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ABSTRACT 

 
 This study examined high school students’ mathematical understanding of 

calculus readiness concepts after studying four years of college preparatory (integrated or 

single-subject) mathematics. Data were collected from 505 students, 201 experienced an 

integrated curriculum (IC) and 304 experienced a single-subject curriculum (SSC). 

Additional data were collected on a subset of 199 of these students who enrolled in AP 

Calculus, 59 studied from the integrated curriculum (APIC) and 140 studied from the 

single-subject curriculum (APSSC). All 505 students took the Precalculus Concept 

Assessment (PCA) a 25 item multiple choice assessment focused on functions. In 

addition, the AP Calculus students completed two open-ended tasks related to functions.  

 After adjusting for prior achievement with the Iowa Algebra Aptitude Test 

(IAAT), SSC students performed statistically higher (F = 9.39, p = .002) than IC students 

on the PCA; whereas, APSSC and APIC students performed comparably (F = 3.54, p = 

.063). The item analysis of the PCA suggests that students are completing four years of 

college preparatory mathematics (integrated and single-subject) with a procedural 

understanding of functions. For instance, most students could evaluate and solve 

functions correctly; however, they exhibited multiple misconceptions about rates of 

change and function inverse.  

 AP Calculus students tended to use similar solution strategies when solving the 

two open-ended tasks, including using a graph, an equation, a table, or using multiple 

methods. Although students used similar strategies, their ability to use these strategies 

effectively differed.  
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 AP Calculus students from each curricula pathway demonstrated errors related to 

rates of change. Students tended to use words such as slope, rate of change, and steepness 

interchangeably. Student errors on the two open-ended tasks and the PCA revealed a lack 

of understanding of the interpretation or meaning of rate of change. Students successfully 

calculated the rate of change of linear functions; however, when the rate of change was 

not linear, students struggled to calculate it, represent it correctly on the graph, or 

correctly interpret the rate in a real world context.  
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CHAPTER 1: INTRODUCTION 

No reform is a panacea, but in order to institute reform those who are in favor 
make all sorts of claims for it, and they raise expectations. When those 
expectations are not met, the public – always skeptical of reform in mathematics – 
starts to perceive that the reform, just like the mathematics they took in schools, is 
not successful. So the public perception is of failure even if the overall situation is 
for the better. (Usiskin, 1999, p. 7) 
 

History is a great teacher. We must learn from the past and use that information wisely to 

make changes for the future. However in education, the public perception of what and 

how students learn is always a key ingredient in the acceptance or rejection of change. 

Mathematics curriculum is not exempt from public scrutiny. Over the past 50 years, 

major revisions in mathematics textbooks have occurred. Each attempt provided 

information and insight to future curriculum developers, yet the public viewed the reform  

textbooks developed during these eras as failures (Usiskin, 1999).  

The struggle for direction on mathematics curriculum and teaching in K-12 

schools in the United States began in the early 1950s, and a crisis-reform-reaction cycle 

continues today. Fey and Graeber (2003) describe the situation as follows: 

A prominent social, political, or professional group calls attention to serious 
problems in students’ performance and recommends action, only to find that 
reform initiatives ultimately run up against resistance from opposing views and 
the deeply conservative nature of educational reform rhetoric often settles down 
to a quieter pattern of business as usual, at best moderately perturbed by the 
energetic calls for change in standard practices. (p. 521) 
 

Currently, mathematics education is in the reaction stage of this cycle as many debate the 

effectiveness of new mathematics curriculum for K-12 students.  

 In 1992, in response to the National Council of Teachers of Mathematics (NCTM) 

release of Curriculum and Evaluation Standards for School Mathematics (National 

Council of Teachers of Mathematics, 1989) the National Science Foundation (NSF) 
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initiated a wave of major reform by funding five different secondary mathematics 

curriculum projects. Each project was developed by independent groups of writers to 

provide multiple ways in which mathematics curricula might reflect the vision of the 

Standards. Although each curriculum series is different, they include one common 

feature, namely the integration of mathematical topics that students experience to 

promote connections. In contrast to the traditional sequence of secondary mathematics 

courses Algebra, Geometry, Algebra II, and Precalculus, integrated mathematics 

curricula allow students to study algebra, geometry, and data each year of high school. In 

addition these curricula provide opportunities for students to engage in higher order 

thinking, experience contextual problems, and use technology. Integrated curricula 

“represent a truly radical approach to secondary mathematics education” (St. John, Fuller, 

Houghton, Tambe, & Evans, 2004, p. 94). More specifically these curricula represent a 

“blend of mathematical concepts chosen from a wide variety of mathematical fields and 

emphasiz[e] relations among the concepts within mathematics, as well as between 

mathematics and other disciplines” (Lott, 2001, p. 1). Integrated curricula balance the 

development between concepts and procedures, use of technology, and various types of 

representation (Stein, Remillard, & Smith, 2007). 

 Integrated curricula contain a common thread that is interwoven throughout each 

course, creating a vertical model of incorporating concepts from different strands. 

Burkhardt (2001) suggests the “main advantage of integrated curricula are that they build 

on essential connections, help make mathematics more usable, avoid long gaps in 

learning, allow a balanced curriculum, and support equity” (p. 2). Although integrated 

curricula may be fairly new within the United States, teachers and students from many 
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countries other than the U.S. have used them for many years (Jun, 2005; Nagaoka, 2005; 

Pang, 2005; Reys, B. J., Reys, & Chavez, 2004; Usiskin, 2003; Yee, 2005). 

 In contrast to integrated programs, single-subject curricula have long dominated 

classrooms in the U.S. The course sequence of Algebra 1, Geometry, Algebra II, and 

Precalculus has existed in the United States since the turn of the 20th century. In 1894, the 

release of the Report of the Committee of Ten (National Education Association) greatly 

influenced the school system organization with their recommendations for single-subject 

course sequencing. Schools were organized in this manner to accommodate students who 

only attended high school for one or two years. The committee believed students should 

learn a combination of algebra and geometry rather than an in depth study of algebra. In 

the single-subject sequence, students spend an entire year learning a specific 

mathematical strand in depth, such as geometry. The connections within mathematics are 

made less often because students are immersed in one specific strand each year 

(Burkhardt, 2001). Although school conditions have changed significantly during the last 

100 years, this single-subject structure is viewed by many as sacred.  

Comparison between Integrated and Single-subject Curricula 

 The integrated and single-subject curricula are significantly different in their 

organizational structure. The expectations and roles for students and teachers are also 

different. The integrated curriculum was designed so teachers can be classroom 

facilitators for students who are actively engaged in mathematical learning (St. John et 

al., 2004). After students have developed a conceptual knowledge of the topic, 

“teacher[s] step in to apply definitions, standard labels, and (sometimes) standard 

procedural techniques related to the concept” (Stein et al., 2007, p. 331). The NSF 
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integrated curriculum espouses the philosophy that students learn by constructing new 

knowledge connected to their prior knowledge. Students are given mathematical 

problems based on real world situations to understand the importance of mathematics and 

make connections to the concepts being taught. Integrated curricula were developed to 

“keep post-high school education and career options open for all students” (Senk & 

Thompson, 2003, p. 311).  

 On the other hand, single-subject curricula were designed to provide “distinct 

programs for college-bound and non-college bound students” (Senk & Thompson, 2003, 

p. 300). However, these books are often organized as discrete two-page lessons taught 

independent of one another. In fact, researchers from the Third International Mathematics 

and Science Study (TIMSS) found U.S. teachers taught using “frequent reviews of 

relatively unchallenging, procedurally oriented mathematics during lessons that are 

unnecessarily fragmented” (Hiebert, Stigler, Jacobs, Givvin, Garnier, Smith et al., 2005, 

p. 116). Hiebert and Grouws (2007) agreed, suggesting U.S. mathematics teachers design 

lessons to reinforce lower-level mathematics and do not challenge students’ thinking. 

Stein et al. (2007) state, “students typically are expected to master definitions and 

standard algorithmic procedures before they are exposed to opportunities to apply their 

knowledge” (p. 331). Most single-subject curricula contain some real-world contextual 

problems, but the focus is students learning algorithms and then practicing them (Stein et 

al., 2007). 

 Some mathematics educators have conducted research on integrated and single-

subject curricula; however, it has not provided evidence sufficient for selecting one type 

of curriculum over another (National Research Council, 2004). The lack of convincing 
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research on integrated curricula has raised the question: Is integrated curriculum 

beneficial for students’ mathematical understanding?  

Critics of the integrated curricula sometimes refer to it as “fuzzy math” or “new 

new math” (Senk & Thompson, 2003). Mathematicians, mathematics educators, teachers, 

and parents continue to debate and ask if students in integrated courses understand 

mathematics better than before? Would students learn better from a different 

organizational structure of the mathematics curriculum? What are students gaining or 

missing by learning from integrated mathematics curricula? These questions are difficult 

to answer because factors other than the textbook cannot be controlled, yet they impact 

student learning. Hiebert (1999) states, “if researchers cannot prove that one course of 

action is the best one, it follows that researchers cannot prescribe a curriculum and a 

pedagogical approach for all students and for all time” (p. 7). However, researchers can 

document the current status of reform efforts such as what mathematics curriculum is 

being used and how students learn from it. Researchers can also document the 

effectiveness of curricula such as “what students can learn under what kinds of 

conditions” (Hiebert, 1999, p. 9).  

Statement of the Problem 

 The first published versions of NSF-funded integrated high school mathematics 

curricula appeared in 1997. In the past 10 years, researchers have begun to document 

student learning from these curricula; however, only recently have high school students 

had an opportunity to complete the entire four years of the integrated sequence. Over the 

past decade, many secondary teachers have made adaptations to their pedagogical 

methods and have become more comfortable teaching from integrated curriculum. For 
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these teachers it meant becoming familiar with mathematics content in ways far different 

than how they learned. It also required teachers to change their classroom from teacher 

centered to student centered.  

 School districts have been reluctant to adopt integrated mathematics textbooks 

because of the many opponents who criticize them and claim students are not learning 

mathematics. However, some secondary schools offer parallel paths in their mathematics 

program, which allow students to take either integrated or single-subject courses. 

Students in these districts complete four years of college preparatory mathematics 

courses that will prepare them for either Advanced Placement (AP) Calculus or AP 

Statistics, depending on course offerings available at the school.  

 The difference in organizational structure and expectations raises the question: 

What are the similarities and differences in how students understand mathematics after 

completing either an integrated or single-subject curriculum path? Figure 1.1 displays 

two options for students as they enter high school mathematics courses and shows that 

students learn mathematics in both paths. However, what mathematics is learned and how 

it is learned are influenced by the implemented curriculum. A key question is: what 

mathematical knowledge will students possess when they emerge from these two 

different curriculum paths?  Figure 1.1 shows that students’ from these two curricular 

paths will merge into a common AP Calculus classroom where they will continue to learn 

mathematics. An important practical question is: Will students in one of these groups be 

disadvantaged or advantaged? Students who have completed four years of mathematics in 

different curricular paths may display similarities and differences in their strategies for 

solving problems, types of mathematical errors, misconceptions, ability to solve 
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questions requiring different levels of cognitive demand and items focused on specific 

representations (e.g., graphic, numeric, and symbolic). As curriculum designers revise 

and develop new curricula, they need to understand what students are learning or not 

learning from existing curricula. Stein et al. (2007) points out “few studies have 

connected the curriculum (or tasks) as enacted with student learning or achievement” (p. 

358); however, even fewer studies have connected high school mathematics curricula 

with student learning (Harwell, Post, Maeda, Davis, Cutler, Andersen et al., 2007). 

Research at the high school level needs to examine what students who have experienced 

integrated or single-subject curricula have learned and what strategies they have 

developed.  

 
Figure 1.1. Students’ mathematical course paths 
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study investigated students’ ability to solve tasks requiring different levels of cognitive 

demand, items focused on specific representations (e.g., graphic, numeric, and symbolic), 

and common misconceptions they had about functions before entering AP Calculus after 

completing four years of college preparatory (integrated or single-subject) curricula. 

Strategies students used to solve open-ended problems and errors they made were 

analyzed to understand how their previous mathematics curriculum impacted what they 

did and how they did it.  

Research Questions 

This study sought to answer the following research questions: 

1. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) perform and compare on 

calculus readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

2. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare on college readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  
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c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

3. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare in solution strategies and errors on open-ended 

mathematical tasks that focus on functions during the first quarter of AP 

Calculus? 

Conceptual Framework 

Professional organizations, NCTM and the National Research Council (NRC), 

encouraged changes in instructional practices that emphasize problem solving, reasoning, 

communicating mathematically, and conceptual understanding (National Council of 

Teachers of Mathematics, 1989, 2000; National Research Council, 1989). However, if 

teachers changed their instructional practices they must also change their assessments to 

understand what and how students think. Most large-scale assessments measure student 

knowledge with multiple-choice questions. These items have some advantages, including 

a large data sample can be collected quickly, more items can be administered in a short 

period of time, procedural knowledge can be measured easily, and student responses can 

be scored quickly and reliably (Cai, 1997). However, multiple-choice items only require 

students to produce an answer with no indication of how they arrived at the answer, 

which makes it difficult for researchers and teachers to analyze and understand student 

thinking (Cai, Lane, & Jakabcsin, 1996). Robitaille and Travers (1992) argue that 

“information about how students approach the solution of a given problem is … more 
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important than whether or not they are able to recognize the correct solution” (p. 708). 

Resnick (1988) advocates examining characteristics of students’ solutions, including 

strategies, representations, and errors. More recently, Lesh and Zawojewski (2007) 

counsel that research should “focus on students’ interpretations, representations, and 

reflections …” (p. 765).  

If researchers and teachers are to understand what students know about 

mathematics then open-ended tasks must be administered and analyzed for 

understanding. Open-ended tasks “require students to synthesize information, justify their 

solutions processes, and evaluate their answers…” (Lane, 1993, p. 16). These tasks allow 

researchers and teachers to learn what students think and understand about mathematics 

because they must not only produce an answer, but also “show their solution processes 

and give justification for their answers” (Cai, Lane et al., 1996, p. 138). Cai and Silver 

(1995) corroborated that Chinese students performed better on procedural questions 

related to division than U.S. students; however, utilizing open-ended tasks they 

discovered Chinese students performed no different than U.S. students on questions 

requiring mathematical understanding or mathematical problem solving. Open-ended 

tasks allow researchers and teachers to assess mathematical understanding and complex 

problem solving that cannot be done with typical multiple choice items (Cai, 1997; Cai & 

Silver, 1995).  

Generally, assessments are scored for correctness and total scores are reported as 

a percentage, scale score, or raw score. To analyze students’ solutions on open-ended 

tasks a qualitative analysis must be conducted. Messick (1989) described three methods 

for analyzing student processes on a performance task. First, protocol analysis, students 
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are asked to think aloud as they solve a problem. Second, analysis of reasons, students 

provides written rationale for their responses. Finally, analysis of errors, inferences are 

drawn about processes from the incorrect procedures, concepts, or representations used to 

solve the problems. Although protocol analysis is a powerful method for gaining insight 

into what students understand and know about mathematics, it is difficult to conduct on a 

large scale. The process of collecting, coding and analyzing interview data is labor 

intensive. However, analysis of reasons and analysis of errors can reveal students’ 

mathematical thinking on written open-ended tasks.  

 The QUASAR (Quantitative Understanding: Amplifying Students Achievement 

and Reasoning) project (Cai, Magone, Wang, & Lane, 1996; Stein & Lane, 1996; Stein, 

Smith, Henningsen, & Silver, 2000) designed a qualitative analytic framework to analyze 

middle school student responses on multiple open-ended tasks (see Figure 1.2) by 

analyzing solution processes, “including mathematical communication, solutions 

strategies, and mathematical errors” (Cai, Magone et al., 1996, p. 830).  

 
Figure 1.2. Generic qualitative analytic framework for analyzing student work on the 
QUASER Cognitive Assessment Instrument (Cai, Magone et al., 1996) 
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 Although this framework was used to analyze middle school students’ written 

work, it provides a foundation to begin analyses of high school students’ work. 

An adaptation of Figure 1.2 was used to analyze similarities and differences in AP 

Calculus students’ strategies for solving open-ended tasks and errors or misconceptions 

(see Figure 1.3). Each question was first separated by correct and incorrect answers. Each 

correct answer was analyzed for solution strategies and each incorrect answer was 

analyzed for solution strategies and errors.   

 
Figure 1.3. Adapted framework for analyzing high school students’ mathematical 
understanding 
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The field of mathematics education defines integrated curriculum many ways. 

Usiskin (2003) describes different kinds and levels of integration within mathematics 

curriculum: unifying concepts or merging different areas of mathematics (strands or 

interdisciplinary). He suggests that some people believe single-subject curriculum is 

integrated because it contains different strands (algebra, geometry, and data); however, 

these strands are not typically related to each other and are usually taught separately. 

Integrated curriculum   

For this study, an integrated curriculum textbook series contains strands (algebra, 

geometry, and data) in which connections are continuously made among these strands. 

The specific integrated curriculum used in this study was the Contemporary Mathematics 

in Context: A Unified Approach (Coxford, Fey, Hirsch, Schoen, Burrill, Hart et al., 2003) 

series, one of the NSF high school curricula developed around NCTM’s Standards. 

Single-subject curriculum 

 This study referred to the single-subject curriculum as any secondary mathematics 

curriculum that was designed for use in a single-subject course: Algebra 1, Geometry, 

Algebra II, and Precalculus. The specific single subject curricula used for this study was a 

combination of three University of Chicago School Mathematics Project (UCSMP) 

textbooks, Algebra, Geometry, and Advanced Algebra (McConnell, Brown, Usiskin, 

Senk, Widerski, Anderson et al., 1996; Senk, Thompson, Viktora, Usiskin, Ahbel, Levin 

et al., 1996; Usiskin, Hirschhorn, Coxford Jr., Highstone, Lewellen, Oppong et al., 1997)  

and a Prentice Hall Precalculus textbook, Precalculus Enhanced with Graphing Utilities 

(Sullivan & Sullivan III, 2006). 
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Precalculus Concept Assessment 

 The Precalculus Concept Assessment (PCA) (Engelke, Oehrtman, & Carlson, 

2005) is an instrument used to assess students’ understanding of functions. The PCA has 

also been used to determine calculus readiness for undergraduate college students. The 

PCA contains 25 multiple choice questions and was administered in 50 minutes. The PCA 

was developed using distracters that were common misconceptions students have about 

functions.    

Strategies 

 For this study, strategies were defined as the general plan or direction students 

select to solve an open-ended task. More specifically, this was the process or steps 

students wrote on their paper.   

Errors 

 For this study, errors were defined as mistakes students made when solving open-

ended problems or misconceptions students demonstrate about the mathematics being 

assessed.  

Significance of the Study 

 Although integrated mathematics curricula were published and in use since 1997, 

limited research exists on what students learn from the integrated curriculum. Harwell et 

al. (2007) stated, “it is time now to devote research energy to the more important question 

of what mathematics Standards-based [integrated] students are learning that traditional 

[single-subject] are not and vice versa, …” (p. 96). Schoen and Hirsch (2003b) call for 

more research to study the effect of the latest version of integrated textbooks on student 

achievement in settings where students are accustomed to the expectations of the 
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curriculum. This study addresses both of these recommendations by analyzing students’ 

mathematical knowledge after successfully completing four years of mathematics in each 

path. 

Summary 

A driving force behind most curriculum reform is what should be taught and how. 

The NSF-funded mathematics curriculum was a major effort to initiate change to help all 

students learn. Although these curricula have been available for some time now, the 

research base is limited because few students have used them for an extended period of 

time.  

This study reports on students from two high schools that completed four years of 

college preparatory mathematics courses (integrated or single-subject). More specifically, 

the first focus was on performance of students who completed four years of college 

preparatory (integrated or single-subject) mathematics curriculum on the PCA. The 

second focus was on AP Calculus students’ strategies used to solve open-ended problems 

and the mathematical errors they made while solving these tasks. In the next chapter the 

relevant research on integrated and single-subject high school mathematics curricula and 

the impact of these curricula on student learning are reviewed. 
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CHAPTER 2: LITERATURE REVIEW 

The primary focus of this study was to describe similarities and differences in the 

mathematical understanding of students who completed four years of integrated 

mathematics curricula or single-subject coursework. More specifically, this study 

examined students’ performance on functions, students’ solution strategies when solving 

open-ended tasks, mathematical errors they made when solving open-ended problems, 

and how successful they are in solving items that require different levels of cognitive 

demand. Researching how students use curriculum and its impact on achievement is not 

new; however, research on the use of newer curricula supported with funds from the 

National Science Foundation (NSF) is limited (National Research Council, 2004; U.S. 

Department of Education, 2002). This chapter focuses on reported research and relevant 

documents that inform the work of this study. More specifically this chapter includes: (a) 

a brief historical view of the mathematics curriculum evolutionary process, (b) research 

documenting the effects of integrated curriculum, Core-Plus, on student achievement, (c) 

research on calculus students, both college and high school students, (d) research on 

student solution strategies, (e) research on mathematical errors, and (g) frameworks for 

analyses of levels of cognitive demand.  

This chapter is divided into six sections. First, a brief historical perspective of 

how and why mathematics curriculum has changed is provided. This discussion included 

a backdrop for understanding some of the current mathematics curriculum issues being 

experienced in the United States. The second section describes research on how the Core-

Plus curriculum has impacted high school students’ achievement. This section leads into 

the research on students’ understanding of functions, which provides background 
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information on the difficulties students have with some foundational topics in calculus. 

The next two sections describe research on students’ solution strategies and errors when 

solving open-ended tasks. The concluding section describes different frameworks used to 

analyze levels of cognitive demand for each question. Knowledge from these sections 

will inform the methods and procedures utilized in this study. 

Historical Perspective 

 Decisions about mathematics curricula follow a crisis-reform-reaction cycle that 

continues today as the field struggles to answer what mathematics should be taught and 

how. As mathematics educators and others propose or implement curriculum change the 

amount and intensity of discussion increases. Debates about mathematics curricula have 

occurred for decades and continue today in the United States.  

A major cycle of mathematics curriculum change began in 1951. University of 

Illinois engineering faculty believed high school students were entering their classrooms 

without the mathematics background necessary to succeed in college. They joined the 

faculty in education and mathematicians to develop the pamphlet, Mathematical Needs of 

Prospective Students in the College of Engineering of the University of Illinois, to guide 

high school students in their course taking choices (Jones & Coxford Jr., 2003). Max 

Berbman, with members from the colleges of Education, Engineering, and Liberal Arts 

and Sciences, organized and directed the University of Illinois Committee on School 

Mathematics (UICSM) to investigate the mathematics content and teaching of high 

school courses. (Jones & Coxford Jr., 2003).  

The UICSM developed a first-of-its-kind model four year high school 

mathematics curriculum for college bound students that included a completely new set of 
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courses that reflected formalism and symbolism never before seen in high school 

mathematics in the United States. Furthermore, in addition to curriculum development, 

the UICSM field tested their curriculum, and required teachers to be trained extensively 

before using their program.  

During the same decade, the College Entrance Exam Board (CEEB) appointed the 

Commission on Mathematics (College Entrance Exam Board, 1959) to examine all 

secondary mathematics curriculum and recommend how to modernize, modify, and 

improve it (Jones & Coxford Jr., 2003). The CEEB wanted to make sure that what was 

taught matched what was assessed and that students were actually prepared for college. 

Recommendations included a balance between concepts and skills, deductive reasoning, 

the use of mathematical properties, equalities and inequalities, unifying mathematics 

ideas, and suggestions for courses in geometry, trigonometry and a senior level 

mathematics course (Jones & Coxford Jr., 2003). Although the CEEB report was not 

published until 1959, the UICSM textbooks modeled many of these recommendations 

and influenced future curricula, such as the School Mathematics Study Group (SMSG).  

Outside forces also influence curriculum changes. The launching of Sputnik in 

1957 caused the nation to re-evaluate what mathematics was required, but more 

importantly how schools could facilitate the development of engineers and scientists that 

could keep pace with those in other countries (Jones & Coxford Jr., 2003). The CEEB’s 

recommendations and the development of the UICSM curriculum provided an avenue to 

help students develop understanding of mathematics and prepare them to enter college 

mathematics courses. The “new math” era began with textbooks that contained new and 

more advanced content that would prepare students for college. Teachers required more 
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training and professional development because they were not prepared to teach the 

mathematics content in these new curricula.  

 The “new math” curricula changed the emphasis on the type of knowledge 

students were expected to learn, such as a reduction on rote memorization and an 

increased emphasis on concepts and proof (Davis, 1974). These curricula also impacted 

teacher pedagogy. For example, Gray (1974) said “The major change has been more in 

how math is taught, rather than what math is taught” (p. 39). Students were asked to 

understand mathematics conceptually rather than apply formulas with no meaning. 

Students and parents had difficulty understanding this new approach to mathematics. 

Many “new math” curricula “were designed for mathematically capable students heading 

for further academic study of mathematics” (Fey, 1978, p. 342). These curricula were 

characterized as “emphasizing pure mathematics and neglecting the traditional diet of 

‘life survival’ applications that were prominent ….” (p. 342) in curricula that was 

replaced. 

 The “new math” curricula developed during the 1950s and 1960s aroused 

unprecedented public discussion about mathematics curriculum and led to new research 

and interest in student learning (Mueller, 1966). During the 1960s the government 

instituted significant funding for curriculum development in mathematics and science. 

For the first time government agencies responded to the need for new mathematics 

textbooks and became stakeholders in the education system. The funding allowed more 

people opportunities to work on mathematics curriculum projects and helped promote 

dissemination of the curricula to a larger group of teachers and students across the U.S.  
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 At the same time, curriculum developers began field testing textbooks, in-

servicing teachers, and collaborating with mathematicians. These reform efforts are still 

used today. For the first time curriculum developers worked with classroom teachers to 

produce high quality textbooks that were not created in a short period of time. These 

curricula took years to conceptualize, develop, field-test, revise and produce a final 

edition. Before the UICSM curriculum emerged, teachers were not given special 

professional development to facilitate their use of specific curriculum materials. 

However, this changed because it was clear that traditional training of mathematics 

teachers had not prepared them to implement mathematics curricula that required 

additional depth of mathematical knowledge and a different orientation of the teacher’s 

role.  

 The “new math” era marked the largest national mathematics curriculum reform 

in the United States. It focused on preparing materials for secondary school mathematics 

“which expressed the modern views and role of mathematics” (Jones & Coxford Jr., 

2003, p. 72). For the first time, educators seriously addressed how they could prepare 

mathematics students for college and not just teach the basic skills.  

1970s 

 Some prominent mathematicians were critical of the “new math” curricula and 

how it was implemented. Their concerns together with concerns and confusion expressed 

by many parents stalled further mathematics curriculum development in the early 1970s. 

In fact, initiatives were made to refocus the mathematics curriculum and return to the 

basics. Public and professional discussions centered on two questions: 
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1) “Have the reformers chartered the right direction for the content goals of 

school curricula?  

2) Do the programs that implement their ideas work as intended?” (Fey & 

Graeber, 2003, p. 531) 

Morris Kline, a mathematician, was a prominent critic of the “new math” textbooks 

because “algebra, geometry, and trigonometry were replaced by set theory, symbolic 

logic, matrices, and Booliean algebra” (Jones & Coxford Jr., 2003, p. 82). He thought 

these subjects were inappropriate for high school students to study.   

 Concerns were expressed about how mathematics was taught and what was being 

learned. A report in 1977 from the College Board showed that over the last ten years 

student scores on the Scholastic Aptitude Test (SAT) declined. The government reduced 

its funding for curriculum development during the seventies because of political 

resistance and societal fears that school districts were losing power to make local 

decisions about curricula (Fey, 1978).  

 The public called for curricula to be designed for less able students. In addition 

parental concern for students’ perceived lack of computational skills pushed the field to 

ask what basic mathematics skills do K-12 students need to know and how do teachers 

help students obtain these skills. In 1975, the National Institute of Education conducted a 

meeting to discuss two questions: 

• “What are basic mathematical skills and learning? 

• What are the major problems related to children’s acquisition of basic 

mathematical skills and learning, and what role should the National Institute 
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of Education play in addressing these problem?” (Conference on Basic 

Mathematical Skills, 1976, p. 2) 

Although the Conference on Basic Mathematical Skills recommended ten basic skills 

essential for K-12 students little attention was initially given to these skills. However, one 

year later the National Council of Supervisors of Mathematics (NCSM) built on the work 

done at the Conference on Basic Mathematical Skills and released The Position Paper on 

Basic Mathematical Skills (1977), which recommended the following skills: (1) problem 

solving, (2) applying mathematics to everyday situations, (3) alertness to the 

reasonableness of results, (4) estimation and approximation; (5) appropriate 

computational skills, (6) geometry, (7) measurement, (8) reading, interpreting, and 

constructing tables, charts and graphs, (9) using mathematics to predict, and (10) 

computer literacy. Their position paper was a response to societal calls to return to the 

basics, but more importantly it also provided a unified definition for basic skills that 

included more than computation.  

The 1970s was a decade of “groping for a clearer focus and sense of direction” 

(Hill, S., 1983). The field had to respond to opponents and public dissatisfaction about 

the “new math” curriculum. There was also “widespread concern for specifying standards 

of minimal competency in mathematics to be attained by all students…” (Fey, 1978, p. 

342). During this decade, one curriculum reform ended and a new one began.  

Mathematics educators spent the 1970s reacting to what happened during the 

“new math” era, but were also unhappy with the “back to basics” movement. New 

curricula needed to be designed for all students; however, mathematics educators and 

mathematicians needed to come to consensus on what students should learn and how it 
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should be taught. The National Science Foundation sponsored conferences to discuss 

“questions about the nature of mathematics, the way it is learned, and the way it should 

be taught…” (Fey & Graeber, 2003, p. 549) and paved the way for the rise of 

professional organizations and national recommendations that began during the 1970s.  

1980s 

 A crisis level was reached during the 1970s and forced professional organizations 

to work for consensus and understanding. The crisis level also caused many to call for 

reform and initiated new ways of viewing mathematics education. The first major report 

released by the National Council of Teachers of Mathematics (NCTM), An Agenda for 

Action (1980) “was a response to particular demands and pressing concerns” (Hill, S., 

1983, p. 1). The Agenda for Action was developed after many discussions and 

recommendations from conferences and reports during the seventies. “The Agenda [for 

Action] expressed a vision that was endorsed by numerous groups, given relatively wide 

circulation, and was used to guide NCTM publications and actions from 1980 until the 

1989 release of the first Standards document…” (Fey & Graeber, 2003, p. 553). The 

report called for all K-12 students to experience important topics in mathematics: 

problem solving, basic skills, and technology. Consequently new curricula developed 

during the 1980s focused on problem solving. The Agenda for Action called for increased 

emphasis with collecting, organizing, and analyzing data as well as the use of maps and 

diagrams to help understand problem situations (Fey & Graeber, 2003). The definition of 

basic skills was adopted from the NCSM position paper on Basic Mathematical Skills 

requiring students to do more than simple computations. Calculators were introduced in 

the late seventies; however, NCTM was the first professional organization to endorse 
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judicious calculator use for all students in grades K-12. The Agenda for Action called for 

a decreased emphasis in paper-pencil computations and the use of logarithmic tables 

because of calculators. The Agenda for Action also recommended that students should be 

required to learn more mathematics. These recommendations “helped turn the tide away 

from the minimal competency, drill-and-skill mentality of the ‘back to basics’ 1970s 

toward a more balanced view of what was appropriate for school mathematics curricula” 

(Coxford, 2003, p. 611). 

Soon after the release of An Agenda for Action, the National Commission on 

Excellence in Education (NCEE) released A Nation at Risk (1983) that brought to 

America’s attention the necessity of change in mathematics education. NCEE 

recommended that all students who graduate from high school complete a minimum of 3 

years of mathematics course work. Specific changes in high school content were 

recommended:  

high school [mathematics] should equip graduates to: (a) understand geometric 
and algebraic concepts; (b) understand elementary probability and statistics; 
(c) apply mathematics in everyday situations; and (d) estimate, approximate, 
measure, and test the accuracy of their calculations. In addition to the traditional 
sequence of studies available for college-bound students, new, equally demanding 
mathematics curricula need to be developed for those who do not plan to continue 
their formal education immediately. (National Commission on Excellence in 
Education, 1983, p. 26) 
 

This document declared a new vision for high school mathematics content and 

organization. Mathematics educators now had a foundation for new curricula 

development that could assist all students.  

In response to the call for revitalization of mathematics education the National 

Research Council (NRC), with assistance from the Mathematical Sciences Education 

Board, the Board on Mathematical Sciences, and the Committee on the Mathematical 
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Sciences in the Year 2000, conducted a study of U.S. mathematics classrooms from 

kindergarten through graduate school to identify strengths and weaknesses of the 

educational system. The result was Everybody Counts (1989), a national call to change 

mathematics education so all students could receive high-quality education. Everybody 

Counts presented a model of collaboration between groups concerned with mathematics 

education that imparted guidance and direction for the field. The report not only 

recommended needed changes, but also provided a new vision for mathematics 

education. Specifically, the U.S. has an “underachieving curriculum that follows a spiral 

of almost constant radius, reviewing each year so much of the past that little new learning 

takes place” (p. 45). The NRC recommended secondary school mathematics textbooks 

should focus on “the transition from concrete to conceptual mathematics” and that all 

students should be exposed to core concepts of useful mathematics so they can lead 

“intelligent lives as productive citizens” (p. 49). Although Everybody Counts established 

a need for change and provided a vision for the field, more importantly it forecasted the 

significance of the NCTM Standards that provided a vision of mathematical expectations 

for all students.   

