AWater Quality

Focus Area Nutrients and Bacterial Wastes

Published by University Extension, University of Missouri-System

Spreading Dairy Waste Without Lab Analysis and with Soil Tests

Charles Fulhage, Extension Agricultural Engineer, University of Missouri Donald Pfost, Extension Agricultural Engineer, University of Missouri

General information

A primary need and concern for most confinement livestock producers is managing manure so that groundwater and surface water are protected, and regulatory requirements are fulfilled. This objective is usually accomplished by applying manure to the land in such a manner that the potential polluting nutrients (N, P, K and organic matter) are utilized by the soil-plant complex, and are not allowed to enter the ground/surface water infrastructure.

Manure is a fertilizer resource

Manure should be viewed as a fertilizer resource and managed similarly to commercial fertilizer in the fertility program. The occasional practice of meeting fertility requirements with commercial fertilizer, then applying manure in addition "for a good measure," can easily lead to adverse impacts on water quality. In general, Missouri waste application regulations are based on the rate of nitrogen application. With this scenario, the phosphorous and potash applied may greatly exceed crop needs. Therefore, optimum utilization of plant nutrients may necessitate applying less nitrogen from waste than the crop needs and buying supplemental nitrogen to balance crop needs. Applying phosphorous to fields with a Bray 1-P test level exceeding 800 pounds/acre may aggravate surface water quality problems.

It is highly recommended that a representative sample of dairy waste be analyzed for nutrient values immediately prior to spreading, in addition to soil tests, before determining the land application rate. The purpose of this publication, however, is to provide guidance for application of waste without the benefit of a lab analysis but with data from a soil test. Other publications in this series address application of dairy waste with other scenarios.

Managing manure as a fertilizer

Unlike commercial fertilizers, manure is a highly variable substance, even within a given animal specie, and variations of 50 percent to 100 percent among test samples are not unusual. Other management considerations peculiar to livestock operations, such as lagoon pumping in the fall to provide storage during winter and spring months, or manure storage tank emptying at whatever intervals are required to prevent overflow, dictate different management than commercial fertilizer which can just be "ordered and spread."

If a laboratory analysis is not available, average values of manure nutrients in similar waste management systems as reported in the literature must be used. MU Publication WQ 201 gives average nutrient values for typical swine, dairy, and poultry manure

	Nitrogen					
Waste Type	Total	Organic	Ammonia	P ₂ O ₅	к ₂ 0	
Solid ¹ w/ bedding	9	4	5	4	10	
Solid ² w/o bedding	9	5	4	4	10	
Lagoon ³	69	23	46	79	144	
Liquid (Slurry) ⁴	26	16	10	14	26	
¹ pounds/ton (21% dry matter, Source: MWPS-18, Table 10-6) ² pounds/ton (18% dry matter, Source: MWPS-18, Table 10-6) ³ pounds/acre-inch (Source: MU Publication WQ 201) ⁴ pounds/1,000 gallons (Source: MU Publication WQ 201) (Note: $P_2O_5 = 2.27 \times P$; $K_2O = 1.2 \times K$) Actual values are highly dependent on dilution, bedding, and						

management systems. Table 1 lists values for dairy waste.

In contrast to commercial fertilizer, manure has the potential for nutrients (primarily nitrogen in the form of ammonia) to be lost to the atmosphere after field spreading. See MU Publication WQ 202 for a discussion of manure nutrient losses. Table 2 shows the available ammonia nitrogen as a function of time until incorporation into the soil. Table 3 lists the percent of available organic nitrogen available with time. Table 4 gives the percent of various nutrients available in the growing season after application.

This publication details a procedure for estimating the amount of manure to apply to meet the soil

Table 2.	Manure Ammonia-Nitrogen Available by Days Until Incorporated into the Soil (unavailable portion is lost to the atmosphere).				
		Percent of Ammonia-N			
Days unt	il Incorporation	Available for Crops			
	1				
	0-2	80			
	2-4	60			
	4-7	40			
	>7	20			

Table 3. Manure	e Organic Nitrogen Available by Year.
*	Percent of Organic-N
Manure Applied	Available during Current Year
Current Year	40-60
1 year ago	10
2 years ago	5
3 years ago	5

Table 4.	Other minerals and micronutrients available in manure.						
	<u>Nutrient</u>	% available in growing season					
	P K	80 100					
	S, Mn, Cu, Zn Ca, Mg	80 100					

test recommendations for nitrogen, using a dairy manure of unknown nutrient analysis. The soil test may call for more than 100 pounds of nitrogen per acre to be added to satisfy crop needs, thus exceeding the 100 pounds per acre allowed under the "conservative management approach." However, one may wish to use this worksheet with 100 pounds of N/acre applied (conservative approach) to see what happens with P and K. Blank worksheets are included for actual applications.

