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Abstract 
 

 In this work, an alternate method for determining nonlinearity of 

vibrating structures is investigated.  In contrast to previous approaches, transient 

vibrations have been used in combination with advanced signal processing 

techniques to determine hardening or softening effects and strength of 

nonlinearity.  The nonlinear characteristics of a structure can play a significant 

role in its behavior or response to stimuli.  Thus, knowing these characteristics 

can lead to better design analysis and predictions of system responses. 

In order to demonstrate this method’s practicality and how transient 

vibrations can be used to determine nonlinearity, an experiment involving a 

cantilever beam has been subjected to vibratory analysis.  The simple structure 

of a cantilever beam is used widely in numerous applications.  In particular, 

Micro-Electro-Mechanical Systems (MEMS) devices known as Micromachined 

Vibratory Gyroscopes (MVG) make use of tuning fork type designs which utilize 

cantilever beams and thus can be modeled as such.  In order to utilize the 

dynamics of MVGs to measure angular rate, their response to specific stimuli 

must be known.  Specifically, the tuning fork tines will be subjected to 
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parametric excitation and Coriolis forces. An essential aspect of an MVG requires 

predictability.  Hence, knowing the response of the system to these stimuli is 

crucial for design applications.  MVGs require precision design and 

manufacturing for optimal performance. 

In previous works, simulated and experimental parametric excitation of a 

cantilever beam has been a subject of question, as results are often 

contradicting.  Specifically, determining whether the beam’s response is 

characterized by a hardening or a softening effect has proven to be difficult to 

obtain.  Moreover, theoretical response curves frequently fail to match 

experimental data.  

Within this work, the viability of using transient vibratory analysis to 

determine the nonlinear characteristics of a cantilever beam has been explored.  

Experimental data has first been processed by using either a Butterworth 4th 

order low pass digital filter or the empirical mode decomposition.  Furthermore, 

a novel signal tracking technique, known as the Harmonics Tracking Method, has 

been used in conjunction with experimental data for signal analysis.  This 

method was then compared to two other more traditional signal tracking 

techniques, the Teager-Kaiser algorithm and the Hilbert-Huang transform.  

Through this analysis it has been determined that a nonlinear softening effect 

exists within the transient response of the cantilever beam.  Additionally, the 

effect of gravity upon the beam’s response has been investigated and shown to 

have a slight hardening effect.  It has also been determined that for transient 
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nonlinear analysis, the Harmonics Tracking Method used in conjunction with the 

empirical mode decomposition yields the best results. 
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Chapter 1 – Introduction 

1.1  Background 

This work will investigate the effects of and determination of nonlinearity within 

vibrating structures.  Previous works of this nature have involved using steady state 

responses to characterize a structure’s nonlinear dynamic response as either softening 

or hardening.  Although accurate, this method requires numerous time consuming 

experiments which must all be precisely controlled.  This leads to this type of analysis as 

being difficult or impossible to control in non-laboratory situations. 

In contrast to this, an alternative method of collecting experimental data has 

been proposed which makes use of transient vibrations.  This allows one to determine 

the nonlinear characteristics of a structure in a single and simple experiment.  In 

addition, a novel signal tracking method, known as the Harmonics Tracking Method, has 

been utilized and compared to other presently used techniques for signal analysis.  Also, 

two signal processing techniques, a low pass digital filter and the empirical mode 

decomposition, have been utilized and compared. 

In order to illustrate the viability of this method, a cantilever beam has been 

subjected to vibratory analysis.  More specifically, the relationship between frequency 

and amplitude, known as hardening or softening, has been investigated.  Although 

simple, the cantilever beam has proven useful in numerous applications, particularly 

within MEMS devices. 

Parametric excitation is often used to excite a MEMS structure, i.e. a cantilever 

beam.  The response of which is then used for a given purpose.  Parametric excitation 
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has proven to be exceptionally useful in the field of Micro-Electro-Mechanical Systems 

(MEMS).  However, the determination of the nonlinear response of the excited 

cantilever beam as hardening or softening has been a subject of question.  Many works 

have shown experimental data which contradict one another and theoretical response 

curves.  The goal of this work is to introduce transient vibrations as a viable method for 

nonlinear analysis and apply it to the simple cantilever beam to determine its nonlinear 

characteristics as hardening or softening. 

1.2  Motivation for Research 

 MEMS devices known as Micromachined Vibratory Gyroscopes (MVG) make use 

of the Coriolis force to measure either angular orientation or rotational rate.  A tuning 

fork gyroscope is an example of a rate gyroscope which utilizes two modes of vibration 

to measure rotational rate [1].  Typically the tuning fork feature of the MVG is forcibly 

excited with axially driven vibrations.  As a result of instability issues, the tuning fork 

tines respond with a mode one type vibration which is perpendicular to the driven 

excitation and opposite to one another.  This driven axial excitation, known as 

parametric excitation, is necessary to generate this specific response of the tuning fork 

tines.  Direct forcing will only result in the tine vibrations to coincide with one another 

as seen in Fig. 1.2.  Once the Coriolis force acts upon the tuning fork, as a result of 

Coriolis acceleration, the tines will respond with flexures in a direction perpendicular to 

the driven mode one vibration.  The combination of these two vibrations will result in a 

torsional vibration within the tines of the tuning fork.   Using the resultant torsion, 

angular rate of the system can be determined. 
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Figure 1.1.  Sketch of axially driven tuning fork vibrations 

 

Figure 1.2  Sketch of tine vibration as a result of direct forcing 

This type of MEMS device can be particularly valuable for applications involving 

weight and size constraints. However, currently there is a need to improve the design, 

performance, and robustness of MVGs [2].  Examples of various types of applications for 

MVGs range from defense systems such as satellites, helicopters, or micromechanical 
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flying insects to the entertainment sector such as video games or cellular phones.  

However, in order to implement MVGs, one must initially be able to accurately predict 

and control the driven lateral vibrations of the tuning fork tines.  These tines may be 

modeled as cantilever beams.  Understanding the response of the tuning fork design will 

ultimately result in a more accurate gyroscope.  Determining the nonlinear response 

characteristics of the cantilever beam tines is imperative for design and application of 

the tuning fork gyroscope.  It is this, which will be the center of motivation for this work 

as well as to introduce and prove the viability of using transient vibrations for the 

determination of nonlinearity. 

Within the following chapters, an alternative method for nonlinear vibratory 

analysis will be introduced, and its viability will be tested through experiments involving 

a cantilever beam in various orientations and lengths.  First, parametric excitation and 

the nonlinear characteristic which is of interest, i.e. hardening or softening, will be 

discussed.  The conventional experimental setting and data collection method for such 

nonlinear analysis will be introduced and the alternative will be proposed; the results of 

which will then be addressed.  Two signal processing methods, a Butterworth 4th order 

low pass digital filter and the empirical mode decomposition (EMD),  will then be 

presented and examples of their use given.  Three signal tracking methods will also be 

briefly explained, the Teager-Kaiser algorithm (TKA), the Hilbert-Huang transform (HHT), 

and the harmonics tracking method (HTM).  A damped nonlinear pendulum simulation 

will be used for validating the use of these signal tracking methods.  All three of which 

will then be applied to the experimental data in conjunction with the two signal 
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processing techniques.  The relationship between the instantaneous frequency and 

amplitude of the processed experimental data will then be explored.  Next, additional 

signal processing considerations used with TKA will be addressed.  Finally, all signal 

tracking results will be compared and conclusions drawn; this being followed by 

recommendations for future works. 
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Chapter 2 – Parametric Excitation and Experimental Setup 
 

 Within this chapter, parametric excitation of a cantilever beam will be discussed.  

As previously mentioned, MVGs often utilize this type of vibration for determination of 

rotational rate.  In order to more accurately design and understand the dynamics of the 

tuning fork gyroscope, it is desired to accurately characterize its nonlinear response.  

Specifically, the relationship between instantaneous frequency and amplitude, which 

can be described as softening or hardening is of interest.  Conventional experimental 

analysis and example results will be discussed within section 2.1.  Within section 2.2, an 

alternative experimental set up will be introduced which promises to yield valuable data 

in a single and simple experiment that can be used within real world situations.  Next, 

the raw experimental results will be examined in section 2.3.  

2.1  Periodic Excitation of a Cantilever Beam 

When periodic excitation is applied to a cantilever beam along the axial direction 

the beam’s response may include significant displacement in the transversal direction.  

This will occur only within a specific range of excitation frequencies.  Numerous works 

have been published which include simulation and experimentation of this phenomenon 

known as parametric excitation.  Within these works, nonlinearities have shown to 

produce both softening and hardening effects upon the beam’s vibration.  The terms 

softening and hardening refer to a system’s response in regards to its frequency versus 

amplitude relationship.  Hardening indicates that as amplitude decreases, frequency will 

also decrease, while the term softening refers to an increase in frequency as amplitude 
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decreases.  In addition to contradicting experimental data, previously proposed theories 

which attempt to predict this response curve fail to accurately portray experimental 

data.  These theories will predict an infinitely increasing amplitude as excitation 

frequency increases.  This, of course cannot be true.  Figure 2.1 illustrates examples of 

theoretical, hardening, and softening response curves. 

 

 

Figure 2.1. Response curve examples. 

In previous works, experiments of this kind will include exciting the beam to a 

number of known frequencies and recording the amplitudes of each response.  Thus, a 

relationship between vibration frequency and amplitude can be formed after numerous 

trials.  Figure 2.2 shows results from [3] using this type of analysis.  This work shall 

propose an alternative method of determining this relationship through the use of 

advanced digital signal processing and signal tracking methods.  Furthermore, this 

method will also use free lateral vibration as opposed to forced axial vibration. This 

allows for the frequency-amplitude relationship to be found in a single experiment.  
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Figure 2.2.  Experimental results from [3]. 

 

 
Figure 2.3.  Sketch of parametric response of a cantilever beam. 

 

2.2  Alternative Experimental Setup 

As previously mentioned, the experiment which is being proposed will utilize 

free vibration of a cantilever beam.  Two beams of lengths 0.782 m and 0.487 m have 

been chosen.  Both have a width of 3.175 cm, a thickness of 0.3175 cm, and are made of 

cold rolled steel.  In order to rid the effect of gravity on the beam’s lateral vibrations, it 

was positioned in a completely horizontal orientation.  A scanning laser vibrometer was 
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then focused on the beam and was also made level.  For this experiment a Polytec PSV-

200 laser vibrometer was utilized in conjunction with software which was controlled 

through a desktop computer.  The beam was then physically pulled back a significant 

distance, released, and allowed to freely vibrate.  Simultaneously, the laser vibrometer 

collected velocity measurements at a sampling frequency of 1.28 kHz.  A sketch of this 

experimental setup can be seen in Fig. 2.4.  In order to investigate the effects of gravity 

upon the beam’s response, an experiment was also performed with the longer beam 

placed in a completely vertical position.      

 

 

Figure 2.4. Sketch of experimental set up. 