Shirley Hill, in her 1980 presidential address, recommended NCTM impact 

policymakers and this could happen if the organization spoke as a united voice. NCTM’s 

Agenda for Action was a first attempt at creating a policy document for reforming 

mathematics curricula in the 1980s. However, after an NCTM committee tried to evaluate 

the impact of the Agenda for Action on textbooks and classrooms it was noted that the 

document was “only a ‘loose framework’ rather than a complete curriculum guide, and 

more ‘specificity’ was needed” (McLeod, 2003, p. 762). This realization prompted 
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NCTM to focus on curriculum and evaluation standards. Specifically a committee was 

given the charge to:  

1) Create a coherent vision of what it means to be mathematically literate both in 
a world that relies on calculators and computers to carry out mathematical 
procedures and in a world where mathematics is rapidly growing and is 
extensively being applied in diverse fields.  

2) Create a set of standards to guide the revision of the school mathematics 
curriculum and its associated evaluation toward this vision. (p. 1) 

 
The eventual result was a document entitled Curriculum and Evaluation Standards for 

School Mathematics (1989). This document built on the principles and guidelines of the 

Agenda for Action, but also provided “a broad framework to guide reform in school 

mathematics in the next decade” (p. v). More specifically, it provided “a set of standards 

for mathematics curricula in North American schools (K-12) and for evaluating the 

quality of both the curriculum and student achievement” (p. v). The Standards provided 

educators with a vision of what mathematics curricula should include. People interested 

in the quality of K-12 mathematics were encouraged to use the Standards to improve 

teaching and learning of mathematics. Many earlier reports laid the groundwork for the 

release of a document that would initiate change in K-12 mathematics. The impact of the 

Standards was huge as states, teachers, and even the general public began to discuss the 

need to have a mathematically literate generation of students. Thus NCTM became a 

unified voice on what students should be taught and how mathematics should be taught.  

The Standards presented a vision of what it meant to be mathematically 

competent, but also provided society with new goals and direction for what was valued in 

mathematics education. “New social goals for education include (1) mathematically 

literate workers, (2) lifelong learning, (3) opportunity for all, and (4) an informed 

electorate” (National Council of Teachers of Mathematics, 1989, p. 3). Students were to 
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learn more than facts, procedures, and symbols. They were to learn to value mathematics, 

gain confidence in their ability to do mathematics, become problem solvers, and 

communicate and reason mathematically (National Council of Teachers of Mathematics, 

1989). Learning was to become an active process rather than static understanding that 

relied on bits and pieces of information that had no meaning (Schoenfeld, 2004).  

Schoenfeld (2004) argued that the Standards document was both a radical and 

conservative document. It was radical because it challenged the “assumptions underlying 

the traditional curricula” (p. 267). The traditional curricula of this time were designed for 

students who intended to pursue higher education, yet 50% of students dropped out of 

mathematics courses after the ninth grade. The Standards included a table of topics that 

should receive either increased or decreased attention. The topics recommended to 

receive deceased emphasis were the “meat and potatoes of the traditional curriculum” (p. 

268). On the conservative side, the Standards document was written for mathematics 

teachers everywhere. Although the Standards were vague, “this was part of their 

genius…” (p. 268) because people had to interpret and reevaluate what was important for 

their students and society.  

These four documents, Agenda for Action, A Nation at Risk, Everybody Counts, 

and Curriculum and Evaluation Standards for School Mathematics, offered a conclusive 

recommendation that “teaching of mathematics in American schools needed to change at 

all grade levels in order to provide the best possible learning opportunities for all students 

and that the need for mathematically literate citizenry had never been greater” (St. John et 

al., 2004, p. 1). Each document reported different approaches for change in the K-12 

mathematics system: change mathematical content and organization, increase 
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mathematics course requirement, provide a vision for the future of mathematics education 

and mathematics curricula, and become a voice in the fight for reform and helping 

students learn mathematics. Each organization shared a similar view that mathematics 

instruction should emphasize engaging and challenging students to solve complex 

problems that contain multiple mathematical ideas (Reys, B. J., Robinson, Sconiers, & 

Mark, 1999; St. John et al., 2004).  

These documents laid a foundation for a vision not reflected in existing 

mathematics curriculum. Commercial publishers have been reluctant to commit 

significant financial resources to develop new products that deviate significantly from the 

programs that have significant market share (Reys, B. J. & Reys, 2006). Furthermore the 

demand to conceptualize a new secondary mathematics program, and then develop, field-

test and revise it prior to selling it has never been done by a commercial publisher. These 

circumstances produced the setting for the NSF to solicit proposals during the 1990s for 

the development of new instructional materials consistent with the vision of mathematics 

curriculum endorsed by the Standards (Reys, B. J. et al., 1999; Robinson & Robinson, 

1999; St. John et al., 2004).  

These curricula were to provide teachers with tools that could help them move 
beyond traditional practice, imbuing their teaching with new methods and topics 
that would make mathematics education more relevant and meaningful to young 
people of the 21st century. (St. John et al., 2004, p. 2) 
 

The NSF awarded five independent groups funds to develop new secondary mathematics 

curricula based on recommendations for reform voiced during the 1980s. These groups 

worked independently to develop integrated mathematics curricula thereby providing 

multiple programs that used a different organization structure than what had been typical 

in the United States. 
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Integrated Curricula and its Effect on Student Achievement 

“IN EDUCATION, integration means the simultaneous consideration of different 

aspects of knowledge” (Usiskin, 2003, p. 13). Two main ways knowledge can be 

integrated are through unifying concepts or merging different areas of mathematics. An 

integrated curriculum based on a unifying concept uses a topic that “cuts across most, if 

not all, branches of mathematics” (p. 16), such as functions. The School Mathematics 

Study Group (SMSG) used “unifying concepts as sets, mathematical systems, and logic 

throughout their materials” (p. 16). Another example, the Agenda for Action proposed 

developing mathematics curriculum around problem solving.  

Types of Integration 

 Most early 1900s curricula focused on one branch or topic in mathematics. For 

example, high school students who took an algebra class learned very little geometry. 

Similarly geometry students did not learn about coordinate geometry or make 

connections to algebra. However, SMSG broke this tendency by merging solid and plane 

geometry in one course. Integrated curricula can be developed by merging different areas 

of mathematics. Three ways of integrating mathematics topics are: (1) removing 

distinctions between areas of mathematics, (2) integrating by strand, and (3) 

interdisciplinary (Usiskin, 2003).  

By removing distinctions between different areas of mathematics topics such as, 

probability and statistics, geometry, algebra, and functions, students are better able to 

make connections between areas, but they are also exposed to multiple areas each year. 

The NSF-funded mathematics curricula are an example of this type of integration. Five 

high school projects, Contemporary Mathematics in Context (Core-Plus), Interactive 
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Mathematics Program (IMP), MATH connections: A Secondary Mathematics Core 

Curriculum, Mathematics: Modeling our World (MMOW), and SIMMS Integrated 

Mathematics, were developed using real-world applications or themes, and connections 

among algebra, functions, geometry, trigonometry, probability, statistics, and discrete 

mathematics were made as appropriate within each theme.  

The most common integration is by strands. Most textbooks provide multiple 

strands, algebra, geometry, and data that students are expected to learn each year; 

however, these strands are typically divided by chapter and connections are frequently 

lost. Students most often struggle to make connections between different strands because 

they are taught individually. For example, in Russia and China algebra and geometry are 

taught during the same year, but at different times. On certain days of the week students 

learn algebra and the other days are spent learning geometry; however, students are not 

using one textbook, but different books for each strand (Usiskin, 2003).  

Finally, integration by multiple disciplines is one of the oldest and well known 

types of integration. Typically mathematics and science are usually grouped together 

because they compliment each other, and SIMMS integrated mathematics was developed 

with this goal. However, it is “difficult to give enough attention to the different concepts 

in different subjects simultaneously, yet demonstrate the differences in their importance, 

and also link them in some coherent way” (Usiskin, 2003, p. 22).  

Size of Integration 

 Usiskin (2003) further contends that curricula can be considered integrated based 

on the grain size. He describes six curriculum grain sizes from smallest to largest: 

1) The questions and problems asked during teaching 
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2) A lesson 

3) A unit or chapter in a textbook 

4) An entire course, typically completed in a semester or year 

5) The mathematics curriculum (what students complete during their K-12 

education) 

6) The school curriculum (includes multiple areas of schooling)  

The smallest integration grain size exists in the questions and problems teachers ask 

students during class. A problem students are given to solve may integrate multiple 

mathematics concepts or may integrate different strands such as geometry and algebra. A 

lesson is typically completed during one class period. The integration may be in 

connecting student learning from the previous day to the new concepts being taught in the 

new lesson. A unit or chapter in a textbook is one of the more popular types of 

integration. For example, a typical chapter in a geometry book might be on coordinate 

geometry. This chapter will integrate geometry concepts: parallel, perpendicular, circles, 

and lines with algebra concepts: find the distance between two lines, writing equations of 

lines, deciding whether two lines are parallel or perpendicular, and writing equations for 

circles. The fourth type of integration is a course, which would be similar to single-

subject curricula. Students make connections between chapters. Topics taught at the 

beginning of the year are necessary to build knowledge and understanding of new topics 

later in the year. Many mathematics textbooks could be considered integrated at the 

course level. However, an integrated school mathematics curriculum is different, because 

what is taught at each grade is important and imperative for students to understand. The 

connections are not made solely across the chapters, but also across grade levels. What 
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students learn in grade 10 is connected to what they learned in grades K-9. The sixth type 

of integration is much larger and it is across the entire school curriculum, meaning 

multiple disciplines are involved. For example, English, mathematics, science, and 

history might be integrated into one class. This type of comprehensive integration across 

disciplines is rare.  

 In a school mathematics curriculum students are not expected to learn everything 

in a single year, yet topics in subsequent years build on their prior understanding. 

Typically upon completion of Algebra I students first complete a course in Geometry and 

then a course in Algebra II; however, it may be the case that a student decides to take 

Algebra II first and then Geometry. “If these subjects can be interchanged, neither is 

necessary for the other” (Usiskin, 2003, p. 26).  

 The five high school NSF-funded curricula mentioned previously are integrated at 

the school mathematics curriculum level. Students need to take each course to progress, 

build their mathematical knowledge, and gain a full understanding of the mathematics 

required at the high school level. Each program was designed to replace the Algebra 1, 

Geometry, Algebra II, and Precalculus sequence and prepare students to enter either AP 

mathematics courses, collegiate mathematics courses, or the work force. Each program 

has its own format, style, and organization with emphasis being given to various 

mathematical strands, but students should finish with a similar understanding and 

knowledge of mathematics.    

Research on Integrated Curricula Conducted Internally 

 Today high school students in the United States use either integrated or single-

subject curricula. Researchers have compared students who use these two types of 
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curricula with standardized achievement tests and college entrance exams, such as the 

Iowa Test of Basic Skills (ITBS); Iowa Test of Educational Development (ITED); 

Preliminary Scholastic Aptitude Tests (PSAT); Stanford Achievement Test, Ninth edition 

(SAT-9); Scholastic Aptitude Tests (SAT); American College Testing (ACT) 

examination; or the New Standards Reference Examination (NSRE) (Abeille & Hurley, 

2001; Harwell et al., 2007; Huntley, Rassmussen, Villarubi, Sangtong, & Fey, 2000; Lott, 

Hirstein, Allinger, Walen, Burke, Lundin et al., 2003; Schoen, Fey, Hirsch, & Coxford, 

1999; Schoen & Hirsch, 2003a; Webb, 2003). Results reported are mixed; with one group 

of students performing statistically higher than the other on some assessments, and when 

other assessments are utilized no statistical difference was found between the two groups 

of students (integrated and single-subject).   

 Researchers have reported that high school students who used an NSF-funded 

high school curricula either outperform or perform equally on standardized achievement 

assessments when compared to peers in a similar single-subject course (Abeille & 

Hurley, 2001; Lott et al., 2003; Schoen & Hirsch, 2003a; Webb, 2003). Abeille and 

Hurley (2001) found high school students who used Mathematics Modeling our World 

scored significantly higher than the national average on the SAT-9. Schoen and Hirsch 

(2003a) found high school students who used Core-Plus course 1, when matched on 

previous achievement and aptitude, significantly outperformed students enrolled in either 

Pre-Algebra or Algebra courses and performed equally with students enrolled in an 

Accelerated Geometry course. Whereas, Webb (2003) found no difference between 

students who used the Interactive Mathematics Program and students who used single-

subject curricula on ITBS scores. Lott et al. (2003) found similar results for students who 
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used Systematic Initiative for Montana Mathematics and Science. SIMMS students did 

not perform differently than students who had used single-subject curricula on the 

Preliminary Scholastic Aptitude Test (PSAT) mathematics portion. These mixed results 

contribute to the necessity for more research on how students who use the different NSF-

funded curricula perform on standardized achievement exams. These mixed results also 

raise questions about the alignment between standardized assessments and these five 

NSF-funded curricula.  

 Researchers also found students who used an NSF-funded curricula did not 

perform differently on college entrance exams when compared to peers who used single-

subject textbooks (Schoen & Hirsch, 2003a; Webb, 2003) Schoen and Hirsch (2003a) 

found no difference in student performance on the SAT and ACT mathematics portion 

for those who used either Core-Plus or single-subject curricula during high school. Webb 

(2003) also found students who completed three years of the Interactive Mathematics 

Program performed no different on the SAT mathematics portion than students who 

completed three years of single-subject curricula. Overall, students who used these two 

NSF-funded curricula have not performed differently than students who use single-

subject curricula on measures of college aptitude.  

All of the research reported above contains at least one curriculum designer or 

personnel internal to the projects. The NRC called for involvement of researchers that are 

independent of the curriculum developers. The NRC (2004) also reported in On 

Evaluating Curricular Effectiveness that approximately 60% of comparative studies were 

considered “minimally methodologically adequate”. The weaknesses of these studies 
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were based on “inadequate attention to experimental design, insufficient evidence of the 

independence of evaluators in some studies, …” (p. 164).  

Research on Core-Plus External to the Project 

As students continue to use the NSF-funded curricula the research base will 

continue to grow, but more importantly the National Research Council (2004) 

recommended that studies should be conducted external to the project. In the last 5-8 

years researchers not associated with the development of the NSF-funded curricula have 

begun publishing their results (Harwell et al., 2007; Hill, R. O. & Parker, 2006; Huntley 

et al., 2000; Milgram, unpublished work; Smith, J. P., III & Star, 2000; Smith, J. P., III & 

Star, 2007). Although some researchers are finding similar results, others are reporting 

differing outcomes. Huntley et al. (2000) found similar results to the project evaluators 

that students who use Core-Plus tend to perform better on contextual open-ended 

questions, problem-solving situations, and problems related to statistics and probability. 

However, Huntley et al. found Core-Plus students did poorer on questions of symbolic 

manipulation when a calculator was unavailable, which was in opposition to what the 

developers, Schoen and Hirsch (2003a) found.  

Hill and Parker (2006) compared students who had completed the Core-Plus 

curricula and those who had not completed Core-Plus in their freshman mathematics 

course at the University of Michigan and their grade they received in that course. A total 

of 3200 students’ data were collected from forty-five high schools. Six high schools used 

Core-Plus for their high school mathematics curricula. Hill and Parker found 

significantly more students who completed Core-Plus curricula were taking remedial 

courses and getting lower grades.   
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The curriculum developers responded to the Hill and Parker (2006) study by 

noting three serious flaws: (1) the sample of students described used a draft field-test 

version of Core-Plus; (2) two schools categorized as “only Core-Plus” actually had 

multiple mathematics textbooks that teachers used during the school years studied; and 

(3) two schools categorized as “supplemented Core-Plus” actually used Core-Plus 

textbooks for all mathematics classes (Fey, Hart, Hirsch, Schoen, & Watkins, 2007).  The 

last two problems affect the data analysis that was conducted because they included 

schools that should not be and excluded schools that should be included. Although Hill 

and Parker were informed of these problems they did not make any changes in their 

analysis. 

Milgram (unpublished work) used data collected by George Bachelis to analyze 

how students from two high schools, Lahser and Andover, performed at the university 

level. Both high schools are located in the same school district and had similar 

populations; however, students at Andover used Core-Plus as their mathematics 

textbooks and students at Andover used single-subject textbooks. Data were collected 

through student surveys. The results indicated that ACT scores for students at Andover, 

who completed four years of Core-Plus, dropped significantly during the five year 

implementation of the curricula when compared with students at Lahser high school. 

Milgram also found more students (70%) who had completed the Core-Plus curricula 

were taking remedial mathematics courses in college compared to students (44%) who 

completed the single-subject curricula. It was noted that fewer Andover graduates (3%) 

took Calculus the first year in college than Lasher graduates (27%). Both the Hill and 
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Parker and Milgram studies support critics who are concerned about students’ 

mathematics preparation for college.  

The curriculum developers, however, refuted the results of Milgram’s study. They 

state, “the survey is invalid due to serious design flaws and the report draws incorrect 

conclusions” (Hirsch & Schoen, 2007, p. 1). The flaws found in this study are: (1) the 

data are self-reported by self-selected students, which lead to unreliable data; (2) invalid 

generalizations were made based on a pilot version of the curriculum; and (3) incorrect 

conclusions were made about Core-Plus students not being prepared for college 

mathematics because data collected from the University of Michigan revealed opposite 

results. Although the curriculum developers encourage researchers to continue studying 

how students who use Core-Plus perform in college, they “urge … for more valid 

research based on published versions of curricula” (Fey et al., 2007, p. 1).  

Another line of research impacting the field is how students adjust to changes 

from one type of curriculum to another. Researchers involved in the current 

Mathematical Transitions Project (Smith, J. P., III & Star, 2000; Smith, J. P., III & Star, 

2007) located at Michigan State University, have followed high school and college 

students as they move from traditional (single-subject) curriculum to standards-based 

(integrated) curriculum or vice versa. The researchers are studying transitional periods in 

the students’ lives. Transitional periods consist of: moving from junior high to high 

school, high school to college, or from one state to another. At these transition points, 

students are forced to move from one curricula type to another because of availability or 

offerings that exist at the next level (high school or college). The focus of Smith and 
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Star’s research is on how these transitions affect students’ learning of mathematics when 

forced to switch between these two curricula types. 

 Preliminary results from the Mathematical Transitions Project (Star, Berk, 

Burdell, Hoffmann, Lazarovici, Lewis et al., 2001) indicate “different students react to 

curricular shifts differently in each school context” (p. 118). Researchers focused on “(1) 

student achievement, (2) significant differences students notice and report, (3) changes in 

disposition towards mathematics, and (4) changes in learning approaches” (p. 118) as 

changes occurred within curricula type. They determined that students experiencing a 

significant change in two or more of the four categories were experiencing a 

mathematical transition.  

 Smith and Star (2007) recently reported that approximately four-fifths of the 

students who took integrated or single-subject mathematics courses and then transition 

from high school mathematics to university mathematics experienced a significant drop 

in their achievement level. However, they also found no difference in student 

achievement for those who moved into or out of a reform program. This is significant 

because it implies that “students found it increasingly difficult to achieve at the same 

levels in mathematics as they progressed from … high school to university” (p. 23) and it 

does not seem to be dependent on the curricula type.  

 In another large scale study, Harwell et al. (2007) found students who used one of 

three standards-based (integrated) curricula, Core-Plus, Interactive Mathematics 

Program, or Mathematics Modeling our Way, preformed at or above the national average 

on traditional mathematics topics as measured by national standardized exams, SAT-9 

and the New Standards Reference Exam in Mathematics. Harwell et al. (2007) states,  
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District teachers and administrators (and parents) need to recognize that there is 
emerging evidence that Standards-based curricula do not impede the 
mathematical performance and development of high achieving students, and in 
some cases appear to have contributed to better student performance. (p. 95)  
 

Researchers continue to find mixed results on how students perform on standardized 

achievement tests and at the college level; however, the majority of results reveal no 

difference between students who use integrated or single-subject curricula. Because only 

limited results supporting integrated curricula have been published many opponents 

continue to mandate a return to what is conventional (Klein, 2000). However, Hiebert 

(2003) asserts that traditional approaches to learning mathematics have not produced 

desired results in student achievement for the past 30 years and the field must change.   

 Summary. Researchers need to continue studying how students who have 

experienced integrated or single-subject curricula perform on assessments. However, 

Harwell et al. (2007) advises the field to switch research focus from achievement to 

understanding what students are learning from these two curricula types. “It will be 

prudent in future comparative studies to probe the depth of student understanding, their 

flexibility in accessing various mathematical processes and skills while engaged in 

problem solving …” (p. 95). The NRC (2004) recommends comparative studies should 

“include a variety of measures … question type (open ended, multiple choice), type of 

test (international, national, local), …” (p. 165). This proposed study will execute these 

recommendations by analyzing student work on the two open-ended tasks and the PCA.  

Research on Calculus Students’ Understanding 

 Calculus was first recommended for secondary students in 1923 as an elective 

course (Ferrini-Mundy & Gaudard, 1992). However, during the 1950s students were 
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encouraged to learn higher level mathematics and this lead to the development of 

Advanced Placement (AP) Calculus courses. Students had the opportunity to receive 

college credit while still in high school if they completed a calculus course and passed the 

AP exam. Since the first exam in 1955, the AP Calculus program has grown at a rate of 

7-8% per year (Bressoud, 2004). There are two courses and examinations within the AP 

calculus program. The AB course covers the content that is typically taught in first 

semester college calculus, while the BC course covers content typically taught in two 

semesters of college calculus. In 2004, over 225,000 students took an AP calculus exam 

with over 50,000 of these students taking the BC exam (Bressoud, 2004). The AP 

calculus program continues to grow and this has raised concerns about whether high 

school students are experiencing a similar calculus course that college students are 

receiving. 

 Both Dickey (1986) and Ferrini-Mundy and Gaudard (1992) compared high 

school students with college calculus students and found similar results. Dickey (1986) 

found AP calculus BC students achieved as well as or better than college calculus 

students completing similar course content on a multiple choice test. Ferrini-Mundy and 

Gaudard (1992) found first semester college calculus students who had completed a full 

year of high school calculus (AP or not) were more successful on two instruments that 

assessed algebra, trigonometry, and spatial visualization rotation than those students who 

had either completed a partial year of calculus or had no experience before entering 

college calculus. A difference in procedural proficiency was found between students who 

had a partial year of calculus and those that had no experience with calculus. These 
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results indicate students who complete AP Calculus perform as well or better than college 

calculus students; however, the emphasis may be on gaining procedural knowledge.  

 Although “the value of calculus lies in its potential to reduce complex problems to 

simple rules and procedures” (Aspinwall & Miller, 2001, p. 89) many students are more 

apt at the procedural process without grasping the conceptual understanding necessary to 

apply the mathematics. Students who only gain procedural knowledge of calculus 

struggle with conceptual understanding (Baker, Cooley, & Trigueros, 2000; Berry & 

Nyman, 2003; Ferrini-Mundy & Gaudard, 1992; Habre & Abboud, 2006; Szydlik, 2000; 

White & Mitchelmore, 1996; Williams, 1991).  

 During the 1980s more students were entering college and enrolling in calculus, 

yet more students were failing calculus than ever before. Lynn Steen, president of the 

Mathematical Association of America at the time, stated “in large universities, fewer than 

half of the students who begin calculus finish the term with a passing grade” (as cited in 

Friedler, 2004, p. 5). Two conferences, Toward a Lean and Lively Calculus and Calculus 

for a New Century: A Pump not a Filter, began the discussion for change in the content 

and pedagogy of calculus in the United States. Some reasons for change were: (1) new 

technology; (2) current methods were causing many students to fail; (3) other disciplines 

wanted input; and (4) rethinking of textbooks. In 1987, NSF announced its desire to help 

in the calculus reform. They encouraged the development of new textbooks that focused 

on conceptual understanding and problem solving with a reduction in the procedural 

skills. Eight different calculus curricula programs were developed and are currently used 

across U.S. college campuses. The programs implemented new and different types of 

problems. For instance, the Harvard Calculus Consortium (Hughes-Hallet, Gleason, 
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Flath, Lock, Gordon, Lomen et al., 2002) introduced the “Rule of 4”, which was that 

every concept was presented graphically, verbally, numerically, and algebraically. Ganter 

(2001) summarized the research on the reform effort in Changing Calculus, A Report on 

Evolution Efforts and National Impact from 1988-1998 and concluded: 

• Most faculty believed there was a need to change the teaching of calculus; 
however, they were not sure it was going in the right direction. 

• The success or failure of the reform effort was not dependent on what was 
implemented, but how, by whom, and in what setting. 

• The reform effort motivated many conversations about how calculus was 
taught. 

• Students were concerned about their lack of computational skills. 
• Reform students are enrolling in more non-required mathematics courses 

beyond calculus, implying that reform calculus generated more interest in 
mathematics. 

• Eighty-eight percent of all the studies conducted (111) found reform 
efforts were positive for at least one measure of student improvement. 

• Computers can help students be more successful in calculus. 
 

Although the calculus reform provided change, many mathematicians did not agree with 

the new textbooks because they removed or decreased attention to topics such as proof 

and mathematical language (Klein & Rosen, 1997; Wu, 1997). Yet others argue that these 

new calculus textbooks “are a middle ground” (Tall, 1997, p. 289) between the intuitive 

learning of calculus and the formal theory of mathematical analysis, which provides more 

students the chance to learn and be successful with calculus.   

 Typically calculus students learn topics in three broad areas: limits and continuity, 

derivatives, and integrals; however, their foundation of knowledge should be grounded in 

understanding functions. Researchers found students have  

various conceptions of a function, that it is given by a formula, that if y was a 
function of x, it must include x in the formula, that its graph was expected to have 
a recognizable shape…, and that it was to have certain ‘continuous’ properties. 
(Tall, 1997, p. 299) 
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The concept of functions is fundamental to learning calculus; however, students shallow 

understanding of function becomes a “way of working with other calculus concepts such 

as limit” (Ferrini-Mundy & Graham, 1991, p. 630).  

Functions 

 Researchers have documented students incomplete understanding of functions as 

they enter calculus (Ferrini-Mundy & Graham, 1994; Markovits, Eylon, & Bruckheimer, 

1988; Tall, 1997). Students’ understanding of functions tends to be either an algebraic 

equation/formula or a continuous graph. Ferrini-Mundy and Graham (1994) found a 

student’s judgment of whether a graph was a function or not was whether they could 

write an equation to fit the graph. Markovits et al. (1988) found students struggled 

identifying functions if the graph was disconnected or a piecewise function was given. 

Tall (1997) found similar results when working with students that “the graph of a 

function should have other properties, such as being regular, persistent, reasonable 

increasing…” (p. 10). Students’ understanding of function is critical for understanding 

high level mathematics, especially calculus concepts: limits, derivatives, and integrals. 

 Breidenback, Dubinsky, Hawks, and Nichols (1992) and Dubinsky and Harel 

(1992) described two ways students think about functions: action, and process. Action 

oriented is described as “the ability to plug numbers into an algebraic expression and 

calculate” (Dubinsky & Harel, 1992, p. 85). These students tend to think about the 

function one step at a time as they input a value into the function and calculate the correct 

output value for a specific function. However, if these students are not given an algebraic 

equation they usually struggle to interpret the function. Whereas, process oriented is 

described as having the ability to use “a dynamic transformation of quantities according 
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to some repeatable means that, given the same original quantity, will always produce the 

same transformed quantity” (Dubinsky & Harel, 1992, p. 85).  

 Carlson (1998) built on both, Breidenback et al. (1992) and Dubinsky and Harel 

(1992), work studying high-performing undergraduate students’ concept of function. 

Results revealed that college algebra students and second semester calculus students have 

a range of misconceptions about functions. Some of these misconceptions were similar to 

earlier results that a function is “defined by a single algebraic formula and all functions 

must be continuous” (Carlson, 1998, p. 141). However, other misconceptions were new: 

difficulty interpreting rate of change, difficulty translating between an algebraic and 

graphical representation, and understanding the role of independent and dependent 

variables to list a few. The concept of function is difficult for students and it takes a 

number of years to “understand and orchestrate individual function components” 

(Carlson, 1998, p. 143).  

 Carlson and Oehrtman (2005) extended previous work with regard to action and 

process orientations arguing that students ability to answer function focused tasks was 

related to two types of reasoning.  

First, students must develop an understanding of functions as general processes 
that accept input and produce output. Second, they must be able to attend to the 
changing value of output and rate of change as the independent variable is varied 
through an interval in the domain. (p. 5) 
 

Those students who held an action view of functions had misconceptions about piecewise 

functions being several functions, could not reason over an entire interval only at a 

specific point, and could not relate the domain and range to the inputs and outputs of a 

function. Without an understanding of functions accepting inputs and producing outputs 

students will struggle to reverse (inverse functions) the process. Most students are able to 
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algebraically or geometrically find the inverse of a function; however, their answer “has 

little or no real meaning” (p. 7). Students who hold an action view are able to work with 

functions procedurally, but have little conceptual understanding.  

 Carlson and Oehrtman (2005) identified students who held an action view to use 

either an algebra or geometry approach to finding inverse functions. Students who used 

an algebra approach simply switched the variables (x and y) and solved for the y variable. 

Students who used a geometry approach reflected the given function over the line y = x to 

find the inverse function. However, most of their students did not understand why these 

procedures worked or how to use them in a different context. Students who demonstrated 

a process view of inverse functions were able to use a reversal process that defined a 

mapping of output values to input values.  

 Carlson and Oehrtman (2005) also identified students who held an action view of 

composition of functions as those who substituted a formula or expression in for x. 

Students who held a process view were able to coordinate two input-output processes. 

These students understood that the input in one function would result in an output that 

would be used as the input in a second function.  

 Students who held a process view saw the entire function and how the input 

values affected the output values. This was described as covariational reasoning, the 

ability to vary inputs and outputs at the same time and interpret or understand their 

influence on the rate of change. Students who hold a process view were better able to 

understand composition of functions and inverses. A process view of function is essential 

for understanding calculus concepts such as the limit, derivative, and integral. 
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 Summary. Most of these studies confirm that students’ conceptual understanding 

of function is weak. Few studies investigated high school students so questions exist as to 

whether students who completed four years of college preparatory mathematics 

(integrated or single-subject) courses have these same misconceptions and weak 

conceptual knowledge. If similar studies were conducted with AP Calculus students 

would the results change? Are there differences in students’ conceptual knowledge that 

have learned from two different types of curricula? These questions will be addressed in 

this study.  

Analyses of Student Strategies 

Many students believe one correct way exists to solve a problem because 

mathematics is a list of rules and formulas (Cai, Magone et al., 1996; Santos-Trigo, 

1996). Teachers try to overcome this belief by instructing students in different problem 

solving techniques, including pattern recognition, guessing and checking, working 

backwards, solving a simpler problem, and drawing a picture. Begle (1979) stated 

“problem-solving strategies are both problem- and student-specific” (p. 145). If this is 

true, then students may use different strategies to solve the same task because they prefer 

one strategy over another or they were taught to use specific strategies by their teacher 

based on their textbook.  

Researchers have investigated how students of different age groups solve open-

ended tasks. Studies have focused on different aspects of solving items: using different 

types of representations (algebraic, graphical, verbal) (Gagatsis & Shiakalli, 2004; 

Hegarty & Kozhevnikov, 1999); using informal or formal strategies (Koedinger & 

Nathan, 2004); describing the process students used to find an answer (Hall, Kibler, 
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Wenger, & Truxaw, 1989; Sebrechts, Enright, Bennett, & Martin, 1996); and comparing 

how students from two different backgrounds solve problems (Cai, 1995, 1997, 2000; Cai 

& Silver, 1995; Silver, Leung, & Cai, 1995).   

Hegarty and Kozhevnikov (1999) and Gagatsis and Shiakalli (2004) both focused 

on how students use different types of representations to solve open-ended problems. 

Although the researchers studied different age students, sixth grade boys and university 

students, they found similar results. Hegarty and Kozhevnikov (1999) focused on how 

students use either schematic and pictorial representations. Schematic representations 

were defined as “representing the spatial relationships between objects and imagining 

spatial transformations” (p. 685); whereas, pictorial representations were defined as 

“constructing vivid and detailed visual images” (p. 685). Sixth grade boys were given 15 

problem solving questions to answer and then each problem was coded in four ways. 

First, whether the answer was correct or incorrect. Second, whether the student used a 

visual-spatial representation to solve the problem. Third, whether the students’ visual-

spatial representation was schematic. Fourth, whether the students’ visual-spatial 

representation was pictorial. Student strategies were coded pictorial if a student used an 

image, rather than a relationship between the objects. A major finding was students who 

used schematic representations were more successful with mathematics problem solving; 

whereas, students who used pictorial representations were less successful with 

mathematics problem solving.  

Gagatsis and Shiakalli (2004) found that university students who were able to 

move between different representations, graphical, algebraic, or verbal, had better 

problem solving abilities. The researchers developed two tests to investigate student 
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success with moving from one type of representation to another: algebraic, graphical, and 

verbal. The first test required students to move from verbal representations of functions to 

graphical and algebraic representations. The second test required students to move from 

graphical representations of functions to verbal and algebraic representations. The 

authors found a correlation between students’ ability to move between representations 

and problem solving ability. They also found students perceive verbal and graphical 

representations “as two different tasks and not as different means of representing the 

same idea” (p. 652). More importantly they report students’ struggle moving from 

graphical representations to verbal and algebraic representations.  

Koedinger and Nathan (2004) focused on the informal and formal strategies high 

school algebra students use to solve algebraic story problems and equations. They 

defined formal strategies to be an algebraic equation; whereas, informal strategies were 

either guess and test or unwind which was defined as “the student reverses the process 

described in the problem… addressing the last operation first and inverts each operation 

to work backward to obtain the start value” (Koedinger & Nathan, 2004, p. 146). 

Students used the unwind strategy most often (50%) when solving story problems. 

However, when students were given equations to solve they left it blank 32% of the time. 

This suggests that students’ understanding of formal algebraic strategies is weak and also 

difficult for them to understand.  

Another group of researchers have described how students solve specific tasks to 

create their framework for analyzing written work (Hall et al., 1989; Sebrechts et al., 

1996). Both Hall et al. (1989) and Sebrechts et al. (1996) analyzed undergraduate 

students’ strategies and developed their frameworks based on actual student responses. 



