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ABSTRACT 

Efficient spatiotemporal prediction to remove the source redundancy is critical in 

video coding. The newest international standard H.264 video coding introduces several 

advanced features, such as multiple-frame motion prediction and spatial intra prediction 

[1], which significantly improve the overall coding efficiency. In this work, we focus on 

efficient H.264 video coding for video monitoring and surveillance. The video camera, 

mostly stationary, watches the surveillance scene continuously, compresses the video 

streams which are then transmitted to a remote end for information analysis or archived 

in a storage device. In these types of video monitoring and surveillance scenarios, the 

video frame rate is often set relatively low and the activities of persons in the scene often 

exhibit strong patterns which might repeat at different spatiotemporal scales. In this work, 

we aim to develop efficient methods to exploit this type of long-term source correlation 

to improve the overall video compression efficiency. We propose a working memory 

approach for efficient temporal prediction in H.264 video coding. After video frames are 

encoded, objects are extracted, analyzed, and indexed in a dynamic database which acts 

as a working memory for the H.264 video encoder. At the same time, silhouettes are 

evaluated by using different compression configurations and comparing with ground 

truth. During the encoding process, objects with similar spatial characteristics are 

retrieved from the working memory and used for motion prediction of objects in the 

current video frame. This approach extends the multiple-frame estimation and provides a 

more generic framework for spatiotemporal prediction of video data. Our experimental 

results on indoor activity monitoring video data demonstrate that the proposed approach 

is able to save the coding bit rate by up to 35% with a small computational overhead. 
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Chapter 1 

Introduction 

 

1.1  Overview 

Efficient spatiotemporal prediction to remove the source redundancy is the key 

component in video coding. H.264 video coding introduces several advanced features, 

such as multiple-frame motion prediction and spatial intra prediction [1], which 

significantly improve the overall coding efficiency.  

 

In this work, we propose a working memory approach to exploit the long-term source 

redundancy for efficient H.264 video coding of activity monitoring and surveillance 

videos. We assume that the video at each moment only has very few persons in the 

surveillance scene and the persons may appear repeatedly in the scene at different 

spatiotemporal scales. This assumption does hold in most activity monitoring and 

surveillance videos. The proposed approach builds up on object detection, content 

analysis, and image retrieval. More specifically, as shown in Figure 1.1, after a video 
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frame is being encoded and reconstructed at the encoder side, using adaptive background 

modeling and silhouette extraction technique developed in our previous work [2], we 

detect and extract persons from the frame.  We extract shape and texture features to 

describe the object. We index the object and its features in a database, called a working 

memory. During H.264 video encoding, we extract features from the input frame and use 

these features to retrieve the objects from the working memory. We expect that these 

retrieved objects will have the highest similarity to objects in the current frame. We then 

use these objects to construct a reference picture for motion prediction of the input frame. 

The motion compensated residual picture is then encoded with conventional H.264 video 

coding. We also develop a memory management module to determine which subset of 

objects should be maintained in the working memory. Our experimental results 

demonstrate that the proposed method is able to save the coding bit rate by up to 35% 

with a small computational overhead. 

 

 

Figure 1.1: Overview of the proposed approach. 
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1.2  Motivation 

In this work, we attempt to develop efficient methods to exploit this type of long-term 

source correlation to improve the overall video compression efficiency. Multiple-frame 

motion estimation has been introduced in the H.264 video coding to explore repeated 

motion in videos [3]. However, its performance degrades significantly at lower frame 

rates. Immediate previous frames may not be the best prediction reference for the current 

video frame. For example, Figure 1.2 shows an example of an in-home activity monitor 

video at a frame rate of 2 frames per second (fps). The top row shows four consecutive 

video frames, Frames 306, 307, 308, and 309. For each of these four frames (denoted by 

݊ ,௡ܨ ൌ 306, 307, 308, and 309), we use the following brute-force approach to find its 

best match in the previous reconstructed frames: Let ሼܨ෠௞|1 ൑ ݇ ൑ ݊ െ 1ሽ be the set of 

previous reconstructed frames. We use each reconstructed frame ܨ෠௞  as reference to 

perform motion prediction of frame ܨ௡ and let ܵܦܣ௞
௡ be the total SAD (sum of absolute 

difference) of the corresponding residual picture after motion compensation. The 

reconstructed frame which yields the minimum ܵܦܣ௞
௡ is considered as the best match to 

frame ܨ௡. The bottom row of Figure 1.2 shows the best matches for Frames 306, 307, 

308, and 309, which are reconstructed frames 244, 82, 83, and 222, respectively. The 

corresponding minimum SAD values are shown in the second column of Table 1.1. The 

third column shows the minimum SAD if we use the immediate previous frame ܨ෠௞ିଵ as 

reference for motion prediction. We can see that, if we use the best match from the past 

history, the motion prediction residual can be significantly reduced, which will cost much 

less bits during compression. This suggests that it is possible to significantly improve the 

H.264 video coding efficiency by exploiting this type of long-term source redundancy for 
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activity monitoring and surveillance videos.  

 

 

Figure 1.2. Example video frames 306-309 from Sequence2 and their best match in 
previously reconstructed video frames. 

 

 

 

Table 1.1 

The minimum SAD comparison between best matches and the previous frame as 
motion prediction reference. 

 
Frame 

Minimum SAD with the 
Best Match Previous Frame 

306 5.157 13.235 

307 6.882 15.091 

308 6.372 18.308 

309 8.013 21.308 
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To verify our observation and assumption, we compare the SAD (sum of absolute 

difference) of the motion compensated difference picture after motion prediction. Figure 

1.3 to Figure 1.5 shows the SAD of each frame obtained by these three methods for 

Video_1, Video_2, and Video_3, respectively. (To show the results clearly, we split the 

figure into two parts, each showing one half of video frames.) We can see that the SAD 

obtained by the optimum prediction is much smaller than that of the conventional H.264 

motion prediction. 
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Figure 1.3: Average residual SAD comparison on Video_1 with H.264 motion prediction and 
optimum search. 
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Figure 1.4: Average residual SAD comparison on Video_2 with H.264 motion prediction and 
optimum search. 
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Figure 1.5: Average residual SAD comparison on Video_3 with H.264 motion prediction and 
optimum search. 

