
FIREFLY - WEB-BASED INTERACTIVE TOOL FOR THE

VISUALIZATION AND VALIDATION OF IMAGE PROCESSING

ALGORITHMS

A Thesis

presented to

the Faculty of the Graduate School

University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

DANIEL BEARD

Dr. Kannappan Palaniappan, Advisor

December 2009



c©Copyright by Daniel Beard 2009

All Rights Reserved



The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled

FIREFLY - WEB-BASED INTERACTIVE TOOL FOR THE VISUALIZATION

AND VALIDATION OF IMAGE PROCESSING ALGORITHMS

presented by Daniel Beard,

a candidate for the degree of Master of Science and hereby certify that in their opinion

it is worthy of acceptance.

Dr. Kannappan Palaniappan

Dr. Yi Shang

Dr. Guilherme DeSouza



Acknowledgments

First and foremost, I would like to thank all of the professors and peers at the Uni-

versity of Missouri who have taught me so much. In particular, I would like to thank

Dr. Kannappan Palaniappan as my advisor for his continued patience and guidance

in both my undergraduate and graduate studies at the University. I would also very

much like to thank my wife, Carolina, who has been extremely supportive of me

working late nights to accomplish what seemed like impossible tasks at times. And

of course, my little Sophie, who has proven to be one of the best, and most fun,

distractions for me. Thanks also to Dr. Yi Shang and Dr. Guilherme DeSouza who

have also taught me much and have agreed to review my masters thesis.

ii



Contents

Acknowledgments ii

List of Figures vi

List of Tables viii

Abstract ix

1 Introduction 1

2 Background 3

2.1 Need for Firefly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Dataset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Choice of Technology: Rich Internet Application 11

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 History and Background . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Adoption and use as a RIA technology . . . . . . . . . . . . . . . . . 15

3.4 Flex Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 The Elastic Racetrack and the Component Lifecycle . . . . . . . . . . 17

3.6 Frameworks for a Framework . . . . . . . . . . . . . . . . . . . . . . 21

iii



3.7 AMF and Communication with the Server . . . . . . . . . . . . . . . 24

4 Ground Truth Utility 25

4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Firefly 31

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Implementation Hurdles . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 43

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Computational Provenance 47

A.1 AVA - Advanced Video Archive . . . . . . . . . . . . . . . . . . . . . 47

A.2 Computational Provenance . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Provenance Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Entity Relationship Diagram 51

C Firefly User Manual 53

C.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2 Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C.3 Accessing GTU and Firefly . . . . . . . . . . . . . . . . . . . . . . . . 62

iv



Bibliography 63

v



List of Figures

2.1 ViPER-GT Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 NeuronJ Interface Interface . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 NeuronJ Attribute Window . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Assigning Attributes to Cells in DCellIQ [4] . . . . . . . . . . . . . . 8

2.5 Cell classification in DCellIQui [4] . . . . . . . . . . . . . . . . . . . . 9

3.1 Sample MXML markup . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The Elastic Racetrack . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Stretched Elastic Racetrack . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Flex Component Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Cairngorm Event Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Sample image from the HeLa dataset . . . . . . . . . . . . . . . . . . 26

4.2 GTU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Assignable Attributes in GTU . . . . . . . . . . . . . . . . . . . . . . 28

4.4 GTU System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Organization of the Firefly System . . . . . . . . . . . . . . . . . . . 32

5.2 The Firefly System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Sample Firefly Interface . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



5.4 Attributes stored with a Marked Object . . . . . . . . . . . . . . . . 35

5.5 Classification Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 State Diagram of the Firefly System . . . . . . . . . . . . . . . . . . . 36

5.7 Firefly Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8 Sample workspace code in Firefly . . . . . . . . . . . . . . . . . . . . 39

A.1 The tree structure showing the AVA processing chain . . . . . . . . . 48

A.2 Comparing parameters in Vistrails [17] . . . . . . . . . . . . . . . . . 50

A.3 Data-flow Visualization in Taverna [18] . . . . . . . . . . . . . . . . . 51

B.1 Firefly Database ERD . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.1 Login Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.2 Choosing a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.3 List of possible datasets . . . . . . . . . . . . . . . . . . . . . . . . . 55

C.4 Workspace view of Firefly . . . . . . . . . . . . . . . . . . . . . . . . 56

C.5 Frame control widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.6 Available Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.7 Save Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C.8 Firefly Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.9 Line Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.10 Box Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.11 Free-Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.12 Attribute Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



List of Tables

2.1 Different datasets needed for Firefly . . . . . . . . . . . . . . . . . . . 10

3.1 RIA Comparison Parameters . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Required classes for the HeLa dataset . . . . . . . . . . . . . . . . . . 26

A.1 Attributes stored in AVA system . . . . . . . . . . . . . . . . . . . . 48

C.1 Firefly keyboard shortcuts . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



Abstract

Image analysis, in computer science, is defined as the process of extracting useful data

from digital images for the purpose of accomplishing a goal. Examples of this might

include tracking objects in satellite imagery or finding edges of a vessel network in a

microscopic image. Doing this manually can prove to be very time consuming, and

is prone to human error. Many advanced techniques and algorithms exist to help

automate this process for researchers in the field. By comparing results of an image

analysis with ground truth, researchers are able to determine how accurate their

algorithms are. Currently there are very few tools to help researchers in gathering

and analyzing this ground truth.

We propose a generic, expandable, web based tool called Firefly to help researchers

in establishing and visualizing ground truth for differing datasets, and automating

the analysis of these datasets. This is done using the interactive and multimedia

features that Flash Player provides running in the browser, and using a centrally

located database for the storage of the data. The overall goal is to develop web-

based services for the analysis of video datasets including data management and

image processing of large timeseries datasets with web access to all of the original

and processed imagery and results. Firefly is one component of this goal.

ix



Chapter 1

Introduction

Image analysis, in computer science, is defined as the process of extracting useful data

from digital images for the purpose of accomplishing a goal. Examples of this might

include tracking objects in satellite imagery or finding edges of a vessel network in a

microscopic image. Doing this manually can prove to be very time consuming, and

is prone to human error. Many advanced techniques and algorithms exist to help

automate this process for researchers in the field. By comparing results of an image

analysis with the reality of the image, researchers are able to determine how accurate

the analysis is. This also allows for researchers to fine tune and enhance the technique

to gather even more accurate data. This reality is more commonly known as ground

truth for the image being studied.

Traditionally, ground truth would be used in the context of aerial or satellite

imagery. While the images are being captured from a distance, there would be in-

dividuals on the ground - on location - gathering data. This data is assumed to be

accurate, and can then be compared against the captured imagery for verification

purposes. Image analysis, however, is not limited to satellite/aerial imagery - it has

applications in many fields. For our purposes, we will refer to ground truth as any sort

of data that can be gathered and trusted to be accurate for use in validating results

generated from a computational analysis of a dataset. Currently, there are no generic

tools or systems to help scientists validate their research. In fact, most ground truth

is done manually, making it an extremely slow and time consuming process. Any
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automatic tools made for measuring ground truth, has been very domain specific.

