
MISSOURI Hybrid Corn Yield Tests

TABLE OF CONTENTS

1	Map field location for 1953	Table 13	Carrollton, Carroll County10
1		Table 14	Marshall, Saline County10
2		Table 15	Columbia, Boone County11
3		Table 16	Labadie, Franklin County11
4		Table 17	Average of Southern Region12
		Table 18	Pierce City, Lawrence County12
	Records Summary	Table 19	Sikeston, New Madrid County13
5	Northern Region 1949-1953		Mechanical Picker Tests
6	Central Region 1949-1953 6		
7	Southern Region 1949-1953 7	Table 20	Lathrop, Clinton County14
		Table 21	Labadie, Franklin County14
m	mercial and Experimental Hybrids	Table 22	Sikeston, New Madrid County
8	Average of Northern Region 7	Table 23	Elsberry, Pike County
)	Maryville, Nodaway County 8	Table 24	Comparison US 13 and US 523W 16
)	Lathrop, Clinton County 8	Table 25	Pedigrees of Experimental and
l	Shelbina, Shelby County		U. S. D. A. Hybrids
2	Average of Central Region 9	Appendix	Sources of Hybrid Seed tested in 1953 18
	5 5 7 0000	Cooperator and cultural conditions	Cooperator and cultural conditions 4 Location and agronomic conditions 4 Table 15 Table 16 Lable 17 Table 18 Table 19 Northern Region 1949-1953 6 Central Region 1949-1953 6 Couthern Region 1949-1953 7 Southern Region 1949-1953 7 Table 20 Table 21 Table 21 Table 22 Table 23 Average of Northern Region 7 Maryville, Nodaway County 8 Lathrop, Clinton County 7 Shelbina, Shelby County 9

Report on Department of Field Crops research project number 85, entitled "Hybrid Corn Production."

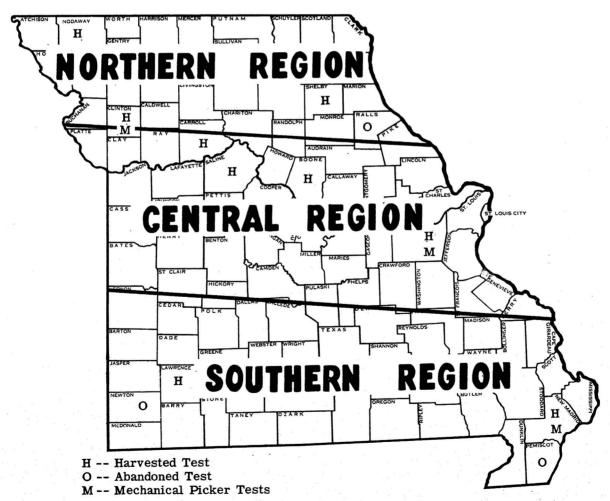


Figure 1. Outline Map of Missouri showing the Northern, Central, and Southern Regions; and the location of the testing fields in 1953.

Missouri Corn Hybrid Yield Trials 1953¹

M. S. Zuber and Benjamin H. Beard²

INTRODUCTION

The 1953 Missouri Corn Yield Trials, conducted as in previous years, are reported in Section I. Four mechanical picker tests, one in each of the Northern and Southern Regions and two in the Central Region of the state, were conducted to determine the picking performance of commercial and promising experimental hybrids. These data are reported in Section II.

Thirteen replicated yield trials were planted in the State (see Figure 1). Forty-nine hybrids from commercial and experimental sources were planted at each location in a lattice square design but the analysis of variance of the yields was calculated as for a randomized block design.

SECTION I EXPERIMENTAL METHODS

1. Seed Sources. In most cases seed for the different certified hybrids was a blend from the various producers in Missouri. Seed for the experiment station hybrids was secured from the respective state experiment stations. Seed for the commercial closed pedigreed hybrids was secured from seed dealers in Columbia or in a few instances from the main plant of the various companies. Names and addresses of seed producers are given in Table 26.

The pedigrees for most experimental and certified

hybrids are given in Table 25.

2. Type of Field Design. Forty-nine commercial and experimental hybrids were tested at each lo-

¹Department of Field Crops, Missouri Agricultural Experiment Station; Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Services, U. S. Department of Agriculture; Agricultural Extension Service, University of Missouri College of Agricul-

²Agronomist, Section of Cereal Crops and Diseases, Field Crops Research Branch, and Research Associate; and Instructor, De-

partment of Field Crops, University of Missouri.

The authors are especially indebted to Dr. Merle E. Mi-

cation. Each hybrid was planted in a plot consisting of two rows five hills long. Four plots of each hybrid were grown in different parts of the field to minimize soil and cultural differences.

3. Yield Determinations. Corn from each plot was harvested by hand and weighed. A moisture sample was taken as described in the following sub-section and acre yields were computed on the basis of shelled corn with 15.5 percent moisture. The moisture content of No. 2 corn must not exceed 15.5 percent and the yield of any hybrid was adjusted upward or downward to equalize moisture difference. Yields also were adjusted for missing hills but not for missing plants within hills. The reported yields are an average of the four plots after all adjustments have been made.

4. Moisture at Harvest. The percentage of moisture in the grain at harvest was determined by taking 10 ears at random from one replication and removing two rows of kernels from each ear. The shelled corn was mixed and moisture percentage determined with a Steinlite Moisture Tester. The moisture determinations for the test at Carrollton were made by sampling all plots and the percent moisture in the grain for this test is the average of four replications.

5. Stand Percentage. The stand percentage was determined by counting the plants present and computing the percent based on a perfect stand. Each plot was 2 x 5 hills or a total of ten hills. Five seeds were planted in each hill and later thinned to three plants per hill, except the test in Franklin County which was thinned to four plants per hill. Thus, 30 plants made

chaelson for assisting with the planting and taking notes of the various yield tests. They wish to express their appreciation to William J. Murphy and J. Ross Fleetwood, Extension Professors of Field Crops, for their assistance with the Mechanical Picker Tests. In addition the following individuals helped make the 1953 Yield Trials possible; Professor R. T. Wright, C. L. Van Buren, Reo Elliot and Son, John Douglas, Ed Rutter, Nichols Hilt, Wm. C. Hansel, Wm. H. Odom, Ben F. and Ben A. Geisert, Col. Paul Renz, Karl Koehler, Clayton Morris, J. D. McBride, Norman Brown, Carl Luper, and A. L. Kidwell.

TABLE 1 -- COOPERATOR, DATE PLANTED AND HARVESTED, AVERAGE NUMBER OF PLANTS PER ACRE AND THE AVERAGE ACRE YIELD FOR EACH TESTING LOCATION.

	AVERAGE ACRE TEED FOR EA			Average	
		Date	Date	no Plants	Average
Location	Cooperator	Planted	Harvested	per Acre*	Yield*
	Northern R	egion			
Maryville	Northwest Missouri State College	May 20	October 20-21	10,812	62.3
Lathrop	Northwest Missouri Agricultural				
audin op	Experiment Station	May 25	October 12-14	11,472	61.9
Shelbina	J. Ed Rutter & Son	June 2	October 6	11,268	60.8
New London	Nichols Hilt	May 18	/	Abandoned	
	Central Re	gion			
Carrollton	Pfister Associated Growers	May 26	October 29	11,544	74.7
Marshall	M. F. A. (Seed Division)	May 15	October 2	11,484	75.8
Columbia	Missouri Agricultural Experiment Station	May 14	October 19	11,100	68.2
Jefferson City	Missouri State Prison	May 4		Abandoned	
Washington	Ben Geisert Farms	May 12	October 8	14,784	127.0
,	Southern R	egion			
Pierce City	Southwest Missouri Agricultural				
10100 011	Experiment Station	April 29	September 25	9,384	49.2
Stark City	J. D. McBride	April 29		Abandoned	
Sikeston	Southeast Missouri Agricultural				
	Experiment Station	April 21	September 22-24	11,544	56.9
Caruthersville	A. L. Kidwell	April 23		Abandoned	
	brids in each test.				

TABLE 2 -- LOCATION OF THE TESTING FIELDS, FERTILIZER APPLIED, SOIL ANALYSIS, AND SOIL TYPE.

				Soil	Analys	sis**			_
Location	Fertilizer Applied	Organic Matter	P	к	Mg	Ca	pН	Lime Require- ment	Soil Type*
<u> </u>		North	ern Re	gion					
Maryville	4000 lb lime, 5 ton manure	1101 01		8					
	200 lb 16-20-0	2.9	350	350	360	5000	5.7	4000	Marshall
Lathrop	200 lb 8-8-8	2.7	374	374	360	5300	5.9	3500	Sharpsburg
Shelbina	300 lb 4-24-12, 100 lb 8-8-8								
	80# N as anhydrous ammonia	2.7	350	350	240	4000	5.8	3500	Putnam
New London	Unknown	2.1	29	29	110	4000	6.3	2200	Weldon
		Cent	ral Re	gion					
Carrollton	100 lb N as anhydrous ammonia	3.6	195	280	320	4480	5.9	4000	Wabash Loam
Marshall	100 lb N, 300 lb 4-24-12	2.1	115	115	450	4300	5.7	3500	Sharpsburg
Columbia	250 lb 0-20-10, 310 lb 33-0-0	1.5	276	276	140	2900	5.6	3500	Mexico
Jefferson City	None	1.8	430	430	420	7800	7.6		Sarpy Fine Sandy Loam
Washington	100 lb N as anhydrous ammonia, 200 lb 6-12-18, 200 lb Sulphur								
	Magnesium	0.7	304	304	350	12000	7.4		Sarpy Sandy Loam
		South	ern Re	gion					
Pierce City	600 lb 8-8-8, 75 lb of N	1.7	118	118	220	1900	5.2	5000	Baxter Cherty Silt Loam
Stark City	None	2.3	149	149	220	2600	5.9	3100	Gerald
Sikeston	300 lb 0-20-20, 200 lb 33-0-0	1.3	99	99	160	1700	5.9	2100	Dexter Fine Sandy Loam
Caruthersville	Unknown	1.4	274	274	465	4600	6.5	1500	Bottomland

*Soil types suggested by Professor H. H. Krusekopf from location of test fields.

**Soil Analyses made by the Department of Soils, Missouri Agricultural Experiment Station.

a perfect stand for each plot with the exception of Franklin County where 40 plants made a perfect stand.

6. Percent Lodging. A plant was classified as "root lodged" when it leaned more than 30 degrees from the vertical and "stalk lodged" if the stalk was broken below the ear. If a plant was both root and stalk lodged it was counted in both categories.

7. Dropped Ears. The number of dropped ears per plot was counted before harvest. This number was divided by the total number of plants to obtain the percentage of dropped ears.

8. Ear Height Grade. The ear height grade for each hybrid is the approximate number of feet from

the ground to the point of attachment of the upper ear.

SOIL ANALYSIS AND CULTURAL PRACTICES

Soil samples were taken from each field at planting time and analyzed by the Department of Soils of the University of Missouri. Results of these analyses, the fertilizer applied, and the soil type are shown in Table 2.

Preparation of the seed bed and climatic conditions determined the planting dates. Seed was planted by hand. The timing and number of cultivations were determined by the cooperator. The plots usually were

tilled in the same manner as the other corn on the farm. The corn was harvested when it was dry enough to crib.

Twelve thousand plants per acre comprised a perfect stand in all tests except the test in Franklin County where 16,000 would have been perfect. The average stand and yield for each location are shown in Table 1.

INTERPRETATION OF RESULTS

The performance record for a period of years is more reliable in selecting a hybrid than a single year's record. Due to environmental conditions a hybrid may be outstanding one year and mediocre or poor in other years. Results over a long period tend to average these fluctuations. A hybrid which performs well under a wide range of environmental conditions is probably more desirable than one doing exceptionally well in the good years but exceptionally poor in the adverse seasons. An example of a hybrid that has performed

well over a period of years, as well as over a wide area, is US 13.

Two hybrids with the same yield potential may actually perform quite differently due to variations in soil and cultural conditions. Calculations can be made to determine how much this difference is in any one field and are shown at the bottom of each table as the difference required for any two hybrids to be significantly different in yielding ability. Over a period of years these differences should be smaller than for a single year.

NORTHERN REGION

Only three of the four tests planted in this region were harvested. The test near New London was abandoned due to extreme drought injury. Yields would not have shown the true yielding ability of the hybrids tested. Throughout this region temperatures were above normal and rainfall was below normal as shown in Tables 3 and 4. The average acre yields for

TABLE 3 -- TOTAL RAINFALL, NUMBER OF DAYS WITH RAIN, AND DRY PERIODS FROM MAY 1st TO SEPTEMBER 15th AT THE VARIOUS TESTING LOCATIONS IN 1953.

	Nearest	Total		of Da				Total	
Testing	Weather	Rain-			Z		Sept	Number	Dry
Location	Station	fall	May			Aug.	15th	Days	Periods*
Maryville	Maryville	9.40	orthern 10	11	<u>9</u>	4	1	35	6/10-6/27 6/29-8/5 8/12-9/2
Lathrop	Amity	11.05	8	8	3	5	1	25	6/11-6/25 7/7-9/3
Shelbina	Shelbina	11.27	9	6	7	6	2	30	5/17-6/5 8/13-9/3
New London	Hannibal	7.57	8	8	8	6	4	34	5/17-6/5 6/14-7/4 7/22-8/11 8/13-9/2
Carrollton	Carrollton	10.84	Central 11	Region 7	<u>1</u> 5	5	2	30	5/23-6/26 7/7-8/2 8/17-9/2
Marshall	Marshall	10.44	7	6	6	5	2	26	6/2-6/25 8/13-9/2
Columbia	Columbia	12.48	9	6	9	4	3	31	5/18-6/5 6/7-6/25 7/5-7/19 8/5-9/2
Jefferson City	Jefferson City	10.56	10	5	7	4	2	28	6/7-6/25 7/9-8/3 8/9-9/3
Washington	Union	10.15	12	6	6	7	3	34	5/17-6/11 7/6-7/20
				Dogic					
Pierce City	Pierce City	8.28	9	n Regio	<u>8</u>	5	1	25	5/28-7/2 7/10-8/11 8/13-9/3
Stark City	Granby	8.02	4	1	6	2	1	14	5/17-7/2 7/26-8/11 8/18-9/3
Sikeston	Sikeston	8.27	12	5	8	4	1	30	5/19-6/6 6/8-6/25 7/16-8/3
Caruthersville	Caruthersville	8.95	12	4	8	3	0	27	5/20-6/7 6/9-7/19 7/21-8/7 8/9-9/15

^{*}Dry Period must have at least 10 days with less than .25 inch of percipitation.

TABLE 4 -- AVERAGE TEMPERATURE, DEPARTURE FROM NORMAL, AND THE NUMBER OF DAYS WITH TEMPERATURE OF 90° OR MORE AND 100° OR MORE AT THE VARIOUS TESTING LOCATIONS IN 1953.