 

Now, the challenge is how to find the best match for each frame to be encoded. As we 

know, motion estimation is computationally intensive, especially with multiple reference 

frames as in H.264 [3-5]. In our case, we need to search all previous frames to find the 

best match. The computational complexity becomes prohibitive as more and more frames 

are encoded and reconstructed for motion prediction references. Additionally, how to 

select certain number frames to be stored in the working memory is another challenge in 

this research. 

 

1.3 Major Contribution 

The main contributions of this thesis are as follow: 

• Summarize the impact on silhouettes extraction introduced by video compression. 

8 
 



 

 

• Development of efficient feature based object retrieval and matching algorithm. 

We demonstrate that by using silhouettes extraction, centroid, histogram 

correlation and histogram of dimension, we could find best match frame without 

performing brute full search in order to achieve better coding efficiency compared 

to conventional H.264. 

 

• Development of working memory design applied to H.264 encoder. With limited 

buffer size, the results show higher coding efficiency can be achieved compared 

to H.264 encoding with small overhead. 

 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 reviews the background and real application of this work. More advanced 

features related to H.264 coding are summarized. After the background review, some 

typical algorithms for improving multiple reference frames coding efficiency for H.264 

are introduced. Some image retrieval techniques used for object matching are explained 

as well. 

 

Chapter 3 explains how the video compression has a significant impact on silhouette 

extraction. We then explain how silhouette extraction is used in our H.264 working 
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memory approach. At last, a set of results are provided and analyzed.  

 

Chapter 4 presents the main techniques used in this research for object retrieval and 

matching. The algorithm which is based on Centroid, histogram correlation and 

histogram of dimension techniques will be formally introduced. Extensive experimental 

results and comparisons of this method are provided. 

 

Chapter 5 reviews the H.264 encoding and introduces working memory management 

design. The working memory is applied to H.264 encoder to improve coding efficiency. 

The integrated design will be further explained. Comparisons made among different 

working memory sizes are discussed as well. 

 

Chapter 6 summarized the studies presented in this thesis. Conclusions are provided. 

Future work and directions are discussed. 
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Chapter2 

Background and Related Work 

 

2.1  Background 

In this work, we focus on efficient H.264 video coding for video monitoring and 

surveillance. The video camera, mostly stationary, watches the surveillance scene 

continuously, compresses the video streams, which are then transmitted to a remote end 

for information analysis or archived in a storage device. For example, in our on-going 

research project on eldercare [2], we deploy a video camera to monitor elderly (often 

aged over 85) people’s activities at home continuously for automated functional 

assessment and safety enhancement, such as detecting falls and abnormal situations 

which might indicate changes in health conditions. In these types of video monitoring and 

surveillance scenarios, the video frame rate is often set very low, such as 2-5 frames per 

second, which is sufficient for human tracking, activity analysis, and scene 

understanding. The activities of persons in the scene often exhibit strong patterns which 

might repeat at different spatiotemporal scales. For example, every morning about 
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6:30am, the person gets up and walks to bathroom. Ten minutes later, he will walk out of 

the bathroom towards the kitchen for breakfast. During the morning time, the person is 

often more active, walking around the home, doing exercises, cleaning, preparing meals, 

etc. Therefore, our goal is to develop efficient methods to exploit this type of long-term 

source correlation to improve the overall video compression efficiency. 

 

2.2  H.264 Video Coding 

The key in efficient video compression is efficient spatiotemporal prediction to remove 

the data redundancy in the spatiotemporal domain. The H.264 video coding standard 

introduces several advanced features, such as multiple-frame motion prediction, variable 

block size motion compensation and sub-pixel motion estimation [1], which have 

significantly improved the coding efficiency.  

 

One of our central tasks in this work is to find the best reference frame for current frame 

at a low computational complexity. The best reference frame is selected from previous 

decoded N frames. To further reduce the spatiotemporal redundancy, H.264 uses short 

and long term reference frame for more accurate motion prediction. In H.264 pictures 

that are encoded or decoded and available for reference are stored in the Decoded Picture 

Buffer (DPB). All available reference frames are marked as short term reference picture 

or long term reference picture. Short term reference pictures will be removed from DPB 

by an explicit command or when the DPB is full. The frame marked as long term 

reference will only be removed by an explicit command, which means long term 

reference pictures can be utilized as the reference frames which are not only within the 
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small search window. To be noted, a new innovation in H.264/AVC allows the motion-

compensated prediction signal to be weighted and offset by amounts specified by the 

encoder [1], which will dramatically improve coding efficiency for scenes with gradual 

transitions such as fades. As seen in prior MPEG standards, a single reference picture is 

used in P frame and prediction is not scaled. In B frame, it uses two pictures as reference 

and the prediction is composed by equally averaging the weighting factors. Comparing to 

previous standards, H.264 associates the weighting factor with reference picture index 

which is efficient for multiple reference frame management. In H.264 explicit mode, a 

weighting factor and offset may be coded in the slice header for each allowable reference 

picture index; in H.264 inexplicit mode, the weighting factors are derived based on the 

relative picture order count (POC) distances of the two reference pictures [6].  

 

2.3  H.264 Multiple Reference Frame Motion Estimation 

 

Figure 2.1: Overview of multiple reference frame motion prediction 

 

H.264 uses multiple reference frames to achieve better prediction in many conditions. 
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Figure 2.1 gives an overview of H.264 multiple reference frame motion estimation. 

