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ABSTRACT

The Erdős distance problem asks for the minimum number of distinct

distances determined by large finite point sets in the plane. The aim

of this work is to investigate how the classical techniques employed in

the study of the Erdős distance problem carry over to the hyperbolic

half-plane.



iv

Contents

ACKNOWLEDGEMENTS ii

ABSTRACT iii

1. Introduction 1

2. Hyperbolic Half-Plane 2

3. The n
1
2 Argument 7

4. The n
2
3 Argument 9

5. The n
4
5 Argument 12

6. The n
6
7 Argument 16



1

1. Introduction

The Erdős Distance Problem says: given a set of n points in the

plane, what is the cardinality of the distance set, or how many dis-

tinct distances are determined? The obvious upper bound is O(n2).

The lower bound is much less trivial. There have been numerous im-

provements in lower bound estimations in the Euclidean setting since

the problem was first posed. In his original paper, Erdős [1] demon-

strated the lower bound of Ω(n
1
2 ). Leo Moser [2] used Erdős’ result

for his improvement to Ω(n
2
3 ), but with a slightly different approach

to the earlier bound. More complicated arguments have led to better

results in recent years. Although the conjecture of Ω(n1−ε) has yet to

be demonstrated in the Euclidean setting, there has been some work

on analogs of the problem in other settings. Here we explore the prob-

lem in the hyperbolic half-plane. First, a few basic facts about the

hyperbolic half plane will be outlined. This will be followed by series

of arguments explaining how each bound is attained in the hyperbolic

half-plane, and how each argument is modified to work in the new set-

ting. For the sake of brevity, throughout the rest of the paper, assume

circles, bisectors and distances are hyperbolic unless specified other-

wise. Also, c shall denote an unspecified, positive constant.
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2. Hyperbolic Half-Plane

The hyperbolic half-plane is fairly well-behaved, but there are a

few details that one should be familiar with prior to plunging into the

arguments ahead. The hyperbolic, or Poincairé half-plane is charac-

terized as being a surface with constant negative Gaussian curvature.

This has several obvious consequences that will become apparent when

dealing with distance sets. The metric will behave differently, so our

notion of straight will change, as will the idea of a bisector.

The hyperbolic metric can be thought of as the standard Euclidean

metric divided by y value. It is generally computed by minimizing a

particular line integral over all paths connecting two points. There

is also a formula using logarithms and some trigonometric functions.

Since we are only counting how many distinct distances there are, we

are not concerned with the actual values of the various distances, just

that they are distinct. As will become apparent soon enough, it is suf-

ficient to consider a set circles of different radii to get a handle on the

number of distinct distances. So rather than bogging ourselves down

with calculations involving the hyperbolic metric directly, we will be

better served by learning about the hyperbolic notion of a circle. For-

tunately, the locus of points that form a circle look exactly the same

in the hyperbolic half-plane as the Euclidean plane. The difference

is in determining the center and radius. Given a point in the hyper-

bolic half-plane, (H,K), and a hyperbolic radius, R, one need only

draw a Euclidean circle centered at (h, k), with radius r, where h = H,
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k = K cosh(R), and r = K sinh(R). Even though there are some hy-

perbolic trigonometric functions involved, we won’t need their explicit

values in the following arguments. What’s important is that hyper-

bolic circles inherit many properties from Euclidean circles, such as

intersecting with one another at most twice. Also, two points on the

same circle centered at a given point are both the same distance from

the center.

Euclidean straight lines are easy to envision, but what does straight

mean in the hyperbolic sense? Since the hyperbolic half-plane has cur-

vature everywhere, the hyperbolic notion of straight might not look

very straight at all. It is important to keep in mind what straight

means. Let us define a straight line, in general, as the shortest dis-

tance between two points. To find the shortest distance between two

points, we need to consult the aforementioned line integral. Luckily for

us, it turns out that the shortest path between two points can be found

as follows. Draw the unique Euclidean circle centered at the x-axis that

passes through both points. The shortest hyperbolic path between the

two is along the arc connecting the two points. Of course, if the two

points share the same x value, the shortest distance will be a vertical

line. So hyperbolic straight lines, or as we will call them henceforth,

geodesics, are not too difficult to deal with.