OR M	TORE AT THE VA	ARIOUS .	TESTING I	LOCAT	TONS IN I	
				No. da	ys with	No. Days with
	Nearest		Departure		erature	Temperature
Testing	Weather	Av.	from		or more	100° or more
Location	Station	Temp.	Normal	1953	Av.	1953
		Norther	n Region			
Maryville	Maryville	72.4	+2.4	49	45	6
Lathrop	Amity	73.8	+3.0	71	41	7
Shelbina	Shelbina	73.2	+0.9	65	44	7
New London	Hannibal	73.7	+1.8	56	44	3
		Central	Region			
Carrollton	Carrollton	75.0	+2.8	78	40	18
Marshall	Marshall	77.6	+4.9	75	39	16
Columbia	Columbia	75.1	+2.5	64	39	10
Jefferson City	Jefferson City	75.3	+2.0	76	38	13
Washington	Union	74.4	+0.8	76	37	10
		Souther	n Region			
Pierce City	Monett	77.8	+4.4	82	25	12
Stark City	Neosho	75.4	+2.7	87	25	7
Sikeston	Sikeston	77.1	+2.4	80	33	14
Caruthersville	Caruthersville	79.3	+2.1	77	32	2
Wayne L. Decke	r, Assistant Prof	essor of	Climatolo	gy of th	ne Missou	ri Agricultural

Experiment Station, assembled the weather data. TABLE 5 -- SUMMARY OF AVERAGE PERFORMANCE RECORDS OF HYBRIDS TESTED IN THE NORTHERN

	REGIO	N 1949-	1953.			
7.	7	Moist-		dged	Drop-	
	Acre	ure in		ants	ped	Ear
	Yield	Grain		Stalk		Height
Hybrid	Bu.	%	%	%	%	Grade
	r Average					
US 523W*	88.1	21.4	5.6	7.7	(CS)	4.4
	87.7	17.4	3.8	8.7		3.5
Kan 1639			3.3			3.8
Ohio C92	85.7			7.6		
US 13	83.5	17.2	3.3	12.4		4.0
Mo 148	80.7	17.9	6.0	13.7		4.4
4-Yea	r Average	e (Resul	ts of	13 Tes	ts)	
Mo 843	92.8	18.4	3.1	8.1		3.6
Kan 1639	89.6	17.8	4.4	7.6		3.5
US 523W*	86.8	22.3	6.6	7.9		4.4
Ohio C92	86.0	16.0	4.0	7.7		3.9
Iowa 4476	85.4	18.7	1.8	9.8		3.8
Mo 4022W*	84.9	21.9	2.5	6.8		3.5
US 13	83.5	17.7	3.3	12.1		4.1
Iowa 4531	82.2	17.2	2.2	8.3		3.6
Mo 148	79.7	18.4	7.3	13.0		4.5
						4.0
	r Averag					0.4
Mo 843	89.8	18.6	4.1	9.3	0.9	3.4
Kan 1639	88.7	17.1	5.9		0.9	3.4
US 523W*	86.4	23.2	8.6	8.9	1.0	4.3
Mo 4022W*	85.6	22.6	3.2	8.4	0.3	3.4
Iowa 4476	84.6	18.7	2.4	11.4	0.6	3.7
Ohio C92	84.2	15.6	5.4	8.7	0.9	3.8
CB 8805	84.2	18.2	6.9	7.4	1.1	3.7
AES 801 (Iowa 452		17.5	1.8	5.7	1.0	3.2
Mo 4029W*	83.4	20.0	3.8	2.0	0.5	3.8
Iowa 4531	82.1	17.0	2.9	10.0	0.9	3.6
				13.2		4.1
US 13	82.0	17.4	3.3		2.3	4.4
Mo 148	80.0	18.1	9.5	12.7	2.8	4.4
	ır Averag					
Mo 4046W*	88.6	16.3	8.0	7.3	0.2	4.1
Kan 1639	84.0	14.5	3.6	4.6	0.5	3.3
US 523W*	83.4	18.1	6.2	5.9	1.2	4.2
Mo 897	82.9	16.9	0.7	3.7	0.2	3.7
Mo 894	82.8	15.3	2.7	4.3	0.2	3.5
Mo 4022W*	82.3	18.9	1.7	2.8	0.2	3.3
Mo 843	81.7	16.2	3.2	3.1	0.4	3.3
Mo 900	81.6	18.1	2.1	2.6	0.5	3.8
Mo 901	81.4	16.9	1.2	3.9	0.8	3.5
	81.4	18.1	6.5	4.8	0.6	4.0
Mo 4041W*						3.8
Mo 902	81.3	18.1	1.8	3.1	0.9	
MFA 120A	81.0	15.5	4.5	7.1	1.7	3.8
US 13	79.9	14.8	5.0	5.3	2.5	4.1
Keystone 45	79.9	15.9	1.0	7.1	1.8	4.3
Iowa 4476	79.8	16.4	2.2	3.3	0.8	3.6
Ohio C92	79.4	13.5	3.8	3.4	8.0	3.8
AES 801 (Iowa 452			0.7	1.8	0.7	3.2
CB 8805	78.8	16.0	4.1	2.7	0.8	3.7
PAG 383	77.7	14.2	5.4	1.7	1.1	3.3
Mo 148		16.3	8.0	8.1	2.4	4.5
	77.3		-	1.0	0.5	3.8
Mo 4029W*	74.9	17.8	0.9			
Iowa 4531	74.7	14.6	1.1	2.3	0.8	3.5
Embro 36	73.0	14.9	1.0	4.2	0.7	3.8

the three harvested tests were approximately 60 bushels. This can be compared with an average yield of approximately 100 bushels per acre in 1952 and 1951.

The average performance records of different hybrids grown in the Northern Region are shown in Table 5 and suggest that Kansas 1639 and Ohio C92

TABLE 6 -- SUMMARY OF AVERAGE PERFORMANCE RECORD FOR HYBRIDS TESTED IN THE CENTRAL REGION 1949-1953.

REGION 1949-1953.										
			Moist-			Drop-				
		Acre	ure in		nts	ped	Ear			
			Grain	Root			Height			
Hybrid	<u>i</u>	Bu.	%	%	%	%	Grade			
	5-Year	Average	(Resul	ts of 1	9 Tes	ts)				
US 523W*		100.1	17.4	5.8	5.0		4.2			
Mo 804		94.1	16.8	4.6	7.4		4.4			
Kan 1639		87.8	15.9	3.1	5.2		3.2			
US 13		86.3	14.7	2.5	8.3		3.8			
Mo 148		83.6	16.2	4.6	10.9		4.1			
Mo 8		83.4	17.8	9.8	10.4		4.2			
Ohio C92		82.7	14.7	2.1	4.5		3.5			
	4-Year	Average	(Resul	ts of 1	6 Tes	ts)				
US 523W*		102.9	17.5	4.7	4.8		4.3			
Mo 862		101.1	19.6	3.5	4.1		4.4			
CB 7610		98.5	17.7	2.7	5.5		4.3			
Mo 804		97.8	16.7	3.3	6.8		4.5			
Mo 4022W*		91.9	18.4	3.9	2.6		3.4			
Kan 1639		89.9	15.8	2.6	5.0		3.2			
Iowa 4476		89.5	16.2		5.5		3.5			
US 13		89.4	14.4	2.3	7.4		3.9			
Ohio C92		85.6	14.7	1.4	4.4		3.6			
Mo 8		85.6	17.7	9.8	9.1		4.3			
Mo 148		85.2	15.7	4.0	10.9		4.2			
	3-Year	Average				ts)	00:400 t 000			
US 523W*	0 1001	100.0	16.9	1.8	3.6	,	4.3			
Mo 862		94.2	19.4	1.2	2.6		4.4			
Mo 804		93.6	16.1	0.9	4.4		4.6			
CB 7610		91.7	17.2	1.4	4.4		4.2			
CB 7632		91.0	18.6	0.3	2.7		4.4			
Mo 843		90.4	16.4	0.2	2.7		3.4			
Mo 876		90.3	16.8	0.5	4.1		4.3			
CB 9909		90.2	17.8	1.1	2.7		4.2			
CB 9953		89.8	15.5	1.5	3.9		4.3			
Mo 4022W*		89.5	18.4	0.5	2.0		3.3			
Mo 860		88.0	16.2	0.5	4.9		4.3			
US 13		85.8	13.7	0.6	6.2		3.9			
Iowa 4476		85.6	15.6	0.1	5.2		3.5			
Kan 1639		85.5	15.2	0.5	4.0		3.3			
Mo 148		82.9	15.4	1.8	9.7		4.3			
Mo 8		81.9	17.3	6.6	7.6		4.3			
Ohio C92		81.6	14.2	0.2	3.4		3.6			
Onto Con	9_Vann	Averag				·g)				
US 523W*	2-1 c ai	104.6	15.3	2.8	4.7	0.8	4.4			
Mo 862		102.3	17.0	1.2	3.7	0.8	4.7			
Mo 883		99.0	17.4	1.7	2.3	0.7	4.5			
CB 7632		98.6	15.1	0.4	3.5	0.6	4.6			
Mo 804		97.7	14.9	1.3	6.3	0.5	4.9			
Mo 4021W*		96.5	16.2	0.3	2.5	0.5	3.6			
CB 7610		96.4	14.6	1.1	6.0	0.7	4.3			
		95.5	16.5	0.8	2.1	0.5	3.4			
Mo 4022W* Mo 843		95.5	14.2	0.3	3.2	0.5	3.6			
Mo 876		95.3	14.8	0.2	4.3	1.7	4.6			
CB 9953		95.1	13.5	0.4	4.9	3.2	4.5			
Mo 860		94.9	14.4	0.8	4.8	1.7	4.6			
CB 9909		94.8	15.8	1.0	1.8	0.4	4.4			
Mo 892		94.2	13.8	0.2	5.0	0.5	3.6			
US 13		92.1	12.0	0.9	5.5	2.3	4.2			
Kan 1639		91.6	12.5	0.8	4.8	1.8	3.4			
Mo 148		91.0	13.8		9.9	2.1	4.6			
MFA 120A		90.2	13.6	0.6	6.6	1.4	4.0			
MFA 120A Iowa 4476		90.2	13.6	0.0	5.8	0.7	3.8			
PAG 403		89.0	12.7	0.7	0.8	1.0	3.4			
Ohio C92		88.1	12.8	0.4	4.8	1.0	3.7			
		87.4	16.4	7.2	9.0	0.3	4.6			
Mo 8 Keystone 11	1177*	84.4	17.3	2.9	1.4	0.1	4.3			
Embro 36	T 44	84.4	13.3	0.3	5.1	2.1	3.9			
*White Hybr	ride	01.1	10.0	0.0						
witte Hybi	LIUD									

are superior in yielding and standing ability to other yellow hybrids tested. Seed of these two hybrids is

TABLE 7 -- SUMMARY OF AVERAGE PERFORMANCE RECORDS FOR HYBRIDS TESTED IN THE SOUTHERN REGION 1949-1953.

		REGIO					
			Moist-		odged	Drop-	
		Acre	ure in		lants	ped	Ear
** 1 .		Yield			t Stalk		
Hybrid		Bu.	%		%	%	Grade
	5 Year	Average				:s)	
US 523W*			13.5	8.3			3.7
Mo 804		76.0	14.0	4.6			3.7
US 13		72.6	13.0	4.1	10.4		3.2
Kan 1639		71.5	13.3	4.3			2.7
Mo 8		70.0	14.9	10.5			3.7
Mo 148		69.6	13.3	5.9			3.6
Ohio C92		69.2	12.7	4.3	6.5		3.1
	4-Year	Average	(Result	ts of	10 Test	ts)	
Mo 5365W*		86.2	15.6	7.8	14.8		4.3
Dixie 33*		83.2	16.9	9.7	6.5		4.7
US 523W*		79.9	13.2	8.5	9.6		3.6
Dixie 22		79.5	16.4	6.2	17.1		4.5
CB 7610		76.2	14.1	5.1	8.1		3.7
Mo 862		75.8	16.9	8.5	9.2		3.8
Mo 804		74.3	13.7	4.3	9.3		3.7
US 13		71.5	12.6	3.0	6.0		3.1
Kan 1639		69.7	13.0	4.2	5.0		2.7
Iowa 4476		69.2	13.4	0.8	8.0		2.9
Mo 8		69.0	14.7	9.9	10.6		3.7
Ohio C92		68.5	12.3	4.5	4.8		3.1
Mo 148		68.1	12.9	6.3	9.1		3.6
	3-Year	Average	(Resul	ts of	6 Test	s)	
Mo 5365W*		79.3	13.7	0.8	18.4		4.4
Dixie 33*		77.7	15.2	2.6	7.4		4.6
US 523W*		76.8	11.2	1.4	11.7		3.4
Dixie 22		73.3	14.2	1.1	20.9		4.4
CB 7610		72.8	12.0	0.3	8.3		3.6
Mo 862		71.7	15.2	1.8	11.2		3.7
US 13		71.3	10.8	0	7.0		3.1
Mo 843		70.6	11.7	1.8	5.4		2.9
CB 7632		70.5	13.5	0.4	10.6		4.0
Mo 804		70.1	12.1	0.1	11.1		3.6
Mo 860		69.7	11.5	0	9.1		3.4
Kan 1639		67.6	10.8	0.1	5.4		2.6
Ohio C92		66.1	10.8	0.2	5.5		3.0
Mo 148		65.4	11.4	0.7	10.6		3.5
Mo 8		65.3	13.0	$^{2.0}$	12.5		3.6
CB 8805		64.3	11.7	0.3	6.5		2.8
	2-Year	Average				3)	
TRF 3*		62.3		11.7	10.5	0.2	3.6
US 13		61.4	9.0	0	5.0	2.0	3.1
US 523W*		60.4	9.6	2.1	12.1	0.4	3.3
Mo 860			10.0	0	5.8	0.4	3.4
Dixie 33*		59.9	14.2	2.9		0.4	4.4
PAG 484		59.3	13.3	0.4	12.4	0.9	3.6
Mo 883		59.3	13.5	1.4	2.3	0.4	3.5
Mo 843		58.9	10.0	2.8	2.9	0.2	2.9
Mo 862		58.6	14.1	2.3	10.4	0.9	3.5
Mo 5365W*		58.6	12.6	0.6	20.0	0	4.2
MFA 120A		58.7	8.8	0.2	5.1	1.4	2.9
CB 7610		58.2	10.4	0.4	4.3	0.6	3.3
Kan 1639		56.4	8.9	0.2	3.5	0.8	2.5
Dixie 22		56.3	12.9	1.3	19.3	0.4	4.1
Mo 804		55.7	10.8	0.2	10.2	0.6	3.4
Mo 148 CB 7632		55.1	9.6	1.1	8.4	0.6	3.4
		55.0	12.0	0.6	8.8	0.6	3.7
Ohio C92 Mo 8		54.8	9.2	0	3.2	0.7	2.9
CB 8805		53.9	11.8	2.8	11.1	1.1	3.5
Iowa 4476		53.3	9.2	0	4.1	0.6	2.7
T 0009		53.2	9.7	0	7.3	0.8	2.6
Keystone 222	Α	53.2 52.6	13.7 13.2	0.6 1.4	13.2 16.4	2.3 0.	4.1 3.9
*White Hybri		04.0	10.4	1.4	10.4	<u>U.</u>	3.8

available in sizable quantities this year.

