A primary need and concern for most poultry producers is managing litter to protect groundwater and surface water and meet regulatory requirements. Meet the goals by applying litter to the land in such a way that the potential polluting nutrients (nitrogen, phosphorus, potash and organic matter) are used by the soil/plant complex and are not allowed to enter the ground water and surface water.

Litter as fertilizer

Litter should be viewed as fertilizer and managed like commercial fertilizer in your fertility program. The occasional practice of meeting fertility requirements with commercial fertilizer, then applying additional litter can damage water quality easily.

In general, Missouri waste application regulations are based on the rate of nitrogen application. With this plan, the phosphate (P₂O₅) and potash (K) applied may greatly exceed crop needs. Therefore, the best use of plant nutrients may apply less nitrogen (N) from waste than the crop needs and buy extra N to balance the needs. Applying phosphorous to fields with a Bray 1-P test level of more than 800 pounds per acre may aggravate surface water quality problems.

It is highly recommended that you analyze a representative sample of litter for nutrient values immediately before spreading. Also, test the soil before determining the land application rate. (See other publications in this series for more application plans.)

Managing litter as a fertilizer

Unlike commercial fertilizers, litter is a highly variable substance. Even within an animal species, test samples can vary 50 percent. Management styles for poultry operations, such as cleaning buildings on a certain schedule, dictate different techniques than commercial fertilizer that can be ordered and spread.

If a laboratory analysis is not available, use average values of manure nutrients in similar waste management systems. MU Publication WQ 201, Reduce Environmental Problems with Proper Land Application of Animal Wastes, gives average nutrient values for typical poultry manure management systems. Table 1 lists values for poultry litter.

<table>
<thead>
<tr>
<th>Nutrients (lb./ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Broiler litter</td>
</tr>
<tr>
<td>Turkey litter</td>
</tr>
</tbody>
</table>

Note: P₂O₅ = 2.27 x P, K₂O = 1.2 x K
Actual values are highly dependent on dilution, bedding, etc.

Table 1. Average nutrient levels in turkey and broiler litter.

<table>
<thead>
<tr>
<th>Days until incorporated</th>
<th>Percent of ammonia N available for crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>80</td>
</tr>
<tr>
<td>2-4</td>
<td>60</td>
</tr>
<tr>
<td>4-7</td>
<td>40</td>
</tr>
<tr>
<td>more than 7</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. Manure ammonia N loss by days until incorporated into the soil. Unavailable portion is lost to the atmosphere.

In contrast to commercial fertilizer, litter has the potential for losing nutrients (primarily ammonia nitrogen) to the atmosphere after field spreading (see Table 2). For a discussion of manure nutrient losses, see MU Publication WQ 202, Land Application Considerations for Animal Waste.

Table 3 lists the percent of available organic nitrogen available with time. Table 4 gives the percent of various nutrients available in the growing season.
after application. Table 5 provides a basis for estimating the expected nitrogen release from soil organic matter for major annual crops in instead of a soil test. Table 6 lists N credits for crops following legumes.

If soil tests are not available for nutrient application rates, use a standard rate of 100 pounds of N per acre per year. This application rate would conform to the regulatory guideline for sizing soil/plant filters under the conservative management approach. However, this publication estimates the amount of manure to apply to satisfy the projected crop needs for nitrogen. It may exceed the 100 pounds per acre allowed under the conservative management approach. You may wish to use this worksheet with 100 pounds of N per acre applied to see what happens with P and K. Two blank worksheets are included for actual applications.

You cannot apply more than 100 pounds of nitrogen per year if the Department of Natural Resources has issued a letter of approval based on the conservative approach of applying not more than 100 pounds of nitrogen per year, regardless of the crop and the production level of the crop.

Table 3. Manure organic nitrogen available by year.

<table>
<thead>
<tr>
<th>Manure applied available during current year</th>
<th>Percent organic matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>40-60</td>
</tr>
<tr>
<td>1 year ago</td>
<td>10</td>
</tr>
<tr>
<td>2 years ago</td>
<td>5</td>
</tr>
<tr>
<td>3 years ago</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4. Minerals and micronutrients available in manure.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Percent available in growing season</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>80</td>
</tr>
<tr>
<td>K</td>
<td>100</td>
</tr>
<tr>
<td>S, Mn, Cu, Zn</td>
<td>80</td>
</tr>
<tr>
<td>Ca, Mg</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5. Expected nitrogen release form soil organic matter for major annual crops when a current soil test is not available.