The last hyperbolic object that we’ll need to have a basic under-

standing of is a bisector. Given two points, let us define a bisector

as the locus of points equidistant from the pair. In other words, the

bisector of the points p and p′ is the set {q : d(p, q) = d(p′, q)}, where
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d(p, q) is the hyperbolic distance from p to q. In the Euclidean setting,

these are quite familiar straight lines. However, given a slightly more

complicated way to measure distance, the bisectors could turn out to

be a problem. As the following propositions will show, hyperbolic bi-

sectors are rather well behaved.

Proposition 2.1. Bisectors in the hyperbolic half-plane are geodesics.

Proof. Consider two points in the hyperbolic half-plane, p and q. Give

them the Cartesian coordinates (x1, y1) and (x2, y2), respectively.

Suppose that y1 = y2. The bisector of p and q in this case is clearly a

straight vertical line, halfway between the points. One way to visualize

this is by drawing hyperbolic circles with hyperbolic centers at each

point, and hyperbolic radii equal to half of the diastance between p

and q. Repetitively dilating each circle by equal amounts and marking

the intersections will result in a locus of points that form our straight

vertical line. One could also note that this case is similar to the Eu-

clidean case, as any distortion in the y-direction will not affect either

a point or an infinitely long straight vertical line.

In the case that y1 6= y2, one need only rotate hyperbolically about

the point p until q′, the point q mapped under hyperbolic rotation, has

a Cartesian y-coordinate equal to y1. Draw the straight vertical line

halfway between p and q′. Recall that this line is the bisector of p and

q′, as in the previous case. Upon hyperbolically rotating back an equal

amount, such that q′ is mapped back to q, notice that the straight
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line has been mapped to a semicircle with its center on the x-axis.

This is because straight lines and semicircles centered at the x-axis

are geodesics in the hyperbolic half-plane, and geodesics are mapped

onto one another by hyperbolic rigid motions, or distance preserving

maps. �
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Proposition 2.2. Given two points, p and q, on a hyperbolic circle,

C their bisector, l passes through the center c of the circle C. Further-

more, the hyperbolic angle ∠pcq, is bisected by l.

Proof. This proof is similar to that of Proposition 2.1. Rotate the hy-

perbolic half-plane hyperbolically about c, until p and q are equidistant

from the vertical line passing through c. Call this line l′. Call the im-

age of p under the hyperbolic rotation p′. Define q′ similarly. Notice

that the bisector of p′ and q′ is l′, and that it passes through c. Also

notice that l′ forms equal hyperbolic angles with the segments cp′ and

cq′. Call l the hyperbolically rotated image of l′. Notice that l, the

bisector of p and q will still go through c. Hyperbolically rotating the

half-plane back will preserve angles, so l will bisect ∠pcq. �

The symbol A & B means that A ≥ cB, for some constant c as A

and B grow large. Also, A ≈ B means that both A & B and B & A.
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3. The n
1
2 Argument

There is very little diferent, in the argument for n
1
2 , between the

Euclidean and hyperbolic planes. In fact, the only real difference is the

location of the centers of the circles of the respective settings. The key

point of this argument is that circles can intersect no more than twice.

This is true in both the hyperbolic and the Euclidean settings. The

hyperbolic argument follows, but the proof for the Euclidean setting is

nearly identical.

Theorem 3.1. Given a set, E, of n points in the hyperbolic half-plane,

there exists a point which determines n
1
2 distinct hyperbolic distances.

Proof. In order to count hyperbolic distances from a given point, we can

count the number of hyperbolic circles centered at that point that cover

the rest of the points in the set. The number of such hyperbolic circles

would then determine the number of distinct hyerbolic distances from

that point, since any two points the same hyperbolic distance away

would lie on the same hyperbolic circle.