A promising new yellow hybrid for this region is Mo 843 which was released for seed production in 1953 but due to unfavorable conditions only a small quantity of seed is available this year. US 523 W, a white hybrid, has given consistently high yields in this region but it is a full season hybrid and the moisture content of the grain is usually high.

The summary of the tests harvested in 1953 in the Northern Region is given in Table 8. Results from individual tests are given in Tables 9, 10, and 11.

TABLE 8 -- NORTHERN REGION, 1953 AVERAGE PERFORMANCE RECORDS FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED IN NODAWAY, CLINTON, AND SHELBY COUNTIES.

TESTED IN NOD	AWAY,		N, ANI				ŒS.
		Moist-			lged	Drop-	
	Acre	ure in			ants	ped	Ear
	Yield	Grain	Stand		Stalk		Height
Hybrid	Bu.	%	%	%	%	%	Grade
Mo 880 (Exp)	71.8	14.0	92.4	0.9	1.8	0.3	3.6
Mo 4046W* (Exp)	68.6	14.0	91.0	1.2	8.3	0.2	3.9
Funk G95A	68.2	11.6	94.4	0	5.2	0.5	3.5
Kan 1639	67.2	12.4	93.8	0	4.7	0.2	3.3
MFA 120A	67.1	13.8	92.7	0.9	7.8	2.1	3.9
Keystone 48	66.7	12.9	92.7	0.6	7.9	0.3	3.4
Mo 4047W* (Exp)	66.2	16.1	93.5	3.3	8.0	0	4.1
Mo 894 (Exp)	65.9	13.5	89.9	0	3.7	0.2	3.7
Mo 4042W* (Exp)	64.2	16.0	96.3	1.1	4.5	0.5	3.7
MFA 115	64.0	12.9	91.6	0.3	3.3	0.6	3.9
Nebr 505W*	64.0	10.9	92.7	1.2	7.6	2.4	3.8
US 13 (Hand	7				•••		0.0
Pollinated)	64.0	12.7	95.5	0	5.2	0.2	3.9
Mo 897 (Exp)	63.7	14.9	96.3	ŏ	4.8	0.2	3.7
Mo 4021WB* (Exp)	63.4	14.9	94.1	0.2	7.0	0.3	3.6
PAG 383	63.0	12.8	93.3	0	1.7	1.4	3.5
US 523W*	62.9	14.4	94.7	ŏ	8.5	1.4	4.2
PAG 403	62.9	12.8	94.4	0.8	2.0	0.3	3.5
DeKalb 800A	62.9	12.1	88.5	0.8	6.0	0.9	3.9
Mo 6022WB* (Exp)	62.8	16.1	94.1	0.0	4.1	0.5	3.6
Funk G91	62.4	13.8	94.9	ŏ	3.2	1.4	3.7
Ohio C92	62.2	11.9	92.4	Ö	3.8	0.6	3.8
Mo 4041W*	61.9	16.2	94.1	1.4	5.2	0.8	4.0
Pioneer 301C	61.5	13.0	94.1	0.2	3.5	0.5	3.4
AES 801 (Iowa 4527)	61.3	12.2	94.1	0.2	1.4	0.2	3.3
PAG 347	61.2	11.5	92.1	Ö	2.6	0.3	3.3
Mo 901 (Exp)	61.1	15.3	94.1	ŏ	6.0	1.1	3.4
Mo 148	61.0	12.6	92.1	1.1	7.3	1.5	4.3
Iowa 4565	60.9	12.5	91.6	0	3.3	1.5	3.4
Mo 860 (Exp)	60.8	14.2	95.8	Ö	2.7	0.8	4.2
Pioneer 302	60.7	13.6	96.6	Ö	4.8	0.5	4.1
CB 8805 (Exp)	60.5	14.4	94.1	0.3	2.6	0.5	
Nebr 1369B (Exp)	60.5	13.2	92.7	0.5	8.6	0.6	3.9
Mo 900 (Exp)	60.3	17.0	94.1	1.4	3.5	0.8	3.6 3.8
Embro 36	59.8	11.9	88.8	0	5.5	0.3	
US 13 (Certified)	59.6	13.4	89.1	Ö	3.3	2.2	3.9
Mo 4022W* (Exp)	59.2	17.5	96.9	ŏ	3.5	0.2	3.8
DeKalb 847	49.0	12.7	93.0	0.2	3.7	0.8	3.5
Pioneer 325	58.8	11.7	92.7	0.2	1.4		3.8
Ainsworth X-14-A	58.2	13.8	90.2	0.3	9.0	0.2	3.1
Iowa 4476 (Exp)	57.9	14.9	94.7		4.1	2.2	4.2
Embro 49	57.8	13.5		0		0.8	3.8
Mo 843 (Exp)			90.2	0	3.3	1.2	4.1
DeKalb 875	57.7 57.0	14.0	92.2	0	3.6	0.3	3.4
Keystone 45	57.0 56.3	12.8	93.0	0	7.3	0.6	3.7
Funk G99	56.3	14.6	93.3	0	9.0	2.1	4.2
	56.1	14.2	90.8	0	4.1	0.8	4.0
Mo 902 (Exp)	55.7	16.9	95.5	0	4.1	0.5	3.9
Mo 4021W* (Exp)	54.6	16.3	92.4	0.3	2.9	0.2	3.5
Mo 4029W* (Exp)	54.3	15.4	94.7	0	1.4	0.5	4.0
Iowa 4531	54.3	12.3	94.4	0	3.5	0.5	3.6
Means	61.5	13.8	93.2	0.3	4.7	0.8	3.8
*White Hybrids							

EXPERIMENTAL HYBRIDS TESTED ON THE NORTHWEST MISSOURI STATE COLLEGE FARM, R. T. WRIGHT, SUPERINTENDENT, MARYVILLÉ, NODAWAY

	COUNTY, MISSOURI.									
		Moist-			ged	Drop-	_			
	Acre	ure in			ints	ped	Ear			
	Yield	Grain	Stand			Ears	Height			
Hybrid	Bu.	%	%	%		%	Grade			
Mo 880 (Exp)	81.4	12.7	95.8	0	1.7	0	3.2			
Funk G95A	75.4	10.7	91.6	0	2.7	0	3.0			
Mo 4046W* (Exp)	72.8	12.3	89.1	0	2.8	0	3.7			
MFA 120A	72.3	10.5	90.0	0	1.8	0.9	3.7			
Keystone 48	71.3	11.6	92.5	1.8	6.3	0	3.5			
Nebr. 1369 B (Exp)	68.5	10.4	90.0	0	3.7	0.9	3.2			
Kan. 1639	68.2	10.7	93.3	0	2.6	8.0	3.2			
US 13 (Hand Poll.)	66.9	10.7	95.0	0	4.3	0	3.7			
PAG 403	66.7	11.7	94.1	0	0.8	0	3.2			
Mo 4022WB* (Exp)	66.7	12.9	85.0	Ó	4.9	0	3.5			
Funk G91	66.4	11.5	94.1	0	0.8	1.7	3.2			
Mo 897 (Exp)	66.3	14.0	94.1	0	0	0	3.5			
Mo 4022W* (Exp)	66.0	14.8	93.3	0	2.6	0	3.0			
Mo 4041W* (Exp)	65.7	12.9	95.0	0	4.3	1.7	3.7			
Mo 894 (Exp)	65.3	11.5	76.6	0	0	0	3.5			
MFA 115	65.2	11.3	90.8	0	1.8	0.9	3.7			
Pioneer 302	65.1	12.5	95.8	0	2.6	0.8	4.0			
Mo 4047W* (Exp)	64.5	12.9	91.6	6.3	1.8	0	4.0			
Mo 4021WB* (Exp)	63.7	13.0	91.6	0	1.8	0.9	3.0			
Mo 4042W* (Exp)	63.1	14.2	93.3	3.5	0	0	3.7			
DeKalb 800A	63.0	10.9	78.3	0	2.1	2.1	3.7			
AES 801 (Iowa 4527)	62.8	9.5	90.0	0	0	0	3.0			
Ohio C92	62.8	11.5	85.0	0	0.9	1.9	3.2			
Nebr 505W*	62.6	9.3	95.0	0	3.5	3.5	3.5			
Iowa 4476 (Exp)	62.5	13.5	90.8	0	2.7	0.9	3.7			
Embro 49	62.3	11.5	87.5	0	4.7	2:8	4.0			
US 523W*	62.0	13.4	95.0	0	2.6	0.8	4.0			
DeKalb 847	61.8	10.9	88.3	0	0	0	3.5			
Mo 902 (Exp)	61.3	12.0	93.3	0	0.8	0.8	3.7			
Iowa 4565 (Exp)	60.9	10.5	88.3	0	1.8	3.7	3.0			
Pioneer 301 C	60.9	10.7	90.0	0	1.8	0	3.0			
Mo 860 (Exp)	60.4	10.9	88.3	0	0	1.8	4.0			
PAG 383	59.9	11.5	95.0	0	0	3.5	3.0			
Ainsworth X-14-A	59.7	11.1	84.1	0.9	2.9	4.9	4.0			
Mo 148	59.6	11.3	88.3	1.8	4.7	3.7	4.0			
Keystone 45	59.3	12.9	87.5	0	3.8	5.7	3.7			
Mo 900 (Exp)	58.8	12.5	92.5	2.7	4.5	0	3.5			
Mo 901 (Exp)	58.4	12.6	92.5	0	4.5	0.9	3.0			
US 13 (Certified)	58.1	10.2	78.3	Ŏ	1.0	3.1	3.7			
C B 8805 (Exp)	58.1	11.7	91.6	0.9	0.9	0.9	3.2			
Мо 843	57.5	11.8	92.5	0	1.8	0.9	3.2			
Iowa 4531	55.5	10.4	93.3	ŏ	2.6	0	3.2			
Pioneer 325	55.4	10.1	84.1	Ŏ	0.9	Ö	2.7			
Embro 36	54.1	10.5	85.0	0	1.9	Ō	3.5			
Mo 4029W* (Exp)	53.0	12.7	92.5	Ö	0.9	ō	3.7			
DeKalb 875	51.4	11.3	90.8	ŏ	4.5	1.8	3.2			
PAG 347	50.8	10.7	85.8	ŏ	1.9	0.9	3.0			
Mo 4021W* (Exp)	50.3	14.8	95.0	ő	0.8	0.8	3.0			
Funk G99	47.3	12.5	85.0	ŏ	0.9	0.9	4.0			
Means	62.3	11.8	90.1	0.3	2.1	1.1	3.4			
Micano	JE. 0					- 7 4 4				

Differences in yield between any two hybrids of less than 16.2 bushels are not considered significant.

CENTRAL REGION

Four of the five tests planted in this region were harvested in 1953. The test near Jefferson City was abandoned because drought caused the same hybrid to have a range in yield from 0 to 50 bushels per acre in different parts of the field. This condition increases

TABLE 9 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND TABLE 10 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE NORTHWEST MISSOURI AGRICULTURAL EXPERIMENT FIELD, C. L. VAN BUREN, COOPERATOR, NEAR LATHROP, IN CLINTON COUNTY,

LATHROP, IN CLINTON COUNTY,										
		MISSOU	JKI.	Tax	hond	Dmor				
	A 12-0012-	Moist-			iged	Drop-				
	Acre	ure in	CL		ints	ped	Ear			
	Yield	Grain	Stand			Ears				
Hybrid	Bu.	%	%	%	%	<u>%</u>	Grade			
Mo 4047W* (Exp)	70.9	13.5	96.6	0	2.5	0	4.5			
Mo 894 (Exp)	69.6	11.4	96.6	0	0.8	0	4.0			
Mo 4046W* (Exp)	68.2	10.7	95.0	0	1.7	0.8	4.2			
Pioneer 301C	67.6	9.8	97.5	0.8	0	0	3.7			
PAG 383	67.4	9.6	87.5	0	0.9	0.9	4.0			
US 13 (Hand Poll.)	67.2	9.4	96.6	0	0	0	4.0			
Mo 880 (Exp)	67.1	10.4	91.6	0	0	0	4.0			
Mo 4042W* (Exp)	66.7	11.5	99.1	0	1.6	0.8	4.0			
US 523W*	66.4	10.4	95.8	0	1.7	0	4.5			
Mo 897 (Exp)	66.2	10.8	97.5	0	0.8	0	4.0			
Mo 901 (Exp)	66.0	12.0	92.5	0	0.9	0	3.7			
Kan 1639	66.0	9.1	95.0	0	0.8	0	3.7			
AES 801 (Iowa 4527)	65.1	9.1	99.1	0	0	0	3.7			
PAG 347	64.5	8.4	96.6	0	2.5	0	3.2			
Mo 860 (Exp)	64.5	12.1	99.1	0	0.8	0	4.5			
Funk G95A	64.4	9.1	95.0	0	4.3	0	3.7			
DeKalb 800A	64.4	9.3	94.1	0	4.4	0	4.5			
Keystone 48	64.2	9.5	95.0	0	0	0	3.2			
C B 8805 (Exp)	63.8	10.9	94.1	0	5.3	0	4.5			
Mo 4041W* (Exp)	63.6	11.8	92.5	0	0.9	0.9	4.5			
Nebr 505W*	63.5	8.8	93.3	0	0.8	0	4.0			
Mo 900 (Exp)	62.7	14.3	96.6	0	2.5	0.8	4.2			
Ohio C92	62.2	8.9	98.3	0	0	0	4.2			
Funk G91	61.9	10.3	98.3	0	0	0	4.0			
MFA 120A	61.8	9.3	100.0	0	6.6	0	4.0			
US 13 (Certified)	61.2	9.7	95.8	0	0	0	4.2			
Funk G99	61.2	9.9	91.6	0	3.6	0.9	4.2			
PAG 403	60.9	8.9	92.5	0	0.9	0.9	4.0			
Pioneer 302	60.8	10.4	96.6	0	2.5	0	4.5			
Mo 148	60.8	8.3	89.1	0	5.6	0	4.7			
Mo 4021WB* (Exp)	60.6	12.2	97.5	. 0	4.2	0	4.0			
Mo 4022WB* (Exp)	60.3	11.8	98.3	0	0.8	0	4.0			
DeKalb 875	60.3	9.5	91.6	0	7.2	0	4.0			
DeKalb 847	60.2	9.3	96.6	0	5.1	0	4.0			
MFA 115	60.0	10.0	94.1	0	1.7	0	4.5			
Iowa 4565 (Exp)	59.5	9.5	95.8	0	0	0	4.2			
Ainsworth X-14-A	59.4	9.7	95.0	0	7.8	0	4.5			
Mo 4029W* (Exp)	58.8	10.4	96.6	0	0.8	0	4.5			
Embro 36	58.7	9.3	92.5	0	1.8	0	4.2			
Nebr. 1369B (Exp)	58.2	10.6	96.6	0	6.0	0	4.0			
Mo 843	58.0	10.7	94.1	0	. 0	0	3.7			
Mo 4022W* (Exp)	57.8	14.8	100.0	0	0.8	0.8	4.0			
Pioneer 325	57.4	8.2	100.0	0	0	0	3.7			
Iowa 4476 (Exp)	57.2	10.0	100.0	0	0.8	0.8	4.0			
Keystone 45	54.0	10.7	96.6	0	1.7	0	5.0			
Mo 4021W* (Exp)	53.8	12.7	93.3	0	3.5	0	4.0			
Mo 902 (Exp)	53.4	14.1	94.1	0	1.7	0_	4.2			
Iowa 4531	53.1	8.9	96.6		0	1.7	4.0			
Embro 49	52.8	10.7	93.3	0	1.7		4.5			
Means	61.91				2.0		4.1			
Differences in wield	hetween	any two	hybrid	s of le	ss tha	n 9.6 t	ousneis			

Differences in yield between any two hybrids of less than 9.6 bushels are not considered significant.

