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BOX APPROXIMATION AND RELATED TECHNIQUES

IN SPECTRAL THEORY

Vita Borovyk

Dr. Konstantin Makarov, Dissertation Supervisor

ABSTRACT

This dissertation is concerned with various aspects of the spectral theory of

differential and pseudodifferential operators. It consists of two chapters.

The first chapter presents a study of a family of spectral shift functions ξr,

each associated with a pair of self-adjoint Schrödinger operators on a finite interval

(0, r). Specifically, we investigate the limit behavior of the functions ξr when the

parameter r approaches infinity. We prove that an ergodic limit of ξr coincides with

the spectral shift function associated with the singular problem on the semi-infinite

interval.

In the second chapter, we study the attractor of the dynamical system r 7→

Ar, where Ar is the truncated Wiener-Hopf operator surrounded by operators of

multiplication by the function e
α
2
|·|, α > 0. We show that in the case when the

symbol of the Wiener-Hopf operator is a rational function with two real zeros the

dynamical system r 7→ Ar possesses a nontrivial attractor of a limit-circle type.
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In his dream the Box Man takes his box off.
Is this the dream he had before he began
living in a box or is it the dream of his life
after he left it ...

Kobo Abe

Introduction

In this dissertation we discuss various aspects of the spectral theory for differential

and pseudodifferential operators on finite (i.e., regular problems) as well as on

(semi)-infinite intervals (i.e., singular problems) with the emphasis on the relation

between the two problems as the length of the interval gets large.

The dissertation consists of two chapters. Chapter 1 is devoted to the study of

fine properties of the eigenvalue counting function of a one-dimensional Schrödinger

operator on large intervals (with Dirichlet boundary conditions at the endpoints)

when the length of the interval approaches infinity. Assuming that the correspond-

ing problem on the half-line is in the limit-point case at infinity, we study the

behavior of the counting function in the limit of large intervals. In addition to

the standard requirements we assume that the potential V is a real-valued func-

tion integrable with a finite first moment at infinity. Our main result establishes

a connection between the characteristics of the absolutely continuous spectrum

of the half-line problem and the discrete spectrum of the finite-interval problem.

More precisely, we prove that the ergodic limit of the difference of the eigenvalue

distribution functions associated with the Schrödinger operator with potential V
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and the free Schrödinger operator on the finite interval, coincides with the spectral

shift function corresponding to the pair of half-line operators. We note that the

idea of comparing spectral characteristics of the problems on finite and infinite

intervals goes back to the classics of the spectral theory for ordinary differential

operators. For a recent application of a similar approach, we refer to [19], where

well-known results about eigenvalues were used to obtain new convexity properties

for the phase shift.

In Chapter 2, we focus on a qualitative spectral analysis of the family

(0,∞) 3 r 7→ Ar

of unbounded operators on the space L2(R). Here Ar = Wα(I − PrLPr)Wα, Wα

is the operator of multiplication by the function e
α
2
|x|, α > 0, L is a self-adjoint

integral operator of convolution type with kernel L satisfying eβ|·|L(·) ∈ L∞(R),

β > α, and Pr is a projection of L2(R) onto the subspace L2((−r, r)). The main

goal is to study the attractor of the dynamical system r 7→ Ar in the sense of norm

resolvent convergence in the case when the symbol l = 1−L̂ of the integral operator

I−L is a rational function with exactly two zeros, both real (our methods, however,

can be easily extended to the case of finitely-many real zeros). We prove that the

dynamical system r → Ar has a limit cycle consisting of a special one-parameter

family of self-adjoint extensions of the symmetric operator A = Wα(I − L)Wα.

We would like to mention that the study of integral equations of convolution

type with meromorphic symbols is closely connected with the one of the quantum

mechanical three-body problem with short-range forces, where the phenomenon
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known as the Efimov effect is known to arise [16] (see also [2], [30], [35], [36],

and [38]). It is also related to the three-body problem with point-like interactions

and the so-called “fall to the center” phenomenon (see [17], [18], and [28]). In

addition we remark that the methods developed in Chapter 2 are useful in the

spectral analysis of the Herbst hamiltonian introduced in [24] (especially in the

non-semibounded case).

Notice that in both problems the transition from a truncated operator to the

operator in the limit is not an easy task. In the first problem, the nature of the

spectrum of the truncated operator is substantially different from that of the half-

line operator, which makes the convergence of spectral characteristics possible only

in some averaged sense. In the second problem, the formal limit object

A = Wα(I − L)Wα

is a symmetric operator, neither essentially self-adjoint, nor semibounded from

below, while all truncated operators are self-adjoint. This leads to a nontrivial

asymptotic behavior of the dynamical system r → Ar and we show that the family

Ar has an attractor of limit circle type in the space of bounded operators.
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Chapter 1

On the ergodic limit of the
spectral shift function

1.1 Introduction

In this chapter, we study the spectral shift function associated with a Schrödinger

operator on the interval (0, r) (with Dirichlet boundary conditions at the endpoints)

and the spectral shift function for the corresponding problem on (0,∞). The

main goal is to establish a connection between the two problems when the cut-off

parameter r is getting large.

The concept of a spectral shift function goes back to I. M. Lifshits, who intro-

duced it in the 1950’s in connection with some problems in solid state physics. In

his work, there appeared what is now called the trace formula associated with two

self-adjoint operators H and H0,

tr(f(H)− f(H0)) =

∫
R
ξ(λ)f ′(λ)dλ, (1.1.1)

valid for a wide class of functions f and a certain function ξ, that in general depends

on H0 and H, but not on f . 1

1The trace formula can be considered a non-commutative analog of the Fundamental Theorem
of Calculus.
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Shortly after the new concept introduced by Lifshits became available to the

specialists, M.G. Krein developed a formalism giving the trace formula a precise

mathematical meaning ([26]). Initially, it was assumed that the difference H −H0

belongs to the trace class. However, this condition is too restrictive. For instance,

if H0 is the free Schrödinger operator and H = H0 + V , this condition never

holds unless the potential V is identically zero. Therefore, for the concept to

be useful for immediate applications – in quantum mechanics, for example – a

further development of the theory was needed. In [27], Krein relaxed the trace

class condition to the requirement that the difference of the resolvents of (abstract)

self-adjoint operators H0 and H be in the trace class, that is,

(H − z)−1 − (H0 − z)−1 ∈ S1, z ∈ ρ(H0) ∩ ρ(H), (1.1.2)

where ρ(H0) and ρ(H) are the resolvent sets of H0 and H, respectively. Under

condition (1.1.2), Krein proved that there exists a real function ξ, called the spectral

shift function, satisfying ∫
R
|ξ(λ)| (λ2 + 1)−1dλ <∞, (1.1.3)

such that the trace formula (1.1.1) holds. Since (1.1.1) holds, in particular, for all

Schwartz functions f , it defines ξ uniquely up to a constant term; under condition

(1.1.2), however, one cannot determine the constant uniquely (see [37], where it

is suggested how to determine ξ up to an integer-valued constant). In the case

both H and H0 are bounded from below, the standard way to fix the constant is

to require that

ξ(λ) = 0 for λ < inf{σ(H0) ∪ σ(H)}.
5



We will focus on the spectral shift function associated with a pair of Schrödinger

operators on a half-line, H0 = −d2/dx2 and H = H0 + V , with Dirichlet boundary

condition at the origin and restrict our attention to the case of the short-range

potential. Namely, we assume∫ ∞

0

|V (x)| (1 + |x|)dx <∞.

It is well-known ([9]) that in this case the spectral shift function on the continuous

spectrum can be represented as the scattering phase (see the full definition in

the next section) up to a constant factor (cf. [5]). Therefore, it is natural to

expect that the phase shift associated with the potential V can be evaluated as the

pointwise limit of the phase shifts associated with the cut-off potential V r, (where

V r coincides with V on a finite interval (0, r) and is continued by zero outside that

interval). Indeed, in [10] it was proved that this pointwise convergence takes place,

which, translated into the language of the spectral shift functions, means that

lim
r→∞

ξ̂(r, λ) = ξ(λ), λ > 0, (1.1.4)

Here ξ̂(r, ·) stands for the spectral shift function associated with the pair H0 and

Ĥr, where H0 is the free operator and Ĥr is the operator with the cut-off potential

V r, i.e., Ĥr = H0 + V r (both acting in L2((0,∞))) and both ξ(r, ·) and ξ are

chosen to be continuous for λ ≥ 0. In fact, in the short-range case the functions

ξ and ξ̂, initially defined almost everywhere, can be chosen to be continuous on

the positive semi-axis and the pointwise convergence (1.1.4) takes place not only

λ-almost everywhere, but everywhere.

Another way to look at the semi-axis (i.e., singular) problem is to consider the
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problem first on the finite interval (0, r) (the box-approximation problem), followed

by taking an appropriate thermodynamical limit as r →∞.

One can expect the spectral characteristics of the problem on the finite interval

to approximate the corresponding characteristics of the singular problem in a suit-

able sense. It should be mentioned that in contrast to the case considered above

(both H0 and Ĥr live on (0,∞) and only the potential is cut off) the nature of

the spectrum of the truncated problem is quite different. That is, the Schrödinger

operator on a finite interval with Dirichlet boundary conditions has discrete spec-

trum only. Since the finite-interval spectral shift function ξ(r, ·) coincides with the

difference of the eigenvalue counting functions of the perturbed and unperturbed

operators on the interval, one cannot expect pointwise convergence, like in (1.1.4),

as the cut-off parameter gets larger. The reason is simple: a pointwise limit – if

it exists – of a sequence of integer-valued functions is an integer-valued function,

while ξ(·) is generically a non-constant continuous function. Therefore, in order

for the suggested box-approximation method to work, one has to relax the type of

convergence.

In the present work we prove that the average of spectral shift functions ξ(r, ·)

with respect to the cut-off variable r converges pointwise to the limit function ξ(·):

lim
R→∞

1

R

∫ R

0

ξ (r, λ) dr = ξ(λ), λ ∈ R, (1.1.5)

provided that ξ(·) is chosen to be continuous from the right for λ < 0 and continuous

for λ ≥ 0 (see Theorem 1.3.2). The first results in this direction were obtained in

[19], [23], and [34], where the weak convergence of spectral shift functions was
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established:

lim
r→∞

∫ λ

−∞
ξ (r, λ′) dλ′ =

∫ λ

−∞
ξ(λ′)dλ′, λ ∈ R. (1.1.6)

Notice that (1.1.5) is not a direct consequence of (1.1.6).

1.2 Preliminaries

1.2.1 The Jost function and the phase shift

In this section, we recall the definition of the Jost function and discuss its proper-

ties. We will mostly follow [12] and [29] for the basic results.

Hypothesis 1.2.1. Assume that V is a real-valued function, integrable near zero

and integrable with finite first moment in a neighborhood of infinity, that is,∫ ∞

0

|V (x)| (1 + |x|)dx <∞. (1.2.1)

Denote by f(k, ·) the Jost solution of the differential equation

−ψ′′(k, x) + V (x)ψ(k, x) = k2ψ(k, x), Im (k) ≥ 0, x ≥ 0, (1.2.2)

given by

f(k, x) = eikx −
∫ ∞

x

sin(k(x− x′))

k
V (x′)f(k, x′)dx′, (1.2.3)

Im (k) ≥ 0, x ≥ 0.