Note: This approach can not be used (to apply more than 100 pounds of N per acre per year) if the Department of Natural Resources has issued a letter of approval based on the "conservative approach" of applying not more than 100 pounds of nitrogen per year, regardless of the crop and the production level of the crop.

Examples

A fescue hayfield (soil-plant filter) is available for receiving dairy waste. No laboratory analysis of the manure to be applied is available. The accompanying soil test contains fertilizer recommendations for a yield goal of 3 tons of fescue hay per year from the soil-plant filter area. From the soil test, the following nutrient applications are recommended:

> 120 lb/acre of N 75 lb/acre of P₂O₅ 140 lb/acre of K₂O

Given this information, how many inches of lagoon effluent, how many gallons per acre of liquid manure (slurry) and how many tons per acre of solid manure should be applied to meet the nitrogen needs of the fescue?

Since no laboratory analysis of the manure is available, the average values from Table 1 will be used. Assume that the waste applied as solid or liquid will not be incorporated into the soil, therefore the loss of ammonia-nitrogen will be 80 percent. Assume that the waste applied as lagoon effluent will be incorporated into the soil within two days after application (by infiltration into the soil), therefore the loss of ammonia-nitrogen will be only 20 percent.

Solid manure

For the application of solid manure with no bedding, complete the worksheet on page 4 to determine the proper application rate. Assume the soil-plant filter area has not received manure from any source the past three years. See Table 1 for average nutrients per unit of manure applied.

								Seria		N2583		30000
		FORMATIC		-				Area		County	801 Regio	on
Acres 35			ample no. Irrigate	1 d MO					nitted	07	Processed	102
Acres 35 Last Limed 1-5 Irrigated NO Last crop ### NOT GIVEN ###			Soil san				04/08/93 04/09/93 pple submitted by:					
	This re	aport is for:										
				Very low		v	R, Medium	ATING	High	Very H	ligh E	XCBSS
pH _s Phosphorus	(salt pH) (P)	4. 8	3 7 165/a	******	****							
Potassium	(K)			******	*****	****						
Calcium	(Ca)			******			**					
Magnesium	(Mg)	350		*****	*****	****	****			_		
Sulfur Zinc	(SO ₄ -S) (Zn)		ppm									
Zinc Manganese	(Zn) (Mn)	•	ppm ppm									
Iron	(Fe)		ppm									
Copper	(Cu)		ppm									
Organic matter	1.		Neutralizable		4, 5		Og Cation		apacity		10.6	
pH in water Nitrate (NO ₃ -N)	Topsoil	ppm	Electrical Co Subsoil	pprr	Samplin	mmho/o ng Depth	Top	n (Na)	Inches	Subsoil		lbs/a inches
				T REQUIREM		v					IMESTON	
							per acre		-		JGGESTIO	
10 000	Cropping optic	•		Yield goal	N 170	P ₂ O ₅	K ₂ O	Zn	S	Efforther	neutralizing	
18 COOL 19 COOL				T/A	120	75	140					. 1
	JEASING -	R PART	20	O CD/A	120	55	75			materia	(ENM)	1520
1 ALFALF	A, ALF-G			O CD/A	120 30	55 100	75			Effective	(ENM) magnesium	1520
10 ALFAL Some h sam to you To det by When N	A, ALF-G FA, ALF- ple has the labe r dealer ermine l the guar I require	ASS E GR HA an est 1. If or Ic imesto antee	ST 0 4 s list timated you w cal Ex one nee of you for coo	T/A pH in pH in tension ded in r limes l seaso	30 ictions water have s speci tons/a stone d on gras	100 B5 of 5. oil p alist cre, ealer s exc	55 235 d on 3. U H in list divid	se ti watem ed bi e you 90 pi	his v rana elow. ur EN ounds	Effective (EMg) n wat alue lyzed M req per	magnesium er. Yı as a gı , conta viremen acre	our uide act
10 ALFAL Some h sam to you To det by When N app rem Do not	A, ALF-G FA, ALF- Ple has the labe the labe crmine l the guar	RASS E GR HA) an est bl. It br It imesto antee ment f chirds n Augu rogen 1 weed	EST 0 (4 s list s you w ocal Ex one nee of you for coa in the jst. on spr compe	T/A restri pH in pish to tension ded in or limes l seasc period ing sea tition.	30 o letions have s speci tons/a stone d on gras d Decem	100 B5 of 5. oil p alist cre, seater, seater ber t of le	33 235 d on 3. U H in list divid eeds hroug gumes	se ti waten ed bi e you 90 pi h Fel afti	his v r ana elow. ur EN ounds oruar er Ma	Effective (EMg) n wat alve lyzed M req per y and y 1st	magnesium er. Yi as a gu , conta uiremen acre the	our uide act nt
10 ALFAL Some h sam to you To det by When N app rem Do not For al	A, ALF-G FA, ALF- erbicide ple has the labe r dealer ermine 1 the guar l the	PARSS E GR HAY an est an est l. If or Ic antee ment f hirds n Augu rogen l wee oduct	EST 0 (4 Is list timated you wo for con- on ener of you for con- in the sst. on spr i competion, ap	T/A restri pH in ish to tension of limes l seasc period ing sea tition. ply 1 1 MP U.S. Departm	30 0 1ctions water have so specitons d on gras tons/a book of b 189 Revised	100 B5 base of 5. oil p alist cre, ealer s exc ober t of le or on	55 235 d on 3. U H in list divid eeds hroug gumes per a	se ti water ed b e you 90 p h Fel aft cre a	his v r ana elow. ur EN ounds bruar er Ma annua	Effective (EMg) n wat alue lyzed M req per y and y 1st lly.	magnesium er. Yn as a gu , contr uiremen acre the , becau	our uide act nt