*White Hybrids

the experimental error and it is more difficult, if not impossible to determine the relative yielding ability of the hybrids.

The tests at Carrollton, Marshall, and Columbia averaged approximately 70 bushels per acre in 1953 compared with 90 bushels in 1952. Columbia averaged

^{*}White Hybrids

TABLE 11 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE ED RUTTER FARM NEAR SHELBINA IN SHELBY COUNTY, MISSOURI.

FARM NEAR	PHELPRIN		ELBY (<u></u>
	A GOW	Moist-			dged	Drop-	E
	Acre	ure in	CL		ants	ped Ears	Ear
	Yield	Grain	Stand				_
Hybrid	Bu.	%	%	%	<u>%</u>		Grade
PAG 347	68.3	15.5	94.1	0	3.5	0	3.7
MFA 120A	67.4	21.7	88.3	2.8	15.0	5.6	4.0
Kan 1639	67.3	17.3	93.3	0	10.7	0	3.2
Mo 880 (Exp)	67.1	18.9	90.0	2.7	3.7	0.9	3.7
MFA 115	66.8	17.5	90.0	0.9	6.4	0.9	3.7
Embro 36	66.6	16.0	89.1	0	13.0	0.9	4.0
Mo 4021WB* (Exp)	66.1	19.4	93.3	0.8	15.1	0	4.0
Nebr 505W*	65.9	14.6	90.0	3.7	18.5	3.7	4.0
Keystone 48	64.9	17.5	90.0	0	17.4	0.9	3.7
Mo 4046W* (Exp)	64.7	19.1	89.1	3.7	20.5	0	4.0
Funk G95A	64.7	14.9	96.6	0	8.6	1.7	4.0
Pioneer 325	63.7	16.8	94.1	0	3.5	0.8	3.0
Mo 4047W* (Exp)	63.1	21.9	92.5	3.6	19.8	0	4.0
Mo 4042W* (Exp)	62.8	22.3	96.6	0	12.0	0.8	3.5
Mo 894 (Exp)	62.7	17.6	96.6	0	10.3	0.8	3.7
Mo 148	62.5	18.1		1.6	11.7	0.8	4.2
Iowa 4565 (Exp)	62.3	17.6	90.8	0	8.2	0.9	3.2
PAG 383	61.9	17.3	97.5	Ö	4.2	0	3.5
Mo 4022WB* (Exp)	61.5	23.7	99.1	Ö	6.7	Ō	3.5
Ohio C92	61.5	15.4	94.1	ŏ	10.6	0	4.0
DeKalb 800A	61.1	16.1	93.3	2.6	11.6	0.8	3.7
PAG 403	61.0	17.8	96.6	2.5	4.3	0	3.5
US 523W*	60.3	19.4	93.3	0	21.4	3.5	4.2
Mo 4021W* (Exp)	59.8	21.3	89.1	0.9	4.6	0	3.5
Funk G99	59.7	20.2	95.8	0	7.8	0.8	4.0
C B 8805 (Exp)	59.6	20.7	96.6	ŏ	1.7	0.8	4.0
US 13 (Certified)	59.4	20.3	93.3	ŏ	8.9	3.5	3.7
Mo 900 (Exp)	59.4	24.2	93.3	1.7	3.5	1.7	3.7
DeKalb 875	59.2	17.5	96.6	ō	10.3	0	4.0
Funk G91	59.0	19.7	92.5	Ö	9.0	2.7	4.0
Mo 901 (Exp)	58.9	21.4	97.5	ŏ	12.8	2.5	3.7
Mo 897 (Exp)	58.7	20.0	97.5	ŏ	13.6	0.8	3.7
Embro 49	58.4	18.4	90.0	Ö	3.7	0.9	4.0
US 13 (Hand Poll.)	57.8	18.1	95.0	Ö	11.4	0.8	4.2
Mo 843	57.5	19.5	90.0	0	9.2	0.0	3.5
Mo 860 (Exp)	57.4	19.7	100.0	. 0	7.5	0.8	4.2
Mo 4041W* (Exp)	56.4	24.0	95.0	4.3	10.5	0.0	4.0
	56.1	18.4	95.0	0	8.7	1.7	3.7
Pioneer 301 C						0.8	4.0
Pioneer 302	56.1	18.0	97.5	0	9.4		
AES 801 (Iowa 4527)		18.1	93.3	0	4.4	0.8	3.2
Keystone 45	55.5	20.3	95.8	0	21.7	0.8	4.0
Ainsworth X-14-A	55.5	20.7	91.6	0	16.3	1.8	4.2
DeKalb 847	54.9	17.8	94.1	0.8	6.1	2.6	4.0
Nebr. 1369B (Exp)	54.7	18.6	91.6	0	16.3	0.9	3.7
Iowa 4531	54.2	17.7	93.3	0	8.0	0	3.7
Iowa 4476	54.0	21.2	93.3	0	8.9	0.8	3.7
Mo 4022W* (Exp)	53.9	22.8	93.3	0	7.1	0	3.7
Mo 902 (Exp)	52.4		99.1	0	10.0	0.8	4.0
Mo 4029W* (Exp)	51.0	23.2	95.0	0	2.6	$\frac{1.7}{1.7}$	$\frac{4.0}{1.0}$
Means	60.8	19.2	93.9	0.6	10.0	1.0	3.7

Means 60.8 19.2 93.9 0.6 10.0 1.0 3.7

Differences in yield between any two hybrids of less than 8.5 bushels are not considered significant.

77 bushels in 1951 when the other locations were flooded out.

The average yield at Washington was 127 bushels per acre in 1953 and 124 bushels in 1952.

Though the yield in the Washington test is much higher than the other three tests of this region, a com-

TABLE 12 -- CENTRAL REGION, 1953 AVERAGE PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED IN CARROLL, SALINE, BOONE, AND FRANKLIN COUNTIES.

	rn-	ANKLU				D		
		Moist-			lged	Drop-		771
		ure in	CH 3		nts	ped	Shell-	
	Yield	Grain			Stalk %	Ears	ing %	Height
Hybrid	Bu.	%	%	%		<u>%</u>		Grade
Mo 8010W* (Exp)	99.2	15.3	96.9	0.1	3.3	0.8	80.3	4.2
US 523W*	98.7	14.1	96.8	2.0	2.3	1.5	81.0	4.2
Mo 4047W* (Exp)	94.7	15.6	95.6	6.7	2.9	0.2	77.7	3.4
Mo 862 (Exp)	94.3	15.9	94.5	1.6	2.7	1.5	78.8	4.4
Mo 4048W* (Exp)	93.4	15.5	94.1	1.0	1.8	0.4	79.9	4.1
Pioneer 302	92.5	14.4	94.9	1.7	0.7	1.7	82.5	3.9
C B 7632 (Exp)	91.9	14.5	95.7	0.4	0.9	1.1	79.3	4.2
C B 9953 (Exp)	91.4	12.8	93.4	0.2	2.0	4.0	80.5	4.4
Mo 904 (Exp)	91.1	15.9	90.6	3.9	3.9	0.6	75.0	4.5
Mo 843	90.7	13.3	94.4	0.2	1.3	0.6	79.8	3.7
C B 7610 (Exp)	90.5	13.9	95.0	2.1	2.9	1.2	81.4	4.0
Mo 804	90.4	14.4	95.8	1.7	5.7	0.5	79.1	4.6
Mo 876 (Exp)	89.9	13.7	94.1	0	1.3	3.1	80.0	4.4
US 13 (Certified)	89.8	12.0	93.5	0.1	3.1	4.0	81.7	3.9
Pioneer 301C	89.5	11.9	89.2	0.5	2.8	1.0	83.3	3.4
Mo 4041W* (Exp)	89.4	14.7	93.7	2.6	1.6	0.6	79.9	4.1
Mo 883 (Exp)	89.0	16.8	92.1	3.1	0.7	0.9	77.6	4.3
Mo 884 (Exp)	88.4	14.3	93.6	2.0	1.1	0.2	79.7	4.3
Mo.4022WB* (Exp)	88.3	14.7	97.9	1.2	1.0	1.1	76.5	3.4
Mo 860 (Exp)	88.0	13.3	95.2	0.9	2.8	2.7	82.0	4.3
US 13 (Hand Poll)	87.6	11.6	94.3	0.8	3.8	3.4	81.6	4.1
Keystone 45	87.6	12.7	95.7	0.6	2.4	1.9	82.2	3.9
Pioneer 301	87.4	11.3	93.7	0.2	2.6	2.6	83.8	3.4
Mo 901 (Exp)	87.0	13.2	95.9	0	1.5	1.0	82.8	3.5
Mo 4021WB* (Exp)	86.6	14.8	95.5	0	0.9	0.7	79.4	3.4
Kan 1639	86.5	11.8	95.3	0.7	2.1	2.5	79.5	3.3
MFA 120A	86.1	12.8	95.7	0.8	3.5	2.5	81.7	3.9
Funk G79	86.0	12.9	90.4	0	2.8	1.7	82.9	4.0
C.B 9909 (Exp)	85.9	15.3	95.8	1.7	1.6	0.5	78.9	4.2
Mo 4022W* (Exp)	85.8	15.3	97.2	0	1.8	0	74.6	3.3
Mo 4021W* (Exp)	85.6	15.2	97.0	0	1.6	0.4	76.3	3.5
Mo 892 (Exp)	85.1	12.5	91.5	0.2	3.2	0.5	81.1	3.6
Mo 148	85.1	13.1	94.7	3.3	5.7	2.0	79.3	4.3
Funk G91	85.1	12.1	94.0	0.1	2.5	2.9	81.8	3.6
Ohio C92	84.2	11.9	93.5	0.1	3.3	1.4	83.0	3.6
PAG 383	82.7	11.7	94.8	0.4	2.1	1.4	81.1	3.3
PAG 403	82.5	11.8	93.2	0.8	0.1	1.7	82.2	3.3
DeKalb 875	82.4	12.2	92.9	1.5	3.6	2.7	82.6	3.9
Funk G95A	82.1	12.4	94.2	0.5	1.5	1.5	81.9	3.4
Iowa 4476 (Exp)	82.0	12.1	94.2	0.1	4.1	1.0	79.1	3.7
DeKalb 847	81.3	12.3	93.0	1.1	1.8	2.4	82.0	3.4
Embro 36	81.0	12.8	95.2	0.1	3.1	3.0	80.9	3.7
PAG 484	80.9	16.2	93.0	2.6	2.5	0.8	80.1	4.5
MFA 115	79.3	11.7	89.8	0.6	1.2	2.8	79.6	3.8
Embro 49	77.9	12.9	90.7	0.6	3.4	2.4	80.3	4.0
Mo 922 (Exp)	77.0	14.7	97.3	1.2	2.3	2.3	75.3	3.8
Mo 8	75.9	16.8	93.8	11.5	7.3	0.6	76.5	4.4
DeKalb 825	74.5	11.7	93.9	0.8	1.8	3.0	82.7	3.6
Keystone 111W	72.8	17.4	93.9	2.4	1.7	0.2	75.8	3.9
Means	86.4	13.7	94.3	1.4	2.5	1.3	80.1	3.9

*White Hybrids

parison of Table 13, 14, 15, and 16 shows the ranking of most hybrids in the Washington test to be similar to the ranking of these hybrids in the other three tests where the yields were about the same.

Due to an error in the test at Marshall a complete set of moisture determinations was not made. There-

^{*}White Hybrids

TABLE 13 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE PFISTER ASSOCIATED GROWERS RESEARCH FARM LOCATED NEAR CARROLLTON, IN CARROLL COUNTY, MISSOURI.