Notice that under condition (1.2.1), equation (1.2.3) has a unique solution the

space {f ∈ L2((0,∞)) : f, f ′ ∈ AC([0, R]),∀R > 0}. Recall that the Jost solution

can also be introduced as a solution of Schrödinger equation (1.2.2) possessing the

following asymptotic behavior

f(k, x) ∼ eikx, x→∞, Im (k) ≥ 0.

8



Next, denote by F the Jost function

F(k) = f(k, 0), Im (k) ≥ 0. (1.2.4)

Equations (1.2.3) and (1.2.4) imply the following representation

F(k) = 1 +

∫ ∞

0

sin(kx)

k
V (x)f(k, x)dx.

It is well known (see [12], [29]) that under Hypothesis 1.2.1, the Jost function F is

continuously differentiable for Im (k) ≥ 0 with the possible exception of k = 0; if

one wants to include the point k = 0, one has to impose the additional requirement

that the function V has a finite second moment near infinity,∫ ∞

0

|V (x)| (1 + x2)dx <∞.

It is easy to show ([12]) that the Jost function F satisfies the estimate

|F(k)− 1| ≤ C

∫ ∞

0

x |V (x)|
1 + |k|x

dx,

and hence,

lim
k→∞

F(k) = 1, Im k ≥ 0. (1.2.5)

Since F does not vanish on the positive real axis ([29]), one introduces the phase

shift δ as a continuous function for k ≥ 0 by

F(k) = |F(k)| eiδ(k),

with the following normalization at infinity (cf. (1.2.5))

lim
k→+∞

δ(k) = 0.

We remark that since the Jost function F is continuously differentiable for k > 0,

so is the phase shift δ.

9



1.2.2 Phase shifts for truncated potentials

In this section, we introduce the phase shift associated with the box approximation

for the potential V and summarize some of its well-known properties that will be

important for future considerations. In particular, we will be interested in certain

estimates on partial derivatives of the phase shift.

First, some basic notation. Denote by V r a compact-support approximation of

the potential V ,

V r(x) = V (x)χ[0,r](x), x ≥ 0, r > 0, (1.2.6)

where χ[0,r] is the characteristic function of the interval [0, r]. Denote by F r and

δ(r, ·) the Jost function and the phase shift associated with the truncated potential

V r, respectively. Recall that the phase shift δ is a solution of a nonlinear integral

equation, called the variable phase equation ([10], [33]),

δ(r, k) = k−1

∫ r

0

V (r′) sin2 (kr′ − δ(r′, k)) dr′, k > 0, r > 0. (1.2.7)

The phase shift associated with a potential with compact support admits an es-

timate on its derivative that only depends on the range of the potential (not its

strength). Such an estimate is uniform with respect to the energy variable if the

corresponding Jost function does not vanish on the positive imaginary semi-axis,

and it only holds at high energy otherwise. The precise statements are given in the

following two results.

Lemma 1.2.2. ([12], [11]) Assume Hypothesis 1.2.1. Let the potential V r be given

by (1.2.6) and let F r and δ(r, ·) be the Jost function and the phase shift associated

with V r, respectively. Assume, in addition, that F r does not vanish on the positive

10



imaginary semi-axis including zero, i.e. F r(k) 6= 0, k ∈ iR, Im (k) ≥ 0. Then δ is

continuously differentiable for k ≥ 0 and

dδ(r, k)

dk
< r, k ≥ 0.

In particular, the function

rk − δ(r, k)

is strictly increasing in k for k ≥ 0.

Notice that the condition that the Jost function does not vanish on the positive

imaginary semi-axis means that the corresponding Schrödinger operator does not

have negative eigenvalues or a zero-energy resonance and so is rather restrictive.

Without that condition, the following is true.

Theorem 1.2.3. Assume Hypothesis 1.2.1. Let the potential V r be given by (1.2.6)

and let δ(r, ·) be the phase shift associated with V r. Then, for every k0 > 0, there

exists R0 > 0, such that for every r > R0, the function

rk − δ(r, k)

is strictly increasing in k for k ≥ k0.

Proof. The proof is based on the fact that the partial derivative of the phase shift

δ with respect to k is a solution of the following nonlinear integral equation

d

dk
δ(r, k) = k−2

∫ r

0

V (r′)
(
sin2 (kr′ − δ(r′, k))− kr′ sin

(
2 (kr′ − δ(r′, k))

))
× exp

(
k−1

∫ r

r′
V (s) sin

(
2 (ks− δ(s, k))

)
ds

)
dr′, (1.2.8)
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k > 0, r > 0,

which, in turn, is a direct consequence of the phase equation (1.2.7) (see [10], p. 42,

Eq. (24)). Equation (1.2.8) obviously implies the inequality

∣∣∣∣ ddk δ(r, k)
∣∣∣∣ ≤ k−2

∫ r

0

(∣∣sin2 (kr′ − δ(r′, k))
∣∣ + kr′

∣∣sin (
2 (kr′ − δ(r′, k))

)∣∣)
× exp

(
k−1

∫ r

r′
|V (s)|

∣∣sin (
2 (ks− δ(s, k))

)∣∣ ds) |V (r′)| dr′.

Replacing the upper limits of integration by ∞ and estimating |sin(·)| from above

by 1 and k from below by k0, we get

∣∣∣∣ ddk δ(r, k)
∣∣∣∣ ≤ k−2

0

∫ ∞

0

|V (r′)| (1 + k0r
′) e

k−1
0

∫ ∞

r′
|V (s)| ds

dr′.

Observe that the RHS of the last inequality does not depend on r and hence for

R0 sufficiently large, ∣∣∣∣ ddk δ(r, k)
∣∣∣∣ < R0 = R0(k0).

Therefore, ∣∣∣∣ ddk δ(r, k)
∣∣∣∣ < r

for every r > R0, . Thus

r − d

dk
δ(r, k) > 0, for r > R0, k ≥ k0,

completing the proof.

Remark 1.2.4. Notice that one can choose R0 to be, for instance,

R0 = k−2
0

∫ ∞

0

|V (r′)| (1 + k0r
′) e

k−1
0

∫ ∞

r′
|V (s)| ds

dr′.
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We also observe that under Hypotheses 1.2.1, the phase shifts δ(r, k) converge

pointwise to δ(k) as r →∞. The precise statement is as follows.

Lemma 1.2.5. ([10], p. 11, Eq. (13); [8]) Assume Hypotheses 1.2.1. Let the

potential V r be given by (1.2.6). Let δ(k) and δ(r, k) be the phase shifts associated

with the potential V and V r, respectively. Then

lim
r→∞

δ(r, k) = δ(k), k > 0. (1.2.9)

Proof. Since for every fixed k > 0 the Jost function F r(k) is continuous in r and

F r(k) 6= 0, the phase shift δ(r, k) is also continuous in r. Moreover,

lim
r→∞

F r(k) = F(k), k > 0,

and, as a result,

lim
r→∞

eδ(r,k) = eδ(k), k > 0,

which implies (1.2.9).

1.2.3 Spectral shift functions

In this section, we introduce the spectral shift function, provide a rigorous meaning

to (1.1.1), and recall some important results on spectral shift functions associated

with Schrödinger operators.

We start with a general result which gives sufficient conditions for formula

(1.1.1) to hold under the assumption that the difference of the resolvents belongs

to the trace class. For details we refer to [37], [31]; see also [21].

Theorem 1.2.6. (Theorem 8.7.1, [37]) Let H, H0 be self-adjoint semi-bounded

operators such that (H − z)−1− (H0− z)−1 is trace class, z ∈ ρ(H0)∩ ρ(H). Then,
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for every function f on (−∞,∞) such that f has two locally bounded derivatives,

satisfying

(λ2f ′(λ))′ = O(|λ|−1−ε), |λ| → ∞ (1.2.10)

and

lim
λ→−∞

f(λ) = lim
λ→+∞

f(λ), lim
λ→−∞

λ2f ′(λ) = lim
λ→+∞

λ2f ′(λ), (1.2.11)

f(H)− f(H0) is trace class. Moreover, there exists a real-valued measurable func-

tion ξ on (−∞,∞), satisfying (1.1.3), such that (1.1.1) holds for every such f .

Spectral shift function for Schrödinger operators on the half-line

Let H0 be the half-line free self-adjoint Schrödinger operator

H0 = − d2

dx2
, (1.2.12)

defined on the domain

D(H0) ={f ∈ L2((0,∞)) : f, f ′ ∈ AC([0, R]), ∀R > 0,

f ′′ ∈ L2((0,∞)), f(0+) = 0}.

Next, given V satisfying (1.2.1), let H be the perturbation of H0,

H = − d2

dx2
+ V, (1.2.13)

which is self-adjoint on the domain

D(H) ={f ∈ L2((0,∞)) : f, f ′ ∈ AC([0, R]), ∀R > 0,

− f ′′ + V f ∈ L2((0,∞)), f(0+) = 0}.

14



We now check that the difference of resolvents of operators H0 and H is trace class.

This, combined with Theorem 1.2.6, will immediately imply that the spectral shift

function associated with the pair (H,H0) is well-defined.

Theorem 1.2.7. Assume Hypothesis 1.2.1. Let H0 and H be defined by (1.2.12)

and (1.2.13), respectively, and let z ∈ ρ(H0) ∩ ρ(H). Then

(H − z)−1 − (H0 − z)−1

is a trace class operator.

Proof. For x ∈ (0,∞), we introduce the following factorization

V (x) = v(x)u(x), v(x) = |V (x)|1/2 , u(x) = |V (x)|1/2 sgn(V (x)).

Using the resolvent identity (cf. [20]),

(H − z)−1 − (H0 − z)−1 = −(H0 − z)−1u(I + u(H0 − z)−1v)−1v(H0 − z)−1,

we get the following representation,

(H − z)−1 − (H0 − z)−1 = X1Y X2,

where

X1 = −(H0 − z)−1u, Y = (I + v(H0 − z)−1u)−1, X2 = v(H0 − z)−1.

Since V ∈ L1((0,∞)), both u and v belong to L2((0,∞)), as does the function

1
x−z for z /∈ R. Hence, both X1 and X2 are Hilbert-Schmidt operators (see [33],

Theorem XI.20). Obviously, Y is bounded, and so X1Y X2 is trace class, proving

the theorem.
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Combining Theorems 1.2.6 and 1.2.7, we immediately get

Corollary 1.2.8. Assume Hypothesis 1.2.1. Let H0 and H be defined by (1.2.12)

and (1.2.13), respectively. Then there exists a unique real-valued measurable func-

tion ξ on (−∞,∞) satisfying

ξ(λ) = 0 for λ < inf {spec(H0) ∪ spec(H)}

and

tr (f(H)− f(H0)) =

∫
R
ξ(λ)f ′(λ)dλ

for every f with two locally bounded derivatives which satisfies conditions (1.2.10),

(1.2.11).

The next important result describes the connection between the spectral shift

function associated with two half-line Schrödinger operators and the phase shift.

Theorem 1.2.9. ([9], [5], [37], [6]) Assume Hypothesis 1.2.1. Let H0 and H be

defined by (1.2.12) and (1.2.13), respectively. Let δ be the phase shift associated

with V and ξ the spectral shift function associated with the pair (H0, H). Let N(λ)

be the number of negative eigenvalues of the operator H that are smaller than λ.