Consider two points, p and q, in the hyperbolic half-plane. Centered

around each, draw enough hyperbolic circles to cover the rest of the

points in the set E. Let s and t be the number of hyperbolic circles

around p and q respectively. Note that all of the points in E, except for

p and q, lie on the intersections of the s and t hyperbolic circles. There

are at most 2st intersections, because each hyperbolic circle centered

at p can intersect each hyperbolic circle centered at q at most twice.

So 2st ≥ (n − 2). This means that either s & n
1
2 or t & n

1
2 . So in
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either case, at least one of p or q will have & n
1
2 different hyperbolic

circles centered at it. This will mean that that point has at least n
1
2

distinct hyperbolic distances which can be measured from it. �
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4. The n
2
3 Argument

Classically, Moser achieved this bound with a beautiful method [2]

using a logical contiunation to the ideas in the prior argument. He

partitioned the points into subsets that determined mutually exclusive

distance sets. Unfortunately, extending these ideas would involve un-

wieldy computations with the hyperbolic metric. It can probably be

done, but for the hyperbolic setting, graph theory proves to be a more

useful technique. A graph theoretic result from Székely’s n
4
5 argument

[3] will be more instructive for the following proofs. The following the-

orem, which will be key in the following arguments, was first proved

by Leighton [9], and later, independently by Ajtai, Chvátal, Newborn,

and Szemerédi [10].

Theorem 4.1. Given a topological multigraph, G, with e edges, v

vertices, and a maximum edge multiplicity of m, either e < 5vm or

Cr(G) & e3

v2m
.

In this, and the proofs to follow, topological multigraphs will be

used. For all topological multigraphs in this paper, we will assume

that the edges are piecewise continuously differentiable curves. This

will prevent two edges from crossing each other too many times. Once

again, the proof is very similar to the Euclidean case. The crucial

difference here is the behavior of the bisectors. Proposition 2.1 will be

the key to extending this result from its Euclidean counterpart.

Theorem 4.2. Given a set, E, of n points in the hyperbolic half-plane,

there exists a point which determines n
2
3 distinct hyperbolic distances.
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Proof. As in the n
1
2 argument, we will count the number of hyperbolic

distances a single point determines by counting the distinct number of

hyperbolic circles centered at that point.

We will now draw circles with centers at each point in E. Only draw

circles that intersect with at least one other point in E, but draw

enough circles so that every other point is covered by circles centered

at that point. Let t be the largest number of circles centered at any

point. In other words, let t = maxp∈E |{d(p, q) : q ∈ E}|, where d(p, q)

denotes the hyperbolic distance from p to q. This means that no more

than t distances can be measured from any point in the set E. From

here, we seek to show that t & n
2
3 . If t & n

2
3 , there are more than n

2
3

distinct distances from some point in E. Therefore, we may assume

t . n
2
3 .

Define the topological multigraph, G, by using each point in E as

a vertex, and every arc of every circle as an edge. We are guaranteed

that these edges will satisfy our constraint of piecewise continuously

differentiability, because the arcs of hyperbolic circles will look just like

the arcs of Euclidean circles. Delete edges from circles that contain only

one or two points. Recall that we have assumed for now that t . n
2
3 .

Since every one of the n points has at most t circles centered at it, there

could be no more than t circles deleted for each point. Since there are n

points, there can be at most nt . n
5
3 circles deleted, each with at most

two points. So in this way we lose only on the order of n
5
3 edges. This

will keep us on the order of n2 edges left in G. Let e be the number of

edges left in G after our deletion.
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Consider the crossing number of G, Cr(G). The crossing number is

defined as the fewest number of crossings of edges over any redrawing of

the same topological multigraph. Clearly Cr(G) ≤ 2n2t2, since circles

intersect no more than twice and there are no more than nt circles.

Let m be the maximum edge multiplicity, or the largest number of

edges between any two vertices of G. If m ≥ n
2
3 , then there are two

vertices which have more than n
2
3 edges connecting them. This means

that there are n
2
3 circles through the two points in E represented by

the vertices in G. If we consider the bisector of these two points, we

would discover that it held more than n
2
3 points. Proposition 2.1 shows

that bisectors in the hyperbolic half-plane are geodesics. If there are

s points on l, a given geodesic, we will need to draw at least s
2

circles

centered at any point on l to cover the rest of the points on l. This is

because circles can intersect geodesics, which are either arcs of circles

or straight lines, no more than twice. Therefore, in this case, we would

have drawn at least n
2
3

2
circles centered at any point on the bisector.

