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BOUNDARY VALUE PROBLEMS FOR THE STOKES SYSTEM
IN ARBITRARY LIPSCHITZ DOMAINS
Matthew Wright

Dr. Marius Mitrea, Dissertation Supervisor

Abstract

The goal of this work is to treat the main boundary value problems for the Stokes

system, i.e.,

the Dirichlet problem with LP-data and nontangential maximal function estimates,

the Neumann problem with LP-data and nontangential maximal function esti-

mates,

the Regularity problem with L7-data and nontangential maximal function esti-

mates,

the transmission problem with LP-data and nontangential maximal function esti-

mates,
the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces,

the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces,

in Lipschitz domains of arbitrary topology in R™, for each n > 2. Our approach relies

on boundary integral methods and yields constructive solutions to the aforementioned

problems.
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1 Introduction

1.1 Description of main well-posedness results

Informally speaking, the goal of the present work is to prove optimal well-posedness results
for (homogeneous and inhomogeneous) boundary-value problems for the Stokes system in
Lipschitz domains with arbitrary topology, in all space dimensions and for all major types
of boundary conditions (Dirichlet, Neumann, transmission). The boundary data is selected
from Lebesgue, Sobolev, Hardy, Besov and Triebel-Lizorkin spaces and the smoothness of
the solutions is measured accordingly.

At the core of our analysis is the transmission problem for the Stokes system, on which
we wish to elaborate first. Let {2 be a Lipschitz domain in R™, n > 2, and define 2, := Q)
and Q_ = R"\ Q. The transmission boundary value problems for the Stokes system studied

here is of the type

Aty = Vg in Qq,
diviie =0 in Q4,
(Ty) § ditlon — i-|og = § € LY (09), (1.1)

Ny, ms) — poMi_,m_) = f € LP(09Q),

\ M(Vﬁi), M(ﬂ'i) € LP(GQ).
Here, A is the Laplacian, p € [0, 1) is a fixed parameter, v := v is the outward unit normal
to Q4. For 1 < p < oo, LY (99) is the classical LP-based Sobolev spaces of order one on 952,

M denotes the non-tangential maximal operator (cf. (2.5)), and

Iy, ms) = (Ve " + AV )V — 120 (1.2)

is a family of co-normal derivatives, indexed by a parameter A € R (more detailed definitions
are given in subsequent chapters). In this way, we can simultaneously treat various types
of Neumann boundary conditions. For example, when A = 0, (1.2) corresponds to the
co-normal derivative treated in [34], whereas when A = 1, (1.2) corresponds to the “slip

condition” considered in [23].



Two closely related boundary value problems are the Neumann problem and the Dirich-

let problem with (maximally) regular data:

Ai=V7 in 0, Al =Vr in Q,
divii =0 in £, divid =0 in €,
(V) ) (R) (1.3)
oNit,7) = f € LP(09), i|ga = § € LY (09),
M(ViD), M(x) € LP(0R) M(Vi), M(x) € LP(0R).

\
From this point forth, we will refer to (R) as the Regularity problem. Fabes, Kenig, and
Verchota proved in [34] that (N) and (R) are well-posed if 2 — ¢ < p < 2+ ¢, where
e = £(0Q) > 0. Building on the work in [21], [75], Z. Shen has established in [82] a weak
maximum principle for the Dirichlet problem for the Stokes system in Lipschitz domains in
R3. Interpolating this L> bound with the LP-estimates from [34], with p near 2, shows that
the Dirichlet problem for the Stokes system in three-dimensional Lipschitz domains with
data in LP is solvable whenever 2 — e < p < co. However, as pointed out by P.Deuring on
p. 16 of [29], “this leaves open the question of whether these solutions may be constructed
by means of the boundary layer method, and how to deal with exterior problems and slip
boundary conditions.”