Assumes a cation exchange capacity from 10.1 to 18 meq/100g and organic matter less than or equal to 2 percent. No nitrogen credit given for nitrogen released with perennial crops, such as fescue.

<table>
<thead>
<tr>
<th>Expected nitrogen release</th>
<th>Winter annuals (wheat, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pounds nitrogen pe acre</td>
<td>pounds nitrogen per acre</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 6. Nitrogen added (pounds per acre)

<table>
<thead>
<tr>
<th>Legume crop</th>
<th>Next year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa:</td>
<td>120-140</td>
</tr>
<tr>
<td>80-100 percent stand</td>
<td>40-60</td>
</tr>
<tr>
<td>40-60 percent stand</td>
<td>0-20</td>
</tr>
<tr>
<td>Sweet clover (green manure)</td>
<td>100-120</td>
</tr>
<tr>
<td>Red clover (pure stand)</td>
<td>40-60</td>
</tr>
<tr>
<td>Soybeans (add about 1 pound per bushel)</td>
<td>15-60</td>
</tr>
</tbody>
</table>

Table 7. Nitrogen, phosphate and potash removal from soil by various crops.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Units</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn, grain bushel</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Corn, stover ton</td>
<td>20.6</td>
<td>7.5</td>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td>Corn, silage ton</td>
<td>7.4</td>
<td>2.9</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Soybeans, grain bushel</td>
<td>3.4</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Soybeans, residue ton</td>
<td>15</td>
<td>6.5</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>Wheat, grain bushel</td>
<td>1.3</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Wheat, straw ton</td>
<td>13.0</td>
<td>3.6</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>Oats, grain bushel</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Oats, straw ton</td>
<td>12.4</td>
<td>4.6</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>Barley, grain bushel</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Barley, straw ton</td>
<td>13.5</td>
<td>4.7</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>Sorghum, grain bushel</td>
<td>1.1</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Sorghum, silage ton</td>
<td>7.0</td>
<td>2.6</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Rye, grain bushel</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Rye, straw ton</td>
<td>10.0</td>
<td>6.0</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Alfalfa ton</td>
<td>49.0</td>
<td>11.0</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>Reed canary grass ton</td>
<td>60.0</td>
<td>13.4</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>Orchard grass ton</td>
<td>50.0</td>
<td>16.6</td>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>Brome grass ton</td>
<td>33.2</td>
<td>13.2</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td>Tall fescue ton</td>
<td>55.0</td>
<td>18.6</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>Blue grass ton</td>
<td>25.8</td>
<td>18.3</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>Clover grass ton</td>
<td>41.0</td>
<td>13.3</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>Timothy ton</td>
<td>37.5</td>
<td>13.8</td>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>Sorghum sudan grass</td>
<td>39.9</td>
<td>15.3</td>
<td>55.9</td>
<td></td>
</tr>
</tbody>
</table>

Six sources listing nutrient removal for a given yield were averaged to estimate removal for a unit of production.

About 70 percent of the above nitrogen in inoculated legumes is fixed from the air. The percentage goes down when adequate nitrogen is available from the soil.

Table 7. Nitrogen, phosphate and potash removal from soil by various crops.
Example 1.

A fescue hayfield soil/plant filter is available for receiving litter from a turkey operation. No lab analysis of the litter is available. No soil tests have been performed on the soil/plant filter area. The yield goal is 3 tons of hay per acre. How many tons per acre of turkey litter should be applied?

Since no soil data is available, use the nitrogen requirement for fescue found in Table 7. Manure will be applied to supply nitrogen. Fescue, a perennial, receives no credit of nitrogen release from soil organic matter or from a previous legume crop.

From Table 7, for a yield goal of 3 tons per acre per year, we calculate the following nutrient removal:

- 55 lb. N/ton x 3 tons/acre = 165 lb. N/acre
- 18.6 lb. P\textsubscript{2}O\textsubscript{5}/ton x 3 tons/acre = 56 lb. P\textsubscript{2}O\textsubscript{5}/acre
- 52.9 lb. K\textsubscript{2}O/ton x 3 tons/acre = 159 lb. K\textsubscript{2}O/acre

Because no laboratory analysis of the litter is available, use the average values from Table 1. Assume the litter is not incorporated into the soil, and the loss of ammonia nitrogen is 80 percent.