2.3  Experimental Results 

For this experiment, two beams of different lengths were used.  The longer beam 

had a length of 0.782 m and the shorter beam a length of 0.487 m.  For the longer beam 

the laser was focused on a point 27.63 cm from the base, while for the shorter beam the 
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laser was located 28.42 cm from the base.  Velocity profiles collected from the laser 

vibrometer for each beam in the horizontal position are shown in Fig. 2.5.  Figure 2.6 

gives the frequency domains for each of these velocity profiles which were obtained by 

using the fast Fourier transform.  Figure 2.7 contains the velocity profile and frequency 

domain plot for the long beam in the vertical orientation.  It can be seen from these 

profiles that the beams’ vibration is composed of numerous modes, out of which mode 

one must be extracted for data analysis. 

 
Figure 2.5.  Horizontal beams’ experimental velocity profiles 
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Figure 2.6.  Horizontal beams’ frequency domain plots 

 

 
Figure 2.7.  Vertical beam experimental data 
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Chapter 3 – Signal Processing 
 

As it has been shown within the previous chapter, for this type of experiment the 

beam’s vibration will be composed of numerous modes.  It is necessary to extract from 

this data the mode which will be studied, i.e. mode one.  Once the valuable data has 

been isolated, signal tracking methods will then be utilized for instantaneous frequency 

and amplitude calculations.  For this work two different signal processing techniques 

have been used and compared for extracting the mode one vibration.  They are a 

Butterworth 4th order low pass digital filter, and the empirical mode decomposition 

(EMD).  In section 3.1 the low pass digital filter will be derived and two examples given.  

Within section 3.2, EMD will be described and an illustration of its use given.  

3.1  Butterworth Low Pass Digital Filter 

A low pass digital filter will be used to isolate mode one vibration from the 

experimental data.  For this work a 4th order normalized Butterworth low pass filter has 

been used.  The analog version of this filter takes the form seen in Eq. (3.1). 

 













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
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181
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20

3

1

22 ssss

sH                                   (3.1) 

This form can be used for continuous analog signals or functions.  The obtained 

experimental data has been collected using a constant sampling rate.  Thus, it 

represents a discontinuous set of points.  In order to use the filter described above, it 

must be transformed to a digital filter which can be used with discontinuous sets of 

data.  After substituting Eq. (3.2) into the above equation for the low pass filter, setting 
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ωcc = 1, then substituting in Eq. (3.3) to map to the z-domain, Eq. (3.1) takes the form 

seen in Eq. (3.4). 
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After some algebraic manipulation, the transfer function for the digital low pass filter in 

Eq. (3.4), becomes: 
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Expanding Eq. (3.5) using difference equations yields, 
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Now rearranging Eq. (3.6) to give the most recent output, 
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Here x(k) is the incoming signal and y(k) represents the signal after being filtered.  

Within these equations the coefficients n0 to n4 and d0 to d4 are defined as: 

10 n                                                                   (3.7.1) 

41 n                                                                   (3.7.2) 
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62 n                                                                   (3.7.3) 

43 n                                                                   (3.7.4) 

14 n                                                                   (3.7.5) 
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125

4 22

1                                       (3.7.7) 
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ccd                                      (3.7.8) 
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3                                       (3.7.9) 
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4                                  (3.7.10) 

In the above equations c is the warping coefficient defined as: 








 


2
cot sF T

c


                                                        (3.7.11) 

Within Eq. (3.7.11), Ts is the sampling period and ωF is the highest frequency that the 

low pass filter will let pass.  This design allows one to set ωF just above the mode one 

frequency, thus filtering out all other mode vibrations.   

Digital filters can be used to filter numerous dissimilar incoming signals and to 

remove random disturbances known as white noise from these more pure signals.  

Using a simple example it will be shown that a low pass filter can be used to separate 

two incoming signals.   
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Suppose that an incoming signal, Y, is composed of two other pure sinusoidal 

signals, y1 and y2.  Signal y1 will have an amplitude of 5 and a frequency of 8 Hz.  Signal y2 

will have an amplitude of 2 and a frequency of 50 Hz.  The complete incoming signal, Y, 

will be the sum of y1 and y2.  Plots of y1, y2, and Y versus time can be seen in Figure 3.1. 

21 yyY                                                                    (3.8) 

 ty 82cos51                                                            (3.8.1) 

 ty 502cos22                                                         (3.8.2) 

 
Figure 3.1. Plots y1, y2, and Y versus time 

 
 

 Utilizing the 4th order low pass filter described above, a MatLab m-file has been 

written to filter Y leaving just y1.  Here, the low pass limit was set 40% above the 8 Hz 

frequency of y1 at 11.2 Hz.  This file can be seen in Appendix A.1.1.  Results from this 

example are shown in Figs. 3.2 – 3.3.  Figure 3.2 displays the incoming signal and the 
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results after being filtered.  Figure 3.3 again shows the incoming signal, Y, and the 

filtered signal.  It also compares this with the original signal y1, which was meant to be 

obtained through the use of the filter.   

 
Figure 3.2.  Plots showing Y before and after using a 4th order low pass digital filter 
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Figure 3.3.  Plot of incoming signal, filtered incoming signal, and original signal, y1 

 

One adverse effect of using a digital filter is that there is a phase shift associated 

with the output of the filter.  Also, the filter will distort the beginning of the incoming 

data which produces an “edge effect”, known as the Gibbs phenomenon, at the 

beginning of the outputted data.  This distortion can clearly be seen within Figs. 3.2 and 

3.3.  For this work, the beginning of the collected data will be the most valuable.  In 

order to avoid this “edge effect” within this portion of the data, the signal will be fed 

through the filter backwards.  This will prevent disturbing the most valuable data, but 

will ultimately alter the end of the data. 
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Using the same incoming signal, Y, and feeding it through the filter backwards 

gives the results found in Figs. 3.4 and 3.5.   

 
Figure 3.4.  Results from filtering the incoming signal, Y, backwards 
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Figure 3.5.  Incoming signal, backward filtered incoming signal, and original signal, y1 

 
Here the distortion from using the filter now occurs at the end of the incoming signal.  

Also, a small phase shift can clearly be seen as a result of using the filter.  However, the 

amplitude and frequency of the filtered signal is nearly identical to the original y1 signal.  

Thus, the filter is working to reduce the total incoming signal Y to just y1.  It should be 

noted that when utilizing the low pass filter on the obtained experimental data, the 

disturbed portion has been ignored within further signal tracking analysis.  

Another application of the low pass digital filter is the removal of additional 

random signals known as white noise.  To illustrate this, an incoming signal described 

through Eqs. (3.9) – (3.9.1) will be used as an example.  Here, Y will refer to the 
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summation of signal y1 and white noise.  The additional white noise will be generated by 

using MatLab’s “unfrnd” command.  Again, the same 4th order low pass filter will be 

used to filter out the additional white noise added to signal y1.  The incoming signal will 

also be fed through the filter backwards to show the distorted region at the end of the 

data.  The MatLab program used for this example can be seen in appendix A.1.2 and 

Figs. 3.6 – 3.8 display the results. 

NoiseWhiteyY  1                                                     (3.9) 

 ty 82cos51                                                            (3.9.1) 

 

 
Figure 3.6. Plot of y1 before and after additional white noise 
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Figure 3.7. Plots of Y before and after the 4th order low pass digital filter 

 

 
Figure 3.8.  Plot of incoming signal, filtered incoming signal, and original signal, y1 
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Figure 3.6 shows signal y1 before and after the addition of white noise.  Figure 

3.7 displays signal y1 with the addition of white noise and the results after being filtered 

using the 4th order low pass filter.  Again the distortion from using the filter can be seen. 

However, because the incoming signal was processed through the filter backwards, the 

disturbed region is located near the end of the data.  These results are again plotted 

within Fig. 3.8 in addition to the original y1 signal for comparison.  Again a small phase 

shift can be seen, however the additional white noise has been virtually completely 

removed from the signal.  

3.2  Empirical Mode Decomposition 

Empirical mode decomposition (EMD) is another signal processing technique 

that will extract all intrinsic mode functions (IMFs) from a signal.  An IMF is defined as a 

signal which can be characterized by the following two definitions found in [4]. 

(1) The number of extrema and the number of zero crossings of the function must 

be equal or differ by at most one. 

(2) At any point of the function, the mean value of the envelopes defined by the 

local extrema should be zero.  

Thus, EMD can be used to extract all vibration modes from the data collected by 

the laser vibrometer.  EMD uses what is known as the “sifting process” to accomplish 

this.  The sifting process is as follows.  Consider a signal Y(t).  First, the local maxima of 

the signal are found and connected using a natural cubic spline.  The local minima are 

then found and also connected using a natural cubic spline.  The mean of these two 
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envelopes will be designated as m1.  This mean is then subtracted from Y(t) forming the 

first component h1.   

  11 mtYh                                                             (3.10)       

Then local maxima and minima of h1 are then found and are again connected 

using cubic splines.  The mean of these two envelopes is calculated and subtracted from 

h1.  This process continues k number of times until the mean of the two envelopes is 

close to zero.  Then the k component, hk, is now the first extracted IMF, c1.  

1chk                                                                     (3.11) 

The first IMF, c1, is now subtracted from Y(t) and the sifting process repeats on this 

remaining part of the original signal until all IMFs are extracted from Y(t).  EMD may still 

result in some Gibbs Phenomenon.  The cubic spline at the end or the beginning of the 

data range may distort the isolated IMF by trying to join to this first or last data point as 

it will connect to all local extrema.  However, unlike the digital filter these edge effects 

can be avoided through a technique which extends the spline past the last available 

extremum and existing data.   A full derivation and explanation of EMD can be seen 

within [5]. 

 To illustrate an example of how EMD uses this sifting process to extract all IMFs, 

consider the example found in section 3.1 through Eqs. (3.8) – (3.8.2).  The incoming 

signal, Y, is composed of two pure signals with different amplitude and frequencies.  

First the local minima and maxima are found and connected using a cubic spline, as seen 

in Fig. 3.9. 
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Figure 3.9.  EMD analysis, Y with maxima and minima envelopes 

 
The mean of these two envelopes are found, forming m1.  This mean is then subtracted 

from the original signal forming the first component h1.  Figure 3.10 shows the original 

signal with the two envelopes, their mean, and h1.  Here it can be seen that even after 

this first sifting process, h1 begins to take a form very similar to y2. 
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Figure 3.10.  EMD analysis, first sifting pass resulting in h1 

 

The sifting process is then repeated numerous times until the mean of the two 

envelopes approaches zero, resulting in the first extracted IMF, c1.  The first IMF is then 

subtracted from the original signal, Y, and the sifting process continues again until the 

second IMF, c2, is isolated.  Figure 3.11 displays the final results of EMD analysis of this 

example.  Here, when compared to Fig. 3.1, it can be seen that c1 and c2 are virtually 

identical to the original y1 and y2 components.  Furthermore, there is no phase shift 

associated with the results of the EMD sifting process.   

Using this algorithm, all modes of vibration can be isolated from the cantilever 

beam experimental data.  Thus, mode one can be accurately acquired from the 

experimental data for signal tracking analysis.   
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Figure 3.11.  EMD analysis, incoming signal ,Y, with extracted IMFs, c1 and c2 
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Chapter 4 – Signal Tracking 
 

Within this work, an alternate method for collecting data and determining the 

nonlinear characteristics of the dynamic response of a vibrating structure is proposed.  

