
0

(( ) ( ) );

{( ) ( ) } .

k k
M

k

X X

X X

μ σ β

σ

− − −

− − − −

′= Ξ +Ξ

′Ξ = +Ξ

β
 

 
 (B2) Draw  from the conditional posterior Inv-Gamma   
         distribution 

2 ( ) ( ) ( )( ) | ( , , )k k kY Xσ β
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0

2 2 ( ) ( ) ( ) ( )
0

2( 1) 2

2 ( ) ( ) ( ) ( )
2

0 0

( ) ( ) ( ) ( )
2

0 0

( ) ( )1 exp{ }
2
( ) ( )( ,

2 2
( ) ( )( , )

2 2

k k k k
M M

N m

k k k k
M M

k k k k

S X X

S X XNIG m

N Y X Y XIG m

υ β β β β
σ σ

β β β βυ

β βυ

+ +

′ ′+ + − −
−

′ ′+ − −
∝ + +

′− −
= + +

)

) .β

)

 

 
 Note that  ( ) ( ) ( ) ( ) ( ) 2

1 1( ) ( ) (tIk k k k T k
t i it itY X Y X y xβ β = =′− − = Σ Σ −

 
 (B3) Draw  from the conditional posterior normal distribution ( ) ( 1) ( )( | ,k k kZπ η −Ω
 

2
( 1) ( ) 1 2

2

( )( | , ) exp{ } ( , ),
2

k kZ Nη ηπ η ω
ω

− − −
Ω ∝ − =

%
%η ω  

 
         where 

 ( ) ( 1) 1 ( ) 1 ( ) ( 1) 1 ( ) 0
1 1 1 12 21 1

0 0

1( ( ) ( ) ) ; { ( ) ( )T Tk k k k k k
t t t tt t

z z z z }.ηω η ω
κ κ

− − − − −
− − − −= =
′ ′= Ω + = Ω +∑ ∑%  

 
 (B4) Draw  from Inverse-Wishart distribution ( ) ( ) ( )( | ,k k kZπ ηΩ )
 

0

( ) ( )

1
1 ( ) ( ) ( ) ( ) ( ) ( )2

1 1 01

( | , )
1exp{ tr [ ( )( ) ]} ( , ),
2

k k

T q J T k k k k k k
t t t tt

Z

z z z z IW T q

π η

η η
+ + +

− −
− −=

Ω

′∝ Ω − Ω − − +Λ = + Λ∑ 0

0

 

 
       where .  ( ) ( ) ( ) ( ) ( ) ( )

1 11
( )( )T k k k k k k

t t t tt
z z z zη η− −=

′Λ = − − + Λ∑
 
This concludes an MCMC cycle, replace k  by 1k +  and redo Steps (A1) (A2) (B1) (B2) 
(B3) (B4). The simulated quantities, ( )kθ  and ( )kZ , represent a numerical distribution 
from the joint posterior.  
 
 
Appendix III – Adjusting for Test Scores Measurement Error 
 
Adjusting Measurement Error for the prior and CogAT test scores: 
 

*
st stx x stτ= +  

 
where *  ( , ; 1,st , )x s CogAT prior test t T= L=  is the observed test score; stx  is the true test 
score; 2~ (0, )st sN ττ σ .  
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The posterior PDF is 
* *

2
s 2 2

2
1 2

0 0 0 2

1 (Y Xb) (Y Xb) (X X ) (X X )(b, , x | D, Z) exp [ ]
2

1exp (b b ) (b b ) ( ) .
2

N m
s

tr tr

τ

τ

π σ
σ σ

υ σ σ
σ

− − − ( 1)+

⎧ ⎫′ ′− − − −
∝ − +⎨ ⎬

⎩ ⎭
⎧ ⎫

′− − Ξ − +⎨ ⎬
⎩ ⎭

 

 
The conditional posterior for  is  sx
 

2 *
2 2

s 2 2
1 1

2

( ) ( )1(x | D, Z,b, , ) exp [ ] .
2

where .

tIT
jt jst s jst jst

s
t j s

m
jt jt k jktk

u x b x x

u y b x

τ
τ

π σ σ
σ σ= =

=

2⎧ ⎫− −⎪ ⎪∝ − +⎨ ⎬
⎪ ⎪⎩ ⎭

= −

∑∑

∑
 

 
 
Computing the true control variable 1tx (keep the term associated with 1tx ): 
 

2 * 2 2 2 2

2 2 2 2

*2
2

2 2 2 2

2*

2 2 2

22 2

2 2

( ) ( ) 2 2

1( ) 2( )

( )
1( ) .