Worksheet 1. Turkey litter on fescue

1. Crop nutrient requirements (data from Table 7)
 - Crop: Fescue
 - Yield: 3 tons/acre
 - Nitrogen: 165 lb./acre
 - P\textsubscript{2}O\textsubscript{5}: 56 lb./acre
 - K\textsubscript{2}O: 159 lb./acre

2. Available ammonia nitrogen (NH\textsubscript{4}-N)
 - NH\textsubscript{4}-N lb./ton x percent available = NH\textsubscript{4}-N lb./ton (percent from Table 2, NH\textsubscript{4}-N from Table 1)
 - 7 lb./ton x 0.2 = 1.4 lb./ton

3. Nitrogen available from this year’s organic fraction.
 - N lb./ton x percent available = N lb./ton (percent from Table 3, organic N from Table 1)
 - 47 lb./ton x 0.5 = 23.5 lb./ton

4. Because no litter was applied in the last three years, no residual nitrogen is available.

5. Litter application rate to supply nitrogen.
 - (Crop N (line 1))- (residual N (line 4))- (N from O.M. (Table 5))- (legume N (Table 6)) = application rate tons/acre
 - (Available NH\textsubscript{4}-N (line 2)) + (available organic nitrogen (line 3))
 - \(\frac{165 - 0 - 0 - 0}{1.4 + 23.5} = \frac{165}{24.9} = 6.6\) tons/acre

6. Phosphate available at calculated application rate for nitrogen.
 - Tons/acre x P\textsubscript{2}O\textsubscript{5} lb./ton x percent available = P\textsubscript{2}O\textsubscript{5} lb./acre
 - (P\textsubscript{2}O\textsubscript{5}/ton from Table 1, percent from Table 4)
 - 6.6 tons/acre x 0.55 lb./ton x 0.8 = 290* lb./acre
 - 290 lb./acre P\textsubscript{2}O\textsubscript{5} is applied vs. 56 lb./acre removed by crop.

7. Potash available at calculated application rate for nitrogen.
 - Tons/acre x K\textsubscript{2}O lb./ton x percent available = K\textsubscript{2}O lb./acre
 - (K\textsubscript{2}O/ton from Table 1, percent from Table 4)
 - 6.6 tons/acre x 0.34 lb./ton x 1 = 224* lb./acre
 - 224 lb./acre of K\textsubscript{2}O is applied vs. 159 lb./acre removed by crop.
Example 2.

Turkey litter is to be spread on a fescue hayfield soil/plant filter, as in Example 1. However, in this example, assume that litter was spread at the rate of 3 tons/acre on the hayfield the previous two years. No lab analysis or soil test is available. Yield goal and nutrient requirements are the same as in Example 1.

Worksheet 2. Turkey litter on fescue

1. Crop nutrient requirements (data from Table 7)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Fescue</th>
<th>Yield</th>
<th>3 tons/acre</th>
<th>Nitrogen</th>
<th>165 lb./acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2O5</td>
<td>56 lb.</td>
<td>K2O</td>
<td>159 lb.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Available ammonia nitrogen (NH4-N)

 \[
 \text{NH4-N lb./ton} \times \text{percent available} = \text{NH4-N lb./ton (percent from Table 2, NH4-N from Table 1)}
 \]

 \[
 \frac{7 \text{ lb./ton}}{0.2} = 1.4 \text{ lb./ton}
 \]

3. Nitrogen available from this year's organic fraction.

 \[
 \text{N lb./ton} \times \text{percent available} = \text{N lb./ton (percent from Table 3, organic N from Table 1)}
 \]

 \[
 \frac{47 \text{ lb./ton}}{0.5} = 23.5 \text{ lb./ton}
 \]

 Tons/acre x N lb./ton x percent available = N lb./acre

 (percent from Table 3)

 One year ago: \[
 \frac{3 \text{ tons/acre} \times 47 \text{ lb./ton} \times 0.10}{1.4} = 14.1 \text{ lb./acre}
 \]