In this paper, a new system is presented to help researchers establish ground

truth for different datasets - most notably in the field of image analysis. This system,

Firefly, is centered around the idea of displaying the gathered data visually, and

providing the tools necessary for ordinary users to be able to assist in the process of

obtaining ground truth for the data. Typically, ground truth in these datasets refers

to some type of measured object and it’s location relative to the dataset (e.g. points,

lines, boxes, polygons) Currently, Firefly is able to display and annotate ground truth

for two different types of data. The first type is referred to as a ”frameset” in this

discussion. A frameset is a set of a finite number of images that go in a particular

temporal order. This can be thought of almost as series of frames in a movie. The

second data type is includes high-resolution, tiled images. This data type is typically

used for satellite imagery. We will use the specific file type made for use with the

desktop application, ”Kolam”. More information on the Kolam file format can be

found in [1]

In recent years, web applications have become increasingly more popular and

important due to the many advantages that they offer over traditional desktop ap-

plications. Most notably, this includes platform independence of the application, and

no required software to actually be installed on the user’s machine. For these and

reasons to be discussed, Firefly was written as a web application. It utilizes relatively

recent advancements in the field of rich internet applications, namely Adobe Flex, to

provide the level of interactivity needed. Since the datasets are typically very large,

Firefly is also able to stream the data needed to the client. We will look into the

technology powering Firefly with more people, and also see how the Firefly system is

being used now.
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Chapter 2

Background

2.1 Need for Firefly

To better explain why such a system would be useful, we can look at the example of

HeLa cells, a line of cells used in research by scientists to better help them understand

the growth of cancer. A frameset has been taken of some HeLa cells as they change

over time. From this frameset, an automated algorithm has been created to determine

regions of the cells, as well as classify the cells by their cellular cycle state. In order

to validate the results of this algorithm, researchers would need a professional in

the field. This person would classify the cells by marking and recording locations

where each is located, and then associate it with a state or class. Now consider that

there are approximately 10-20 cells in a particular frame, and around 200 frames in

the frameset. It becomes clear how difficult and time consuming the task becomes.

Doing this manually, using traditional tools would be tedious and prone to human

error.

2.2 Existing Tools

Typically, general purpose image editing tools are used to help researchers gather

ground truth in image analysis, At times, a specialized tool is created for the express

purpose of gathering ground truth for the specific dataset being analyzed, also.
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2.2.1 ViPER

One tool that exists for helping researchers in video analysis was created by the

Language and Media Processing Lab at the University of Maryland. This tool is

known as the Video Performance Evaluation Resource, or ViPER.[2] This lab was

involved with analyzing video for semantic content such as detecting text and tracking

people. The lab saw the merit in being able to compare their automated results with

human generated ground truth, and wanted to create a tool to help them in doing

this. The ViPER tool is specific to the domain of video analysis, but exhibits many

useful features, and can be looked at as a model for an even more generic solution.

Figure 2.1: Interface of the ViPER-GT - showing regions being marked [2]

In its annotation of the ground truth, ViPER is able to define regions of various

shapes, such as rectangles and ellipses. It can also define items that do not necessarily
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have a visual element, such as text. This information is stored in an XML file for each

video that is annotated. This XML file can then be used as needed by the researchers

to compare against their results. A set of rudimentary tools is given to help them in

doing this.

There are several aspects of this tool that are important to note. Firstly, it uses

a rich set of GUI tools to help the user. The user is essentially able to draw the

regions on the image, and easily view their results. Making the tool as interactive as

possible is important to help ease the learning curve. Many times, people who will

be establishing ground truth for a dataset aren’t the researchers who have developed

the analysis techniques, but rather professionals in the field who need a tool that

allows them to annotate quickly and easily. ViPER also stores it’s data in a well

documented XML format. This allows for any program to interface with the data for

it’s own comparison. Researchers could also potentially store their output in the same

format, thereby using the ViPER system as a way of displaying their own results as

well.

Perhaps the biggest limitation of the ViPER system is the fact that it can only

display and mark ground truth annotations for video files. While ViPER was never

intended to handle any other file type, there is a need for more generic solutions.

ViPER is also a desktop application that forces it’s users to install local software,

but also have access to the video files as well. When working in a more distributed

environment, this can be an issue, especially when dealing with larger images.

2.2.2 NeuronJ

NeuronJ [3] is a tool used to help researchers in obtaining ground truth of elongated

structures in images - particularly neurites in fluorescence microscopy images. This

tool was created by Erik Meijering of the University Medical Center Rotterdam as

part of the Biomedical Imaging Group Rotterdam’s research. It was written as a

plugin for the Java image processing program OpenJ. This tool, like ViPER, was not
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made for use in a collaborative environment. All data is stored in memory, and can

be exported at any time to various pre-defined data formats.

Figure 2.2: NeuronJ Interface - Able to trace neurite structures in images [3]

It is also somewhat limited in it’s scope. NeuronJ only allows you to do tracings of

images, so all data is stored as points along these contours. Other types of annotations

are not possible. It also is limited to working with one image at a time. Users of the

system are unable to work with image sets, or any sort of temporal information in

the software.

NeuronJ does, however, contain many features that make it powerful in it’s scope.

Tracing works as expected in any image processing program, but attempts to help the

user by correcting the tracing to what it thinks is a more optimal path, by actually

analyzing the image below it. Because of the complexity of the neurites, and using
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limited means of input to the computer (computer mouse), this is a very important

feature that can greatly speed up the work of the researchers. Of course, manual

corrections can be made at any time if the correction algorithm did not work as

expected. NeuronJ also allows the user to annotate each individual tracing with

various predefined attributes. These attributes also include the idea of a class - which

allows users to correlate different tracings in the same group. Currently the system

allows for ten different classes, each with an assignable color. This class color is

reflected in the GUI, making it easier for the user to see where the different classes

are in the image.

Figure 2.3: Assignable attributes of the NeuronJ system [3]

2.2.3 DCellIQ

DCellIQ (Dynamic Cell Image Quantitator) [4] is a software package created by the

Center for Bioengineering and Informatics at The Methodist Hospital Research In-

stitute. DCellIQ was created as a tool to ”provide an automated pipeline for quan-

titative, reproducible and accurate interpretation of cell dynamic behaviors using

time-lapse cellular images”. The time-lapse cellular imagery is put through a pipeline
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of processes that includes detection, segmentation, tracking, feature extraction and

classification. This is done in a very straightforward manner, where the user merely

needs to load the raw data in the program. All data extracted is stored locally in the

same location as the raw data.

Figure 2.4: Assigning Attributes to Cells in DCellIQ [4]

After the pipeline is done, users are able to gather ground truth, and also correct

errors made by the algorithms. Each cell in the system is assigned a certain amount

of attributes in the system, and also introduces a way to quantify the cell cycle, or

parent-child relationships between the cells. All cells are assigned an ID, that can

then be tracked across the different frames of the time-lapse data. Since cells split

over time, this is an important feature, and something that needs to be tracked. The

user is also able to manually fix this data, by either merging or splitting cells that

were auto-detected by the system.

The software package also includes DCellQui, which allows researchers to validate
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and correct classification results. This is similar to how NeuronJ handled classes,

where a set of predefined classes are able to be assigned to the different cells, and for

feedback to the user, they are assigned a color when viewed by the user.

Figure 2.5: Cell classification in DCellIQui [4]

Like most packages, the extracted data is stored locally in various Matlab and

Excel files, which can then be used by the researchers however needed. Once again,

this makes it difficult for researchers to collaborate on a single dataset.

2.3 Dataset Types

In attempting to make a more generic tool, one must begin to understand the com-

plexity and variety of domains that it would need to be able to cover. In doing this,

we will focus on the applications that were initially required by the Multimedia Com-

munications and Visualization Laboratory at the University of Missouri. The Firefly
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Datasets
Cell Labeling Points
Vessel Segmentation Lines, Contours, Boxes
Histopathology Filled Polygons, Contours
Cell Segmentation Contours
Satellite Points, Boxes, Lines

Table 2.1: Examples of different datasets, and the tools needed

system has currently implemented the Cell Labeling dataset type, and the Satellite

Imagery/Kolam dataset type. Each dataset type listed requires the ability to draw

different types of objects within the image.