 

 49

Hall et al. (1989) had undergraduates solve algebra story problems and then divided 

students’ work into episodes. These episodes were defined as breaks when the student 

changed direction or started a new process of thinking. Each episode was analyzed to 

classify students’ strategies in three major categories, strategic, tactical, and conceptual 

coherence. Strategic coherence was the process or goal students used to find an answer to 

the problem, which included three sub-categories: comprehension, solution attempt, and 

verification. Comprehension was how the student represented the different aspects of the 

problem before solving the problem. Solution attempt was the steps students completed 

that led them to an answer. Finally, verification was how the student checked their 

answer. Tactical coherence was the method the student used to achieve their answer. This 

was coded into six categories: annotation, algebra, model-based reasoning, ratio, unit, and 

procedure. Annotation was the step of writing the given information on their paper, 

choosing appropriate formulas needed to solve the problem, or drawing a picture to 

represent the given information. Algebra was coded when a student used one or more 

equations to solve for a variable. Model-based reasoning was defined as executing a 

model of the problem situation: simulations, created a simpler problem, or made jumps in 

intervals because they saw a pattern. Ratio was coded when students made a relation 

between two quantities: whole-part, part-whole, part-part, proportions, or scaling. Unit 

was coded when students use the units of measurements to solve the problem. Finally, 

procedure was defined as executing a sequence of steps other than algebraic or arithmetic 

manipulations such as using the formula for average. Conceptual coherence was how 

students conceptualized the problem situation, including how the student used the 

constraints to solve the problem.  
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Sebrechts et al. (1996) used a similar technique with undergraduates who 

completed 20 released items from the Graduate Record Examination (GRE). Student 

solution strategies were analyzed by creating an initial taxonomy of actual solutions. The 

taxonomy was then adjusted and expanded by additional researchers who reanalyzed 

students’ work. The final taxonomy separated strategies into primary and collateral. 

Primary strategies were those used in 82% of all solutions. Collateral strategies were not 

the primary means of getting the final answer, but they did provide help in getting to the 

solution. The four primary strategies were equation formulation, ratio setup, simulation, 

and other. Equation formulation was coded when students used an equation to solve a 

problem. Ratio setup was coded when students used a specific equation in the form 

d
c

b
a
= . Simulations were described as situations when students modeled the problem by 

using different steps. For instance one of the problems required students to find how 

much money was invested at 8% interest given the total amount of money invested at two 

different interest rates and the income from the investment. Some students would start 

with different amounts of money in each investment and found the result was too high 

and made adjustments in the increments until they found the correct answer. Finally, 

other was a category for strategies that were not easily classified.  

Another group of researchers have compared how students from different 

backgrounds solve open-ended tasks (Cai, 1995, 1997, 2000; Cai & Silver, 1995; Silver 

et al., 1995). Silver, Leung, and Cai (1995) described how Japanese and American fourth 

graders solve problems. Students were given a picture of marbles arranged in a diamond 

shape (see Figure 2.1) and asked to decide how many marbles there were in as many 

ways as they could.  
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Figure 2.1. Marble arrangement problem (Silver et al., 1995, p. 37) 
 
 Items were examined both individually and collectivity for correctness, strategy 

used to solve the problem, and the type of explanation used to justify answers. American 

and Japanese fourth grade students both used enumeration (counting) and grouping 

(systematic organization) strategies to solve this problem. However, more surprising was 

U.S. students used visual explanations four times more often than Japanese students. On 

the other hand, Japanese students used a mixture of verbal and symbolic explanations 

twice that of U.S. students.   

Cai and Silver (1995) compared the success of Chinese and U.S. fifth and sixth 

grade students on division-with-remainder problems, both computational and story 

problems. Differences were found between students in the two countries. Chinese 

students were more successful executing the division algorithm than U.S. students on 

computational problems. However, Chinese students were less successful in providing a 

correct answer for the story problem. In fact, only 24% of the Chinese students provided 

correct answers, which was about the same performance level as their U.S. counterparts.  

Cai (1995) further investigated similarities and differences in Chinese and U.S. 

sixth grade students solution strategies, errors, and mode of representation on five open-

ended tasks. He found “almost every solution strategy used by U.S. students was also 

used by Chinese students, and vice versa. Moreover, the solution strategies used most 
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frequently by U.S. students …was also the strategy used most frequently by Chinese 

students” (Cai, 1995, p. 102). Although the solution strategies were similar across the two 

countries the “Chinese students’ solutions strategies tended to be more elegant than those 

of U.S. students” (Cai, 1997, p. 7). Some other differences in students’ solution strategies 

were: U.S. students used trial and error more frequently than Chinese students when it 

was an appropriate strategy; and U.S. students used visual representations more often 

than Chinese students.  

Cai (2000) more recently compared U.S. and Chinese sixth grade students on 

differences in solving process-constrained and process-open problems. Process-

constrained problems were items that could be solved with a standard algorithm or an 

application of a known algorithm. A process-open problem did not lend itself to a formal 

algorithm. A specific qualitative coding was developed for the 12 items to examine the 

solution strategies, mathematical errors, and mathematics representations. A random 

sample of students’ work from both countries was used to determine the different types of 

strategies used. Cai found Chinese students use algorithms and symbolic representations 

more often than U.S. students. On the other hand, U.S. students prefer using concrete 

visual representations more often than Chinese students.    

Summary. All of these studies provide evidence that students use multiple 

strategies to solve open-ended tasks. Another interesting result is when students from 

different countries are compared their solution strategies are similar; however, their 

preferred process is different. It may be the case that students are influenced by their 

teacher, the type of curriculum they use, or the country in which they reside as to the 

choice of strategies that they are more efficient with and use more often.      
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Students’ use of strategies can be influenced by the curriculum they use during 

their course work. Although there may not be one correct strategy when solving a 

particular problem, there may be more efficient and less efficient strategies for solving it. 

Students who use integrated and single-subject curricula may have learned and tend to 

use different strategies to solve similar problems. Students may have multiple strategies 

to choose from, but their choice to use a particular strategy and how efficient they are 

with their chosen strategy is important to understand. It is essential for students to chose 

an appropriate strategy and use it efficiently if they are to be successful in mathematical 

problem solving (Cai, Magone et al., 1996). This study will examine the different 

strategies students who have completed the two different curricula use to solve problems 

and how efficient they are with these strategies.   

Student Error Analyses 

 Since the early 1900s, researchers have conducted error analysis. This line of 

research is beneficial for helping teachers understand how students learn and improve 

their own teaching (Radatz, 1979). Radatz (1980) classified error analysis studies into 

five categories:  

(1) listing all potential error techniques; (2) determining the frequency distribution 
of these error techniques across age groups; (3) analyzing special difficulties, 
particularly encountered when doing written division, and when operation with 
zero; (4) determining the persistence of individual error techniques; and (5) 
attempting to classify and group errors. (p. 19) 
 

Most of these studies analyzed elementary students’ arithmetic errors with the focus on 

students’ procedural misconceptions. Researchers changed their focus to systematic 

errors defined as “errorful rules that produced a pattern of incorrect responses” (Confrey, 

1990, p. 33), which provided a connection between their errors and mathematical 
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understanding. Knowledge of common misconceptions and errors are a powerful tool for 

helping students to understand mathematics. The research on error analysis has continued 

to grow with a focus on conceptual and procedural errors at the high school and college 

level (Hall et al., 1989; Koedinger & MacLaren, 1997; Koedinger & Nathan, 2004; 

Movshovitz-Hadar, Zaslavsky, & Inbar, 1987; Orton, 1983a, 1983b; Porter & Masingila, 

2000; Pugalee, 2004). Each researcher identified distinct categories of errors for student 

work.  

High School Student Error Analyses 

 Two different ways of analyzing high school mathematics students’ errors 

emerged in the literature. First, Movshovitz-Hadar, Zaslavsky, and Inbar (1987) 

developed a detailed model of errors in high school mathematics. They classified errors 

by documenting “performance without appealing to processes in the students’ minds that 

might or might not have yielded the errors committed and without faulting what the 

student did not do” (p. 4). Error analysis was conducted on solutions to eighteen open-

ended questions from Israel’s 11th grade graduation exam. Six error categories were 

found that describe what students did wrong, not what they were supposed to do. 

1. Misused data – “errors related to some discrepancy between the data as given in 

the item and how the examinee treated them” (p. 9). 

2. Misinterpreted language – “mathematical errors that deal with an incorrect 

translation of mathematical facts described in one (possibly symbolic) language to 

another (possibly symbolic)” (p. 10).  
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3. Logically invalid inference – “errors that deal with fallacious reasoning and not 

with specific content; … new information invalidly drawn from a given piece of 

information or from a previously inferred one” (p. 10). 

4. Distorted theorem or definition – “errors that deal with a distortion of a specific 

and identifiable principle, rule, theorem, or definition” (p. 11). 

5. Unverified solution – “each step taken by the examinee was correct in itself, but 

the final result as presented is not a solution to the stated problem” (p. 12). 

6. Technical error – “computational errors …, errors in extracting data from tables, 

errors in manipulating elementary algebraic symbols …, and other mistakes in 

executing algorithms usually mastered in elementary or junior high school 

mathematics” (p. 12). 

Movshovitz-Hadar, Zaslavsky, and Inbar argue “classification of errors by their 

operational nature seems more promising than a classification by their causes …” (p. 13) 

as Radatz (1979) did in his work. This model can be used to identify tendencies of 

students to make certain types of errors across different mathematics topics and different 

cognitive level questions. 

 A second method for analyzing high school mathematics students’ errors was 

much broader (Koedinger & MacLaren, 1997; Koedinger & Nathan, 2004; Pugalee, 

2004). Each of these researchers had students solve open-ended tasks and then sorted the 

errors into two categories: procedural and conceptual. Procedural errors were defined as 

mistakes in performing arithmetic and incorrect mathematical operations. Conceptual 

errors were defined as forgetting to change the sign, confusing order of operations, 
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selecting an inappropriate model or representation for the given information, or any error 

that was not procedural. 

Undergraduate Student Error Analyses 

 Research conducted at the college level on mathematics students’ errors tends to 

provide a smaller grain size in how and what errors were analyzed. Donaldson (1963) 

describes three types of errors: structural, arbitrary, and executive. Structural errors were 

defined as those where students did not understand a principle or concept that was 

essential for solving the problem. Arbitrary errors were defined as those where the 

students failed to use the given information to solve the problem. Executive errors were 

defined as those where students made arithmetic mistakes, but understood the concept 

correctly. These three categories were designed for analysis of elementary students’ 

arithmetic errors; however, Orton (1983a; 1983b) used these three categories to analyze 

high school and college students’ errors on calculus, differentiation and integration, tasks. 

Orton found with older students it was difficult to distinguish between arbitrary errors 

and the other two types. Generally he found students committed many more structural 

errors than arbitrary and executive. Older students’ errors were difficult to code into one 

of the three types of errors. For example, students were given a cubic function and asked 

to find the coordinates of the point or points on the curve where there is a turning point or 

stationary point (see Figure 2.2). Students were able to get the equation 063 2 =− xx , but 

then some students were unable to solve this equation. Some incorrectly canceled x by 

dividing through by x; therefore losing the solution x=0; whereas, other students 

incorrectly factored the equation to 0)6(3 =−xx . Therefore the errors for this item were 

coded as both structural and executive.  
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Figure 2.2. Task that had multiple error codes (Orton, 1983a, p. 250) 
 

Both Hall et al. (1989) and Porter and Masingila (2000) divided errors into two 

broad categories: conceptual and manipulative (procedural) errors. Although both groups 

of researchers analyzed undergraduate work, each focused on different mathematics 

content. Hall et al. (1989) had undergraduates solve algebra story problems and then 

categorized the errors into two layers. The first layer was rather broad with conceptual 

and manipulative errors. Conceptual errors were then broken down into two groups. One 

occurred when students included constraints that were not given in the problem (errors of 

commission) and the other excluded given constraints required for the problem (errors of 

omission). Manipulation errors were separated into three categories: algebraic, variable, 

and arithmetic. Algebraic errors were those that involved an algebraic procedure. 

Variable errors were those where students switched the meaning of variables in the 

middle of the problem or students used variables to label quantities. Arithmetic errors 

were those that involved computations.   

Porter and Masingila (2000) also conducted analyses of undergraduates 

mathematics errors on three class exams and a final exam for a calculus course. They 

built on Movshovitz-Hadar et al. (1987) error analysis framework. However, they only 

classified errors into two categories of procedural and conceptual. Procedural errors were 

those where students committed syntax errors and errors in carrying out a procedure. 

Find the coordinates of the point or points on the curve  

43 23 +−= xxy  

at which there is a turning point or stationary point. Determine also what kind of 

point you have found. 
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Conceptual errors were defined as the selection of inappropriate procedures, 

misunderstanding of mathematical terms and errors in logic.  

Sebrechts el al. (1996) provide a different method for analyzing undergraduates 

students’ mathematics errors. As previously mentioned, college students were given 20 

released items from the GRE and then six categories of errors were created based on the 

student errors. The six categories were: situation comprehension, strategy formulation, 

plan construction, general plan development, specific plan development, and procedural 

implementation. Situation comprehension was defined as the student’s inability to 

represent the problem situation correctly. For example, students solved for something not 

requested, they did not use the givens, or they made additional assumptions that were not 

given in the problem. Strategy formulation was defined as the student’s inability to 

develop a solution strategy. For example, students would only get part of the solution or 

they would guess without knowing how to proceed. The third category, plan construction 

was defined as the student’s inability to create an appropriate plan to solve the problem. 

Most of these errors occurred with setting up the correct equations, ratios or simulations 

to solve the problem. General plan development was defined as the student’s errors in 

choosing a plan that was required for many of the problems. For example, converting 

between different units was particularly difficult for students across multiple problems. 

The next category was similar to the last; specific plan development was defined as the 

student’s error in choosing a plan because only a few specific types of problems existed. 

For example, distinguishing clock and elapsed time was considered a specific error, yet 

students only found this on less than 3 problems out of 20. The final group of errors was 

procedural implementation defined as computational and transcriptional errors.   
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Summary. Radatz (1979) argued that classifying errors is not only about student 

difficulties, but also a function of the teacher, curriculum, environment, or any interaction 

between these three. He warned  

It is often quite difficult to make a sharp separation among the possible causes of 
a given error because there is such a close interaction among causes. The same 
problem can give rise to errors from different sources, and the same error can 
arise from different problem-solving processes. (p. 171)  
 

Although difficulties arise in error analyses, teachers need to understand what and how 

their students are thinking if they are to improve their own instruction.  

 Current research on mathematical error analyses conducted with high school or 

undergraduate students provide some similarities and differences that will inform this 

study. Two broad categories of mathematical errors have emerged: conceptual and 

procedural. However, researchers are divided between creating smaller sub-groups and 

leaving it in two broad groups. To gain greater understanding of students’ mathematical 

errors, smaller grain size categories will be used in this study to identify different levels 

of conceptual and procedural errors.   

Frameworks for Analyses of Cognitive Demand 

Research on how mathematical tasks influence what students learn in mathematics 

began in the late 1970s and early 1980s. Doyle (1983) reviewed research in cognitive 

psychology on how tasks influence how and what students learn. “Tasks influence 

learners by directing their attention to particular aspects of content and by specifying 

ways of processing information” (p. 161). He identified four academic tasks: memory 

tasks, procedural or routine tasks, comprehension or understanding tasks, and opinion 

tasks. Each task requires different levels of cognitive processes to complete the problem. 



 

 60

For example, a procedural task requires students to understand how to complete a specific 

problem; whereas, a comprehension task requires students to understand why and when to 

use a specific procedure to complete a problem.  

Doyle suggests tasks should be described by cognitive levels or cognitive 

demand, which he defined as “the cognitive processes students are required to use in 

accomplishing it” (Doyle, 1988, p. 170). He found junior high school teachers give 

students two types of tasks, familiar and novel, but mostly they rely on familiar tasks. 

Students solve familiar tasks by repeating what they have seen and relying on their 

memory or a known algorithm. Students solve these lower level tasks quickly and 

without assistance from other students or the teacher. However, when students assemble 

information and procedures from many sources in a different way than was taught, they 

are solving novel tasks. Students need more time and guidance from classmates and the 

teacher to solve these higher level tasks because multiple cognitive processes are 

required.  

Marx and Walsh (1988) built on Doyle’s work arguing that classroom work is 

constrained by “the setting in which tasks are initiated, and the manner in which tasks are 

delivered to students” (p. 208). This provided a new descriptive theory of classroom tasks 

that would influence the connection between teaching and learning. Hiebert and Wearne 

(1993) confirmed Marx and Walsh’s theory, providing empirical evidence of how tasks 

are presented to students influenced their learning. Hiebert and Wearne (1993) 

investigated student learning of place value and multi-digit addition and subtraction in six 

second-grade classrooms at one elementary school for 12 weeks. Two classroom 

implemented alternative instruction that followed the same topics being taught in the 
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other four classrooms, but it was different than what was typically found in the other 

classrooms. The alternative instruction focused on students gaining conceptual 

understanding of place value and computational strategies. Students were given fewer 

problems to work, but worked on them longer and discussed them with other students and 

the teacher. Students were also asked to explain their thinking and how they had solved 

the problems. They found students in the alternative classrooms had a higher 

performance level than students in the other four classrooms that did not receive the 

alternative instruction.   

This research on classroom tasks provided the foundation for the Mathematical 

Tasks Framework developed by the QUASAR project (Henningsen & Stein, 1997; Stein 

& Lane, 1996; Stein et al., 2000). The Mathematical Tasks Framework represents student 

learning as a function of task implementation. Three crucial phases of task 

implementation are (1) how tasks are represented in textbooks or curricula material, (2) 

how teachers set up tasks for students, and (3) how students complete tasks in the 

classroom. Although the implementation of tasks is important, the level of thinking, 

cognitive demand, students must use to solve problems is also influential in how and 

what is learned. Stein et al. (2000) define cognitive demand as “the kind and level of 

thinking required of students in order to successfully engage with and solve the task” (p. 

11). The framework provides four levels of cognitive demand for tasks: Memorization, 

Procedures without Connections, Procedures with Connections, and Doing Mathematics. 

Stein et al. (1996) emphasize the importance of examining levels of cognitive demand of 

tasks because it influences student learning.  

The mathematical tasks with which students become engaged determine not only 
what substance they learn but also how they come to think about, develop, use, 
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and make sense of mathematics. Indeed, an important distinction that permeates 
research on academic tasks is the difference between tasks that engage students at 
a surface level and tasks that engage students at a deeper level by demanding 
interpretation, flexibility, the shepherding of resources, and the construction of 
meaning. (p. 459) 
 

QUASAR researchers found “student learning gains were greatest in classrooms in which 

instructional tasks consistently encouraged high-level student thinking and reasoning and 

least in classrooms in which instructional task were consistently procedural in nature” 

(Stein et al., 2000, p. 4).  

 Smith (2000) used the QUASAR Mathematical Task Framework to analyze the 

level of cognitive demand of tasks. She focused on the last two aspects of the 

Mathematical Task Framework, how teachers set up tasks and then how students 

complete tasks in the classroom. She made comparisons across countries and found that 

U.S. lessons contain fewer making connections than the other countries. She also found 

that U.S. lessons containing making connections tasks are not completed by students 

using connections, but rather by using procedures or answers only.  

 How students perform on tasks that require different levels of cognitive demand is 

so important that the National Assessment of Educational Progress (NAEP) and Trends in 

International Mathematics and Science Study (TIMSS) developed frameworks to 

incorporate cognitive demand dimensions. The NAEP framework categorizes cognitive 

demand by three levels: low, medium, and high. These levels are similar to those of the 

Mathematical Task framework; however, they combine Procedures without Connections 

and Procedures with Connections into the medium level. The TIMSS framework also 

categorizes levels of cognitive demand with three skills: (1) knowing facts, procedures, 

and concepts, (2) applying knowledge and conceptual understanding, and (3) reasoning. 
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Although both the NAEP and TIMSS frameworks could be used to analyze the cognitive 

demand of tasks, the elimination of a middle category forces some questions to be coded 

at a medium level when they actually require low levels of cognitive demand. By 

lumping all tasks that require students to use procedures with or without connections it 

does not provide a small enough grain size to pick up differences between these types of 

questions. Although both types of questions require students to use procedures 

differences exist in questions that have connections such as requiring students to move 

between different representations.   

 Summary. For the purpose of this study, the four levels of cognitive demand, 

Memorization, Procedures without Connections, Procedures with Connections, and 

Doing Mathematics presented in the Mathematical Task Framework will be used to 

analyze the Precalculus Concept Assessment. Each question will be coded at one level of 

cognitive demand. Questions of differing levels of cognitive demand will be used to 

analyze what students have learned and how the type of curricula influenced learning. 

Integrated curricula contain more contextual problems, more problems that can be solved 

using multiple strategies, and fewer procedural problems (Senk & Thompson, 2003). 

Single-subject curricula typically contain more procedural problems and few strategies 

are explored when solving problems (O'Brien, 1999). It is hypothesized that students who 

used integrated curriculum experience more higher level questions than students who 

used single-subject curriculum.  

 The four levels of cognitive demand provide a model for describing and 

categorizing tasks. However, the focus of research has been on how tasks follow the three 

phases of implementation: how tasks are represented in textbooks or curricula material, 
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how teachers set up tasks for students, and how students complete tasks in the classroom. 

This study will focus on the first phase of the Mathematical Task Framework, namely 

how tasks are addressed by students taking the Precalculus Concept Assessment. 

Summary 

In this chapter a brief historical view of how mathematics curriculum has changed 

during the crisis-reform-reaction cycle was provided. Today the field is attending to 

many critics of the integrated mathematics curricula by trying to identify the benefits for 

students who experience this type of organizational structure at the secondary level. More 

research is needed by people not associated with the NSF projects. A review of the 

current research on the impact of integrated curriculum on high school students was 

reported. The results provide an uncertain a picture of how students are performing on 

standardized assessments; however, more research is needed to identify what students are 

learning from the integrated and single-subject curricula. Researchers are also concerned 

with the lack of conceptual knowledge college calculus students are gaining, yet the 

mathematics for collegiate work is established in high school. Therefore, researchers 

need to document the current status of what mathematics curriculum is being used and 

what students are learning from the different curricula types, but also document the 

effectiveness of these curricula on student learning at the high school level. 

This chapter described how the research on students’ solution strategies, errors, 

and mathematical tasks has informed this study. Specifically, the research on students’ 

solution strategies and errors has provided multiple frameworks to analyze student work. 

The frameworks that will be used for data analysis will be discussed in the next chapter. 

The framework for levels of cognitive demand will be used to categorize each test item 
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on the PCA. This literature review has provided procedures and methods that have 

informed this study and the body of research have confirmed a need for this study.  
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CHAPTER 3: METHODOLOGY 

 This study examined students’ mathematical understanding after completing four 

years of college preparatory (integrated or single-subject) mathematics courses in two 

high schools in the Midwest. First, an analysis of mathematical understanding for all 

students who completed four years of college preparatory mathematics courses 

(integrated or single-subject) was conducted. Second, an analysis of mathematical 

understanding of students who completed four years of college preparatory (integrated or 

single-subject) mathematics and enrolled in AP Calculus during the 2007-08 school year 

was completed. Finally, a qualitative analysis of AP Calculus students’ solution strategies 

and mathematical errors was conducted.   

 Students’ mathematical understanding was measured with three instruments, the 

Precalculus Concept Assessment (PCA) and two open-ended tasks focused on functions. 

Responses on the PCA were analyzed by cognitive demand, specific representations (e.g., 

graphic, numeric, symbolic), and overall score. Item analysis was conducted to 

investigate students’ performance on different concepts of functions taught prior to 

entering AP Calculus. The open-ended tasks were analyzed for students’ solution 

strategies and their mathematical errors.  

This chapter includes a description of the methods for selecting students and the 

instruments used for data collection. Next, a detailed description of the procedures for 

data collection is discussed. The chapter concludes with a description of the data coding 

and analyses used to answer the research questions stated in Chapter 1.  
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Sample Selection 

A mid-western school district, with approximately 17,000 students, was the site of 

the study. The district has two high schools that enroll students in grades 10-12, and data 

were collected from students in each school. The state department of education reported 

that 80-90% of students in the district extend their education past high school and 70% of 

the students attend a four-year college or university. 

 In 1998 the district adopted the textbook series, Contemporary Mathematics in 

Context: A Unified Approach (Core-Plus) (Coxford et al., 2003) and began offering both 

an integrated and single-subject high school mathematics course sequence. That is, 

students in the district have the option of an integrated course sequence (Integrated 1, 2, 

3, and 4) using Core-Plus or a sequence of single-subject mathematics courses (Algebra 

I, Geometry, Algebra II, PreCalculus) using three textbooks from the University of 

Chicago School Mathematics Project, Algebra (McConnell et al., 1996), Geometry 

(Usiskin et al., 1997), Advanced Algebra (Senk et al., 1996) and then Precalculus 

Enhanced with Graphing Utilities (Sullivan & Sullivan III, 2006).  

The study sample included all students who completed a four year college 

preparatory (integrated or single-subject) mathematics sequence. Table 3.1 displays the 

number of students who completed either integrated (IC) or single-subject (SSC) 

mathematics courses at the two schools.  

Table 3.1  
 
Enrollment of high school students completing a four-year college preparatory 
mathematics sequence by curriculum path for 2006-2007 school year 
 # of IC students  # of SSC students  Total 

students  
Number of Students 201 304 505 
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 A sub-sample of all students who entered AP Calculus after completing four years 

of college preparatory (integrated or single-subject) curricula was also identified. A total 

of 207 students enrolled in AP Calculus AB or BC at the two high schools during the 

2007-2008 year; however, 8 of these students were excluded from the study because they 

transferred into the district, had not taken the PCA exam, or had switched curricular 

paths. Table 3.2 displays the number of students in the sub-sample who enrolled in AP 

Calculus AB or BC. Although all students who took calculus used the same textbook, 

Calculus: Graphical, Numerical, Algebraic (Finney, Demana, Waits, & Kennedy, 2003), 

the courses are different. The AP Calculus AB course mirrors a first semester college 

calculus course. Topics studied include limits, derivatives, and an introduction to 

integrals. The AP Calculus BC course mirrors a two semester sequence of calculus. 

Topics include those studied in AB; however, more depth is given to integration and 

students are introduced to sequences and series as well as parametric and polar functions. 

Table 3.2  
 
Enrollment in AP Calculus by curriculum path for 2007-2008 school year 
 

Course # of IC 
students 

# of SSC 
students 

Total 
students by 

course 
AP Calculus AB 47 85 132  
AP Calculus BC 12 55 67 

Total 
students  59 140 199 

% of all 
students who 
enrolled in AP 
Calculus 

 29% 46% 39% 
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Participants  

For the purpose of this study, only student data for those who completed four 

years of college preparatory (integrated or single-subject) mathematics courses were 

included in the analysis. Thus, students who switched curriculum paths were excluded 

from the study. Approval by the teachers, schools, school district administration, and the 

University of Missouri Institutional Review Board was gained prior to the collection of 

any data.  

Instruments 

 This study utilized one instrument as the baseline measure of students’  prior 

achievement and three other instruments were used to measure student knowledge after 

completing a four year college preparatory (integrated or single-subject) mathematics 

sequence. The baseline measure, the Iowa Algebra Aptitude Test (IAAT), was selected for 

two reasons. First, the district has students take this assessment at the end of the seventh 

grade, which is typically before students enter one of the two curricular paths. The second 

reason was that the IAAT was available data for students in the study. Therefore, the IAAT 

was used to determine if there were differences in student achievement for the two groups 

(integrated or single-subject) before entering a curriculum path.  

Iowa Algebra Aptitude Test (IAAT)  

 The fourth edition of the Iowa Algebra Aptitude Test (IAAT) was taken by all 

seventh grade students in the district and served as the baseline measure of student 

achievement (Schoen & Ansley, 1993). The IAAT was developed to indicate mathematics 

aptitude and assist in placing students in Algebra 1. The exam contains 63 multiple 
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choice items with four answer choices for each item. The content of the exam includes 

interpreting mathematical information graphically and symbolically, translating between 

algebraic expressions and verbal statements, finding relationships between two sets of 

data, and using symbols to determine any algebraic misconceptions. Students who had 

missing baseline data were excluded from the comparison analyses.  

 Reliability and validity of the IAAT. The IAAT is a reliable measure for the four 

constructs that are tested. The Kuder-Richardson Formula 20 reliability coefficient for the 

composite score for 7th grade students was 0.93 (Schoen & Ansley, 1993, p. 15). This 

refers to a high internal consistency among the four parts of the test. The IAAT was also 

found to be a valid measure when compared with students’ Algebra 1 grades and exams. 

The correlations ranged from 0.74 to 0.84.     

Precalculus Concept Assessment 

 Students who completed their fourth year of either integrated or single-subject 

mathematics courses in 2006-2007 took the Precalculus Concept Assessment (PCA)  

(Carlson, Oehrtman, & Engelke, in review) a 25 item multiple choice instrument that 

assesses understanding of functions. Each item includes five answer choices. The PCA 

was developed by faculty from the Department of Mathematics at Arizona State 

University and was designed to reflect core content and common misconceptions students 

have about functions (Carlson et al., in review). Therefore, the answers students chose 

provided information about common misconceptions they had after completing four years 

of college preparatory mathematics.  

 Reliability and validity of the PCA. Reliability provides a gauge of the 

consistency of measures that are obtained. The PCA is a relatively new instrument used 
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to characterize students reasoning and understanding of functions, which are prerequisites 

for understanding concepts of calculus. Carlson et al. (in review) administered the PCA to 

902 college precalculus students and found the “Cronbach alpha of 0.73 indicating some 

degree of overall coherence” (p. 23). Although the PCA has not been validated nationally, 

Carlson and colleagues conducted clinical interviews with more than 150 college students 

to validate the PCA items (in review). Each question was tested and validated to 

guarantee that students who selected a specific distracter (i.e., answer choice) consistently 

provided similar justifications during interviews (Engelke et al., 2005).  

Open-ended tasks 

 Students who completed four years of college preparatory (integrated or single-

subject) mathematics curriculum and enrolled in AP Calculus for the 2007-2008 school 

year completed two open-ended tasks, Piecewise Function and Filling a Tank, (See 

Appendix A). The Piecewise Function task was adapted from a released 2003 AP 

Calculus free response item by an AP Calculus teacher for precalculus students. The 

Filling a Tank task was taken from examples developed by Peter Taylor (1992). The 

three AP Calculus teachers were originally given four tasks directly related to the concept 

of function and asked to select two tasks they thought to be most beneficial for students 

learning calculus. The Piecewise Function task and the Filling a Tank task were chosen 

by all three teachers. In the Piecewise Function task, students are given a graph of a 

function and asked to find rates of change as well as write equations for the piecewise 

function. In the Filling a Tank task, students compare average flow (rate of change) with 

instantaneous flow. Both tasks require students to demonstrate their understanding of 

functions; however, one task is based in a contextual setting and the other is not. Each 
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task has multiple parts where students show their work and explain their thinking. 

Students worked on the two tasks individually during a scheduled class period during the 

first week of class. 

 Reliability and validity of scoring guides for open-ended tasks. Scoring guides for 

each open-ended task were developed by the researcher based on pilot student work. The 

scoring guides were developed by assigning points for different portions of the answer on 

each question. This allowed students to receive partial credit, and provided a finer grain 

analysis of their performance. Each guide was shared and discussed with other 

researchers, including both mathematicians and mathematics educators. Revisions in the 

scoring guides were made based on feedback gathered from the other researchers. Then 

each scoring guide was piloted by scoring a sub-set of pilot student work on the two 

open-ended tasks. Additional revisions were made to scoring guides to assure the points 

awarded were discriminatory of students understanding of the concept.  

 To obtain reliability, two doctoral students were trained using the scoring guides 

and then asked to score 10 pilot students’ work. Percent of agreement was checked was 

checked with the researcher on each task. The Piecewise Function task required scorers 

to make 19 scoring decisions and high reliability was achieved with an average 

agreement of 91% on the task.  The Filling a Tank task required scorers to make 17 

scoring decisions and an average reliability of 97% was achieved. The high rates of 

agreement on the pilot student work suggest the likelihood of high reliability of the 

resulting scores on the two open-ended tasks for the AP Calculus student work in this 

study.  
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Data Collection 

 The district mathematics specialist provided the necessary baseline data (IAAT 

scores) for all students who completed four years of college preparatory (integrated or 

single-subject) mathematics curriculum during the 2006-2007 school year. Students’ 

mathematics course taking pattern during high school was also provided, including a 

course title for each student during their 7th-12th grade schooling.  

The PCA was administered during a two-week window at the end of April 2007 

and these data provided the basis for the analysis of students’ understanding before 

entering AP Calculus. Students’ names were kept confidential by using identification 

numbers; in addition, exams were kept in a locked file drawer in the researcher’s office. 

Student responses on the PCA were used to analyze misconceptions about functions, 

ability to solve questions of different levels of cognitive demand, ability to solve items 

focused on specific representations (e.g., graphic, numeric, symbolic) related to 

functions, and overall performance.  

The open-ended tasks were administered to all AP Calculus students during 

August 2007, the first week of the new school year, which was agreed upon by all three 

AP Calculus teachers. AP Calculus student work on the two open-ended tasks provided 

the basis for the analysis of solution strategies and mathematical errors at the beginning 

of AP Calculus. Again, all data were kept confidential and locked in a file drawer in the 

researcher’s office. Each student’s work was analyzed for solution strategies and 

mathematical errors.  

Data Coding 

1. Data scoring for multiple choice questions 
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The PCA exam was scored by awarding 1 point for each correct answer. All 

incorrect and blank answers were scored 0 points. These points were added for an overall 

score on the PCA. An item analysis was conducted on all questions. Questions left blank 

were also analyzed to examine what type of problems (graphic, numeric, or symbolic) 

students did not answer.  