A soil test report obtained from University Extension's Soil Testing Laboratory.

*

Worksheet for solid dairy manure

- 1. Crop nutrient requirements (from soil test).

 Crop ______
 Yield __3 tons/acre_____

 N, Ib/acre ___120
 P205, Ib/acre __75

 K20, Ib/acre __140
- 2 Available ammonia (NH₄–N) nitrogen.

lb NH₄–N/ton x % available = lb NH₄–N/ton (Percent available in Table 2) <u>4 lb/ton</u> x <u>0.2 avail.</u> = <u>0.8 lb/ton</u>

3. Nitrogen available from this year's organic fraction.

lb N/ton x % available = lb N/ton (Percent available first year from Table 3)

<u>5 lb/ton x 0.5 avail.</u> = <u>2.5 lb/ton</u>

- 4. Since no manure was applied in any of the previous three years, no residual nitrogen is available.
- 5. Manure application rate to supply nitrogen.

(crop N requirement) – (residual N) (available NH₄–N) + (available organic fraction)

```
= application rate= \frac{120 - 0}{0.8 + 2.5}
```

= 36.4 tons/acre

6. Phosphate available at calculated application rate for nitrogen.

tons/acre x lb P₂0₅/ton x % available = lb P₂0₅/acre (P₂0₅/ton from Table 1 = 4, % available from Table 4) <u>36.4 tons/acre</u> x <u>4 lb/ton</u> x <u>0.8</u> = <u>116.5 lb/ac</u> (**Note:** 116.5 lb/ac of P₂0₅ is applied versus 75 lb/ac recommended by the soil test.)

7. Potash available at calculated application rate for nitrogen.

tons/acre x lb K₂0/ton x % available = lb K₂0/ac (K₂0/ton from Table 1 = 10, % available from Table 4) <u>36.4 tons/ac</u> x <u>10 lb/ton</u> x <u>1.0</u> = <u>364 lb/ac</u> (Note: 364 lb/ac of K₂0 is applied versus 140 lb/ac recommended by the soil test.)

Worksheet for liquid manure

- 1. Crop nutrient requirements (from soil test).