With these aims in mind, let us briefly discuss the relevance of the transmission problem

itself. From a physical point of view, the transmission problem

/~L:|:A7I:t :Vﬂ'i in Qi,
diviie. =0 in Q4
Uy |oq — U—|oq = g,

oMy — oMi_ = f,

where

—

oMy = pa (Ve " 4+ ALV — 147, (1.5)



describes the flow of a viscous incompressible fluid within and around a stationary particle
occupying the domain €4 which is further embedded into a second porous medium €2_. In
this context, @4 and my are the volume-averaged fluid velocity and pressure fields of the
inner flow, whereas #_ and w_ have analogous roles for the outer flow. In the specific case
when A = 1, this is a standard problem that arises when studying the low Reynolds number
deformation of a viscous drop immersed in another fluid (see [78]; [76], Sec. 7.2). Here, p
denotes the viscosity of the drop, while u_ denotes the viscosity of the surrounding fluid.
The case when § = 0 is often of particular interest, since this introduces the physically
relevant restriction that the velocities @4 and @_ must match on the boundary. The reader
is referred to M. Kohr and I. Pop’s monograph [55] for a more detailed discussion in this
regard and for ample references to the engineering literature dealing with transmission
problems for the Stokes system.

If we re-denote the term pyty in (1.4) as simply @+ and let p := p_/py denote the
ratio of the viscosities of the two fluids, we can rewrite the transmission problem in the

form

Aty = Vmy in Q4
diviie =0 in Q,

Wiy |oo — U—|an = G,

(s, my) — N, 7_) = [

Above, we have also re-denoted the term p_g as simply g, but since we will be interested
in considering these problems for general values of f and ¢, this is of little consequence.
Going one step further, if we replace 7+ with g7y and f with gy f in (1.4), we can write

a third form of the transmission problem,



Aty =Vry in Qg
diviig. =0 in Q4,
Ut]on — tU-loq = 7,

—

azi\(ﬁ+v7r+) - :U’ali\(ﬁ*?ﬂ-*) =

Since the viscosities p4 and p_ are positive numbers, these changes have no effect on

\

the solvability of these problems and so, throughout our work, we will consider the form of
the transmission problem that is most convenient for the particular goals we have in mind.
One advantage of these last two descriptions comes from analyzing the limiting cases. For
example, if we consider the case when u_ << p4, studying (7, j) for u = 0 yields information
about the Regularity problem (R) in Q_, and studying (77) for 1 = 0 yields information
about the Neumann problem (NNV) in 4. Similarly, if 4y << p_, analyzing (Tﬁ) and (TE)
will lead to results for the Regularity problem (R) in €4 and for the Neumann problem (V)
in Q_. Our main results are as follows (the reader is referred to the subsequent chapters

for the relevant notation employed below):

Theorem 1.1 Assume that Q@ C R™, n > 2, is a bounded Lipschitz domain and set Q4 :=
Q, Q_ =R\ Q. Also, fir p € (0,1) and X € (—1,1]. Then there exists ¢ = £(0) > 0 such
that for each

2(n—1)

i —E<p<2+e (1.8)

the transmission boundary value problem, concerned with finding two pairs of functions

(s, my) in Qg satisfying

Aty = Vg, divie =0 in Q4,

M(Vﬂi), M(ﬂi) S Lp(ﬁﬁ),
(1.9)

—

Ut

—u_
0

=ge hl (09
90 ge 1(a )7

Op(iiy,my) — pop(i—,m_) = f € hP(9Q),



and the decay conditions

O(|z|>™™) as |z| — 00, if n >3,
i_(z) = ) (1.10)
~1E(2) (fm fda) +O(jz]™Y)  as |z — oo, if n=2,

05 () = —L(9;E) (@) (/m fdo) + O™ as 1] w00, 1<j<n,  (111)

O(lz|*™™) as |z| — o0, if n>3,
m_(z) = (1.12)
%<(VEA)(x) , fag fda> +O0(|z|7?)  as |z| — o0, if n=2,

has a unique solution. In addition, there exists C > 0 such that

[M (Vi) Lo o) + 1M (7+) | r90) < Cllgllne@0) + C|l Flliw o62)- (1.13)

In the previous theorem as well as in the following results, the Hardy space h?(0f2), and

its regular version kY (99), are as defined in (2.97).