This would make t & n
2
3 . So it is apparent that in hyperbolic space,

the familiar interactions between geodesics and circles allow for a fair

amount of analogous argument.

By the argument in the last paragraph, either we are done, or we are

guaranteed that m ≤ n
2
3 . In the latter case, we can apply Theorem 4.1

with m = n
2
3 . This gives us that the Cr(G) ≥ e3

n2m
.

n6

n2m
≤ e3

n2m
≤ Cr(G) ≤ n2t2

Recall that m ≤ n
2
3 and solve for t to obtain the desired result. �
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5. The n
4
5 Argument

The next proof will use the same idea as before, with the key results

being Theorem 4.1 and Proposition 2.1 once again, but there is an

added inclusion/exclusion argument to make the edge deletion more

efficient. Also, the celebrated Szemerédi-Trotter incidence theorem [4]

will be leaned upon heavily for the rest of the results in this area.

Theorem 5.1. (Szemerédi-Trotter [4])

(a) Given n distinct points in the plane, then number, Lm, of lines

incident to at least m > 2 points is

Lm .
n2

m3
+

n

m
,

where the first term is contributed by lines incident to less than
√

n

points, and the latter term is due to lines incident to more than
√

n

points.

(b) Given a set of n points and l lines in the Euclidean plane, the

number of incidences of points and lines is at most c[(nl)
2
3 + n + l].

Of course, Theorem 5.1 seems to be intended for applications in the

Euclidean plane. However, Székely [5] gives a short proof of Theorem

5.1, by way of Theorem 4.1. In this proof, the difference between

the hyperbolic and Euclidean notions of straight does not change the

outcome. So Theorem 5.1 can be applied in the hyperbolic setting, by

using hyperbolic geodesics in place of Euclidean straight lines.

Theorem 5.2. Given a set, E, of n points in the hyperbolic half-plane,

there exists a point which determines n
4
5 distinct hyperbolic distances.
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Proof. This proof is very similar to that of Theorem 4. Define G and t

as before. Once again, it is obvious that Cr(G) ≤ 2n2t2. The difference

here is that we choose the maximum edge multiplicity m . t
1
2 , and

construct a new topological multigraph, G′, from G, by deleting edges

with multiplicity greater than m. In order for this to be a productive

endeavor, G′ needs to still have cn2 edges. This is shown in the following

proposition.

Proposition 5.3. The number of pairs, (l, a), where a is an arc of

G′, and l is a bisector of the vertices of a and incident to at least m

vertices, is at most c tn
2

m2 + ctn log n.

Proof. First, notice that the number of geodesics incident to 2i points is

at most c n
2

23i , provided 2i ≤
√

n. This is because if there were more, the

total number of such geodesics would exceed the bound from Theorem

5.1, part (a). Let the number of points on a curve l be denoted |l|.

Notice that for each geodesic, the number of bisected edges of G′ is at

most 2t|l|. To see this, recall that there are fewer than t circles centered

at any point by assumption, and for a geodesic to bisect any edge, the

two points that determine the edge must lie on a circle centered at a

point on the geodesic. So the number of pairs, (l, a), with m ≤ |l| ≤

4
√

n is at most ∑
i:m≤2i≤

√
n

ctn22i

23i
≤ ctn2

m2
.

This takes care of the geodesics incident to fewer than
√

n points.

If a given geodesic is incident to more than
√

n points, the Szemerédi-

Trotter theorem will no longer help. This case is even easier though, in
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light of a simple inclusion-exclusion argument [5]. Since geodesics can

intersect each other at most only once, by definition, we’re guaranteed

that there can only be so many geodesics incident to a relatively large

number of points. After recognizing this, there are merely a few simple

things to count and we are done.

Call each geodesic incident to more than l ≥
√

2n points Ai, and let

|Ai| be the number of points incident to that geodesic. Suppose Nl is

the number of geodesics with between l and 2l points, where l ≥ 4
√

n.