However, multi-frame motion predict dramatically increases the computation complexity 

of the encoder [7]. Several methods have been proposed to reduce the computational 

complexity. For example, the unsymmetrical-cross multi-hexagon-grid search 

(UMHexagonS) has been proposed in [7]. Su and Sun [3], Hsiao et al [8] and Duanmu et 

al [9] attempted to reduce the complexity using continuous tracking techniques to provide 

a good starting point for motion search. Methods based on tracking will likely fail in case 

of occlusions. Wiegand et al [10] introduced a new motion search order based on the 

triangle inequality for long-term motion prediction. An adaptive motion search scheme 

with early termination and zero-block detection has been developed in [11]. Huang et al 

[12] utilized the information from the previous frame to determine whether the motion 

search on the remaining reference frames is needed or not. [13] examined available MV 

and SAD information so as to terminate the multi-frame motion estimation procedure. 

Wang et al [14] exploited the spatial correlation between neighboring blocks to choose 

the best reference frame for the current block. Sohn and Kim [15] determined the number 

of reference frames using the correlation between the block of current frame and that of 

previous frame. Kapotas and Skodras [16] considered the Lagrangian cost for reference 

frame selection. We can see that existing methods have been exploring the source 

correlation between neighboring frames for fast and efficient motion prediction. Because 

of the dramatic increase of computational complexity in multi-frame motion prediction, 

typically, up to 5 frames are used for motion prediction in practical H.264 video encoding 

[7]. This small window of reference frames limits our capability in exploring long-term 

source correlation in video data, especially in surveillance videos. 
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2.4  Image Retrieval 

In this work, we consider all of the previous decoded frames as a data base. This is in 

nature of image retrieval problems: to find an image from the data base with highest 

similarity. Figure 2.2 provides an overview about image retrieval. 

 

Figure 2.2: Overview of image retrieval 

With the advances in computer technologies, there has been an explosion in the amount 

and complexity of digital images being generated. How to access the vast amount of data 

is a key challenge to allow people to browse, search and retrieval efficiently. Based upon 

this fact, image retrieval has been a very active topic since the 1970s.  Date back to 

1970s, in traditional database people annotated image with a set of predefined key words 

which are stored with the corresponding images and will be matched with user’s queries, 

for example Chang’s Query-by pictorial-example [17] and Pictorial Data-Base Systems 

[18]. The former one used a relational query language introduced for manipulating 

queries regarding pictorial relations as well as conventional relations [17]. The latter one 

proposed a pictorial data base which is a collection of sharable pictorial data encoded in 
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various formats. A pictorial database system, or PDBS, provides an integrated collection 

of pictorial data for easy access by a large of number of users. But TBIR has to manually 

annotate the images so it is not practical to manually do the annotation on the extremely 

large number of images. The human perception differences will make the keywords 

different even which are used to describe the same image. As well as some low level 

features like color, texture and shape cannot be well captured by textual keywords. All 

these lead people to find the new method during 1990’s, which is called content-based 

image retrieval (CBIR). CBIR is a very active research area for past decades. There are a 

large amount of researchers currently working on CBIR. Main research issues in CBIR 

include feature extraction, dimensionality reduction, relevant feedback, etc. Because 

CBIR is most close to this research, we will focus on more aspects in CBIR.  Figure 2.3  

shows a basic framework of a CBIR system [19].  

 

Color is one of the most widely used features of the great majority of content-based 

image retrieval systems. The color feature is relatively robust to background 

complications and independent of image size and orientations. [20] introduced Chabot, 

which basically is an image database which adds color feature with manually annotated 

keywords to search the image. Swain [21] introduced a technique called Histogram 

Intersection, which matches model and image histograms and allows real-time indexing 

into a large database of stored models. Stricker [22] proposed two color indexing 

techniques. One is using cumulated color histogram which has slightly better 

performance than color histogram but significantly more robust with respect to the 

quantization parameter of the histograms. The other approach is that the similarity 

16 
 



 

function which is used for the retrieval is a weighted sum of the absolute differences 

between corresponding moments. Smith and Chang [23，24] also proposed to identify 

the regions within images that contain colors from predetermined colorsets. By searching 

over a large number of color sets, a color index for the database is created in a fashion 

similar to that for file inversion which allows very fast indexing of the image collection 

by color contents of the images.  

 

 

Figure 2.3: Framework of CBIR system 

 

Texture is another feature which is commonly used by CBIR system. It contains 

important information about the structural arrangement of surfaces and their relationship 

to the surrounding environment [25]. Haralick got textural features derived from the 
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angular nearest-neighbor gray-tone spatial-dependence matrices at early 1970s[25]. 

Gotlieb further extended this idea and derived a general model for analysis and 

interpretation of experimental results in texture analysis when individual and groups of 

classifiers are being used. They proposed to use six representative classifiers which are 

second angular moment f1, contrast f2, inverse difference moment f5, entropy f9, and 

information measures of correlation I and II, f12 and f13, and it could give a systematic 

study of the discrimination power of all 63 combinations of these classifiers on 13 

samples of Brodatz textures [26]. Later on, Tamura proposed to represent texture by six 

visual texture properties which are coarseness, contrast, directionality, linelikeness, 

regularity and roughness [27]. All of the six properties are visually meaningful. The 

Query by Image Content (QBIC) project studies the method to extend and complement 

text-based retrievals by querying and retrieving images and videos by content. Queries 

can be performed using attributes such as colors, textures, shapes and object positions 

[28]. MARS (Multimedia Analysis and Retrieval System) is a system that supports 

similarity and content-based retrieval of images based on a combination of their color, 

texture, shape and layout properties [29, 30]. CBVQ developed by J. R. Smith focused 

on color and texture region and used binary set representations of color and texture, 

respectively  [31, 32]. 