2. Data scoring and coding for open-ended tasks 

All students’ open-ended tasks were scored according to two analyses: a scoring 

guide (a quantitative analysis) and a cognitive analysis of how AP Calculus students 

solved the open-ended tasks (a qualitative analysis) (Lane, 1993; Magone, Cai, Silver, & 

Wang, 1994). The quantitative analysis was based on a scoring rubric (see Appendix B) 

for each open-ended task. The qualitative analysis was based on a cognitive framework 

(Figure 1.4) of students’ solution strategies and mathematical errors.  

Quantitative Analysis 

 The quantitative analysis was based on the scoring rubric created for the two 

open-ended tasks. Both scoring rubrics were developed and then validated with pilot 

student data that were collected on the same tasks. The scoring rubrics were then revised 

to capture the work students had written. Each question was worth different point values 

because of the nature of the tasks and students could receive partial credit depending on 

the work shown. Point values ranged from 3-7 on the Piecewise Function task and 1-6 on 

the Filling a Tank task. Students could also lose points if they did not address certain 

parts of the question (see Appendix B for a detailed description of the scoring rubric that 

was applied to each task). Descriptive statistics were reported for both groups of students 
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on each question for both tasks. An ANCOVA was conducted to determine if there was 

any statistical difference between the two groups of students on the two tasks.   

Qualitative Analysis 

 The qualitative analysis for each open-ended task focused on two aspects: 

solution strategies and mathematical errors. A specific coding scheme was developed 

from the existing data. Codes were determined by the different strategies and errors that 

students displayed on these open-ended tasks.  

 The qualitative analysis helps distinguish between different levels of student 

responses. Different students may use different strategies to solve a problem and receive 

the same numerical score. Similarly, students may make different mathematical errors 

and receive the same numeric score on a problem. The qualitative analysis provided a 

more detailed description of what students understand as well as what strategies are used 

by students who receive a higher numeric score and what errors are made by students 

who receive a lower numeric score.  

3. Data coding for multiple choice  

All questions from the PCA (multiple choice) were coded by cognitive demand 

level and specific representations (e.g., graphic, numeric, symbolic). Cognitive demand 

was coded using the QUASAR framework (Henningsen & Stein, 1997; Silver & Stein, 

1996; Stein et al., 1996; Stein & Lane, 1996; Stein et al., 2000). Each question was coded 

as one of four levels: doing mathematics, procedures with connections, procedures 

without connections, or memorization. Figure 3.1 lists the characteristics of each level of 

cognitive demand.  
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Levels of Demands 
 
Lower-level demands (memorization): 

• Involve either reproducing previously learned facts, rules, formulas, or definitions or committing 
facts, rules, formulas or definitions to memory 

• Cannot be solved using procedures because a procedure does not exist or because the time frame in 
which the task is being completed is too short to use a procedure 

• Are not ambiguous. Such tasks involve the exact reproduction of previously seen material, and what 
is to be reproduced is clearly and directly stated. 

• Have no connection to the concepts or meaning that underlie the facts, rules, formulas, or definitions 
being learned or reproduced. 

 
Lower-level demands (procedures without connections): 

• Are algorithmic. Use of the procedure either is specifically called for or is evident from prior 
instruction, experience, or placement of the task. 

• Require limited cognitive demand for successful completion. Little ambiguity exists about what 
needs to be done and how to do it. 

• Have no connection to the concepts or meaning that underlie the procedure being used 
• Are focused on producing correct answers instead of on developing mathematical understanding 
• Require no explanations or explanations that focus solely on describing the procedure that was used 
 

Higher-level demands (procedures with connections): 
• Focus students’ attention on the use of procedures for the purpose of developing deeper levels of 

understanding of mathematical concepts and ideas. 
• Suggest explicitly or implicitly pathways to follow that are broad general procedures that have close 

connections to underlying conceptual ideas as opposed to narrow algorithms that are opaque with 
respect to underlying concepts 

• Usually are represented in multiple ways, such as visual diagrams, manipulatives, symbols, and 
problem situations. Making connections among multiple representations helps develop meaning. 

• Require some degree of cognitive effort. Although general procedures may be followed, they cannot 
be followed mindlessly. Students need to engage with conceptual ideas that underlie the procedures 
to complete the task successfully and that develop understanding. 

 
Higher-level demands (doing mathematics): 

• Require complex and non-algorithmic thinking—a predictable, well-rehearsed approach or pathway 
is not explicitly suggested by the task, task instructions, or a worked-out example. 

• Require students to explore and understand the nature of mathematical concepts, processes, or 
relationships 

• Demand self-monitoring or self-regulation of one’s own cognitive processes 
• Require students to access relevant knowledge and experiences and make appropriate use of them in 

working through the task 
• Require students to analyze the task and actively examine task constraints that may limit possible 

solution strategies and solutions 
• Require considerable cognitive effort and may involve some level of anxiety for the student because 

of the unpredictable nature of the solution process required 
 
Figure 3.1. Characteristics of Levels of Cognitive Demand (Smith, M. S. & Stein, 1998, 
p. 348) 
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Representation Analysis 

Representation analysis was conducted using the different representations 

students were expected to know before entering AP Calculus, more specifically functions 

related to graphs, tables, and equations. Therefore, the representation analysis for the 

PCA was coded into three groups of analyzing functions numerically, graphically, and 

symbolically. All the questions on the PCA assessed students understanding of functions 

and used different representations. Questions with multiple representations were coded as 

such.  

4. Reliability checks for all data coding 

 Reliability was checked at various stages throughout the study. Two doctoral 

students in mathematics education participated in reliability checks on scoring the open-

ended tasks and coding items focused on specific representations (e.g., graphic, numeric, 

symbolic). Two high school teachers participated in reliability checks on coding levels of 

cognitive demand. First, doctoral students/teachers were trained on either the scoring 

rubric or the coding framework used. Then after practicing coding and answering any 

questions, each doctoral student/teacher scored a subset of student exams or coded exam 

questions by themselves (see Table 3.3). The two doctoral students’/teachers’ results 

were used to compare with the researcher’s scoring and an inter-rater reliability was 

calculated to report consistency in scoring open-ended tasks, coding for levels of 

cognitive demand and representation analysis.   
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Table 3.3  
 
Reliability checks 
Reliability tasks Number and type of questions Reliability with Researcher 

Piecewise Function task: 99%Scoring of open-
ended tasks  

40 open-ended tasks from 
student responses (20 of each 
task) Filling a Tank task: 95% 

   
Coding Levels of 
Cognitive Demand 
on the PCA  

25 multiple choice questions  84% 

   
Coding three 
representations on 
the PCA  

25 multiple choice questions  100% 

 

Data Analysis 

 Different data analyses were conducted to answer the research questions stated in 

Chapter 1. This section provides the reader with each research question and follows with 

a description of each analysis based on students’ performance on the PCA and/or the 

open-ended tasks. The alpha level used for all statistical tests was conducted at the 0.05 

level unless otherwise noted. Before any analyses were conducted an ANOVA was used 

to determine if the two groups of students (integrated and single-subject) were similar 

when they entered the two curriculum paths.  

Specifically, was there a statistically significant difference between student mean 

scores on the 7th grade Iowa Algebra Aptitude Test (IAAT) for the two curricula paths? If 

the two groups were not statistically different, then it was assumed that students entered 

the two mathematics paths at equal levels of achievement. If the two groups were 

statistically different, then the students’ IAAT score was used as a covariate to control for 

differences in prior achievement.  
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Research Questions 1 and 2 and an overview of analyses  

1.  How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) perform and compare on 

calculus readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

2. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare on college readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

 Descriptive results on the PCA were compiled for students in both curriculum 

paths. The mean and standard deviation were reported for students overall score on the 

PCA, the four levels of cognitive demand, and the three specific representations (e.g., 

graphic, numeric, symbolic). An item analysis was conducted for each question to report 

common misconceptions of students in the two curriculum paths.  
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A comparison was conducted between students in the two curriculum paths. Four 

comparisons were conducted: (1) overall scores on the PCA; (2) sub-scores on PCA 

questions by the four levels of cognitive demand; (3) sub-scores on the PCA questions by 

the three representations; and (4) misconceptions about functions. These scores were used 

to analyze differences between students who completed four years of college preparatory 

(integrated or single-subject) mathematics course work. Depending on whether a 

statistically significant difference between the groups (IC and SSC or APIC and APSSC) 

on achievement prior to entering a curricula path was found determined the statistical 

analysis. If no prior achievement differences existed, an analysis of variance (ANOVA) 

was conducted to determine if there was statistically significant difference between 

student scores on the PCA for the two curricula paths. If there was a statistically 

significant difference in prior achievement then an analysis of covariance (ANCOVA) 

using the IAAT score as a covariate was used to determine if there was a statistically 

significant difference between student scores on the PCA for the two curricula paths.  

The PCA exam had four sub-scores for the four levels of cognitive demand. 

Because of the four levels of cognitive demand, essentially four dependent variables, a 

different statistical test was utilized. A one-way multivariate analysis of variance 

(MANOVA) is a more conservative statistical test than an ANOVA and can help reduce 

type 1 errors (Vincent, 2005). The four sub-scores were used to analyze differences 

between students who completed four years of integrated or single-subject mathematics 

course work. Again, depending on the results of statistical significance on prior 

achievement there were two different possible statistical analyses. If no difference in 

prior achievement was found then a MANOVA was conducted to determine if there is a 
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statistically significant difference between students’ scores on questions of the four levels 

of cognitive demand for the two types of curricula. However, if a difference in prior 

achievement existed, then a one-way multivariate analysis with a covariate 

(MANCOVA) using the IAAT scores as the covariate was applied.  

The PCA had three sub-scores for each representation (tables, graphs, and 

equations). These scores were used to analyze differences between students who 

completed a four year college preparatory (integrated or single-subject) mathematics 

course work. Again if no difference in prior achievement was found then a MANOVA 

was conducted to determine if there is a statistically significant difference between 

students’ scores on questions from the three types of representations for the two types of 

curricula. However, if a difference in prior achievement was found, then a MANCOVA 

using the IAAT scores as the covariate was used.  

 The comparison of mathematical misconceptions was both a quantitative and 

qualitative analysis. A binomial logistic regression was conducted to estimate the odds 

that one group of students (integrated or single-subject) were better able to correctly 

answer each PCA items. The logistic regression model was used because the dependent 

variable (correct/incorrect) was dichotomous and the independent variables (IAAT and 

curriculum type) were continuous and categorical.  

The qualitative analysis focused on the commonly chosen wrong answers. The 

answer choices for each question on the PCA were developed to assess different 

misconceptions students have about functions. Therefore, it was determined that if more 

than 20% of students in a particular curriculum pathway chose a wrong answer it would 

be considered a misconception. These results were descriptive of the different 
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misconceptions students had about functions. Student errors were also counted to report 

their frequency on each question by curricula type. 

Research Question 3 and an overview of the analysis 

 3.   How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare in solution strategies and errors on open-ended 

mathematical tasks that focus on functions during the first quarter of AP 

Calculus? 

 Descriptive results were compiled for students in both curriculum paths on the 

two open-ended tasks. Means and standard deviations were reported for students’ overall 

score and on each question of the open-ended tasks. An analysis was conducted for each 

question to report whether students in the two curriculum paths attempted each question 

or left it blank.  

A quantitative comparison of overall score on each task was conducted between 

students who completed a four year college preparatory (integrated or single-subject) 

mathematics curriculum. Whether there was a difference between the groups to begin the 

study or not determined which statistical analysis was conducted. If no prior achievement 

differences existed, an ANOVA was conducted to determine if there was statistically 

significant difference between student scores on each open-ended task for the two 

curricula paths. If there was a statistically significant difference in prior achievement then 

an ANCOVA using the IAAT score as a covariate was used to determine if there was a 

statistically significant difference between student scores on the two open-ended tasks for 

the two curricula paths.  
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Another comparison examined the qualitative analysis of the students’ strategies 

and mathematical errors when solving open-ended tasks. Questions on the open-ended 

tasks were coded for solution strategies and errors. These results were descriptive of the 

different strategies and errors students made and used when solving the two open-ended 

tasks. Student errors were reported by frequency for each task by curricula type. 

Summary 

In this chapter, the methodology for selecting the sample of students and the data 

collecting instruments were summarized. Student performance on exams was examined 

through an analysis of questions requiring different levels of cognitive demand, items 

focused on specific representations (e.g., graphic, numeric, symbolic), and overall score. 

The analysis of students’ performance on the PCA provided a profile of the similarities 

and differences in mathematical understanding of functions for those who had completed 

a four year college preparatory (integrated or single-subject) mathematics courses prior to 

entering AP Calculus. Using both quantitative and qualitative analysis of AP Calculus 

students’ performance on two open-ended tasks provided a more complete picture of the 

similarities and differences in their mathematical understanding for those who had 

completed four years of integrated or single-subject mathematics courses. 
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CHAPTER 4: DATA ANAYLSIS AND RESULTS 

 This study examined students’ mathematical understanding after completing four 

years of college preparatory (integrated or single-subject) mathematics courses. Students’ 

mathematical understanding was measured with three instruments, the Precalculus 

Concept Assessment (PCA) and two open-ended tasks that focused on functions. 

Responses on the PCA were analyzed by overall score, levels of cognitive demand, and 

types of representations (e.g., graphic, numeric, symbolic). An item analysis was 

conducted to investigate how students in the two groups (integrated or single-subject) 

performed on different aspects of functions taught prior to entering AP Calculus and to 

identify misconceptions of students across curriculum types. The open-ended tasks were 

analyzed for students’ solution strategies and mathematical errors. 

 The following three research questions guided the analysis: 

1. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) perform and compare on 

calculus readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

2. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare on college readiness concepts in terms of:  
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a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

3. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare in solution strategies and errors on open-ended 

mathematical tasks that focus on functions during the first quarter of AP 

Calculus? 

 This chapter is divided into three major sections. First, quantitative results of the 

PCA are reported by curriculum type (integrated and single-subject) and sample (all 

students and AP Calculus students). Second, the PCA item analysis and common 

misconceptions are reported. Finally, the quantitative and qualitative results of the open-

ended tasks are reported for AP Calculus students.  

Precalculus Concept Assessment (PCA) Results by Curriculum Type 

 The PCA was administered in the spring of 2007 to 520 high school students who 

were completing their fourth year of college preparatory mathematics curriculum 

(integrated or single-subject). Fifteen students had switched between the two curricular 

paths during high school; therefore, they were not included in the analyses. Of the 505 

students studied, 201 students completed four years of integrated mathematics curriculum 

(IC) and 304 students completed four years of single-subject mathematics curriculum 

(SSC). Of the 505 students who took the PCA, 199 enrolled in AP Calculus for the 2007-
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2008 school year. Fifty-nine AP Calculus students completed four years of integrated 

mathematics curriculum (APIC) and 140 AP Calculus students completed four years of 

single-subject mathematics curriculum (APSSC).  

Overall Performance 

 The PCA contains 25 questions and students were awarded one point for each 

correct answer and 0 points for an incorrect or blank answer. The descriptive statistics, 

not adjusted for prior achievement, of total score on the PCA for all students who 

completed four years of college preparatory mathematics (integrated or single-subject) 

are shown in Table 4.1.  

Table 4.1  
 
Descriptive statistics of PCA total scores for high school students who studied four years 
of college preparatory mathematics (integrated or single-subject)  
Curriculum Type N Mean* SD Range 
IC 201 10.73 4.34 2-22 
SSC 304 13.65 4.21 4-25 

 *Not adjusted for prior achievement 

 All students. The top graph in Figure 4.1 displays the total score distributions for 

students on the PCA. SSC students scored higher on the PCA than IC students. Seventy-

two percent of SSC students scored between 11 and 20 points while 46% of IC students 

scored in the same range on the PCA.   
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Figure 4.1. Score distributions on the PCA for all high school students who studied four 
years of college preparatory mathematics (integrated or single-subject) and those who 
enrolled in AP Calculus. 
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 AP Calculus students. The descriptive statistics, not adjusted for prior 

achievement, of total scores on the PCA for the sample of AP Calculus students are 

shown in Table 4.2. The bottom graph in Figure 4.1 displays the total score distributions 

for AP Calculus students on the PCA. This graph reveals that AP Calculus student scores 

are approximately normally distributed for both groups. More than half (56%) of APSSC 

students scored between 16 and 25 points on the PCA compared with 39% of APIC 

students who scored above a 16 on the PCA. Two APSSC students received perfect 

scores on the PCA; whereas, the highest score for APIC students was a 22.   

Table 4.2  
 
Descriptive statistics of PCA total scores for AP Calculus students who studied four 
years of college preparatory mathematics (integrated or single-subject)  
Curriculum Type N Mean* SD Range 
APIC  59 13.90 4.17 5-22 
APSSC 140 15.99 3.68 6-25 

*Not adjusted for prior achievement 
 
 
Prior Achievement Analysis 

 To identify if the two groups of students (integrated and single-subject) were 

statistically different on prior achievement before entering a specific curriculum path a t-

test was conducted on the 316 students for which the district had Iowa Algebra Aptitude 

Test (IAAT) scores that were collected in the 7th grade. Not all students in the study had 

an IAAT score for various reasons (e.g. transferred into the district after 7th grade or 

absent on exam day).  

 All students. The descriptive statistics on the IAAT for all students are presented in 

Table 4.3. SSC students had a statistically significant higher mean on the IAAT than IC 

students (t = 5.71, p = .000). 
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Table 4.3  
 
Descriptive statistics of IAAT scores for high school students who studied four years of 
college preparatory mathematics (integrated or single-subject)  

Curriculum Type N Mean 
Std. 

Deviation Std. Error t p 
IC 142 58.47 20.77 1.74 
SSC 174 71.00 17.54 1.33 

5.71* .000 

*SSC students IAAT mean was significantly higher than IC students   
 
 

AP Calculus students. The descriptive statistics on the IAAT for AP Calculus 

students are presented in Table 4.4. APSSC students also had a statistically significant 

higher mean on the IAAT than APIC students (t = 3.04, p = .003). Therefore, all 

remaining statistically analyses for both samples used students’ IAAT scores as the 

covariate to account for differences in prior achievement.  

Table 4.4  
 
Descriptive statistics of IAAT scores for AP Calculus students who studied four years of 
college preparatory mathematics (integrated or single-subject) 

Curriculum Type N Mean 
Std. 

Deviation Std. Error t p 
APIC 40 74.03 16.09 2.54 
APSSC 76 82.92 14.34 1.64 

3.04* .003 

*APSSC students IAAT mean was significantly higher than APIC students   
 
 
Comparison on PCA Score 

All students. An analysis of covariance (ANCOVA) was conducted to determine 

the statistical difference between the mean overall score on the PCA for the two groups 

(integrated and single-subject) of students in both samples adjusted for IAAT scores. The 

adjusted means for overall scores on the PCA by curriculum type for all students is 

presented in Table 4.5. SSC students performed significantly higher on the PCA (F = 
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9.39, p = .002) than IC students after adjusting for differences in prior achievement 

(IAAT).  

Table 4.5  
 
Adjusted descriptive statistics of PCA scores for high school students who studied four 
years of college preparatory mathematics (integrated or single-subject) using IAAT 
scores 
Curriculum path N Meana Std. Error F p 
IC 142 11.62 0.306 
SSC 174 12.91 0.275 

9.39* .002 
aCovariates appearing in the model were evaluated at the following values: IAAT = 65.37 
*SSC students adjusted mean PCA score was significantly higher than IC students. 
 
 

AP Calculus students. The adjusted means for overall scores on the PCA by 

curriculum type for AP Calculus students is presented in Table 4.6. No statistically 

significant difference between the mean overall scores on the PCA for APSSC and APIC 

students was found after adjusting for differences in prior achievement (F = 3.54, p = 

.063).  

Table 4.6  
 
Adjusted descriptive statistics of PCA scores for AP Calculus students who studied four 
years of college preparatory mathematics (integrated or single-subject) using IAAT 
scores 
Curriculum path N Meana Std. Error F p 
APIC 40 14.85 0.550 
APSSC 76 16.14 0.394 

3.54 .063 
aCovariates appearing in the model were evaluated at the following values: IAAT = 79.85 
 
 
Summary PCA Overall Performance 

 SSC students had a higher overall mean score on the PCA and performed 

significantly higher than IC students. APSSC students had a higher overall mean score on 
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the PCA than APIC students; however, there was no statistically difference on the overall 

mean score between these two groups of students who were in AP Calculus.  

Responses to PCA Items by Levels of Cognitive Demand 

 Each PCA item was coded for the level of cognitive demand (memorization, 

procedures without connections, procedures with connections, and doing mathematics) 

required by students (see Appendix C). No PCA items were coded as memorization. Ten 

items were coded as procedures without connections. Twelve items were coded as 

procedures with connections. The remaining three items were coded as doing 

mathematics. Figures 4.2, 4.3, and 4.4 display the score distributions for both samples of 

students (integrated and single-subject) on PCA items coded for the three levels of 

cognitive demand (procedures without connections, procedures with connections, and 

doing mathematics) without adjusting for prior achievement.  

Procedures without Connections 

 Ten items were coded as procedures without connections, requiring a lower-level 

of cognitive demand. On these items students generally used a procedure they were 

familiar with or were taught in class and no explanation was required.  

 All students. Approximately three-fourths (73%) of the SSC students answered at 

least half of the items coded as procedures without connections correctly, compared to 

just over two-fifths (41%) of IC students (Figure 4.2, top). The top graph displays IC 

students’ scores on items coded as procedures without connections skewed to the right 

and SSC students’ scores skewed to the left. This is interpreted as SSC students correctly 

answered more items that require a procedure they were taught.  
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 AP Calculus students. APSSC students also answered more procedures without 

connections items correctly than APIC students (Figure 4.2, bottom). The majority (84%) 

of AP Calculus students, APSSC (90%) and APIC (73%), answered at least half of the 

items correctly. Nearly one-fifth (19%) of APIC students answered 3 or fewer items 

correctly, while 4% of APSSC students answered 3 or fewer questions correctly.  
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Figure 4.2. Score distributions on PCA items coded as procedures without connections 
for high school students who studied four years of college preparatory mathematics 
(integrated or single-subject) and those who enrolled in AP Calculus. 
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Procedures with Connections 

 Twelve items were coded as procedures with connections, requiring a high-level 

of cognitive demand. Students interpreted situations, used multiple representations, or 

used a procedure that required a deeper understanding of a mathematics concept.  

 All students. Students who studied from either curriculum type tended to answer 

procedures with connections similarly (Figure 4.3). The graph on the top displays the 

majority (68%) of all students, SSC (74%) and IC (59%), answered at least six or more of 

the items correctly.  

 AP Calculus students. The graph on the bottom of Figure 4.3 is skewed more to 

the left, meaning overall AP Calculus students answered more procedures with 

connections items correctly than the other sample (all students). The majority (87%) of 

AP Calculus students who studied either curriculum (integrated or single-subject) 

correctly answered six of more of the items.  
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Figure 4.3. Score distributions on PCA items coded as procedures with connections for 
high school students who studied four years of college preparatory mathematics 
(integrated or single-subject) and those who enrolled in AP Calculus. 
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Doing mathematics 

 Three items were coded as doing mathematics, requiring a high-level of cognitive 

demand. Students needed to use complex and non-algorithmic thinking to solve these 

unfamiliar problems.  

 All students. Few students from either curriculum path answered all three items 

correctly. The majority (55%) of students from either curriculum pathway answered 2 or 

fewer items correctly. Thirty-seven percent of SSC students did not answer any item 

correctly; while 49% of IC students did not answer any doing mathematics items 

correctly (Figure 4.4, top).  

 AP Calculus students. The results were different for the sample of AP Calculus 

students (Figure 4.4, bottom) with more students able to correctly answer at least one 

item. A higher percentage (9%) of APSSC students answered all three items correctly 

compared to the APIC students (2%). The majority (70%) of students from either 

curriculum (integrated or single-subject) answered 2 or fewer items correctly. Nineteen 

percent of APSSC students and 34% of APIC students were unable to answer any PCA 

items coded as doing mathematics.  
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Figure 4.4. Score distributions on PCA items coded as doing mathematics for high school 
students who studied four years of college preparatory mathematics (integrated or single-
subject) and those who enrolled in AP Calculus. 
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Comparison on Levels of Cognitive Demand Analysis 

  To determine if there was a statistically significant difference between students’ 

mean scores for the three levels of cognitive demand a one-way multivariate analysis 

with a covariate (MANCOVA) was conducted for both samples using the IAAT scores as 

the covariate.  

 All students. The Wilks’ Lambda (Pedhazur, 1997) was significant (F = 10.305, p 

= .000) among the cognitive levels. Therefore, three ANOVAs were conducted to 

determine which cognitive demand level was significantly different for the two curricula 

paths. The descriptive statistics adjusted for IAAT scores on PCA items for the three 

levels of cognitive demand by curricula are displayed in Table 4.7. The F for procedures 

without connections was found to be significant in favor of SSC students (F = 25.136, p 

= .000), but no significance was found for either procedures with connections (F = .026, 

p = .872) or doing mathematics (F = 1.562, p = .212). SSC students performed 

statistically higher on PCA items that required procedures without connections than IC 

students after adjusting for differences in prior achievement (IAAT).    

 AP Calculus students. The Wilks’ Lambda was not significant (F = 1.468 p = 

.227) for AP Calculus students. Therefore, no further analysis was conducted since 

students in the two curricula paths did not differ significantly on PCA items requiring 

different levels of cognitive demand.  
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Table 4.7  
 
Adjusted descriptive statistics of PCA scores by levels of cognitive demand for high 
school students who studied four years of college preparatory mathematics (integrated or 
single-subject) using IAAT scores 

Level of Cognitive 
Demand 

Curriculum 
Path 

Points 
Possible Meana 

Std. 
Error F p 

IC 0.72 0.06 
Doing Mathematics 

SSC 
3 

0.83 0.06 
1.562 .212 

IC 6.54 0.16 Procedures with 
Connections SSC 

12 
6.58 0.14 

.026 .872 

IC 4.35 0.17 Procedures without 
Connections SSC 

10 
5.50 0.15 

25.136* .000 

aCovariates appearing in the model were evaluated at the following values: IAAT = 65.37. 
*SSC students mean score was significantly higher than IC students 
 
Summary for PCA items by Levels of Cognitive Demand 

 PCA items were coded and analyzed by four levels of cognitive demand. No PCA 

items were coded in the lowest category, memorization. SSC and IC students did not 

perform statistically different on items coded as procedures with connections or doing 

mathematics; however, SSC students performed statistically higher than IC students on 

PCA items coded as procedures without connections.  

 APSSC and APIC students did not perform statistically different on items coded 

for the three levels of cognitive demand (procedures without connections, procedures 

with connections, or doing mathematics).  

Responses to PCA items by Representation Type 

 Each PCA item was also coded for the type of mathematical representation 

(graphic, numeric, symbolic) students utilized to solve the question (see Appendix D). 

Nine items were coded as a graphical representation because students used or evaluated 

a graph. Two items were coded as a numerical representation because students used or 
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evaluated a table. Sixteen items were coded as symbolic representation because students 

evaluated or wrote an equation. Two of the 25 items were coded in two categories, 

graphic and symbolic, because students used both representations to solve or evaluate the 

questions. Figures 4.5, 4.6, and 4.7 display the score distributions for both samples of 

students (integrated and single-subject) on PCA items coded for the three types of 

representations (graphic, numeric, and symbolic) without adjusting for prior achievement.  

Graphic 

Nine items were coded as graphical representations. Students were required to 

interpret, evaluate, or describe graphical features of different types of functions.  

All students. Students who studied from either curriculum pathway answered 

graphical questions similarly (Figure 4.5). The graph on the top displays the majority of 

SSC students (68%) and just under half (47%) of IC students correctly answered the 

majority of graphical items.  

 AP Calculus students. The graph on the bottom of Figure 4.5 is skewed more to 

the left, meaning overall AP Calculus students answered more graphical representation 

items correctly. The majority (84%) of AP Calculus students, APSSC (87%) and APIC 

(78%), correctly answered the majority of graphical items 
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Figure 4.5. Score distributions on PCA items requiring a graphical representation for 
high school students who studied four years of college preparatory mathematics 
(integrated or single-subject) and those who enrolled in AP Calculus. 
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Numeric 

 Two items were coded as numerical representations. Students were required to 

analyze or interpret a table of values.  

 All students. Fourteen percent of IC students answered both items correctly 

compared to 9% of SSC students. However, 27% of SSC students and 48% percent of IC 

students did not answer either numerical item correctly (Figure 4.6). Most (83%) students 

from both curricula answered at least one item correctly.  

 AP Calculus students. The results were different for the sample of AP Calculus 

students (Figure 4.6, bottom). Twice the percentage of APIC students (29%) than APSSC 

students (13%) answered both items correctly. Approximately, the same percentages of 

students from both curricula, APIC (19%) and APSSC (17%), were unable to answer 

either numerical item. As found with all students, the majority of AP Calculus students 

(82%) from both curricula answered at least one item correctly.  
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Figure 4.6. Score distributions on PCA items requiring a numerical representation for 
high school students who studied four years of college preparatory mathematics 
(integrated or single-subject) and those who enrolled in AP Calculus. 
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Symbolic 

 Sixteen items were coded as symbolic representations. These items required 

students to evaluate, solve, interpret, analyze and write different types of functions.  

 All students. SSC students answered more symbolic questions correctly than IC 

students. Just over twice the percentage of SSC students (51%) as IC students (22%) 

answered at least 7 items correctly (Figure 4.7, top). Five percent of SSC students scored 

a 4 or lower on symbolic items; whereas, 20% of IC students scored a 4 or lower on these 

PCA items. 

 AP Calculus students. APSSC students answered more symbolic representation 

items correctly than APIC students. Seventy-three percent of APSSC students answered 

at least 9 symbolic items correctly compared with 44% of APIC students. Four percent of 

APSSC students answered at least 15 items correctly, while no APIC students answered 

this many questions correctly. No APSSC students got 4 or fewer questions correct, while 

7% of APIC students answered 4 or fewer items.  
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Figure 4.7. Score distributions on PCA items requiring a symbolic representation for high 
school students who studied four years of college preparatory mathematics (integrated or 
single-subject) and those who enrolled in AP Calculus. 
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Comparison on Representations 

 To determine if there was a statistical difference between students mean scores for 

the three representation types a one-way multivariate analysis with a covariate 

(MANCOVA) was conducted for both samples using the IAAT as the covariate.  

 All students. The Wilks’ Lambda was significant (F = 6.358, p = .000) among the 

representation types for students who studied four years of college preparatory 

mathematics (integrated or single-subject). Therefore, three ANOVAs were conducted to 

determine which representation types were significantly different for the two curricula 

paths. The resulting analysis adjusted for IAAT scores on PCA items by the three types of 

representation are shown in Table 4.8. The F for symbolic representations was found to 

be significant in favor of SSC students (F = 14.651, p = .000), but no significance was 

found for graphical (F = .531, p = .467) or numerical representations (F = 0.55, p = 

.815). SSC students performed statistically higher on PCA items that required symbolic 

representations than IC students.  

Table 4.8  
 
Adjusted descriptive statistics on PCA scores by three types of representations for high 
school students who studied four years of college preparatory mathematics (integrated or 
single-subject) using IAAT scores 
Representation 

Type 
Curriculum 

Path 
Points 

Possible Meana 
Std. 

Error F p 
IC 4.69 0.145 

Graphic 
SSC 

9 
4.84 0.130 

.531 .467 

IC 0.76 0.054 
Numeric 

SSC 
2 

0.78 0.048 
.055 .815 

IC 7.21 0.201 
Symbolic 

SSC 
16 

8.27 0.181 
14.651* .000 

aCovariates appearing in the model were evaluated at the following values: IAAT = 65.37. 
*SSC students mean score was significantly higher than IC students 
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 AP Calculus students. The Wilks’ Lambda was significant (F = 6.634, p = .001) 

among the representation types for AP Calculus students. Therefore, three ANOVAs 

were conducted to determine which representation types were significantly different for 

the two curricula paths and the resulting analysis adjusted for IAAT scores on PCA items 

by the AP Calculus students are shown in Table 4.9. The F for numerical was found to be 

significant, (F = 4.971, p = .028) and the F for symbolic representation was found to be 

significant, (F = 6.996, p = .009). The F for graphical representation was not found to be 

significant, (F = 1.055, p = .306). APIC students performed statistically higher on PCA 

items that required numerical representations than APSSC students, while APSSC 

students performed statistically higher on PCA items that require symbolic 

representations than APIC students.    

Table 4.9  
 
Adjusted descriptive statistics on PCA scores by three types of representations for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject) using IAAT scores 
Representation 

Type 
Curriculum 

Path 
Points 

Possible Meana 
Std. 

Error F p 
APIC 5.92 0.231 

Graphic 
APSSC 

9 
6.21 0.165 

1.055 .306 

APIC 1.27 0.094 
Numeric 

APSSC 
2 

1.01 0.067 
4.971† .028 

APIC 8.89 0.376 
Symbolic 

APSSC 
16 

10.14 0.270 
6.996* .009 

aCovariates appearing in the model were evaluated at the following values: IAAT = 79.85. 
*APSSC students mean score was significantly higher than APIC students  
†APIC students mean score was significantly higher than APSSC students  
 
Summary of PCA Items by Representation Type 

 PCA items were coded and analyzed by three representation types (graphic, 

numeric, and symbolic). IC and SSC students did not perform statistically different on 
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PCA items coded as graphical and numerical; however, SSC students performed 

statistically higher on items coded as symbolic. Although there was no significance 

found, IC students had a higher mean on numerical items than SSC students.  

 APIC and APSSC students did not perform statistically different on PCA items 

coded as graphical. APIC students performed statistically higher on PCA items coded as 

numerical, while APSSC students performed statistically higher on PCA items coded as 

symbolic.  