It is relatively easy to add new data types to the system in order to provide a

more generic solution.
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Chapter 3

Choice of Technology: Rich
Internet Application

3.1 Requirements

In deciding on the technology that should be used for any application, the require-

ments should be analyzed, and weighed against the different options. The biggest

deciding factor for the Firefly system was the need for a web based application due

to the makeup of the lab. The initial users of the system were using different oper-

ating systems (Macintosh OS X, Windows and Linux), and access to the files needed

to establish ground truth were scattered across different machines in the network.

Using a web application was the obvious answer for several reasons. Browser-based

applications offer the following advantages:

• Standardized tags/scripts are easy to develop (Rapid development, low devel-

opment cost)

• No installation, updates or patches are necessary (Low delivery and maintenance

costs)

• Applications are accessible from networked computers (Availability, flexibility)

• Applications can run on different operating systems (Platform independence)

• User interface (UI) is simple and standardized (Low learning curve for end users)
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[5] However, traditionally, web applications have been extremely limited in it’s user

interaction as compared to desktop applications. Traditional web applications have

the user perform an action that then typically corresponds to a page refresh with

the updated information. This is a stark contrast to the rich interactive experiences

that desktop applications can give us. In recent years, there have been advances in

technology to attempt to bring the rich interaction of the desktop to the web.

In 2002, Macromedia talked about some of the features that would be needed for

future web applications, coining the term Rich Internet Applications (RIA) [6]. Rich

Internet Applications are described as a new model that combines the media-rich

power of the traditional desktop with the deployment and content-rich nature of web

applications. [reference]

Since then, many technologies have come out to fill that need. These include

AJAX, Adobe Flex, Java and Silverlight. In comparing these technologies [7] has

determined important areas of any RIA technology that should be considered.

Ultimately, in the end Adobe Flex was chosen as the main technology to present

the Firefly system to the user. Using traditional HTML/Javascript/AJAX can make

some very nice RIAs, but poor cross browser compatibility makes this extremely

difficult to implement correctly. This especially becomes a problem with Firefly,

since we need to be able to display data in precise locations within the application,

so having the exact same experience across all browsers is crucial. Silverlight doesn’t

have complete cross-browser support yet, and the tools required to develop in it, are

still costly - requiring a version of Microsoft Visual Studio.

Flex excels in all of the areas listed in [8]. Due to the fact that it runs as a

plugin (through Flash Player), we can expect it to behave the same across different

browsers and operating systems. Flash player’s market penetration of almost 100

percent insures that practically anyone will be able to run the content. Also, having

it’s roots in flash content, it excels in interactive content, especially in it’s ability to
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Interaction Possibility to specify the user (active) be-
haviors

Multimedia Possibility to support the representation of
graphics, audio, video, streaming and live
multimedia

Visual continuity Possibility to avoid screen refreshments
and blink experiences

Synchronization To provide an active (related with user in-
teraction) and a passive (related with pre-
defined behaviors) representation of inter-
face elements

Dynamic Data Re-
trieval

Possibility to carry data to/from the server
at run time

Parallel Requests to
Different Sources

Possibility to retrieve data from one or
more simultaneous sources, both in a syn-
chronous and asynchronous way

Personalization Extension for internationalization and lo-
calization, accessibility, multi-device ac-
cess, etc.

Interactive Collabo-
ration

It allows real-time interactive collaboration
between different users in order to work to-
gether on the same task.

Table 3.1: RIA Comparison Parameters

draw vector graphics - which is used widely in the Firefly system.
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3.2 History and Background

Adobe Flex began in 2004 as Macromedia Flex Server, a J2EE application using

Flash Player as a means to display information in an interactive way to the user.

Adoption was fairly small due to it’s closed and costly nature. It is important to

note that this was a complete server-side solution. While running the presentation

in Flash Player gave the developer certain interactive attributes to the application,

the actual application was still compiled on the server side. When Adobe completed

it’s merger with Macromedia in 2005, it released Flex 2 as the first rebranded ap-

plication from the newly formed company. Flex 2 brought many important changes

to the Flex framework, and began a much larger adoption of the technology by the

web development community. The most notable addition was the introduction of

ActionScript 3. ActionScript is the main scripting language used for developing Flex

applications. ActionScript 3 is based off of the ECMAScript specification, and is

a powerful, object-oriented language that can be leveraged for creating much more

robust and modern web applications. With Flex 2, Adobe also began to reach out to

more developers by significantly lowering the development cost associated with Flex

apps. Flex 2 no longer required the very expensive J2EE application server to run the

apps, and Adobe also released the SDK as a free download for developers to create

Flex applications free of charge. Flex 2 applications also were compiled once, instead

of being compiled on the fly by the server, meaning less costly servers could now be

used to serve a Flex application.

Flex 3 continued Adobe’s new commitment to open source, by releasing the entire

SDK as open source under the Mozilla Public License [9]. While many of the concepts

remained largely untouched from Flex 2, it did include a number of enhancements

and performance increases over Flex 2. Adobe has recently announced it’s intent

to release Flex 4, code named Gumbo, in early 2010. Flex 4 continues on Flex 3’s

framework, with enhancements to help design applications.
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3.3 Adoption and use as a RIA technology

With the shift towards providing a new open source toolset, and reaching out to

more developers, Flex has seen an increase in adoption. In January 2009, Adobe

announced that there had been over a million downloads of its developers tools,

with major adoption as a rich internet technology. Adobe also opened up it’s data

transport technology specification, AMF (Action Message Format), so that it could

be implemented across several different backend technologies, including Java, PHP

and Python.

3.4 Flex Framework Overview

When talking about the Flex framework, it is important to understand that Flex at

it’s core is still a flash application. Flash’s traditional goal was to provide a way to

bring vector-based animations to the browser through the use of a lightweight plugin.

As an animation framework, it’s whole execution is based around the idea of frames.

One can think of frames in the same way as frames in a traditional animation. An

image is drawn on a particular frame, and then modified slightly on each following

frame. Combining all of these frames together in a fast sequence, gives the appearance

of movement to the user. Flash displays these frames at a rate defined by the user.

Flex applications by default run at 24 frames per second. Understanding how code

execution works within the frames is very important to building a Flex application.

Flash content is created by compiling ActionScript code to a SWF file that con-

tains flash bytecode. This works in much the same way that Java applications are

compiled down to java bytecode. The SWF file is executed directly by Flash Player,

using the ActionScript Virtual Machine (AVM).

On the web, Flash is widely used for creating simple animations and simple in-

teractive content such as games, audio and video. By itself, it is very difficult to
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make more traditional web applications - which is where Flex comes in hand. Flex,

provides an additional toolset and extra classes that help in the development of rich

internet applications. This includes more robust ways of running remote procedures,

a huge set of GUI components, and new language constructs to help in the layout of

the application.