 

Shape representations depending on applications may require transformation invariant. 

There are a lot of researches which had been done in this area. Fourier descriptor is one 

major achievement in this area. It utilizes the Fourier transformed boundary as the shape 

feature. Rui proposed a Modified Fourier Descriptor and a new distance metric for 
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describing and comparing closed planar curves for shape matching in content based 

image retrieval system. Their method accounts for the effects of spatial discretization of 

shapes [33]. [34] generated an image “signature” for each database picture with respect to 

“key” objects. WebSeer system is based on statistical observations about the image 

content of the two types. The system uses image contents like colors and shapes to index 

images [35].  

 

Although previous features could provide reasonable discriminating power in image 

retrieval, the false positives become more as the image collection sizes increase. 

Therefore, another method called color layout utilized both color feature and spatial 

relations came up. Rickman presented a novel image coding scheme which captures some 

of this locally correlated color information and improves the selectivity of the retrieval 

mechanism. Their technique used a histogram of features which represent frequently 

occurring local combinations color tuples occurring throughout the image [36]. Huang 

proposed a new image feature called the color correlogram and used it for image indexing 

and comparison. This feature distills the spatial correlation of colors and is both effective 

and inexpensive for content-based image retrieval [37]. 

 

It should be noted that the objective of content-based image retrieval is to find images 

from the database which are perceptually, conceptually, or semantically similar to the 

query image. It does not necessarily minimize the differences between these two images. 

Therefore, existing features used for image retrieval cannot be directly used in this 

research for finding the best motion match. 
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Chapter 3 

Effects on Silhouettes  

Introduced by Video Compression 
 

3.1  Overview 

Extracting features to differentiate foreground objects from background is the first step of 

silhouettes. The silhouette extraction scheme is based on brightness distortion and 

chromaticity distortion. Therefore, the silhouette extraction quality will be greatly 

depending on the value of each pixel’s change. Quantization, involved in image 

processing, is a lossy compression technique achieved by compressing a range of values 

to a single quantum value. When the number of discrete symbols in a given stream is 

reduced, the stream becomes more compressible. But the more the image is compressed, 

the more information you would lose due to the Quantization process. This chapter will 

give a detail explanation on this aspect. At last some comparisons are made between the 

conventional H.264 and H.264 without deblocking filter. 
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3.2  Silhouettes Extraction 

In this work, we use the silhouette extraction method developed in our previous work [2] 

to extract persons from the video scene. For the completeness of presentation, we provide 

a brief review of this algorithm. Silhouette extraction, namely, segmenting a human body 

or objects from a background, is the first and enabling step for many high-level vision 

analysis tasks, such as video surveillance, people tracking and activity recognition [38-

41]. We consider silhouette extraction as an adaptive classification problem. We utilize 

image features which are invariant to changes in lighting conditions. High-level 

knowledge is fused with low-level feature-based classification results to handle time-

varying backgrounds changes.  

We consider silhouette extraction as an adaptive classification problem. We utilize image 

features which are invariant to changes in lighting conditions. High-level knowledge is 

fused with low-level feature-based classification results to handle time-varying 

backgrounds changes. Extracting features to differentiate foreground objects from 

background is the first step of silhouette extraction. A basic requirement is that features 

should be invariant under brightness changes. Further, it should be effective in 

differentiating shadow from background. In this work, we use two features: brightness 

distortion and chromaticity distortion. More specifically, we extract features in the RGB 

color space [42]. For adaptive background update, we use the past Δ  frames for 

background modeling. At each pixel location ݅, we compute the average values of its 

RGB components in the past Δ  frames and denote them by vector ܧ௜. We also calculate 

and standard deviations of the color components at each pixel. Let ܫ௜ be the pixel in the 
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current frame. As shown in Figure 3.1, we project the vector ܫ௜ onto vector ܧ௜. We define 

brightness distortion ߙ௜ as: 
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and chromaticity distortion as:     
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where [  represent the values of red, green and blue components of the 

pixel in the RGB color space. 

])(),(),( iIiIiI BGR
thi

[ ])(),(),( iii BGR μμμ  and [ ])(),(),( iii BGR σσσ  are the mean and 

standard deviation of these color components. This color model separates the brightness 

from the chromaticity components as shown in Fig. 4. It has been found that the 

chromaticity distortion is invariant under brightness changes [42]. Our foreground-

background classification is based on the following two observations: (1) image pixels in 

the background often have little change in their chromaticity distortion; and (2) shadow 

often causes brightness distortion but little chromaticity distortion. Based on these two 

observations, we establish the following decision rules for foreground, background, and 

shadow detection: (1) if the chromaticity distortion ܦܥ௜ is large, ܫ௜ is a foreground pixel; 

(2) if the chromaticity distortion is small and the brightness distortion is about 1.0, it is a 

background pixel; (3) if chromaticity distortion is small and the brightness distortion 

smaller than 1.0, it is a shadow pixel.  
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Figure 3.1 Illustration of brightness and chromaticity distortion. 

 

In silhouette extraction within a dynamic video scene, we need to continuously update the 

background model by incorporating background changes. A commonly used method to 

update background is that, if an object or image area remains stationary for a certain 

period of time, it is considered to be background. Here, we use the past ∆ frames to 

update the background model. For accurate silhouette extraction, we want ∆ to be small 

so that the background can be quickly updated. However, when ∆ is small, the human 

body could be easily updated as background if the person does not move for a while, for 

example, sitting still on a chair for a few minutes. To solve this problem, we propose to 

utilize high-level knowledge about human motion as a guideline to perform adaptive 

update of the background model. 