1

jt jst s jst jst jst s jt jst s jst jst jst

s s

jt s jsts
jst jst

s s

jt s jst

s s
jst

ss

s

u x b x x x b u x b x x x

u b xb x x

u b x
b x

b

τ τ

τ τ

τ

τ

τ

σ σ σ σ

σ σ σ σ

σ σ
σ σ

σ σ

− − − −
==> + = +

= + − +

⎡ ⎤
+⎢ ⎥

⎢ ⎥= + −
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

*

 

 
To one of the student records for stx , we have the following distributions: 
 

*

2 2

2 2

2 2 2 2

( )
1~ ,

1 1

jt s jst

s
st

s s

s s

u b x

x N
b b

τ

τ τ

σ σ

σ σ σ σ

⎛ ⎞
+⎜ ⎟

⎜ ⎟
⎜ ⎟

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

.  
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Appendix IV – SAS Programming for Computation Issues   
 
1. Inv-Wishart Algorithm 
 
 The algorithm for computing the posterior ( )kΩ  at (B4) goes as follows:   
 

(a) Simulate the vector Z , which is normally distributed. Each element of the 
vector is independent identical distributed.  

 
~ (0,1),

( ) .
iiz N

E ZZ I′ =
 

 
(b) Compute  in the Inv-Wishart distribution Ω
 

( )0

1

1

1

,
,

,

l u

i l

T q
i ii

L L
x L Z

x x

−

−+

=

Λ =

=

′Ω = ∑

 

 
        where  and lL L′= u 1, ,18i = L .  
 
2. Matrix Computation(Green 3rd Edition p31): 
 
The matrix algebra is  
 

1 1 1 1 1 1[ ] [ ]A BCB A A B C B A B B A 1.− − − − − − −′ ′ ′± = ±m  
 
The target computation is  
 

1 2 ( 1)
| 1 | 1

ˆˆ( ) [( ) ]k
t t t t t t tI A P Aσ 1.− − −
− − ′Σ = +  

 
The simplification will be 
 

1 2 ( 1) 2 ( 1) 2 1 2 ( 1) 1
| 1 | 1

ˆˆ( ) [1 ( ) ] [1 ( ) ] { [1 ( ) ] }k k k
t t t t t t t t t .I A P A A Aσ σ σ− − − − −
− − ′ ′Σ = − + −  
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Appendix VI – Theory of Prior and Initial Values Setup 
 
This section presents the basic foci and concerns for the initial and prior setting. These 
initial parameters are 2

0 1|0 00 00 00 00
ˆˆ , , , , , andz P σ β η Ω . These priors are 

 The following subsection will explain the definition of 
the initial (or prior) in the model, and discuss the possible interval of the magnitude for 
each initial (or prior).  

2 2
0 0 0 0 0 0 0 0, , , , , , , andm qβ υ η κΞ .Λ

 
1. School Effect, , in Academic Year 2001 0ẑ
 

0ẑ  is the school effect in the academic year 2001.  is the forecast of the school effect 
in the next academic year 2002, . The forecast of the school effect is  

1|0ẑ

1z

1|0 1 0ˆ ˆ( ) .z E z zη ε= = +  
 
The magnitude of  would be good and proper if the school effect is located between 

 and 0.3 . According to the result from OLS regression, the school effect by school 
by year varies around zero within the above numeric range.  

0ẑ
0.3−

 
2. Mean Squared Error (MSE) Matrix,  1|0P̂
 

1|0P̂  is the variance of school effect, , in the academic year 2002 and its forecast,  
conditional on the observed data and parameters before the year 2002. Larger values for 
the diagonal elements of  register greater uncertainty about the true value of .The 

variance, , varies across years. In the academic year t, the MSE matrix is identified 
by   

1z 1|0ẑ

1|0P̂ 1z

| 1t̂ tP −

 

| 1 | 1 | 1
ˆ [( )( ) | 1],t t t t t t t tP E z z z z t− − − ′= − − −  

 
where denotes the observed data and parameters before the year . The larger 1t − t | 1t̂ tP −  
shall increase the distance of the fluctuation for the school effect even though the school 
effect achieves the steady status after a period of simulation. In other words, the estimates 
of the school effect is not accurate under the larger | 1t̂ tP − . 
 