Theorem 1.2 Assume that Q C R", n > 2, is a bounded Lipschitz domain. Then there

exists € = £(0) > 0 such that for each

2—e<p<oo if n=2,3 (1.14)

2D Lo if n>4, (1.15)

n—

2—e<p<

the interior Dirichlet boundary value problem

A =Vr, divi=0 in Q,

M(@) € LP(0Q), (1.16)

il = fe Ll (09
Uaﬂ fe +( )7

\

has a solution, which is unique modulo adding functions which are locally constant in € to

the pressure term. In addition, there exists a finite constant C > 0 such that



IM (@)l 2o a0y < Cll fll 2o (o02)- (1.17)

Similar results are valid for the exterior Dirichlet problem, formulated much as (1.16)

with the additional decay conditions

O(|z|>™™) as |x| — o0, if n >3,
i(z) = (1.18)
E(x)A+0(1) as |z| — oo, if n=2,

O(Jz|'™™) as |z| — o0, if n >3,
Oju(x) = (1.19)
8;E(z)A+ O(|z|72) as |z| — 00, if n =2,

O(Jz|'™™) as |z| — o0, if n >3,
m(z) = (1.20)

-,

(VEA(z), A) + O(|z|72) as |z| — oo, if n =2,

for some a priori given constant A e R2. Also, the standard nontangential mazimal operator

in (1.17) should be replaced by its truncated version.

Here we wish to mention that, while this work was in its final stages of preparation, we
have learned that the case of the interior Dirichlet problem in which the Lipschitz domain
2 C R™ has a connected boundary and n > 4 has also been treated by J. Kilty in [54],
using a different approach. The limiting case p = oo has been dealt with by Z.Shen in
[82], for Lipschitz domains in R®. In [82], Shen also establishes the well-posedness of the
Dirichlet problem in three-dimensional Lipschitz domains with connected boundary for data
in the Holder space C*(02), with 0 < a < «,. Here we give another proof of this result,
via integral operators. In addition, we also treat the case of the Dirichlet problem for the
Stokes system in the case in which the data is from BMO and the solution satisfies Carleson
measure estimates. See Theorem 9.16 and Theorem 9.17 for details.

Our next result concerns the so-called Regularity problem, and is a version of the Dirich-
let problem (1.16) corresponding to the case when the boundary data is maximally regular

(i.e., belonging to boundary Hardy and Sobolev spaces of order one).



Theorem 1.3 Let Q C R", n > 2, be a bounded Lipschitz domain. Then there exists
e = €(0Q) > 0 such that for each p as in (1.8), the interior Regularity boundary value

problem

AU=Vmr, divi=0 in Q,

M(Vid), M(r) € LP(Q), (1.21)

il =feh? 0
U =T € 1, (092),

\

has a solution, which is unique modulo adding functions which are locally constant in Q) to
the pressure.

In addition, there exists a finite constant C' > 0 such that

1M (VD) || o0y + 1M ()| o) < CllF Iaz(on)- (1.22)
1

Similar results are valid for the exterior Regularity problem, formulated much as (1.21)

with the additional decay conditions (1.18)-(1.20).

Theorem 1.4 Let Q@ C R™, n > 2, be a bounded Lipschitz domain and fixr A € (—1,1].
Then there exists ¢ = £(0§2) > 0 such that for each p as in (1.8) the interior Neumann

boundary value problem

AU =Vmr, divi=0 in ,
M (Vi), M(x) € LP(0%), (1.23)

o, m) = F e hr(00),

has a solution if and only if

fem (—%IJFK; i (09) — h’;i(aﬂ)). (1.24)

Moreover, this solution is unique modulo adding to the velocity field functions from W(Q).

In addition, there exists a finite constant C' > 0 such that



| M (V)| ey + [|M(7)| ra0) < CHﬂ’hP(aQ)- (1.25)

Finally, a similar result holds for the exterior domain R™ \ Q after including the decay

conditions

O(|z|>*™™) as |z| — 00, if n >3,
u(x) = (1.26)
E(x) (faﬂ fda) +O0(|z|™Y  as |z| = o0, if n=2,

d;ii(z) = (ajE)(x)(/aQ fda) +0(|z|™) as |z] — o0, 1 <j<n, (1.27)

O(lz|'™™)  as |z| — o0, if n>3,
m(x) = (1.28)
<(—VEA)(x) , faﬂ fd0> + O(|g;|—2) as |z] — o0, if n=2.