Then

ξ(λ) =

{
− 1
π
δ(
√
λ), λ ≥ 0,

−N(λ), λ < 0.
(1.2.14)

Spectral shift function for Schrödinger operators on a finite interval

Having dealt with the half-line case, we now discuss the properties of the spectral

shift function for a pair Schrödinger operators on an interval (0, r). Recall that the
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free Schrödinger operator

Hr
0 = − d2

dx2

on

D(Hr
0) = {f ∈ L2((0, r)) : f, f ′ ∈ AC([0, r]),

f ′′ ∈ L2((0, r)), f(0+) = f(r−) = 0},

(with Dirichlet boundary conditions at x = 0 and x = r), has a simple discrete

spectrum. Let N r
0 = N r

0 (λ) be its counting function, i.e. the number of eigenvalues

of Hr
0 which are smaller than λ.

Next, assume Hypothesis 1.2.1 and consider the operator

Hr = − d2

dx2
+ V r, (1.2.15)

on the domain

D(Hr) ={f ∈ L2((0, r)) : f, f ′ ∈ AC([0, r]), (1.2.16)

− f ′′ + V rf ∈ L2((0, r)), f(0+) = f(r−) = 0},

again with Dirichlet boundary conditions at the endpoints. Here V r is a restriction

of V onto (0, r); since the context is unambiguous, we use the same notation for

this restriction as for the box-approximation of V defined by (1.2.6). Recall (see

[25]) that Hr is self-adjoint. It is also well known ([13]) that operator Hr defined by

(1.2.15), (1.2.16) has a simple spectrum. Let N = N(λ) be its eigenvalue counting

function.

One can prove that

(Hr − z)−1 − (Hr
0 − z)−1
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is a trace class operator (the proof is identical to the one of Theorem 1.2.7).

Therefore, the operators Hr and Hr
0 satisfy the conditions of Theorem 1.2.6, and

the spectral shift function ξ(r, ·) associated with the pair (Hr
0 , H

r) is well-defined.

Moreover, one can easily check (see [26]) that

ξ(r, λ) = N r
0 (λ)−N r(λ), λ ∈ R. (1.2.17)

Weak convergence of spectral shift functions

As proved by R. Geisler, V. Kostrykin, and R. Schrader in [19], the weak conver-

gence of spectral shift functions related to Schrödinger operators takes place. The

proof is based on a Feynman-Kac formula and the precise result is as follows.

Theorem 1.2.10. Assume Hypothesis 1.2.1. Let H0 and H be defined by (1.2.12)

and (1.2.13) respectively and let ξ be a spectral shift function associated with the

pair (H0, H). Next, let ξ(r, ·) be a spectral shift function associated with (Hr
0 , H

r).

Then

lim
r→∞

∫ a

−∞
ξ(r, λ)dλ =

∫ a

−∞
ξ(λ)dλ, a ∈ R. (1.2.18)

Remark 1.2.11. We would like to remark that Theorem 1.2.10 was proved in

[19] for Schrödinger operators in arbitrary dimension under the condition that the

potential V in [19] belongs to the Birman-Solomjak space l1(L2),

V ∈ l1(L2) =

f |
∑
j∈Zn

[∫
∆j

|f(x)|2 dx

]1/2

= ‖f‖1,2

 , (1.2.19)

where ∆j are unit cubes with centers at x = j. However, in dimension one the

assumption (1.2.1) is sufficient for the result to hold. We also would like to mention

that in our case one can use the Feynman-Kac formula for the operator e−tH−e−tH0
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with H and H0 being Schrödinger operators on the half-line (not the full line). In

this case e−tH − e−tH0 is an integral operator with the integral kernel given by

(
e−tH − e−tH0

)
(x, y) = E t, y

0, x

{
e−

∫ t
0 V (b(s))ds − 1;Tb,∞ > t

}
, x, y ≥ 0.

The corresponding formula on the finite domain is given by

(
e−tH

r − e−tH
r
0
)
(x, y) = E t, y

0, x

{
e−

∫ t
0 V (b(s))ds − 1;Tb, r > t

}
, x, y ≥ 0.

Here E t, y
0, x stands for the conditional expectation with respect to the probability

measure of the Brownian motion starting from x at time 0 and conditioned to be

at y at time t, and

Tb, r = inf{s > 0, b(s) /∈ (0, r)},

Tb,∞ = inf{s > 0, b(s) ≤ 0}.

In order to get the proof in our case one can follow the lines in [19]; we will omit

the details.

1.3 The main result

In this section, we will prove the principal result of this chapter. The main in-

gredient of the proof is based on the fact that i) on the positive semi-axis the

“thermodynamic” limit of finite-interval spectral shift functions ξ(r, ·) exists and

equals the phase shift δ(·), and that ii) the negative eigenvalues of the truncated

Schrödinger operator Hr converge to the corresponding eigenvalues of the half-line

operator H (a result due to Bailey, Everitt, Weidmann, and Zettle, [4]). We first

will state the result on the positive semi-axis.
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Theorem 1.3.1. Assume Hypotheses 1.2.1. Let δ be the phase shift associated

with the potential V . Let ξ(r, ·) be the spectral shift function associated with the

pair of free and perturbed Schrödinger operators on (0, r). Then

lim
R→∞

1

R

∫ R

0

ξ(r, λ)dr = π−1δ
(√

λ
)
, λ > 0. (1.3.1)

The proof of this theorem will be given in the following two subsections.

Now we are ready to prove our main theorem.

Theorem 1.3.2. Assume Hypotheses 1.2.1. Let ξ be the left-continuous spectral

shift function associated with the pair of free and perturbed Schrödinger operators

on R+ and let ξ(r, ·) be the left-continuous spectral shift function associated with

the pair of free and perturbed Schrödinger operators on (0, r). Then

lim
R→∞

1

R

∫ R

0

ξ(r, λ)dr = ξ
(
λ
)
, λ ∈ R. (1.3.2)

Proof. First, recall that the negative eigenvalues of each truncated operator con-

verge to the corresponding negative eigenvalues of the half-line operator as the

cut-off parameter tends to infinity (cf. [4]). This implies a pointwise convergence

of the corresponding counting functions, and, consequently, a pointwise conver-

gence of the left-continuous spectral shift functions on the negative semi-axis,

lim
r→∞

ξ(r, λ) = ξ(λ), λ < 0. (1.3.3)

The convergence (1.3.3), equation (1.3.1), and formula (1.2.14), imply the state-

ment of the theorem.
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1.3.1 Proof of Theorem 1.3.1 in the case of positive poten-
tials

We first provide a proof of Theorem 1.3.1 in the special case where the potential

V is positive almost everywhere.

Introduce the left-continuous greatest integer function

bxc =

{
[x], x /∈ Z,
x− 1, x ∈ Z,

where [x] is the greatest integer smaller or equal to x. In this notation, we obtain

our first result, a formula for the distribution of the eigenvalues of the operator Hr

in terms of the corresponding phase shift.

Lemma 1.3.3. Let V r be the cut-off potential defined by (1.2.6) and δ(r, ·) the

corresponding phase shift. Assume, in addition, that V r ≥ 0 a.e. Then, for every

fixed k > 0,

rk − δ(r, k) > 0,

and the number of eigenvalues of the operator Hr in the interval [0, λ0) is given by

N r (λ0) = bh(r, λ0)c, (1.3.4)

with

h(r, λ) = π−1
(
r
√
λ− δ

(
r,
√
λ
))
. (1.3.5)

Proof. Let ϕr be the solution of the Cauchy problem

−ϕ′′(k, x) + V r(x)ϕ(k, x) = k2ϕ(k, x), k > 0, x ≥ 0,

ϕ(k, 0) = 0, ϕ′(k, 0) = 1.
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Recall that ϕr satisfies the Volterra integral equation for k > 0, x ≥ 0,

ϕr(k, x) =
sin(kx)

k
+

∫ x

0

sin
(
k (x− x′)

)
k

V r (x′)ϕr (k, x′) dx′,

and, therefore, admits the following representation for x ≥ r,

ϕr(k, x) =
1

2i

|F r(k)|
k

(
eikxe−iδ(x,k) − e−ikxeiδ(x,k)

)
.

Notice that λ > 0 is an eigenvalue of the operator Hr if and only if

ϕr
(√

λ, r
)

= 0, (1.3.6)

so that h(r, λ) is an integer. Correspondingly, we see that the total number of

eigenvalues of the operator Hr in the interval [0, λ0) is equal to the number of

integer values that h attains in the same interval. To count the number of integer

values of h, notice that by Lemma 1.2.2, h is strictly increasing in λ, λ ≥ 0. Thus,

the total number of λ ∈ [0, λ0) such that h(r, λ) is an integer, is equal to bh(r, λ0)c .

Therefore, the number of eigenvalues of the operator Hr in the interval [0, λ0) is

given by the same expression, proving the claim.

Corollary 1.3.4. Under the hypotheses of Lemma 1.3.3, the spectral shift function

associated with the pair (Hr
0 , H

r) admits the representation:

ξ (r, λ) =
⌊
π−1r

√
λ
⌋
−

⌊
π−1

(
r
√
λ− δ(r,

√
λ)

)⌋
, λ ≥ 0. (1.3.7)

Proof. Since the spectrum of the operator Hr
0 is given by

σ(Hr
0) =

{(πn
r

)2
}∞

n=1

,
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one obviously has that

N r
0 (λ) = ] {µ < λ | µ is an eigenvalue of Hr

0}

= ]

{
n ∈ N |

(πn
r

)2

< λ

}
= max

n∈N

{(πn
r

)2

< λ

}
=

⌊
π−1r

√
λ
⌋
. (1.3.8)

The assertion now follows from (1.2.17) together with (1.3.4) and (1.3.8).

The following result is the final piece of the puzzle.

An ergodic lemma

Lemma 1.3.5. Let A ∈ R, then

lim
R→∞

1

R

∫ R

0

(
bxc − bx− Ac

)
dx = A. (1.3.9)

Proof. To evaluate the definite integral in (1.3.9), we remark that the region M

bounded by the graphs of the functions bxc and bx − Ac on the interval [0, R],

R ≥ A+ 1, can be represented as the union of two disjoint sets

M = M1 ∪M2,

where M1 admits the representation

M1 =

[R−A]⋃
k=1

(k, k + A)× (k − 1, k),

and the area of the set M2 = M \M1 admits the estimate

|M2| ≤ (R− [R− A])2 ≤ (A+ 1)2. (1.3.10)

Since the area of M1 is obviously given by

|M1| =
[R−A]∑
k=1

A = A[R− A], (1.3.11)
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combining (1.3.11) and (1.3.10) yields

lim
R→∞

1

R

∫ R

0

(
bxc − bx− Ac

)
dx = lim

R→∞

A[R− A]

R
+ lim

R→∞

|M2|
R

= A.

Corollary 1.3.6. Let a be a real-valued function on [0,∞). Assume that the limit

A = lim
x→∞

a(x)

exists. Then

lim
R→∞

1

R

∫ R

0

(
bxc − bx− a(x)c

)
dx = A. (1.3.12)

Proof. Fix an arbitrary ε > 0 and let Rε be such that

|a(x)− A| < ε, x > Rε.