This method utilizes free transient vibrations in contrast to forced steady state 

responses.  The relationship between the instantaneous frequency and amplitude of the 

structures response is of interest.  In particular, defining this nonlinear relationship as 

hardening or softening is necessary.   

As shown in chapter 2, the raw experimental data contains numerous modes of 

vibration.  Mode one vibration will be the target of interest, thus it must be isolated 

from the other modes.  In order to accomplish this, the two signal processing techniques 

described in chapter 3 have been used.  They are the 4th order low pass digital filter and 

the empirical mode decomposition.  Once mode one has been extracted, the 

instantaneous frequency and amplitude of this signal will be calculated by utilizing three 

separate signal tracking methods.  These three methods are the Teager-Kaiser algorithm 

(TKA), the Hilbert-Huang transform (HHT), and the harmonics tracking method (HTM).  

TKA and HHT are two well known and previously used signal tracking techniques.  

Recently, a novel signal tracking method, HTM, has been proposed as an additional tool 

for signal analysis.  All three signal tracking methods will be used in conjunction with 

both signal processing techniques to determine the instantaneous frequency and 

amplitude. The results of all will then be compared. 

Sections 4.2 – 4.3 will describe all three signal tracking techniques TKA, HHT, and 

HTM respectively.  In section 4.4, and example of a nonlinear system, a nonlinear 
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damped pendulum, will be used to validate the use of and compare the results of each 

method.  

4.1  The Teager-Kaiser Algorithm 

In order to calculate the instantaneous frequency and amplitude of an incoming 

signal, the Teager-Kaiser algorithm (TKA) uses four recent data points and a product 

known as the energy of harmonic oscillation, a2ω2.  This value is defined in Eq. (4.1) and 

is seen again in Eq. (4.2)  

        
22

2

a

tututuu




                                                (4.1) 

        
42

2

a

tututuu




                                             (4.2) 

Here, u(t), is a function which describes the incoming signal.  For this 

experiment, u(t), is a collection of data points and is not a clearly defined function.  

Hence, u(t) will be estimated using cubic polynomial interpolation.  Using the previous 

equations, the instantaneous amplitude and frequency can now be calculated with Eqs. 

(4.3) and (4.4). 

 
 

 u

u
ta




                                                            (4.3)  

 
 
 u

u
t




                                                            (4.4)  

The Teager-Kaiser algorithm is simple and effective for many types of functions, 

however many incoming digital signals, represented here as u(t), are not clearly defined 

by simple functions such as sine or cosine.  During this experiment, for example, data is 
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collected using the laser vibrometer which takes readings at a specific sampling rate.  

For these types of situations there is no clearly defined function, u(t), which represents 

this data.  For this circumstance the data points may be curve fitted using a numerical 

method known as cubic polynomial interpolation.  Using this method it is possible to 

create a polynomial which defines the data obtained through the sampling experiment. 

Consider a case where data points have been collected using the sampling rate, 

Ts.  It is desired to curve fit these data points in order to obtain a function, u(t)¸which 

describes this set of data.  Figure 4.1 shows an example where four known data points 

have been collected and plotted: (-3Ts/2, u1), (-Ts/2, u2), (Ts/2, u3), and (3Ts/2, u4).       

 

Figure 4.1.  Cubic interpolation example 

In the general case, the cubic polynomial, u(t), will take the form: 

  3

3

2

210 tCtCtCCtu                                                  (4.5) 

  00 Cu                                                                    (4.6) 

  10 Cu                                                                    (4.7) 

  220 Cu                                                                  (4.8) 
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  360 Cu                                                                  (4.9) 

Using the four known data points and the general polynomial form, the system can be 

expressed in matrix form. 

CMU                                                                 (4.10) 
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Solving for coefficients C0, C1, C2, and C3. 

CMU
1                                                             (4.12) 
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Thus, 
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   432133 33
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60 uuuu
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                                       (4.17) 

The coefficients of the cubic polynomial, u(t),  have been solved for and now this 

function can be used within the Teager-Kaiser algorithm in order to find the 

instantaneous amplitude and frequency of the collected data. 

4.3  The Hilbert-Huang Transform 

 Prior to the existence of the Hilbert-Huang Transform (HHT), signal analysis 

methods were limited to linear or stationary system assumptions.  As is well known, the 

majority of physical systems occurring in nature are neither stationary nor linear.  Thus, 

the need for an advanced signal analysis tool which can determine characteristics of a 

system which is nonlinear and non-stationary is in great demand.  Modern attempts 

have been made to create such a tool.  However, each deals with either a nonlinear or a 

non-stationary signal, but not both simultaneously.  The development of HHT brought 

forth the ability to evaluate nonlinear and non-stationary signals.   This transform takes 

the form in (4.18).  Here x(t) is the incoming signal which will be evaluated.  PV 

represents the Cauchy prime value of the singular integral and τ is a time delay.   

   
 1 x

y t H x t PV d
t




 





                                              (4.18) 

 
Through the use of this transform, the analytical signal then takes the form in Eq. (4.19).  
 

         tietatiytxtz                                                 (4.19) 

Here a(t) is the instantaneous amplitude of the signal x(t) and θ(t) is the phase function, 

which are defined below. 
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  22 yxta                                                          (4.20) 
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t arctan                                                       (4.21) 

The instantaneous frequency of x(t), ω(t), is then defined are the derivative of θ(t) with 

respect to time, as seen in (4.22).  

 
d

t
dt


                                                                (4.22) 

Once the pertinent information has been isolated from the experimental data, either by 

using EMD or the low pass digital filter, HHT can then be utilized for instantaneous 

frequency and amplitude calculations. 

4.2  The Harmonics Tracking Method 

The harmonics tracking method (HTM) is a newly developed signal analysis tool 

which can also evaluate nonlinear and non-stationary signals.  HTM can also be used to 

extract amplitude and frequency data from an incoming signal.  HTM has proven in [6] 

to be robust to signals with moving averages and noise, while using only three recent 

data points.  HTM assumes that the signal being considered will take the following form, 

     
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0 1 1
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cos sin

cos sin

u t C e t f t
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  
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                                          (4.23) 

Here, C0, e1, and f1 are unknown constants.  Also,  t t tn   is a localized time 

coordinate where tn is the current time.  The coefficients C1 and D1 then take the form in 

(4.24) and (4.25). 

2 2

1 1 1C e f                                                              (4.24) 
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HTM utilizes TKA for an initial guess of the signal frequency at the third data point, thus 

HTM starts frequency tracking after the fourth data point.  After this point the previous 

point’s frequency will be used as an initial guess to the current point’s frequency.  From 

this, the unknowns C0, C1, and D1 for each current data point, when t = 0  or t = tn, can 

be found by minimizing the square error. 
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                                                   (4.26) 

Here un+i signifies the second part of Eq. (4.23) with it t i t   .  Also, n iu   is u(t) at 

it t tn  .  Once these constants are found, the instantaneous amplitude and frequency 

can be determined by utilizing Eqs. (4.27) – (4.29).  A complete derivation of HTM can be 

seen in [6]. 
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1
1

1

arctan n

D
t

C
  

 
   

 
                                                 (4.28) 
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
                                                                    (4.29) 

4.4  Validation and Comparison of Signal Tracking Methods 

 In order to validate the use of and as a comparison of results, an example of a 

nonlinear system which is frequency and amplitude dependent will be analyzed.  The 
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well known nonlinear damped pendulum, which can be described through Eq. (4.22), 

will be used.   

                  


 
mL

g
 sin                                                    (4.22) 

In the above equation g, L, m, γ represent gravity, length of pendulum, mass, and 

dampening ratio respectively.  The angle at which the pendulum is swinging, θ, is the 

unknown variable.   A MatLab program has been written which simulates the transient 

response of the damped pendulum.  This program, which can be seen in Appendix A.2, 

utilizes MatLab’s “ode113” command, and the values found in Table 1.  The results of 

which can be seen through Figs. 4.2 – 4.5.   

Table 4.1.  Values used in damped pendulum simulation 

Variable Value 

g 9.81 m/s2 
L 0.1 m 
m 5 kg 
γ 0.3 

 

 
Figure 4.2.  MatLab Pendulum Simulation 
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Figure 4.3.  Pendulum simulation results, Theta vs. Time 

 
 

 
Figure 4.4.  Pendulum simulation results, Theta dot vs. Time 
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Figure 4.5.  Pendulum simulation results, Phase Plane Diagram 

 

 By utilizing the signal tracking techniques, the instantaneous amplitude and 

frequency of the pendulum simulation data can be calculated.  The difference in results 

of each can clearly be seen.  Figure 4.6 displays the results obtained through the Teager-

Kaiser algorithm, while Figs. 4.7 – 4.8 show results from the Harmonics Tracking Method 

and the Hilbert-Huang transform. 
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Figure 4.6.  TK analysis of pendulum simulation  

 

 
Figure 4.7.  HTM analysis of pendulum simulation  
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Figure 4.8.  HHT analysis of pendulum simulation  

 

From these figures it can be seen that HTM provides the clearest data with little 

distortions.  TKA, while the simplest signal tracking method, offers data which displays a 

general trend but with little accuracy.  In contrast to HTM and TKA, the data from HHT is 

clear in the midsection of the data set, but large distortions near the beginning and end 

of the data, known as Gibbs phenomenon, can be seen. 

Taking the data after HTM analysis and plotting the instantaneous frequency 

versus amplitude clearly shows a downward sloping trend which indicates a softening 

response.  Figure 4.9 presents a plot of this data which has been curve fitted using a 

second order polynomial least-squares fit.  From the fit equation, the negative 

coefficient on the nonlinear term also indicates a softening effect.   
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Figure 4.9.  Pendulum simulation, HTM amplitude vs. frequency 

 
Through this example one can easily see how these signal tracking methods can 

be used to determine nonlinearity.  Analogous to the cantilever beam experiment, it is 

desired to obtain the sign and amplitude of this nonlinear coefficient to determine 

hardening or softening and the strength of nonlinearity within the system. 

Through the example, which represents an optimal set of data with no 

distortions from signal processing or noise, the strengths and weaknesses of each 

technique can be seen.  TKA has less resolution and accuracy when compared to both 

HTM and HHT, however does not contain edge effects.  HHT, although containing little 

fluctuations within the midsection of its frequency data, has large edge effects which 

distort the most valuable of information.  HTM, in contrast to each, contains no edge 

effects and little fluctuations throughout the instantaneous amplitude and frequency 

data sets. 
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Chapter 5 – Experimental Data Processing and Tracking 
Results 

 

As described in chapter 2, an experiment was performed which collected data 

from the free transient vibration of a cantilever beam.  Two beams of different lengths 

were placed in the horizontal position, set in motion, and allowed to freely vibrate as 

data was collecting using a laser vibrometer.  The longer beam was then vertically 

oriented and the experiment repeated. 