More precisely, a solution to the exterior problem satisfying the above decay conditions exists

if and only if

fem (%I+K§ LHE L (09) — hgi(am), (1.29)
and solutions are unique modulo adding to the velocity field functions from WA(R™ \ ).

Our approach is based on boundary integral methods, and for each of the problems
listed in Theorems 1.1-1.4, we are able to represent the solution in terms of hydrostatic
layer potentials. In this strategy, one is led to study the invertibility properties of certain
principal-value singular integral operators on Lipschitz surfaces. These operators are of
Calderén-Zygmund type, so their boundedness on Lebesgue and Hardy type spaces follows
from known results. The key ingredient in proving the invertibility of these operators
is obtaining bounds from below. We accomplish this by devising some new Rellich type
identities for the Stokes system.

The most physically relevant Neumann-type boundary condition is the so-called “slip
condition”, corresponding to (1.2) with A = 1. Interestingly, it is precisely this boundary

condition which is most challenging from the point of view of our analytical treatment.



This is because the usefulness of the Rellich type identities alluded to above is substantially
diminished when A = 1, due to the fact that the quadratic energy form associated with (1.2)
when A = 1 is only semi-positive definite (as opposed to being strictly positive definite when
|A| < 1). This difficulty was first encountered by Dahlberg, Fabes, Kenig and Verchota in
their work on the L? Dirichlet and Neumann problems for the Stokes and Lamé systems in
[23], [34]. As a remedy, these authors have developed some auxiliary estimates, which they
termed boundary Korn inequalities, which were specifically designed to compensate for the
lack of coerciveness of the Rellich estimates.

In the case of the transmission boundary value problem for the Stokes system considered
here, these Korn inequalities fail to be as useful as they have been in the aforementioned
works. This has to do with the very nature of the transmission problem, in which two
(pairs) of solutions (@4, 74+) and (@_,7w_), which interact across the Lipschitz interface, are
considered simultaneously. In this scenario, deriving Korn inequalities for each of them
separately is of little value since, in turn, these inequalities cannot be further combined

algebraically in order to relate them to the transmission boundary data, i.e.,

@ilon — i@-loo and (4, my) — pdy(d-,m-). (1.30)

The technical innovation we develop in order to address this significant issue is to produce
some more elaborate Rellich type identities which, by design, have Korn-like identities
built directly into them. The upshot of this is that working with identities in place of
estimates is amenable to algebraic manipulations which can then fully take advantage of
the transmission-like interaction between (4,7 ) and (d_,7_).

All the above considerations are relevant in the treatment of boundary value problems
with L? data. As already suggested above, the central role in our treatment is played by the
transmission problem. Subsequently, we explain how the Dirichlet /Regularity and Neumann
problems can be viewed as limiting cases of this. To obtain well-posedness results for LP-
data with p # 2, following the seminal work of Dahlberg-Kenig [20], [21], we rely on atomic
estimates in dimensions n = 2,3, and on a recent remarkable advance of Z.Shen [83] in

dimensions n > 4. Shen’s original scheme is to start with the L? theory, then prove L results



for p > 2 (the critical p corresponding to the Sobolev exponent in the embedding L?(92) —
LP(09)) using certain reverse Holder estimates, and finally interpolate. This cannot be
directly applied in our setting since the natural range of p’s for which the LP-transmission
problem is solvable is a subset of (1,2]. We overcome this difficulty by introducing and
solving a suitable dual transmission problem.

As is well-known, in the case of the Dirichlet boundary problem for the Stokes system,

i.e. for

At =Vr, divi=0 in €, am:f, (1.31)

the boundary datum f satisfies the necessary compatibility condition

/ (v, fydo =0 (1.32)
o

whenever 2 C R" is a bounded Lipschitz domain. This creates the following technical
difficulty when addressing the issue of well-posedness of (1.31) for a bounded Lipschitz
domain 2 C R" when the boundary datum f belongs to the (regular) Hardy space h}z;fp (09),
"Tfl < p < 1. The latter is the /P-span of certain building blocks (satisfying suitable support,
size and smoothness conditions), called regular atoms. Hence, it is natural to seek a solution
for (1.31) when f = >_jAja; with (X;); € ¢7 and the a;’s regular atoms, as @ = ) _; \;i;
where @; solves (1.31) for the boundary datum a;. However, even though the original
datum f satisfies the necessary compatibility condition (1.32), there is no guarantee that
each individual atom a; does. We overcome this issue by first addressing the solvability
of (1.31) in the case when ©Q C R"™ is the unbounded domain lying above the graph of a
(real-valued) Lipschitz function. In this setting, condition (1.32) no longer plays a role.
We then develop appropriate localization techniques (carried out at the level of singular
integral operators) in order to eventually handle the case of bounded Lipschitz domains.
This idea influences our overall strategy in dealing with all types of boundary conditions
for the Stokes system treated in our work.