 

Many sophisticated human tracking algorithms have been developed in the literature [43, 

44, 45]. However, they often have high computational complexity. Here, to achieve low-

complexity, we use a simple block-based motion estimation which has been extensively 

used in video coding [7]. More specifically, suppose that we have obtained the silhouette 

for frame ݊. We find a bounding box for the silhouette such that 95% of foreground 
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pixels are included. For each image block within the bounding box in the current frame ݊, 

we find its best match in the next frame ݊ ൅ 1 using SAD (sum of absolute difference) as 

a distance metric. To speed up the motion estimation process, we use a fast algorithm 

called diamond search [46]. Once the motion vectors of all blocks are obtained after 

block-based motion estimation, we take their average to predict the human body position 

(or the center of its bounding box) in the next frame ݊ ൅ 1. Those image blocks which 

contain the human body should be updated very slowly so that the human body won’t be 

absorbed into the background. Those blocks outside the predicted body region can be 

updated much faster to make sure that new objects are quickly absorbed into the 

background. After background update and silhouette extraction, we update the 

dimension, height and width, of the bounding box in frame ݊ ൅ 1.   

Figure 3.2 to Figure 3.4 show the silhouette extraction and human tracking results for 

some sample frames of three in-door activity monitoring videos. It can be seen that this 

algorithm is able to obtain high-quality of human silhouettes and track persons 

accurately.  
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Figure 3.2: Silhouette extraction and human detection results for Video 1 

 

 

 

 

Figure 3.3: Silhouette extraction and human detection results for Video 2 
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Figure 3.4: Silhouette extraction and human detection results for Video 3. 

 

3.3  Silhouettes Extraction in Working Memory 
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In this research, we apply the silhouette extraction algorithm on the original video frame 

FN and obtain the binary silhouette image. Using this binary image as mask, we segment 

the human object from the background and denote it by ON. Let BN be the corresponding 

background image constructed by the silhouette extraction algorithm. We then extract a 

set of visual feature, denoted by fN , from ON  to characterize the human object. As 

illustrated in Figure 1.1, after frame ON is encoded by H.264, we also apply the same 



 

silhouette extraction algorithm to the encoder reconstruction F෠N  and obtain the 

reconstructed human object O෡N. Let B෡N be the corresponding background image. We also 

extract a set of features, denoted by fመN, to characterize O෡N. Both O෡N and its feature vector 

fመN are indexed and stored into a database, called working memory in this work. 

 

At this moment, let us assume that Ω ൌ ሼO෡୩|1 ൑ k ൑ N െ 1ሽ  are all available in the 

working memory when frame FN is being encoded. We use feature fN as query input to 

the working memory to retrieve the object which matches the current object O෡N best. We 

denote this best match by O෡ழே
כ . Here, “൏ ܰ” denotes frame numbers less than N. We 

overlay O෡ழே
כ  on the background image B෡Nିଵ to form a reference frame F෠ழே

כ  for motion 

prediction. We expect that, using F෠ழே
כ  as the motion prediction reference, the motion 

compensated difference will be minimized. For convenience, we refer to this type of 

motion prediction approach as working memory prediction (WMP). If the best match 

happens to be O෡Nିଵ, then F෠ழே
כ  will be exactly the previous frame F෠Nିଵ. Therefore, the 

conventional H.264 motion prediction (P-frame) is a special case of the proposed WMP 

scheme. 

 

3.4  Comparisons of Silhouettes with Different Video Compression 
Configurations 
 

In practice, due to limited transmission bandwidth or storage space, videos are often 

compressed with JPEG, MPEG, or H.264 coding scheme. Therefore, it is necessary to 

understand the performance of silhouette extraction on compressed video frames and 

investigate how the compression artifacts could impact the performance of silhouette 

27 
 



 

extraction. Depending on different configurations in video compression scheme, the 

degree of performance degradation in silhouette extraction varies. In this section, we 

conduct extensive experiments to evaluate the impact of different image/video 

compression schemes on the silhouette extraction performance. 

 

First, we configure the H.264 to the default settings. We tested on three set of sequences 

which have the ground truth for each sequence. In order to get different quality image 

from the video compression, we encoded each sequence with different quantization 

parameters (QP). QP, a setting in video coding that controls the quality of video 

compression. In H.264 as QP is increased, the quality of the video decreases. Then we 

extracted the silhouettes from the decoded images and compared with the ground truth. 

The results of sequence1 are selectively summarized from Figure 3.5 to Figure 3.8.  

 

Second, we turned off the deblocking filter function in H.264 which might introduce 

more errors due to the edge effects caused by block based the motion estimation. Same as 

previous step, after we decoded the images which are compressed at different QP level, 

we extracted silhouettes of these sequences. Then, we compare the silhouettes results 

with the ground truth. Figure 3.9 to Figure 3.14 are the picked sample results for 

sequence 1. 
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Figure 3.5: Test sequence 1 Frame 80 (Original Image) and its silhouette (Ground Truth). 

 

Figure 3.6: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=24 . 

 

Figure 3.7: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=42 
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Figure 3.8: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=51 

 

Figure 3.9: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=33 
without deblocking filter 

 

Figure 3.10: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=42 
without deblocking filter 

30 
 



 

 

Figure 3.11: Test sequence 1 Frame 80 decoded image and its silhouette with H.264 QP=51 
without deblocking filter 

 

Figure 3.12: Test sequence3 Frame111 decoded image and its silhouette with H.264 QP=33 
without deblocking filter 

 

Figure 3.13: Test sequence3 Frame111 decoded image and its silhouette with H.264 QP=42 
without deblocking filter 
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Figure 3.14: Test sequence 3 Frame 111 decoded image and its silhouette with H.264 QP=51 
without deblocking filter 

 

After we decoded the video and extracted the silhouettes, we compared each sequence to 

the ground truth whose value is denoted as ீ்ܰ. ீ்ܰ is the total pixel number per frame, 

which is the foreground of the ground truth. Then we calculate the average error rate Rୣ୰୰ 

for each video sequence with n frames. We denote the average error rate as follow: 