When processing the experimental data, numerous methods were utilized.  The 

first step in processing is to extract mode one from the pure experimental data.  A 4th 

order low pass digital filter or EMD were used to accomplish this.  From this data, the 

instantaneous amplitude and frequency of the signal was obtained through the use of 

HTM, HHT, or TKA.  This process was done for both sets of horizontal beam data, which 

produces twelve sets of results which are then compared.  Similarly, the same algorithm 

was used to process the data from the vertical beam experiment for a total of eighteen 

sets of results.  Figure 5.1 is a flow chart which visualizes this logic.  Sections 5.1 – 5.3 

will present the signal processing and tracking results for the horizontal long beam, the 

horizontal short beam, and the vertical long beam. 
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Figure 5.1.  Data processing flow chart 

5.1  Horizontal Long Beam Data Processing Results 

From the experiment involving the horizontal long beam, the velocity profile was 

collected and mode one vibration was extracted by using either EMD or the 4th order 

low pass filter.  This data was then used to calculate the instantaneous amplitudes and 

frequencies using the HTM.  Figure 5.2 shows the results when using the digital filter 

then HTM while Fig. 5.3 is the results after using the EMD then HTM. 
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Figure 5.2.  HTM results from long beam data after low pass digital filter. 

 

 
Figure 5.3.  HTM results from long beam data after EMD. 

 
 

The Hilbert-Huang transfer was also used to determine the instantaneous 

amplitude and frequency of the extracted mode one from the horizontal long beam 
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data.  Figure 5.4 displays the HHT results after using the digital filter while Fig. 5.5 is the 

results after using the EMD then HHT. 

 
Figure 5.4.  HHT results from long beam data after low pass digital filter. 

 

 
Figure 5.5.  HHT results from long beam data after EMD. 
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Again from the velocity profile collected from the horizontal long beam, mode 

one vibration was extracted by using EMD or the 4th order low pass filter.  This data was 

then used to calculate the instantaneous amplitudes and frequencies using TKA.  Figures 

5.6 show the TKA results when using the digital filter while Fig. 5.7 displays TKA 

processing results after using EMD.   

 
Figure 5.6.  TKA results from long beam after digital filter. 
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Figure 5.7.  TKA results from long beam after EMD. 

 
 By comparing the signal tracking results from Figs. 5.2 – 5.7 it becomes clear that 

HTM is superior to both HHT and TKA; particularly with regards to instantaneous 

frequency calculations.  As with the example from section 4.4, TKA shows far too little 

resolution to provide valuable frequency data.  The outcome of signal tracking with HHT 

is again dominated by large edge effects which distort the most valuable instantaneous 

frequency data.  Conversely, HTM provides superior frequency and amplitude tracking 

data.  There is little to no Gibbs Phenomenon when using HTM and the resolution is 

precise enough to reveal the nonlinear frequency and amplitude relationship.  It also 

becomes apparent that both signal processing methods, used to extract mode one 

vibration, yield sufficient and consistent data for further signal tracking by HTM.  

However, the nonlinearity within the instantaneous frequency is more pronounced 

when using EMD.  Figure 5.8 gives a graphical representation of the effective signal 
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processing and tracking algorithms.  When analyzing the data from the two additional 

experiments concerning the horizontal short beam and the vertical long beam, the same 

algorithm has been used.  However, because the outcomes of these are similar to those 

previously shown, only the results from signal tracking with HTM will be displayed.   

 
 

 

Figure 5.8.  Flowchart of effective algorithms 

5.2  Horizontal Short Beam Data Processing Results 

 
As with the previous section, the velocity profile of the horizontal short beam 

has been collected and analyzed.  Mode one vibration has been isolated using either the 

low pass digital filter or EMD.   The results have been further analyzed using all three 

signal tracking techniques, HTM, HHT, and TKA.  Similar to processing the horizontal 

long beam data, both HHT and TKA fail to proved accurate instantaneous frequency 

calculations without large distortions.  For brevity, only the outcome of HTM in 
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combination with EMD or the low pass filter will be shown within this work.  Figure 5.9 

presents HTM signal tracking results after using the 4th order digital filter while Fig. 5.10 

shows the HTM analysis after using EMD.   

 
Figure 5.9.  HTM results from short beam data after low pass digital filter. 

 

 
Figure 5.10.  HTM results from short beam data after EMD. 
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 From both of these figures, the limits of this type of analysis can be seen.  With 

respect to the response of the short beam, it has a higher oscillating frequency and 

dampening occurs much faster than with the longer beam.  The sharp frequency and 

amplitude change make precision signal tracking more difficult.  The results have less 

resolution that those seen from the longer cantilever beam.  However, HTM proves 

again to be much superior to both HHT and TKA.  Interestingly, here is it seems that the 

digital filter in combination with HTM provides clearer data that when combined with 

EMD, which is in contrast to the results in section 5.1. 

5.3 Vertical Long Beam Data Processing Results 

 

 Similarly to the horizontal beams, the experimental data from the vertical beam 

will be subjected to the same type and algorithmic analysis.  Outcomes from signal 

tracking with HHT and TKA will not be shown since they yield little to no useful 

instantaneous frequency data.  These results are similar to those found in section 5.1.  

Figures 5.11 – 5.12 present the HTM signal tracking analysis results from the data 

involving the vertical beam experiment when coupled with either the 4th order low pass 

digital filter or EMD. 
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Figure 5.11.  Vertical beam HTM results after digital filter 

 

 
Figure 5.12.  Vertical beam HTM results after EMD 

 

 Initial examination of these HTM signal tracking results indicate that they are 

very similar to those found in Figs. 5.2 and 5.3.  This is as expected as the beam is 
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identical to that used in section 5.1; however it is placed in the vertical orientation as 

opposed to horizontally positioned.     
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Chapter 6 – Interpreting Results 
 
Throughout the previous chapters, an alternative method of collecting data for 

the determination of nonlinearity of vibrating structures had been introduced.  This 

method makes use of transient and free vibrations as opposed to forced steady-state 

responses.  Once data has been collected it must be processed to isolate the particular 

mode of interest, in this case mode one.  Either a Butterworth low pass digital filter or 

EMD has been used for this.  The next step is to use signal tracking techniques to 

calculate the instantaneous frequency and amplitude of the incoming signal.  Within this 

work, either HTM, HHT, or TKA have been used for these calculations.  Once this data is 

gathered, is it desired to find the nonlinear relationship between instantaneous 

amplitude and frequency.  From this correlation, a determination of nonlinear softening 

or hardening and the strength of nonlinearity can be made. 

Within chapter six, the amplitude versus frequency data seen from chapter five 

will be presented.  By visually examining the plots and through least squares fits of this 

data, nonlinear characteristics will be found.  Section 6.2 will address further data 

processing considerations when using TKA for signal tracking.    

6.1  Interpreting Results 

By comparing the previous sets of results within sections 5.1 – 5.3, it becomes 

clear that both HHT and TKA fail to provide accurate data with respect to the 

instantaneous frequency of the signal.  The Hilbert-Huang transfer either distorts this 

data with large Gibbs phenomenon effects, or is not sensitive enough to pick up the 
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nonlinearity within the signal.  The Teager-Kaiser algorithm has also shown to be 

inadequate in extracting the instantaneous frequency for this type of analysis.  The 

harmonics tracking method however, gives superior data when compared to HHT and 

TKA.  Furthermore, HTM provides useful and comparable data when coupled with either 

EMD or the low pass digital filter. 

For this work the nonlinearity within the instantaneous amplitude versus 

frequency is of interest.  Thus, plots of the amplitude versus frequency of each useful 

algorithm, seen in Fig. 5.8, have been made and can be seen in Figs. 6.1 – 6.6.  In 

addition, each of these data sets have been least-squares fitted with a second order 

polynomial. 

 
Figure 6.1.  Amplitude vs. Frequency – Digital Filter/HTM long beam 
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Figure 6.2.  Amplitude vs. Frequency – EMD/HTM long beam 

 
Figure 6.3.  Amplitude vs. Frequency – Digital Filter/HTM short beam 
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Figure 6.4.  Amplitude vs. Frequency – EMD/HTM short beam 

 
Figure 6.5.  Amplitude vs. Frequency – Digital Filter/HTM vertical beam 
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Figure 6.6.  Amplitude vs. Frequency – EMD/HTM vertical beam 

 
 

 The data found in Figs. 6.1 – 6.6 have been least-squares fitted to a second order 

polynomial of the form found in Eq. 6.1.  Here ω, A, ω0, and λ correspond to frequency, 

amplitude, initial frequency value, and the constant nonlinear coefficient respectively.  A 

negative λ value would result in a downward sloping trend in instantaneous frequency 

versus amplitude plot which would indicate a softening effect.  An upward trend from a 

positive λ value would indicate hardening, as shown in Fig. 6.7.    

 

        0

2   A                                                               (6.1) 
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Figure 6.7  Example of nonlinear hardening and softening response 

 
Tables 6.1 – 6.3 provide the least square fit values for each data set along with the 95% 

confidence bounds values within the parentheses.  Additionally, the coefficient of 

determination, r2, for each least-squares fit have also been provided.  This value signifies 

the “goodness” of the fit, with a value of 1 corresponding to a perfect fit.  This 

coefficient has been calculated using Eq. (6.2).  Within this equation, St is the total sum 

of the residuals between the original data points and the mean.  The sum of the squares 

of the residuals around the least-squares fit is represented by the variable Sr.  St and Sr 

are calculated using Eqs. (6.3) and (6.4) respectively. 
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Table 6.1.  Horizontal long beam least-squares fit data. 

EMD/HTM D-Filter/HTM

λ
-0.1172

(-0.1253, -0.1092)

-0.1227

(-0.1303, -0.115)

ω0
3.895

(3.895, 3.896)

3.895

(3.895, 3.896)

r2 0.6705 0.7209

Horizontal Long Beam

 
 
 

Table 6.2.  Horizontal short beam least-squares fit data. 

EMD/HTM D-Filter/HTM

λ
-0.08226

(-0.1009, 0.06359)

-0.1168

(-0.1221, -0.1115)

ω0
9.387

(9.384, 9.391)

9.389

(9.389, 9.39)

r2 0.08382 0.5495

Horizontal Short Beam

 
 
 

Table 6.3.  Vertical long beam least-squares fit data. 

EMD/HTM D-Filter/HTM

λ
-0.07432

(-0.08172, -0.06691)

-0.06938

(-0.07742, -0.06134)

ω0
3.888

(3.887, 3.889)

3.887

(3.886,3.888)

r2 0.4948 0.4298

Vertical Long Beam

 
 

From these results it can be concluded that the long, short, and vertical 

cantilever beams all exhibit a softening effect within mode one vibration.  In other 

words, the frequency increases as the amplitude decreases.  This relationship between 

frequency and amplitude is seen to be slightly nonlinear in all cases through the value of 

the nonlinear coefficient, λ, of the fitted polynomial.  The negative value of this 
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coefficient indicates softening as opposed to a positive value which would indicate 

hardening.  These findings are in contrast with results from [7], which predict and show 

a nonlinear hardening effect within mode one vibration.   

Three experiments were run which involved two horizontal beams of different 

lengths, and a vertically positioned beam.  All three experimental results showed a 

softening effect, whether using the low pass filter or EMD for signal processing.  

However, the magnitude of the nonlinear coefficient for each experiment changes 

depending on the length of the beam and its orientation.  This coefficient takes on a 

significantly smaller magnitude for the vertical orientation when compared to the 

results using the same beam but in the horizontal position.  It becomes approximately 

60% of the value in the horizontal case.  A change in this direction is expected due to 

gravitational forces acting upon the vertically oriented beam.  As the beam vibrates 

horizontally, the gravitational force would be pulling downward on the tip of the beam.  