 Two years ago: \[
 \frac{3 \text{ tons/acre} \times 47 \text{ lb./ton} \times 0.05}{23.5} = 7.1 \text{ lb./acre}
 \]

 Total = 21.2 lb./acre

5. Litter application rate to supply nitrogen.

 \[
 \text{(Crop N (line 1))} \text{-(residual N (line 4))-(N from O.M. (Table 5))- (legume N (Table 6))} = \text{application rate tons/acre}
 \]

 \[
 \frac{165 - 21.2 - 0 - 0}{1.4 + 23.5} = 5.8 \text{ tons/acre}
 \]

6. Phosphate available at calculated application rate for nitrogen.

 Tons/acre x P2O5 lb./ton x percent available = P2O5 lb./acre

 (P2O5/ton from Table 1, percent from Table 4.)

 \[
 \frac{5.8 \text{ tons/acre} \times 55 \text{ lb./ton} \times 0.8}{255} = 255 \text{ lb./acre}
 \]

 *255 lb./acre P2O5 is applied vs. 56 lb./acre removed by crop.

7. Potash available at calculated application rate for nitrogen.

 Tons/acre x K2O lb./ton x percent available = K2O lb./acre

 (K2O/ton from Table 1, percent from Table 4)

 \[
 \frac{5.8 \text{ tons/acre} \times 34 \text{ lb./ton} \times 1.0}{197} = 197 \text{ lb./acre}
 \]

 *Note: 197 lb./acre of K2O is applied vs. 159 lb./acre removed by crop.
Example 3.

Turkey litter is spread on corn ground that was in soybeans last year, but no soil tests or litter lab analyses are available. Litter is not incorporated within 7 days. Ammonia nitrogen loss is 80 percent. Litter was spread on the area the last 3 years at 4 tons per acre. Yield goal for the corn is 150 bushel per acre. Because corn is a summer annual, nitrogen release is 40 pounds per acre, see Table 5.

Since soybeans were the last crop, expect about 30 pounds N/acre available from the legume, see Table 6.

From Table 7, we calculate the nutrient requirements as follows:

- 1 lb. N/bushel x 150 bushels/acre = 150 lb. N/acre
- 0.4 lb. P\textsubscript{2}O\textsubscript{5}/bushel x 150 bushels/acre = 60 lb. P\textsubscript{2}O\textsubscript{5}/acre
- 0.3 lb. K\textsubscript{2}O/bushel x 150 bushels/acre = 45 lb. K\textsubscript{2}O/acre

Worksheet 3. Turkey litter applied past three years on corn

1. Crop nutrient requirements (data from Table 7).
 \[
 \begin{array}{ccc}
 \text{Crop} & \text{Corn grain} & \text{Yield} \\
 \text{Nitrogen} & 150 & \text{tons/acre} \\
 \text{P}_{2}\text{O}_{5} & 60 & \text{lb./acre} \\
 \text{K}_{2}\text{O} & 45 & \text{lb./acre} \\
 \end{array}
 \]

2. Available ammonia nitrogen (NH\textsubscript{4}-N).
 \[
 \text{NH}_{4}\text{-N lb./ton} \times \text{percent available} = \text{NH}_{4}\text{-N lb./ton} \quad \text{(percent from Table 2, NH}_{4}\text{-N from Table 1)}
 \]
 \[
 \frac{1}{7} \text{ lb./ton} \times 0.2 = 0.14 \text{ lb./ton}
 \]

3. Nitrogen available from this year's organic fraction.
 \[
 \text{N lb./ton} \times \text{percent available} = \text{N lb./ton} \quad \text{(percent from Table 3, organic N from Table 1)}
 \]
 \[
 \frac{1}{47} \text{ lb./ton} \times 0.5 = 0.235 \text{ lb./ton}
 \]