Then

bx− a(x)c = bx− Ac whenever |(x− A)− bx− Ac| > ε.

Therefore,∣∣∣∣ 1

R

∫ R

Rε

(
bxc − bx− a(x)c

)
dx− 1

R

∫ R

Rε

(
bxc − bx− Ac

)
dx

∣∣∣∣ (1.3.13)

≤ 2ε
|R−Rε|

R
≤ 2ε, R ≥Rε.

Since

lim
R→∞

1

R

∫ R

Rε

(
bxc − bx− a(x)c

)
dx = lim

R→∞

1

R

∫ R

Rε

(
bxc − bx− Ac

)
dx = 0,

inequality (1.3.13)) implies

lim
R→∞

∣∣∣∣ 1

R

∫ R

0

(
bxc − bx− a(x)c

)
dx− 1

R

∫ R

0

(
bxc − bx− Ac

)
dx

∣∣∣∣ ≤ 2ε,
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and thus,

lim
R→∞

1

R

∫ R

0

(
bxc − bx− a(x)c

)
dx = lim

R→∞

1

R

∫ R

0

(
bxc − bx− Ac

)
dx, (1.3.14)

since ε can be chosen arbitrarily small. Now (1.3.12) follows from (1.3.14) by

applying Lemma 1.3.5.

We are now in a position to give the proof of Theorem 1.3.1 in the special case

of a positive potential.

Proof of Theorem 1.3.1 under the additional assumption V ≥ 0. The condition

V ≥ 0 allows us to apply the result of Corollary 1.3.4, obtaining that

lim
R→∞

1

R

∫ R

0

ξ(r, λ)dr = lim
R→∞

1

R

∫ R

0

⌊
π−1r

√
λ
⌋
−

⌊
π−1

(
r
√
λ− δ(r,

√
λ)

)⌋
dr.

Taking into account (1.2.9) and applying Corollary 1.3.6 completes the proof.

1.3.2 Proof of Theorem 1.3.1 in the general case

We are interested in obtaining a formula for the eigenvalue counting function N r,

similarly to (1.3.4). Theorem 1.2.3 is useful in evaluating the rank of the spectral

projection EHr([λ1, λ2)) for a finite interval [λ1, λ2) on the positive semi-axis away

from zero (0 < λ1 < λ2). More precisely, we have the following result:

Lemma 1.3.7. Let V r be the cut-off potential defined by (1.2.6) and δ(r, ·) the

corresponding phase shift. Let h be defined by (1.3.5). Then, for 0 < λ1 < λ2,

N r(λ2)−N r(λ1) = bh(r, λ2)c − bh(r, λ1)c ,

for sufficiently large r > 0.
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Proof. Notice that λ > 0 is an eigenvalue of the operator Hr if and only if equation

(1.3.6) holds, so that h(r, λ) is an integer. Taking this into account, we see that

the total number of eigenvalues of the operator Hr in the interval [λ1, λ2) is equal

to the number of integer values that the function h(r, ·) attains in this interval. To

count the number of the integer values of h(r, λ), notice that by Theorem 1.2.3 the

function h is strictly increasing in λ, λ ≥ λ1 for r large enough. Thus, the total

number of λ ∈ [λ1, λ2), such that h(r, λ) is an integer, is equal to

bh(r, λ2)c − bh(r, λ1)c ,

for all r large enough. Therefore, the number of eigenvalues of the operator Hr in

the interval [λ1, λ2) is given by the same expression, proving the claim.

Remark 1.3.8. Notice that if the support of the potential V is compact, one can

show that

N r(λ) =
⌊
π−1

(
r
√
λ− δ

(√
λ
))⌋

, λ ≥ 0,

where r is outside of the support of V and satisfies

r > sup
k≥0

δ′(k). (1.3.15)

Here δ is the phase shift associated with the problem on the infinite interval. Indeed,

for r satisfying (1.3.15), the function h(r, λ) = r
√
λ− δ

(√
λ
)

is strictly increasing

in λ for λ ≥ 0 and for r outside of the support of V , (1.3.6) holds if and only if

h(r, λ) is an integer.

Proof of Theorem 1.3.1. We start with proving the existence of the limit

lim
R→∞

1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr, λ, µ > 0. (1.3.16)
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Using equation (1.2.17) and rearranging terms, we get

ξ(r, λ)− ξ(r, µ) =N r
0 (λ)−N r(λ)−N r

0 (µ) +N r(µ)

=N r
0 (λ)−N r

0 (µ)−N r(λ) +N r(µ), λ, µ ∈ R.

Next, Lemma 1.3.7 together with equation (1.3.8) implies

ξ(r, λ)− ξ(r, µ) =
⌊
π−1r

√
λ
⌋
−

⌊
π−1

(
r
√
λ− δ

(
r,
√
λ
))⌋

(1.3.17)

+
⌊
π−1

(
r
√
µ− δ

(
r,
√
µ
))⌋

−
⌊
π−1r

√
µ
⌋
, λ, µ > 0,

provided r is large enough. Notice that limR→∞
1
R

∫ R

0
f(r)dr, if it exists, only

depends on the behavior of the function f in a neighborhood of infinity. Therefore,

using the representation (1.3.17), we obtain

lim
R→∞

1

R

∫ R

0

(
ξ(r,λ)− ξ(r, µ)

)
dr = I(λ)− I(µ), λ > 0, µ > 0, (1.3.18)

where

I(ν) = lim
R→∞

1

R

∫ R

0

(⌊
π−1r

√
ν
⌋
−

⌊
π−1

(
r
√
ν − δ

(
r,
√
ν
))⌋)

dr, ν > 0,

provided that I(ν) exists for each ν > 0. To calculate I(ν), recall that according

to Lemma 1.2.5,

lim
r→∞

π−1δ
(
r,
√
ν
)

= π−1δ
(√

ν
)
,

√
ν > 0,

and hence one may apply Corollary 1.3.6 (after making the change of variable

x = π−1
√
νr) to conclude that

I(ν) = π−1δ
(√

ν
)
. (1.3.19)
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Combining equations (1.3.18) and (1.3.19), we get

lim
R→∞

1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr = π−1

(
δ
(√

λ
)
− δ

(√
µ
))
, λ, µ > 0. (1.3.20)

For a > 0, introduce the notation

〈f〉 =

∫ a+1

a

f(µ)dµ.

Integrating both sides of equation (1.3.20) with respect to µ over interval (a, a+1)

gives, for λ > 0,〈
lim
R→∞

1

R

∫ R

0

(
ξ(r, λ)− ξ(r, ·)

)
dr

〉
= π−1

(
δ
(√

λ
)
−

〈
δ
(√
·
)〉)

. (1.3.21)

Formally interchanging the integration and the limit procedures in the LHS of this

equation (a rigorous explanation will be given below), we get

lim
R→∞

1

R

∫ R

0

(ξ(r, λ)− 〈ξ(r, ·)〉) dr = π−1δ
(√

λ
)
− π−1

〈
δ
(√
·
)〉
, λ > 0. (1.3.22)

By Theorem 1.2.10, we have the weak convergence of spectral shift functions, i.e.,

lim
r→∞

〈ξ(r, ·)〉 = π−1
〈
δ
(√
·
)〉
,

and therefore,

lim
R→∞

1

R

∫ R

0

〈ξ(r, ·)〉dr = π−1
〈
δ
(√
·
)〉
. (1.3.23)

Equation (1.3.23) together with (1.3.22) implies (1.3.1).

The conclusion of the theorem then depends on justifying the interchanging of

the integration
∫ R

0
and the limit (1.3.21). In other words, we need to show that

the LHS in equation (1.3.21) is equal to the one in (1.3.22), namely∫ a+1

a

[
lim
R→∞

1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr

]
dµ

= lim
R→∞

1

R

∫ R

0

[
ξ(r, λ)−

∫ a+1

a

ξ(r, µ)dµ

]
dr, λ > 0.

28



The first step consists in interchanging the limit with integration with respect to

µ in the LHS of equation (1.3.21). For this purpose, it is sufficient to prove the

uniform estimate

∣∣∣∣ 1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr

∣∣∣∣ ≤ (
1√
λ

+
1
√
µ

) ∫ ∞

0

|V (r)| dr + 2, λ, µ > 0,

(1.3.24)

and apply the dominated convergence theorem to the LHS of (1.3.21) to get

∫ a+1

a

[
lim
R→∞

1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr

]
dµ

= lim
R→∞

1

R

∫ a+1

a

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
drdµ, λ > 0. (1.3.25)

It remains to check (1.3.24). Taking into consideration representation (1.3.17), one

gets the following inequalities for λ, µ > 0,

∣∣∣∣ 1

R

∫ R

0

(
ξ(r, λ)− ξ(r, µ)

)
dr

∣∣∣∣ ≤ sup
r>0

|ξ(r, λ)− ξ(r, µ)|

≤ sup
r>0

∣∣∣⌊π−1
(
r
√
λ− δ

(
r,
√
λ
))⌋

−
⌊
π−1r

√
λ
⌋∣∣∣

+ sup
r>0

∣∣∣⌊π−1
(
r
√
µ− δ

(
r,
√
µ
))⌋

−
⌊
π−1r

√
µ
⌋∣∣∣ .

Notice that the phase equation (1.2.7) implies the following estimate

sup
r>0

∣∣δ (
r,
√
ν
)∣∣ ≤ 1√

ν

∫ ∞

0

|V (r)| dr, ν > 0, (1.3.26)

which, together with the inequality

sup
r>0

∣∣∣⌊π−1
(
r
√
ν − δ

(
r,
√
ν
))⌋

−
⌊
π−1r

√
ν
⌋∣∣∣ ≤ sup

r>0

∣∣π−1δ
(
r,
√
ν
)∣∣ + 1, ν > 0,

gives (1.3.24).
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Finally, to justify the change in the order of the integration in the RHS of

(1.3.25), we remark that (1.3.17) together with (1.3.26) obviously implies

sup
0≤r≤R

a≤µ≤a+1

|ξ(r, λ)− ξ(r, µ)| <∞, λ > 0, (1.3.27)

and, therefore, the function ξ(r, λ)− ξ(r, µ) is integrable over the rectangle [0, R]×

[a, a+1]. Thus one can apply Fubini’s theorem to the repeated integral in the LHS

of equation (1.3.25) to get (1.3.22). Thus, the proof is complete.
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Chapter 2

The box approximation for a
pseudo-differential operator with
an unbounded symbol

2.1 Introduction

In this chapter, we study a family of unbounded operators Ar on the Hilbert space

L2(R), parameterized by r ∈ R+, and defined by

Ar = Wα(I − PrLPr)Wα. (2.1.1)

Here Wα, α > 0, denotes the self-adjoint operator of multiplication by the function

e
α
2
|x|,

(Wαf)(x) = e
α
2
|x|f(x); (2.1.2)

L is the self-adjoint integral operator of convolution type

(Lf)(x) =

∫
R
L(x− y)f(y)dy, f ∈ L2(R), (2.1.3)

with symmetric kernel L(x) = L(−x); and Pr stands for the projection of L2(R)

onto the subspace L2((−r, r)).

Under mild assumptions on the kernel L, the operators Ar are well-defined
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self-adjoint operators on the (natural) domain

D(Ar) = D(W 2
α) =

{
f ∈ L2(R) : W 2

αf ∈ L2(R)
}
.