Thus, gravity would be acting to encourage larger amplitude displacements through 

time.  Figure 6.8 gives a visual representation.   

 
Figure 6.8.  Sketch of vertical beam with gravitation force acting 
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This ultimately leads to a hardening effect on the nonlinear relationship between 

amplitude and frequency.  Thus, the magnitude of the nonlinear coefficient becomes 

smaller. 

To investigate this further and provide a clear illustration of how gravitational 

effects cause a hardening effect, consider the pendulum-spring system seen in Figs. 6.9 

– 6.10.  Here the string of the pendulum will be considered massless. 

 
Figure 6.9.  Downward hanging pendulum with spring 

 

For this system the kinetic energy, T, and the potential energy, P, are: 

 2
2

1
lmT                                                            (6.5) 

  cos
2

1 2 mglkV t                                                    (6.6) 

Here m, l, kt, and θ represent the pendulum mass, pendulum length, total spring 

stiffness, and angular displacement respectively.    

As derived within [3], the equation of motion for the downward hanging system 

takes the form in Eq. (6.7).  The gravitational term within Eq. (6.6) takes a negative 

value, which intern gives a negative value to the cubic term within Eq. (6.7).  The 
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negative value of this coefficient correlates to nonlinear softening.  Here, it can be seen 

how gravity is acting to enforce softening. 

2

2
0

6

tk g g

mL L L
  

  
     

  
                                          (6.7) 

  
Figure 6.10.  Upward hanging pendulum with spring 

 

An example which is more analogous to the vertically oriented vibrating beam 

would be that seen in Fig. 6.9.  For this upward pendulum-spring system the kinetic 

energy and the potential energy are described as below.   

 2
2

1
lmT                                                              (6.8) 

  cos
2

1 2 mglkV t                                                  (6.9) 

The corresponding equation of motion then becomes: 

2

2
0

6

tk g g

mL L L
  

  
     

  
                                         (6.10) 

Here the gravitational term and thus the cubic nonlinear coefficient take on a positive 

value, which indicates nonlinear hardening.  For this scenario, the gravitational force is 

directly contributing to a hardening effect.  This is also the case for the vertically 
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oriented cantilever beam.  Gravity acting upon the beam causes hardening within the 

nonlinear coefficient.  However, it is not strong enough to cause complete hardening.  

Rather it weakens the softening effect, which intern lowers the magnitude of the 

nonlinear coefficient causing a positive shift in value.  This can be seen through Tables 

6.1, 6.3, and later Tables 6.4 and 6.6. 

6.2  Additional Signal Processing Considerations 

In the previous two chapters it has been shown how TKA fails to provide useful 

data when used with either the low pass digital filter or EMD.  However, upon further 

investigation it has been found that TKA can yield significantly improved signal tracking 

results when coupled with the correct combination of signal processing techniques.  The 

two combinations include EMD followed by the digital filter, or the digital filter followed 

by an additional digital filter.  

The low pass digital filter acts as a transfer function which intensifies the 

frequencies below the set cutoff frequency, and diminishes those above.  Thus, when 

the incoming signal is fed through the filter multiple times, it works to extract mode one 

more efficiently every time.  This provides clearer data for TKA to analyze, which in turn 

is significantly more accurate in signal tracking.  The disadvantage to this algorithm is 

that the digital filter will produce a phase shift within the filtered data, and any 

additional filtering will increase this shift. 

This process works to improve the TKA results, however does little to no 

improvement for HTM and HHT.  Additional filtering will also not improve the quality of 

results for any data from the experiment involving the short cantilever beam; therefore 
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only the additional TKA results from the horizontal and vertical long beam will be 

discussed here.  Figures 6.11 – 6.14 display the TKA results from the horizontal long 

beam, while Figs. 6.15 – 6.18 are from the experiment involving the beam which was 

vertically positioned.   

 
Figure 6.11.  Horizontal Long Beam TKA analysis after two digital filters 

 

 
Figure 6.12.  Amplitude vs. Frequency – DF/DF/TKA Horizontal long beam 
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Figure 6.13.  Horizontal Long Beam TKA analysis after EMD and digital filter 

 
 

 
Figure 6.14.  Amplitude vs. Frequency – EMD/DF/TKA Horizontal long beam 
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Figure 6.15.  Vertical Long Beam TKA analysis after two digital filters 

 

 
Figure 6.16.  Amplitude vs. Frequency – DF/DF/TKA Vertical long beam 
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Figure 6.17.  Vertical Long Beam TKA analysis after EMD and digital filter 

 
 

 
Figure 6.18.  Amplitude vs. Frequency – EMD/DF/TKA Vertical long beam 

 

These additional results also show a softening effect within the amplitude versus 

frequency relationship; however the nonlinearity is not as clearly defined through visual 
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examination of the plots.  Comparing these findings with the outcomes in previous 

sections leads to very similar conclusions.  The least-squares fit also produces coinciding 

coefficients which can be seen in the plots above or in Tables 6.4 and 6.6 for 

comparison.   

 

Table 6.4  All horizontal long beam least-squares fit results 

EMD/HTM D-Filter/HTM D-Filter/D-Filter/TKA EMD/D-Filter/TKA Average

λ
-0.1172

(-0.1253, -0.1092)

-0.1227

(-0.1303, -0.115)

-0.1215

(-0.1227, -0.1203)

-0.1197

(-0.1209, -0.1186)
-0.120275

ω0
3.895

(3.895, 3.896)

3.895

(3.895, 3.896)

3.895

(3.894, 3.895)

3.895

(3.895, 3.895)
3.895

r2 0.6705 0.7209 0.7415 0.741 0.718475

Horizontal Long Beam

 
 
 

Table 6.5  All horizontal short beam least-squares fit results 

EMD/HTM D-Filter/HTM Average

λ
-0.08226

(-0.1009, 0.06359)

-0.1168

(-0.1221, -0.1115)
-0.09953

ω0
9.387

(9.384, 9.391)

9.389

(9.389, 9.39)
9.388

r2 0.08382 0.5495 0.31666

Horizontal Short Beam

 
 
 

Table 6.6  All vertical long beam least-squares fit results 

EMD/HTM D-Filter/HTM D-Filter/D-Filter/TKA EMD/D-Filter/TKA Average

λ
-0.07432

(-0.08172, -0.06691)

-0.06938

(-0.07742, -0.06134)

-0.07513

(-0.07634, -0.07392)

-0.07572

(-0.07743, -0.074)
-0.073638

ω0
3.888

(3.887, 3.889)

3.887

(3.886,3.888)

3.887

(3.887,3.887)

3.887

(3.887,3.888)
3.88725

r2 0.4948 0.4298 0.5051 0.323 0.438175

Vertical Long Beam

 
 

 Although, through the use of additional filtering, TKA can yield 

significantly improved results, the use of the filter causes an additional phase shift.  Also, 
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the use of an additional filter creates more distorted data near the beginning of the 

incoming signal which must be ignored.  Furthermore, the least squares fit of the 2nd 

order polynomial appears to not fit the amplitude versus frequency plot as well.  

Although still softening, this relationship becomes more linear in nature. 
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Chapter 7 – Conclusion and Recommendations 

7.1  Conclusion 

Within this work an alternate method for determining nonlinearity of a structure 

has been proposed.  This method makes use of free transient vibrations as opposed to 

analyzing forced steady state responses.  In order to investigate the effectiveness of this 

method, a cantilever beam has been subjected to vibratory analysis.  Although simple, a 

cantilever beam is used in various applications, including advanced MEMS devices.  

Moreover, the slight nonlinearity of a cantilever beam has proven in previous works to 

be difficult to characterize and often contradicts with theory.   

An advanced signal processing technique known as the Harmonics Tracking 

Method has been utilized to perform instantaneous amplitude and frequency analysis.  

Additionally, HTM has been compared to two other more traditional signal tracking 

methods, the Teager-Kaiser Algorithm and the Hilbert-Huang Transform.  Furthermore, 

two signal processing techniques, a 4th order low pass digital filter and the empirical 

mode decomposition were applied to the experimental data in order to isolate the most 

essential information.  The results of which have all been compared. 

The results of the experiment clearly show that numerous modes of vibration 

exist.  The frequency domain plots also confirm this assessment.  Both techniques used 

to extract mode one vibration have proven successful.  However, as noted before, there 

is a phase shift when using the low pass filter.  Also, since the data has been fed through 

the filter backwards, the end of the data is distorted and thus has been ignored in 

further analysis. 
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Once mode one has been extracted, all three signal tracking methods were used 

to calculate the instantaneous frequency and amplitude of the signal.  Examining these 

results leads to the conclusion that HTM is significantly more accurate than both TKA 

and HHT with regards to this type of signal.  TKA has far too little resolution to be used 

within this application when computing instantaneous frequency.  HHT, although more 

powerful than TKA, also has too little resolution to be capable of picking up the 

nonlinearity within the instantaneous amplitude.  Furthermore, large edge effects 

known as the Gibbs phenomenon distort the beginning and end of the instantaneous 

frequency data, which renders the data virtually useless for determining nonlinearity.  In 

contrast, HTM provides the clearest data with little to no edge effects.  The resolution 

that HTM provides is also significantly superior to both TKA and HHT, thus providing the 

best data for nonlinearity determination.  With regards to the signal processing 

methods, EMD and the low pass filter, both provide enough consistency within the data 

for HTM to generate nearly identical results.  Therefore, both methods can be used in 

conjunction with HTM to produce accurate data.  However, because of the small phase 

shift and distortions associated with the low pass filter, it is recommended that EMD be 

used for best results.   

Using the results from HTM analysis, plots of the instantaneous amplitude versus 

frequency of the signals were created.  A second order polynomial of the form in Eq. 

(6.1) has been fitted to this data using a least-squares method.  From this equation, the 

value of the nonlinear coefficient in all of the data sets can be seen to take a negative 

value.  From this, and by visually examining the data, the nonlinearity of the cantilever 
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beam can be characterized as softening.  The experimental results from the long 

cantilever beam in the vertical position yields some interesting results.  For this 

experiment, the nonlinear coefficient takes a more positive value indicating that gravity 

plays a role in the response of the beam.  Within this orientation, gravity creates a 

hardening effect which lowers the magnitude of the nonlinear coefficient.  This result 

agrees with the pendulum-spring example given in section 6.1; which predicts gravity 

has yielding a hardening effect.      

Two additional signal processing algorithms were also examined and have been 

shown to significantly improve the performance of TKA.  These two additional 

algorithms involve processing the data twice; through the combination of EMD followed 

by the digital filter, or the digital filter followed by an additional digital filter.  Using 

these techniques, the TKA analysis yields much more accurate data, which coincides 

with the original HTM results.  Least-square fits of the frequency versus amplitude 

relationship yields nearly identical coefficients, which can be seen in Tables 6.4 and 6.6. 