One of these tools is the use of an XML based language, MXML. MXML is used

to declaratively lay out the interface of the application. This basically helps separate

the code needed to layout the application from the logic that defines the interactions

between different components within the Flex application. However, the MXML

specification does allow for some logic by itself, since all MXML code is compiled

to ActionScript during the compile process anyways. Sample MXML code is given

below showing text being displayed in the middle of the application:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">

<mx:Label text="Sample Label" horizontalCenter="0" verticalCenter="0"/>
</mx:Application>

Figure 3.1: Sample MXML markup

Flex is a highly event driven programming environment. Objects are created

within Flex, and then listen for events from other objects within it. For example,

when creating a button in a Flex application, one the more commonly used events is

the ”click” event. When the user clicks the button, a certain action should happen.

As more complex objects are made, custom events can also be made as well that

are dispatched when the user specifies. This model allows for classes to become more

reusable, and less coupled, since they are not concerned with how other objects handle

the different events that are dispatched.

Related to the idea of being event driven is the idea of data binding. Data binding
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is the process of tying the data in one object to another object. Essentially, what this

allows is to update a target property of an object given a source property. One can

think of an example of using a slider interface control where you want to change the

location of an object on the screen based on the current value of the slider control. The

location of the object should be changed every time the slider’s position is changed

as well. Data binding implicitly or explicitly creates events that are fired every time

the source property changes. When these events are dispatched, Flex knows that the

target properties should be updated as well. This is very useful, and eliminates much

of the boiler plate code that could exist otherwise.

Flex also provides a wide array of standard user interface elements, or components,

that can be used to create rich desktop-like interfaces. These include datagrids,

buttons, sliders, menus, etc.

3.5 The Elastic Racetrack and the Component Life-

cycle

In looking at the Flash player execution model, it is important to remember that

everything is executed on a speed that is based on the framerate defined by the

developer. That is to say that either code execution and/or rendering occur depending

on the current frame in execution. Ted Patrick, an Adobe employee, refers to the

Flash Player as an ”Elastic Racetrack” [10]. He describes a racetrack with two main

sections, one section for code execution, and another section for graphics rendering.

In every frame in the SWF file, the Flash player loops this ”racetrack” performing the

code execution first, and then renders any graphical changes that need to occur based

on the the code that that was executed during that frame. The player will attempt

to accomplish everything specified by the SWF file in the loop in the shortest amount

of time possible, but not going faster than the speed designated by the framerate.

As is expected, there will be times that there is a lot of data being processed,
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Figure 3.2: The Elastic Racetrack [10]

and there are times when a lot of graphical information is being drawn to the screen.

The player will essentially stretch the racetrack to allot more time for either code

execution, or graphics rendering, or both. This is why the racetrack is referred to as

being elastic.

Figure 3.3: The racetrack stretches to accommodate is occurring during the cycle [10]

All of this is important to understand when developing applications to run in the

ActionScript virtual machine, because trying too much code execution or too much
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graphics processing during a single frame can greatly slow down the performance of

the application, since it has to complete all actions before moving to the next cycle.

To better optimize code, we can postpone execution of processor intensive code to

happen at the last possible time, to increase performance - or as Ted Patrick puts it

- ”Just wait a frame!” [10].

The Flex framework is designed in such a way to make this easier to accomplish

through the use of what is known as the component lifecycle during execution. The

component lifecycle is a set of distinct steps that are followed for every visual object

within the display tree and each step is executed to allow for them to happen at the

most efficient time. They follow a component through it’s construction, updating,

and eventual removal from the display tree. While all of these steps are important to

understand, the most important part for a developer to understand is the invalidation,

validation and update states.

[11] Flex uses what is known as deferred validation. Aspects for each component

related to code processing and rendering are deferred until the appropriate validation

function is called. The three main validation functions are commitProperties(), mea-

sure(), and updateDisplayList(). CommitProperties is called to synchronize prop-

erties across the application. Measure is used to set the width and height of the

component, while updateDisplayList is for updating all other graphical elements of

the component, such as laying out it’s children in the display tree.

This not only allows for there to be tighter control over when certain types of

updates happen, but also allows code to be executed the least amount possible [11].

This is done since the functions are scheduled to be executed when their corresponding

invalidate functions are called: invalidateProperties, invalidateSize and invalidateDis-

playList. For example, when the height of a flex component is set, then the validation

function measure() should be run as well. We could potentially run the function ex-

plicitly every time the height is changed. However, this doesn’t seem very efficient
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Figure 3.4: Flex Component Lifecycle
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considering that this function could potentially be called multiple times before the

current frame is even rendered. To stop this, the measure function is only scheduled

to be called once by using the invalidateSize function. Then before the component

prepares to render again, the measure function will be called. This way, no matter

how many times a height was set during a frame cycle, the actual updating only

occurs once. It also important to note that it does not necessarily have to run every

frame cycle. It is only run if the size had been invalidated using the invalidateSize()

function during that particular cycle.

3.6 Frameworks for a Framework

By definition, Flex is essentially a web application framework that extends the base

functionality of Flash Player. It provides a collection of common code that can

be extended or overridden to create powerful web applications. However, as Flex

began to grow in popularity, the need for more defined best-practices within the Flex

framework grew, as applications began to be created in parallel by large development

teams. With this need, arose several different micro-architectures within Flex, that

help encourage best practices, and design patterns when creating an application.

These micro-architectures are more commonly known as Flex Frameworks.

By using a Flex framework, developers not only develop using tested design pat-

terns in their applications, but also create more reusable code that can be changed

and expanded by anyone else familiar with that framework. Probably the most im-

portant design pattern followed in these frameworks, is the Model-View-Controller

(MVC) design pattern. The main idea behind this design pattern is to separate the

underlying data of an application from how the data is ultimately displayed to the

user. As the name suggests, there are three main parts in a MVC framework, the

model, the view and the controller. The model represents the actual data, the view

is the presentation to the user, and the controller helps in the interaction between
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the view and model. Using this approach, the application can relatively easily change

where the data is coming from, or how the data is presented, by only changing the

affected portion of the application. Each part should still be making the same calls

through the controller. Flex applications are not able to implement the MVC design

pattern in the traditional sense however, since the application normally doesn’t have

direct access to the data source. Since the SWF runs locally in the Flash player, it

has to make remote procedure calls back to the server any time it want to access data.

This leads to what is knows as a dual-mvc deployment where models and controllers

exist on both the server and the client [12]. The models that exist in Flex are typically

mirrored from the data that is received back from the server after a remote call.

Two frameworks were ultimately used in the development of Firefly, Cairngorm

and Swiz. Cairngorm was used during initial development, but was ultimately changed

to the more flexible structure that Swiz allows.

Cairngorm is one of the oldest frameworks, and probably the most widely used at

the enterprise level. It was developed by Adobe and works well in enterprise situations

due to it’s highly structured organization. It follows an event flow model, where any

interaction with the controller/server happens by firing events that the controller is

listening for.

One of the biggest complaints of the Cairngorm framework is the amount of ”boiler

plate” code that has to be written in order to use the framework. As shown in the

Cairngorm event flow, even in the simplest example, one would have to write five

classes just to send and receive data from the server. Cairngorm also relies on a

global singleton, known as the model locator. The model locator is essentially a

place for global storage of variables that are used to update the view. This makes

modularization of the application even more difficult, and code reuse much more

difficult.

