EFFECTIVENESS OF CURRENT ANTI-HIV REGIMEN IN LOW- AND MIDDLE-INCOME COUNTRIES

Seongmi Kim1,2, Leonard Rogers1,3, Jacqueline A. Flores1,3, Rohit Rao4, Shwetha D Rao4, Anders Sönnerborg5, Ujjwal Neogi6, Kamal Singh1,3,4,

Stefan G. Sarafianos1,3,5

1Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO; 2Department of Veterinary Pathobiology, University of Missouri, Columbia, MO; 3Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO; 4Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm 141 86, Sweden; 5Department of Biochemistry, University of Missouri, Columbia, MO

Abstract

Nevirapine (NVP) is a first-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) of human immunodeficiency virus type 1 (HIV-1). However, with the emergence of resistance mutations due to a low genetic barrier under NVP pressure, new (second generation) NNRTIs have been approved. Rilpivirine (RPV), a second generation NNRTI, is not frequently used in low- and middle-income countries (LMICs) that bear the major HIV burden. RPV has been co-formulated with tenofovir (TDF) and emtricitabine (FTC) and has been recommended for patients with viral loads <100,000 copies/mL, inhibiting viruses that are resistant to NVP. It is now being considered in many LMICs.

To understand RPV efficacy in HIV-1 subtypes prevalent in LMICs, we cloned RT genes from patients infected with four different HIV-1 subtypes: subtype B (HIV-1B), subtype C (HIV-1C), and recombinant forms CRF01_AE and CRF02_AG. HIV-1B is most prevalent in western countries and accounts for only ~12% of all infections. However, HIV-1C, which accounts for ~52% of all HIV infections, is most prevalent in LMICs. In vitro inhibition assays were performed with the four patient-derived RTs.

Our results show that overall, NVP binds RTs with lower affinity than RPV, suggesting that NVP has lower effectiveness than RPV. However, NVP binds 02_AG RT with better affinity than RPV. Hence, NVP may still be effective for patients infected with 02_AG. Furthermore, RPV binding affinity with HIV-1C is lower than other subtypes. This result is consistent with clinical results, showing less efficacy of RPV among HIV-1C infected patients.

Background

HIV types, groups and subtypes and worldwide distribution

HIV -1C comprises more than 50% of the world’s HIV cases.

Do HIV-nonB patients fail RPV easier than HIV-1B?

Therapy outcome of 117 patient Swedish InfCare Cohort

Methods

Cloning, expression and purification of RT from patient samples

Kinetics of dNTP binding

Rapid Quench Flow (RFQ)

1. Run dNTP incorporation reactions in a rapid quench flow machine under single turnover conditions.
2. Analyze the products on a 20% urea gel. Plot the amount of product at different dNTP concentrations.
3. Determine observed rate constants (kobs) using a burst equation.
4. Plot the observed rates against increasing dNTP concentrations.
5. Fit the data points to obtain the optimal polymerization rate (kpol) and dNTP binding affinity (Kd.dNTP).

DNA/DNA Template/Primer used in this study Sequence (31/18mer)

3’ - CAG TGA CAA GCT GTG TAG GAT AGA TAG C-5’ Template 31’

5’ - GTC ACT GTT CGA GCA CCA 3’ Primer 18

Kinetics of NNRTI (RPV) binding

1. Run dNTP incorporation reactions in a rapid quench flow machine under single turnover conditions in presence of increasing concentration of RPV.
2. Analyze the products on a 20% urea gel. Plot the amount of product at different dNTP concentrations.
3. Determine amplitude using a burst equation.
4. Plot amplitude with increasing RPV concentrations.
5. Fit the data points to obtain RPV binding affinity (Kd.RPV).

Results

Kinetik parameters of HIV-1C RT on heteropolymeric (31/18-mer) DNA/DNA template-primer

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Kd.dATP (μM)</th>
<th>kpol (s-1)</th>
<th>efficiency (μM·s-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1B RT</td>
<td>3.4</td>
<td>12.5</td>
<td>3.7</td>
</tr>
<tr>
<td>HIV-1C RT</td>
<td>14.54</td>
<td>26.69</td>
<td>1.8</td>
</tr>
<tr>
<td>01_AE RT</td>
<td>2.0</td>
<td>10.8</td>
<td>5.4</td>
</tr>
<tr>
<td>02_AG RT</td>
<td>2.1</td>
<td>10.38</td>
<td>4.9</td>
</tr>
</tbody>
</table>

HIV-1C RT is ~ 2-fold less efficient than other subtype RTs

NVP binding affinity (Kd.NVP) to HIV-1B and HIV-non B RTs

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Kd.NVP (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1B RT</td>
<td>100.7 ± 17</td>
</tr>
<tr>
<td>HIV-1C RT</td>
<td>101.1 ± 32</td>
</tr>
<tr>
<td>01_AE RT</td>
<td>78.1 ± 7</td>
</tr>
<tr>
<td>02_AG RT</td>
<td>21.2 ± 1</td>
</tr>
</tbody>
</table>

Nevirapine binding affinity varies among different subtypes

02_AG appears more susceptible to NVP

RPV binding affinity (Kd.RPV) to HIV-1B and HIV-non B RTs

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Kd.RPV (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1B RT</td>
<td>21 ± 2</td>
</tr>
<tr>
<td>HIV-1C RT</td>
<td>66 ± 7</td>
</tr>
<tr>
<td>01_AE RT</td>
<td>31 ± 4</td>
</tr>
<tr>
<td>02_AG RT</td>
<td>21 ± 3</td>
</tr>
</tbody>
</table>

Rilpivirine binding affinity varies among different subtypes

HIV-1 Subtype C appears less susceptible to RPV

Conclusions

More HIV-nonB patients failed therapy (25%) than HIV-1B (9%)

NVP & RPV binding affinity varies among subtypes indicating its different efficacy in different HIV subtypes

Both clinical and biochemical experiment results suggest that NNRTIs has different susceptibility for different HIV-1 subtypes

Data suggest that NVP can be used for 02_AG infections efficiently

Data suggest that RPV is not a good anti-HIV drug for subtype C infections

Data suggest that Efda can be used for all subtypes as a potent anti-HIV drug

Acknowledgments

NIH/NIGMS P50 GM103368.

Figure Legends

- **Table 1**: Kinetic parameters of HIV-1C RT on heteropolymeric (31/18-mer) DNA/DNA template-primer
- **Table 2**: NVP binding affinity (Kd.NVP) to HIV-1B and HIV-non B RTs
- **Table 3**: RPV binding affinity (Kd.RPV) to HIV-1B and HIV-non B RTs

Graphs

- **Graph 1**: Kinetics of dNTP binding
- **Graph 2**: Kinetics of NNRTI (RPV) binding

References