For the proposition to hold, we need Nl ≤ 4n
l

. So given l ≥
√

n, let us

suppose that Nl ≥ 2n
l

, and arrive at a contradiction.

n = |E| ≥

∣∣∣∣∣∣
⋃

l≤|Ai|≤2l

|Ai|

∣∣∣∣∣∣ ≥
Nl∑
i=1

∣∣∣∣∣Ai \

(
i−1⋃
j=1

Aj

)∣∣∣∣∣,
upon possibly reordering the Ai’s to put those considered in the union

first. This sum is clearly greater than or equal to

Nl∑
i=1

max(0, m− i) ≥
4n
l∑

i=1

max(0, m− i) ≥

√
n∑

i=1

max(0, 4
√

n− i) ≥

≥
√

n(4
√

n−
√

n) ≥ 3n.

So we have a contradiction, implying that Nl ≤ 4n
l

.

Now, to get the total number of bisected edges contributed by the

geodesics Ai, we’ll sum over all of them.

∑
i:|Ai|≥|

√
n

2t|Ai| ≤
∑

i:2j≤i≤2j+1

2j+12tN2j ≤
∑

i:2j≤i≤2j+1

2j+12t
4n

2j
≤

≤ 4tn
∑

√
n≤2i≤n

1 ≤ 4tn log n.
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This completes the proof of the Proposition 5.3. �

So, we’ll remove edges of multiplicity higher than some m, so that

we still have a positive proportion of edges in G′, but gain in the lower

bound for Cr(G). Specifically, we need to optimize the following in-

equality:

c
tn2

m2
+ ctn log n . n2.

The log term doesn’t bother us, so we need only concern ourselves with

the other term, which yields the bound m &
√

t. Since we want m as

low as possible, we will pick m ≈
√

t. When we plug this new value of

m into our lower bound for Cr(G), we get this:

n2t2 & Cr(G) &
e3

n2m
≈ n6

n2
√

t
.

Solving this inequality yields the desired result. �
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6. The n
6
7 Argument

When investigating possible improvements to the preceeding argu-

ment, the most natural thing to consider is the what keeps the argu-

ment from doing better. One of the obstacles that prevents a sharper

result is the difficulty in controlling high edge multiplicities in the multi-

graph. High edge multiplicities occur when a pair of points have a

bisector that crosses through a large number of points. These points

will generate circles going through the bisected pair, which will in turn

yield a large number of edges. In this argument, we will investigate

incidences of such points and bisectors. This technique was initially a

success for Solymosi and Tóth [7]. Similar techniques have been em-

ployed by the current record holders, Katz and Tardos [8], who got n
19
22 .

So this style of argument is currently state of the art. The following

theorem by Beck [6], will be used.

Theorem 6.1. Given n points in the plane, either there is a line inci-

dent to at least n
100

points, or there are on the order of n2 lines incident

to at least two points.

The theorem is stated in the Euclidean setting, but Beck admits that

it could be used much more generally. It is merely an exercise to check

that each step in the proof holds for hyperbolic geodesics in place of

the Euclidean lines. This helps us get rid of some of the cases that

trivially satisfy our claimed distance bound, but won’t work with the

bisector argument to follow. With all of the previous theorems in tow,

we proceed to the main result.
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Theorem 6.2. Given a set, E, of n points in the hyperbolic half-plane,

there exists a point which determines n
6
7 distinct hyperbolic distances.

Proof. Centered at each of the n points, draw circles so that every other

point is on a circle. Remove each circle that contains fewer than three

points. This will eliminate some degenerate cases for the graph theo-

retic portion of the argument. We won’t lose too many circles doing

this, because if a positive proportion of our circles had fewer than three

points, we’d have t ≈ n. Call the maximum number of circles about

any point t. This means that there is a point that determines t distinct

distances. We know, from the last Theorem 5.2, that t & n
4
5 . By The-

orem 6.1, applied to hyperbolic geodesics instead of Euclidean lines, we

have n2 gedesics incident to two points. Otherwise, we would trivially

have cn distinct distances. Therefore, we can be assured that there are

roughly cn points in E that have cn geodesics running through them

and another point in E. Call the set of these points B.