The Swiz framework, attempts to simplify the whole process by merely providing
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Figure 3.5: Cairngorm Event Flow [13]

a set of classes and tools that can be used to help in the process of making a MVC

framework. Swiz is an inversion of control framework that uses the idea of dependency

injection. Essentially what Swiz does, is provide all data that is needed by an object

for successful execution. This is sometimes called the Hollywood Principle - ”Don’t

call us, we’ll call you”. Swiz uses the idea of a factory that contains a collection of

singletons that are then able to be set as properties of different objects without the

objects having to explicitly call for them. This leads to a cleaner implementation of

the MVC design pattern, by strictly keeping the different parts separate. As explained

earlier, Swiz does not enforce a specific code structure like Cairngorm, which is seen

as a weakness by some, but does allow for more flexible code depending on the project

at hand. [14]
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3.7 AMF and Communication with the Server

As with most rich internet application technologies, Flex is a ”fat client”, where most

of the interaction with the application happens client side, and then only sending and

receiving data to the server when needed. What this means is that Flex or Flash

has no way of interacting directly with the data being stored on a server, such as a

database, or the filesystem. All interaction with the server has to take place with

some sort of service call to the server.

Flex has two main ways of interacting with the server: HTTP service calls and

AMF streaming. HTTP service calls interact by making HTTP requests to the server

using GET and POST variables, and then receiving certain information back. Typ-

ically when dealing with flex, you will want to receive the data back as XML, since

flash player is able to natively parse the XML quickly.

AMF, or Action Message Format, is a binary format that can be used to serialize

and transfer ActionScript objects. This has several advantages when dealing with

Flex applications. Firstly, when dealing with large amounts of data, this can prove

to be much faster than typical HTTP requests. The serialized object is compressed

using zlib before sending it over the wire, and doesn’t need to send the headers that

HTTP responses require. Another major advantage is it’s ability to automatically

serialize objects into strongly typed objects between both the server and client. This

is especially useful since Flex frameworks use a dual-mvc setup, where models exist

on both the server and client. Now, for example, if we had a Java class User, and sent

it to Flex via AMF streaming, Flash player can automatically serialize the object into

the corresponding ActionScript class User. This can be a huge help in dealing with

complex data that is being sent back and forth between the client and server.

The AMF specification was opened to the general development community in

2007, with most major server side languages now having bindings to it. Firefly uses

AMF streaming to communicate with the server using PHP.

24



Chapter 4

Ground Truth Utility

4.1 Requirements

The Multimedia Communications and Visualization Laboratory at the University

of Missouri was involved with analyzing and classifying cancerous cells, known as

HeLa cells. This was done in collaboration with a lab in Europe, making it difficult

at times to work together on parts of the project. The data analyzed comprised

approximately 200 images taken in sequential order composed in a frameset. As the

cells would progress through the sequence, they would change state, including splitting

during the mitosis stage. The cell images were analyzed using various algorithms to

determine not only regions of the cells, but also the class, or state of the cell during

it’s life cycle. As discussed previously, obtaining ground truth of the cells locations

and classes was needed in order to verify the results. In order to classify these results,

a professional in the field was needed to mark on every image in the sequence the

current state of each cell. Obtaining this ground truth, would prove to be very difficult

to do, manually.

From these requirements, an initial prototype was created, known as the Ground

Truth Utility or GTU. This was a a very dataset specific application for the HeLa cells

dataset. Since the regions had already been determined for the cells in the sequence,

only a point within the region was needed in order to identify them. That is to say,

the researchers merely needed to mark one point inside of a cell to determine what
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Cell Classification
MI Mitosis
G1 Gap 1
SE Synthesis Early
SM Synthesis Middle
SL Synthesis Late
G2 Gap 2
AP Apoptosis
? Undecidable

Table 4.1: Required classes for the HeLa dataset

Figure 4.1: Sample image from the HeLa dataset
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cell is being described. Once a point has been marked, then different attributes,

and most importantly the classification, can be associated with it. Since this was a

collaborative work, it was decided that web-based tool would be ideal as discussed

earlier, using Adobe Flex as the main technology.

Figure 4.2: GTU Interface

4.2 Implementation

GTU was a very basic tool that only used data files on the server to store and

retrieve the data associated with the sequence sets. All interaction between the Flex

application and the server took place by passing POST variables to PHP scripts

residing on the server. The server had two main folders, data and images. By passing

in the identifier ”HeLa.TS5” as a POST variable, the system would then know to look

in the HeLa project folder and then the TS5 dataset folder. So, the images would be

stored in ”images/HeLa/TS5”, and the data files being stored in ”data/HeLa/TS5”.

This approach, while rudimentary, does allow the user to add and change the datasets

very easily. The format of the data files was a plain text comma delimited file, with
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Figure 4.3: Assignable Attributes in GTU

each row corresponding to a cell in the image. This was predefined to allow for other

programs such as Matlab to easily read it in. The real power of the application was

in the interactivity of Flash player. One of Flash’s biggest strengths is it’s ability

to handle and draw vector graphics within itself. The user was able to interactively

draw points on top of the current image in the sequence, and then assign it’s class

and attributes.

GTU was used successfully for several datasets, but eventually some of the weak-

nesses of it began to become more apparent. Since all users of the system, were

basically accessing the same filesystem, there began to be issues with concurrent

editing. The data files were completely rewritten back to disk anytime a change was

done. This was fine as long as there was only one user, but if two users were anno-

tating at the same time, a race condition occurred with the possibility of data loss.

Essentially, if two users were actively editing the same frames in the system, you have

no way of merging their information into the file. Since the data is saved on exit from

the frame, the last user to exit is the only one that has data saved.

Other limitations of the system related to the interface. Users were unable to
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Figure 4.4: GTU System Structure
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move points once they were drawn on the image, meaning the point would have to

be completely erased, and redrawn to move it. Also, there was no buffering solution

created, meaning that every time the user advanced to a following or previous frame,

they would have to wait for the image and data to load again, which could take up to

several seconds depending on the size of the images. GTU proved that the concept

was valid, and that a more robust, generic tool could not only help in HeLa cell

classification, but also be used in future datasets, where ground truth was needed.
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Chapter 5

Firefly

5.1 Overview

The Ground Truth Utility was very useful for the HeLa cell image sequence described

earlier, but was made specifically for that dataset. In reality, a more generic solution

would be needed to provide the ability to mark ground truth on different types of

datasets. We have proposed a generic solution that is able to work with multiple

different data types, including images, image sequences, and high resolution tiled

pyramid files.

One of the main issues encountered with GTU was it’s inability for different

users to have concurrent read and write access to the data files on the server. This is

important as many times, two different people will work on the same dataset. To solve

this, a centralized MySQL database was setup to store all of the data associated with

the different datasets. The database encompasses the new organizational structure

of the entire system.

One of the biggest new features was to have some sort of user management built

in to the system. Firstly, all users of the system are required to login in order to use

the system. By tracking what user is logged in, we can now enforce access control

on the datasets in the system. For example, by limiting the amount of users who

should be able to annotate images in a dataset, we can avoid different users putting

conflicting annotations, accidental deletion of annotations, etc. We are also now able
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to track which users are responsible for annotating and creating datasets for auditing

purposes.

When creating the Firefly system, it was also designed with the intent that it could

also eventually be used in touch/tablet type environments. Being able to use a tablet

computer to make annotations on datasets has proven very useful for professionals to

easily mark and annotate.

Figure 5.1: Organization of the Firefly System

The general organization is ultimately up to the end users, but Firefly allows

for several levels. At the top level, there are labs. Labs are any group of people

that work on many different projects together. By using labs, Firefly could run at

a larger organizational level, such as a university, which would then have multiple

labs underneath. Underneath labs, are projects. An example of a project would be

the HeLa cells that were dealt with in the earlier examples. Projects also dictate the

type of information that is associated with each dataset (e.g. the classes defined to

represent the different states of the cells). Projects typically contain multiple data

sets. Datasets refer to the actual data that is being analyzed - whether it be particular

sequence of ordered images, or a high resolution image file.