The main goal of this chapter is to study the asymptotic behavior in the (norm)

resolvent sense of the dynamical system r 7→ Ar as r approaches infinity. It is

natural to expect the answer to be expressed in terms of the “limiting” operator

A, given by the formal sandwiched operator,

A = Wα(I − L)Wα. (2.1.4)

We remark that under the exponential fall-off assumption on the kernel, i.e., if

eβ|x|L(x) is a bounded function for some β > α, the operator A is a well-defined

symmetric operator on the domain D(A) = D(W 2
α). Indeed, in this case the

Fourier transform of L admits an analytic continuation to the strip |Im z| ≤ α
2
,

which guarantees that LD(Wα) ⊂ D(Wα), and the symmetry of A on D(W 2
α)

follows (cf. [1]).

However, one faces a possible difficulty: the symmetric operator A may not

be essentially self-adjoint on the initial domain D(A) = D(W 2
α) and the question

arises which self-adjoint extension (or extensions) one should choose to describe

the limiting behavior of the family Ar.

In this chapter, we consider a “model” convolution operator L such that the

symbol of I − L is a rational function with two real zeros. We prove that in this

case the operator A has deficiency indices (2, 2) and show that the attractor for

the dynamical system r 7→ Ar in the (norm) resolvent sense is a limit cycle con-

sisting of a special one-parameter family of self-adjoint extensions of the operator

32



A (see Theorem 2.5.1), under the assumption that parameter r is increasing along

sequences that avoid a thin “exceptional” set.

2.2 The adjoint operator and its properties

In this section we introduce and discuss some basic properties of the operator A

of the form (2.1.4) and discuss its adjoint in details. It is convenient to summarize

the necessary assumptions in the form of the following hypothesis.

Hypothesis 2.2.1. Assume that A is an operator of the form (2.1.4), where Wα

is the operator of multiplication (Wαf)(x) = e
α
2
|x|f(x) with α < 1

3
, and L is given

by (2.1.3) with the integral kernel

L(x) = ωe−|x|, ω > 1/2, x ∈ R. (2.2.1)

The following general result provides necessary conditions for operator A to be

well-defined.

Lemma 2.2.2. (cf.[1]) Let L be a convolution operator of the form (2.1.3) with

kernel L satisfying L(x) = L(−x), and e(3α+ε)|·|L(·) ∈ L∞(R) for some ε > 0.

Assume, in addition, that the Fourier transform L̂ of L,

L̂(x) = (FL)(x) =

∫
R
e−ixyL(y)dy, x ∈ R,

is bounded, that is, L̂ ∈ L∞(R). Let A be of the form (2.1.4), with Wα given by

(2.1.2). Then A is a symmetric operator on D(A) = D(W 2
α) with equal deficiency

indices.

Remark 2.2.3. Note that under Hypothesis 2.2.1, all assumptions of Lemma 2.2.2

hold and thus A is a symmetric operator with equal deficiency indices.
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As discussed above, in order to describe the asymptotic behavior of the family

Ar, we need to be able to characterize self-adjoint extensions of the operator A.

The first step in this direction consists in describing the domain of the adjoint

operator:

Theorem 2.2.4. (cf.[1]) Suppose the assumptions of Lemma 2.2.2 hold. Assume

in addition that the symbol l of the operator I − L,

l(s) = 1− L̂(s), s ∈ R,

satisfies the following conditions,

(i) the function l doesn’t vanish on the boundary of the strip |Im z| ≤ α
2
,

l
(
s± i

α

2

)
6= 0, s ∈ R,

(ii) the function l has a finite number of zeros in the strip |Im z| ≤ 3
2
α,

(iii) the function l−1 is bounded in a neighborhood of infinity in the strip

|Im z| ≤ 3
2
α.

Then

D(A∗) = D(A) +̇ span
{
F−1Uα/2q : q ∈ Q

}
+̇ span

{
F−1U−α/2q : q ∈ Q

}
,

where Q is the space of rational functions (vanishing at infinity) with poles only

in the strip |Im z| < α/2, such that the function l(·)q(·), q ∈ Q, is analytic in the

strip |Im z| < α/2, and U±α/2 denotes the operation of the complex shift,

(U±α/2g)(s) = g(s± iα/2), s ∈ R.

Moreover, the operator A has deficiency indices (n, n), where n = dim Q.
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Now we are ready to formulate the main result of this section.

Theorem 2.2.5. Assume Hypothesis 2.2.1. Then the symbol l of the operator I−L

has two real zeros, ±a,

a =
√

2ω − 1,

and the operator A is symmetric on D(A) = D(W 2
α) with deficiency indices (2, 2)

(and hence it admits a real four-parameter family of self-adjoint extensions). More-

over, the domain of the adjoint operator A∗ is given by

D(A∗) = D(A) +̇ span
{
f−a , f

−
−a, f

+
a , f

+
−a

}
, (2.2.2)

where

f−a (t) = eiate
α
2
tχ(−∞,0)(t), f−−a(t) = e−iate

α
2
tχ(−∞,0)(t),

f+
a (t) = eiate−

α
2
tχ(0,∞)(t), f+

−a(t) = e−iate−
α
2
tχ(0,∞)(t), t ∈ R.

(2.2.3)

Proof. Clearly, the symbol l is given by the formula

l(x) = 1− ωF−1
(
e−|·|

)
(x) =

x2 − 2ω + 1

x2 + 1
=
x2 − a2

x2 + 1
(2.2.4)

with

a =
√

2ω − 1. (2.2.5)

Since by Hypothesis 2.2.1, ω > 1/2, l has two real zeros ±a, and therefore, by

Theorem 2.2.4, the deficiency indices of the operator A are (2, 2). Finally, to prove

(2.2.2), observe that the space Q referred to in Theorem 2.2.4 is of the form

Q = span

{
1

x− a
,

1

x+ a

}
.

By Theorem 2.2.4,

D(A∗) = D(A) +̇ span
{
F−1Uα/2q : q ∈ Q

}
+̇ span

{
F−1U−α/2q : q ∈ Q

}
.

(2.2.6)
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Now (2.2.2) follows from (2.2.6), since(
F−1U±α/2

(
1

· − a

))
(x) = ∓if±a ,(

F−1U±α/2

(
1

·+ a

))
(x) = ∓if±−a.

This completes the proof.

We will also need a result that describes the action of the adjoint operator A∗

on the deficiency subspace (see Lemma 2.4.4).

Lemma 2.2.6. Assume Hypothesis 2.2.1. Let the functions

{
f−a , f

−
−a, f

+
a , f

+
−a

}
,

form a basis in the deficiency subspace D(A∗) \D(A), given by (2.2.3). Then,

(A∗f−a )(t) =
ia− sgn(t)

2
e−|t|(1−α/2), (2.2.7)

(A∗f+
a )(t) =

−ia+ sgn(t)

2
e−|t|(1−α/2), (2.2.8)

(A∗f−−a)(t) =
−ia− sgn(t)

2
e−|t|(1−α/2), (2.2.9)

(A∗f+
−a)(t) =

ia+ sgn(t)

2
e−|t|(1−α/2). (2.2.10)

In particular, (A∗f−±a)(t) = −(A∗f+
±a)(t), t ∈ R.

Proof. We only prove equality (2.2.7), the rest is analogous.

By (2.1.4),

(A∗f−a )(t) = eiate
α
2
|t|χ(−∞,0)(t)− ωe

α
2
|t|

∫ 0

−∞
e−|t−s|eiasds. (2.2.11)

For t > 0, |t− s| = t− s and therefore,∫ 0

−∞
e−|t−s|eiasds = e−t

∫ 0

−∞
e(ia+1)sds =

e−t

ia+ 1
,
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which together with (2.2.5), implies

(A∗f−a )(t) = e
α
2
|t|e−t

−ω
ia+ 1

= e
α
2
|t|e−t

ia− 1

2
, t > 0.

For t < 0, we have ∫ 0

−∞
e−|t−s|eiasds =

et

ia− 1
+

1

ω
eiat. (2.2.12)

Combining (2.2.12) with (2.2.11) and (2.2.5), we get

(A∗f−a )(t) = e
α
2
|t|et

−ω
ia− 1

= e
α
2
|t|et

ia+ 1

2
, t < 0,

completing the proof.

2.3 The box approximation operators

In this section we study the invertibility properties of the truncated operators Ar

given by (2.1.1) and provide an explicit representation for the inverse (when exists).

Recall that the truncated operator Ar admits the following representation

Ar = W 2
α −WαPrLPrWα, r > 0.

Observe that the closure of WαPrLPrWα is a bounded operator on L2(R). There-

fore, for every r > 0, Ar is well-defined and self-adjoint on D(Ar) = D(W 2
α).

Introduce the “exceptional” set

Ξ =
∞⋃

k=−∞

{
1

a

(
ϕ+

πk

2

)}
, (2.3.1)

where

ϕ = arccos

(√
2ω − 1√

2ω

)
∈ (0, π), (2.3.2)

and a is given by (2.2.5), with ω being a parameter in the integral kernel L given

by equation (2.2.1). Then we have the following result:
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Theorem 2.3.1. For every r outside the critical set, that is, r /∈ Ξ, the operator

Ar has a bounded inverse A−1
r and for every f ∈ L2(R),

(
A−1
r f

)
(t) = e−α|t|f(t) + χ[−r,r]e

−α
2
|t|

∫ r

−r
Γ2ψr(t, s)e

−α
2
|s|f(s)ds, t > 0. (2.3.3)

Here

Γθ(t, s) =
−2ω

a sin(θ)

{
cos

(
at− θ

2

)
cos

(
as+ θ

2

)
, s ≤ t,

cos
(
at+ θ

2

)
cos

(
as− θ

2

)
, t < s,

(2.3.4)

ψr = ar − ϕ, (2.3.5)

with a and ϕ given by (2.2.5) and (2.3.2), respectively.

Proof. We remark that the operator Ar is block-diagonal with respect to the de-

composition of L2(R) given by

L2(R) = L2((−∞,−r))⊕ L2((−r, r))⊕ L2((r,∞)).

We therefore have

Ar = W 2
α ⊕Wα(I − Lr)Wα ⊕W 2

α, (2.3.6)

where Lr is the convolution operator on the Hilbert space L2((−r, r)) (with semi-

separable integral kernel):

(Lrf)(x) = ω

∫ r

−r
e−|x−y|f(y)dy, x ∈ (−r, r). (2.3.7)

Hence, Ar is invertible if and only if I − Lr is. Notice that I − Lr is a truncated

Wiener-Hopf integral operator (cf. [7]) with the symbol l given by (2.2.4).

To prove the invertibility of the operator I −Lr under the condition r /∈ Ξ, we

consider the operator L̃r on L2((0, 2r)), given by

(L̃rf)(t) =

∫ 2r

0

e−|t−s|f(s)ds, t ∈ (0, 2r).
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Note that I − L̃r is unitarily equivalent to I − Lr, since

I − Lr = U
(
I − L̃r

)
U−1, (2.3.8)

where U : L2((0, 2r)) → L2((−r, r)) is the shift operator

(Uf)(t) = f(t+ r), t ∈ [−r, r].