4. Residual nitrogen available from past years organic fraction.
 \[
 \text{Tons/acre} \times \text{N lb./ton} \times \text{percent available} = \text{N lb./acre} \quad \text{(percent from Table 3)}
 \]
 \[
 \begin{array}{c}
 \text{One year ago:} \quad 4 \text{ tons/acre} \times 47 \text{ lb./ton} \times 0.10 = 18.8 \text{ lb./acre} \\
 \text{Two years ago:} \quad 4 \text{ tons/acre} \times 47 \text{ lb./ton} \times 0.05 = 9.4 \text{ lb./acre} \\
 \text{Three years ago:} \quad 4 \text{ tons/acre} \times 47 \text{ lb./ton} \times 0.0 = 9.4 \text{ lb./ton} \\
 \text{Total} = 37.6 \text{ lb./acre}
 \end{array}
 \]

5. Litter application rate to supply nitrogen.
 \[
 \frac{\text{(Crop N (line 1)) - (residual N (line 4)) - (N from O.M. (Table 5)) - (legume N (Table 6))}}{\text{application rate tons/acre}} = \frac{150 - 37.6 - 40 - 30}{1.4 + 23.5} = 1.7 \text{ tons/acre}
 \]

6. Phosphate available at calculated application rate for nitrogen.
 \[
 \text{Tons/acre} \times \text{P}_{2}\text{O}_{5} \text{ lb./ton} \times \text{percent available} = \text{P}_{2}\text{O}_{5} \text{ lb./acre}
 \]
 \[
 (\text{P}_{2}\text{O}_{5}/\text{ton from Table 1, percent from Table 4})
 \]
 \[
 1.7 \text{ tons/acre} \times 55 \text{ lb./ton} \times 0.8 = 75^* \text{ lb./acre}
 \]
 *75 lb./acre P\textsubscript{2}O\textsubscript{5} is applied vs. 60 lb./acre removed by crop.

7. Potash available at calculated application rate for nitrogen.
 \[
 \text{Tons/acre} \times \text{K}_{2}\text{O} \text{ lb./ton} \times \text{percent available} = \text{K}_{2}\text{O} \text{ lb./acre}
 \]
 \[
 (\text{K}_{2}\text{O}/\text{ton from Table 1, percent from Table 4})
 \]
 \[
 1.7 \text{ tons/acre} \times 34 \text{ lb./ton} \times 1 = 58^* \text{ lb./acre}
 \]
 *58 lb./acre of K\textsubscript{2}O is applied vs. 45 lb./acre removed by crop.
Litter fertility worksheet — without lab analysis or soil test

1. Crop nutrient requirements (from data in Table 7)
 Crop ___________________ Yield ___________ Nitrogen __________ lb./acre
 P2O5 ___________ lb./acre K2O ___________ lb./acre

2. Available ammonia nitrogen (NH4-N).
 NH4-N lb./ton x percent available = NH4-N lb./ton
 (Percent from Table 2, NH4-N from Table 1)
 ___________ lb./ton x ___________ = ___________ lb./ton

3. Nitrogen available from this year’s organic fraction.
 N lb./ton x percent available = N lb./ton
 (Percent from Table 3, organic N from lab tests)
 ___________ lb./ton x ___________ = ___________ lb./ton

4. Residual nitrogen available from past years organic fraction.
 Ton/acre x N lb./ton x percent available = N lb./acre
 (Percent available from Table 3, organic N from lab tests)
 One year ago: ___________ tons/acre x ___________ lb./ton x ___________ lb./acre
 Two years ago: ___________ tons/acre x ___________ lb./ton x ___________ lb./acre
 Three years ago: ___________ tons/acre x ___________ lb./ton x ___________ lb./acre
 Total = ___________ lb./acre

5. Litter application rate to supply oxygen.
 (Crop N (line 1)) – (residual N (line 4)) – (N from O.M (Table 5)) - (legume N (Table 6))
 (Available NH4-N (line 2)) + (available organic nitrogen (line 3))
 ___________ - ___________ - ___________ - ___________ = ___________ tons/acre

6. Phosphate available at calculated application rate for nitrogen.
 Ton/acre x P2O5 lb./ton x percent available = P2O5 lb./acre
 (P2O5/ton from Table 1, percent from Table 4)
 ___________ tons/acre x ___________ lb./ton x ___________ = ___________ lb./acre

7. Potash available at calculated application rate for nitrogen.
 Ton/acre x K2O lb./ton x percent available = K2O lb./acre
 (K2O/ton from Table 1, percent from Table 4)
 ___________ tons/acre x ___________ lb./ton x ___________ = ___________ lb./acre
References