Going back to the whole reason for the Firefly system, we are wanting to annotate

the datasets with ground truth, so that the data can be used to verify any sort of image
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analysis done. In the original GTU system, these annotations were encompassed in

the points that were drawn on top of the different images in the sequence. In an

attempt to make the system even more generic, we use the idea of a ”marked object”.

A marked object refers to any piece of related information in a dataset. Typically,

these have some sort of location associated with it. So, for example, we have the points

in the HeLa set, that then have a class and other different attributes associated with

it. However, in making a more generic system, we cannot just limit marked objects to

points. For the initial system, we have expanded that toolset to include points, lines,

bounding boxes and rasterized free form drawing. Marked objects are not limited to

only visual objects either - there are non-visual attributes as well that can belong to

an entire image for example. This information is fairly straightforward to represent

in the database implementing a one-to-one inheritance relationship for the different

marked object types.

5.2 Implementation

The general implementation of the Firefly system fixes many of the issues that GTU

suffered from. As a whole, the system still uses a Flex front-end, but now utilizes

the Zend Framework running on PHP to create a more robust, and expandable data-

access layer. All communication is done through AMF streaming to the PHP backend,

which in turn uses a MySQL database for data storage.

The most noticeable changes for the user occur within Flex. Once a user chooses

a dataset to work with, the main focus of the entire workspace is on the data actually

being displayed. All of the interface elements have been designed to either be hidden

when not needed, or merely float over the actual images. With the addition of the

new tools (Point, Line, Box, Free Draw), the users now are able to change resize, and

move all marked objects within the system. This can help greatly in reducing the

amount of time spent working in the system.
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Figure 5.2: The Firefly System

Figure 5.3: Sample Firefly Interface
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Figure 5.4: Attributes stored with a Marked Object

The classification portion of marked objects is now much more robust, allowing

for different classes to be hidden, depending on the needs of the user. This works

much in the same way as layers in traditional image processing applications work.

5.3 Implementation Hurdles

In the actual implementation of the system, multiples hurdles were encountered. One

of the major requirements and needs of the system was to make it flexible enough so

that we would be able to add new features and enhancements in the future. This,

along with other unique features of the system led to distinctive problems that had

to be resolved. The general state diagram of the system can be seen below:

5.3.1 Generalized Workspace

One of the bigger issues in developing the Firefly system was a way to create workspaces

that would allow all possible types of future datasets. This problem is demonstrated

in using the two main data types that were used in the initial prototype - image

sequences and tiled pyramid files. The image sequence dataset type requires it’s own

set of unique tools and controls that other data types would not need. This includes

to ability to navigate through the images throughout the sequence, the ability to copy

marked objects between the images, and more. The tiled pyramid file merely needs
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Figure 5.5: Classification Layers

Figure 5.6: State Diagram of the Firefly System
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a way to zoom in and out of the image to allow for easy placement of the marked

objects.

While the different dataset types have obvious differences, there are also similar-

ities as well. Most dataset types include a certain amount of tools that are used for

creating the marked objects. Most of them also use a class system for classifying the

marked objects. Using these similarities, a collection of base user interface controls

were created that could be extended and used throughout many different dataset

types. These controls include things such as a toolbox for selecting the current tool

in use by the user, an informational panel on the dataset, a way of displaying and

hiding the classes associated with the data, and a buffer control (This would be used

with temporal navigation).

Using the markup language already built into Flex, a custom ActionScript class

was made that can easily interpret and layout the components needed for each differ-

ent type of workspace. In order to make a new workspace for use with a new datatype,

or project, a simple XML based class can be made to merely layout the components.

Typically, very little customization is needed, but it is possible to be extended.

A factory design pattern is implemented to actually create the objects within

each dataset. Basically, each dataset type has a factory class that can tell Flex, what

should be loaded to create the workspace, and what should be loaded to create the

attribute window.

5.3.2 Buffer

One of the more glaring issues with the original GTU system was the lack of a

buffering system for the images. Typical image sets consisted of over 200 images,

and trying to quickly navigate through the images was a hassle, since a new image

had to be loaded every time the frame was changed. In Firefly, a generalized buffer

solution was created to handle any type of data that could be buffered or saved locally.

For framesets, the desired behavior is that the system should load all surrounding
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Figure 5.7: Firefly Class Diagram
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<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:core="edu.mizzou.firefly.view.dataset.core.*"
xmlns:layers="edu.mizzou.firefly.view.dataset.core.layers.*"
xmlns:frameset="edu.mizzou.firefly.view.dataset.frameset.*"
xmlns:tools="edu.mizzou.firefly.view.dataset.core.tools.*">

<frameset:FrameBuffer/>

<core:SlidingTabNavigator>
<mx:Canvas label="Tools">

<tools:ToolBox>
<tools:dataProvider>

<mx:Array>
<tools:HandTool/>
<tools:PointTool/>
<tools:SelectTool/>
<tools:LineTool/>
<tools:BoxTool/>
<tools:FreeOpenTool/>
<tools:FreeFillTool/>
<tools:SelectTool/>
<tools:EraserTool/>
<tools:PaintBucketTool/>

</mx:Array>
</tools:dataProvider>

</tools:ToolBox>
</mx:Canvas>
<mx:Canvas label="Classes">

<layers:Layers/>
</mx:Canvas>
<mx:Canvas label="Info">

<frameset:FramesetInfo/>
</mx:Canvas>
<mx:Canvas label="Save Control">

<core:SaveControl buffer="{buffer}"/>
</mx:Canvas>

</core:SlidingTabNavigator>

<frameset:FrameAdvance frameBuffer="{buffer}">
</frameset:FrameAdvance>

</mx:Canvas>

Figure 5.8: Sample workspace code in Firefly
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frames from the currently active frame, so that the user is able to quickly navigate

through the frames. Memory becomes an issue in dealing with the buffer. One of the

limitations of the way Flash handles images is that when a compressed image format

is loaded into the player, it is stored uncompressed in memory. At first, it was thought

that since the space taken by the images on disk was less than 200 megabytes, we

could load all images in the buffer since most modern computers would not have a

problem allocating 200 megabytes for flash player. However, once these images were

uncompressed, the amount of memory resources needed became huge. With this in

mind, the new buffering solution needed to only keep a smaller subset of the images

in memory at a time. The first attempt of making a buffer involved making a first

in, first out queue, where the images would be added into an array of fixed length,

which would be cycled through, to store the newly loaded images. The first image

loaded in the buffer, would be the first image to be overwritten when the buffer is full.

However this is not the best solution for the frame buffer problem. For example, if

we are currently on frame n, then the buffer should begin filling itself by load frames

following this order: n+1,n-1,n+2,n-1,....,n+l/2,n-l/2, where l signifies the size of the

buffer.

If we move to frame n+1, in reality, it should only have to load one more frame

to the buffer (n + 1 + l/2), eliminating the frame located at n-l/2. However, if the

queue was used, then the newly loaded frame would actually eliminate the frame at

location n, since it was the first loaded frame in the buffer.

In order to get the desired behavior, you need to reorder the items in the array to

match. Every time the current viewable frame is changed for example, it will again

attempt to fill the buffer moving out in the usual way, but first checking if items exist

in the buffer. If they do exist, they are moved to the front of the array. So, when

a frame is reached that has not be loaded, the last item is popped of the array, and

replaced with the newest frame. This keeps the always keeps the needed frames in
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the buffer.