ܴ௘௥௥  ൌ  
∑ ሺ ாܰோோ

ீ்ܰ
ൈ 100%ሻ௡

௙ୀଵ

݊ ൌ   
∑ ሺ ஻ܰி ൅ ிܰ஻

ீ்ܰ
ൈ 100%ሻ௡

௙ୀଵ

݊                       ሺ3ሻ 

Where ாܰோோ is the total error pixel numbers per frame, which is composed of two type of 

errors: the error from false detecting background pixel as foreground pixel denoted as 

஻ܰி and the error from false detecting foreground pixel as background pixel denoted as 

ிܰ஻. Figure 3.15 to Figure 3.17 show the picture PSNR v.s. error rates. 
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Figure 3.15: Error rate vs PSNR comparison between H.264 and H.264 without deblocking filter 
for Sequence 1  

 

Figure 3.16: Error rate vs PSNR comparison between H.264 and H.264 without deblocking filter 
for Sequence 2  
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Figure 3.17: Error rate vs PSNR comparison between H.264 and H.264 without deblocking filter 
for Sequence 3  

 

From the results, we can see that, as PSNR decreases (which means as QP increases), the 

quality of silhouettes decreases and the error rate of silhouette extraction increases. 

Especially after a certain level, the Error Rate of silhouettes increases dramatically. 

Comparing the silhouette results which are from the default H.264 settings to the 

silhouettes results which are from the H.264 without deblocking filters, the latter one will 

introduce more errors compared to the former in respect to the same PSNR. Therefore the 

silhouettes results from the latter one are worse than the silhouettes from the former one. 

The research helps us realize the relationships between the video compression techniques 

and the silhouette extraction technique. It is fundamental for achieving better coding 

efficiency by using this proposed algorithm. 
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Chapter 4 

Feature Based Fast and Accurate Object 
Retrieval 
 

4.1 Overview 

As discussed in the previous chapter, we need to find the best object ෠ܱழே
כ  from the 

working memory such that the motion compensated difference between ܨ෠ழே
כ  and ܨே is 

minimized. We denote this difference by ݀ெሾܨ෠ழே
כ ேሿܨ  , . Note that typically the 

background models at frames ܰ െ 1  and ܰ  will be very close to each other, except 

sudden lighting condition changes. In this case, an effective encoding option is to 

terminate the motion prediction chain and to use an INTRA frame. Therefore, the major 

motion compensated difference will be from the foreground objects, e.g. persons. We 

have  

݀ெൣܨ෠ழே
כ , ே൧ܨ ൌ ݀ெൣ ෠ܱழே

כ , ܱே൧.                                                               ሺ4ሻ 

 

The process of finding the best ma ෠ழ
כ  can be summarized as follows: 
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tch ܱ ே

                                  ෠ܱΩ ൌ arg  ݉݅݊
෠ܱ௞ א ષ  ݀ெൣ ෠ܱ௞, ܱே൧                                                            ሺ5ሻ 



 

To compute  ݀ெൣ ෠ܱ௞, ܱே൧ , we need to perform motion prediction and compensation 

between ෠ܱ௞ and ܱே . As we know, motion estimation is computationally intensive. 

Furthermore, the size of the working memory, i.e., the total number of candidate objects 

in it, increases with the frame number ܰ. Therefore, the computational complexity in 

finding the best match ෠ܱΩ  in (3) will become prohibitive when ܰ is large. Now, the 

question is: how to finding the best match ෠ܱΩ in (3) with low computational complexity? 

 

In this research, we propose to explore a content-based image retrieval method. We will 

extract a set of features to describe ෠ܱ௞ the reference object in the working memory and 

the current object ܱே, respectively. We then attempt to find the best match in the feature 

space. As we know, feature-based matching has much low computational complexity 

than direct motion prediction. Essentially, the problem can be summarized as follows: 

finding the best motion match without performing motion prediction. This is a non-trivial 

task.  

 

4.2  Feature Based Object Retrieval 

When defining the features, we need to make sure that the best match in the feature space 

yields the minimum motion compensated difference. Based on our extensive simulation 

experience, we find that the following features are sufficient for our purpose: (1) body 

centroid; (2) histograms of horizontal and vertical dimensions, and (3) color histogram. 

More specifically, after silhouette extraction, we compute the centroid of the foreground 

pixels. We also scan the foreground image horizontally and vertically and record the 
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number of pixels in each row and column, as illustrated in Figure 4.1. We refer to this 

information as histograms of horizontal and vertical dimension. Figure 4.2 (b) and (c) 

show the histograms of horizontal and vertical dimensions for the silhouette image in 

Figure 4.2 (a). This provides a simple yet efficient characterization of the body shape and 

size of the silhouette which implies the distance between the person and the camera. The 

third feature, color histogram, describes the content inside the object. 

 
(A)                                                     (B) 

Figure 4.1: Body centroid and dimensions, and histogram of dimensions. 

 

 
Figure 4.2: (a) Silhouetter image from sequence 2. (b) Distribution of vertical dimensions of 

image (a). (c) Distribution of horizontal dimensions of image (a). 
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Let ܥ and ܴ be the object from the current frame and the object to be matched in the 

working memory. Let ሾܺ஼, ஼ܻሿ and ሾܺோ, ோܻሿ be their centroids. Let ݌௛ሺݕሻ and ݌௩ሺݔሻ be the 

distributions (or normalized histograms) of horizontal and vertical dimensions, 

respectively. Here, we use ݔ and ݕ to index horizontal and vertical pixel positions. For 

the centroid feature, we use their Euclidean distance, denoted by ݀௖. For the distributions 

of horizontal and vertical dimensions, we consider them as probability distributions and 

use the Kullback Leibler distance [47] which is defined as: 

 