	CARRO	LL COL						
	12/	Moist-			lged	Drop-		-
	Acre	ure in			nts		Shell-	
	Yield	Grain				Ears	ing	Heigh
Hybrid	Bu.	%	%	%	%	%	<u>%</u> _	Grade
Mo 876 (Exp)	94.3	16.8	99.1	0	2.5	5.0	81.5	4.2
Mo 904 (Exp)	89.5	17.2	100.0	2.5	5.8	1.6	76.4	4.5
Mo 8010W* (Exp)	87.9	18.9	99.1	0	5.0	0	80.5	4.0
Pioneer 302	86.2	17.6	93.3	5.3	1.7	1.7	82.1	4.0
CB 9953 (Exp)	85.5	15.3	87.5	0.9	0.9	3.8	80.4	4.2
Pioneer 301C	85.4	14.1	99.1	0	5.8	0.8	83.2	3.7
US 523W*	84.8	17.5	99.1	3.3	0.8	0.8	80.9	4.0
US 13 (Certified)	82.9	14.5	98.3	0	5.0	5.0	81.7	4.2
MFA 120A	82.8	14.0	99.1	2.5	5.8	1.6	82.1	4.2
Mo 862 (Exp)	82.8	18.9	93.3	2.6	2.6	0.8	78.7	3.7
Mo 4047W* (Exp)	82.5	17.7	99.1	5.0	3.3	0	75.7	3.5
Mo 4048W* (Exp)	82.4	16.6	99.1	0	0	0	79.5	4.0
Mo 804	82.3	17.5	96.6	2.5	7.7	0.8	78.7	
Pioneer 301	82.2	13.5	96.6	0	2.5	3.4	83.3	3.5
CB 7610 (Exp)	81.8	16.5	96.6	0.8	4.3	0.8	81.2	3.7
CB 7632 (Exp)	80.0	18.5	98.3	0.8	0.8	1.6	78.8	4.2
PAG 484	79.7	18.1	92.5	2.7	0	0	80.1	4.7
Mo 884 (Exp)	79.2	17.9	96.6	5.1	3.4	ō	80.5	4.0
Ohio C92	78.9	14.0	100.0	0	3.3	0.8	82.9	3.5
Keystone 45	78.5	15.3	100.0	ŏ	3.3	4.1	80.9	
Mo 860 (Exp)	78.4	15.1	97.5	ŏ	3.4	1.7	81.7	3.7
	77.7	14.6	97.5	ő	3.4	3.4	82.7	4.0
DeKalb 875	75.9	14.3	99.1	0.8	0	2.5	81.9	3.5
PAG 403	75.4	18.6	90.0	2.7	0.9	0	77.2	4.2
Mo 883 (Exp)	75.2	15.5	95.8	õ.	1.7	1.7	82.0	4.0
Mo 901 (Exp)	75.1	15.9	96.6	8.6	4.3	0.8	78.7	4.2
Mo 148	74.4	15.5	99.1	0	0.8	0.8	79.2	3.7
Mo 843	74.0	14.7	87.5	Ö	1.9	0.0	79.9	3.7
Mo 892 (Exp)	73.3	17.0	85.0	ő	0.9	0.9	79.6	3.7
Mo 4041W* (Exp)	73.2	15.1	87.5	ŏ	0.9	3.8	81.5	4.0
Funk G79			98.3	0.8	5.0	5.0	81.3	4.0
US 13 (Hand Poll.)	72.1	14.1 14.3	97.5	2.5	0.8	2.5	78.4	3.5
Kan 1639	71.7 71.3	14.0	96.6	0	1.7	6.0		3.7
DeKalb 847		18.3	99.1	ŏ	1.6	0.8	78.2	4.2
CB 9909 (Exp)	70.5 69.1	19.9	96.6	18.1	4.3	0.0	75.4	4.5
Mo 8		14.8	95.0	0	5.2	ŏ	78.9	3.5
Iowa 4476 (Exp)	68.8			0	0.8	1.7	79.8	3.7
PAG 383	68.4	14.3	96.6	150	1.9	3.8	78.2	4.0
Embro 49	67.0	15.7	87.5	0	2.5	3.3	82.3	3.5
DeKalb 825	66.7	13.5	100.0	2.5	1.6	0.8	74.3	3.2
Mo 4022WB* (Exp)	66.1	17.5	99.1		0	0.8	77.6	3.2
Mo 4021WB* (Exp)	65.8	17.3	100.0	0		1.7	81.6	3.2
Funk G95A	65.5	14.0	95.0	0	0.8	0	72.1	3.2
Mo 4022W* (Exp)	63.8	18.4	98.3	0			73.3	3.7
Mo 4021W* (Exp)	61.1	17.9	96.6	0	0	0		
Mo 922 (Exp)	60.5	15.7	98.3	0.8	3.3	0.8	74.8	4.0
MFA 115	60.5	14.6	94.1	0	0	3.5	78.1	3.5
Embro 36	60.2	14.9	98.3	0	2.5	5.0	79.4	4.0
Funk G91	56.2	14.4	95.0	0	5.2	5.2	80.8	3.7
Keystone 111W*	55.3	20.8	95.8	0.8	0.8	0	75.5	4.0
Means	74.7	16.1	96.2	1.4	2.4	1.8	79.5	3.8

Means 74.7 16.1 96.2 1.4 2.4 1.8 79.5 3.8 Differences in yield between any two hybrids of less than 12.0 bushels are

not considered significant.
*White Hybrids.

fore moisture determinations are not reported in Table 14. The acre yield computations were made with the moisture percentages from the Carrollton test.

In this region Kan 1639, Mo 862, and US 523W have given consistently high yields. Kan 1639 is a high yielding yellow hybrid of about US 13 maturity which

TABLE 14 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE M. F. A. SEED DIVISION CORN TEST PLOTS LOCATED NEAR MARSHALL, IN SALINE COUNTY, MISSOURI.

	M	SSOUR	[.			
			Loc	lged	Drop-	
	Acre			ınts	ped	Ear
2	Yield	Stand	Root	Stalk	Ears	Height
Hybrid	Bu.	%	%	%	%	Grade
US 523W*	87.6	100.0	2.5	1.6	0	4.0
Mo 843	86.8	99.1	0	1.6	0	3.5
Mo 8010W* (Exp)	86.0	97.5	0	5.1	2.5	4.2
Mo 4048W* (Exp)	84.8	91.6	3.6	2.7	0.9	3.7
Mo 4021WB* (Exp)	84.7	97.5	0	0.8	0.8	3.5
US 13 (Hand Poll.)	82.8	93.3	2.6	3.5	2.6	3.7
Pioneer 301C	82.7	73.3	2.2	0	1.1	2.7
Mo 4041W* (Exp)	82.3	98.3	5.0	2.5	0	4.0
Mo 883 (Exp)	82.1	90.8	5.5	0.9	0.9	4.0
Mo 862 (Exp)	81.5	99.1	0	5.0	0.8	4.0
Pioneer 302	80.0	98.3	Ö	0	2.5	3.0
Mo 901 (Exp)	79.5	98.3	ŏ	0.8	0	3.0
	79.5	99.1	ŏ	1.6	ŏ	3.0
Mo 4021W* (Exp) Mo 4022WB* (Exp)	79.1	99.1	2.5	0.8	ŏ	2.7
	78.9	98.3	0	3.3	1.6	3.2
Keystone 45		98.3	0	3.3	0.8	4.0
Mo 860 (Exp)	78.7		0.8	2.6	0.0	3.0
Pioneer 301	78.5	94.1	0.8	0	0.8	4.5
Mo 884 (Exp)	78.2	98.3				3.2
US 13 (Certified)	77.8	95.8	0	1.7	6.9	
Mo 4047W* (Exp)	77.8	96.6	13.7	4.3	0	3.2
CB 9953 (Exp)	77.6	95.8	0	0.8	0.8	4.0
Funk G91	77.5	94.1	0	1.7	1.7	3.2
Funk G79	77.0	90.8	0	2.7	0.9	3.2
Mo 892 (Exp)	76.7	94.1	8.0	0.8	0	3.0
CB 7632 (Exp)	76.7	93.3	0	0.8	0.8	4.0
Mo 804 (Exp)	76.5	100.0	2.5	6.6	0.8	4.0
CB 7610 (Exp)	76.1	98.3	0	2.5	0	3.2
Funk G95A	75.9	97.5	0	0.8	0.8	3.0
Mo 904 (Exp)	75.7	99.1	7.5	3.3	0	4.2
Kan 1639	75.5	97.5	0	0.8	0	2.7
DeKalb 847	75.5	93.3	4.4	1.7	0.8	2.7
Mo 4022W* (Exp)	75.1	98.3	0	1.6	0	2.7
Embro 36	74.8	97.5	0	3.4	0	3.2
MFA 115	74.0	91.6	0	1.8	3.6	3.5
Mo 148	73.5	98.3	2.5	5.0	0.8	3.7
MFA 120A	72.4	97.5	0	2.5	0.8	3.2
Ohio C92	72.0	97.5	0	5.9	3.4	3.2
Mo 8	71.1	100.0	6.6	6.6	0	4.2
PAG 383	70.8	91.6	0.9	0	0.9	3.0
DeKalb 875	70.1	91.6	2.7	2.7	1.8	3.2
Iowa 4476 (Exp)	69.8	97.5	0	3.4	3.4	3.2
PAG 403	69.7	92.5	2.7	0	0	3.2
CB 9909 (Exp)	69.1	95.8	2.6	2.6	0.8	3.7
Mo 876 (Exp)	67.8	93.3	0	1.7	2.6	3.7
Embro 49	66.6	96.6	2.5	2.5	1.7	3.5
PAG 484	63.8	97.5	5.1	5.1	o ·	3.7
Mo 922 (Exp)	62.8	96.6	3.4	0	1.7	3.0
	61.6	95.8	2.6	2.6	0.8	3.5
Keystone 111W*		94.1	2.6	0	0.8	3.0
DeKalb 825	59.4	_		$\frac{0}{2.2}$	$\frac{0.8}{1.0}$	3.4
Means	75.8	95.7	1.8	4.4	1.0	U.4

*White Hybrids

is well adapted to this region. It is satisfactory in standing ability and has a desirable ear height. Seed is available in sizeable quantities this year. Mo 804 is a high yielding yellow hybrid of about Mo 8 maturity. It has an undesirable feature in that its ears are borne high on the stalk when grown on soils of high fertility

TABLE 15 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE SOUTH FARM, UNIVERSITY OF MISSOURI NEAR COLUMBIA, IN BOONE COUNTY MISSOURI

	BOON	E COU	ITY, M	ussou.	RI.			
		Moist-		Lo	dged	Drop-		
N v	Acre	ure in		Pla	ants	ped	Shell-	Ear
	Yield	Grain	Stand		Stalk	Ears	ing	Height
Hybrid	Bu.	%	%	%	%	%	%	Grade
Mo 4022WB* (Exp)	81.2	12.5	96.6	0	0	1.7	78.7	3.0
Mo 4047W* (Exp)	78.3	16.3	92.5	8.1	0.9	0.9	79.6	3.5،
US 523W*	77.6	12.8	91.6	1.8	3.6	3.6	81.1	3.5
US 13 (Certified)	77.5	10.2	93.3	0	0.8	3.5	81.7	3.5
Mo 4048W* (Exp)	77.2	13.7	94.1	0	0	0.8	80.3	4.0
Funk G91	76.2	10.7	93.3	0	0	1.7	82.7	3.5
Mo 4041W* (Exp)	75.5	13.0	97.5	5.1	.0	1.7	80.3	3.5
Mo 8010W* (Exp)	73.8	13.7	95.0	0	0	0.8	80.0	3.5
MFA 120A	73.4	10.6	98.3	0	1.6	1.6	81.4	3.5
CB 7632 (Exp)	73.3	11.1	95.8	0.8	0.8	1.7	79.8	3.7
Mo 862 (Exp)	73.2	12.7	93.3	2.6	0	4.4	78.9	4.0
Kan 1639	73.0	10.2	93.3	. 0	1.7	4.4	80.6	3.0
Mo 848	72.6	12.7	90.8	0.9	0	1.8	80.5	3.2
Mo 4021W* (Exp)	72.6	13.9	95.8	0	0	0	79.3	3.2
US 13 (Hand Poll)	72.5	10.2	93.3	0	8.0	3.5	81.8	3.7
Mo 901 (Exp)	72.0	12.3	95.8	0	1.7	2.6	83.4	3.0
Pioneer 302	71.7	11.5	95.8	1.7	0.8	2.6	82.9	3.2
Funk G79	71.6	11.3	95.8	. 0	0.8	0.8	84.4	4.0
PAG 383	70.8	9.8	97.5	0.8	1.7	1.7	82.4	2.7
CB 9953 (Exp)	70.7	11.8	95.0	0	0	7.0	80.6	4.0
Mo 4021WB* (Exp)	70.1	13.8	90.8	0	1.8	0.9	81.3	3.0
Mo 860 (Exp)	70.1	12.1	94.1	2.6	0	7.0	82.4	4.0
Mo 4022 W* (Exp)	69.7	13.7	96.6	0	1.7	0	77.0	3.0
Ohio C92	69.1	10.6	89.1	0	0	0.9	83.1	3.2
Mo 804	68.8	12.8	91.6	0	0.9	0	79.6	4.0
Keystone 45	68.7	10.7	93.3	0	1.7	0.8	83.4	3.5
CB 7610 (Exp)	68.6	11.8	91.6	6.3	0.9	2.7	81.5	3.7
Iowa 4476 (Exp)	67.9	10.4	92.5	0	2.7	0	79.2	3.2
Mo 884 (Exp)	67.5	13.0	88.3	1.8	0	0	78.9	4.0
MFA 115	67.2	10.7	92.5	0.9	0	3.6	81.1	3.2
Mo 883 (Exp)	67.0	15.0	94.1	4.4	0	1.7	78.1	4.0
CB 9909 (Exp)	66.9	13.9	94.1	4.4	1.7	0	79.6	3.7
Embro 36	66.5	11.1	90.8	0	0	4.5	82.5	3.0
Mo 876 (Exp)	66.2	10.6	92.5	0	0	3.6	78.6	4.0
Mo 148	65.9	12.3	91.6	0.9	3.6	4.5	79.9	4.0
PAG 403	65.9	9.8	6 8.3	0	0	3.7	82.5	3.0
Pioneer 301C	65.5	10.0	90.8	0	09	1.8	83.4	3.0
Mo 892 (Exp)	64.8	11.8	91.6	0	3.6	0 -,	82.3	3.0
DeKalb 875	64.5	10.4	91.6	2.7	1.8	1.8	82.5	3.5
DeKalb 847	64.1	10.7	91.6	0	0	1.8	82.5	3.5
Funk G95A	63.5	11.5	93.3	0	1.7	3.5	82.3	3.2
Pioneer 301	62.4	10.2	89.1	0	0.9	6.5	84.3	3.0
DeKalb 825	62.1	10.6	91.6	0.9	0	4.5	83.0	3.2
Embro 49	61.6	10.6	90.0	0	0.9	2.7	82.3	4.0
Mo 922 (Exp)	57.3	13.2	95.8	0	3.4	2.6	75.8	3.2
PAG 484	55.6	14.8	89.1	2.8	0.9	2.8	80.0	4.0
Mo 904 (Exp)	53.0	14.8	70.8	5.8	3.5	1.1	73.6	4.0
Keystone 111W	49.1	14.6	92.5	4.5	0.9	0	76.0	3.5
Mo 8	48.4	13.6	90.8	19.2	6.4	1.8	77.6	4.0
Means	68.2	12.0	92.5	1.6	1.1	2.2	80.7	3.4

Means 68.2 12.0 92.5 1.6 1.1 2.2 80.7 3.

Differences in yield between any two hybrids of less than 9.5 bushels are not considered significant.