Having developed a satisfactory theory for the Stokes system with LP (and atomic) data

and nontangential maximal function estimates, we next consider the inhomogeneous Stokes

10



problem on Besov-Triebel-Lizorkin spaces in Lipschitz domains. The key idea is to view
the former results as limiting/critical cases of the latter, and use interpolation. There are,
nonetheless, significant difficulties in carrying out this program, a fact frequently noted in
the literature. For example, discussing the status of the Poisson problem for the Stokes
system in Lipschitz domains, P. Deuring writes on p. 3 of [30]: “We see that for solutions of
the Poisson problem [for the Dirichlet Laplacian] on Lipschitz domains, a rather complete
LP-theory is available, whereas for the Stokes system, only a L*-theory could be developed.
This, admittedly, was difficult enough, but this still raises the question what to expect if
p#27

A related open problem, posed on p. 195 of [28], asks whether for an arbitrary bounded

Lipschitz domain €2 there holds

Al — V= f e L*Q)
divi=0 in Q — i€ W¥22(Q). (1.33)

ieW,?(Q), ©e L*(Q)

Vg

A similar issue is raised in the case of Neumann boundary conditions. In the same setting,

Deuring also asks if

)

Ai=Vrm in Q

divi=0 in Q = @€ WY?2(Q). (1.34)

M(ii) € L*(09)

V

Here we provide answers to the above questions and extend previous work in the literature
by proving Theorem 1.5 and Theorem 1.6 below. In order to facilitate stating them, we
introduce some notation. Let BYY(R™) and FY'Y(R™) denote the standard Besov and Triebel-
Lizorkin scales of spaces in R™ (cf. § 11.1 for more details). Given  C R™ Lipschitz and

0<p,qg< oo, a€eR, weset

BRY(Q) := {ueD'(Q): 3ve BYY(R") with v|q = u},
(1.35)
BPL(Q) := {u € BY!(R™) : suppu C Q},

)

11



with similar definitions for F3(Q) and FY§(Q). Also, B{(9Q) stands for the Besov
class on the Lipschitz manifold 02, obtained by transporting (via a partition of unity and
pull-back) the standard scale BYY(R"~!). (In general, we make no notational distinction
between these smoothness spaces of scalar-valued functions and their natural counterparts
for vector-valued functions.) Finally, for ¢ > 0 and n > 2 let us introduce a two dimensional

region R, . in the (s,1/p)-plane, which depends on the dimension as follows:

(114¢)  slope =5

2¢e N[ 'S
slope 3

Figure 1: Figure 2: Figure 3:
Rp,e for n =2 Rne forn=3 Rn,e forn >4

1
slope n—1

The theorem below deals with the case of Dirichlet boundary conditions.

Theorem 1.5 Let € be a bounded Lipschitz domain in R™, n > 2, and assume that "Tfl <

p<oo,0<qg< oo, (n—l)(}lu—l)+ < s < 1. Consider the following boundary value problem

Al —Vr=f¢ Bgf%_2(Q), divi=g € Bff%_l(ﬁ),

(1.36)
e B (Q), meB”, (Q), Tri=heBMOQN),
s—l—; s—i-;—l
subject to the (necessary) compatibility condition
| whyio = [ g)a.
00 © (1.37)

for every component O of €.

12



Then there exists € = €(2) € (0,1] such that (1.36) is well-posed (with uniqueness modulo
locally constant functions in ) for the pressure), if the pair (s,p) belongs to the region Ry, e,
depicted above.