Fix a point a ∈ B. Let Ea ⊂ E\{a} be a maximal set such that for

each point q ∈ Ea, the geodesic aq contains no other point of Ea. Now

consider Ca, the set of all circles centered at a ∈ E that are incident to

at least three points of Ea. Let E ′a denote the set of all elements of Ea

which belong to a circle in Ca. Clearly, |E ′a| ≈ n, since |Ea| ≈ n and

t . n by assumption. After deleting at most one point from each circle

in Ca, partition the remaining points into pairwise disjoint consecutive

triples, (q1, q2, q3). Clearly, the number of such triples over all circles

around a is cn.

A bisector b is called rich if it is incident to at least k points of E,
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where k will be chosen later. A triple is good if the bisector of one of

the pairs in the triple is not rich. Otherwise it is called bad. If half

of the triples associated with a given point, p ∈ B are good, call that

point good. Call g the number of good points in B.

We will eventually compare incidences of bad points and rich bisec-

tors. However, to stack the deck in our favor, we will first get a value

for k that will balance a sufficiently large number of rich bisectors to

a sufficiently large number of bad points. The method here uses the

same ideas employed in [7].

Define a topological multigraph, G, with the point set E as its ver-

tices, and the arcs between pairs of points in a good triple without a

rich bisector as the edges. This way, we’ll have exactly one edge for

each good triple. Clearly, the number of vertices of G, vG ≈ n. The

number of edges, eG ≈ gn, as there are at least cn
2

edges incident to

each good point. The multiplicity of each edge must be below k, as the

bisector of each associated point pair must not be rich, by assumption.

Now we apply Theorem 4.1 to G with k = n2

t2
. Either eG ≤ 5vGk or

Cr(G) & e3G
kv2G

. In the former case,

gn ≈ eG < 5vGk ≈ n3

t2
≤ n

3
2 .

This gives us that g . n
1
2 < n. In the latter case,

Cr(G) &
e3
G

kv2
G

=
g3t2

n
.

Clearly, Cr(G) ≤ 2n2t2, by counting the maximal number of circles

about any point, which can only intersect twice.
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Comparing these two bounds for the crossing number of G also gives

us that g . n. This means that we have cn bad points in B.

At this time, we need to use a lemma from the original Solymosi-Tóth

paper.

Lemma 6.3. Let T be a set of N triples, (ai, bi, ci), of distinct real

numbers such that ai < bi < ci for i = 1, ..., N , and assume that ci <

ai+1 for all but at most t−1 indices i. Let W = {ai + bi, ai + ci, bi + ci|i = 1, ..., N}.

Then

|W | & N

t
2
3

.

This bound cannot be improved.

Apply Lemma 6.3 to the system of & n disjoint bad triples along

the circles centered at a fixed point a ∈ B. Map each point, u, that

is, in such a bad triple to the hyperbolic angle the hyperbolic ray au

forms with the geodesic segment between a and a point directly below

a. By construction, this mapping is an injection into the real numbers.

There are at most t triples mapped into a range containing 0, and we

remove them. The remaining triples form a set, W , of N & n triples

satisfying the requirements of Lemma 6.3. Notice that there are at

most two orientations in W that correspond to the same rich geodesic

through a. So Lemma 6.3 implies that for each point a, the number

of rich geodesics through a is & n

t
2
3

. This gives us that the number of

incidences of rich geodesics and bad points is

I &
n2

t
2
3

.
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So by Theorem 5.1, part (a), we have a bound on the number of

rich geodesics, Lk . n2

k3 ≈ t6

n4 . Then, by part (b) of the same theorem,

the number of incidences of rich lines and bad points, I, satisfies the

following upper bound:

I . n
2
3 L

2
3
m + n + Lm .

t4

n2
+

t6

n4
+ n .

t4

n2
.

Comparing the upper and lower bounds on I gives us the desired result

of t & n
6
7 .

�
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