 Crop __Fescue_____
 Yield __3 tons/acre____

 N, lb/acre __120
 P₂0₅, lb/acre __75____

 K20, lb/acre __140

- 2. Available ammonia (NH₄-N) nitrogen.

lb NH₄-N/1,000 gal x % available = lb NH₄-N/1,000 gal (Percent available from Table 2) <u>10 lb/1,000 gal</u> x <u>0.2 avail</u> = <u>2 lb/1,000 gal</u>

3. Nitrogen available from this year's organic fraction.

lb N/1,000 gal x % available = lb N/1,000 gal (Percent available first year from Table 3) __16 lb/1,000 gal_x __0.5 avail._ = __8 lb/1,000 gal_

4. Residual nitrogen available from previous years' organic fraction.

No. of K-gal/acre x lb N/K-gal x % available = lb N/acre (**Note:** K-gal = 1,000 gallons, e.g., 5 K-gal = 5,000 gallons) (Percent available from Table 3)

2 yr ago: <u>3.8 K-gal</u> x <u>16 lb/K-gal</u> x <u>0.05</u> = <u>3.0 lb</u>

5. Manure application rate to supply nitrogen.

 $\frac{(\text{crop N requirement}) - (\text{residual N})}{(\text{available NH}_4-N) + (\text{available organic fraction})}$

- = application rate
- $=\frac{120-3}{2+8}$
- = 11.7 (K-gal/acre) = 11,700 gallons/acre
- Phosphate available at calculated application rate for nitrogen.

No. of (K-gal/acre) x lb P₂0₅/K-gal x % available = lb P₂0₅/acre (P₂0₅/1,000 gal from Table 1 = 14, % available from Table 4) <u>11.7 (K-gal/acre) x 14 lb/K-gal x 0.8</u> = <u>131.0 lb/ac</u> (**Note:** 131.0 lb/ac of P₂0₅ is applied versus 75 lb/ac recommended by the soil test.)

7. Potash available at calculated application rate for nitrogen.

No. of (K–gal/acre) x lb K₂0/K–gal x % available = lb K₂0/acre

 $\begin{array}{l} (K_20/1,000 \mbox{ gal from Table 1 = 26, \% available from Table 4)} \\ \underline{11.7 \mbox{ (K-gal/acre) } x \ \underline{26 \mbox{ lb/K-gal } x \ \underline{1.0} = \ \underline{304.2 \mbox{ lb/ac}} \\ (\mbox{Note: } 304.2 \mbox{ lb/ac of } K_20 \mbox{ is applied versus 140 \mbox{ lb/ac recommended by the soil test.})} \end{array}$

Liquid manure (slurry)

For the application of liquid manure (slurry) with no bedding, complete the worksheet on page 4 to determine the proper application rate. The soil-plant filter area received 3,800 gallons of liquid dairy manure per acre two years ago. See Table 1 for average nutrients per unit of manure applied.

Lagoon effluent

For the application of waste from a lagoon , complete the worksheet below to determine the proper application rate. The soil-plant filter area has received 1.45 inches of dairy lagoon effluent each of the past six years. See Table 1 for average nutrients per unit of manure applied.

References

1. MU Publication WQ 201, Reduce Environmental Problems with Proper Land Application of Animal Wastes. Extension Publications, University of Missouri, Columbia, MO 65211.

2. MU Publication WQ 202,. Land Application Considerations for Animal Wastes. Extension Publications, University of Missouri, Columbia, MO 65211.