Furthermore, the solution has an integral representation formula in terms of hydrostatic
layer potential operators and satisfies natural estimates. Concretely, there exists a finite,

positive constant C' = C(Q,p, q,s,n) such that

HﬁHBffl(Q) + HW”Bi’f%_l(Q)/JRQ+ < OHf”B:f%_Q(Q) + CHQHB:_’S%_I(Q) + C[h|| graaqy- (1.38)

p
Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e., for
the problem

Aﬁ_VW:fGFff%72(Q)7 leﬁZQEFsp{’»qifl(Q%

(1.39)
e FP(Q), weF™ (Q), Trd=ge B (0Q),
5+; 3+;*1

where the data is, once again, made subject to (1.37). This time, in addition to the previous

conditions imposed on the indices p, q, it is also assumed that p,q < oo.

In the class of Lipschitz domains we conjecture that this result is sharp. When 02 € C*,
one may take ¢ = 1. This follows by combining the results in [32] with those of the current
work. Theorem 1.5 refines a long list of results in the literature. When 0f2 is sufficiently
smooth, various cases (typically corresponding to Sobolev spaces with an integer amount
of smoothness) have been dealt with by L. Cattabriga [14], R. Temam [88], Y. Giga [39],
W. Varnhorn [92], R. Dautray and J.-L. Lions [25], among others, when 0f2 is (at least of)
class C2. This has been subsequently extended by C. Amrouche and V. Girault [4] to the
case when 9Q € Cb! and, further, by G.P.Galdi, C.G. Simader and H. Sohr [37] when 99
is Lipschitz, with a small Lipschitz constant.

There is also a wealth of results related to Theorem 1.5 in the case when €2 is a polygonal
domain in R?, or a polyhedral domain in R?. A extended account of this field of research
can be found in V.A.Kozlov, V.G.Maz’'ya and J. Rossmann’s monograph [59], which also

contains pertinent references to earlier work. Here we also wish to mention the recent work
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by V.Maz’ya and J. Rossmann [65]. Comparison between the regularity results obtained in
[59], [65] and our Theorem 1.5 shows that the latter is optimal, at least if n = 2, 3.

In the case of the inhomogeneous Neumann problem we shall prove the following.

Theorem 1.6 Let ) be a bounded Lipschitz domain in R™, n > 2, with connected com-
plement, and fiz =1 < p < 00, 0 < ¢ < o0, and (n — 1)(% — 1), < s < 1. Then there
exists € = £(2) € (0, 1] such that the Poisson problem for the Stokes system with Neumann

boundary condition

AG— V= ﬂﬂ Fe Bl o), divi=0in
(1.40)

i€ B (Q), weBM, (), dm)p= h e BP9 (09),
p p

has a unique solution (modulo adding to the velocity functions from WN(Q)) if the pair
s,p belongs to the region R, described before, and the data (f, E) satisfy the necessary

compatibility condition

/<f,¢>dx=/ (h,)do, Vi€ TNQ). (1.41)
Q

o0N
In addition, the solution (normalized so that [,(i(z),(z))dz = 0 for every ¢ € ¥(Q))

satisfies the estimate

HﬁHBffl(Q) + HWHBffl @) < C||fl pr @ t C”EHBQ‘Q(aQ)‘ (1.42)

a
p P stp=2

P

Moreover, an analogous well-posedness result holds for the problem

A — Vr = ﬂﬂ fe I 0(@), divi=0in @

(1.43)
ic Fsi”f%(Q), = Fsi”f%il(ﬁ), op(ii,m) = h € BY?,(09),
assuming that p,q < oco.
Finally, if the condition that the complement of ) is connected is dropped (i.e., Q C
R™ is an arbitrary Lipschitz domains), then problems (1.40), (1.43) have solutions for

data (f, H) belonging to a finite co-dimensional subspace of Bgfl/p72,0(9> @® B2, (09) and
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Fffl/p_zo(@) @ BYP (09), respectively, and uniqueness holds up to a finite dimensional

space.

Above, 9 (i, T) 7 should be thought of as a re-normalization of the conormal derivative
(1.2) relative to f See Theorem 10.16 and the discussion preceding it for a more precise
formulation. Here we only wish to point out that when 09 € C! and A = 1, corresponding
to the so-called slip boundary condition, one can take ¢ = 1.