Observe that the function ωe−|t| admits representation

ωe−|t| =

{
iCe−itA(I − P )B, 0 ≤ t ≤ 2r,

−iCe−itAPB, −2r ≤ t < 0,

with

C =
(
i −i

)
, A =

(
i 0
0 −i

)
,

B =

(
ω
ω

)
, P =

(
1 0
0 0

)
.

Therefore, Theorem 2.6.1 implies that the operator I − L̃r is invertible if and only

if r /∈ Ξ and

((I − L̃r)−1f)(t) = f(t) +

∫ 2r

0

Γ̃2ψr(t, s)f(s)ds, f ∈ L2((0, 2r)), t ∈ (0, 2r),

(2.3.9)

with

Γ̃θ(t, s) =
−2ω

a sin(θ)

{
cos

(
a(t− r)− θ

2

)
cos

(
a(s− r) + θ

2

)
, 0 ≤ s ≤ t ≤ 2r,

cos
(
a(t− r) + θ

2

)
cos

(
a(s− r)− θ

2

)
, 0 ≤ t < s ≤ 2r

(2.3.10)

and ψr given by (2.3.5). Now, relation (2.3.8) implies that the operator I − Lr is

also invertible if and only if r /∈ Ξ with the inverse given by

((I − Lr)−1f)(t) = f(t) +

∫ r

−r
Γ2ψr(t, s)f(s)ds, f ∈ L2((−r, r)), t ∈ (−r, r).

(2.3.11)
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The statement of the lemma now follows from (2.3.6) and (2.3.11).

In the case where r belongs to the exceptional set Ξ (and, therefore, Ar is

not invertible), the operator Ar has a nontrivial kernel, described in the following

result:

Lemma 2.3.2. Let Ar be given by (2.1.1) and r ∈ Ξ, the critical set given by

(2.3.1). Then Ker(Ar) 6= 0 with

e−
α
2
|t| cos(at)χ[−r,r](t) ∈ Ker(Ar), if r =

1

a

(
ϕ+

πk

2

)
for k even , (2.3.12)

e−
α
2
|t| sin(at)χ[−r,r](t) ∈ Ker(Ar), if r =

1

a

(
ϕ+

πk

2

)
for k odd . (2.3.13)

Proof. We will only prove (2.3.12); the proof of (2.3.13) is analogous. It suffices to

show that the function g ∈ L2((−r, r)),

g(t) = cos(at), t ∈ (−r, r),

is in the kernel of operator I − Lr, with Lr given by (2.3.7). By the definition of

I − Lr,

((I − Lr)g)(t) = cos(at)− ω

∫ r

−r
e−|t−s| cos(as)ds, t ∈ (−r, r).

Let us rewrite∫ r

−r
e−|t−s| cos(as)ds =

∫ t

−r
e−(t−s) cos(as)ds+

∫ r

t

et−s cos(as)ds
def
= I1 + I2.

(2.3.14)

Using the elementary identity∫
eαx cos(βx+ d)dx = eαx

(
β

β2 + α2
sin(βx+ d) +

α

β2 + α2
cos(βx+ d)

)
+ C,

(2.3.15)
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α, β, d ∈ R, one gets

I1 =

∫ t

−r
e−(t−s) cos(as)ds = e−t

[
es

(
a

a2 + 1
sin(as) +

1

a2 + 1
cos(as)

)]t
−r

=
a

a2 + 1
sin(at) +

1

a2 + 1
cos(at)− e−t−r

(
a

a2 + 1
sin(−ar) +

1

a2 + 1
cos(ar)

)
.

Since cos(−ar) = a√
2ω

and sin(−ar) = − 1√
2ω

for r ∈ Ξ, the second term in the last

expression is zero and

I1 =
a

a2 + 1
sin(at) +

1

a2 + 1
cos(at). (2.3.16)

Similarly,

I2 =

∫ r

t

et−s cos(as)ds = et
∫ r

t

e−s cos(as)ds

= et−r
(

a

a2 + 1
sin(ar)− 1

a2 + 1
cos(ar)

)
−

(
a

a2 + 1
sin(at) +

−1

a2 + 1
cos(at)

)
.

As before, the first term is zero, and so

I2 = − a

a2 + 1
sin(at) +

1

a2 + 1
cos(at). (2.3.17)

Combining (2.3.16) and (2.3.17) with (2.3.14), and using that a2 + 1 = 2ω, we

obtain ∫ r

−r
e−|t−s| cos(as)ds =

1

ω
cos(at), t ∈ (−r, r), r ∈ Ξ,

proving the lemma.

2.4 A family of self-adjoint extensions of the op-

erator A

In this section we introduce a special family of self-adjoint extensions Bθ, θ ∈ [0, 2π),

of the operator A that describe the behavior of the operators Ar as r approaches

infinity.
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For θ ∈ [0, 2π), consider the family of pairs (Fθ, Gθ), Fθ, Gθ ∈ D(A∗)/D(A),

given by

Fθ = f+
a + f−a + eiθf+

−a + e−iθf−−a, (2.4.1)

Gθ = f+
−a + f−−a + eiθf−a + e−iθf+

a . (2.4.2)

It is easy to see that Fθ and Gθ are linearly independent if and only if θ is not an

integer multiple of π. Indeed, consider the linear combination

aFθ + bGθ = (a+ e−iθb)f+
a + (a+ eiθb)f−a + (eiθa+ b)f+

−a + (e−iθa+ b)f−−a.

If sin(θ) 6= 0, each of the coefficients can vanish if and only if both a and b are

zeros. Conversely, if sin(θ) = 0, the linear combination vanishes for every nonzero

a and b such that a = −b.

Introduce the family Bθ of extensions of A,

A ⊂ Bθ ⊂ A∗,

with domain given by

D(Bθ) = D (A) +̇Lθ, (2.4.3)

where

Lθ =


span {Fθ, Gθ} , θ ∈ (0, π) ∪ (π, 2π),

span
{
f+
a + f+

−a, f
−
a + f−−a

}
, θ = 0,

span
{
f+
a − f+

−a, f
−
a − f−−a

}
, θ = π.

One can verify that the family {Lθ}θ∈[0,2π) is a continuous family of two-dimensional

planes in the four-dimensional space D(A∗)/D(A).

Next, we collect several results describing the (spectral) properties of the oper-

ators Bθ. Our first lemma shows that every extension Bθ is a self-adjoint operator.
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Lemma 2.4.1. For every θ ∈ [0, 2π), Bθ is self-adjoint.

Proof. According to the general theory (cf. [3], [15], [14]), operator Bθ is self-

adjoint if and only if the corresponding linear manifold Lθ is a Lagrangian plane

in the deficiency subspace D(A∗)/D(A), i.e.,

[f, g] = (A∗f, g)− (f,A∗g) = 0, f, g ∈ Lθ. (2.4.4)

In turn, equation (2.4.4) holds if and only if Lθ can be represented as the graph of

a self-adjoint relation. Introduce the basis

b1(t) = pa(t) = eiate−
α
2
|t|, b2(t) = p−a(t) =

1

i
e−iate−

α
2
|t|, (2.4.5)

b3(t) = qa(t) =
1

i
eiate−

α
2
|t| sgn(t), b4(t) = q−a(t) = e−iate−

α
2
|t| sgn(t).

One can show (cf. [1]) that

[bi, bj] = δij,

and therefore the basis B = {bj}4
j=1 is canonical. In order to represent Lθ in the

new basis, we make the observation that

f+
a =

1

2
(pa + iqa), f+

−a =
1

2
(ip−a + q−a),

f−a =
1

2
(pa − iqa), f−−a =

1

2
(ip−a − q−a). (2.4.6)

We first consider the subspaces L0 and Lπ. Applying (2.4.6) to the generating

vectors of those subspaces, we get

L0 = span {pa + iqa + ip−a + q−a, pa − iqa + ip−a − q−a}

and

Lπ = span {pa + iqa − ip−a − q−a, pa − iqa − ip−a + q−a} .
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It is now clear that L0 and Lπ can be thought of as the graphs of the operators

M0 and Mπ, respectively, where

M0 =

(
0 i
−i 0

)
, Mπ =

(
0 −i
i 0

)
,

both acting from span {pa, qa} to span {q−a, p−a}; therefore, both are Lagrangian

planes.

Next, we consider the subspace Lθ for the remaining values of the parameter θ,

namely those θ ∈ [0, 2π), with sin(θ) 6= 0. We start by finding new representations

for the vectors Fθ and Gθ using equations (2.4.6):

Fθ = f+
a + f−a + eiθf+

−a + e−iθf−−a

=
1

2
(pa + iqa) +

1

2
(pa − iqa) + eiθ

1

2
(ip−a + q−a) + e−iθ

1

2
(ip−a − q−a)

= pa + i cos(θ)p−a + i sin(θ)q−a,

Gθ = f+
−a + f−−a + eiθf−a + e−iθf+

a

=
1

2
(ip−a + q−a) +

1

2
(ip−a − q−a) + eiθ

1

2
(pa − iqa) + e−iθ

1

2
(pa + iqa)

= ip−a + cos(θ)pa + sin(θ)qa.

Therefore, the corresponding representation for Lθ is given by

Lθ = span {pa + i cos(θ)p−a + i sin(θ)q−a, cos(θ)pa + ip−a + sin(θ)qa} .

To complete the proof, observe that Lθ is the graph of the self-adjoint operator

Mθ =
1

sin(θ)

(
− cos(θ) −i
i − cos(θ)

)
,

acting from span {pa, p−a} to span {qa, q−a}. Indeed, an arbitrary element of Lθ

is of the form

(c1 + c2 cos(θ))pa + (c1i cos(θ) + c2i)p−a + c2 sin(θ)qa + c1i sin(θ)q−a, c1, c2 ∈ C,
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where the coefficients obviously satisfy the following relation for all c1, c2 ∈ C

(
c2 sin(θ)
c1i sin(θ)

)
= Mθ

(
c1 + c2 cos(θ)
c1i cos(θ) + c2i

)
.

We conclude that Lθ is a Lagrangian plane for every θ ∈ [0, 2π), proving the

lemma.

The following results deal with two complementary situations: when zero be-

longs to the resolvent set of the operator Bθ and when it is a part of the spectrum.

In the former case, we provide a formula for the inverse B−1
θ , and in the latter case

we give a characterization of the corresponding eigenspace.

Theorem 2.4.2. For every θ ∈ (0, π) ∪ (π, 2π), the operator Bθ has a bounded

inverse given by B−1
θ = Gθ, where

(Gθf)(t) = e−α|t|f(t) + e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)e

−α
2
|s|f(s)ds, f ∈ L2(R), t ∈ R. (2.4.7)

Here Γθ(t, s) is defined by (2.3.4) with −∞ < s, t <∞.

The proof of the theorem is based on the following result:

Lemma 2.4.3. For every θ ∈ (0, π) ∪ (π, 2π) one has Ran(Gθ) ⊂ D(Bθ); equiva-

lently, for every f ∈ L2(R),

e−α|·|f(·) + e−
α
2
|·|

∫ ∞

−∞
Γθ(·, s)e−

α
2
|s|f(s)ds ∈ D(Bθ).