3. MWPS-18. *Livestock Waste Facilities Handbook*. 1985. Midwest Plan Service, Iowa State University, Ames, Iowa 50011.

Worksheet for lagoon effluent

1.	Crop nutrient requirements (from soil test).		120 - 6.7
	Crop Fescue Yield 3 tons/acre		=
	N, lb/acre <u>120</u> P ₂ 0 ₅ , lb/acre <u>75</u>		
	K ₂ 0, lb/acre <u>140</u>		= 2.35 inches
2.	Available ammonia (NH ₄ -N) nitrogen.	6.	Phosphate available at calculated application rate for nitro- gen.
	lb NH ₄ –N/acre–inch x % available = lb NH ₄ –N/acre–inch		•
	(% available from Table 2)		No. of inches applied x lb P_20_5 /acre-inch x % available =
	46 lb/acre-inch x 0.8 avail. = 36.8 lb/acre-inch		lb P ₂ 0 ₅ /ac
3.	Nitrogen available from this year's organic fraction.		(P ₂ 0 ₅ /acre-inch from Table 1 = 79, % available from Table 4)
	lb N/acre–inch x % available = lb N/acre–inch		
	(% available first year from Table 3)		<u>2.35 inches</u> x <u>79 lb/acre-inch</u> x <u>0.8</u> = <u>148.5 lb/ac</u>
	<u>23 lb/acre-inch</u> x <u>0.5 avail.</u> = <u>11.5 lb/acre-inch</u>		
			(Note: 148.5 lb/ac of P ₂ 0 ₅ is applied versus 75 lb/ac
4.	Residual nitrogen available from previous years' organic fraction.		recommended by the soil test.)
		7.	Potash available at calculated application rate for nitrogen.
	inches x lb N/acre-inch x % available = lb N/acre		
	(Percent available from Table 3)		No. of inches applied x lb K ₂ 0/acre–inch x % available = lb K ₂ 0/acre
	1 yr ago: <u>1.45 inch</u> x <u>23 lb/ac-in</u> x <u>0.10</u> = <u>3.3 lb/ac</u>		L
	2 yrs ago: <u>1.45 inch x 23 lb/ac-in x 0.05</u> = <u>1.7 lb/ac</u>		(K ₂ 0/acre-inch from Table 1 = 144, % available from Table
	3 yrs ago: <u>1.45 inch</u> x <u>23 lb/ac-in</u> x <u>0.05</u> = <u>1.7 lb/ac</u>		4)
	Total = 6.7 lb/ac		
			2.35 inches x 144 lb/acre-inch x 1.0 = 338.4 lb/ac
5.	Manure application rate to supply nitrogen.		
			(Note: 338.4 lb/ac of K20 is applied versus 140 lb/ac recom-
	(crop N requirement) – (residual N)		mended by the soil test.)
	(available NH ₄ N) + (available organic fraction)		
	= application rate		

Manure fertility worksheet

1.	Crop nutrient requirements (from soil test).	5.	Manure application rate.
	Crop Yield N, lb/acre P205, lb/acre K20, lb/acre P205, lb/acre		(crop N reqmt., line 1) – (residual N, line 4) (avail. NH ₄ –N, line 2) + (avail. organic fraction, line 3) = application rate
2.	Available ammonia (NH ₄ –N) nitrogen.		()-()
	Lagoon:Ib NH4-N/ac-in x % avail. = Ib NH4-N/ac-inSlurry:Ib NH4-N/K-gal x % avail. = Ib NH4-N/K-galSolid:Ib NH4-N/ton x % avail. = Ib NH4-N/ton	6.	()+()Phosphorus available at calculated application rate for nitrogen.
	(Percent available from Table 2)		Lagoon:inches x lb P/ac-in x % avail. = lb P/acSlurry:K-gal/ac x lb P/K-gal x % avail. = lb P/acSolid:ton/ac x lb P/ton x % avail. = lb P/ac
3.	Nitrogen available from this year's organic fraction.		(Percent available from Table 4)
	Lagoon: lb N/ac–in x % avail. = lb N/ac–in Slurry: lb N/K–gal x % avail. = lb N/K–gal Solid: lb N/ton x % avail. = lb N/ton (Percent available from Table 3)		
	x = Note: K–gal = 1,000 gallons		x 2.27 = lb P ₂ 0 ₅ /ac
4.	Residual nitrogen available from previous year's organic fraction.	7.	Potassium available at calculated application rate for nitro- gen. Lagoon: inches x lb K/ac-in x % avail. = lb K/ac
	Lagoon:inches x lb N/ac-in. x % avail. = lb N/acSlurry:K-gal/ac x lb N/K-gal x % avail. = lb N/acSolid:ton/ac x lb N/ton x % avail. = lb N/ac		Slurry:K-gal/ac x lb K/K-gal x % avail. = lb K/acSolid:ton/ac x lb K/ton x % avail. = lb K/ac(Percent avail. from Table 4)
	(Percent available from Table 3)		xx= lb K/ac x 1.2 = lb K ₂ 0/ac
	1 yr ago: x x = 2 yr ago: x x = 3 yr ago: x x = TOTAL =		Note: Do not perform the conversion from K to K_20 if lab results are given in units of K_20 .

This guide was published with funds provided to the Missouri Department of Natural Resources from the Environmental Protection Agency, Region VII. To learn more about water quality and other natural resources, contact the Missouri Department of Natural Resources, P. O. Box 176, Jefferson City, MO 65102. Toll free 1-800-334-7046.

■ Issued in furtherance of Cooperative Extension Work Acts of May 8 and June 30, 1914 in cooperation with the United States Department of Agriculture. Ronald C. Powers, Interim Director, Cooperative Extension Service, University of Missouri and Lincoln University, Columbia, Missouri 65211. ■ An equal opportunity institution.