݀௛ሾ݌௛
஼ሺݕሻ, ௛݌

ோሺݕሻሿ ൌ ෍ ௛݌
஼ሺݕሻ log

௛݌
஼ሺݕሻ

௛݌
ோሺݕሻ

,                                                  ሺ6ሻ 
௬

                      ݀௩ሾ݌௩
஼ሺݔሻ, ௩݌

ோሺݔሻሿ ൌ ∑ ௩݌
஼ሺݔሻ log ௣ೡ

಴ሺ௫ሻ
௣ೡ

ೃሺ௫ሻ௫ .                                                   ሺ7ሻ 

 

We then form the following distance metric for object retrieval from the working 

memory: 

 

݀ሺܥ, ܴሻ ൌ ߚ ڄ ݀௖ ൅ ሺ݀௛ሾ݌௛
஼ሺݕሻ, ௛݌

ோሺݕሻሿ ൅ ݀௩ሾ݌௩
஼ሺݔሻ, ௩݌

ோሺݔሻሿሻ,                              ሺ8ሻ 

 

where ߚ is a normalization factor on the centroid distance. The object in the working 

memory with the minimum distance from the current object ܱே is the best match ෠ܱΩ and 

used for motion prediction of the current frame. 
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Using this distance metric, we find the best match object ෠ܱழே
כ  from the working memory 

and overlay it on the background image ܤ෠ேିଵ to form the reference frame ܨ෠ழே
כ  for motion 



 

prediction of the current frame ܨே . From Figure 4.3 to Figure 4.5, we show the best 

matching object for video frames of 3 test videos. The top row is the frames to be 

encoded and the bottom row is the corresponding frames from which the best matching 

objects are extracted. 

 

 
Figure 4.3: Best matching objects for video frame 266-260 of test video 1 

 

 
Figure 4.4: Best matching objects for video frame 254-257of test video 2 
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Figure 4.5: Best matching objects for video frame 337-340 of test video 3 

 

4.3 Results and Analysis 

We have implemented the proposed working memory prediction scheme in H.264 JM 

15.1 [48]. We test the performance of the video encoder within the context of indoor 

activity monitoring. The three test videos, labeled as Video_1, Video_2, and Video_3 are 

shown in Figure 4.3, Figure 4.4 and Figure 4.5, respectively. We use I and P frames with 

a GOP (group of pictures) size of 32. We turn off rate control and use a constant 

quantization parameter for all I and P frames to achieve near-constant video quality. We 

compare the performance of the following three encoding schemes: (A) conventional 

H.264 video encoding, (B) H.264 video encoding with optimum prediction which find 

the best match from all the previous reconstructed frames using brute-force motion 

search, and (C) H.264 video coding with working memory prediction. 

 

First, we compare the SAD (sum of absolute difference) of the motion compensated 

difference picture after motion prediction. Figure 4.6 to Figure 4.8 show the SAD of each 
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frame obtained by these three methods for Video_1, Video_2, and Video_3, respectively. 

(To show the results clearly, we split the figure into two parts, each showing one half of 

video frames.) We can see that the SAD obtained by the optimum prediction is much 

smaller than that of the conventional H.264 motion prediction, and the SAD value 

obtained by our working memory prediction is very close to the optimum. This implies 

that the proposed low-complexity feature-based object retrieval scheme is able to 

accurately find the near-optimum motion match. These results are summarized in Table 

4.1.  

 

Next, we compare the encoding bit rates. We set the target video quality to be 35 dB by 

choosing a similar quantization parameter. Figure 4.9 to Figure 4.11 show the encoding 

bits of each frame when these three prediction methods are applied. The results are 

summarized in Table 4.2 and Table 4.3. By using the proposed working memory 

prediction scheme, we can achieve an average bit rate saving of 25-27%. The maximum 

bit saving on video frames can even go up to 77.5%. The proposed feature-based object 

retrieval scheme approaches the optimum performance, only about 0.1-5% of 

performance loss in bit saving. Figure 4.12 to Figure 4.15 show the rate-distortion 

(PSNR) comparison between the conventional H.264 video coding and this work on three 

test videos. We can see that the working memory prediction achieves about 1.2-1.5 dB 

improvement in average PSNR. 
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Table 4.1  

SAD Comparison.  

Video 

Average SAD Saving Comparison 
(SAD/pixel) 

Maximal SAD Saving Comparison 
(SAD/pixel) 

H.264 Optimum 
Prediction This work H.264 Optimum 

Prediction This work 

SAD SAD Saving 
(%) SAD Saving 

(%) SAD SAD Saving 
(%) SAD Saving 

(%) 

1 8.79 3.61 59.94 4.39 50.08 10.80 1.48 86.29 1.48 86.29 

2 8.46 4.65 45.01 5.16 39.02 15.89 4.27 73.15 4.27 73.15 

3 4.67 1.84 60.67 3.73 20.10 8.09 0.80 90.08 0.80 90.08 

 

Table 4.2 

Bit rate saving in H.264 video coding 
 

Video 
Bit Rate Saving (%) from H.264 

Optimum Feature-based 

Avg Max Avg Max 
1 32.5% 77.5% 27.2% 77.5% 
2 30.8% 71.4% 25.7% 71.4% 
3 16.0% 73.6% 25.9% 72.0% 

 

Table 4.3 

Bit rate comparison in H.264 video coding 

 
Video 

Bit Rate Comparison from H.264 
(kbits/s at 30 Hz) 