Theorems 1.5-1.6 are proved by interpolating the end-point cases addressed in Theo-
rems 1.2-1.4. This is done at the level of boundary layer potentials and solutions for the

problems described in Theorems 1.5-1.6 are produced in a constructive manner, via integral

representation formulas.

1.2 Consequences of the solvability of the inhomogeneous problem

Here we record several relevant consequences of the well-posedness results from Theo-
rems 1.5-1.6.
Denote by Gp the Green operator for the inhomogeneous problem for the incompressible

Stokes system with Dirichlet boundary conditions. That is, formally, if (@, ) solve

AG—Vr=Ffin Q divi=0in Q, Trd=0 on O, (1.44)

then

Gpf:=1. (1.45)

Corollary 1.7 If Q is a bounded, Lipschitz domain in R™, n > 2, then there exists some

small number e = () > 0 such the operators

Gp: BP9(Q) — BPY,(Q), (1.46)
Gp : FPI(Q) — FP,(9), (1.47)

are well-defined and bounded whenever 0 < q < oo and the point with coordinates (a—1/p—+

2,1/p) belongs to the region R in Figures 1-3.

15



The two-dimensional region of points with coordinates (a,1/p) for which (o — 1/p +

2,1/p) € R3 is depicted below:

slope %

Figure 4

Thus, in the setting of a bounded Lipschitz domains  C R?, the operators

V2Gp : BP1(Q) — BPY(Q), (1.48)

V2Gp : FP9(Q) — FP4(Q), (1.49)
are bounded whenever 0 < ¢ < oo and the point with coordinates («, 1/p) belongs to the
pentagonal region from Figure 4.

It is interesting to specialize this result to the Triebel-Lizorkin scale with ¢ = 2 and

«a = 0, in which case one obtains that

V2Gp : hP(2) — RhP(2) boundedly,
if O ¢ R? is a bounded Lipschitz domain (1.50)

and 1 —e < p < 1 for some € = ¢(2) > 0.

Corresponding to the two-dimensional case we have
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V2Gp : hP(Q) — hP(Q2) boundedly,
if O C R? is a bounded Lipschitz domain (1.51)

and 2 — £ < p < 1 for some € = £(2) > 0.

For the Laplace operator, similar results (valid in all space dimensions) have been established
in [63], [64]. This answered in the affirmative a conjecture made by D.-C. Chang, S. Krantz
and E. Stein (cf. [15], [16]) regarding the regularity of the harmonic Green potentials on
Hardy spaces in Lipschitz domains. Here we prove the analogue of the Chang-Krantz-Stein
conjecture for the Stokes system for arbitrary Lipschitz domains in the three dimensional
setting. Analogous results are valid for Gy, the Green operator associated with the inho-
mogeneous Stokes problem with Neumann boundary conditions.

When specialized to the case « = —1 and ¢ = 2, the operator (1.47) becomes

Gp : W=tP(Q) — WP(Q) boundedly,
(1.52)

ifnZ—fl—€<p<%+5forsome5:5(§2)>0,
where W*P(Q) stands for the usual LP-based Sobolev space of smoothness s in €. This
follows from a brief inspection of the region in Figures 1-3. As a corollary, for every bounded
Lipschitz domain  C R3 there exists p = p(Q2) > 3 such that the operator in (1.52) is well-
defined and bounded. A similar result is valid for Gy. In the case of Gp, a result of this
type has first been obtained by R.Brown and Z.Shen in [10] (at least if 92 is connected
and for Dirichlet boundary conditions). When © C R? is a bounded Lipschitz domain, the

same type of conclusion holds for some p = p(£2) > 4. Let us also single out the following

low-dimensional result:
Corollary 1.8 Assume that §) is either a convex polygon in R?, or a convex polyhedron in

R3. Then

Gp: LP(Q) — W2P(Q)  boundedly, whenever 1 < p < 2. (1.53)
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Indeed, this follows by interpolating between the case % — e < p < 1, contained in (1.51),

and the case p = 2, which has been dealt with by R.B. Kellogg and J.E. Osborn in [52], when
Q) C R? is a convex polygon, and by M. Dauge in [24] and by V.A.Kozlov, V.G. Maz’ya and
C.Schwab in [60] when © C R? is a convex polyhedron. Theorem 1.8 should be compared

with the result implied by the work of V.Kozlov and V.Maz’ya in [56], to the effect that

VGp : L) — L*°(Q) boundedly, Vq > 2,
(1.54)

provided Q C R? is a bounded convex domain.