Summary 

 Table 4.10 summarizes the results for all students (IC, SSC, APIC, and APSSC) 

on overall PCA performance, items of different levels of cognitive demand, and items of 

different representation types after adjusting for prior achievement (IAAT). SSC students 

performed significantly higher than IC students on the PCA, items coded as procedures 

without connections, and items coded as symbolic. APIC and APSSC students were not 

found to be significantly different on overall performance of the PCA or levels of 

cognitive demand; however, APIC students scored significantly higher on PCA items 

coded as numeric and APSSC students scored significantly higher on PCA items coded as 

symbolic.   
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Table 4.10  
 
Summary of results for all high school students who studied four years of college 
preparatory mathematics (integrated or single-subject) on overall performance on the 
PCA, performance on items of different levels of cognitive demand, and performance on 
item of different representation types after adjusting for prior achievement 
Curriculum 
Path 

Overall 
Performance 

Levels of Cognitive 
Demand Representation Type 

IC 
 

   

SSC Significantly 
higher 

Significantly higher on 
procedures without 
connections items 

Significantly higher 
on symbolic items 

APIC 
Significantly higher 
on numeric items 
 

APSSC 

No difference No difference 
Significantly higher 
on symbolic items 

 

Item Analysis and Common Misconceptions about Functions 

 As described previously, the PCA contains 25 multiple choice questions. The 

PCA was developed with five answer choices that represent a correct answer and four 

common misconceptions students have about functions. Student exams were coded by the 

answer choice selected on each item.  

PCA Item Analysis 

 The 25 PCA items were categorized in two ways: (1) difficulty level for all 

students regardless of their curricular path, and (2) the function concepts assessed. 

Difficulty level was determined according to how students in this study performed. An 

item was coded easy if 80% or more of the students in both samples answered it 

correctly. An item was coded difficult if 50% or less of the students in either sample 

answered it correctly. The remaining items were coded moderate. Table 4.11 displays the 

item numbers coded in each category.  
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Table 4.11  
 
Summary of difficulty level for PCA items regardless of curricula paths  

 Easy Moderate Difficult  

PCA Item 
Numbers  1, 16, 18, 19 3, 5, 6, 7, 9, 12, 

24, 25 

2, 4, 8, 10, 11, 13, 
14, 15, 17, 20, 21, 
22, 23 

    
Total # of items 4 items 8 items 13 items 

 

  The four easy items can be described by two topics, evaluating functions and 

describing the end behavior of a function. The eight moderate items were distributed into 

three topics, evaluating and solving equations using function notation, describing the end 

behavior of a function, and interpreting rates of change. The thirteen difficult items were 

consolidated into three topics, interpreting rate of change, interpreting the meaning of 

inverse functions, and writing or interpreting composition of functions.  

 Carlson and colleagues (in review) coded PCA items by four understandings: (1) 

function evaluation; (2) rate of change; (3) function composition; and (4) function 

inverse. In this current study, a fifth understanding emerged; solving functions and was 

added to the four that were previously reported by Carlson. Table 4.12 displays the five 

function concepts (function evaluation, solving functions, rates of change, function 

composition, and function inverse) that were assessed by multiple questions from the 

PCA. It is important to note that multiple questions may have assessed more than one 

function concept and therefore, were coded in more than one area. While a few PCA 

items did not fit in any of the five function concepts, for example, using proportional 

reasoning (item #3).  
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Table 4.12  
 
Summary of function concepts assessed by most PCA items  

 Function 
Evaluation 

Solving 
Functions 

Rates of 
Change 

Function 
Composition 

Function 
Inverse 

 

PCA Item 
Numbers  

1, 5, 6, 11, 
12, 16, 20 

2, 4, 9 8, 10, 11, 
15, 19, 22 

4, 5, 12, 16, 
17, 20, 23 

2, 4, 9, 10, 13, 
14, 23 

 

       
Total # of 
items 7 items 3 items 6 items 7 items 7 items  

 
 
 PCA items were grouped by function concept to analyze how students from each 

curriculum path performed on the five concepts. Table 4.13 displays the average percent 

of correct answers, without adjusting for prior achievement, for the five concepts 

assessed on the PCA by curricular paths. SSC students tended to answer function 

evaluation, solving functions, and function composition items correctly; however, IC 

students did not score higher than 50% on any of the five concept groups. AP Calculus 

students from both curricular paths tended to answer questions from each of the concepts 

similarly with function evaluation, solving functions, and function composition being 

areas that were not as difficult as rates of change and function inverse items.  

Table 4.13  
 
Mean percent of correct answers for function concepts assessed on PCA for high school 
students who studied four years of college preparatory mathematics (integrated or 
single-subject)  

# of 
PCA 
Items 

7 3 6 7 7 
Curriculum  

N Function 
Evaluation

Solving 
Functions 

Rates of 
Change 

Function 
Composition 

Inverse 
Function 

IC 201 45.20 47.10 38.31 34.83 30.49 
SSC 304 65.18 62.39 41.17 56.00 37.10 
APIC 59 63.44 64.97 45.48 52.06 41.40 
APSSC 140 74.80 74.52 49.17 66.73 49.90 
*Percents are not adjusted for prior achievement 
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Comparison on PCA Function Concepts 

 To determine if there was a statistical difference between the mean percent of 

correct answers for the five function concepts assessed on the PCA a one-way 

multivariate analysis with a covariate (MANCOVA) was conducted for both samples 

using the IAAT as the covariate.  

 All students. The Wilks’ Lambda was significant (F = 9.681, p = .000) among the 

function concepts for students who studied four years of college preparatory mathematics 

(integrated or single-subject). Therefore, five ANOVAs were conducted to determine 

which function concepts were significantly different for the two curricula paths. The 

resulting analysis, adjusted for IAAT scores, on PCA items by the five function concepts 

is displayed in Table 4.14. The F for function evaluation (F = 23.636, p = .000) and 

function composition (F = 29.974, p = .000) were found to be significant in favor of SSC 

students. No significance was found for the other three function concepts: solving 

functions (F = 2.482, p = .116), rates of change (F = 1.537, p = .216), or function inverse 

(F = 0.028, p = .867). SSC students performed statistically higher than IC students on 

PCA items that required function evaluation and function composition.  
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Table 4.14  
 
Adjusted mean percents of correct answers for function concepts assessed on PCA for 
high school students who studied four years of college preparatory mathematics 
(integrated or single-subject) using IAAT scores 

Meana 
(S.E.) Function 

Concept 

# of PCA 
items 

IC (N=142) SSC (N=174) F p 
48.43 60.73 Function 

Evaluation 7 (1.65) (1.84) 23.636* .000 

52.26 57.93 Solving 
Functions 3 (2.35) (2.61) 2.482 .116 

41.37 38.56 Rates of 
Change 6 (1.48) (1.83) 1.537 .216 

38.93 52.71 Function 
Composition 7 (1.64) (1.83) 29.974* .000 

34.18 34.58 Function 
Inverse 7 (1.56) (1.73) 0.028 .867 

aCovariates appearing in the model were evaluated at the following values: IAAT = 65.37. 
*SSC students mean score was significantly higher than IC students  
 
 
 AP Calculus students. The Wilks’ Lambda was significant (F = 2.391, p = .042) 

among the function concepts for AP Calculus students. Therefore, five ANOVAs were 

conducted to determine which concepts were significantly different for the two curricula 

paths. The resulting analysis, adjusted for IAAT scores, on PCA items for the AP Calculus 

students is shown in Table 4.15. The F for function evaluation (F = 5.256, p = .024) and 

function composition (F = 7.132, p = .009) were found to be significant in favor of 

APSSC students. No significance was found for the other three content areas: solving 

functions (F = 1.544, p = .217), rates of change (F = 0.261, p = .610), or function inverse 

(F = 0.047, p = .828). APSSC students performed statistically higher than APIC students 

on PCA items that required function evaluation and function composition.    
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Table 4.15  
 
Adjusted mean percents of correct answers for function concepts assessed on PCA for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject) using IAAT scores 

Meana 
(S.E.)  Function 

Concept 

# of PCA 
items 

APIC (N=40) APSSC (N=76) F p 
65.98 75.05 Function 

Evaluation 7 (3.16) (2.27) 5.256* .024 

69.77 76.88 Solving 
Functions 3 (4.57) (3.27) 1.544 .217 

50.35 48.28 Rates of 
Change 6 (3.25) (2.33) 0.261 .610 

57.18 68.03 Function 
Composition 7 (3.25) (2.33) 7.132* .009 

46.79 45.86 Function 
Inverse 7 (3.40) (2.44) 0.047 .828 

aCovariates appearing in the model were evaluated at the following values: IAAT = 79.85. 
*APSSC students mean score was significantly higher than APIC students 

Summary 

 PCA items were coded and analyzed by difficulty level (easy, moderate, and 

difficult) and function concepts (evaluation, solving, rates of change, function 

composition, function inverse). After adjusting for prior achievement, IC and SSC 

students did not perform statistically different on PCA items that assessed solving 

functions, computing or interpreting rates of change, and interpreting inverse functions; 

however, SSC students performed statistically higher on items that assessed evaluating 

functions and working with composite functions. IC students had a higher mean than SSC 

students on items assessing rates of change.  

 After adjusting for prior achievement, APIC and APSSC students did not perform 

statistically different on PCA items that assessed solving functions, computing or 

interpreting rates of change, and interpreting inverse functions; however, APSSC students 

performed statistically higher on items that assessed evaluating functions and working 
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with composite functions. APIC students had a higher mean than APSSC students on 

items related to rates of change and inverse functions.  

 After adjusting for prior achievement, all four groups of students (IC, SSC, APIC, 

and APSSC) tended to incorrectly answer PCA items that assessed rates of change and 

inverse functions. IC and APIC students also tended to incorrectly answer items related to 

composition of functions.  

Misconceptions by Curricula 

 To determine if students had misconceptions on a PCA item, this general rule was 

used: if more than 20% of the students in a specific curricula group chose a specific 

incorrect answer, then it would be considered a misconception. This guideline was used 

because it was expected with five answer choices that at least 20% of students could 

guess any answer choice. Therefore, greater than 20% would suggest the answer choice 

was not guessed, but thought to be true because of some misconception students held 

about the question. Readers are reminded that students were found to be statistically 

different in mathematical achievement levels prior to entering their specific curricular 

paths. Therefore, the results on misconceptions need to be interpreted with caution. It 

may be the case that SSC or APSSC students did not manifest misconceptions because 

they began the study with a higher level of mathematics achievement and understanding. 

Therefore, it can be anticipated that IC and APIC students may display more 

misconceptions because they scored significantly lower on prior achievement.  

 All students. Table 4.16 displays each PCA item with the level of difficulty and 

the percent of students (IC, SSC, APSSC, and APIC) who answered the questions 

correctly. SSC students scored higher on 22 of the 25 PCA items, while IC students 
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scored higher on the remaining 3 items. Nine items (7, 8, 10, 11, 13, 15, 18, 19, 23) had 

less than 10% difference between the percent of students in each curriculum pathway 

who answered correctly. Six items (1, 2, 9, 14, 21, 25) had between 10% to 19% 

difference. Finally, ten items (3, 4, 5, 6, 12, 16, 17, 20, 22, 24) ranged between 20% to 

30% difference.  

Table 4.16  
 
Percentage of all students and AP Calculus students who answered each PCA item 
correct by curricula 

% of ALL students % of AP Calculus students Item # Difficulty Level IC SSC APIC APSSC 
1 Easy 70 87 83 91 
2 Hard 37 51 51 63 
3 Moderate 54 74 66 89 
4 Hard 37 59 56 73 
5 Moderate 40 63 68 80 
6 Moderate 44 70 70 85 
7 Moderate 71 62 76 78 
8 Hard 15 16 17 21 
9 Moderate 67 77 89 88 
10 Hard 33 29 32 35 
11 Hard 15 15 19 21 
12 Moderate 46 71 76 83 
13 Hard 20 11 34 13 
14 Hard 7 17 14 24 
15 Hard 39 44 54 56 
16 Easy 70 98 90 99 
17 Hard 8 34 20 50 
18 Easy 82 90 88 93 
19 Easy 79 81 93 91 
20 Hard 31 51 39 64 
21 Hard 16 35 22 44 
22 Hard 24 45 36 59 
23 Hard 12 16 15 19 
24 Moderate 48 70 66 81 
25 Moderate 50 64 61 74 

*Percents are not adjusted for prior achievement 

 AP Calculus students. APSSC students scored higher on 22 of the 25 PCA items, 

while APIC students scored higher on the remaining 3 items. Item 13 was answered 
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similarly for both samples (IC/SSC and APIC/APSSC) with IC and APIC students 

having a higher percentage of correct answers. However, results were mixed for the two 

samples on items 9 and 19. SSC students performed higher than IC students on these two 

items, but APIC students performed higher than APSSC students on these same two 

questions.  

 Performance on twelve items (1, 7, 8, 9, 10, 11, 12, 15, 16, 18, 19, 23) differed by 

less than 10% across students in each curriculum pathway. Six items (3, 13, 17, 20, 21, 

22) were found to have a difference range between 21% to 29%. 

 Misconception Analysis  

 As stated previously, if more than 20% of students in a specific curricula group 

chose an incorrect answer, then the response was considered to be a misconception. 

Students exhibited misconceptions on different function content on 18 of the 25 PCA 

items.  

 All students. A summary of the difficulty level and the function content assessed 

for each PCA item is summarized in Table 4.17. In addition, the group of students 

(integrated or single-subject) who displayed a misconception (20% or more of students) 

on the item without adjusting for prior achievement is noted. After analyzing all the 

answer choices, it was found that SSC students demonstrated at least one misconception 

on 40% of the 25 items. IC students exhibited at least one misconception on 72% of the 

25 items.   

 PCA items were sorted into three groups according to misconceptions: (1) items 

with no misconceptions for either group of students, (2) items missed by at least 20% of 

IC students, (3) items missed by at least 20% of both IC and SSC students. Students from 
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neither curriculum pathway displayed misconceptions on seven items (1, 7, 9, 16, 18, 19, 

25). Students from both curricula pathways seem to understand the behavior of functions 

whether given an equation or graph. Both groups of students were successful interpreting 

and using function notation to evaluate a given function both symbolically and 

graphically. Furthermore, students interpreted and described the rate of change of an 

exponential function.  

Table 4.17  
 
Summary of difficulty level and group who displayed misconceptions on PCA items for 
all students 

Item 
# 

Difficulty 
Level Function Concept Assessed Group* 

1 Easy Evaluation (symbolic) - 
2 Hard Solve/Function inverse (graphic) IC 
3 Moderate Proportions IC 
4 Hard Solve/Inverse/Function composition (symbolic) IC 
5 Moderate Evaluation/ Function composition (graphic) IC 
6 Moderate Evaluation (graphic) IC 
7 Moderate Exponential function (symbolic) - 
8 Hard Rate of change (graphic) IC/SSC 
9 Moderate Solve/Function inverse (graphic) - 
10 Hard Rate of change/ Function inverse (graphic) IC/SSC 
11 Hard Evaluation/Rate of change (symbolic) IC/SSC 
12 Moderate Evaluation/Function composition (numeric) IC 
13 Hard Function inverse (numeric) IC/SSC 
14 Hard Function inverse (symbolic) IC/SSC 
15 Hard Rate of change IC/SSC 
16 Easy Evaluation/ Function composition (symbolic) - 
17 Hard Function composition (symbolic) IC/SSC 
18 Easy Rational function (symbolic) - 
19 Easy Rate of change (graphic) - 
20 Hard Evaluation/Function composition IC 
21 Hard Domain (symbolic) IC/SSC 
22 Hard Rate of change (symbolic) IC/SSC 
23 Hard Composition/Function inverse IC/SSC 
24 Moderate End behavior (graphic) IC 
25 Moderate End behavior (symbolic) - 

*Not adjusted for prior achievement 
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  Only IC students displayed misconceptions on the following eight items: 2, 3, 4, 

5, 6, 12, 20, 24. These eight items are characterized by four misconceptions. The first 

misconception appeared for 20% to 24% of IC students. Students were not able to 

interpret or evaluate symbolic function notation properly, which may be the reason why 

they translated to a graph or words incorrectly. For example, students were given 

6)( =xh and asked to solve for x. Approximately 42% of IC students used the 6 as the x 

coordinate and found the y-coordinate or the point (x, y) as the answer.  

 A second misconception appeared for more than 25% of IC students. They 

struggled to interpret and work with composite functions across different representations 

(symbolic, graphic, and numeric). IC students did not seem to recognize that a 

composition of functions required them to evaluate two functions at different points. For 

example, students were given ))3(( −rh and asked to answer using a given graph. IC 

students evaluated the first function correctly, but then moved vertically to the h function 

reporting this new point as their answer instead of using the output value as the new input 

for the h function.  

 The third misconception arose for 33% of IC students. Students were to use 

multiplicative reasoning on a proportional reasoning item; however, the answer the IC 

students incorrectly selected used additive reasoning.  

 The fourth misconception appeared for 29% of IC students. Students were asked 

to describe the behavior of a rational function and the incorrect answer selected only 

reflected what happened when x increased and ignored what happen when x approached 

0.  
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 Students from both curricula had misconceptions on the remaining ten items (8, 

10, 11, 13, 14, 15, 17, 21, 22, 23). These ten items are characterized by four 

misconceptions. The first misconception appeared for 20% to 63% of IC students and 

24% to 74% of SSC students. Students worked with inverse functions incorrectly. The 

misconception that both groups of students demonstrated was confusing function inverse 

and multiplicative inverse or defining an inverse to be 1 over the function. For example, 

students were given a table of values and asked to evaluate )5(1−h . Students from both 

integrated (38%) and single-subject (66%) incorrectly chose the answer to be
)5(

1
h

. 

 A second misconception appeared for 20% to 60% of IC students and 27% to 

66% of SSC students. Students interpreted rates of change incorrectly whether given a 

graph or an equation. The misconceptions that both groups of students demonstrated were 

iconic translation between a picture and a graph, relating average velocity to rate of 

change, and the meaning of a multiplicative statement. For example, students were to 

describe the relationship between two cars given a graph of both cars speed. Fifty-nine 

percent of IC students and 66% of SSC students either interpreted the graph as a position 

graph, recognized that the graph was speed, but could not overcome the iconic 

translation, or they figured the average speed between the start and end was equivalent 

for both cars concluding that the cars should be at the same position at the end of the 

drive.   

 The third misconception appeared for 45% of SSC students and 46% of IC 

students. Students had to write a composite function for the area of a circle as a function 

of time. Both IC and SSC students did not include the speed as part of the radius, thus not 

squaring the speed. However, SSC students displayed an additional misconception, 
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continually adding the speed to the radius or forgetting to square the time when 

completing the composition of functions. As described above, students worked with one 

function correctly, but not with two functions.  

 The fourth misconception appeared for 46% of IC students and 60% of SSC 

students. Students had to find the domain of a composite function that was both rational 

and contained a radical. These students were able to identify that the domain needed to be 

restricted so the denominator would not equal 0; however, they did not recognize that the 

numerator also needed a restriction because it was a square root.  

 In summary, on five PCA items (8, 14, 15, 21, 23) students from both curricula 

had the same misconception(s). The remaining six items both groups had a similar 

misconception, but one group of students (integrated or single-subject) had an additional 

misconception. For example, on one item students were required to interpret the meaning 

of the slope in a contextual situation. Twenty-seven percent of SSC students and 34% of 

IC students demonstrated a misunderstanding of the multiplicative meaning of five times 

greater. However, another 20% of IC students did not recognize equivalent statements in 

describing the slope. Although students from both curricula had a common 

misconception on this item, there was an additional misconception for IC students. 

Another example of this was on an item that students were required to use a function to 

find the average velocity over a specific time period. Forty-six percent of the SSC 

students and 49% of IC students found the average velocity between four integer values. 

Although students from both curricula had a common misconception, 23% of the SSC 

students exhibited an additional misconception, namely these students found the average 

between the start and end values.   
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 AP Calculus students. A summary of the PCA items, the difficulty level, the 

function concept being assessed, and the group of AP Calculus students (integrated or 

single-subject) who exhibited misconceptions without adjusting for prior achievement is 

found in Table 4.18. After analyzing all the answer choices, it was found that APSSC 

students had misconceptions on 36% of the 25 items. The APIC students had 

misconceptions on 64% of the 25 items. 

Table 4.18  
 
Summary of difficulty level and group who displayed misconceptions on PCA items for 
AP Calculus students 

Item 
# 

Difficulty 
Level Mathematical Content Groups* 

1 Easy Evaluation (symbolic) - 
2 Hard Solve/Function inverse (graphic) - 
3 Moderate Proportions APIC 

4 Hard Solve/Inverse/Function composition 
(symbolic) 

APIC 

5 Moderate Evaluation/ Function composition (graphic) APIC 
6 Moderate Evaluation (graphic) APIC 
7 Moderate Exponential function (symbolic) - 
8 Hard Rate of change (graphic) APIC/APSSC 
9 Moderate Solve/Function inverse (graphic) - 
10 Hard Rate of change/ Function inverse (graphic) APIC/APSSC 
11 Hard Evaluation/Rate of change (symbolic) APIC/APSSC 
12 Moderate Evaluation/Function composition (numeric) - 
13 Hard Function inverse (numeric) APIC/APSSC 
14 Hard Function inverse (symbolic) APIC/APSSC 
15 Hard Rate of change APIC/APSSC 
16 Easy Evaluation/ Function composition (symbolic) - 
17 Hard Function composition (symbolic) APIC/APSSC 
18 Easy Rational function (symbolic) - 
19 Easy Rate of change (graphic) - 
20 Hard Evaluation/Function composition APIC 
21 Hard Domain (symbolic) APIC/APSSC 
22 Hard Rate of change (symbolic) APIC 
23 Hard Composition/Function inverse APIC/APSSC 
24 Moderate End behavior (graphic) APIC 
25 Moderate End behavior (symbolic) - 

*Not adjusted for prior achievement 
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 PCA items were sorted into three groups according to misconceptions: (1) items 

with no misconceptions for either group of students, (2) items missed by at least 20% of 

APIC students, and (3) items missed by at least 20% of both APIC and APSSC students. 

Many of the misconceptions discussed in the previous section for all students were found 

for AP Calculus students as well. However, two items (2, 12) that IC students 

demonstrated misconceptions on did not appear for APIC students and one item (22) that 

both IC and SSC students displayed misconceptions with did not appear as a 

misconception for APSSC students. Although the results presented for AP Calculus 

students are by curriculum, the focus is on those items that were different or revealed new 

misconceptions.  

 AP Calculus students from both curricula did not demonstrate misconceptions 

(20% or more of students) on nine items. On seven items (1, 7, 9, 16, 18, 19, 25) AP 

Calculus students displayed the same misconceptions as all students; however, AP 

Calculus students did not display misconceptions on items 2 and 12. The sample of IC 

students displayed misconceptions on these two items, yet AP Calculus students did not 

display these misconceptions. The sample of AP Calculus students in both curricula 

seemed to understand the behavior of functions whether given an equation or graph. They 

were successful interpreting and using function notation to evaluate functions shown both 

symbolically and graphically. Students were also able to interpret and describe the rate of 

change of an exponential function. In addition, AP Calculus students evaluated a 

composite function using a table correctly.  

 Only APIC students exhibited misconceptions on the following seven items: 3, 4, 

5, 6, 20, 22, 24. The four misconceptions were described previously. The first 
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misconception, not interpreting symbolic function notation properly, may have lead 

students to translate to a graph or words incorrectly, and appeared for 22% to 24% of 

APIC students.  

 The second misconception, interpreting and working with composite functions 

across different representations (symbolic, graphic, and numeric) appeared for 22% to 

24% of APIC students. These students did not seem to recognize that a composition of 

functions required them to evaluate two functions at different points.  

 The third misconception, using additive instead of multiplicative reasoning, arose 

for 25% of APIC students. Students did not recognize that the proportionality problem 

required a multiplicative relationship.   

 The fourth misconception, only acknowledging what happened with a rational 

function as x increased and ignoring what happens when x approached 0, appeared for 

22% of APIC students. 

 Item 22 displayed misconceptions for all students in both curricula in the earlier 

analysis. However, when analyzing the sample of AP Calculus students, only APIC 

students struggled with this item. A quarter of APIC students displayed the 

misconception of not understanding the multiplicative meaning of five times greater 

when analyzing rate of change of a linear function. APSSC students did not display this 

misconception.  

 Students from both curricula had misconceptions on the remaining nine items (8, 

10, 11, 13, 14, 15, 17, 21, 23). These items were described by four misconceptions. The 

first misconception, confusing function inverse and multiplicative inverse or defining an 
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inverse to be 1 over the function, appeared for 27% to 71% of APIC students and 52% to 

73% of APSSC students. 

 The second misconception involved an iconic translation between a picture and a 

graph. Students did not relate average velocity to rate of change, or did not understand 

the meaning of a multiplicative statement. This misconception appeared for 20% to 56% 

of APIC students and 29% to 61% of APSSC students. 

 The third misconception arose on item 17, yet each group of students (APIC and 

APSSC) displayed different misconceptions from each other as well as from the sample 

of all students. On the contextual problem students were to write a composite function 

with area of a circle as a function of time. APIC students (39%) did not include the speed 

as part of the radius, thus not squaring the speed and 20% of APIC students did not think 

the problem could be solved. On the other hand, APSSC students (25%) continually 

added the speed to the radius or forgot to square the time when completing the 

composition of functions.   

 The fourth misconception appeared when students recognized that the domain 

needed to be restricted so the denominator would not equal 0; however, they did not 

recognize that the numerator also needed a restriction because it was a square root. This 

misconception occurred with great frequency, as it was reflected by 50% of APSSC 

students and 58% of APIC students.   

 In summary, AP Calculus students from both curricula exhibited the same 

misconception on six items (10, 11, 13, 14, 15, 21). Both groups of students had similar 

misconceptions on two items (8, 23), which were described previously, but one group 

(integrated or single-subject) had an additional misconception. Finally, as discussed 
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before, AP Calculus students in both groups had different misconceptions on one item 

(17).  

Comparison on each PCA Item 

 A binomial logistic regression was conducted to estimate the odds that one group 

of students (integrated or single-subject) were better able to correctly answer each PCA 

item. The logistic regression model was used because the dependent variable 

(correct/incorrect) was dichotomous and the independent variables (IAAT and curriculum 

type) were continuous and categorical (Pedhazur, 1997).  

 The first step in the logistic regression model is to compute a Chi-square. If it was 

significant, then this indicated that either one or both of the independent variables (IAAT 

and curriculum type) were significant factors in the logistic regression model. This is 

interpreted as the probability that the correct answer for the item can be predicted based 

on the students IAAT score and/or the curriculum type.  

 The second step in the logistic regression model is to investigate which of the 

independent values (IAAT and/or curriculum type) were factors that influenced the model. 

If the Wald statistic (Pedhazur, 1997) was statistically significant, this implied that both 

independent variables (IAAT and curriculum type) were significant factors in the logistic 

regression model. The odds ratio (Exp(B)) was interpreted as a ratio above 1 predicted 

that IC students had better odds than SSC students of answering the question correctly, 

while a ratio below 1 predicted that SSC students had better odds than IC students of 

answering the question correctly. The closer the odds ratio is to 1, the less the curriculum 

type (integrated and single-subject) affected the dependent variable (answering the 

question correctly/incorrectly). For example, the odds ratio for item 7 on the PCA for all 
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students was 1.861, this was interpreted as the odds of correctly answering this item were 

1.861 times as large for IC students as for SSC students.   

 All students. Table 4.19 shows the model Chi-square test values for all students. 

Twenty-two of the 25 PCA items had a significant Chi-squared value. This was 

interpreted as either one or both of the independent variables were factors that could 

contribute to the model. Table 4.20 displays each PCA items with the Wald statistic and 

the estimated odds ratio (Exp(B)) for the independent variable (curriculum type) for all 

students. Six items (3, 6, 12, 16, 17, 20) had Wald statistics that were significant )05.( ≤p  

and the odds were greater for SSC students than for IC students to answer these questions 

correctly. Two other items (7, 13) had Wald statistics that were significant )02.( ≤p  and 

the odds were greater for IC students than for SSC students to answer these questions 

correctly.  

 AP Calculus students. Table 4.21 provides the model Chi-square test values for 

AP Calculus students. Eleven of the 25 PCA items had a significant Chi-square value. 

This was interpreted as either one or both of the independent variables were factors that 

could contribute to the model. Table 4.22 displays each PCA items with the Wald statistic 

and the estimated odds ratio (Exp(B)) for the independent variable (curriculum type) for 

AP Calculus students. Four items (6, 16, 17, 20) had Wald statistics that were 

significant )05.( ≤p and the odds were greater for APSSC students than for APIC 

students to answer these questions correctly. One item (13) had a Wald statistic that was 

significant )002.( ≤p and the odds were greater for APIC students than for APSSC 

students to answer this question correctly.  
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Table 4.19  
 
Model Chi-square test for coefficients (IAAT and curriculum type) by item for all students 

Item Number Chi-square ( )2χ  p 
1 15.81* 0.000 
2 37.49* 0.000 
3 72.22* 0.000 
4 48.02* 0.000 
5 56.89* 0.000 
6 55.86* 0.000 
7 14.95* 0.000 
8 9.97* 0.000 
9 32.58* 0.000 
10 3.58 0.167 
11 3.01 0.222 
12 56.07* 0.000 
13 12.75* 0.002 
14 9.70* 0.008 
15 34.02* 0.000 
16 85.39* 0.000 
17 70.67* 0.000 
18 27.05* 0.000 
19 39.76* 0.000 
20 26.77* 0.000 
21 23.52* 0.000 
22 12.73* 0.002 
23 3.26 0.196 
24 32.56* 0.000 
25 17.69* 0.000 

* Significantly different at p <0.05 
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Table 4.20  
 
Logistic Regression for each item by curriculum type for all students 

Item #a B S.E. Wald df p Exp(B) 

1 -0.492 0.291 2.871 1 0.090 0.611 

2 -0.228 0.250 0.829 1 0.363 0.796 
3 -0.558 0.268 4.326* 1 0.038 0.573 
4 -0.447 0.250 3.199 1 0.074 0.640 
5 -0.447 0.253 3.125 1 0.077 0.640 
6 -0.653 0.254 6.624* 1 0.010 0.521 
7 0.621 0.266 5.464‡ 1 0.019 1.861 
8 0.209 0.332 0.396 1 0.529 1.232 
9 -0.102 0.276 0.136 1 0.713 0.903 
10 0.433 0.262 2.734 1 0.098 1.542 
11 0.259 0.340 0.583 1 0.445 1.296 
12 -0.706 0.247 7.552* 1 0.006 0.494 
13 0.988 0.330 8.982‡ 1 0.003 2.686 
14 -0.657 0.375 3.076 1 0.079 0.518 
15 0.211 0.255 0.688 1 0.407 1.235 
16 -3.134 0.615 25.953* 1 0.000 0.044 
17 -1.492 0.369 16.382* 1 0.000 0.225 
18 -0.488 0.371 1.725 1 0.189 0.614 
19 0.412 0.343 1.441 1 0.230 1.510 
20 -0.575 0.247 5.405* 1 0.020 0.563 
21 -0.518 0.283 3.343 1 0.067 0.596 
22 -0.312 0.243 1.647 1 0.199 0.732 
23 -0.096 0.335 0.083 1 0.773 0.908 
24 -0.436 0.386 1.279 1 0.258 0.647 
25 -0.358 0.244 2.156 1 0.142 0.699 

a Variable(s) entered: IAAT and Curriculum type (0 = single-subject and 1 = integrated). 
* Odds of answering question correctly were significantly higher for SSC students at p ≤  
0.05 
‡ Odds of answering question correctly were significantly higher for IC students at p ≤  
0.02 
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Table 4.21  
 
Model Chi-square test for coefficients (IAAT and curriculum type) by item for AP 
Calculus students 

Item Number Chi-square ( )2χ  p 
1 0.0983 0.612 
2 2.97 0.227 
3 22.90* 0.000 
4 9.00* 0.011 
5 2.48 0.290 
6 4.35 0.114 
7 4.46 0.108 
8 4.25 0.119 
9 1.42 0.492 
10 4.92 0.085 
11 0.92 0.631 
12 2.05 0.359 
13 10.68* 0.005 
14 1.10 0.577 
15 6.31* 0.043 
16 6.56* 0.038 
17 26.35* 0.000 
18 10.77* 0.005 
19 6.95* 0.031 
20 10.08* 0.006 
21 5.26 0.072 
22 13.79* 0.001 
23 4.01 0.135 
24 7.31* 0.026 
25 2.22 0.330 

* Significantly different at p <0.05 
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Table 4.22  
 
Logistic Regression for each item by curriculum type for AP Calculus students 

Item #a B S.E. Wald df p Exp(B) 

1 -0.130 0.593 0.048 1 0.826 0.878 

2 -0.525 0.415 1.601 1 0.206 0.591 
3 -1.035 0.546 3.599 1 0.058 0.355 
4 -0.323 0.485 0.500 1 0.480 0.724 
5 -0.614 0.462 1.768 1 0.184 0.541 
6 -1.069 0.524 4.164* 1 0.041 0.343 
7 -0.288 0.485 0.352 1 0.553 0.750 
8 0.054 0.505 0.011 1 0.915 1.056 
9 -0.243 0.606 0.161 1 0.688 0.784 
10 0.189 0.442 0.183 1 0.669 1.208 
11 .0236 0.516 0.210 1 0.647 1.267 
12 -0.137 0.563 0.059 1 0.808 0.872 
13 1.520 0.490 9.642‡ 1 0.002 4.573 
14 -0.518 0.513 1.017 1 0.313 0.596 
15 0.280 0.422 0.441 1 0.506 1.323 
16 -2.286 1.140 4.024* 1 0.045 0.102 
17 -1.266 0.483 6.880* 1 0.009 0.282 
18 -1.467 0.874 2.816 1 0.093 0.231 
19 1.917 1.205 2.532 1 0.112 6.801 
20 -1.056 0.419 6.344* 1 0.012 0.348 
21 -0.388 0.433 0.801 1 0.371 0.679 
22 -0.552 0.446 1.536 1 0.215 0.576 
23 0.306 0.520 0.347 1 0.556 1.358 
24 -18.388 4555.082 0.000 1 0.997 0.000 
25 -0.421 0.435 0.939 1 0.333 0.656 

a Variable(s) entered: IAAT and Curriculum type (0 = single-subject and 1 = integrated). 
* Odds of answering item correctly were significantly higher for APSSC students at p ≤  
0.05 
‡ Odds of answering item correctly are significantly higher for APIC students at p = 
0.002 
 
Summary of PCA Item Analysis and Misconceptions about Functions 

 The difficulty level of the PCA items ranges from easy (4 questions) to difficult 

(16 questions) with the remaining items (8 questions) coded as moderate. SSC students 

scored higher than IC students on 22 of the 25 PCA items. The three PCA items that IC 
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students scored higher on were either difficult or moderate in difficulty. APSSC students 

answered a higher percentage of PCA items correctly than APIC students.  