5.3.3 Pyramid Files

One of the requirements of the new system was to be able to handle several different

datatypes besides just the frame sequences like the HeLa dataset. In it’s current

implementation, we have allowed for the display and ability to annotate large resolu-

tion images within Flash player. These images are typically stored in some sort of a

pyramid format. Essentially what this means, is that the source image is scaled to dif-

ferent resolutions, creating layers, and then each layer is split into tiles of equal sizes.

This creates essentially a pyramid of tiles, since the highest resolution will have the

most tiles, compromising the base of the ”pyramid”, and the lowest resolution layer,

will typically only have a couple of tiles, compromising the top of the ”pyramid”.

This way, depending on the current zoom of the image, we get the layer, that

most closely matches it, and then retrieve the corresponding tiles that are needed in

the current display region.

Creating a system that can display these images, is a fairly difficult task, but

several open source tools have been created to speed up the process. For this project,

the OpenZoom library [15] made for Flash player was used. This library was originally

made to read deep-zoom images - a pyramid file type created by Microsoft. A custom

library was made to make the Kolam datatype readable by the OpenZoom engine.

This engine is being looked at for expansion to displaying temporal data as well.

5.3.4 Raster Drawing

Raster drawing was a challenge for the tiled pyramid files due to their size. Flash

player is limited to displaying rasterized bitmap content smaller than 4096 by 4096

pixels. Many of the tiled pyramid files can greatly exceed this resolution. This means

that we will be unable to use only one bitmap object within flash to represent the

hand drawn information. Along with this, for performance reasons, we would not
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want to load all of the bitmap data from the database for such a large image if not

needed.

The solution was to tile the bitmap information as well. Each bitmap tile is a set

size, and then tiled according to the size of the image. Using this method, we can

once again use the buffer class created previously, and limit the amount of data that

needs to be drawn on the screen. This information is saved back to the database as a

compressed bytearray. Early tests of this method have shown it to work well for very

large images.
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Chapter 6

Conclusion

6.1 Future Work

The Firefly system was designed knowing that future enhancements would be added

later. The structure of the code and the system was made to be as modular as

possible. These enhancements will not only add greater value to the tool as a way of

gathering ground truth, but make it an even more generic utility for the researchers

to better visualize and understand the various data sets they analyze.

While the Flash player virtual machine is a powerful tool - it is not able to process

data at the speed and ease that other tools such as Matlab is able to. Because of

this, we saw the need for somehow interfacing between Firefly, and other applications.

Currently data is able to be extracted easily, but sending processed data back to the

system is unsupported. An example where this might be useful would be using an

existing Matlab program to segment a specified region of the image currently being

analyzed. While a native Actionscript module could potentially be made to do this,

it would be somewhat difficult, and be redundant to redo code that has already been

written and tested in other languages. Interfacing with other programs would either

have to be done through web service calls that are then able to interface directly with

these applications, or run Firefly locally, and then allowing it to directly access the

other tools.

Using web services would allow for Firefly to still run through the browser and give
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all users of the system access to these new tools. It does require a significant amount

of overhead in setting it up, since all of these services would need to be compiled to

run on the server that is housing the web services. The system also would have to

deal with bandwidth issues back to server, especially since the amount of data sent

could be relatively large.

Running it locally allows for faster data transfer, but limits the users who could

use this functionality. Since Firefly was created using Adobe Flex, making a local

version would be relatively simple using Adobe AIR technology. Essentially we would

be able to compile the same application to be installed locally on machines, thereby

removing the security sandbox imposed by Flash player, and allowing the system to

access the local filesystem. Again, this would need to be configured per machine,

effectively removing the collaboration aspect of the system.

Along with interfacing with other tools and applications, would be the ability

to interface with alternative data storage systems. Currently we are only using the

MySQL backend as a way to store all of the data captured. We would still like

to leave the option for some labs to still use a flat file, possibly XML based storage

system, where it may be difficult to actually setup the database. Also, there are many

accepted database standards for different dataset types. For example, for biological

microscopic images, OMERO has become a standard tool to use within the system.

It utilizes many standards for the storage of this data, including it’s own database

backend. It would become important in the future to interface with this backend for

easier use with other labs who might not necessarily be using the Firefly tool.

Another important feature that is being worked on is the ability to store free-form

drawing in a vector format. Currently, the data is stored in a rasterized bitmap, but

this is sometimes not the ideal way of storing the data, especially when it needs to be

compared with other vector information for the dataset. Flash player has limitations

in the amount of points it can display currently, so we are looking at other ways for

44



storing complex contours efficiently within the system. One way of doing this would

be to store the contours as chain codes within the system.

It has been found that many times, it would be a great help to be able to see not

only the ground truth of a dataset, but also superimpose the results of the algorithms

being tested as well. Besides giving researchers a unique view of their dataset, it

also could potentially speed up the time needed to mark these datasets with ground

truth. It would be much quicker to merely correct the automated results when there

are errors instead of having to completely recreate the data that mostly exists already

through the algorithm.

Other enhancements add to the types of datasets that are supported. There are

framesets that also contain multiple layers for each frame - essentially giving the

images depth. This would require the base buffer created to be expanded to support

buffering in two possible directions.

One of the more technically challenging enhancements include expanding the Ko-

lam support now implemented to support temporal scrubbing as well. This is useful

to help track moving objects within the high resolution satellite images for example.

6.2 Summary

Firefly, while still being improved and enhanced, has been created using the ideas and

lessons learned from the proven GTU system. This system was created using Adobe

Flex, which gives us a highly interactive and robust experience for dealing with many

different dataset types that could be encountered when obtaining ground truth.

Using the ground truth obtained through the system, researchers are able to verify

the results of their image analysis algorithms. By using a central server and a database

for concurrent access to the data, researchers are also able to work in a collaborative

environment, also giving them tighter control on access to these datasets. Future

work will only expand the power and possibilities of Firefly as an even more robust
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and generic tool.
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Appendix A

Computational Provenance

A.1 AVA - Advanced Video Archive

One of the original motivations for making a web based system was the need to be

able to better organize the projects and datasets that were being processed. The Mul-

timedia Communications and Visualization Laboratory at the University of Missouri

was having issues keeping track of where original data came from, and where all of

the processed data was located. Essentially, the data was put through a pipeline of

processes that produced several different useful results. Typically, different members

of the lab were involved with different aspects of the processing, resulting in the data

being scattered throughout different computers and locations. It became difficult

to track this information. This is the beginning of the need for a more centralized

system.

To help in originally solving this problem, the Advanced Video Archive was created

(AVA). AVA allowed for a certain amount of fixed attributes to be assigned to each

dataset, and then tracked each process/output as it went through the data processing

chain. The attributes tracked can be seen in the table below:

This was all purely manual data entry, and very little was done to automatically

create this data. The processing chain was displayed in a tree format that helped the

users better visualize how the original data had been used, and what processes are

necessary for specific output.
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Filename Name of the physical file in the system
Geographic Location The latitude and longitude of where the

data was captured
Date/Time When the data was originally captured
Video Camera Type The type of camera used (and it’s param-

eters)
Keyword Used for easily searching for and retrieving

data in the future
Source Person who acquired the data, or network

location where it was acquired
Publication Any publications that utilized this data
Authorization If the data was classified, or restricted to a

certain subset of users
Acknowledgment List of acknowledgments needed for use of

the data
Comments Any quirks or comments that should be

known about the particular dataset

Table A.1: Attributes stored in AVA system

Figure A.1: The tree structure showing the AVA processing chain
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A.2 Computational Provenance

AVA is a solution for a more general area of study known as provenance management.