3. Scalar of Variance in Measurement Equation, 2

00σ , and Prior Distribution of 2σ  
 
The variance of the measurement equation shall be small. The magnitude of 2

00σ  and 2σ  
is the unique effect to the student current performance within one particular school and 
one year. Larger values for 2

00σ  and 2σ  register greater unexplained variance about the 

 43



current estimated student performance given the observed data and estimated parameters. 
We rewrite the measurement equation,  
 

,Y X β ε= +  
 
where .t t t ty s A z= −  The MSE matrix for ty  and its forecast | 1t ty −  is  
 

| 1 | 1 | 1

2 ( 1)
| 1

ˆ [( )( ) | ],
ˆ( ) .

t t t t t t t t

k
t t t t t

E y y y y t

I A P Aσ
− − −

−
−

′Σ = − −

′= +
 

 
The smaller | 1

ˆ
t t−Σ , the better we reach the true estimated values for all parameters. 2

00σ  

and 2σ  shall be positive and less than 1.  
 
The prior 2σ  has an inverse Gamma distribution with  and 0m 2

0υ .  is the shape 
parameter and shall be larger than  to have the first and second moment (mean and 
variance). 

0m
2

2
0υ  is a scalar variable. The randomly generated 2σ  in each iteration will be  

 
2

2 .
( ,1)m
υσ =

Γ
 

 
The first moment and second moment of 2σ  are  
 

2
2

4
2

2

( ) ,
1

var( ) ,
( 1) ( 2)

E
m

m m

υσ

υσ

=
−

=
− −

 

 

where 0 2
Nm m= +  and 

( ) ( ) ( ) ( )
2 2

0
( ) ( )

2

k k k kY X Y Xβ βυ υ
′− −

= + 0m. The  and 2
0υ shall be a 

pair of numbers keeping 2σ  small, and they are negatively correlated.   
 
4. Initial vector 00β  and Prior Distribution of β  
 
Initial vector 00β  follows the results from the OLS regression. The prior vector β  is 
normally distributed with the prior mean vector 0β  and the prior variance matrix 0Ξ . 
Each element of the vector is independent identically distributed. The posterior vector β  
is simulated from its mean μ  and its variance Ξ , associated with the prior mean vector 

0β  and the prior variance matrix 0Ξ .  
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2 ( 1) ( ) 1
0 0

2 ( 1) 1 1
0

(( ) ( ) ),

{( ) ( ) } .

k k
M

k

X X

X X

μ σ β

σ

− − −

− − − −

′= Ξ +Ξ

′Ξ = +Ξ

β
 

  
The variance Ξ  is small when the prior variance 0Ξ  is small. The prior vector 0β  shall 
be a vector as similar as the initial 00β .  
 
5. Initial 00η  and Prior Distribution of η  
 
Initial 00η  is computed from the school effect across years estimated from OLS 
regression. Moreover, its value shall depend on the assumption to the variability of the 
school effects crossing years. η  is the autoregressive coefficient in the state equation. The 
analysis of first-difference equation presents the dynamic response of the school effects. 
If 0 1η< < , the school effect decays geometrically towards to zero. If 1η > , the school 
effect increases exponentially over time. If 1η = , the school effect keeps constant.  
 
The prior η  is normally distributed with the mean 0η  and the variance . The variance 

 will stay small . 

2
0κ

2
0κ 0η  is as similar as 00η , or assume that the school effect is constant 

across year, where 0 1η = . 
 