 After adjusting for prior achievement, SSC and APSSC students performed 

statistically higher on PCA items that assessed evaluating functions and working with 

composite functions. Students from all four groups (IC, SSC, APIC, APSSC) tended to 

incorrectly answer questions related to interpreting rates of change and inverse functions.   

 SSC students had fewer misconceptions because they outperformed IC students; 

however, on 10 of the 25 items both groups of SSC and IC students displayed common 

misconceptions. These common misconceptions were categorized by four mathematical 

concepts. First, students struggled with inverse functions confusing it with multiplicative 

inverse. Second, students struggled with interpreting the meaning of rate of change on a 

graph. Third, students struggled with using or creating composite functions symbolically. 

Fourth, students struggled to find the domain of a composite function.  

 IC students had three additional misconceptions that immerged from 8 PCA items. 

These misconceptions were: evaluating function notation symbolically, interpreting a 

composite function, and interpreting rates of change. Although the APSSC and APIC 

students had fewer misconceptions on PCA items than the SSC and IC students, the 

misconceptions that did appear were similar. These results must be interpreted with 

caution because prior achievement was higher for SSC and APSSC students.   

 After adjusting for prior achievement, SSC students had significantly higher odds 

than IC students of correctly answering six PCA items (3, 6, 12, 16, 17, 20). IC students 

had significantly higher odds than SSC students of correctly answering two PCA items 

(7, 13). APSSC students had significantly higher probability than APIC students of 
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correctly answering four PCA items (6, 16, 17, 20), while APIC students had 

significantly higher probability than APSSC students of correctly answering one PCA 

item (13).   

Open-ended Task Results by Curriculum Type 

 Two open-ended tasks were administered during the first week of class in August 

2007 to the 207 high school students who entered AP Calculus AB or BC. Eight of these 

students did not take the PCA in the spring; therefore, they were excluded from the study. 

It was reported in earlier that 199 students had enrolled in AP Calculus for the 2007 

school year; however, six of these students were absent the day the open-ended tasks 

were administered. Therefore data were collected on the 193 remaining students, 57 

students completed four years of integrated mathematics curriculum (APIC) and 136 

students completed four years of single-subject mathematics curriculum (APSSC).  

 Each open-ended task is discussed separately with both quantitative and 

qualitative results provided for students from each curriculum pathway. First, a 

quantitative analysis of performance on the open-ended tasks is presented. Next, a 

qualitative analysis describes the solution strategies students used and errors committed 

by curriculum pathway.  

Overall Performance on Piecewise Function Task 

 The Piecewise Function task (Appendix A) contained 4 questions. Students were 

given a graph of a function and asked to determine the rate of change, write the piecewise 

function, and solve the function given a y-value. All questions were not worth the same 

number of points and the total number of points possible on the task was 24 (see 

Appendix B scoring rubric). The descriptive statistics for the total scores on the 
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Piecewise Function task for AP Calculus students are shown in Table 4.23. Both groups 

of AP students scored across the range of 0 to 24. One (2%) APIC student and 19 (14%) 

APSSC students received perfect scores on the Piecewise Function task. On the other 

hand, two (4%) APIC and one (1%) APSSC students scored 0 on this task.  

Table 4.23  
 
Descriptive statistics of total scores on the Piecewise Function task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or 
single-subject) 
Curriculum Type N Mean* SD Range 
APIC 57 14.18 6.56 0-24 
APSSC 134 18.65 5.18 0-24 

 * Not adjusted for prior achievement 

 Figure 4.8 displays the total score distributions for AP Calculus students who 

studied four years of college preparatory mathematics (integrated or single-subject) on 

the Piecewise Function task. As noted APIC student scores are spread evenly across the 

graph while APSSC student scores are negatively skewed (to the left). Sixty-three percent 

of APSSC students scored between 19 and 24 points compared with 30% of APIC 

students who scored in the same range on the Piecewise Function task.   

Performance on Individual Questions 

 As stated previously, each question was worth different points depending on what 

the students were required to do. Questions 1 and 2 required students to identify 

interval(s) on which the function had a specific rate of change and the greatest rate of 

change. These two questions were worth 7 points each. Question 3 required students to 

write the equation for the piecewise function given in the graph. This question was worth 

6 points. Finally, question 4 required students to solve the function given a y-value. This 

was worth four points because three different x-values were required and students had to 



 

 135

explain how they got their answer. The descriptive statistics for each question on the 

Piecewise Function task for AP Calculus students are shown in Table 4.24.  
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Figure 4.8. Score distributions on the Piecewise Function task for AP Calculus students 
who studied four years of college preparatory mathematics (integrated or single-subject). 
 
 
Table 4.24  
 
Descriptive statistics by question for the Piecewise Function task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or 
single-subject) 

Mean* 
(SD) Question # Points 

Possible APIC (N=57) APSSC (N=134) 
Range 

Question 1 7 5.37 
(2.16) 

6.33 
(1.42) 0-7 

Question 2 7 4.19 
(2.70) 

5.44 
(2.16) 0-7 

Question 3 6 2.32 
(2.38) 

4.01 
(2.19) 0-6 

Question 4 4 2.30 
(1.79) 

2.87 
(1.58) 0-4 

*Not adjusted for prior achievement 
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 Figure 4.9 displays the score distributions on the four questions of the piecewise 

function task. At least 50% of APSSC students answered questions 1, 2, and 4 completely 

and correctly; whereas, less than 50% of APIC students answered each question 

completely and correctly. Both groups (integrated and single-subject) of students had 

difficultly with question 3 which required them to write equations for the piecewise 

function. More APIC students (67%) than APSSC students (41%) received a score of 3 or 

lower on question three. 

 A larger percentage of APIC students received zeros on all four questions than 

APSSC students. The largest percentage of APIC students (42%) who received a zero 

was on item 3. While the largest percentage of APSSC students (19%) who received a 

zero was on item 4.    
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Figure 4.9. Score distributions on the four questions of the Piecewise Function task for 
AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
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 In an attempt to describe whether a score of zero meant a student had a 

misconception, meaning the question was attempted, or the student left the item blank, 

students’ responses were coded as either attempted or blank. The criterion used was if the 

student offered any work, then the response was coded as attempted; whereas, if the 

student did not offer any work, then the response was coded as blank. Figure 4.10 

displays the percentage of students from each curriculum who attempted or left the items 

blank. As seen from the graph APSSC students had a higher percentage of attempts on 

each of the four questions in the Piecewise Function task; whereas, APIC students had a 

higher percentage of blanks with the largest percentage on question 3. 
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Figure 4.10. Distribution of attempted versus blank items on the Piecewise Function task 
for AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
Comparison on Piecewise Function Task 

An analysis of covariance (ANCOVA) was conducted to determine the statistical 

difference between the mean overall score on the Piecewise Function task for the two 
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groups (integrated and single-subject) of students adjusted for IAAT scores. The adjusted 

means for overall scores on this task by curriculum type for AP Calculus students are 

presented in Table 4.25. A statistically significant difference between the mean overall 

score on the Piecewise Function task for AP Calculus students who studied four years of 

college preparatory mathematics was found (F = 10.320, p = .002). APSSC students 

performed significantly higher overall on the Piecewise Function task than APIC students 

after adjusting for differences in prior achievement (IAAT).  

Table 4.25 
 
 Adjusted descriptive statistics of total scores on Piecewise Function task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or 
single-subject) using IAAT scores 
Curriculum path N Meana Std. Error F p 
APIC 38 15.18 0.899 
APSSC 74 18.77 0.636 

10.320* .002 
aCovariates appearing in the model were evaluated at the following values: IAAT = 80.21 
*APSSC adjusted mean on Piecewise Function task score was significantly higher than 
APIC students. 
 
 
Solution Strategies on Piecewise Function Task 

 After all Piecewise Function tasks were scored numerically, a qualitative coding 

was applied. This purpose was to determine what strategies students used to solve each of 

the four questions on the Piecewise Function task. This section provides an analysis of 

the different solution strategies students employed on the four questions.  

 Question 1. The first question required students to determine what interval(s) of x 

the function had a rate of change of 2 and then explain how they determined the 

interval(s). Four categories immerged from student work: formula, graph, multiple, and 

cannot tell. The formula category was used when students used the slope formula to 

justify their answer (see Figure 4.11).  
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Figure 4.11. Example of student #1 work on the Piecewise Function task question 1 
coded as formula. 
 
 The graph category was used when students referred to the graph as the line 

increased by 2 units on the y and 1 unit on the x (see Figure 4.12).  

 
Figure 4.12. Example of student #29 work on the Piecewise Function task question 1 
coded as graph. 
 
 The multiple category was used when students used a combination of two or more 

strategies (see Figure 4.13).  

 
Figure 4.13. Example of student #65 work on the Piecewise Function task question 1 
coded as multiple strategies. 
 
 The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other three categories or it was left blank. Generally, 

students explained that the slope was 2, but it was not clear how the students found the 

rate of change (see Figure 4.14).   
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Figure 4.14. Example of student #4 work on the Piecewise Function task question 1 
coded as cannot tell. 
 
 Figure 4.15 displays the percent of students who used each strategy by curriculum 

pathway for question 1.  Overall, AP Calculus students from both curricula (integrated 

and single-subject) used similar strategies to solve question 1. Almost 40% of students, 

APIC (36%) and APSSC (37%) used the slope formula to explain their reasoning. 

Another fourth of students, APIC (23%) and APSSC (28%), used the graph to explain 

their reasoning. Another third of students, APIC (37%) and APSSC (33%), did not 

provide enough information to code their strategies. 

       APIC Students       APSSC Students 

  

  
 
 
 
 
 
 
 
 
 
Figure 4.15. Solution strategies on question 1 of the Piecewise Function task for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject). 
 
 Figure 4.16 displays the scores for students in each curriculum by their solution 

strategies for question 1. The graph does not include the multiple category because only 

one APSSC student and one APIC student used this method. Overall AP Calculus 

students were efficient using both the slope formula and the graph because no students 
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received less than 4 points when using either of these strategies. Although AP Calculus 

students used similar strategies, students’ success rate on question 1 using the three 

strategies was different. The APSSC students seem to use these strategies more 

efficiently than APIC students. The majority of APSSC students who used the slope 

formula or the graph strategy received perfect scores compared to a smaller percentage of 

APIC students who used these same strategies and received the same number of points. 
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Figure 4.16. Solution strategies and scores on question 1 of the Piecewise Function task 
for AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
 Question 2. The second question required students to determine what interval of x 

the function had the greatest rate of change and justify their answer. Five categories 

immerged from student work: formula, graph, multiple, cannot tell, and blank. The 

formula category was coded when students used the slope formula to justify their answer 

by showing that the only interval that had a slope of 2 was [0,2] (see Figure 4.17).  
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Figure 4.17. Example of student #110 work on the Piecewise Function task question 2 
coded as formula. 
 
 The graph category was used when students referred to the largest slope and/or an 

increasing line (see Figure 4.18).  

 
Figure 4.18. Example of student #71 work on the Piecewise Function task question 2 
coded as graph. 
 
 The multiple category was coded when students used a combination of two or 

more strategies (see Figure 4.19). 

 
Figure 4.19. Example of student #134 work on the Piecewise Function task question 2 
coded as multiple strategies. 
 
 The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other three categories or it was blank. Generally, 

students referred to the rate of change, but it was not clear whether they used the slope 

formula, the graph, or another method to find the rate of changes (see Figure 4.20).  
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Figure 4.20. Example of student #31 work on the Piecewise Function task question 2 
coded as cannot tell. 
 
  Figure 4.21 displays the percentage of students who used each strategy by 

curriculum pathway. Overall, AP Calculus students used similar strategies to solve 

question 2; however, the majority (79%) of students in either curricula did not write 

enough work to determine their strategy. Nine percent of APIC students and 12% of 

APSSC students used the slope formula to justify their answer. Four percent of both 

APIC and APSSC students used the graph to justify their answer.  

      APIC Students             APSSC Students 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21. Solution strategies on question 2 of the Piecewise Function task for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject). 
 
 Figure 4.22 displays the scores for students in each curriculum by their solution 

strategies for question 2. The graph does not include the multiple category because only 

one APIC student used this method. Although a small percentage of students used an 

identifiable strategy, their success rate on question 2 using these three strategies was 

9%
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Multiple N=1 Can't tell N=46
Blank N=5

12%
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different. Students in both groups who used the slope formula tended to use this strategy 

correctly. However, APSSC students who used the graph tended to score more points on 

question 2 than APIC students who used the same strategy. Finally, although the strategy 

was not identifiable, generally students were able to correctly answer the question. It may 

be the case that students used their answer and work from question 1 to help in answering 

question 2 and this may be why a solution strategy was not clearly identified.  
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Figure 4.22. Solution strategies and scores on question 2 of the Piecewise Function task 
for AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
 Question 3. The third question required students to write the piecewise function 

given in the graph. Five categories immerged from student work: slope-intercept 

equation, slopes but no intercepts, transformation along the y-axis, cannot tell, and 

blank. The slope-intercept equation category was coded when students wrote their 

equations using the slope-intercept form of a line (see Figure 4.23).  
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Figure 4.23. Example of student #1 work on the Piecewise Function task question 3 
coded as slope-intercept equation. 
 
 The slopes but no intercepts category was used when students found the slopes 

for each line and wrote an equation using the slopes, but did not take into consideration 

the y-intercept. (see Figure 4.24). 

 
Figure 4.24. Example of student #7 work on the Piecewise Function task question 3 
coded as slopes but no intercepts. 
 
 The transformation along the y-axis category was used when students found the 

correct slope, but then used the y-value where the line started as the y-intercept for their 

equation (see Figure 4.25).  

 
Figure 4.25. Example of student #167 work on the Piecewise Function task question 3 
coded as transformation along the y-axis. 
 
 The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other three categories or it was blank. Generally, 
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students left the question blank or completed only the restriction part of the question (see 

Figure 4.26). 

 
Figure 4.26. Example of student #29 work on the Piecewise Function task question 3 
coded as cannot tell. 
 
 AP Calculus students used multiple strategies to solve question 3. Figure 4.27 

displays the percentage of students who used each strategy by curricula. Sixty-two 

percent of APSSC students used the slope-intercept equation to write the equations for 

the piecewise function compared to 37% of APIC students. About the same percentage of 

students from both curricula pathways, APIC (18%) and APSSC (19%), found the correct 

slopes and used those for the equation; however, they did not include a y-intercept in 

their equations. More than twice the percentage of APIC students (12%) as APSSC 

students (5%) did not provide enough information to code a strategy. Similarly, more 

than twice the percentage of APIC students (28%) as APSSC students (11%) left the item 

blank.   

  

 

 

 

 

 

 



 

 147

        APIC Students                                            APSSC Students 

 

 

 

 

 

 

 

Figure 4.27. Solution strategies on question 3 of the Piecewise Function task for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject). 
 

 Figure 4.28 displays the scores for students in each curriculum pathway by their 

solution strategies for question 3. The graph does not include the transformation along 

the y-axis category because only four APSSC students and three APIC students used this 

method. As might be expected, students from both curricula pathways were more 

successful when they used the slope-intercept equation. However, APSSC students 

tended to use this strategy more efficiently than APIC students as 43% of APSSC 

students received a perfect score on question 3 compared with 14% of APIC students. 
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Figure 4.28. Solution strategies and scores on question 3 of the Piecewise Function task 
for AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
 Question 4. The fourth question required students to solve the function for y = 1 

and then explain how they got their answer. Six categories emerged from student work: 

equation, graph, table, multiple, cannot tell and blank. The equation category was used 

when students set their equations from question 3 equal to 1 and solved each for x (see 

Figure 4.29).  

 
Figure 4.29. Example of student #58 work on the Piecewise Function task question 4 
coded as using equations. 
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 The graph category was coded when students used the graph of )(xf  by either 

drawing a line at y = 1 or referring to a line crossing the function at y = 1 (see Figure 

4.30).  

 
Figure 4.30. Example of student #32 work on the Piecewise Function task question 4 
coded as using the graph. 
 
 The table category was used when students created a table of values identifying x-

values that had a y-value equal to 1 (see Figure 4.31).  

 
Figure 4.31. Example of student #149 work on the Piecewise Function task question 4 
coded as using a table. 
 
 The multiple category was used when students combined more than one strategy 

to answer the question. The majority (81%) of students in both curricula who utilized 

multiple strategies used the equations they had found in question 3 and the graph to solve 

the function (see Figure 4.32).  
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Figure 4.32. Example of student #85 work on the Piecewise Function task question 4 
coded as using both equations and the graph. 
 
 Another 10% of all AP Calculus students who utilized multiple strategies used a 

combination of the graph and rates of change to solve the function (see Figure 4.33).  

 
Figure 4.33. Example of student #148 work on the Piecewise Function task question 4 
coded as using the graph and the rates of change. 
 
 Finally, 7% of students from both curricula who utilized multiple strategies used 

the equations they had found in question 3 and a table to solve the function (see Figure 

4.34).  

 
Figure 4.34. Example of student #46 work on the Piecewise Function task question 4 
coded as using both equations and a table. 
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 The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other four categories or it was blank.  

 Figure 4.35 displays the percent of students by curriculum pathway who used 

each strategy on question 4. Overall AP Calculus students used similar strategies to solve 

question 4. However, twice the percentage of APSSC students (28%) as APIC students 

(14%) used the equation method. More than 20% of students from each curriculum 

pathway, APIC (23%) and APSSC (30%), used the graph to solve the function. About the 

same percentage of students, APIC (21%) and APSSC (22%), used multiple strategies to 

answer the question. Just over twice the percentage of APIC students (19%) as APSSC 

students (6%) did not give enough information to code a strategy. Finally, about the same 

percentage of students from each curriculum pathway, APIC (19%) and APSSC (13%) 

left this question blank. 

        APIC Students     APSSC Students 

 

 

 

 

 

 

 

Figure 4.35. Solution strategies on question 4 of the Piecewise Function task for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject). 
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 Figure 4.36 displays the scores for students in each curriculum pathway by their 

solution strategies for question 4. The graph does not include the table category because 

only two AP Calculus students used this method. Again, AP Calculus students used 

similar strategies; however, their success rate on question 4 using the four strategies was 

different. APIC students demonstrated efficiency with different strategies on this question 

because no student received a zero when using the equations, graph, or multiple strategies 

to solve the function. On the other hand, APSSC students were proficient with either the 

graph or multiple strategies because no student received a zero when using these two 

strategies. The most successful method for APSSC students was the graph method, with 

approximately one-fourth of students receiving full credit. APIC students were equally 

successful when they used the graph or multiple strategies, with 18% of students 

receiving full credit using either of two strategies.  
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Figure 4.36. Solution strategies and scores on question 4 of the Piecewise Function task 
for AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
Errors on Piecewise Function Task 

 A second coding was completed to analyze student errors. This section provides 

an analysis of the different mathematical errors students committed on the four questions 

of the Piecewise Function task. Student errors were grouped by curriculum pathway and 

compared across curricula. Although different percentages of students made errors on 

different aspects of each question, only those errors that were common to at least 20% or 

more of the students are reported. Twenty percent was utilized as the cutoff based on 

conversations with the three AP Calculus teachers involved in this study. They agreed 

that they became concerned if 20% or more of the students in their class made common 

errors.  
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  Question 1. The first question required students to determine what interval(s) of x 

the function had a rate of change of 2 and then explain how they determined the 

interval(s). Almost half (47%) of APIC students and 24% of APSSC students identified 

an incorrect interval as having a rate of change of 2. Students either chose the intervals 

[0, 2] and [2, 4] or the interval [0, 4]. Students who chose the intervals [0, 2] and [2, 4] 

explained that the slopes were different for these two segments (2 and -2), but the rate of 

change was the same (see Figure 4.37). While other students argued that the rate of 

change was the same for the two lines even though the direction of the segments was 

opposite (see Figure 4.38).   

 
Figure 4.37. Example of student #2 error on the rate of change for the Piecewise 
Function  task question 1. 
 
 

 
Figure 4.38. Example of student #184 error on the rate of change for the Piecewise 
Function task question 1.  
 
 Other students identified the interval [0, 4] as having a rate of change of 2. 

Although these students had similar explanations as the students who chose the intervals 

[0, 2] and [2, 4], these students also described that the rate of change was the absolute 

value of the slope (see Figure 4.39). These students did not recognize that at the point x = 

2 there is no rate of change because the limit from the left and the right are different.  
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Figure 4.39. Example of student #137 error on the rate of change for the Piecewise 
Function task question 1. 
 
 Question 2. The second question required students to determine what interval of x 

the function had the greatest rate of change and then justify their answer. Table 4.26 lists 

the errors students made across the two curricula pathways. Similar errors and results 

were found as in question 1 with twice the percentage of APIC students (30%) as APSSC 

students (15%) identified the intervals [0, 2] and [2, 4] as having a rate of change of 2 and 

therefore it was the greatest. The students’ arguments were similar to question 1, as they 

took the absolute value of slopes to find the rate of change. It is interesting to note that 5 

APIC students and 6 APSSC students who responded with the interval [0, 2] and [2, 4] or 

[0, 4] in question 1, got question 2 correct. This may be due to the use of the word 

greatest in the question.  

Table 4.26 
 
Errors on question 2of the Piecewise Function task for AP Calculus students who studied 
four years of college preparatory mathematics (integrated or single-subject) 

Errors % APIC students 
(N=57) 

% APSSC students 
(N=134) 

Students included the interval [2, 4] 30 15 
   
Students chose the interval [0, 4] 16 24 
 

 Twenty-four percent of APSSC students identified the interval [0, 4] compared to 

16% of APIC students. This error is interesting because a larger percentage (24%) of 

APSSC students gave this answer on question 2 than on question 1 (9%). Some of the 

students argued that the slopes of the graph were different, but the rate of changes were 
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equal (see Figure 4.40). Again these students did not recognize that on the continuous 

function at the point x = 2 the rate of change is undefined.  

 
Figure 4.40. Example of student #102 error on the rate of change for the Piecewise 
Function task question 2. 
 
 Question 3. The third question required students to write an equation for the 

piecewise function. Table 4.27 lists the errors students made across the two curricula. As 

was mentioned previously, question 3 was the most difficult for students in both curricula 

pathways.  

Table 4.27  
 
Errors on question 3 of the Piecewise Function task for AP Calculus students who 
studied four years of college preparatory mathematics (integrated or single-subject) 

Errors % APIC students 
(N=57) 

% APSSC students 
(N=134) 

At least two incorrect restrictions  53 25 
   
At least two incorrect equations 40 43 
 

 APIC students had a difficult time writing the restriction for the piecewise 

function with more than 50% of students writing at least 2 restrictions incorrectly. On the 

other hand, one-quarter of APSSC students wrote at least two of the four restrictions 

incorrectly. Errors with restrictions made only by APSSC students were: (1) they forgot 

to include the endpoint in one of the two restrictions (see Figure 4.41); and (2) they wrote 

the restrictions based on their y-values and not the x-values (see Figure 4.42).  



 

 157

 
Figure 4.41. Example of student #166 error on the restrictions for the Piecewise Function 
task question 3.  
 
 

 
Figure 4.42. Example of student #93 error on the restrictions using y-values for the 
Piecewise Function task question 3. 
 
 One-half (51%) of AP Calculus students from each curriculum pathway did not 

correctly write more than two of the four equations for the piecewise function. All four 

lines were linear functions, yet 43% of APSSC students and 40% of APIC students were 

unable to write correct equations. Students demonstrated two errors when writing the 

equation and both dealt with the y-intercept. In the first error students did not include a y-

intercept. While in the second error students used incorrect y-intercepts such as the end 

point of each line.  

 Question 4. The fourth question required students to find the x values that would 

satisfy 1)( =xf  and explain how they got their answer. This question was easy for most 

students and no errors were found.    

Summary of Performance on the Piecewise Function Task 

 Overall, APSSC students performed statistically higher on the Piecewise Function 

task than APIC students. APSSC students also had higher means on all four questions of 
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the open-ended task than APIC students. A higher percentage of APSSC students 

attempted to answer each of the four questions than APIC students. 

 Strategies AP Calculus students used were similar across the two curricula; 

however, a larger percentage of APSSC students scored higher than APIC students when 

using the graph or slope-intercept equation. A larger percentage of APIC students scored 

higher than APSSC students when they used multiple strategies, such as a graph, formula 

and/or table.   

 Both APIC and APSSC students struggled with the concept of rate of change and 

what it meant in relationship to a given graph. APIC students did not consider the 

magnitude of the line as important when answering questions about the rate of change. 

APIC students also had difficulty with writing linear functions. APSSC students also did 

not consider the magnitude of the line as important when discussing rate of change and 

they did not recognize that there was no slope at a certain place on the graph because the 

limits were not equal.     

Overall Performance on Filling a Tank Task 

 The Filling a Tank task (Appendix A) contained six parts. Students were given 

information about a hose that was filling an empty tank, but the flow rate changed 

because the value was closed and then re-opened. Students had to interpret the verbal 

meaning to draw a graph of the situation. Multiple times throughout the task students 

were asked to explain their thinking and what they had done. In the second half of the 

task a new function was introduced that represented water being pumped out of the tank 

at the same time that the hose was still filling the tank. These questions led to a final 

question about the instantaneous flow rate of the water from the hose. The questions 
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previous to the last question about instantaneous flow rate would be prerequisite skills for 

calculus students. However, the instantaneous rate of change question was a new concept 

that most AP Calculus students would not have learned prior to entering the course; 

however, it is an important concept students learn during the AP Calculus course.  

 All questions were not worth the same number of points and the total number of 

points possible on the task was 20 (see Appendix B for scoring guide). The descriptive 

statistics for the total scores on the Filling a Tank task for AP Calculus students is shown 

in Table 4.28. Neither group of students (integrated and single-subject) scored below a 2 

on the task with the range being 2 to 20. One (1.8%) APIC student and 2 (1.5%) APSSC 

students received perfect scores on this task.  

Table 4.28  
 
Descriptive statistics of total scores on the Filling a Tank task for AP Calculus students 
who studied four years of college preparatory mathematics (integrated or single-subject)  
Curriculum Type N Mean* SD Range 
APIC 57 11.81 3.88 2-20 
APSSC 135 12.16 3.81 2-20 

 *Not adjusted for prior achievement 

 The graph in Figure 4.43 displays the total score distributions for students who 

studied four years of college preparatory mathematics (integrated or single-subject) on 

the Filling a Tank task. The graph shows both groups of students scores are negatively 

skewed (to the left). The majority of students in both curricula, APSSC (57%) and APIC 

(53%), scored between 10 and 15 points on this task.  
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Figure 4.43. Score distributions on the Filling a Tank task for AP Calculus students who 
studied four years of college preparatory mathematics (integrated or single-subject). 
 
Performance on Individual Questions 

 As stated previously, each question was worth different points depending on what 

students were required to do. Question A required students to draw a graph to model the 

volume of water in the tank at any time and explain how they decided to draw the graph. 

Students had to interpret three different parts on the graph and give their explanation. 

This question was worth 6 points. Question B required students to find the average rate of 

change over two different intervals that were given. This question was worth 2 points for 

each rate of change. Question C required students to explain how the rate of changes 

found in question B could be interpreted on their graph. This question was worth 3 

points. Question D required students to draw another graph, which had their original 

graph from question A, but also included the new function to represent water being 

pumped out of the tank and how would they interpret the total volume in the tank at any 
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time. This question was worth 4 points. Question E required students to explain and find 

where the volume would be at a maximum point. This question was worth 4 points. 

Finally, question F required students to find the instantaneous flow rate from the hose 

into the tank at the maximum point. This question was worth one point. The descriptive 

statistics for each question on the Filling a Tank task for the AP Calculus students is 

shown in Table 4.29.  

Table 4.29  
 
Descriptive statistics by question for the Filling a Tank task for AP Calculus students 
who studied four years of college preparatory mathematics (integrated or single-subject)  

Mean* 
(SD) Question # Points 

Possible APIC (N=57) APSSC (N=135) 
Range 

Question A 6 4.39 
(1.41) 

4.87 
(1.30) 1-6 

Question B 2 1.44 
(0.71) 

1.59 
(0.64) 0-2 

Question C 3 2.02 
(1.14) 

2.04 
(1.18) 0-3 

Question D 4 2.28 
(1.22) 

2.02 
(1.37) 0-4 

Question E 4 1.53 
(1.39) 

1.45 
(1.43) 0-4 

Question F 1 0.16 
(0.37) 

0.18 
(0.38) 0-1 

* Not adjusted for prior achievement 

 The score distributions for AP Calculus students on the six questions of the 

Filling a Tank task are displayed in Figure 4.44. Fifty percent of students from both 

curricula (integrated and single-subject) were able to answer questions B and C 

completely and correctly. Both groups (integrated and single-subject) of students had 

difficultly with questions E and F, which required them to find the maximum volume and 

then find the instantaneous rate of flow at the maximum point. The majority of students, 

APIC (67%) and APSSC (69%), received a 2 or lower on question E. A smaller 
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percentage of APIC students (19%) received zeros on all six questions than APSSC 

students (26%). The most difficult question for both groups was question F with 82% of 

APIC students and 84% of APSSC students receiving a zero.  
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Figure 4.44. Score distributions on the six questions of the Filling a Tank task for AP 
Calculus students who studied four years of college preparatory mathematics (integrated 
or single-subject). 
 
 In an attempt to understand whether a score of zero meant a student had a 

misconception, meaning the question was attempted, or the student did not understand the 

concept, the item was left blank; students’ responses were coded as either attempted or 

blank. The same criterion described previously was used. That is, if the student wrote 

anything it was coded as attempted; whereas, if the student did not write anything it was 

coded as blank. Figure 4.45 displays the percentage of students from each curriculum 

pathway who attempted or left the items blank. As is seen from the graph APIC students 
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had a higher percentage of attempts in five of the six questions in the Filling the Tank 

task; while, APSSC students had a higher percentage of blanks.  
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Figure 4.45. Distribution of attempted versus blank items on the Filling a Tank task for 
AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 
Comparison on Filling a Tank Task 

 An analysis of covariance (ANCOVA) was conducted to determine the statistical 

difference between the mean overall score on the Filling a Tank task for the two groups 

(integrated and single-subject) of students adjusted for IAAT scores. The adjusted means 

for overall scores on the Filling a Tank task by curriculum type for AP Calculus students 

are presented in Table 4.30. No statistically significant difference between the mean 

overall score on the Filling a Tank task for AP Calculus students was found (F = 2.591, p 

= .110) after adjusting for prior achievement with IAAT scores.  

 



 

 164

Table 4.30  
 
Adjusted descriptive statistics of total scores on Filling a Tank task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or 
single-subject) using IAAT scores 
Curriculum path N Meana Std. Error F p 
APIC 38 11.65 0.573 
APSSC 75 12.79 0.403 

2.591 .110 
aCovariates appearing in the model are evaluated at the following values: IAAT = 80.04 
 
Solution Strategies on Filling a Tank Task 

 After all of the Filling a Tank tasks were scored numerically, a qualitative coding 

was applied. A first coding was used to determine what type of strategies students used to 

solve two of the six questions (B and E) on the Filling a Tank task. Four of the questions 

were not analyzed for strategies because students either had to explain their thinking or 

draw a graph that did not provide any strategies that could be analyzed. Therefore, this 

section provides an analysis of the different solution strategies students employed on 

questions B and E only.  

 Question B. This item required students to find the average rate of flow during the 

middle 2 minute period and over the entire 6 minute period. Six categories immerged 

from student work: slope-formula, average formula, table, multiple, cannot tell, and 

blank. The slope-formula category was coded when students used the slope formula with 

the two sets of points (see Figure 4.46). 
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Figure 4.46. Example of student #9 work on the Filling a Tank task question B coded in 
the slope-formula category. 
 
 The average formula category was coded when students used the average rates of 

flow given in the problem to calculate the average by adding the rates and dividing by the 

total number of rates (see Figure 4.47).  

 
Figure 4.47. Example of student #183 work on the Filling a Tank task question B coded 
in the average formula category. 
 
 The table category was coded when students used a table to determine the average 

rate of change (see Figure 4.48).  

 
Figure 4.48. Example of student #20 work on the Filling a Tank task question B coded in 
the table category. 
 
 The multiple category was coded when students used a combination of two or 

more strategies (see Figure 4.49). 



 

 166

 
Figure 4.49. Example of student #140 work on the Filling a Tank task question B coded 
in the multiple category. 
 
  The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other four categories or it was left blank. Generally, 

students stated the rate of change for both time periods, but it was not clear how they 

calculated those rates (see Figure 4.50). 

 
Figure 4.50. Example of student #111 work on the Filling a Tank task question B coded 
in the cannot tell category. 
 