*White Hybrids

with adequate rainfall. Seed for this hybrid generally is available. Mo 862 is a promising experimental yellow hybrid, apparently superior to Mo 804, and may be considered for release in the near future. US 523W is a white hybrid that has given high yields in this region. Although moisture is somewhat high at har-

TABLE 16 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE BEN GEISERT FARM NEAR LABADIE. IN FRANKLIN COUNTY MISSOURI

FARM NEAR LABAI	DIE, I	N FRAI	NKLIN			ISSOUF	RI.
		Moist-		Loc	lged	Drop-	
ΑΑ	cre	ure in		Pla	ints	ped	Ear
Y	ield	Grain	Stand	Root	Stalk	Ears	Height
Hybrid I	Зu.	%	%	%	%	%	Grade
Mo 8010W* (Exp) 1	49.1	13.4	96.2	0.6	3.2	0	5.2
Mo 904 (Exp) 1	46.1	15.8	92.5	0	3.3	0	5.5
	44.7	12.0	96.8	0.6	3.2	1.9	5.5
Mo 862 (Exp) 1	39.9	16.1	92.5	1.3	3.3	0	6.0
Mo 4047W* (Exp) 1	39.9	12.9	94.3	0	3.3	0	3.5
	37.7	13.8		0	1.3	0.6	5.2
CB 9909 (Exp) 1	37.2	13.6	94.3	0	0.6	0.6	5.2
	35.5	13.5	93:7	1.3	4.0	1.3	5.7
	34.5	13.8		0	2.6	0	4.5
	34.1	12.9	95.0	1.9	7.8	0.6	5.7
	32.0		95.6	0	6.5	4.5	5.7
	32.0		92.5	ŏ	0.6	0	5.7
	31.5	16.7	93.7	0	1.3	1.3	5.2
	31.3	13.8	91.8	Ö.	1.3	1.3	5 7
	30.5	11.3	93.7	0.6	3.3	3.3	4.2
	29.4	13.9	96.8	0	5.1	1.9	4.2
	29.3	16.2	91.8	0.6	4.7	0	5.0
	29.1	11.8	88 7	0	2.8	Ö	4.7
	28.6	12.0	91.2	0.6	1.3	ŏ	5.0
	27.2		98.7	0.6	2.5	4.4	5.0
	26.6		95.0	0.0	4.6	0.6	4.2
	26.6	14.1	96.8	ŏ	1.9	1.9	5.0
	26.3	14.0	94.3	0.6	3.3	0	5.2
	26.0	11.1		1.3	10.1	2.0	5.5
Mo 4021WB* (Exp)	25.9	13.3	93.7	0	1.3	1.3	4.2
Kan 1639	25.9		93.1	0.6	5.3	3.3	4.2
	25.4	16.8	91.8	2.0	2.7	0	4.7
	25.2	11.1	93.1	0	6.7	2.0	5.0
	24.8		91.2	1.3	4.7	1.3	5.5
	24.5	15.6	93.1	0	4.0	0.6	5.7
	24.3	12.2	91.2	2.7	1.3	1.3	4.7
	24.3	11.5	93.7	0	4.6	0.6	4.5
Funk G95A 1	23.7	11.7	91.2	2.0	2.7	0.0	4.5
	23.0		92.5	0	6.0	2.7	5.0
	22.5	12.4	94.3	0.6	6.6	2.6	4.7
	22.4	12.2	87.5	0.0	7.1	100	5.0
	21.3	11.1	91.8	0.6	5.4	0.6	5.2
						0.7	5.0
	21.2	11.3	86.8	0.7	5.0		
	21.2	11.7	93.7	0	2.0	0 .	4.2
	20.7		93.7		6.0	1.3	4.0
	18.6	11.3	93.1	0	0.6	0.6	3.7
	17.3	11.7	91.2	0.6	6.8	4.1	5.2
	17.0	11.0	87.5	0.7	4.2	0.7	4.7
	16.6	12.4	88.7	0_	8.4	1.4	4.7
	15.9	13.9	88.1	0.7	4.2	6.3	5.0
	15.6	9.9	81.2	1.5	3.0	0.7	5.0
	15.2	16.9	88.1	2.1	12.0	0.7	5.2
	14.3	12.2	90.6	0	4.1	1.3	4.0
	10.0	11.1	90.0	0	4.8	3.4	5.0
	27.0	12.9	92.4	0.5	4.1	1.3	4.9

Differences in yield between any two hybrids of less than 9.5 bushels are not considered significant.

*White Hybrids

vest time it should not be a production hazard in this region.

The summary of all tests harvested in the Central Region is given in Table 12. Results from individual tests are given in Tables 13, 14, 15, and 16.

SOUTHERN REGION

Only two of the four tests planted in this region were harvested in 1953. Yield tests near Caruthersville and Stark City were abandoned because of drought. Seasonal temperatures were higher than normal and rainfall was deficient throughout the region.

The average yield at Pierce City was 49 bushels per acre in 1953 and 84 bushels in 1951, the test was

abandoned in 1952 due to drought.

The average yield at Sikeston was 57 bushels in 1953, 59 bushels in 1952, and 111 bushels in 1951.

TABLE 17 -- SOUTHERN REGION, 1953 AVERAGE PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED IN

LAWREN	CE ANI		AADRII				
		Moist-			_	Drop-	
	Acre	ure in			ant	ped	Ear
	Yield	Grain	Stand		Stalk		Height
Hybrid	Bu.	%	%	%_	%	%	Grade
Mo 8010W* (Exp)	62.5	9.7	88.7	0.4	8.9	0	3.1
Mo 4048W* (Exp)	62.1	7.6	84.9	0.4	2.6	0	2.8
Mo 843	60.8	9.0	91.6	1.2	0.8	0.4	2.8
US 13 (Hand Poll.)	59.5	8.0	84.5	0	3.7	1.9	3.1
US 523W*	59.4	8.4	77.4	1.3	3.0	0.8	3.0
TRF 3*	59.3	10.3	89.5	4.3	5.7	0.4	3.0
Mo 4042W* (Exp)	58.8	8.4	84.5	0	3.5	1.2	2.6
Mo 4047W* (Exp)	58.6	9.3	84.5	1.6	2.1	0.4	2.7
Mo 860 (Exp)	58.0	8.6	87.0	0	3.9	0.8	3.2
Pioneer 302	57.4	8.8	91.2	0.8	3.2	1.4	2.9
Mo 8009W* (Exp)	57.4	13.6	89.9	0.8	2.1	0	3.7
Mo 862 (Exp)	56.8	11.2	86.2	0.4	3.3	0.4	3.1
MFA 120A	56.2	7.6	80.8	0.4	0.8	1.4	2.8
Mo 884 (Exp)	56.1	9.6	89.1	1.3	0.4	0	3.1
Mo 5365 W* (Exp)	56.0	10.8	90.8	1.2	16.1	0	3.5
Dixie 33*	55.8	11.7	82.4	4.3	4.2	0.8	3.7
Mo 883 (Exp)	55.4	10.9	87.9	0	0.5	0	3.5
DeKalb 847	55.2	7.4	82.0	Ō	0	0	2.6
Pioneer 301	54.6	7.3	83.7	Ö	0.8	0.6	2.5
Mo 4041W* (Exp)	54.2	10.1	88.7	0.4	3.4	0	2.8
CB 7610 (Exp)	54.1	9.3	89.9	0.8	1.2	0.4	3.0
Kan 1639	53.8	7.6	87.9	0.4	2.0	0.9	2.3
PAG 484	53.7	11.1	84.1	0.8	5.4	0.4	3.2
PAG 631W*	53.4	10.1	85.3	1.3	0.8	0	2.8
Mo 4022WB* (Exp)	53.4	10.6	91,2	1.7	0.8	0.4	2.2
Mo 4021WB* (Exp)	53.2	10.1	88.7	0.4	2.2	0.5	2.6
CB 7632 (Exp)	52.2	8.8	92.0	1.2	6.1	0.4	3.3
Funk G134	51.8	8.2	95.3	0.4	1.2	0.4	2.6
Ohio C92	51.2	7.9	80.4	0	2.7	1.4	3.0
Mo 148	51.1	7.8	89.1	2.2	5.6	0.4	3.0
PAG 403	50.6	8.3	82.4	0.8	0	0.4	2.3
DeKalb 817A	50.5	7.1	87.8	0.4	2.2	0.8	2.4
Mo 804	50.4	10.2	91.2	0.4	4.8	0.4	2.9
	50.4	7.6	89.5	0.4	2.6	1.8	2.8
US 13 (Certified)	50.3	8.5	87.0	1.3	2.3	1.3	2.7
Ainsworth X-14-A		8.5	80.0	0	1.3	0.9	2.6
Iowa 4476 (Exp)	50.1 49.7	8.0	92.8	0	2.6	1.2	2.6
CB 8805 (Exp)	49.4	11.2	90.4	0.4	5.7	0.8	3.3
Dixie 22		8.1	88.3	0.4	0.8	0.8	2.8
Funk G704	49.4					0.5	2.8
Mo 922 (Exp)	49.0	8.1	90.4	0	1.4		
Embro 155W*	48.9	8.7	82.9	0.4	2.6	0.5	3.2
Tenn 0009 (Exp)	48.8	11.8	92.8	1.2	8.4	1.6	3.4
Mo 8	48.7	10.1	94.5	1.3	6.0	0.8	3.2
Funk G711	48.3	11.5	83.7	0.9	11.9	0.4	3.3
Mo 876 (Exp)	46.7	9.9	85.4	1.3	3.9	0	3.1
DeKalb 876	45.6	7.9	81.6	0	4.0	1.2	2.6
Keystone 222A	44.4	11.3	83.3	1.3	8.5	0	3.1
Keystone 111W*	43.4	9.9	93.7	0.4	2.1	1.2	3.1
Embro 49	42.6	8.0	87.9	0	1.8	$\frac{0.4}{0.0}$	2.8
Means	53.0	9.3	87.3	8.0	3.5	0.6	3.0

*White Hybrids

Although the yields are roughly similar at the two locations, a comparison of the rank of the different hybrids as shown on Tables 18 and 19 shows many discrepancies. It might be questionable if these tests should be combined. However, making the same comparsion in 1952 and 1951 showed the same relative ranking of hybrids at the two locations so the data were combined again this year.

Selecting hybrids for which seed is available from the period-of-years performance record (Table 7)

TABLE 18 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE SOUTHWEST MISSOURI AGRICULTURAL EXPERIMENT STATION NEAR PIERCE CITY, IN LAWRENCE COUNTY,

MISSOURL								
		Moist-		Loc	iged	Drop-		
	Acre	ure in			ints	ped	Ear	
	Yield	Grain	Stand			Ears		
Hybrid	Bu.	%	%	%	%	%	Grade	
Mo 4048W* (Exp)	62.3	8.1	76.6	0	0	0	2.7	
				0	1.0	0	3.5	
Mo 883 (Exp)	59.7	13.1	78.3			0		
US 523W*	56.6	9.8 9.2	60.8 75.8	0	0 2.1	2.1	3.0 3.0	
US 13 (Hand Poll.)	54.3			0		0	3.2	
Mo 860 (Exp)	54.3	9.4	78.3	0 N .	1.0 3.9	2.9	2.7	
Pioneer 302	54.2	9.6	85.0	0	0	0	3.0	
Mo 8010W* (Exp)	53.9	11.8	80.0		2.3	0	3.0	
PAG 484	53.3	13.1	70.8	0		0		
PAG 631W*	52.9	11.8	76.6	1.0	0	-	2.7	
Pioneer 301	52.9	7.9	68.3	0	0	1.2	2.0	
Mo 4021WB* (Exp)	52.7	11.8	81.6	0	1.0	1.0	2.2	
MFA 120A	52.4	8.8	63.3	0	0	1.3	2.7	
DeKalb 847	52.1	8.1	69.1	0	0	0	2.2	
Mo 148	51.7	7.9	81.6	1.0	0	0	3.0	
Mo 4041W* (Exp)	51.6	12.5	80.0	0	0	0	3.0	
US 13 (Certified)	51.4	8.1	83.3	0	0	2.0	2.7	
Kan 1639	51.0	7.9	75.8	0	0	1.0	1.7	
Mo 4047W* (Exp)	51.0	9.8	70.8	0	0	0	2.3	
C B 7632 (Exp)	50.4	8.8	87.5	0	1.9	0	3.2	
Funk G134	50.4	9.4	91.6	0	0	0	2.5	
Mo 8	50.4	11.1	93.3	0	2.6	0.8	3.0	
Ohio C92	50.2	8.1	65.8	0	1.2	1.2	3.0	
Mo 843	49.9	9.8	85.0	0	0.9	0	2.7	
Ainsworth X-14-A	49.6	9.2	75.8	1.0	2.1	1.0	2.5	
Mo 862 (Exp)	49.6	12.6	80.8	0	3.0	0	3.0	
C B 7610 (Exp)	49.6	9.8	81.6	0	0	0	3.0	
Mo 884 (Exp)	49.5	10.6	81.6	1.0	0	0	3.0	
Mo 8009W* (Exp)	49.2	15.6	81.6	0	0	0	3.7	
Mo 804	48.9		85.8	0	1.9	0	2.7	
T.R.F 3*	48.6	12.0	83.3	0	1.0	. 0	3.0	
Mo 4042W* (Exp)	47.9	9.2	72.5	0	1.1	0	2.5	
Dixie 22	47.7	12.9	85.0	0	1.9	0.9	3.5	
Funk G711	47.5	14.4	75.0	0	7.7	0	3.5	
Mo 4022WB* (Exp)	46.8		85.8	0	0	0	1.7	
Mo 922 (Exp)	46.3	8.4	82.5	0	2.0	1.0	2.7	
Mo 5365W* (Exp)	46.2	12.3	82.5	0	2.0	0	3.5	
C B 8805 (Exp)	46.0	8.6	89.1	0	1.8	0	2.2	
Dixie 33*	45.4	11.1	68.3	0	2.4	0	3.5	
DeKalb 817A	44.9	7.2	81.6	0	1.0	0	2.2	
Funk G704	44.5	9.0	83.3	0	0	0	2.7	
DeKalb 876	44.4	8.6	66.6	0	1.2	0	2.2	
Iowa 4476 (Exp)	43.8	9.2	67.5	0	0	0	2.2	
Mo 876 (Exp)	42.7	10.6	75.8		0	0	3.0	
Keystone 111W	42.6	10.6	90.0	0	0	0	2.7	
PAG 403	42.6	9.0	68.3	0	0	0	1.7	
Embro 49	42.5	9.0	83.3	0	1.0	0	2.7	
Embro 155W*	42.2	9.6	70.8	0	0	1.1	3.0	
Keystone 222A	40.4	13.2	70.8	0	2.3		3.2	
Tenn 0009 (Exp)	39.7	13.8	86.6	0	0.9	0	3.2	
Means Differences in wield h	49.2	10.3	78.2	0.1	1.0	0.3	2.7	

Differences in yield between any two hybrids of less than 10.3 bushels are not considered significant.