6. Initial  and Prior Distribution of 00Ω Ω  
 
The Initial  and  are the variance-covariance matrix of the residual in the state 
equation. The magnitude of  is the unique effect across the schools. The Initial 

00Ω Ω

Ω 00Ω  and 
 shall be small. The prior  has an inverse Wishart distribution with the degree 

freedom  and the scale matrix 
Ω Ω

0q 0Λ . The computation of the posterior iterated is  Ω
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η η− −=

−
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=

′Λ = − − +Λ

Λ =

=

′Ω =

∑

∑

0 ,

 

 
where Z  is a vector randomly generated from the normal distribution with the mean  
and the variance 1. The degree freedom ( ) for 

0
df Ω  in the posterior distribution shall be 

greater than and equal to 18 
 

0.df T q= +  
 
The posterior iterated Ω  is small when both 0Λ  and  are small.  df
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Table 2 – School Effects of OLS Regression Results with/without Constraint and Error- 
     in-Variance Adjustment 
 

Parameters 
OLS 
Estimation 

Constrained 
OLS Estimation 

OLS Estimation 
Contorlling EIV 

school1 0.188  0.023  0.218 ** 
school2 0.130  -0.036  0.140  
school3 0.142  -0.023  0.135  
school4 0.078  -0.087  0.124  
school5 0.075  -0.091  0.131  
school6 0.214  0.048  0.256 *** 
school7 0.178  0.013  0.210 * 
school8 (dropped)  -0.165  0.033  
school9 0.100  -0.066  0.123  

school10 0.063  -0.103 * 0.102  
school11 0.130  -0.035  0.167 * 
school12 0.348 ** 0.183 *** 0.392 *** 
school13 0.211  0.045  0.215 ** 
school14 0.276 * 0.111  0.266 ** 
school15 0.052  -0.114 * 0.047  
school16 0.216  0.051  0.255 ** 
school17 0.191  0.026  0.272 * 
school18 0.193  0.028  0.243 ** 
school19 0.129  -0.036  0.132  
school20 0.467 *** 0.302 *** 0.473 *** 
school21 0.090  -0.075  0.089  
school22 0.272 * 0.107  0.291 *** 
school23 0.148  -0.018  0.190 * 
school24 0.080  -0.085  0.094  
school25 0.157  -0.008  0.190 * 
school26 0.272 * 0.107  0.305 ** 
school27 0.298 * 0.133 * 0.330 *** 
school28 0.330 ** 0.165 *** 0.330 *** 
school29 0.263 * 0.098 * 0.259 *** 
school30 0.170  0.005  0.184 ** 
school31 0.186  0.021  0.222 ** 
school32 0.208  0.043  0.228 * 

         
       To be continued …  
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Table 2 – School Effects of OLS Regression Results with/without Constraint and Error- 
     in-Variance Adjustment (con’t) 
 

Parameters 
OLS 
Estimation 

Constrained 
OLS Estimation 

OLS Estimation 
Contorlling EIV 

school33 0.108  -0.057  0.127  
school34 0.035  -0.130 ** 0.066  
school35 0.157  -0.008  0.193 * 
school36 0.136  -0.030  0.164 * 
school37 0.215  0.050  0.203 * 
school38 0.273 * 0.108  0.273 ** 
school39 0.063  -0.103  0.041  
school40 0.177  0.011  0.208 ** 
school41 -0.011  -0.176 * 0.017  
school42 0.199  0.034  0.232 ** 
school43 0.106  -0.059  0.120  
school44 0.289 * 0.124  0.323 *** 
school45 0.200  0.034  0.217 ** 
school46 0.254 * 0.088 * 0.274 *** 
school47 0.001  -0.164 ** 0.007  
school48 0.132  -0.034  0.136  
school49 0.038  -0.127 * 0.077  
school50 0.218  0.053  0.268 ** 
school51 0.143  -0.023  0.178 * 
school52 0.296 * 0.131 * 0.346 *** 
school53 0.076  -0.089  0.117  
school54 -0.034  -0.199 ** (dropped)  
scodum -0.137 *** -0.137 *** -0.115 ** 

_cons -0.116   0.050   -0.156 * 
       

* = p <= 0.05      
** = p <= 0.01      
*** = p <= 0.001      
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Table 4 – HLM results for Random Effects 

Random Effects Effect S.E. T-ratio Reliability 
Parameter 
Variance 

CogAT 0.450 * 0.020 22.351 0.602 0.004 *
Prior Math 0.407 * 0.021 19.054 0.626 0.005 *
Level-2 Cov -0.004       
Level-1 R-sqr 0.269       
        
* Significant at the 0.001 level.     
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