  Figure 4.51 displays the percentage of students who used each strategy by 

curriculum pathway for question B. Overall, AP Calculus students used similar strategies 

to solve question B. Seventy-five percent of APIC students and 84% of APSSC students 

used the slope formula to find the average rates of change. Three times the percent of 

APIC students (9%) as APSSC students (3%) used the average formula to find the 

average rates of change. The same percentage of APIC and APSSC students (11%) did 

not provide enough information to code their strategies.  
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Figure 4.51. Solution strategies on question B of the Filling a Tank task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or single-
subject). 
 
 Figure 4.52 displays the scores for students in each curriculum pathway by their 

solution strategies for question B. The graph does not include the two categories table 

and multiple because only five students used these strategies. Overall AP Calculus 

students were successful using the slope formula with the majority of students, APIC 

(51%) and APSSC (64%) receiving full credit on question B. On the other hand, no 

student from either curriculum pathway received a score of 2 when they used the average 

formula strategy. In fact, most students who used the average formula received a zero on 

this question.  
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Figure 4.52. Solution strategies and scores on question B of the Filling a Tank task for 
AP Calculus students who studied four years of college preparatory mathematics 
(integrated or single-subject). 
 

 Question E. This question required students to find the maximum volume of water 

in the tank and explain how they determined the maximum point. Eight categories 

immerged from student work: formula, graph, table, compare rates of change, subtract y-

values, multiple, cannot tell, and blank. The formula category was used when students 

either created an equation or formula to calculate the maximum volume (see Figure 4.53).  
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Figure 4.53. Example of student #158 work on the Filling a Tank task question E coded 
in the formula category. 
 
 The graph category was used when students referred to the highest point on the 

graph or a specific point where two functions intersect (see Figure 4.54).  

 
Figure 4.54. Example of student #106 work on the Filling a Tank task question E coded 
in the graph category. 
 
 The table category was coded when students created a table by using the two 

functions that were pumping water in and out of the tank to find the total amount of water 

left in the tank at any time (see Figure 4.55). 
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Figure 4.55. Example of student #154 work on the Filling a Tank task question E coded 
in the table category. 
 
 The compare rates of change category was used when students compared the 

rates of change of the two functions to determine the point where more water was being 

pumped out of the tank than being pumped into the tank (see Figure 4.56). 

 
Figure 4.56. Example of student #5 work on the Filling a Tank task question E coded in 
the compare rates of change category. 
 
 The subtract y-values category was used when students discussed either 

subtracting the y-values of the two functions or that the greatest distance between the two 

functions is when the volume is at its maximum point (see Figure 4.57). 
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Figure 4.57. Example of student #62 work on the Filling a Tank task question E coded in 
the subtract y-values category. 
 
 The multiple category was coded when students used a combination of two or 

more strategies. Students used different combinations of strategies to find the maximum 

volume: using the graph and comparing rates of change (see Figure 4.58), using the graph 

and subtracting y-values (see Figure 4.59), and comparing rates of change for both 

functions and subtracting the y-values of each function (see Figure 4.60). 

 
Figure 4.58. Example of student #52 work on the Filling a Tank task question E coded in 
the multiple category. 
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Figure 4.59. Example of student #180 work on the Filling a Tank task question E coded 
in the multiple category. 
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Figure 4.60. Example of student #164 work on the Filling a Tank task question E coded 
in the multiple category. 
 
 The final two categories, cannot tell and blank were used when student work was 

unable to be coded into one of the other six categories or the student left the question 

blank. Generally, students gave a maximum point, but did not explain how they had 

found this point (see Figure 4.61). 

 
Figure 4.61. Example of student #60 work on the Filling a Tank task question E coded in 
the cannot tell category. 
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 Figure 4.62 displays the percentage of students who used each strategy by 

curriculum pathway on question E. AP Calculus students from both curricula (integrated 

and single-subject) used some similar strategies to solve question E; however, only 

APSSC students wrote a formula or equation to find the maximum volume. A higher 

percentage of APIC students (25%) than APSSC students (18%) used the comparing rates 

of change category. All other categories were used by about the same percentage of 

students.  

     APIC Students            APSSC Students 

 

 

 

 

 

 

 

Figure 4.62. Solution strategies on question E of the Filling a Tank task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or single-
subject). 
 

 Table 4.31 displays the scores for students in each curriculum pathway by their 

solution strategies for question E. The table does not include the table category because 

only two AP Calculus students, one from each curriculum pathway, used this method. 

Although students from both curricula (integrated and single-subject) used some similar 

strategies, students’ success rates on question E using the seven strategies were different. 

Question E was a difficult item because only 8% of all AP Calculus students received a 
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perfect score; however, almost half of students in each curriculum pathway, APSSC 

(46%) and APIC (47%) received a 2 or higher on this item. The 4% of APSSC students 

who used the formula strategy did not receive full credit on this question. Of the students 

who used the graph method about a quarter of APSSC students and a little more than a 

quarter (27%) of APIC students received a 3 or higher when using this method. Almost 

twice as many APIC students (75%) as APSSC students (40%) who used the multiple 

strategies scored a 3 or higher on this item. Ten percent of APSSC students scored a 4 

when using multiple strategies. Both groups of students were successful when comparing 

the rates of change for the two flow rates because about the same percentage of students, 

APSSC (63%) and APIC (64%), received a 3 or higher. The most successful strategy for 

students in both curricula was subtracting the y-values to find the largest difference. 

Eighteen percent of APIC and 21% of APSSC students used the method flawlessly as 

they received perfect scores when subtracting y-values of the two functions. 
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Table 4.31  
 
Solution strategies and scores on question E of the Filling a Tank task for AP Calculus 
students who studied four years of college preparatory mathematics (integrated or 
single-subject). 

Percent of Students Solution Strategies 
APSSC (N=135) APIC (N=57) 

Total Percent 
using strategies 0 pt. 1 pt. 2 pts. 3 pts. 4 pts. 

Formula       
APSSC 4.4 0.7 1.5 1.5 0.7 0 
APIC 0 0 0 0 0 0 

Graph       
APSSC 20.1 6.7 6.7 1.5 3 2.2 
APIC 19.4 8.8 5.3 0 3.5 1.8 

Multiple       
APSSC 7.3 2.2 1.5 0.7 2.2 0.7 
APIC 7.1 0 1.8 0 5.3 0 

Compare rates of change       
APSSC 17.7 2.2 0.7 3.7 8.9 2.2 
APIC 24.6 0 3.5 5.3 14 1.8 

Subtract y-values       
APSSC 17.8 0 0 7.4 6.7 3.7 
APIC 19.4 1.8 1.8 8.8 3.5 3.5 

Can’t tell       
APSSC 31.9 28.9 3 0 0 0 
APIC 28.1 24.6 3.5 0 0 0 

 

Errors on Filling a Tank Task 

 A second coding was completed to analyze student errors. In this section the 

errors that AP Calculus students made on the Filling a Tank task are reported by the six 

questions. Student errors were grouped by curriculum pathway and compared across 

curricula. Errors committed by 20% or more of students in either curricula were analyzed 

to determine similarities and differences across the groups.  

  Question A. The first question required students to graph the volume of water in a 

tank at any time and then explain how they drew the graph. Table 4.32 lists the errors 

students made across the two curricula. Just over a third of AP Calculus students, APIC 

(39%) and APSSC (33%), drew the middle section of the graph incorrectly. Students 
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generally drew a straight line, interpreting the rate of change as constant during the time 

period two to four minutes (see Figure 4.63). However, the problem states that at 2 

minutes the tap is gradually closed until at t = 4 when the flow rate equals 5 L/min. Other 

students interpreted the rate of 5 L/min as the slope of the line during the time period [2, 

4] (see Figure 4.64). 

Table 4.32  
 
Errors on question A of Filling a Tank task for AP Calculus students who studied four 
years of college preparatory mathematics (integrated or single-subject) 

Errors % of APIC 
students (N=57) 

% of APSSC 
students (N=135) 

Students drew an incorrect middle section of 
the graph. 39 33 

   
Students’ explanation was about the scale and 
which variable should go on the x and y axes. 21 13 

   
Students’ explanation discussed only two of 
the rates or they “plotted given points”. 28 29 

 
 

 
Figure 4.63. Example of student #124 error on graphing second segment of the Filling a 
Tank task question A. 
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Figure 4.64. Example of student #10 error on graphing second segment of the Filling a 
Tank task question A. 
 
 The final two errors dealt with students’ explanations not being complete. 

Approximately the same percentage of APIC (21%) and APSSC (26%) students who 

drew a correct graph did not receive full credit on their explanation. A larger percentage 

of APIC students (21%) than APSSC students (13%) explained how they created their 

graph (e.g., what scale to use on each axis, what variable to put on each axis) rather than 

how they drew the function. Approximately the same percentage of students in each 

curricula, APIC (28%) and APSSC (29%), explained how they used the two rates to draw 

the two segments, but then the third segment was either guessed or students connected 

the dots (see Figure 4.65). 
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Figure 4.65. Example of student #55 error on explanation of the Filling a Tank task 
question A. 
 
 Question B. The second question required students to find the average rate of flow 

during two different time periods. One-fourth of APIC students and less than one-fifth of 

APSSC students (17%) found an incorrect rate of change for the interval [2, 4]. Some of 

the reasons this error appeared were students had an incorrect graph, students incorrectly 

used the rates of change to find the slope, and students misread their graph selecting 

wrong coordinate points.  

 Question C. The third question required students to explain how the rates they had 

found in question B could be interpreted on the graph in question A. Nearly one-fourth of 

students, APIC (26%) and APSSC (22%), were unable to explain the meaning of the rates 

of change on their graph. Students referred to the rates as describing if the function was 
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increasing or decreasing or the flow rate of the water into the tank being faster or slower. 

Although these explanations are correct, students did not interpret the meaning of the 

rates of change on their graph (see Figure 4.66). 

 
Figure 4.66. Example of student #125 error on explanation relating rates of change to 
graph on the Filling a Tank task question C. 
 
 Question D. The fourth question required students to draw their original volume 

function from question A on a graph, draw a new function (W) to represent water 

pumped out of the tank, and explain how to find the volume of water that remained in the 

tank at any time. Table 4.33 lists the errors students made across the two curricula.  

Table 4.33  
 
Errors on question D of Filling a Tank task for AP Calculus students who studied four 
years of college preparatory mathematics (integrated or single-subject) 

Errors % of APIC 
students (N=57) 

% of APSSC 
students (N=135) 

Incorrect W function, correct explanation. 25 16 
   
Students drew a linear W function, but it was 
incorrect for various reasons (i.e., wrong 
starting point, decreasing, or increasing). 

23 21 

 

 Approximately one-fifth of AP Calculus students, APIC (25%) and APSSC 

(16%), drew an incorrect W function, but their explanation of how to find the total 

volume in the tank was correct. Although the students’ function for water being pumped 
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out (W) was incorrect, they were able to reason and use their understanding of the 

situation to explain how to find the total volume of the water left in the tank.     

 Just over one-fifth of students from both curricula pathways, APIC (23%) and 

APSSC (21%), drew an incorrect W function for various reasons. Some students drew an 

increasing linear function for W; however, they started the graph at (0, 0), (2, 10), or (2, 

15). Other students drew W as a decreasing linear function starting at the point (2, 80) 

and ending at the point (6, 20) (see Figure 4.67). Students had a difficult time overcoming 

the iconic translation that if water is being pumped out it should be represented with a 

graph that is decreasing. 

 
Figure 4.67. Example of student #48 error on graphing the W function on the Filling a 
Tank task question D. 
 
 Question E. The fifth question required students to show or explain how to find 

on their graph from question D the point that represented the maximum water level in the 

tank. Table 4.34 lists the errors students made across the two curricula.  
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Table 4.34  
 
Errors on question E of Filling a Tank task for AP Calculus students who studied four 
years of college preparatory mathematics (integrated or single-subject) 

Errors % of APIC 
students (N=57) 

% of APSSC 
students (N=135) 

Students estimated the maximum water level 
to be (2, 80).  44 35 

   
Students did not give a maximum point. 26 23 
 

 More than one-third of students, APIC (44%) and APSSC (35%), estimated the 

maximum water level to be at (2, 80). Students made this error for two reasons. First, the 

majority of students (63%) had at least one incorrect graph, which lead to an incorrect 

maximum value. Second, another group of students explained that the point (2, 80) was 

where water began to be pumped out of the tank; therefore, the water level could not rise 

above 80 L. What students did not take into account was the rate at which water was 

being pumped into the tank was greater than the rate of water being pumped out of the 

tank.  

 Approximately one-fourth of students, APIC (26%) and APSSC (23%), did not 

provide a maximum point. It is impossible to determine if students did not read the 

question completely or if students did not understand that they needed to provide the 

maximum point.   

 Question F. The sixth question required students to find the instantaneous flow 

rate at the maximum water level. Almost one-third of students, APIC (32%) and APSSC 

(30%), found an incorrect instantaneous rate of change. These students were split among 

three instantaneous rates of change (0 L/min, 40 L/min, and -10 L/min). Students who 
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found the instantaneous rate of 0 L/min explained that the volume of water pumped in 

was equal to the volume of water pumped out at the maximum point (see Figure 4.68).   

 
Figure 4.68. Example of student #28 error on finding the instantaneous rate on the Filling 
a Tank task question F. 
 
 Another group of students found the instantaneous flow rate to be 40 L/min. 

Students found the slope of the line using the point (2, 80) and another point very close 

but prior to (2, 80). For instance one student used the points (1.999, 79.96) and (2, 80) to 

find the rate of change of 40 L/min (see Figure 4.69). 

 
Figure 4.69. Example of student #188 error on finding the instantaneous rate on the 
Filling a Tank task question F. 
 
 Another popular answer for the instantaneous flow rate was -10 L/min. Students 

used the rates of change for the different functions and subtracted them. Students found 

the rate of change for the volume function at 2 minutes was 5 L/min and the rate of 

change for the W function at 2 minutes was 15 L/min. After subtracting these two values 

students reported the rate of change of -10 L/min (see Figure 4.70). 
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Figure 4.70. Example of student #126 error on finding the instantaneous rate on the 
Filling a Tank task question F. 
 
Summary of Performance on the Filling a Tank Task 

 APIC and APSSC students performed quite similarly on the Filling a Tank task. 

No statistical significance between mean overall scores was found. APIC students scored 

slightly higher on questions D and E; whereas, APSSC students scored slightly higher on 

questions A, B, C, and F. APIC students had a smaller percentage of students score 0 on 

individual questions. APIC students also had a higher percentage of students who 

attempted five of the six questions.  

 Solution strategies used by AP Calculus students from either curriculum pathway 

were similar. The majority of students used the slope-formula and was successful using 

it. Students were also fairly successful subtracting y-values of two functions to find a 

maximum point. APSSC students tended to use a formula strategy, but were not 

successful when it was applied. 

 The errors committed by both groups of AP Calculus students were similar across 

each question. Students had difficulty, multiple times, with understanding what was 

meant by a rate of change that was continually changing. If the function was linear, most 

students were able to get the correct rate of change and interpret it; however, once the 
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function changed because of a varying rate of change students began to apply linear 

function procedures incorrectly. Students in both groups had difficulty interpreting the 

meaning of the rate of change in this contextual task. A few errors were specific to either 

group of students in one curriculum or the other. APSSC students tended to use the 

wrong points when finding a rate of change; whereas, APIC students used averages to 

find rate of change instead of specific points.  

Summary 

 In this chapter, the results of the analysis of high school students’ mathematical 

understanding after completing four years of college preparatory mathematics (integrated 

or single-subject) were described. More specifically, student performance on the 

Precalculus Concept Assessment (PCA) was summarized along with an item analysis of 

misconceptions related to functions. In addition an analysis of AP Calculus students’ 

solution strategies and errors on the Piecewise Function task and the Filling a Tank task 

was provided.   

 Overall, high school students from each curriculum pathway demonstrated a 

limited understanding of functions based on the three instruments used in this study. SSC 

students performed statistically higher on the PCA than IC students; whereas, APSSC and 

APIC students performed comparably. On average, after adjusting for prior achievement, 

APSSC, APIC, and SSC students scored at or above 12.91 on the PCA. Carlson et al. (in 

review) predicted 13 as a cutoff in predicting success in college Calculus. On the other 

hand, the mean performance of IC students was 11.62 on the PCA.  

 The item analysis of the PCA supports the fact that students seem to be 

completing four years of college preparatory mathematics (integrated and single-subject) 
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with a procedural understanding of functions. For instance students tend to evaluate and 

solve functions correctly; however, they exhibited multiple misconceptions about rate of 

change and inverse functions. These topics are essential for students as they continue into 

college calculus or AP Calculus at the high school.  

 AP Calculus students tended to use similar solution strategies when solving the 

two open-ended tasks. The solution strategies employed by students included using a 

graph, an equation, a table, or using multiple methods to solve the questions on the two 

tasks. Although students used similar strategies, their ability to use these strategies 

effectively differed. APSSC students tended to score more points on questions because 

they used strategies effectively.  

 AP Calculus students from each curricula pathway demonstrated errors related to 

rates of change. Students tended to use words such as slope, rate of change, and steepness 

interchangeably. Student errors on the two open-ended tasks and the PCA revealed a lack 

of understanding of the interpretation or meaning of rate of change. Students successfully 

calculated the rate of change of linear functions; however, when the rate of change was 

not linear, students struggled to calculate it, represent it correctly on the graph, or 

interpret the meaning in relation to a real world context.  

 In the next chapter, an overview of the entire study is provided. The findings of 

this study are discussed using relevant research to support the conclusions and 

implications of this study are examined. Finally, the limitations of this research study are 

summarized and recommendations for future research regarding students’ mathematical 

understanding after completing four years of college preparatory mathematics (integrated 

and single-subject) are discussed. 
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CHAPTER 5: SUMMARY, DISCUSSION, AND RECOMMENDATIONS 

 This study examined similarities and differences in students’ mathematical 

understanding after studying four years of college preparatory (integrated or single-

subject) mathematics. More specifically, this study investigated students’ performance 

and common misconceptions on tasks requiring different levels of cognitive demand and 

focused on specific representations (e.g., graphic, numeric, and symbolic). Strategies that 

AP Calculus students used to solve open-ended tasks, and the errors they made were 

analyzed to understand how their previous mathematics courses impacted what they did 

and how they did it.  

 This chapter is divided into five sections. The first section presents a brief 

overview of the study. The second section includes the key findings of the study. The 

third section outlines the implications of the study. The fourth section presents a 

discussion of the limitations of the study. Finally, the chapter concludes with 

recommendations for future research.  

Summary of the Study 

 Many school districts are reluctant to adopt an integrated mathematics course 

pathway because opponents claim that integrated curricula materials do not prepare 

students for collegiate-level mathematics. Other schools have adopted an integrated 

mathematics pathway and reported their students are prepared for collegiate level 

mathematics. Still other secondary schools offer parallel course pathways, which allow 

students to take a series of either integrated or single-subject courses. Students in these 

districts complete four years of college preparatory mathematics courses that prepare 
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them for either Advanced Placement (AP) Calculus or AP Statistics, depending on course 

offerings available at the school.  

 The difference in organizational structure and expectations raises the question: 

What are the similarities and differences in how students understand mathematics after 

successfully completing either an integrated or single-subject curriculum path? Students 

in either path are learning mathematics; however, what and how the mathematics is 

learned is influenced by the curriculum and how it is implemented. A key question is: 

what mathematical knowledge will students from these two different curriculum paths 

possess?  For students continuing on into AP Calculus an important practical question is: 

Will students from either curricula pathway be disadvantaged or advantaged?  

 Students who have completed four years of mathematics in different curricular 

paths may display similarities and differences in their strategies for solving problems, 

types of mathematical errors, misconceptions, ability to solve questions requiring 

different levels of cognitive demand and focused on specific representations (e.g., 

graphic, numeric, and symbolic).  

 As curriculum designers revise and develop new curricula, they should 

understand what students are learning or not learning from existing curricula. Stein et al. 

(2007) points out “few studies have connected the curriculum (or tasks) as enacted with 

student learning or achievement” (p. 358). Even fewer studies have connected high 

school mathematics curricula with student learning (Harwell et al., 2007). Research needs 

to examine what mathematics students who have experienced high school integrated or 

single-subject mathematics curricula have learned and what strategies they have 

developed.  
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Purpose of the Study 

 This study documented similarities and differences in mathematical understanding 

of high school students who completed four years of college preparatory (integrated or 

single-subject) mathematics curricula. This study sought to answer the following research 

questions: 

1.   How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) perform and compare on 

calculus readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

2. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP Calculus 

perform and compare on college readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

3. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 
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Calculus perform and compare in solution strategies and errors on open-ended 

mathematical tasks that focus on functions during the first quarter of AP 

Calculus? 

Methodology 

 In order to assess students’ understanding of functions the Precalculus Concept 

Assessment (PCA) was administered to 505 high school students who studied four years 

of college preparatory mathematics curriculum (integrated or single-subject). Of the 505 

students, 201 studied four years of the integrated mathematics curriculum (IC) and 304 

studied four years of the single-subject mathematics curriculum (SSC). Of the 505 

students who took the PCA, 199 enrolled in AP Calculus the following year, including 59 

students who studied four years of the integrated mathematics curriculum (APIC) and 

140 students who studied four years of the single-subject mathematics curriculum 

(APSSC).  

 In addition, AP Calculus students completed two open-ended tasks, Filling a Tank 

and Piecewise Function, (See Appendix A). Both tasks required students to demonstrate 

their understanding of functions; however, one task was contextually based and the other 

was not. Each task included multiple components in which students were asked to show 

their work and explain their thinking. Students worked on the two tasks individually 

during their regular class period during the first week of their AP Calculus class in 

August 2007.        

The PCA questions were coded for levels of cognitive demand (Stein et al., 2000) 

and types of representation. Student responses were used to analyze performance and 

misconceptions about functions. A baseline measure, the Iowa Algebra Aptitude Test 
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(IAAT), was used to equate the two groups (integrated and single-subject). SSC and 

APSSC students’ scores were statistical higher than IC and APIC students, indicating that 

students entered the two curricula paths with different prior achievement. An analysis of 

covariance (ANCOVA) was used to compare students on overall performance. A 

multivariate analysis of covariance (MANCOVA) was used to compare students’ 

performance on questions requiring different levels of cognitive demand and on items 

reflecting specific representations (e.g., graphic, numeric, symbolic) related to functions.  

Scoring guides (see Appendix B) for the two open-ended tasks were developed. 

Validity and reliability of the scoring guides and coding of student responses was 

established. All student work was scored quantitatively and then coded qualitatively for 

solution strategies and mathematical errors. An ANCOVA was used to compare students’ 

overall performance on the two open-ended tasks using the IAAT as the covariate.  

Results and Discussion of Key Findings 

Performance of high school students on the PCA 

 Data from this study support findings for the three research questions. This 

section reports the results by research question. It also includes a discussion of the 

relevance of the findings in relationship to other research studies.   

1. How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) perform and compare on 

calculus readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  
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c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

 Overall performance. Results from this study indicate that, after adjusting for 

prior achievement, SSC students perform significantly higher (F = 9.39, p = .002) than 

IC students (12.91 to 11.62) on the PCA. Two SSC students received a perfect score of 

25; whereas, the highest score obtained by IC students was 22. Other researchers 

(Harwell et al., 2007; Schoen et al., 1999; Schoen & Hirsch, 2003a) have reported no 

difference between student achievement (integrated and single-subject) on standardized 

tests. However, the results of this study are consistent with results reported by other 

researchers who found SSC students performed statistically higher than IC students on 

instruments measuring algebra skills and performance in college mathematics courses 

(Hill, R. O. & Parker, 2006; Huntley et al., 2000).  

 Although the PCA was not designed as a calculus readiness exam it has served as 

a decent predictor. Carlson, Oehrtman & Engelke (in review) found college students 

enrolled in a college algebra course who took the PCA and received a score of 13 or 

above continued on in calculus and earned a grade of C or better. The results of the 

current study indicate 60% of SSC students scored a 13 or above on the PCA; whereas, 

approximately one-third of IC students scored in this same range. These results may 

indicate that SSC students are better prepared to enter calculus than IC students after 

completing four years of a mathematics curriculum.  

 Responses to items by levels of cognitive demand. All PCA items were coded by 

the four levels of cognitive demand (memorization, procedures without connections, 
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procedures with connections, and doing mathematics); however, only three of the four 

codes were used in this study since no PCA item was coded as memorization. After 

adjusting for prior achievement, SSC students performed statistically higher (F = 25.136, 

p = .000) than IC students (5.50 to 4.35) on PCA items coded as procedures without 

connections. This indicates that SSC students were more proficient than IC students in 

using procedures they were taught. These results were expected, as others (Huntley et al., 

2000) have found similar results with SSC students scoring higher on procedural items. 

This may be due to the majority of single-subject curricula designed to have students 

learn procedures and then practice extensively (O'Brien, 1999); whereas, integrated 

curricula were designed for students to work with contextual problems and use multiple 

strategies with fewer procedural problems (Senk & Thompson, 2003).  

 PCA items coded as procedures with connections or doing mathematics require a 

higher level of cognitive demand. It was hypothesized that integrated students would 

perform better on higher level questions than single-subject students because integrated 

curricula were designed to have students solve unknown or higher level questions (Senk 

& Thompson, 2003).  

 In this study, IC and SSC students answered these items similarly. Students did 

not perform statistically different on PCA items coded as procedures with connections (F 

= .026, p = .872) or doing mathematics (F = 1.562, p = .212). These results were 

unexpected because others (Huntley et al., 2000; Schoen & Hirsch, 2003a) have found IC 

students were better able to answer higher cognitive demand questions because the 

curricula were designed for students to interpret situations; use multiple representations; 
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use procedures that require a deeper understanding of a mathematics concept; and use 

complex and non-algorithmic thinking to solve unfamiliar problems. 

 Responses to items focused on specific representations (e.g., graphic, numeric, 

symbolic). All PCA items were coded for three representation types (graphic, numeric, 

and symbolic). Graphical items were the easiest for all students regardless of curriculum 

type. After adjusting for prior achievement, IC and SSC students did not perform 

statistically different on graphic (F = .531, p = .467) or numeric items (F = .055, p = 

.815). However, SSC students performed statistically higher (F = 14.651, p = .000) than 

IC students on PCA items that required symbolic representations. As Huntley et al. 

(2000) found, SSC students tend to do better with symbolic notation because it is given 

more attention in their curriculum. 

 Common misconceptions about function. The PCA was designed with distracters 

that are common misconceptions students have about functions. Therefore, if 20% or 

more of a specific curricula group chose a particular incorrect answer then it was 

considered a misconception because it was selected at a rate higher than random. IC 

students displayed misconceptions on items related to evaluating and solving functions; 

interpreting rates of change; function composition; and function inverse. SSC students 

displayed similar misconceptions on items related to interpreting rates of change and 

function inverse.  

  On function composition items IC students displayed misconceptions with regard 

to completing two input-output processes. Although the function composition items 

required students to use different representations to solve questions, when students were 

given the symbolic representations they seemed to be more successful. When given the 
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function in other representations (numeric or graphic) students seemed to complete one 

input-output process, but were confused on what or how to work with the second input-

output process. 

 Both IC and SSC student misconceptions with regard to rates of change were 

consistent with not interpreting the entire graph, but instead basing their answer on 

specific values or points (Carlson & Oehrtman, 2005). For example, given a graph (speed 

vs. time) with two functions on the same axes, students either interpreted it as a position 

graph, or they calculated the average speed, which was identical for the two cars, and 

subsequently interpreted this as the two cars were at the same position after one hour. 

Students did not consider all intervals of the graph and therefore made an incorrect 

conclusion about the position of the two cars.  

 On multiple function inverse items most IC and SSC students exhibited a 

misconception between the meaning of multiplicative inverse and function inverse. These 

results indicate that students in this study have a relatively weak procedural 

understanding of inverse functions, and most often were not able to apply their 

procedures in different contexts. Students in both curricula also demonstrated confusion 

with taking the reciprocal of the function.   

 The misconceptions that IC students displayed with evaluating, solving, 

interpreting rates of change, function composition, and function inverse raises some 

important questions. As some critics have argued, students who use integrated curricula 

lack important procedural understandings for higher level mathematics and the results of 

this item analysis reveal that this may be true. However, the results also indicate that 

students who use single-subject curricula have similar misconceptions with interpreting 
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rates of change and function inverse. All of these concepts are important as students 

finish a college preparatory mathematics course. Moreover, as students continue on in 

either Calculus at the college level or enter AP Calculus in high school these 

misconceptions may hinder their understanding of the concepts of limits, derivatives, and 

integrals all essential to the study of calculus.    

Performance of AP Calculus students on the PCA 

2) How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 

Calculus perform and compare on college readiness concepts in terms of:  

a. overall performance;  

b. responses to items by levels of cognitive demand;  

c. responses to items focused on specific representations (e.g., graphic, 

numeric, symbolic); and  

d. common misconceptions about functions? 

  Overall Performance. No statistically significant difference (F = 3.54, p = .063) 

between the mean overall scores on the PCA for APSSC and APIC students (16.14 to 

14.85) was found after adjusting for differences in prior achievement. Critics of the 

integrated curricula have suggested that high achieving students would be “held back” if 

they used the integrated curricula. The results from this study are contrary to this belief 

and reveal there is no statistical difference between integrated and single-subject AP 

Calculus students in their achievement level on the PCA.  

 The majority of AP students from both curricula, APSSC (85%) and APIC (63%), 

scored a 13 or above on the PCA. These results indicate that the high school students who 
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completed either curricula path were performing at or above the level reported to receive 

a passing grade in college calculus (Carlson et al., in review).   

 Responses to items by levels of cognitive demand.  After adjusting for prior 

achievement, APIC and APSSC students did not perform statistically different (F = 

1.468, p = .227) from each other on items coded for the three levels of cognitive demand 

(procedures without connections, procedures with connections, and doing mathematics). 

Overall AP Calculus students answered more higher level cognitive demand questions 

correctly than the sample of all students completing four years of college preparatory 

mathematics.    

 Responses to items focused on specific representations (e.g., graphic, numeric, 

symbolic). After adjusting for prior achievement, APIC students performed statistically 

higher (F = 4.971, p = .028) than APSSC students on PCA items that required numerical 

representations. On the other hand, APSSC students performed statistically higher (F = 

6.996, p = .009) than APIC students on PCA items that required symbolic 

representations. Finally, APIC and APSSC students did not perform statistically different 

(F = 1.055, p = .306) on graphical items. 

 The numerical representation results were surprising although, it may be the case 

that students in the integrated curriculum tend to work more with tables than students in 

the single-subject curriculum. Although the curricula were not analyzed, the integrated 

textbooks have been described as focusing on various types of representation (Stein et al., 

2007). This may account for why APIC students scored significantly higher on these 

items because they experienced numeric representations within their curriculum. The 

symbolic representation results are to be expected as other researchers (e.g., Huntley et 
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al., 2000) have found similar results with single-subject students scoring higher than 

integrated students on symbolic manipulations items.   

 Common misconceptions about function. As described previously, the PCA was 

designed with distracters that are common misconceptions students have about functions. 

Therefore, if 20% or more of a specific curricula group chose a particular incorrect 

answer then it was considered a misconception. APIC students exhibited misconceptions 

with interpreting rates of change and working with composite and inverse functions. 

APSSC students had similar misconceptions related to interpreting rates of change and 

working with inverse functions.   

 Both groups of AP Calculus students displayed action-oriented views of functions 

because the majority (70%) of students correctly answered the evaluating and solving 

items (Dubinsky & Harel, 1992). This provides evidence that AP Calculus students who 

have completed either curriculum were able to obtain the procedural skills necessary for 

evaluating and solving functions regardless of the curricula. 

  A majority (64%) of the APSSC students correctly answered questions involving 

function composition compared to about half (48%) of the APIC students. However, an 

analysis of the function composition questions revealed that 6 of the 8 items required 

students to use a symbolic representation of the function, and this may explain why APIC 

students were less successful in answering these questions given their background with 

symbolic manipulation compared to APSSC students. However, as Dubinsky and Harel 

(1992) describe, it may be the case that APSSC students are moving towards a process-

oriented view of functions; whereas, the APIC students still have an action- oriented 

view of functions. 
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As was reported above for all students, the AP Calculus students also struggled 

with interpreting rates of change and function inverse. Less than half the AP students in 

either curriculum were able to correctly interpret the rate of change or find or evaluate an 

inverse function. The majority of AP Calculus students seem to have a strong action- 

orientation of function as Carlson and Orhrtman (2005) describe. For example, students 

were given a graph of volume as a function of time as had to write a linear function to 

represent time as a function of volume. This may seem like a simple task; however, most 

students did not recognize or understand that the graph was the inverse of the function 

that was needed. Fifty-two percent of APSSC and 42% of APIC students incorrectly 

wrote ttv 5)( = , which was a correct function for the given graph, but not a correct 

equation for time as a function of volume. Another 20% of APIC students 

wrote vvt 5)( = showing some understanding that they needed to have time as a function 

of volume; however they did not seem to recognize that the inputs and outputs were not 

related correctly for the given graph.  

 These results on interpreting rates of change are discouraging because this is a 

critical AP Calculus topic. If students do not have a solid understanding of rates of 

change, how can they be expected to develop an understanding of limits and derivatives? 

Even more discouraging is the fact that it does not matter which curriculum path students 

came through, all exhibited similar misconceptions about functions that are crucial for 

learning higher level mathematics, including calculus concepts.   

Performance of AP Calculus students on Open-ended Tasks  

3) How do high school students who studied four years of college preparatory 

mathematics curriculum (integrated or single-subject) and enrolled in AP 
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Calculus perform and compare in solution strategies and errors on open-ended 

mathematical tasks that focus on functions during the first quarter of AP 

Calculus? 

Performance on the Piecewise Function task 

 The open-ended Piecewise Function task provided students the opportunity to use 

different strategies to answer the four questions embedded within the task. Overall, after 

adjusting for prior achievement, the APSSC students performed statistically higher than 

APIC students on this task (F = 10.320, p = .002). APSSC students also had higher 

averages on individual questions than APIC students. A higher percentage of APSSC 

students also attempted more of the questions than APIC students.  