Proof. Recall that

D(Bθ) = D (A) +̇ span {Fθ, Gθ} ,
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where Fθ and Gθ are given by (2.4.1) and (2.4.2), respectively. Therefore, in order

to prove the assertion, we have to find a decomposition of (Gθf)(t) of the form

(Gθf)(t) = h̃0(t) + C1Fθ(t) + C2Gθ(t), t ∈ R, (2.4.8)

where h̃0 ∈ D(A) and C1, C2 ∈ C.

First, observe that

e−α|·|f(·) ∈ D(A).

Next, we will show that

e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)e

−α
2
|s|f(s)ds = h0(t) + C1Fθ(t) + C2Gθ(t), t ∈ R.

Here h0 ∈ D(A) is independent of θ, and C1, C2 ∈ C are given by

C1 = C
1

4
(f, p−a)L2(R), C2 = C

1

4
(f, pa)L2(R), (2.4.9)

where

C =
−2ω

a sin(θ)
,

and pa and p−a are defined in (2.4.5). This will then complete the proof. To prove

(2.4.8), let

K(s) = e−
α
2
|s|f(s), s ∈ R. (2.4.10)

By the definition of Γθ (cf. (2.3.4)),

e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)K(s)ds = Ce−

α
2
|t|

∫ t

−∞
cos (at− θ/2) cos (as+ θ/2)K(s)ds

+ Ce−
α
2
|t|

∫ ∞

t

cos (at+ θ/2) cos (as− θ/2)K(s)ds, t ∈ R.

(2.4.11)
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Applying the elementary equalities

4 cos (at− θ/2) cos (as+ θ/2) = eiateias + eiate−iase−iθ + e−iateiaseiθ + e−iate−ias

and

4 cos (at+ θ/2) cos (as− θ/2) = eiateias + eiate−iaseiθ + e−iateiase−iθ + e−iate−ias

to (2.4.11), we obtain, after some algebra,

e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)K(s)ds = C1e

−α
2
|t|eiat + C2e

−α
2
|t|e−iat +R(t), t ∈ R, (2.4.12)

where

R(t) =
C

4
e−

α
2
|t|

[ ∫ t

−∞
(eiate−iase−iθ + e−iateiaseiθ)K(s)ds

+

∫ ∞

t

(eiate−iaseiθ + e−iateiase−iθ)K(s)ds
]
, t ∈ R.

Next, we rewrite R as

R(t) = C2e
−iθe−

α
2
|t|eiat + C1e

iθe−
α
2
|t|e−iat +R1(t), t ∈ R, (2.4.13)

where

R1(t) =
C

2
i sin(θ)e−

α
2
|t|

∫ ∞

t

(eiate−ias − e−iateias)K(s)ds, t ∈ R. (2.4.14)

Combining (2.4.12), (2.4.13), and (2.4.14), and taking into account that

e−
α
2
|t|eiat = f+

a (t) + f−a (t) and e−
α
2
|t|e−iat = f+

−a(t) + f−−a(t), t ∈ R,
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we finally get

e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)K(s)ds

=C1(f
+
a (t) + f−a (t)) + C2(f

+
−a(t) + f−−a(t)) + C2e

−iθ(f+
a (t) + f−a (t))

+ C1e
iθ(f+

−a(t) + f−−a(t))

+
C

2
i sin(θ)e−

α
2
|t|

∫ ∞

t

(eiate−ias − e−iateias)K(s)ds

=C1(f
+
a (t) + f−a (t) + eiθf+

−a(t) + eiθf−−a(t))

+ C2(f
+
−a(t) + f−−a(t) + e−iθf+

a (t) + e−iθf−a (t))

+
C

2
i sin(θ)e−

α
2
|t|

∫ ∞

t

(eiate−ias − e−iateias)K(s)ds

=C1Fθ(t) + C2Gθ(t) + h0(t), t ∈ R,

where

h0(t) =
C

2
i sin(θ)e−

α
2
|t|

∫ ∞

t

(eiate−ias − e−iateias)K(s)ds

+ C1f
−
−a(t)(e

iθ − e−iθ) + C2f
−
a (t)(e−iθ − eiθ), t ∈ R.

It remains to show that h0 ∈ D(A). Indeed,

h0(t) = 2i sin(θ)e−
α
2
|t|

[
C

4

∫ ∞

t

(eiate−ias − e−iateias)K(s)ds+ C1f
−
−a(t)− C2f

−
a (t)

]
.

Applying (2.2.3), we see that

C1f
−
−a(t)− C2f

−
a (t) = −

(
C2e

iat − C1e
−iat)χ(−∞,0)(t), t ∈ R,

which, together with (2.4.9), gives

h0(t) =
2ω

a
e−

α
2
|t| sgn(t)

{∫∞
t

sin(a(t− s))K(s)ds, t > 0,∫ t

−∞ sin(a(t− s))K(s)ds, t < 0.
(2.4.15)

Equation (2.4.15) together with (2.4.10) implies that eα|·|h0(·) ∈ L2(R), completing

the proof.
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We are now ready to prove Theorem 2.4.2.

Proof of Theorem 2.4.2. In order to prove that Gθ is an inverse of Bθ one has to

prove the following two assertions:

(i) for every f ∈ L2(R), Gθf ∈ D(Bθ) and BθGθf = f ,

(ii) for every h ∈ D(Bθ), GθBθh = h.

This will imply that Ran(Bθ) = L2(R), Ker(Bθ) = {0}, BθGθ = I, and GθBθ =

I|D(Bθ). Lemma 2.4.3 yields the first part of statement (i); the next step is to show

that

BθGθf = f, ∀f ∈ L2(R). (2.4.16)

Combining (2.4.7) with (2.1.4), we get

(BθGθf)(t) = eα|t|(Gθf)(t)− ωe
α
2
|t|

∫ ∞

−∞
e−|t−s|e

α
2
|s|(Gθf)(s)ds

= f(t) + e
α
2
|t|

∫ ∞

−∞
Γθ(t, s)e

−α
2
|s|f(s)ds− ωe

α
2
|t|

∫ ∞

−∞
e−|t−s|e−

α
2
|s|f(s)ds

− ωe
α
2
|t|

∫ ∞

−∞

∫ ∞

−∞
e−|t−p|Γθ(p, s)e

−α
2
|s|f(s)dsdp, t ∈ R,

implying that BθGθf = f for every f ∈ L2(R) if and only if

Γθ(t, s)− ωe−|t−s| − ω

∫ ∞

−∞
e−|t−p|Γθ(p, s)dp ≡ 0. (2.4.17)

In order to prove (2.4.17), assume, without loss of generality, that t ≥ s. Then

∫ ∞

−∞
e−|t−p|Γθ(p, s)dp =

∫ s

−∞
e−|t−p|Γθ(p, s)dp (2.4.18)

+

∫ t

s

e−|t−p|Γθ(p, s)dp+

∫ ∞

t

e−|t−p|Γθ(p, s)dp
def
= I1 + I2 + I3.
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Using (2.3.15), we get

I1 = Ce−t cos(as− θ/2)

∫ s

−∞
ep cos(ap+ θ/2)dp (2.4.19)

= Ce−t cos(as− θ/2)

[
ep

(
a

a2 + 1
sin(ap+ θ/2) +

1

a2 + 1
cos(ap+ θ/2)

)]s
−∞

= Ce−t+s cos(as− θ/2)

(
a

a2 + 1
sin(as+ θ/2) +

1

a2 + 1
cos(as+ θ/2)

)
,

I2 = Ce−t cos(as+ θ/2)

∫ t

s

ep cos(ap− θ/2)dp (2.4.20)

= Ce−t cos(as+ θ/2)

[
ep

(
a

a2 + 1
sin(ap− θ/2) +

1

a2 + 1
cos(ap− θ/2)

)]t
s

= C cos(as+ θ/2)

(
a

a2 + 1
sin(at− θ/2) +

1

a2 + 1
cos(at− θ/2)

)
− Ce−t+s cos(as+ θ/2)

(
a

a2 + 1
sin(as− θ/2) +

1

a2 + 1
cos(as− θ/2)

)
,

and

I3 = Cet cos(as+ θ/2)

∫ ∞

t

e−p cos(ap− θ/2)dp (2.4.21)

= Cet cos(as+ θ/2)

[
e−p

(
a

a2 + 1
sin(ap− θ/2)− 1

a2 + 1
cos(ap− θ/2)

)]∞
t

= −C cos(as+ θ/2)

(
a

a2 + 1
sin(at− θ/2)− 1

a2 + 1
cos(at− θ/2)

)
.

Combining (2.4.19), (2.4.20), and (2.4.21), we immediately get

I1 + I2 + I3 = C
2

a2 + 1
cos(as+ θ/2) cos(at− θ/2)

+ C
a

a2 + 1
e−t+s [cos(as− θ/2) sin(as+ θ/2)− cos(as+ θ/2) sin(as− θ/2)]

=
1

ω
Γθ(t, s) + e−|t−s|C

a

a2 + 1
sin(θ) =

1

ω
Γθ(t, s)− e−|t−s|,

which, together with (2.4.18), implies (2.4.17). This establishes (2.4.16).

To finish the proof, we need to show that

GθBθf = f, f ∈ D(Bθ). (2.4.22)
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According to the structure of D(Bθ) defined by (2.4.3), in order to prove (2.4.22),

we need to check that the following three equations hold,

GθBθf = f, for every f ∈ D(A),

GθBθFθ = Fθ, (2.4.23)

GθBθGθ = Gθ. (2.4.24)

If f ∈ D(A), then

(GθBθf)(t) = e−α|t|(Af)(t) + e−
α
2
|t|

∫ ∞

−∞
Γθ(t, s)e

−α
2
|s|(Af)(s)ds

= f(t)− ωe−
α
2
|t|

∫ ∞

−∞
e−|t−s|e

α
2
|s|f(s)ds+ e−

α
2
|t|

∫ ∞

−∞
Γθ(t, s)e

α
2
|s|f(s)ds

− ωe−
α
2
|t|

∫ ∞

−∞
Γθ(t, p)

∫ ∞

−∞
e−|p−s|e

α
2
|s|f(s)dsdp, t ∈ R,

implying that GθBθf = f for every f ∈ D(A) if and only if

Γθ(t, s)− ωe−|t−s| − ω

∫ ∞

−∞
e−|p−s|Γθ(t, p)dp ≡ 0. (2.4.25)

But (2.4.25) follows immediately from (2.4.17), taking into account that

Γθ(t, s) = Γθ(s, t).

It remains to establish (2.4.23) and (2.4.24). We focus on (2.4.23), equation (2.4.24)

being proven analogously. Using the fact that Bθ is a restriction of the operator

A∗ and applying equations (2.2.7) – (2.2.10) together with (2.4.1), we get

Gθ(BθFθ) = Gθ(A∗(f+
a + f−a + eiθf+

−a + e−iθf−−a)) = 2i sin(θ)Gθ(A∗f+
−a)

= 2i sin(θ)

(
e−α|·|A∗f+

−a + e−
α
2
|·|

∫ ∞

−∞
Γθ(·, s)e−

α
2
|s|(A∗f+

−a)(s)ds

)
= 2i sin(θ)e−

α
2
|·|

(
ia+ sgn(·)

2
e−|·| +

∫ ∞

−∞
Γθ(·, s)

ia+ sgn(s)

2
e−|s|ds

)
.