Although additional signal processing can improve the outcome of TKA, it has 

little effect on HTM and HHT.  HTM will still produce consistent and accurate data while 

HHT has large Gibbs phenomenon effects.  Using additional digital filtering can improve 

the quality of data produced from TKA analysis, however with each additional filter 

comes another phase shift and additional edge effects which must be ignored.  Also, 

when inspecting the amplitude versus frequency relationships, seen within Figs. 6.12, 

6.14, 6.16, and 6.18, the nonlinearity cannot clearly be seen.  Although still classified as 

softening, a more linear relationship emerges, which is in contrast to the HTM results.  
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Although TKA, when used in combination with additional signal processing, yields 

significantly improved results that coincide with HTM, it is believed to be less accurate, 

thus is not recommended for this particular method of determining nonlinearity.   

With the addition of these two algorithms, the flowchart in Fig. 7.1 now contains 

all combinations of signal processing and signal tracking techniques.  Those blocks which 

are crossed out represent the ineffective processes, while the best is highlighted in red.    

 

 

 
 
 
 
 

Figure 7.1.  Flowchart with all effective algorithms 
 

Analyzing and interpreting the results from the horizontal short beam 

experiment provide additional difficulties.  The higher frequency and amplitude changes 

associated with the freely vibrating short cantilever beam decrease the resolution and 

effectiveness of all three signal tracking methods.  More noise is introduced into the 

instantaneous frequency and amplitude calculations and plots are more spread out. 

Precisely determining the nonlinear coefficient also becomes more difficult as the least 

squares fit can become less accurate.  However, this coefficient can still be seen to take 

a negative value.  Additionally, by visually inspecting the amplitude versus frequency 

plots the relationship can clearly be characterized as softening; which also agrees with 

the other experimental results.  Due to the level of accuracy within these calculations 
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and the results of the least-squares fit, few other comparisons can be made to the two 

other experiments with the longer beam.  

Through this work it is shown how transient responses can be used to determine 

the nonlinear characteristics of a vibrating system.  The Harmonics Tracking Method has 

proven to be a viable signal tracking technique for this type of analysis, and is shown to 

be superior to both the Teager-Kaiser Algorithm and the Hilbert-Huang Transform.  

Additionally, both signal processing techniques, when coupled with HTM, provide 

excellent data.  Through further analysis, TKA has shown to also provide accurate data 

very similar to HTM with the use of an additional digital filter.  Unfortunately, with the 

further use of the filter comes an additional phase shift and more distorted data must 

be ignored.  For this reason it is suggested that for best results, the combination of EMD 

and HTM be used.  Furthermore, HTM makes use of only three data points to calculate 

instantaneous frequency and amplitude; and does so accurately with less signal 

processing.  With this, one can see how this technique can be used to perform these 

calculations simultaneously with incoming data for online signal tracking.  This method 

does have some limitations.  It can be seen how large and sudden fluctuations in signal 

frequency and amplitude can cause difficulties in precisely tracking an incoming signal, 

as is the case with the short cantilever beam.  However, using transient vibration of 

structures has proven to be a viable method for determining nonlinearities of vibrating 

structures. 
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7.2  Recommendations for Future Work 

It has been shown how transient analysis can be used for verifying nonlinear 

characteristics of the dynamic response of a system.  This method makes use of both 

signal processing and signal tracking techniques.  In order to demonstrate and test its 

viability it has been applied to three experiments involving a simple cantilever beam.  

Although within this work the motivation behind the research has been the dynamics of 

tuning fork MVGs, cantilever beams are used within numerous applications.  It has also 

been proposed that for future applications of this method, HTM should be used in 

conjunction with EMD to yield the best results.   

For future work, using transient analysis for determination of nonlinearity of 

more complex systems may be of interest.  For example, analyzing the nonlinearities of 

a vibrating membrane, such as a drum or loudspeaker, may yield interesting results.  

Better predictions involving the response of the membrane of a speaker when 

attenuated may ultimately yield superior sound quality.  Analyzing wave propagation 

through a medium is another experiment which may be performed with this type of 

analysis.  Wind-generated nonlinear ocean waves are an area of specific interest within 

ocean engineering.  A proximity sensor may be used to capture the transient response 

of a wave propagating.  Instantaneous amplitude or frequency may then be found using 

this type of analysis and comparisons made to theory and other works such as that 

found in [8]. 
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Figure 7.2.  Sketch of wave propagation 

 
There are many applications in which transient analysis of vibrating structures 

can be of use.  The development of a nonlinear feedback control system could be 

expanded to the area of nonlinear vibration control.  Being able to accurately calculate 

instantaneous amplitude and frequency response of a vibrating structure in real time is 

required for the feedback system to correctly control or dampen vibrations.  This type of 

nonlinear vibration feedback controller may prove useful in the area of aerodynamics, 

where vibrations can be destructive to aircraft.  In particular, certain conditions can 

result in a flapping like motion of a fixed wing aircraft which can lead to failure.   

 
Figure 7.3.  Sketch of aircraft wing experiencing “flapping” vibration 

 
The use of transient vibrations as a method for determination of nonlinearity 

may also be used within the area of nondestructive evaluation.  Monitoring or finding 
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structural damage is necessary in many applications of engineering.  By analyzing a 

structure’s transient response to a given input and comparing it to a known structurally 

sound system may help localize or determine the cause of damage.  

Analyzing transient and non-stationary signals has proven in the past to be a very 

difficult area of study.  However, recent advances in this area, namely the Hilbert-Huang 

transform, and the Harmonics Tracking Method, are making it feasible to achieve 

accurate results.  This allows one to use transient vibrations as a method for 

determining the nonlinearity of vibrating structure, and hence has applications spanning 

a wide range of engineering.  However, more research is needed to expand this method 

to more complex systems.  Subsequently, comparisons can be drawn to numerical 

simulations and theoretical models for further validation.   
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Appendix A.1                                                                                                
MatLab Program for 4th Order Low Pass Digital Filter 

Examples  
 

A.1.1  Example – Filtering the sum of two pure signals 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                Joe Dinardo                % 

%                                           % 

%           University of Missouri          % 

%                                           % 

%   4th Order Low-pass Digital Filter       % 

%                                           % 

%     Example - Filtering the sum           % 

%               of two pure signals         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

clc;clear; 

  

close all 

  

%Defining variables 

T=.00025;  % Sampling Rate 

t=0:T:8;   % Creating time matrix 

a1=5;      % Amplitude of y1 

a2=2;      % Amplitude of y2 

f1=8;      % Frequency of y1 

f2=50;     % Frequency of y2 

  

%Defining y1 

y1=a1*cos(2*pi*f1*t); 

subplot(3,1,1) 

plot(t,y1,'k') 

title('y_1 vs. Time') 

xlabel('Time [s]');ylabel('y_1') 

axis([0 1 -a1 a1]); grid on 

  

  

%Defining y2 

y2=a2*cos(2*pi*f2*t); 

subplot(3,1,2) 

plot(t,y2,'k') 

title('y_2 vs. Time') 

xlabel('Time [s]');ylabel('y_2') 

axis([0 1 -a2 a2]); grid on 

  

%Defining Y 

subplot(3,1,3) 

Y=y1+y2; 

plot(t,Y,'k');axis([0,2,-7,7]); grid on 

title('Y=y_1+y_2 vs. Time') 

xlabel('Time [s]'); ylabel('Y') 

  

  

%%%%%%%%%%%%%%%%%%%%%% DIGITAL FILTER DESIGN %%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% 4th Order Low Pass Filter %% 

  

% Setting parameters for digital filter 
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x = Y; 

time = t; 

  

freq0 = f1+.4*f1;  % Setting cut off frequency for D-Filter - Use to filter out y1 

  

  

wd=freq0; 

c=cot(2*pi*wd*T/2); 

  

  

%Defining "n" coefficients 

  

n0=1; 

  

n1=4; 

  

n2=6; 

  

n3=4; 

  

n4=1; 

  

  

  

%Defining "d" coefficients 

  

d0=(1+c^2+(3*sqrt(26)/20)*c)*(1+c^2+(181*sqrt(26)/500)*c); 

  

d1=(4/125)*(1-c^2)*(125*(1+c^2)+32*sqrt(26)*c); 

  

d2=(1/5000)*(30000*(1+c^4)-34118*c^2); 

  

d3=(4/125)*(1-c^2)*(125*(1+c^2)-32*sqrt(26)*c); 

  

d4=(1+c^2-(3*sqrt(26)/20)*c)*(1+c^2-(181*sqrt(26)/500)*c); 

  

x=x(end:-1:1);   % Reversing the order of elements to back-feed filter 

  

F=[x(1) x(2) x(3) x(4)]; 

  

% Filtering Data 

for i=5:length(x) 

          

     F(i)=((n0*x(i)+n1*x(i-1)+n2*x(i-2)+n3*x(i-3)+n4*x(i-4))+(-d1*F(i-1)-d2*F(i-2)-

d3*F(i-3)-d4*F(i-4)))/d0; 

          

end 

  

% Plotting the incoming signal and filtered incoming signal 

  

time=time(end:-1:1);   % Reverse the order of elements again to plot forward 

figure(3) 

subplot(2,1,1);plot(time,x,'k');xlabel('Time [s]');ylabel('Incoming Signal 

[Y]');axis([0,9,-10,10]); grid on 

title('4^t^h Order Low Pass Digital Filtering'); 

subplot(2,1,2);plot(time,F,'g');xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,9,-40,20]); grid on 

  

  

% Redefining axes and plotting incoming signal, filtered incoming signal, and original y1 

signal 

figure(4) 

subplot(3,1,1);plot(time,x,'k');xlabel('Time [s]');ylabel('Incoming Signal 

[Y]');axis([0,2,-7,7]); grid on 

title('4^t^h Order Low Pass Digital Filtering'); 

subplot(3,1,2);plot(time,F,'g');xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,2,-7,7]); grid on 

subplot(3,1,3);plot(time,y1,'k');xlabel('Time [s]');ylabel('Original Signal 

[y_1]');axis([0,2,-7,7]); grid on 
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A.1.2  Example – Filtering White Noise From One Pure Signal 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                Joe Dinardo                % 

%                                           % 

%           University of Missouri          % 

%                                           % 

%   4th Order Low-pass  Digital Filter      % 

%                                           % 

%     Example - Filtering white noise       % 

%               from one pure signal        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clc;clear; 

  

close all 

  

%Defining variables 

T=.00025;  % Sampling Rate 

t=0:T:8;   % Creating time matrix 

a1=5;       % Amplitude of y1 

f1=8;       % Frequency of y1 

  

  

%Defining y1 

y1=a1*cos(2*pi*f1*t); 

  

%Defining Y 

for i=1:length(t) 

Y(i)=a1*cos(2*pi*f1*t(i))+1.5*unifrd(-1,1); 

end 

  

  

figure(1) 

subplot(2,1,1) 

plot(t,y1,'k') 

axis([0 1 -8 8]) 

title('y_1 vs. Time');grid on 

xlabel('Time [s]') 

  

  

subplot(2,1,2) 

plot(t,Y,'k') 

axis([0 1 -8 8]) 

title('Y=y_1+White Noise vs. Time') 

xlabel('Time [s]');grid on 

  

% subplot(3,1,3) 

% plot(t,Y) 

% axis([0 .2 -8 8]) 

% title('Y=y_1+White Noise vs. Time') 

% xlabel('Time [s]');grid on 

  

  