*White Hybrid

BULLETIN 613

shows Mo 804, Dixie 33, Dixie 22, and US 523W to be superior hybrids in this region. Mo 804 is a yellow hybrid of Mo 8 maturity that gives good yields. In this region ear height and standing ability are entirely satisfactory. Dixie 33 is a white hybrid, later than US 523W in maturity, giving good yields. The ear height of this hybrid is rather high and better standing ability would be desirable. Seed of this hybrid is available this year. Dixie 22 is a yellow hybrid which is later than Mo 8 in maturity. It gives good yields, but again ear height and lodging must be considered. Seed of

TABLE 19 -- 1953 PERFORMANCE RECORD FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS TESTED ON THE SOUTHEAST MISSOURI AGRICULTURAL EXPERIMENT STATION NEAR

SIKESTON,	IN NEW	MADR	ID COU	NTY,	MISSO	URI.	
		Moist-		Lo	dged	Drop-	
	Acre	ure in		Pl	ants	ped	Ear
	Yield	Grain	Stand	Root	Stalk	Ears	Height
Hybrid	Bu.	%	%	%	%	%	Grade
Mo 843	71.6	8.2	98.3	2.5	0.8	0.8	3.0
Mo 8010W* (Exp)	71.1	7.5	97.5	0.8	17.9	0	3.2
TRF 3*	69.9	8.6	95.8	8.6	10.4	0.8	3.0
Mo 4042W* (Exp)	69.7	7.5	96.6	9	6.0	2.5	2.7
Mo 4047W* (Exp)	66.2	8.9	98.3	3.3	4.2	0.8	3.0
Dixie 33*	66.2	12.3	96.6	8.6	6.0	1.7	4.0
Mo 5365W* (Exp)	65.8	9.3	99.1	2.5	30.2	0	3.5
Mo 8009W* (Exp)	65.6	11.6	98.3	1.6	4.2	Ö	3.7
US 13 (Hand Poll)	64.6	6.8	93.3	0	5.3	1.7	3.2
Mo 862 (Exp)	63.9	9.7	91.6	0.9	3.6	0.9	3.2
Mo 884 (Exp)	62.6	8.6	96.6	1.7	0.8	0	3.2
US 523W*	62.3	7.0	94.1	2.6	6.1	1.7	3.0
Mo 4048W* (Exp)	61.8	7.0	93.3	0.8	5.3	ō.	3.0
Mo 860 (Exp)	61.7	7.8	95.8	0	6.9	1.7	3.2
Pioneer 302	60.7	8.0	97.5	1.7	2.5	0	3.2
MFA 120A	60.0	6.5	98.3	0.8	1.6	1.6	3.0
Mr A 120A Mo 4022WB* (Exp)	60.0	8.2	96.6	3.4	1.7	0.8	2.7
and the second s	58.6	8.9	98.3	1.6	2.5	0.8	3.0
C B 7610 (Exp)	58.5	7.5	96.6	1.7	0	0.8	3.0
PAG 403					0	0.0	3.0
DeKalb 847	58.4	6.8	95.0 99.1	0		3.3	3.7
Tenn 0009 (Exp)	58.0	9.9		2.5	15.9		2.7
Mo 4041W* (Exp)	56.8	7.8	97.5	0.8	6.8	0	
Kan 1639	56.6	7.3	100.0	0.8	4.1	0.8	3.0
Iowa 4476 (Exp)	56.3	7.8	92.5	0	2.7	1.8	3.0
Pioneer 301	56.3	6.8	99.1	0	1.6	0	3.0
DeKalb 817A	56.1	7.0	94.1	8.0	3.5	1.7	2.7
Embro 155W*	55.5	7.8	95.0	0.8	5.2	0	3.5
PAG 484	54.2	9.0	97.5	1.7	8.5	0.8	3.5
Funk G704	54.2	7.3	93.3	0.8	1.7	0	3.0
C B 7632 (Exp)	54.1	8.9	96.6	2.5	10.3	0.8	3.5
PAG 631W*	54.0	8.4	94.1	1.7	1.7	0	3.0
Mo 4021WB* (Exp)	53.7	8.4	95.8	0.8	3.4	0	3.0
C B 8805 (Exp)	53.4	7.5	96.6	0	3.4	2.5	3.0
Funk G134	53.2	7.0	99.1	0.8	2.5	0.8	2.7
Ohio C92	52.3	7.8	95.0	0	4.3	1.7	3.0
Mo 804	52.0	9.9	96.6	0.8	7.7	0.8	3.2
Mo 922 (Exp)	51.7	7.8	98.3	0	0.8	0	3.0
Mo 883 (Exp)	51.2	8.6	97.5	0	0	0	3.5
Dixie 22	51.1	9.5	95.8	8.0	9.5	0.8	3.2
Ainsworth X-14-A	50.8	7.8	98.3	1.6	2.5	1.6	3.0
Mo 876 (Exp)	50.6	9.3	95.0	2.6	7.8	0	3.2
Mo 148	50.4	7.8	96.6	3.4	11.2	0.8	3.0
US 13 (Certified)	49.1	7.0	95.8	0	5.2	1.7	3.0
Funk G711	49.1	8.6	92.5	1.8	16.2	0.9	3.2
Keystone 222A	48.4	9.3	95.8	2.6	14.7	0	3.0
Mo 8	47.0	9.1	95.8	2.6	9.5	0.8	3.5
DeKalb 876	46.7	7.3	96.6	0	6.8	2.5	3.0
Keystone 111W*	44.2	9.3	97.5	0.8	4.2	2.5	3.5
Embro 49	42.7	7.0	92.5	0	2.7	0.9	3.0
Means	56.9	8.2	96.2	1.5	5.9	0.9	3.1

Differences in yield between any two hybrids of less than 12.9 bushels are not considered significant.

*White Hybrids

this hybrid is available. US 523W is a white hybrid of about Mo 8 maturity that gives good yields. It has satisfactory ear height and is fair in standing ability. Seed generally is available.

The summary of both tests harvested in the Southern Region is given in Table 17. Results from individual tests are given in Tables 18 and 19.

SECTION II

MECHANICAL PICKER TESTS

Introduction

Four Mechanical Picker Tests were conducted at various locations in the state as shown in Figure 1. The picker test measures the relative picking performance of the hybrids tested. Although some hybrids are more difficult to husk than others, they usually can be shucked satisfactorily by adjusting the picker. The mechanical picker usually leaves less corn in the field early in the season. Moisture content of the corn, the amount of lodging, and number of dropped ears are probably the most important factors associated with field losses. Usually, when the percentage of moisture is high (20-30 percent) fewer shucks are left on, less corn is shelled, and fewer ears drop off the stalk during picking. In a mechanical picker test all of these factors and probably others may account for some of the differences between picking performance of different hybrids. If the test had been harvested at another time slightly different results might have been obtained. For this reason, although the acre yields are given in Tables 20, 21, 22, and 23, more accurate estimates of yields are given for the different hybrids in Tables of the replicated yield trials, Section I.

EXPERIMENTAL METHODS

The mechanical picker tests conducted at Lathrop, Washington, and Sikeston were planted by hand, five kernels to a hill, and later thinned to three plants at Lathrop and Sikeston. The Washington test was thinned to four plants per hill. Each hybrid was planted in a plot two rows wide and 40 hills long at two locations in the field. Consequently if a hybrid had a perfect stand at Lathrop and Sikeston there were 240 plants per plot. This is approximately 12,000 plants per acre. At Washington there should have been 320 plants per plot or about 16,000 plants per acre.

The test at Elsberry was planted with a horse drawn planter and stands varied according to the size of the kernels. Each plot was two rows wide by 210 feet long. Each hybrid was planted in only one location in the field. The average number of plants per plot was 354, which is approximately 11,000 plants

per acre.

Stands, root, and stalk lodging and percent moisture were determined as previously described in Section I. Each plot was husked and the ear corn separated as clean corn and picked corn with shucks. The amount of shelled corn left in the wagon was also determined for each hybrid. Each plot was gleaned for dropped ears. Shelled corn left on the ground was not measured but generally the amount appeared to be proportional to the shelled corn reported in the Tables.

The following makes and types of mechanical pickers were used:

Lathrop—two-row mounted Allis Chalmers Washington—two-row mounted New Idea Elsberry—two-row tandem New Idea Sikeston—two-row tandem Wood Bros.

The pickers were adjusted prior to picking the test and the adjustment was not changed thereafter. One cannot expect a mechanical picker to pick a number of different hybrids satisfactorily without making adjustments for each hybrid. Therefore variations between some hybrids may be greater than under farm conditions.

RESULTS

Results from the Mechanical Picker Tests are shown in Tables 20, 21, 22, and 23. The picking performance of different hybrids varied considerably but seemed to follow a similar pattern in the different tests.

The amount of picked corn with shucks, and bushels per acre left in the field are probably the most

TABLE 20 -- DATA SECURED FROM THE MECHANICAL PICKER TEST CONDUCTED ON THE NORTHWEST MISSOURI AGRICULTURAL EXPERIMENT STATION, C. L. VAN BUREN, COOPERATOR, LOCATED NEAR LATHROP, DATE OF THE DESCRIPTION OF THE PROPERTY MISSOURI

	I	N CLIN	TON CC	DUNTY, M	IISSOURI.			
						Picked		transfer arrange as
		Moist-		Stalk	Cleanly	Corn	Bu. Per	
	Acre	ure in		Lodged	Picked	With	Acre	Corn
	Yield	Grain		Plants	Corn	Shucks	Left in	
Hybrid	Bu.	%	%	%	%	%	Field	Acre
Mo 901 (Exp)	68.2	10.9	95.4	1.0	43.3	56.7	4.2	1.0
Mo 4042W* (Exp)	67.9	15.0	93.1	0.4	27.9	72.1	2.0	0.2
Kan 1639	67.3	10.9	97.5	0.4	62.8	37.2	1.8	2.1
Мо 880 (Ехр)	67.1	11.1	95.6	0.8	50.3	49.7	2.8	1.0
US 13	64.5	11.3	96.6	1.0	70.4	29.6	6.5	2.4
Mo 4022WB* (Exp)	63.4	14.5	94.7	0.4	28.0	72.0	1.5	0.3
Mo 4041W* (Exp)	63.2	12.5	92.9	2.2	36.9	63.1	5.2	0.5
Mo 4054W* (Exp)	59.9	11.8	93.7	0.4	34.0	56.0	2.9	1.0
AES 801	59.4	12.2	93.7	0.8	63.1	36.9	1.7	0.7
Ohio C92	59.1	10.4	92.7	0.4	72.6	27.4	3.9	1.4
Mo 4021WB* (Exp)	58.3	16.5	95.8	1.5	42.1	57.9	1.9	0.2
Mo 925 (Exp)	57.7	10.7	95.4	0.6	74.9	25.1	4.4	1.7
Iowa 4531	54.9	9.1	88.3	0	46.5	53.5	5.0	0.4
Mo 4053W* (Exp)	54.3	13.7	97.5	0.4	42.2	57.8	3.2	1.0
Mo 843	54.2	14.3	94.7	0.2	52.4	47.6	2.4	0.3
Mo 923 (Exp)	53.8	13.6	94.7	0.2	62.7	37.3	3.8	1.3
Mo 148	52.6	14.1	95.2	2.4	73.9	26.1	6.3	1.0
Mo 920 (Exp)	51.6	14.4	89.5	0.2	67.7	32.3	4.2	1.1
Mo 922 (Exp)	45.5	15.6	97.7	0.4	74.1	25.9	3.1	0.5
Mo 919 (Exp)	42.1	17.5	94.7	1.0	65.9	34.1	2.3	0.5
Means	58.2	13.0	94.5	0.7	53.5	46.5	3.4	0.9

Differences in total yield between any two hybrids of less than 7.7 bushels per acre are not considered significant.
*White Hybrids

TABLE 21 -- DATA SECURED FROM THE MECHANICAL PICKER TEST CONDUCTED ON THE BEN GEISERT FARM NEAR LABADIE, IN FRANKLIN COUNTY, MISSOURI.

						Picked		
		Moist-		Stalk	Cleanly	Corn	Bu. Per	Shelled
	Acre	ure in		Lodged	Picked	With	Acre	Corn
	Yield	Grain	Stand	Plants	Corn	Shucks	Left in	Bu. Per
Hybrid	Bu.	%	%	%	%	%	Field	Acre
Mo 804	134.3	14.3	97.3	8.3	92.2	7.8	4.6	3.9
US 13	126.9	11.8	96.0	5.2	92.4	7.6	4.9	9.9
Mo 4022WB* (Exp)	126.8	12.9	94.5	0.9	79.2	20.8	1.2	2.2
Mo 4021WB* (Exp)	125.2	15.4	96.2	1.9	86.0	14.0	0.5	2.7
US 523W*	124.9	12.9	96.8	8.3	76.3	23.7	2.6	3.1
Mo 4042W* (Exp)	123.3	14.1	94.8	1.1	84.3	15.7	0	2.4
Mo 843	121.7	13.8	95.6	3.5	89.0	11.0	1.9	4.5
Mo 883 (Exp)	118.4	16.9	95.0	3.1	80.5	19.5	0	2.2
Kan 1639	117.6	10.8	95.0	3.7	86.1	13.9	2.7	7.0
Ohio C92	114.9	12.2	89.8	1.3	93.0	7.0	3.7	7.8
Mo 901 (Exp)	108.6	13.3	96.8	1.7	89.5	10.5	0.6	6.3
Mo 4041W* (Exp)	105.2	11.5	95.1	1.6	78.2	21.8	0.9	2.2
Means	120.7	13.3	95.2	3.4	85.5	14.5	2.0	4.5

Differences in total yield between any two hybrids of less than 12.0 bushels per acre are not considered significant.

*White Hybrids

important factors determining picking performance. US 523 W always has a higher than average amount of picked corn with shucks but ranks high in other respects.

Comparing results of the picker tests with the

outstanding commercial hybrids in Section I. it can be seen that each of the recommended certified hybrids has a satisfactory picking performance. As is to be expected, the amount of corn left in the field seems to be closely associated with the percent lodging.

TABLE 22 -- DATA SECURED FROM THE MECHANICAL PICKER TEST CONDUCTED
ON THE SOUTHEAST MISSOURI AGRICULTURAL EXPERIMENT STATION NEAR
SIKESTON IN NEW MADEID COUNTY MISSOURI

D)	TYPOIO	14, 114 14	TO AA TATU	DIGID COL	JN I I, MI			
					100	Picked		
		Moist-		Stalk	Cleanly	Corn	Bu. Per	Shelled
	Acre	ure in		Lodged	Picked	With	Acre	Corn
	Yield	Grain		Plants	Corn	Shucks	Left in	Bu. Per
Hybrid	Bu.	%	- %	%	%	%	Field	Acre
US 523W*	55.7	7.2	99.7	20.8	72.9	27.1	4.6	1.7
Mo 8010W* (Exp)	54.3	7.5	99.7	13.1	59.4	40.6	6.7	0.8
Mo 4021WB* (Exp)	54.1	7.8	99.5	3.7	73.8	26.2	0.7	1.5
Mo 4041W* (Exp)	52.2	9.1	99.7	9.3	69.9	30.1	2.7	1.8
Ohio C92	51.5	6.7	98.9	15.5	91.6	8.4	1.0	3.1
US 13	50.9	8.0	98.9	14.7	89.4	10.6	1.8	3.7
Kan 1639	48.9	7.7	99.3	10.2	92.6	7.4	0.9	4.5
Mo 843	48.1	8.2	100.0	9.1	89.4	10.6	2.1	1.7
Dixie 33*	47.1	13.0	100.0	15.0	77.3	22.7	1.0	1.0
Mo 804	46.8	7.5	99.3	27.6	82.1	16.9	3.4	1.4
Mo 4022WB* (Exp)	44.5	10.4	99.7	4.3	60.7	39.3	0.8	1.0
Mo 883 (Exp)	44.2	10.5	99.7	14.8	78.6	21.4	4.5	1.1
Mo 8009W* (Exp)	43.2	11.4	99.5	21.9	71.7	28.3	2.4	0.9
Dixie 22	42.3	12.0	99.3	29.7	76.2	23.8	3.0	1.1
Means	48.9	9.1	99.5	15.0	77.5	22.5	2.5	1.8

Differences in total yield between any two hybrids of less than 6.8 bushels per acre are not considered significant.