 The results of APSSC students scoring higher on the Piecewise Function task 

were not surprising. Based on descriptions of single-subject curricula by others, (Senk & 

Thompson, 2003; Stein et al., 2007) students master definitions and standard algorithmic 

procedures through repetition. The Piecewise Function task was a non-contextual 

procedural task that required students to know how to compute rates of change and write 

and solve linear functions. Students studying the single-subject curricula should be 

proficient at completing this task after completing four years of college preparatory 

mathematics. However, the integrated curricula focuses attention on solving problems 

based on real world situations. It may be the case that the integrated students were at a 

disadvantage on this item because they had no context in which to relate the mathematics 

and make sense of the results. Another possible reason for the performance is that 

piecewise functions are not introduced in the integrated curricula or teachers chose not to 

teach this concept. Although a content analysis of the curricula was not part of this study, 
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an examination of the index of the Core-Plus curriculum found only two piecewise 

function problems in the four textbooks with no section or unit devoted to piecewise 

functions. 

 On the other hand, it was surprising that APSSC students attempted more 

questions than APIC students. The integrated curriculum was designed so teachers can be 

classroom facilitators for students who are actively engaged in mathematical learning (St. 

John et al., 2004). If students are learning in an actively engaged classroom, it follows 

that they would be more willing to attempt a problem than to leave it blank.  

 Solution strategies students used on Piecewise Function task. Students in both 

curricula used similar strategies to solve the four questions on the piecewise function 

task. Approximately the same percentage of students used the graph and slope formula on 

the first two questions. Students from both curricula pathways used the slope-intercept 

form of a line to write their equations on question three. On the final question students 

used the graph to solve their equations most often. The results of this study indicate 

students in both curricula tended to use appropriate solution strategies.  

 Although students used similar strategies, they were not always successful with 

the strategies they chose to use. For example, a higher percentage of APSSC than APIC 

students used the formula strategy to find the rate of change; however, both groups of 

students were more successful with the graphing strategy. When students were required 

to write equations for the piecewise function, APSSC students were more successful 

using the slope-intercept formula than APIC students.  

 Errors students made on Piecewise Function task. Although student solution 

strategies were similar across the two curricula, errors were distinguished by the 
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curricula. For example, 47% of APIC students gave an incorrect interval for the rate of 

change as compared to 24% of APSSC students. Although both groups of students were 

able to use the slope formula to find the rate of change, APIC students did not attend to 

the direction of the rate of change. Finding the rate of change takes into account both 

magnitude and direction; however, APIC students only attended to the magnitude in their 

explanations and justifications. Although some APSSC students made this same error, the 

percentage was almost half that of the APIC students.  

 Another error specific to the APIC students was writing the domain (x-value) 

restrictions on a piecewise function. The majority (53%) of APIC students denoted 

incorrect restrictions in the answer, whereas, a quarter of APSSC students made this same 

error. Errors made only by APSSC students tended to be either forgetting to include the 

endpoint in their restrictions or they used the y-values of the coordinate point to write 

their restrictions. On the other hand, APIC students either left the question blank or wrote 

equations with no restrictions. These errors demonstrate a different understanding of 

piecewise functions for the two groups of students. Although APSSC students had errors, 

their understanding seemed more complete because they realized that the equations 

needed restrictions. However, APIC students who wrote equations without restrictions 

may not have realized a need for the restrictions. Without interviewing students, an 

answer for why students made these errors is not possible.  

 Writing equations for linear functions was another error made by approximately 

the same percentage of students in both groups on the Piecewise Function task. More 

specifically, about 40% of students were not able to write linear functions for the 

piecewise function regardless of the curricula. This error is rather surprising because all 
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of these students have completed four years of college preparatory mathematics. Linear 

functions are the first function introduced to high school students and typically reviewed 

each year. Yet, 40% of AP Calculus students were not able to write these equations. 

Frequent errors made writing the equations were: (1) students found a correct rate of 

change, but excluded the y-intercepts; (2) students wrote a correct rate of change, but 

then did a transformation on the y-axis rather than on the x-axis for the y-intercepts. Both 

of these errors were committed by approximately the same percentage of students in each 

curriculum.            

 Performance on Filling a Tank task.  After adjusting for prior achievement, there 

was no statistically significant difference (F = 2.591, p = .110) between the APSSC and 

APIC students on the open-ended Filling a Tank task. APSSC students had higher 

averages than APIC students on four of the questions; whereas, APIC students had higher 

averages than APSSC students on the other two questions. A higher percentage of APIC 

students attempted more of the questions than APSSC students.  

 The absence of difference in performance between the two groups of students on 

the Filling a Tank task was not surprising because based on other studies (Harwell et al., 

2007; Huntley et al., 2000; Schoen & Hirsch, 2003a) integrated students usually perform 

equal to or better than single-subject students on problem solving tasks. The Filling a 

Tank task was contextual and required students to understand the procedural steps for 

finding rate of change; but more importantly, they had to interpret the meaning of a real 

world situation into mathematics on a graph. The task also required students to 

understand rates of change that were not all linear. Given their four years of high school 
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mathematics, both groups of students should have had the necessary mathematical 

knowledge and skills to complete the task.   

 The fact that APIC students attempted more questions on this task than APSSC 

students was not surprising. The integrated curriculum was designed for students to be 

actively engaged in mathematical learning (St. John et al., 2004). This task provided 

APIC students with a familiar situation where they could become actively engage in the 

mathematics using a contextual situation.   

 Solution strategies students used on Filling a Tank task. Students in each 

curriculum used similar strategies to solve the two questions on the Filling a Tank task 

that were analyzed. The majority of students, APSSC (85%) and APIC (75%), used the 

slope formula on the first question. There were differences in the most popular strategy 

used by each group for the second question. APSSC students used the graph while APIC 

students compared rates of change to determine the maximum water level.  

 These results suggest that students in each curriculum developed similar strategies 

during their mathematics preparation. Although the organizational structure of the 

mathematics curricula may be different, students from each curriculum tended to choose 

strategies appropriate for solving the task. 

 Although students used similar strategies, they were not always successful with 

the strategies they chose to use. For example, 20% of APSSC students used the graph 

strategy to find the maximum water level in the tank; however, only one-fourth of these 

students were successful finding the maximum water level in the tank. Although a 

smaller percentage of APSSC students (18%) used the comparing rates of change 

method, these students were more successful with 11% finding the maximum water level. 
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The majority of APSSC (64%) and APIC (51%) students were successful using the slope 

formula for finding rates of change for two different time periods.   

 Errors students made on Filling a Tank task. Student solution strategies were 

similar across the two curricula as were the errors. On three of the six questions students 

from each curriculum demonstrated errors with rates of change. For example, one-third of 

students from each curriculum drew an incorrect middle section of the graph. The middle 

section of the graph related to a varying rate of change. Although a large percentage of 

students in each curriculum successfully found rates of change with the slope formula on 

the second question, the majority of these students were unable to explain the meaning or 

draw a correct graph with a varying rate of change. These concepts are foundational in 

the learning of calculus concepts.   

 Another error across curricula was drawing an incorrect graph of water being 

pumped out of the tank. Students did not interpret the contextual situation into a graphical 

representation correctly. Although the rate of change given was constant, 16% of APSSC 

and 25% of APIC students did not draw a correct function. Another 21% of APSSC 

students and 23% of APIC students recognized the function was linear; however, either 

they did not start at a correct point or they drew a decreasing function to represent water 

being pumped out of the tank.   

Summary 

 Since the information from this segment of the study is based on student written 

responses not one-on-one interviews, the reasons why students used particular solution 

strategies or made the errors is impossible to determine.   
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 A reoccurring theme across responses to all three instruments for both groups of 

students was misconceptions and errors related to rate of change, a foundational concept 

in the study of calculus. Regardless of their curricular path, AP Calculus students seemed 

to have procedural knowledge of how to calculate the rate of change, but seem to lack the 

conceptual knowledge that is needed to learn calculus topics.  

Implications of the Study 

 This section provides a discussion of the implications of findings for various 

stakeholders. The discussion begins with an examination of the implications for 

curriculum developers, then moves to suggestions for researchers and concludes with 

implications for teachers and society in general.  

Implications for curriculum developers 

  As research is conducted and reported, curriculum developers gain information to 

inform future changes to improve textbooks to help students better understand and learn 

mathematics. While approaches to curriculum development vary greatly, ideally, each 

new edition of a curriculum should be based on how the curriculum has worked in 

classrooms, including feedback from teachers and students who have used the piloted or 

latest versions of the curriculum.   

 Results of this study indicate that curriculum developers, both single-subject and 

integrated, need to provide additional attention to the topics of rates of change, function 

composition, and function inverse. These three concepts are crucial for higher level 

mathematics, yet results of this study reveal low performance for students regardless of 

their curriculum path. Students were well versed on the procedural skills of the slope 
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formula; however, they lacked the ability to interpret rates of change in different contexts 

such as on a graph or in a word problem.  

 The vocabulary used within textbooks for rate of change is important and may, in 

fact, have contributed to student errors and misconceptions. Students struggled to find a 

rate of change of 2 on a piecewise function graph. Student explanations point to a 

misunderstanding of the meaning of slope, rate of change, and steepness. A content 

analysis of the vocabulary terms in these curricula was not done. However, a cursory 

search in the textbooks for rate of change and slope found instances in both curricula 

where the words slope and steepness were related as were rate of change and steepness. 

Although these words are used interchangeably, the question is: are they all defined to 

represent the same concept? Steepness relates to the magnitude of a line; however, rate of 

change and slope relate to the magnitude and direction of a line.   

 Curriculum developers of the integrated mathematics curriculum should be 

concerned that students who completed four years of college preparatory mathematics 

and performed above-average on a nationally normed assessment (IAAT) struggled with 

evaluating and solving functions. This study was based on students using the first edition 

of their textbook. Changes in the second edition of this curriculum have focused on the 

symbolic manipulation and connecting algebraic forms of different types of 

representations such as numeric and graphic (Core-Plus Mathematics Project, 2007). 

Therefore, it might be the case that some of the misconceptions found in the study will 

not be valid for students studying from the newer edition.  
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Implications for researchers 

 Studies conducted by external researchers (Harwell et al., 2007; Hill, R. O. & 

Parker, 2006; Huntley et al., 2000; Smith III & Star, 2007) have documented mixed 

results on what high school students who use an integrated mathematics curricula learn. 

Researchers need to continue to delve deeper into what high school students using the 

two curricula are learning or not learning in each curricula (Harwell et al., 2007).  

 Part of the results of this study concur with Harwell et al. (2007)  “that Standards-

based [integrated] curricula do not impede the mathematical performance and 

development of high achieving students” (p. 95). There were no statistically significant 

differences on overall scores on the PCA or the two open-ended tasks between AP 

Calculus students who studied either of the two curricula. The majority of the AP 

Calculus students scored above a 13 on the PCA, which should qualify them to be 

successful in calculus (Carlson et al., in review).  

 Other researchers (Cai, Lane et al., 1996; Lesh & Zawojewski, 2007; Resnick, 

1988; Robitaille & Travers, 1992) have argued that how students solve problems may be 

more important information than whether students get correct answers, particularly to 

understand the benefits and limitations of particular curricula alternatives. The 

mathematics education field would benefit by delving deeper into how students approach 

problems; what types of representations they choose to use; and how they interpret 

answers.  

 This study provides a glimpse into AP Calculus students’ solution strategies and 

errors on open-ended tasks related to functions. Results revealed that students across the 

two curricula are using similar strategies. Although students used two different curricula, 
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similar strategies are being learned by all students. Noticeably, some of the errors 

students made are different across the curricula, and other errors, such as interpreting 

rates of change, are common across the curricula. This leads to more questions about 

what students are learning or not learning from the two curricula.  

 The research agenda for the field should move from deciding which group 

performs better, to how students are solving, representing, and justifying mathematical 

problem situations based on whatever curriculum they have experienced. Additional 

research on performance on different mathematical topics within the geometry and 

statistics and probability strands that have been found to be difficult for U.S. students 

should be pursued. This line of research will provide curriculum developers with valuable 

information to help revise and strengthen their mathematics curriculum.  

Implications for teachers 

 Teachers are an integral part of the school system because they help students learn 

mathematics. Teachers who are not aware of the two curricula pathways and what each 

has to offer, may not be able to provide guidance and direction to students. New students 

enter teachers’ classrooms every year with prior knowledge of mathematics. The 

teacher’s job is to build on this prior knowledge so students continue learning and 

building new knowledge of mathematics. If teachers are not aware of what students 

learned from their curriculum, how can they begin to build on prior knowledge?  

 Results from this study indicate that although students’ solution strategies are 

similar across the two curricula, single-subject students tend to be more effective in using 

whatever strategies they chose. This is important for teachers, but especially for AP 

Calculus teachers because as both groups of students enter the same class some integrated 
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students may struggle. Not because they do not understand the mathematics, but because 

their skills have not been practiced enough and they may make more errors.  

 This study also indicates that students from both curricula struggle with the 

concept of rate of change. This is a central idea of calculus, yet the expected level of 

knowledge is not being achieved. AP Calculus teachers must understand that students 

entering their classroom have misconceptions about rate of change. Many students are 

capable of using the slope formula to find the rate of change; however, they are unable to 

interpret the meaning of rate of change in a contextual situation or with a given graph.  

 AP Calculus students also showed misconceptions about inverse functions. The 

majority of students seemed to not understand the difference between multiplicative 

inverse and function inverse. If teachers are not aware of these misconceptions, teaching 

topics such as limits and derivatives will likely be difficult. However, if teachers are 

aware of these common misconceptions, they can work through them at the start of the 

course so all students are on the same playing field as they begin their study of calculus. 

Implications for society 

 Critics (e.g., Hill, R. O. & Parker, 2006; e.g., Wu, 1997) of the integrated 

curricula have documented that students are not learning the mathematics that they 

should. However, the results of this study indicate that students successfully completed 

four years of either the integrated or single-subject curricula and entered AP Calculus 

with similar mathematical understandings. Although this study represents one school 

district in the Midwest, it provides a glimpse into what high school students are learning 

in the two curricula. As Figure 1.1 depicts, there is an overlapping of the mathematical 

topics that these students learn during their high school mathematic courses. The results 
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of the study indicate that the intersection of the two circles may be greater than 

previously thought.  

 Society needs to be familiar with both curricula paths and be able to identify the 

benefits of each curriculum for the learning of mathematics (Reys, R. E. & Reys, in 

press). Although the curricula are organized differently, the fundamental mathematical 

concepts are addressed in both curricula. There may not be a “right” curriculum for every 

student as Hiebert (1999) stated, “if researchers cannot prove that one course of action is 

the best one, it follows that researchers cannot prescribe a curriculum and a pedagogical 

approach for all students and for all time” (p. 7). However, researchers can document the 

current status of reform efforts such as what mathematics curriculum is being used and 

how students learn from it. Researchers can also document the effectiveness of curricula 

such as “what students can learn under what kinds of conditions” (Hiebert, 1999, p. 9).  

Limitations of the Study 

 This study compared two groups of students who earned four units of 

mathematics credit in an integrated course sequence or in a single-subject sequence. All 

students earned four units of mathematics, yet in addition to following two different 

curricula paths these students had different mathematics teachers and this represents an 

important variable that was not controlled. Teachers are an integral part of what happens 

in the classroom. They influence what students have the opportunity to learn as well as 

how they are taught the mathematics. The NRC report (2004) argues strongly for the 

need to collect implementation data so researchers know students had an opportunity to 

experience the curriculum being investigated. However, this study relied on data gathered 

at the end of students four years of mathematics course work. The students in each 
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curricula path experienced different teachers and there is no guarantee that teachers 

taught the curriculum as intended by the developers.  

 Another limitation of this study is the number of students in the study and how 

they were assigned to the two groups. The sample was 505 students in one district from 

two high schools that were enrolled in Integrated 4, Honors Integrated 4, Precalculus, and 

Honors Precalculus and had taken the previous mathematics courses in their respective 

sequencing. However, the sample was further reduced to those students for whom an 

IAAT score was available. Students were also not randomly assigned to the two curricula 

paths, which limits the inferences about causation.  

 The study was also limited to the use of two open-ended tasks that were not 

piloted with other students to gain insight into problems with the wording of questions on 

the two tasks. The Piecewise Function task was taken from an AP Calculus teacher who 

had simplified a past AP Calculus free-response question from the 2003 exam. The three 

AP Calculus teachers involved in the study helped choose the two open-ended tasks for 

their students, yet none of the teachers or the researcher realized that two of the questions 

would prove to be ambiguous for students because of wording and/or the graph that was 

provided. For example, on question 1 of the Piecewise Function task the question asked 

students “for what interval(s) of x does f(x) have a rate of change of 2”. A better question 

(and more mathematically correct) would have been to add the word average before rate 

of change.  

 Another limitation of this study was that five NSF high school integrated curricula 

are used in U.S. classrooms; however, this study focused solely on the integrated 

curriculum developed by the Core-Plus Mathematics Project. The results of this study 
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are based only on students who completed the first edition of the Contemporary 

Mathematics in Context: A Unified Approach series. Recently a second edition of the 

Core-Plus textbooks was developed and changes were made to reflect years of research 

with students and teachers to develop skills and concepts that were deemed weak in the 

previous edition. Three of these changes were:  

1) An accelerated introduction of symbol-based reasoning – including symbol 
manipulation and proof. 

2) More explicit development of symbol sense – connect algebraic forms to 
numeric, graphic, and context interpretations and implications.  

3) Earlier introduction of inverse functions and logarithms. (Core-Plus 
Mathematics Project, 2007)    

 

The students in this study used the first edition of the Core-Plus curricula; therefore, the 

results are a reflection of an older version of the curriculum the students in this study had 

used or experienced.  

 A final limitation of this study was the absence of a content-analysis of the 

curricula used by the students. Understanding what students have had the opportunity to 

learn within their textbook sequence and what teachers chose to implement is critical in 

interpreting results based on an assessment that may or may not be aligned with the 

curricula. Understanding how mathematics topics and concepts are introduced and built 

upon would also help to determine why students used specific strategies or why they 

committed certain errors. A content-analysis and teacher implementation data could also 

help in establishing what vocabulary words are used within the two curricula and how 

students might be interpreting specific words such as rate of change, slope, and steepness.  
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Recommendations for Future Research 

 The “math wars” have pushed the mathematics education field to supply answers 

about the different mathematics curricula that are available for use in schools. Limited 

research has been conducted at the high school level in regard to integrated mathematics 

curricula. Although this study provides a snapshot of high school students mathematical 

understanding after studying from either integrated or single-subject curricula, additional 

research needs to be conducted on what students are learning from these two curricula. 

This study focused on students understanding of functions and algebra, other studies 

should investigate other content areas. More research needs to be conducted at different 

points through the high school years. It may be beneficial for data to be collected after 

each year of learning from these curricula. Although the curricula are organized 

differently, it may be useful to know when students are learning specific topics to 

examine the impact of the mathematical sequence.  

 An extension of this study would be to follow students through the end of AP 

Calculus. Research should be conducted to analyze how the initial misconceptions 

students have about rate of change affect them during their AP Calculus course and what 

influence it has on their ability to be successful in the class. Research is needed to 

understand how students perceive these curricula by researching what students believe to 

be the benefits of the different curricula. Another area of needed research is what happens 

when students switch between mathematics curricula pathways. Many students switch 

between the two curricula pathways, whether it is in the same school or because they 

move to a new area. Understanding what students are learning or not learning from being 

in each curriculum path can help in revisions of current curricula.  
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 Another area of needed research would be to follow all students who have 

completed the four years of either curriculum as they transition into college. Although 

some research has been conducted in this area (e.g., Smith, J. P., III & Star, 2007), the 

focus has been on student attitudes and ability to move into a different curricula type 

(from integrated to single-subject). A different dimension of research would focus on 

identifying misconceptions of functions prior to entering college, followed by 

investigating how those misconceptions affect their learning in college mathematics. 

 Another area of research concerns the content-analysis of the integrated and 

single-subject curricula. Research should explore what mathematics is available for 

students to learn in the two curricula. If students are to have a similar mathematical 

understanding after studying four years of mathematics in these two curricula, then it will 

be important to investigate what students have an opportunity to learn from textbooks or 

their teachers. Research should also focus on the amount of time that is spent on specific 

topics. Although each curriculum develops the concept of rate of change, it is important 

to understand not only how much attention is given to this topic, but also how the 

mathematics is introduced and built upon throughout the curriculum. Finally, research 

should investigate the different mathematical vocabulary used within the curricula. As 

was found in this study, students seem to be using the words such as rate of change, 

steepness, and slope interchangeably; however, steepness relates to the magnitude of the 

line and not direction. It is important that curricula use appropriate language.  

 Finally, research is needed to better understand how teachers implement these two 

curricula and the influence of the implementation on students’ learning of the 

mathematics. Studying how teachers who have different mathematical knowledge 
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background teach the mathematics from these two curricula can provide new information 

to support teacher preparation. Research is also needed to determine how teachers 

interpret these two curricula. Teachers who are teaching both curricula may combine 

what they believe to be robust from both curricula to create a “new hybrid curriculum”. If 

so, what effect will this have on student learning? Are students hurt by this decision or 

are they helped to have a clearer understanding of the mathematics being taught?    

Summary 

 This study documented high school students’ mathematical knowledge after 

studying four years of college preparatory mathematics courses (integrated or single-

subject). One sample of 505 students and a sub-sample of 199 students who enrolled in 

AP Calculus participated in the study. Data were collected from four instruments, one 

multiple choice assessment [Iowa Algebra Aptitude Test (IAAT)] to document prior 

achievement before entering either curriculum path, another multiple choice assessment 

[Precalculus Concept Assessment (PCA)] and two open-ended tasks (Filling a Tank and 

Piecewise Function) to document students understanding of functions. Students’ solution 

strategies, errors, and misconceptions with regards to functions were analyzed. A 

qualitative and quantitative analysis was conducted to describe how students in each 

curriculum performed on the three different instruments. In addition, the analysis was 

used to describe the solution strategies students employed, as well as common errors 

students made across the two curricula. 

 The findings confirm that AP Calculus students in both curricula are using similar 

strategies as they solve open-ended tasks related to functions. Data also documents that 

students who have studied from either curricula have similar misconceptions about rate of 
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change and function inverse. Students understanding of rate of change is procedural 

oriented and they struggle to interpret rates of change or varying rates of change. Student 

misconceptions with regard to function inverse seem to be based on confusion between 

multiplicative and function inverses. This study indicates that statistically significant 

differences exist between the two groups of students on items that require either symbolic 

or numeric representations after controlling for prior achievement. Overall, after 

adjusting for prior achievement, the single-subject students outperformed the integrated 

students on the PCA. However, students from both curricular paths who were enrolled in 

AP Calculus performed at the same level on the PCA after adjusting for prior 

achievement.  

 Helping high school students learn higher level mathematics is imperative for 

their continued success in college and keeping career options open. Societal views of the 

integrated and single-subject curricula have raised questions and some schools have been 

reluctant to adopt an integrated curriculum. Opponents who criticize the integrated 

curricula claim that students are not learning mathematics. This study provided findings 

that can add to the research already conducted on what students who study from the 

integrated and single-subject learn or do not learn. This study also provided mixed results 

and is a reminder of the complexity of researching student mathematical learning in the 

educational system. Although one study will not answer the question, this study 

contributes to the mathematics education field by providing documentation of the 

effectiveness of curricula by examining “what students can learn under what kinds of 

conditions” (Hiebert, 1999, p. 9).  
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APPENDIX A 

 
Two Open-ended Tasks 
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ID#:______________________   NAME:_____________________ 
Piecewise Functions 

 
*Show all work on the paper provided. Explain your thinking process for 
each question. 

1 2 3 4 5 6 7

-1

1

2

3

4

5

Graph of f(x)  
Let f(x) be a function defined on the closed interval [0, 7]. The graph of f(x), consisting of 
four line segments, is shown above. 
 

1. For what interval(s) of x does f(x) have a rate of change of 2? Explain how you 
got your answer. 

 
 
 
 
 
2. On which interval of x is the rate of change of f(x) the greatest? Justify your 

answer. 
 
 
 
 
 
3. Write the piecewise function for f(x). 
 
 
 
 
 
4. Find the values of x for which f(x) = 1. Explain how you got your answer. 
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ID#:______________________   NAME:_____________________ 

Filling a Tank (Taylor, 1992) 
 
At time t = 0, water begins to flow from a hose into an empty tank at the rate of 40 
litres/min. This flow rate is held constant for 2 minutes, at which time the tank has 80 
litres. At that point (t = 2), the tap is gradually closed until at t = 4, the flow rate equals 5 
litres/min. This flow rate is held constant for the final 2-minute period, at which point (t = 
6) the tank is observed to contain 120 litres.  

 
a) Draw a graph (label axes) of the volume V of water in the tank (litres) against the 

time t (min) for 0 ≤ t ≤ 6. Explain how you decided to draw the graph. 

 
Explanation: 

 
 
 
 
 
b) What is the average rate of flow into the tank over the middle 2-minute period 

( 42 ≤≤ t ) and over the entire 6-minute period?  
 
 
 
 
 
 
c) Explain how the rates found in (b) can be interpreted on your graph.  
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Now suppose that, in addition to the above sequence of events, a pump is started up at t = 
2, and , for the next 4 minutes, pumps water out of the tank at the constant rate of 15 
litres/min.  

 
d) What we have called V above, now represents the total amount of water that has 

flowed into the tank at time t; let W represent the total amount of water pumped 
out of the tank at time t. Plot V and W against t on the same set of axes. Show on 
your graph how to interpret the volume of water in the tank at any time.  

 

 
 
 
e) Show or explain how to find on your graph of (d) the point at which the water 

level in the tank is at a maximum. 
 
 
 
 
 
 
 
 
 
 
 
f) What is the instantaneous flow rate from the hose into the tank at this point? 

 
 

  



 

 235

APPENDIX B 

 

Scoring Guides for Open-ended Tasks 
 



 

 236

Scoring Rubric: Piecewise Function Task 1 
 

1.  Student gives the correct interval [0,2] 
Student gives the interval [0,2] and [2,4]                              2 points 
Student gives the interval [0,4]                                             1 point 

3 points 

 Student provides correct explanation for an interval ( either [0,2], 
[2,4], or [0,4] by:  
 
Implicitly or explicitly refers to OR finds the magnitude of the slope 
to be 2.  

BUT NOT 
I found the slope or used the slope 

 
OR 
 
Uses the graph by creating a right triangle or shows the change in y 
over the change in x is equal to 2. 

BUT NOT 
I used the graph or the graph shows you 

 
OR 
 
Equivalent argument 
 

4 points 

 
Total Points 7 points 

 
Strategy Employed:  
 
A – Formula  B – Graph C – Table D – Multiple E – None or can’t 

tell 
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2.  Student gives the correct interval [0,2] 

Student gives the interval [0,2] and [2,4]                              2 points 
Student gives the interval [0,4]                                              1 point 

3 points 

 Student provides a valid justification for the correct interval(s) by:  
 
Using the slope of each line to provide justification for their answer 
 
OR 
 
Uses the graph to explain that the interval(s) chosen have the 
greatest slope or rate of change. 
 
OR  
 
Equivalent argument 

4 points 

 
Total Points 7 points 

 
Strategy Employed:  
 
A – Formula  B – Graph C – Table D – Multiple E – None or can’t 

tell 
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3.  Student provides y = 2x or equivalent equation 1 point 

Student provides the correct restrictions 20 ≤≤ x  , 20 <≤ x  or 
2≤x  

½ point 

Student provides y = -2x + 8 or equivalent equation  1 point 

 

Student provides the correct restrictions 42 ≤≤ x  or 42 <≤ x  ½ point 
Student provides the equation 422 +−−= xy  instead of the two 
equations  y = 2x  and y = -2x + 8                                       (2 points) 

 *** 

Student provides the correct restrictions 40 ≤≤ x  or 4≤x instead 
of 20 ≤≤ x and 42 ≤≤ x                                                                   
(1 point)                                                                                     

 

Student provides y = -x + 4 or equivalent equation 1 point 
Student provides the correct restrictions 54 ≤≤ x  or 54 <≤ x  ½ point 
Student provides y = x – 6 or equivalent equation 1 point 

 

Student provides the correct restrictions 75 ≤≤ x  or 5≥x  ½ point 
Student provides the equation 15 −−= xy  for instead of the two 
equations y = -x + 4 and y = x – 6                                       (2 points) 

 *** 

Student provides the correct restrictions 74 ≤≤ x or 4≥x instead 
of 54 ≤≤ x and 75 ≤≤ x                                                                    
(1 point)                                                                                                  

 

 
Total Points 6 points 
*** Special cases 
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4.  

Student provides x = 
2
1  

1 point 

 
Student provides x = 

2
7  

1 point 

 Student provides x = 7 1 point 
 Student provides correct explanation for the correct x-values by:  

 
Uses the equations by setting y = 1 and solving for x in each 
equation 
 
OR  
 
Uses the graph implicitly (describes what they did) or explicitly 
(drawing a line at y = 1) and then finds the three points where the 
function crosses y = 1.  

BUT NOT 
I used the graph or the graph shows you 

 
OR 
 
Equivalent argument 

1 point 

 Student sets all four equation found in question 3 equal to 1 and 
solves for x resulting in 4 x-values and does not recognize that one 
answer does not exist. 
 
OR 
 
Student uses the equation y = -x + 4 solving for x and getting 3 
                                                                                              (-1 point)   

 

 
Total Points 4 points 

 
Strategy Employed:  
 
A – Equation  B – Graph C – Table D – Multiple E – None or can’t 

tell 
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Scoring Rubric: Filling a Tank Task 2 
a.  Student labeled both axes with numbers 

1 2 3 4 5 6

20

40

60
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100

120

Time (minutes)
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 (l
itr
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)

 

1 point 

Student draws one correct segment 
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1 point  

Student draws two correct segments 
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1 point 
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Student draws a complete and correct graph 
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1 point 

Student ‘s explanation refers to: 
 
The slope or flow rate of the water at the three different time periods 
(constant or slows down)  
 
OR 
 
Equivalent argument 
 

Partial Credit                                                            (1 point) 
Student refers to one or two  specific time period but not all 
three  
 
OR 
 
Student only explains that they plotted given points and 
connecting the dots 
 
OR 
 
It started fast and then gradually slowed down 

BUT NOT 
I followed the directions 

2 points 

 
Total Points 6 points 
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b.  Student gives the correct flow rate for t = [2,4] as 15 litres/min 1 point 
 Student gives the correct flow rate for t = [0,6] as 20 litres/min 1 point 
 Student does not have correct units or leaves off the units   (-1 point)  

 
Total Points 2 points 

 
Strategy Employed:  
 
A – Formula  B – Graph C – Table D – Multiple E – None or can’t 

tell 
     

 
 

c.  Student provides an explanation that relates to the graph:  
 
By drawing a straight line (secant) between the initial and endpoints 
on the graph 
 
OR 
 
Refers to the slope as the rate of change 
 
OR 
 
Relates the rate to the steepness (concavity) of the line  
 
OR 
  
Equivalent argument 

1 point 

 Student mentions [0,6] either explicitly or implicitly [i.e., overall, 
from the beginning to the end, chosen intervals] 

1 point 

 Student mentions [2,4], either explicitly or implicitly [i.e., in the 
middle] 

1 point 

 
Total Points 3 points 
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d.  Student labeled both axes with numbers 

1 2 3 4 5 6
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1 point 

Student draws a correct graph of W  1 point  
Students interpret the volume of water in the tank by: 
 
Labeling on the graph the area between the two functions (W and V) 
 
OR 
 
Student draws a new function to show the amount of water in the 
tank by subtracting the two values and finding a new point. 
 
OR 
 
Equivalent method 

2 points 

 
Total Points 4 points 
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e.  Student finds the maximum water level at approximately 2.8 

minutes [accept answers between 2.5 and 3.2 minutes] or at 
approximately 87 litres [accept answers between 84-90 litres]  

Partial Credit                                                                    (1 
point) 
Student finds the water level to be between 2 and 4 minutes 
or between 80-90 litres 

2 points 

 Student explains using the graph that they have drawn (whether 
correct or not) to find the maximum water level by:  
 
Subtracting the two functions (V-W) to find the largest difference in 
volume  
 
OR 
 
Discusses the relationship between the V and W graph and how by 
translating the W function up to match the V function this will be 
the point of the maximum water level. (Discusses the maximum will 
happen when the rate at which the flow in is equal to the flow out) 
 
OR 
 
Uses the new function on the graph that accounts for the difference 
between the V and W functions (whether they are correct or not) 
and has labeled or given the maximum point.  
 
OR 
 
Equivalent argument 

Partial Credit                                                          (1 point) 
Student refers to a new graph by subtracting values, but 
does not label the maximum point.  

 

2 points 

 
Total Points 4 points 

 
Strategy Employed:  
 
A – Formula  B – Graph C – Table D – Multiple E – None or can’t 

tell 
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f.  Student find the instantaneous flow rate at 15 litres/min  1 point 

 
Total Points 1 points 
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APPENDIX C 

 
Levels of Cognitive Demand Codes assigned PCA items 
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 Memorization 
Procedures 

without 
Connections 

Procedures 
with 

Connections 

Doing 
Mathematics 

PCA Item 
Numbers   1, 3, 4, 5, 6, 12, 

14, 16, 21, 23 

2, 7, 9, 10, 11, 
13, 18, 19, 20, 

22, 24, 25 
8, 15, 17 

Percent of 
Items (N=25) 0% 40% 48% 12% 
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APPENDIX D 

 
Codes assigned PCA items for Representation Type 
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 Graphic Numeric Symbolic 

PCA Item 
Numbers  

2, 5, 6, 8, 9, 10, 
15, 19, 24 12, 13 

1, 3, 4, 7, 9, 10, 11, 
14, 16, 17, 18, 20, 

21, 22, 23, 25 
Bolded items were coded in two different categories because both types of representation 
were used to complete the item. 
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