(2.4.26)
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Now, write∫ ∞

−∞
Γθ(t, s)

ia+ sgn(s)

2
e−|s|ds =

ia− 1

2

∫ 0

−∞
Γθ(t, s)e

sds (2.4.27)

+
ia+ 1

2

∫ ∞

0

Γθ(t, s)e
−sds, t ∈ R.

For the rest of the proof we only consider t > 0; the case t < 0 can be handled in

a similar manner. Applying equation (2.3.4), we get∫ 0

−∞
Γθ(t, s)e

sds

= C cos(at− θ/2)

∫ 0

−∞
cos(as+ θ/2)esds (2.4.28)

= C cos(at− θ/2)

[
es

(
a

a2 + 1
sin(as+ θ/2) +

1

a2 + 1
cos(as+ θ/2)

)]0

−∞

= C cos(at− θ/2)

(
a

a2 + 1
sin(θ/2) +

1

a2 + 1
cos(θ/2)

)
and∫ ∞

0

Γθ(t, s)e
−sds =

∫ t

0

Γθ(t, s)e
−sds+

∫ ∞

t

Γθ(t, s)e
−sds

def
= I1 + I2, (2.4.29)

Now,

I1 = C cos(at− θ/2)

[
e−s

(
a

a2 + 1
sin(as+ θ/2)− 1

a2 + 1
cos(as+ θ/2)

)]t
0

= C cos(at− θ/2)e−t
(

a

a2 + 1
sin(at+ θ/2)− 1

a2 + 1
cos(at+ θ/2)

)
− C cos(at− θ/2)

(
a

a2 + 1
sin(θ/2)− 1

a2 + 1
cos(θ/2)

)
, (2.4.30)

and

I2 = C cos(at+ θ/2)

[
e−s

(
a

a2 + 1
sin(as− θ/2)− 1

a2 + 1
cos(as− θ/2)

)]∞
t

= −C cos(at+ θ/2)e−t
(

a

a2 + 1
sin(at− θ/2)− 1

a2 + 1
cos(at− θ/2)

)
.

(2.4.31)
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Combining (2.4.30) and (2.4.31) with (2.4.29), we obtain

∫ ∞

0

Γθ(t, s)e
−sds = −e−t − C cos(at− θ/2)

(
a

a2 + 1
sin(θ/2)− 1

a2 + 1
cos(θ/2)

)
.

(2.4.32)

Lastly, using (2.4.28), (2.4.32), and (2.4.27), we get

∫ ∞

−∞
Γθ(t, s)

ia+ sgn(s)

2
e−|s|ds

= −e−t ia+ 1

2
+

sin(θ/2)

sin(θ)
cos(at− θ/2)− i

cos(θ/2)

sin(θ)
cos(at− θ/2)

= −e−t ia+ 1

2
+

1

2i sin(θ)
(eiat + e−iateiθ), t ∈ R,

which, together with (2.4.26), gives

(GθBθFθ)(t) = 2i sin(θ)e−
α
2
|t|

[
ia+ 1

2
e−t − e−t

ia+ 1

2
+

1

2i sin(θ)

(
eiat + e−iateiθ

)]
= e−

α
2
|t| (eiat + e−iateiθ

)
= Fθ(t), t > 0,

completing the proof.

We remark that in the case θ equals 0 or π, the corresponding operators Bθ are

not invertible. The following result describes their kernels.

Lemma 2.4.4. The operators B0 and Bπ are not invertible and

f+
a + f−a + f+

−a + f−−a ∈ Ker(B0)

and

f+
a + f−a − f+

−a − f−−a ∈ Ker(Bπ).

Proof. Follows immediately from Lemma 2.2.6.
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2.5 The main result

In this section we will prove the main result of this chapter, which describes the

behavior of the family of truncations Ar for large values of the parameter r. It

turns out that Ar converges to the torus Bθ (described in the previous section)

in the norm resolvent sense, along sequences that avoid a particular “exceptional”

set. More precisely, we have the following result:

Theorem 2.5.1. Let Ar be given by (2.1.1) and Bθ be the family of self-adjoint

extensions of A with domain given by (2.4.3). Let Ξ be the exceptional set defined

in (2.3.1). Then for every sequence {rk}∞k=1, rk = r0 + 1
a
πk, with r0 /∈ Ξ,

lim
k→∞

∥∥(Bθ0 − z)−1 − (Ark − z)−1
∥∥ = 0 ∀z ∈ ρ(Bθ0) ∩ ρ(Ark) for all k ∈ N,

(2.5.1)

where

θ0 = 2ψr0 (mod 2π),

and ψr is given by (2.3.5).

Proof. Using the identity,

(A− z)−1 − (B − z)−1 = (A− z)−1A(A−1 −B−1)B(B − z)−1,

which holds for arbitrary self-adjoint operators A and B such that 0 ∈ ρ(A)∩ρ(B),

we get ∥∥(A− z)−1 − (B − z)−1
∥∥ ≤ C

∥∥A−1 −B−1
∥∥ , (2.5.2)

with C independent of A and B. Therefore, it is sufficient to prove equation (2.5.1)
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for z = 0, namely,

lim
k→∞

∥∥B−1
θ0
−A−1

rk

∥∥ = 0,

for θ0 = 2ψr0 (mod 2π), and ψr given by (2.3.5). Notice that for r0 /∈ Ξ, the

corresponding θ0 satisfies sin(θ0) 6= 0, and by Theorem 2.4.2, the operator Bθ0 is

invertible with the inverse given by (2.4.7). Let Pr be the projection of L2(R) onto

the subspace L2((−r, r)), and introduce

Qr = I − Pr,

where I is the identity on L2(R). Recall that the inverse of the operator Bθ0 is

given by (2.4.7),

(B−1
θ0
f)(t) = e−α|t|f(t) + e−

α
2
|t|

∫ ∞

−∞
Γθ0(t, s)e

−α
2
|s|f(s)ds, f ∈ L2(R), t ∈ R,

and the inverse of the operator Ark , given by (2.3.3), is of the form

(
A−1
rk
f
)
(t) = e−α|t|f(t) + χ[−r,r]e

−α
2
|t|

∫ r

−r
Γθ0(t, s)e

−α
2
|s|f(s)ds, f ∈ L2(R), t ∈ R,

with

Γθ(t, s) =
C

sin(θ)

{
cos

(
at− θ

2

)
cos

(
as+ θ

2

)
, s ≤ t,

cos
(
at+ θ

2

)
cos

(
as− θ

2

)
, t < s.

Denote

(Tf)(t) = e−
α
2
|t|

∫ ∞

−∞
Γθ0(t, s)e

−α
2
|s|f(s)ds, t ∈ R.

In this notation one can represent the inverses B−1
θ0

and A−1
rk

in the following way,

(B−1
θ0
f)(t) = e−α|t|f(t) + (Tf)(t), t ∈ R,

and (
A−1
rk
f
)
(t) = e−α|t|f(t) + (PrTPrf)(t), t ∈ R.
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Clearly, ((
B−1
θ0
−A−1

rk

)
f
)
(t) = (QrTf)(t) + (PrTQrf)(t), t ∈ R,

and therefore,

∥∥(
B−1
θ0
−A−1

rk

)
f
∥∥
L2(R)

≤
∥∥∥∥e−α

2
|·|

∫ ∞

−∞
Γθ0(·, s)e−

α
2
|s|f(s)ds

∥∥∥∥
Qrk

L2(R)

+

∥∥∥∥e−α
2
|·|

∫ ∞

−∞
Γθ0(·, s)e−

α
2
|s|(Qrkf)(s)ds

∥∥∥∥
Prk

L2(R)

.

Next, ∣∣∣∣∫ ∞

−∞
Γθ0(t, s)e

−α
2
|s|f(s)ds

∣∣∣∣ ≤ C1

sin θ0

‖f‖L2(R) ,

and therefore,∥∥∥∥e−α
2
|·|

∫ ∞

−∞
Γθ0(·, s)e−

α
2
|s|f(s)ds

∥∥∥∥
Qrk

L2(R)

≤ C2

sin θ0

e−
α
2
rk ‖f‖L2(R) −→ 0,

as k →∞. Similarly,∣∣∣∣∫ ∞

−∞
Γθ0(t, s)e

−α
2
|s|(Qrkf)(s)ds

∣∣∣∣ ≤ C3

sin θ0

e−
α
2
rk ‖f‖L2(R)

∥∥∥∥e−α
2
|·|

∫ ∞

−∞
Γθ0(·, s)e−

α
2
|s|(Qrkf)(s)ds

∥∥∥∥
Prk

L2(R)

≤ C4

sin θ0

e−
α
2
rk ‖f‖L2(R) −→ 0,

as k →∞, which completes the proof of the theorem.

Remark 2.5.2. One can reformulate Theorem 2.5.1 in the following way. For

κ ≥ 0, define the neighborhood set Ξκ of the exceptional set Ξ as

Ξκ =
∞⋃
k=0

{[
1

a

(
ϕ+

πk

2

)
− e−kκ,

1

a

(
ϕ+

πk

2

)
+ e−kκ

]}
. (2.5.3)

If 0 ≤ κ < α
2
, then

lim
r→∞,r /∈Ξκ

∥∥(Bθr − z)−1 − (Ar − z)−1
∥∥ = 0, ∀z ∈ C : Im (z) 6= 0, (2.5.4)
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where θr = 2ψr (mod 2π).

Equation (2.5.4) describes the asymptotic behavior of the system r 7→ Ar.

It shows that the one-dimensional torus {Bθ}θ∈[0,2π) attracts the family Ar as r

approaches infinity away from the (exponentially diminishing) neighborhood of the

critical set.

2.6 Appendix

In this section we will discuss the invertibility properties of convolution operators

on a finite interval, that we used in the proof of Theorem 2.3.3. We refer to [22]

for details.

Let K be a convolution operator on L2((0, r)),

(Kϕ)(t) =

∫ r

0

k(t− s)ϕ(s)ds, 0 ≤ t ≤ r, (2.6.1)

with an integrable kernel function k. We assume that k can be written in the form

k(t) =

{
iCe−itA(I − P )B, 0 ≤ t ≤ r,

−iCe−itAPB, −r ≤ t < 0,
(2.6.2)

where A is a matrix of size n×n with no real eigenvalues, B and C are matrices of

sizes n×1 and 1×n, respectively, and P is the Riesz projection of A corresponding

to the eigenvalues in the upper half plane. Then the following theorem holds.

Theorem 2.6.1. (Theorem XIII.10.1, [22]) Let K be the integral operator on

L2((0, r)), defined by (2.6.1), and assume that k admits the representation (2.6.2).

Let n be the order of A, and put A× = A − BC. Then I −K is invertible if and

only if the map

Sr = PeirAe−irA
×
P : Ran(P ) → Ran(P )
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is invertible. In that case

((I −K)−1f)(t) = f(t) +

∫ r

0

γ(t, s)f(s)ds, 0 ≤ t ≤ r,

with

γ(t, s) =

{
iCe−itA

×
Πre

isA×B, 0 ≤ s ≤ t ≤ r,

−iCe−itA×(I − Πr)e
isA×B, 0 ≤ t < s ≤ r.

Here Πr is the projection of Cn along Ran(P ) defined by

Πrx = x− S−1
r PeirAe−irA

×
x, x ∈ Cn.
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