The dictionary defines provenance as the source or origin of an object; its history and

pedigree; a record of the ultimate derivation and passage of an item through its various

owners. [16] We have already seen how this is important with the AVA system. We

are interested in information like where did this data come from? How was this data

created? Traditional methods of keeping track of this information has typically led

to confusion and loss of data, as shown with the motivations for AVA.

With this in mind, computational provenance, or modeling the provenance of

a dataset in a computational model, has become very important for researchers.

Researchers want to be able to easily track their results, the processing chains that

were created to get there, and what were the inputs and outputs at each step along

the way.

For computational provenance there are two main types: prospective and retro-

spective. Prospective merely allows a researcher to create a chain of processes that

would be necessary to create certain types of output. It is not necessarily concerned

with the details needed to produce this information. Retrospective provenance is

recorded after execution or at every process during the chain. It records detailed

information about the parameters needed for the different algorithms to derive a

particular output of data. [16]

A.3 Provenance Tools

There are already many tools that exist to facilitate computational provenance. One

of the future goals of the Firefly system would be to utilize some of the concepts of

these systems to provide provenance tools to researchers as well. In this case, the

ground truth tools thus far created would merely be subset of the more general tool
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used throughout the entire process of analyzing the data.

A.3.1 Vistrails

Vistrails [17] is provenance engine that does both prospective and retrospective prove-

nance analysis. It’s main focus is on exploring how different parameters affect the

output of different datasets. It provides a robust way of comparing and visualizing

these different results. The prospective provenance information is stored in XML

files, and the retrospective detailed information is stored in database on the backend.

Figure A.2: Comparing parameters in Vistrails [17]

A.3.2 Taverna

Taverna [18] also records both prospective and retrospective information for a data-

flow project, but does so, utilizing web services. Essentially all processes done on

the data are done utilizing web services that have been setup to receive the data

with certain inputs, and output a specified set of data back to the system. It has

successfully been used in a wide variety of application domains.
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Figure A.3: Data-flow Visualization in Taverna [18]

Appendix B

Entity Relationship Diagram

51



Figure B.1: Firefly Database ERD
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Appendix C

Firefly User Manual

Access the Firefly system following the URL given to you. You should be prompted

with a login page if you are at the right location.

C.1 Navigation

Firefly follows a fairly standard navigational interface. Up at the top, you should see

a breadcrumb navigational toolbar that includes who the current user logged in is,

what the current lab and project you are working in is, and the current dataset you

are editing.

Log in by entering the credentials given to you:

If you currently belong to more than one lab or project, you will be prompted to

select the lab that you would like to work in for the current session:

If you only belong to one lab and one project, you will automatically be taken

to a list of all of the datasets that you currently have access to. You can click on a

dataset to see some detailed information about it on the left hand side of the screen.

You can launch the dataset by either double clicking on the row in the list, or clicking

the ”Launch Editor” button one the left-hand side.
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Figure C.1: Login Page

Figure C.2: Choosing a Project
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Figure C.3: List of possible datasets

C.2 Workspace

This takes you to the workspace area of Firefly. This is where all viewing of data and

annotation is possible. On the left hand side of the screen is the ”Control Widget”.

The control widget contains much of the functionality needed to work with a dataset.

For example, in the HeLa dataset, we have four sections in the control widget that

are important to us:

• Frame Control

• Tools

• Display/Saving

• Classes

Depending on the type of dataset being annotated, these sections are dynamic for

the user. The Frame Control widget allows the user to easily change what frame is
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Figure C.4: Workspace view of Firefly

currently being displayed. The current frame is displayed along with the total number

of frames that exist in the system. There are also previous/next controls to allow the

user to easily change what frame is currently being displayed for the user.

Figure C.5: Frame control widget

The Tools section in the control widget contains all of the necessary tools for the

current dataset being annotated. Again, this is dynamic based on the type of dataset

the user is working with. Certain tools might not be appropriate in certain situations.

The user selects the tool simply by clicking on it among the set of tools available.
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How the tools are used is explained more in depth below.

Figure C.6: Available Tools

The Display/Saving section contains a lot of miscellaneous functionality within

the system including the ability to save the annotations to the dataset. The ”Save

Current Image” button allows the user to easily save an image to their local computer

of the current frame being displayed with all of it’s annotations drawn on as well.

Otherwise, all currently changed data is saved whenever the user advances a frame.

There is also functionality which allows the user to copy all marked object from a

previous or following frame. This is important, since many times we are wanting

to track objects as they progress through the frames. The changes to the objects

are typically fairly small, so by copying them from a previous frame, we only have

to change the attributes that have actually changed. The Display tab also contains

functionality that allows the user to draw a trajectory track of all of the objects in

the system. This helps the user to see where a particular object in the dataset has

come from, and also where it is going. The trajectory is drawn by putting a starting

frame number, and ending frame number. All movement of objects within these two

frames are then drawn on the screen with a gradient based on time.

The Classes section is used to display the amount of classes that exist for the

current dataset. Here, by clicking on a class, the user is selecting it as the current
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Figure C.7: Save Control
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class that is being used for annotating. What this means, is that any annotating

done, will by default be part of this class. There are also toggles to hide certain

layers within the system. To hide or show layers, simply use the checkbox located

next to the class label. There is also a master checkbox that will hide or show all

layers within the dataset.

Figure C.8: Firefly Classes

Editing is fairly straightforward and intuitive for anyone who has used an image

processing program before. Once a tool is selected, simply click on the dataset being

displayed to add the annotation. The point tool simply drops a point where the user

clicked their mouse. The line and box tools work via interactive creation where the

user must click and drag to finish the creation of the object. The free-draw tool works

much like a paint tool in an image editing program.
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Figure C.9: Line Drawing

Figure C.10: Box Drawing

Figure C.11: Free-Drawing
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The selection tool is used to select multiple objects and either move them all at

once, or also delete them. All of the placed objects are also able to be interactively

edited after being created this includes changing their location and size. This is done

by using the control points on each object. Simply click on a point and drag to move

the point around the editor.

Attributes for a particular annotation are brought up by double-clicking on the

object. When the object is double-clicked a window pop ups with all attributes that

can be stored for that particular object. This is specific to a particular type of dataset,

and the type of object (e.g. point, line or box) being annotated. All information is

immediately saved to the local cache when changes are made, so there is no need to

click a save button. The information is saved to the database once the user either

advances the frame, or explicitly saves the object to the database, by clicking the

”Save Now” button.

Figure C.12: Attribute Window

There are also a number of keyboard shortcuts which can be used to enhance the

productivity of the user experience:
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Alt + Click Drag the editor canvas, regardless of the
tool selected

Del Delete the currently selected items in the
canvas

F1 Show debug output console
F2 Put editor in minimal mode (Take away

GUI elements)
Left/Right Move through the frames in the current

dataset
Shift + Number Automatically move to a specified panel in

the control widget

Table C.1: Firefly keyboard shortcuts

Once the user is done, simply close the window, or click the logout button to allow

another user to use the Firefly system.

C.3 Accessing GTU and Firefly

Currently, GTU can be accessed at the following URL:

http://meru.cs.missouri.edu/GTU/?set=HeLa.TS5 - The TS5 can be changed to

any of the live datasets (TS3, etc)

Firefly can be accessed here:

http://firefly.cs.missouri.edu/
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