*White Hybrids.

TABLE 23 -- DATA SECURED FROM THE MECHANICAL PICKER TEST CONDUCTED NEAR ELSBERRY, MISSOURI,
IN PIKE COUNTY, NOVEMBER 10, 1953.

Picked Stand Cleanly Bu. Shelled Lodged Corn Moisture % Acre Plants Picked with Per Acre Corn Root Yield in Grain of Stalk Shelling Corn Shucks Left Bu. per Hybrid Bu. Av. in Field Acre **US 13** 53.7 24.8 25.5 75.5 90.0 14.2 78.8 21.2 3.4 0.7 Ohio C92 26.2 56.3 25.9 92.8 8.8 79.1 20.9 2.7 0.6 77.6 Kansas 1639 56.9 26.8 92.5 25.4 75.8 7.6 24.2 3.0 0.4 72.7 Mo 843 60.6 23.9 92.5 25.4 8.9 62.4 27.6 0.6 75.6 1.8 Mo 4041W* 57.7 35.1 148.2 73.1 16.4 1.1 44.8 55.2 0.7 0.4 Mo 4042W* 29.0 50.8 89.7 11.0 47.6 11.4 52.4 2.8 0.3 72.1 US 523W* 53.9 35.0 118.8 39.3 6.0 63.8 36.2 1.3 0.5 72.5 Mo 148 53.8 28.5 111.2 35.1 11.2 71.928.1 2.0 0.5 74.7 TRF 3* 53.4 31.6 98.4 50.9 9.5 20.4 79.6 2.5 0.4 71.4 Mo 4054W* 54.0 21.7 89.4 18.0 7.9 40.4 59.6 2.9 77.8 0.4 **MFA 120A** 59.8 23.7 93.9 22.3 8.7 67.1 32.9 2.8 0.6 76.0 Funk G91 57.8 24.4 95.3 20.8 7.1 74.3 25.7 1.6 0.5 73.5 Funk G79 50.1 21.9 80.3 34.5 11.6 70.7 29.3 2.9 71.3 0.6 Funk G95A 54.6 24.5 104.1 13.9 6.8 39.9 60.1 1.9 0.5 77.3 DeKalb 875 47.7 78.5 25.1 89.1 23.5 8.3 21.5 3.476.1 DeKalb 847 49.6 24.1 90.5 26.9 9.1 74.1 25.9 2.0 0.5 74.9 DeKalb 825 52.7 25.1 107.2 28.5 4.7 72.0 28.0 1.5 0.5 76.6 55.8 Pioneer 302 33.8 23.2 120.8 4.9 61.4 38.6 1.0 0.4 80.0 Pioneer 301 55.4 27.4 112.6 23.1 5.0 70.2 29.8 1.5 0.6 74.9 Pioneer 301C 59.8 25.8 101.8 23.1 65.2 8.3 34.8 1.2 0.7 76.0 **PAG 403** 66.2 23.1 106.4 18.6 65.3 3.2 34.71.4 0.6 76.6 PAG 383 60.2 23.1 101.8 15.8 8.6 49.1 50.9 1.9 0.4 74.2 **PAG 484** 58.1 35.0 101.3 37.2 8.7 49.1 50.9 4.9 0.3 76.4 Embro 36 53.5 34.2 99.3 24.2 10.8 80.0 20.0 2.1 0.473.1 Embro 49 47.5 28.5 98.2 28.0 77.9 4.9 22.1 1.3 0.4 75.5 Keystone 45 60.4 21.5 99.3 10.0 5.7 74.5 25.5 1.8 0.6 75.9 Keystone 111W* 42.0 32.0 76.1 50.6 5.9 61.9 38.1 74.5 1.7 0.3**MFA 115** 45.6 23.783.2 12.9 9.281.6 18.4 0.5 0.5 74.1 Ainsworth X-14-A 49.4 28.9 91.1 18.9 7.1 80.7 19.3 1.4 0.4 75.1 Mo 8 34.0 30.5 33.7 124.2 4.8 54.0 46.0 0.9 74.9 0.3 53.7 27,3 Means 25.4 7.7 64.3 35.7 2.0 0.5 75.0

Av. Stand: Per Plot 354 Per Acre 11,000

^{*}White Hybrids

SECTION III

SHELLING PERCENTAGE OF TWO COMMERCIAL HYBRIDS

Is there an association between yield and shelling percentage for the same hybrid when yields vary from 60 to 120 bushels per acre? Is the shelling percentage the same when the hybrids are planted in thick stands? Is there any effect on shelling percentage from length of photo period, temperature, rainfall or the use of fertilizer?

Answers to these questions are not known, but are important with present production practices. A preliminary study of the shelling percentage of US 13 and US 523W is shown in Table 24. US 13 has a high shelling percentage while US 523W, a white hybrid was thought to have a somewhat lower shelling per-

centage. There also was a question of how these two hybrids compared when grown in different locations with different climatic and soil fertility levels. From these results, US 523W is only one percent lower in shelling percentage than US 13 and this difference is probably within the limits of experimental error.

From this preliminary study it can be concluded that shelling percentage is associated significantly with yield under the conditions of these tests. The range of plant populations between different tests was small and therefore no conclusion could be made regarding the association of low and high plant populations with shelling percentage.

TABLE 24 -- ACRE YIELD, MOISTURE IN THE GRAIN, AND SHELLING PERCENTAGE FOR US 13 AND US 523W GROWN AT EIGHT LOCATIONS

IN MISSOURI IN 1953.									
	Acre	Moisture							
	Yield	in Grain	Shelling						
Location	Bu.	%	%						
	U S 13	*							
Maryville	62.5	10.5	82.1						
Lathrop	64.2	9.6	82.9						
Shelbina	58.6	19.2	76.3						
Carrollton	77.5	14.3	81.5						
Marshall	80.3		81.2						
Columbia	75.0	10.2	81.8						
Washington	122.1	11.0	84.3						
Sikeston	56.9	6.9	78.6						
Means	74.6	11.7	81.1						
	U S 523	W							
Maryville	62.0	13.4	79.5						
Lathrop	66.4	10.4	80.0						
Shelbina	60.3	19.4	78.4						
Carrollton	84.8	17.5	80.9						
Marshall	87.6		80.0						
Columbia	77.6	12.8	81.1						
Washington	144.7	12.0	84.0						
Sikeston	62.3	7.0	76.5						
Means	80.7	13.2	80.1						

*The acre yield for U S 13 is the average of the entry planted with hand pollinated seed and the entry planted with certified seed at each of the eight locations.

SUMMARY

The Missouri Agricultural Experiment Station confines its recommendations to open pedigreed hybrids grown under certification. Performance records for these hybrids are reported herein. In addition, a limited number of closed pedigreed (commercial) hybrids which are widely planted in Missouri were tested.

Their performance records are reported in various tables thoughout this bulletin.

As the result of average performance records over a period of three or more years, the following hybrids are recommended for general planting in Missouri.

Northern Region	Central Region	Southern Region
Mo 843**	Mo 843**	Mo 843**
Kan 1639	Kan 1639	US 13
Ohio C92	US 13	Mo 804
US 13	Mo 804	Dixie 22
	US 523W*	US 523W
		Dixie 33*

^{*}White Hybrids

TABLE 25 -- PEDIGREE OF EXPERIMENT STATION AND U. S. DEPARTMENT OF AGRICULTURE HYBRIDS TESTED IN 1953.

		Endosperm
Hybrid	Pedigree	Color
US 13	$(WF9 \times 38-11) (Hy \times L317)$	Yellow
Mo 8	$(K4 \times B2) (L3 \times G)$	Yellow
Mo 148	$(WF9 \times 38-11) (L3 \times K4)$	Yellow
Mo 843	(WF9 x Oh 7A) (B10 x C103)	Yellow
Mo 860	$(WF9 \ Y \ Kr \ x \ 38-11) \ (Hy \ x \ L317)$	Yellow
Mo 862	(K201 x T202) (CI21E x Mo 567)	Yellow
Mo 876	(Oh 29 x B18) (38-11 x K201)	Yellow
Mo 880	$(WF9 \times 38-11) (K148 \times Y 55)$	Yellow
Mo 883	(CI21E x Mo 999) (Oh 29 x Ok12)	Yellow
Mo 884	(CI21E x Mo 999) (Oh 7B x CI7)	Yellow
Mo 892	(WF9 Y Kr x 38-11) (C103 x H15)	Yellow
Mo 894	(WF9 Y Kr x 38-11) (H15 x N3)	Yellow
Mo 897	(WF9 Y Kr x 38-11) (C103 x Oh 45)	Yellow
Mo 900	$(WF9 Y Kr \times 38-11) (Oh 45 \times K148)$	Yellow
Mo 901	$(WF9 \ Y \ Kr \ x \ 38-11) \ (Oh \ 45 \ x \ N3)$	Yellow
Mo 902	(WF9 Y Kr x 38-11) (Oh 45 x Oh 29)	Yellow
Mo 904	(Mo 9284 x Mo 999) (Mo 9150 x Oh 29)	Yellow
Mo 922	(T202 x Mo 9170) (C103 x B10)	Yellow
Iowa 4476	$(WF9 \times 38-11) (10 \times B13)$	Yellow
A E S 801	(WF9 x B7) (B10 x B14)	Yellow
Iowa 4531	(Hy x WF9) (B14 x B10)	Yellow
Iowa 4565	(WF9 x Oh 41) (B10 x B14)	Yellow
C B 7610	(Ky 36-11 x 38-11) (B18 x K155)	Yellow
C B 7632	$(Ky 36-11 \times K201) (B18 \times 38-11)$	Yellow
C B 8805	$(WF9 \times 38-11) (Hy \times K148)$	Yellow
C B 9909	(Mo 567 x Oh 29) (T8 x CI21E)	Yellow
C B 9953	(Oh 29 x Mo 567) (38-11 x K201)	Yellow
Nebr. 1369B	(Oh 07 x B10) (WF9 x 38-11)	Yellow
Kan 1639	$(WF9 \times 38-11) (K148 \times K150)$	Yellow
Ohio C92	$(WF9 \times 38-11)$ (Hy x Oh 007)	Yellow
US 523W	(K55 x K64) (Ky 27 x Ky 49)	White
Mo 4021W	(Wh WF9 x Wh 38-11) (K55 x R30)	White
Mo 4021 WB	(Mo 9187W x Wh 38-11) (K55 x R30)	White
Mo 4022 W	(Wh WF9 x K41) (K55 x R30)	White
Mo 4022WB	(Mo 9187W x K41) (K55 x R30)	White
Mo 4029W	(Wh WF9 x CI61) (Wh 38-11 x K41)	White
Mo 4041W	(Wh 38-11 x 33-16) (K55 x Wh Hy)	White
Mo 4042W	(Wh 38-11 x K41) (K55 x Wh Hy)	White
Mo 4046W	$(K55 \times Wh Hy) (33-16 \times K6)$	White
Mo 4047W	(K55 x Wh Hy) (K41 x K6)	White
Mo 4048W	(K55 x Wh Hy) (Ky 27 x CI61)	White
Nebr. 505W	(K41 x 4Co82) (K64 x N72)	White

^{**}Seed not available in 1953.

APPENDIX

SEED SOURCES FOR THE COMMERCIAL HYBRIDS TESTED IN 1953.

Closed-Pedigreed Hybrids

Hybrid

Seed Source

Ainsworth DeKalb Embro Funk's G Keystone MFA PAG Pioneer

Swinger and Alley, DeKalb Agricultural Ass'n Inc., Ed F. Mangelsdorf & Bro. Inc., Columbiana Seed Co. Corneli Seed Co. M F A Seed Division Pfister Associated Growers Garst and Thomas Hybrid Corn Co. Marshall, Missouri Marshall, Missouri St. Louis, Missouri Eldred, Illinois St. Louis, Missouri Marshall, Missouri Carrollton, Missouri Coon Rapids, Iowa

Certified Open-Pedigreed Hybrids

Mo. 804

Grower---Address---County Grower---Address---County Elston King, Osceola, St. Clair Clark Boston, Rosebud, Gasconade F. H. Krueger, Redford, Reynolds Joseph L. Frerer, Jr., Jasper, Jasper C. F. McMullin Estate, Sikeston, Scott Held Brothers, Morrison, Gasconade Jake J. Schmitt, Morrison, Gasconade E. H. Hess, Greenfield, Dade D. A. Turner, Stark City, Newton Bert Kleeman, Golden City, Lawrence

US 13

M.F.A. Seed Division, Marshall, Saline Muckey Seed Co., Lee's Summit, Jackson H. C. Decker, Sikeston, New Madrid Otis Thomas, Hughesville, Pettis Earl Woolston, Rushville, Platte

Kan 1639

Stella Ruhl and Sons, Hannibal, Ralls Morton Tuttle and Sons, Prairie Home, Cooper Preston Walker and Sons, Clarence, Macon C..H. E. Walther, Booneville, Cooper Frank M. Weber, Edina, Adair Earl Woolston, Rushville, Platte Roland C. Wriedt, Stephens, Boone John H. Youngkamp, Beaman, Cooper

Mo. 313

C. F. McMullin Estate, Sikeston, Scott

Mo 148

C. F. McMullin Estate, Sikeston, Scott

Ohio C92

Mo 8

C. F. McMullin Estate, Sikeston, Scott

Mo 843

Ray Balomey, Frankford, Pike Derl Bernard, Osceola, St. Clair H. L. Bernard, Quincy, Hickory P. B. Eubank, Huntsville, Randolph Sterling Kyd, Columbia, Boone

Gene Cunningham, Columbia, Boone M. L. Happel and Son, Palmyra, Marion David A. Hart, Hawk Point, Lincoln Jasper I. Hunter, Enon, Moniteau Sterling Kyd, Columbia, Boone M.F.A. Seed Division, Marshall, Saline E. P. Needham, Macon, Macon Fred C. Paulsmeyer, Corso, Lincoln Ross Roger, Harris, Sullivan

Joseph L. Frerer, Jasper, Jasper

C. H. E. Walther, Booneville, Cooper

M. F. A. Seed Division, Marshall, Saline

D. A. Turner, Stark City, Newton

Roy Balomey, Frankford, Pike

US 523W

H. C. Decker, Canalou, New Madrid Joseph L Frerer, Jasper, Jasper George Kimmons, Ozark, Christian

C. F. McMullin Estate, Sikeston, Scott C. E. Neuenschwander, Deepwater, St. Clair M.F.A. Seed Division, Marshall, Saline

Dixie Hybrids

Tennessee Seed Producers, Inc., 412 Murfreesboro D, Nashville, Tennessee