%%%%%%%%%%%%%%%%%%%%%% DIGITAL FILTER DESIGN %%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% 4th Order Low Pass Filter %% 

  

% Setting parameters for digital filter 

x = Y; 

time = t; 

  

freq0 = f1+.4*f1;  % Setting cut off frequency for D-Filter - Use to filter out y1 
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wd=freq0; 

c=cot(2*pi*wd*T/2); 

  

  

%Defining "n" coefficients 

  

n0=1; 

  

n1=4; 

  

n2=6; 

  

n3=4; 

  

n4=1; 

  

  

  

%Defining "d" coefficients 

  

d0=(1+c^2+(3*sqrt(26)/20)*c)*(1+c^2+(181*sqrt(26)/500)*c); 

  

d1=(4/125)*(1-c^2)*(125*(1+c^2)+32*sqrt(26)*c); 

  

d2=(1/5000)*(30000*(1+c^4)-34118*c^2); 

  

d3=(4/125)*(1-c^2)*(125*(1+c^2)-32*sqrt(26)*c); 

  

d4=(1+c^2-(3*sqrt(26)/20)*c)*(1+c^2-(181*sqrt(26)/500)*c); 

  

x=x(end:-1:1);   % Reversing the order of elements to back-feed filter 

  

F=[x(1) x(2) x(3) x(4)]; 

  

% Filtering Data 

for i=5:length(x) 

          

     F(i)=((n0*x(i)+n1*x(i-1)+n2*x(i-2)+n3*x(i-3)+n4*x(i-4))+(-d1*F(i-1)-d2*F(i-2)-

d3*F(i-3)-d4*F(i-4)))/d0; 

          

end 

  

% Plotting the incoming signal and filtered incoming signal 

  

time=time(end:-1:1);   % Reverse the order of elements again to plot forward 

figure(3) 

subplot(2,1,1);plot(time,x,'k');xlabel('Time [s]');ylabel('Incoming Signal 

[Y]');axis([0,9,-10,10]); grid on 

title('4^t^h Order Low Pass Digital Filtering'); 

subplot(2,1,2);plot(time,F,'g');xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,9,-40,20]); grid on 

  

  

  

  

% Redefining axes and plotting incoming signal, filtered incoming signal, and original y1 

signal 

figure(4) 

subplot(3,1,1);plot(time,x,'k');xlabel('Time [s]');ylabel('Incoming Signal 

[Y]');axis([0,2,-7,7]); grid on 

title('4^t^h Order Low Pass Digital Filtering'); 

subplot(3,1,2);plot(time,F,'g');xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,2,-7,7]); grid on 

subplot(3,1,3);plot(time,y1,'k');xlabel('Time [s]');ylabel('Original Signal 

[y_1]');axis([0,2,-7,7]); grid on 
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Appendix A.2                                                                                            
MatLab Program for Simulation of Nonlinear Damped 

Pendulum 
 

A.2.1  Pendulum Simulation Main Program 

 
%% Program Simulates a Damped/Forced(OPTIONAL) Pendulum Swinging %% 

  

clc;clear;close all 

  

global g L m gamma A omega 

  

% Can change the parameters below 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

L = .1;  % Length of string [m] 

m = 5;  % Mass of pendulum [kg] 

g = 9.81; % Gravity  [m/s^2] 

gamma = .3;  % Dampening ratio 

TSim = 50; % Total time of simulation [s] 

Theta0 = 135;  % Starting position for pendulum [deg] 

Theta_dot0 = 0; % Initial angular velocity of pendulum 

A = 0; % Forcing Amplitude [N] 

omega = 0;  % Forcing freqency 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% For More Accuracy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

y0 = [Theta0 Theta_dot0];  %Initial Conditions for ode solver 

tstep=.005;  % Time step for ode solver 

totalsteps=TSim/tstep; 

  

  

  

 

 

 

% Running ode solver while controlling time step 

  

for z=1:totalsteps 

    

    tspan=[(z-1)*tstep z*tstep]; 

     

    [Time Data]=ode113('PendSub',tspan,y0); 

     

    y0=Data(end,1:end); 

     

    if z == 1 

    Sol = Data(end,1:end); 

    Sol_Time = Time(end,1:end); 

    else 

    Sol=cat(1,Sol,Data(end,1:end)); 

    Sol_Time = cat(1,Sol_Time,Time(end,1:end)); 

    end 

         

end 

  

  

% Outputting Solution From ode solver  

Theta = Sol(:,1); 

Theta_dot = Sol(:,2); 
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Time = Sol_Time; 

  

   

%  Plotting Thets vs. Time 

figure(1) 

hold on 

grid on 

title('Theta vs. Time'); xlabel('Time [s]'); ylabel('Theta [deg]') 

plot(Time, Theta) 

 %Outputting Theta vs Time Data to .txt file 

out=[Time, Theta];  save Pendulum.txt out  -ascii 

  

  

%  Plotting Theta dot vs. Time 

figure(2) 

hold on 

grid on 

title('Theta dot  vs. Time'); xlabel('Time [s]'); ylabel('Theta dot [deg/s]') 

plot(Time, Theta_dot) 

  

  

%  Plotting the Phase Plane Diagram 

figure(3) 

hold on 

grid on 

title('Pendulum Phase Plane');xlabel('Theta [deg]'); ylabel('Theta dot [deg/s]') 

plot(Theta,Theta_dot) 

  

  

%Calculating Pendulum Positions 

Theta_2=Theta(1:20:length(Theta),:); %down sampling if a high sampling frequency is used   

%-->MODIFY HERE 

x=L*sind(Theta_2); 

y=-L*cosd(Theta_2); 

  

  

%  Plotting Simulation and saving MatLab Movie 

figure(4) 

  

for i = 1:length(x) 

    plot(0,0,'s','MarkerSize',12,'MarkerFaceColor','r');axis([-(L+.25*L) (L+.25*L) -

(L+.25*L) (L+.25*L)]) 

    grid on; hold on 

    plot(x(i),y(i),'bo','MarkerSize',12,'MarkerFaceColor','b'); 

    line([0,x(i)],[0,y(i)]); 

    F(i)=getframe; 

    hold off 

  

end 

  

  

%  Plotting Figure Which Shows Pendulum at Multiple Positions 

figure(5) 

hold on 

grid on 

title('Pendulum Simulation') 

pic=[1 80 87 100 110 120]; 

for i = 1:length(pic) 

plot(0,0,'s','MarkerSize',12,'MarkerFaceColor','r');axis([-(L+.25*L) (L+.25*L) -(L+.25*L) 

(L+.25*L)]) 

    plot(x(pic(i)),y(pic(i)),'bo','MarkerSize',12,'MarkerFaceColor','b'); 

    line([0,x(pic(i))],[0,y(pic(i))]); 

end 
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A.2.2  Pendulum Simulation Sub Program 

 
% Pendulum Simulation Sub Program 

 
function ydot = PendSub(time,y0) 

  

global g L m gamma A omega 

  

% y0 is a vector where the first element is Theta and the second 

% element is Theta_dot 

  

% Damped / Forced(OPTIONAL) Pendulum 

  

Td = y0(2);  % Theta dot 

Tdd = -(g/L)*sind(y0(1))-gamma/m*Td+A*sind(omega*time);  %Theta double dot ( Equation of 

motion) 

  

  

%Creating vector for ode solver 

ydot = [Td Tdd]'; 
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Appendix A.3 
MatLab Program for Teager-Kaiser Data Processing / Digital 
Filter 

 
 

A.3.1 Main MatLab Program for Teager-Kaiser Algorithm / Digital Filtering 

 
%%%         Joe Dinardo           %%% 

%       University of Missouri      % 

%  Main  Signal Processing File     % 

%  which will use Low Pass Filter   %  

%         and TK Method             % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clc;clear;close all 

%Loading Data 

load Feb19_2009_4.txt 

XX=Feb19_2009_4; 

  

nfft=size(XX,1); 

XX=XX(1:1:nfft,:); %down sampling if a high sampling frequency is used 

x=XX(:,2);  %Incoming Signal Data 

time=XX(:,1); % Time Data 

dt=[time(nfft,1)-time(1,1)]/(nfft-1);  %Delta t of time vector 

  

  

% Plotting Freqency Spectrum of Incoming Signal 

Y=fft(x); % FFT spectrum, for reference purpose  

nfft2=nfft/2; nfft21=nfft2+1;  

th=[1; 2*ones(nfft2-1,1); 1]/nfft;  

a=real(Y(1:nfft21)).*th; b=-imag(Y(1:nfft21)).*th; 

fre=[0:nfft2]/(time(nfft)+dt); mag=(a.^2+b.^2).^0.5; 

figure(1) 

G=plot(fre,20*log10(mag),char('r')); set(G,'linewidth',0.9), xlabel(sprintf('frequency 

(Hz)')),  ylabel('10log_{10}(PSD)') 

title('Frequency Domain of Incoming Signal') 

grid on 

clear Y nfft2 nfft21 th a b fre mag G 

  

%%%  Low Pass Filtering  %%% 

%Setting parameters 

freq0=50;  %Frequency for Low Pass Filter 

  

T=dt; 

%Calling Low Pass Filter 

F=Lowpass(x,time,freq0,T); 

  

  

% Plotting Freqency Spectrum of Filtered Signal 

Y=fft(F); % FFT spectrum, for reference purpose  

nfft2=nfft/2; nfft21=nfft2+1;  

th=[1; 2*ones(nfft2-1,1); 1]/nfft;  

a=real(Y(1:nfft21))'.*th; b=-imag(Y(1:nfft21))'.*th; 

fre=[0:nfft2]/(time(nfft)+dt); mag=(a.^2+b.^2).^0.5; 

figure(2) 

P=plot(fre,20*log10(mag),char('r')); set(P,'linewidth',0.9), xlabel(sprintf('frequency 

(Hz)')),  ylabel('10log_{10}(PSD)') 

title('Frequency Domain of Filtered Signal') 

grid on 

  

  

%%% Using TK on Filtered Data %%% 
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[a freq]=TK(F,T,time); 

  

% All results in one plot 

time=time(end:-1:1);   % Reverse the order of elements because of "back feeding of data" 

figure(5) 

subplot(2,2,1);plot(time,F);xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,5,-1,1]); grid on 

subplot(2,2,2);plot(fre,20*log10(mag),char('r')); set(P,'linewidth',0.9), 

xlabel(sprintf('frequency (Hz)')),  ylabel('10log_{10}(PSD)');grid on 

subplot(2,2,3);plot(time,a);xlabel('Time [s]');ylabel('Amplitude');axis([0,10,0,1]);grid 

on 

subplot(2,2,4);plot(time,freq);xlabel('Time [s]');ylabel('Frequency 

[Hz]');axis([0,5,3.8,3.95]);grid on 

  

ax = axes('position',[0,0,1,1],'visible','off');  

tx = text(0.3,.975,'TK results from short beam after digital filter');  

set(tx,'fontweight','bold');  

  

  

%Ploting Frequency vs amplitude 

figure(6) 

plot(freq,a);xlabel('Frequency [Hz]');ylabel('Amplitude [m/s]');grid on 

figure(7) 

plot(a,freq);ylabel('Frequency [Hz]');xlabel('Amplitude [m/s]');grid on 

 
 