Optimum Feature-based 
1 265.99 182.70 
2 462.68 326.84 
3 163.40 126.50 
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Figure 4.6: Average residual SAD comparison on Video_1 with H.264 motion prediction and 
optimum search and the proposed algorithm in this work. 
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Figure 4.7: Average residual SAD comparison on Video_2 with H.264 motion prediction and 
optimum search and the proposed algorithm in this work. 
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Figure 4.8: Average residual SAD comparison on Video_3 with H.264 motion prediction and 
optimum search and the proposed algorithm in this work. 
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Figure 4.9: H.264 encoding bits rate comparison on Video_1 with H.264 motion prediction, 

optimum search, and the proposed algorithm in this research. 
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Figure 4.10: H.264 encoding bits rate comparison on Video_2 with H.264 motion prediction, 
optimum search, and the proposed algorithm in this research. 
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Figure 4.11: H.264 encoding bits rate comparison on Video_3 with H.264 motion prediction, 

optimum search, and the proposed algorithm in this research. 
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Figure 4.12: Rate-distortion performance comparison with conventional H.264 video coding on 

Video_1  
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Figure 4.13: Rate-distortion performance comparison with conventional H.264 video coding on 

Video_2 

49 
 



 

50 100 150 200 250 300 350
31

32

33

34

35

36

37

38

39

40

Bit Rate(Kbits/s)

P
S

N
R

 

 

H.264
This work

  

Figure 4.14: Rate-distortion performance comparison with conventional H.264 video coding on 

Video_3 
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Chapter 5 

Working Memory Management 

5.1  Overview 

As more video frames are being encoded, more objects are being added into the working 

memory. This will require larger memory and higher implement cost. It will also increase 

the computational complexity in object retrieval. Therefore, there is a need to develop an 

efficient working memory management scheme to control the memory cost and 

complexity of the working memory. More specifically, we need to control the total 

number of objects in the working memory.  

 

Our proposed scheme for working memory management is based on the following 

observations. First, there is no need to store objects that are very similar to each other. 

Second, objects maintained in the memory should cover different human actions, poses, 

or appearances as many as possible. They should be quite different from each other. 

Therefore, we propose to use the distance metric in (8) for dynamic working memory 

management. More specifically, when a new frame is being encoded, we retrieve the best  
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Figure 5.1: Illustration for work memory 
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matching from the memory for motion prediction. Therefore, we know the distance 

between the current object and each object in the working memory. In this way, we 

always have the distance between any two objects in the working memory. When the 

current object joins the working memory, we remove the object which has the smallest 

distance from other objects. Figure 5.1 shows an example where a maximum of 50 

objects are being maintained in the working memory at 3 different time instances.  

 

5.2  H.264 Video Coding with Object Retrieval and Matching 

In this Section, we describe the H.264 video encoding scheme based on working 

memory prediction. Figure 5.2 shows a block diagram of the modified H.264 video 

encoder. The proposed encoding scheme has the following major steps. Let ܨே be the 

current video frame. 

 

Step 1. Silhouette extraction and foreground object detection. Apply the silhouette 

extraction algorithm described in Section III to the current frame ܨே and obtain 

the foreground object ܱே. 

Step 2. Object retrieval from the working memory. From the foreground object ܱே, we 

extract its features, namely, its centroid and histograms of horizontal and 

vertical dimensions. Using the distance metric defined in (7), we find the 

retrieve the best match object  ෠ܱΩ from the working memory Ω.  

Step 3. Constructing the motion prediction reference. Overlay the object ෠ܱΩ on top of 

the background image ܤ෠ேିଵ obtained from silhouette extraction of the 
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reconstructed frames to construct a working memory prediction  ܨ෠Ω . 

Step 4. H.264 encoding. Using ܨ෠Ω as the reference frame for motion prediction, encode 

the residual with the H.264 encoder, and reconstruct the current frame. 

Step 5. Working memory management. Using the silhouette as mask to extract the 

reconstructed foreground object ෠ܱே. Extract its features  ࢌ෠ே and store them into 

the working memory. Using the procedure described in Section V to update the 

working memory. 

 

 

Figure 5.2: Overview of H.264 video encoding with working memory prediction 

 
The major computational complexity of the proposed algorithm lies in silhouette 

extraction. Our current silhouette extraction algorithm is able to run 10-15 frames per 

second on 640 ൈ 480  images. The feature-based matching process has low 

computational complexity, especially when the number of objects stored in the working 

memory is small. For example, in this work, we set the number in the range of [50, 300], 
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which is typically enough to cover the major actions, poses, or states of the human 

activities in the indoor environment. According to our estimation, the overhead 

computational complexity introduced by the proposed working memory prediction is less 

than 10% of the H.264 video encoding. 

 

5.3  Results and Analysis 

In Figure 5.3, we choose five different sizes of the working memory: 50, 100, 150, 200, 

and 713. The total number of frames is 1400. We can see that, as we increase the working 

memory size, the video quality is improved. In a typical setting, a working memory size 

of 100 objects will be sufficient and the performance loss is less than 0.3 dB. 
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Figure 5.3: Experimental results with different sizes of working memory. This result is average 
on three videos. 
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Chapter 6 

Conclusion and Future Work 

6.1  Conclusion 

In this work, we have developed a working memory approach for efficient temporal 

prediction and H.264 video coding. We extract objects from the reconstructed video 

frames to form a knowledge base, just like us being able to remember persons that have 

appeared before when watching a movie. We developed a set of features for fast and 

accurate object retrieval. This approach extends the multiple-frame estimation and 

provides a more generic framework for spatiotemporal prediction of video data. Our 

experimental results on surveillance video data demonstrate that the proposed approach is 

able to save the coding bit rate by up to 35% with a small computational overhead.  

 

6.2  Future Work   

The work introduces a new concept for video prediction, using the past observation to 

construct a synthesized reference frame for more efficient motion prediction. The 

working memory can be considered as a knowledge base and the proposed approach can 
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be further extended to knowledge-based video encoding, which might provide a better 

approximation of the human visual system. In our next step, we shall explore more 

advanced computer vision methods, such as multi-person detection and tracking, and 

extend the proposed method for video scene with multiple persons. We would also like to 

investigate how the proposed method performs on other types of video data, such as 

sports and movies.  
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