 
 

A.3.2  MatLab Sub Program for Digital Filtering 
 
%% Subprogram for 4th order Low Pass Digital Filter %% 

%% Low Pass Filter Design %% 

  

function F=lowpass(x,time,freq0,T) 

%%%%%%%%%%%%%%%%%%%%%% DIGITAL FILTER DESIGN %%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% 4th Order Low Pass Filter %% 

  

wd=freq0; 

c=cot(2*pi*wd*T/2); 

  

  

%Defining "n" coefficients 

  

n0=1; 

  

n1=4; 

  

n2=6; 

  

n3=4; 

  

n4=1; 

  

  

  

%Defining "d" coefficients 

  

d0=(1+c^2+(3*sqrt(26)/20)*c)*(1+c^2+(181*sqrt(26)/500)*c); 

  

d1=(4/125)*(1-c^2)*(125*(1+c^2)+32*sqrt(26)*c); 

  

d2=(1/5000)*(30000*(1+c^4)-34118*c^2); 

  

d3=(4/125)*(1-c^2)*(125*(1+c^2)-32*sqrt(26)*c); 

  

d4=(1+c^2-(3*sqrt(26)/20)*c)*(1+c^2-(181*sqrt(26)/500)*c); 
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x=x(end:-1:1);   % Reversing the order of elements to back-feed filter 

F=[x(1) x(2) x(3) x(4)]; 

  

% Filtering Data 

for i=5:length(x) 

          

     F(i)=((n0*x(i)+n1*x(i-1)+n2*x(i-2)+n3*x(i-3)+n4*x(i-4))+(-d1*F(i-1)-d2*F(i-2)-

d3*F(i-3)-d4*F(i-4)))/d0; 

          

end 

  

  

time=time(end:-1:1);   % Reverse the order of elements 

figure(3) 

subplot(2,1,1);plot(time,x);xlabel('Time [s]');ylabel('Incoming Signal');axis([0,10,-

.8,.8]); grid on 

title('Low Pass Filtering'); 

subplot(2,1,2);plot(time,F);xlabel('Time [s]');ylabel('Filtered Incoming 

Signal');axis([0,11,-.8,.8]); grid on 

 

 

A.3.3  MatLab Sub Program for Taeger-Kaiser Algorithm 
 
%%% Subprogram for Teager-Kaiser Algorithm %%% 

  

%% Implementing Teager-Kaiser Algorithm on incoming signal %% 

  

  

function [a freq]=TK(F,T,time) 

for i=5:length(F) 

             

        u(i)=(-F(i-3)+9*F(i-2)+9*F(i-1)-F(i))/16; 

        up(i)=(F(i-3)-27*F(i-2)+27*F(i-1)-F(i))/(24*T); 

        upp(i)=(F(i-3)-F(i-2)-F(i-1)+F(i))/(2*T^2); 

        uppp(i)=(-F(i-3)+3*F(i-2)-3*F(i-1)+F(i))/(T^3); 

        Psi_u(i)=up(i)^2-u(i)*upp(i); 

        Psi_up(i)=upp(i)^2-up(i)*uppp(i); 

        a(i)=Psi_u(i)/sqrt(Psi_up(i)); 

        freq(i)=sqrt(Psi_up(i)/Psi_u(i))/(2*pi); 

     

end 

  

time=time(end:-1:1);   % Reverse the order of elements 

  

% Plotting 

figure(4) 

title('Mode 1 anlysis from Data din2.txt'); 

subplot(3,1,1);plot(time,F);xlabel('Time [s]');ylabel('Filtered Incoming Signal');grid on 

subplot(3,1,2);plot(time,a);xlabel('Time [s]');ylabel('Amplitude');grid on 

subplot(3,1,3);plot(time,freq);xlabel('Time [s]');ylabel('Frequency [Hz]');grid on 
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Appendix A.4                                                                                            
MatLab Program for Empirical Mode Decomposition 

 

A.4.1  MatLab Initial Program for EMD Analysis 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                Joe Dinardo                % 

%                                           % 

%           University of Missouri          % 

%                                           % 

%         Empirical Mode Decomposition      % 

%                                           % 

%     Example - Decomposing the sum         % 

%               of two pure signals         % 

%            This program calls emd.m       % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

clc;clear; 

  

close all 

  

%Defining variables 

T=.001;  % Sampling Rate 

t=0:T:8;   % Creating time matrix 

a1=5;      % Amplitude of y1 

a2=2;      % Amplitude of y2 

f1=8;      % Frequency of y1 

f2=50;     % Frequency of y2 

  

%Defining y1 

y1=a1*cos(2*pi*f1*t); 

subplot(3,1,1) 

plot(t,y1,'k') 

title('y_1 vs. Time') 

xlabel('Time [s]');ylabel('y_1') 

axis([0 1 -a1 a1]); grid on 

  

  

%Defining y2 

y2=a2*cos(2*pi*f2*t); 

subplot(3,1,2) 

plot(t,y2,'k') 

title('y_2 vs. Time') 

xlabel('Time [s]');ylabel('y_2') 

axis([0 1 -a2 a2]); grid on 

  

  

%Defining Y 

subplot(3,1,3) 

Y=y1+y2; 

plot(t,Y,'k');axis([0,2,-7,7]); grid on 

title('Y=y_1+y_2 vs. Time') 

xlabel('Time [s]'); ylabel('Y') 

  

  

Yt =cat(2,t',Y');  
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%Outputting Y vs Time Data to .txt file 

out=[t', Y'];  save Yt.txt out  -ascii 

  

  

time=t'; 

  

% Calling Empirical Mode Decomposition to Extract IMFs 

imf = emd(Y',time); 

  

  

%Plotting 

plots = size(imf); 

  

    figure(30) 

    subplot(plots(1)+1,1,1);plot(t',Y); grid on;hold on;title('EMD 

Analysis');ylabel('Y');axis([0 1 -8 8]); 

  

    for i = 1:plots(1) 

         

      subplot(plots(1)+1,1,i+1); plot(t,imf(i,:));grid 

on;ylabel(['c_',num2str(i)]);axis([0 1 -8 8]); 

    end 

  

 

A.4.2  MatLab Main Program for EMD Analysis 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                Joe Dinardo                % 

%                                           % 

%           University of Missouri          % 

%                                           % 

%         Empirical Mode Decomposition      % 

%                                           % 

%     Example - Decomposing the sum         % 

%               of two pure signals         % 

%                 MAIN EMD PROGRAM          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This program will result in slight edge effects within the extracted IMFs % 

  

  

% Call function as: 

% imf = emd(Y,time) 

% 

% Defining x and n 

% Y = Input signal (column vector) 

% n = Number of IMFs to be extracted from Y 

  

  

  

function imf = emd(Y,time); 

  

%Calling user to input the number of IMFs to be isolated 

n = input('Enter The Number of IMFs To Be Isolated From The Incoming Signal:  ') 

  

x0 = Y(:)'; % Copying the input signal,x and turning intoa a row vector 

N = length(Y); 

counter = 0;  % Initializing Counter for Loop 

  

%==== Starting EMD Loop ====% 

%==================================================================% 

% loop to decompose the input signal into n successive IMFs 

  

imf = []; % Initializing Matrix which contains all isolated IMFs 

  

for t=1:n % loop on successive IMFs 
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   %------------------------------------------------------------------------- 

   % inner loop to find each imf 

    

   h = x0; % at the beginning of the sifting process, h is the signal 

   SD = 1; % Initializing Standard deviation to start sifting process 

    

   while SD > 0.1 % while the standard deviation is higher than 0.1 

      counter = counter+1; % Adding to loop counter 

       

      % Finding local extrema by finding zeros of derivative 

      d = diff(h); % MatLab's derivative Command 

      max_min = []; % Initializing matrix which will store local extrema 

      for i=1:N-2 

         if d(i)==0      % Checking to find Zeros of derivative 

           if sign(d(i-1))~=sign(d(i+1))  % Then maximum is found 

               max_min = [max_min, i]; 

            end 

         elseif sign(d(i))~=sign(d(i+1))    

            max_min = [max_min, i+1];        

         end 

      end 

       

      if size(max_min,2) < 2 % If number of max or min in less than two only residue is 

left and IMFs have been extracted 

         break 

      end 

       

      % Dividing matrix max_min into local maxima and minima 

      if max_min(1)>max_min(2)   %--> Finding if first point is a max or min 

         maxes = max_min(1:2:length(max_min)); 

         mins  = max_min(2:2:length(max_min)); 

      else                                 

         maxes = max_min(2:2:length(max_min)); 

         mins  = max_min(1:2:length(max_min)); 

      end 

       

      % Making endpoints both maxes and mins  (Will Alter Edge Effects) 

      maxes = [1 maxes N];  % For example used in EMD_Ex.m this is best when extracting 

first IMF 

      %mins  = [1 mins  N]; 

       

       

      %==================================================================== 

      % Calling Cubic Spline for determining max and min envelopes        % 

      %==================================================================== 

       

      maxenv = spline(maxes,h(maxes),1:N); 

      minenv = spline(mins, h(mins),1:N); 

       

      m = (maxenv + minenv)/2; %--> Finding the average of the two envelopes 

       

            

      prevh = h; % Defining previous value of h before subtracting the mean from it (to 

be used within SD calculations) 

      h = h - m; % Subtracting the mean of the two envelopes from h to continue sifting 

process 

       

       

      %  Plotting the Results of the First Sifting Process in Two Figures 

      if counter == 1; 

     figure(2); 

     subplot(3,1,1);plot(time,Y,'LineWidth',1);axis([0 .5 -8 8]);grid on;title('Incoming 

signal, Y');xlabel('Time [s]'); 

     subplot(3,1,2);hold on;plot(time,Y,'LineWidth',1);plot(time,maxenv,'r');axis([0 .5 -

8 8]);title('Y and Maxima Envelope');grid on 

     subplot(3,1,3);hold on;plot(time,Y,'LineWidth',1);plot(time,minenv,'m');axis([0 .5 -

8 8]);title('Y and Minima Envelope');grid on 

           

     figure(3); 

     subplot(2,1,1);hold on; plot(time,Y,'LineWidth',2);plot(time,maxenv,'r'); 

     plot(time,minenv,'m');plot(time,m,'k','LineWidth',2); 
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     axis([0 .5 -8 8]); grid on; title('EMD Analysis'); xlabel('Time [s]'); 

legend('Incoming signal, Y','Maxima Envelope','Minima Envelope','Envelope Mean, m_1') 

     subplot(2,1,2);hold on; plot(time,h);axis([0 .5 -2 2]);xlabel('Time 

[s]');legend('h_1'); grid on 

      

      end 

       

      % Calculating SD for criteria to stop sifting loop 

      alpha = 0.00000001; % To Avoid division by zero error 

      SD = sum ( ((prevh - h).^2) ./ (prevh.^2 + alpha) ); 

       

   end 

    

   % Saving the extracting IMFs in a single matrix   

   imf = [imf; h]; 

   

    

   % Stopping Loop if only residue is left 

   if size(max_min,2) < 2 

      break 

   end 

    

   x0 = x0 - h; % Subtracting the isolated IMF form the original incoming signal 

    

end 

  

 

 