This portion of our work can be regarded as the natural analogue of the treatment
of D.Jerison and C.Kenig of the inhomogeneous Dirichlet problem for the Laplacian in
Sobolev-Besov spaces in Lipschitz domains from [46]. Here, we are able to extend this to
the case of the Stokes system in a Lipschitz domain €2, remove the assumption that 0f is
connected, handle boundary conditions of Neumann type, and work of more general scales
of spaces (including non locally convex Besov and Triebel-Lizorkin spaces).

We continue by recording the following significant consequence of Theorem 1.5. Related
versions for smooth domains have been proved by C.Amrouche and V. Girault in [4], [5],
and by V. Girault and P.-A. Raviart in [40]. To state it, introduce FL2(Q) := {ulq : u €

FUYR™) suppu C Q}, plus a similar definition for BY%(Q).

Corollary 1.9 For every bounded, Lipschitz domain 2 in R™, n > 2, there exists some

small number € = () > 0 such that

FPA(Q;R™) = {7 € FRY(QR?) : dive =0} @ {@ € FLYU(QRY) : Ad € VFPY (Q)},(1.55)
BRA(QR™) = {5 € BRL(LRY) : divi =0} @ {i € BRY(QR™) : Adl € VBRI (Q)),1.56)

where the direct sums are topological, whenever the point with coordinates (¢ —1/p+2,1/p)
belongs to the region Ry in Figures 1-8 and 0 < q < co. In particular, corresponding to

the case when o =1 in (1.55),

WP (4 R™) = {7 € WyP(Q;RY) : divd = 0} @ {7 € Wy P (4 R™) : Ad € VIP(Q)},(1.57)
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. 2n 2n
provided =5 —e <p < ;25 + €.

Indeed, if @ € FYZ(;R™) is arbitrary and the pair (¢,7) € FLI(QR™) x FP(Q)
solves (1.39) for f := A@ € FPUL(Q;R™), §:= 0, and h := 0, then & = @ + (@ — @) is
the desired decomposition. That sum in the right-hand side of (1.55) is direct is immediate
from the uniqueness statement for (1.39). This proves (1.55), and the argument for (1.56)
is similar. Finally, (1.57) is a direct consequence of (1.55).

We next discuss the analogue of the off-diagonal estimates for the Green operator asso-
ciated with the Dirichlet Laplacian in Lipschitz domains, established by B.E.J. Dahlberg in
[19].

Corollary 1.10 LetQ C R3 be a bounded Lipschitz domain. Then there exists ¢ = £(Q) > 0

with the property that if

-3 (1.58)

then the operator

VGp : LP(Q) — W) (1.59)

1s well-defined and bounded.
A similar result holds in the case when Q is a bounded Lipschitz domain in R?, granted

that (1.58) is replaced by 1 < p < % +¢ and % = % -1

To justify this, consider an arbitrary vector field f € LP(Q) and, by taking the convolu-
tion of f (extended by zero to R?) with the fundamental solution for the Stokes system in
the free space, construct two functions @ € W2 (2) and p € WP(Q) such that A —Vp = f,
divd = 0in Q, and |||z )+ [ollwr@) < C||f]|Lp(Q). Then Gpf = @ — i, where the pair
(i, ) solves At — V=0, divii = 0 in ©, and Tr@ = Tr @ on 0f). Note that the compat-
ibility condition (1.37) is automatically satisfied in this case. Also, @ € WZ(Q2) — W{(Q)
if 1/¢ = 1/p — 1/3 and, accordingly, Trw € B¥% , (992). Then Theorem 1.5 implies that

1-1/q

@ € WE(Q), m € LI(R), granted that the point with coordinates (1 — 1/q, q) belongs to the
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pentagonal region R3. described in Figure 2. A simple analysis shows that this is always

the case whenever 2% <qg< 1—35, for some € = £(2) > 0. The bottom line is that

Ferl’(Q) = GpfeWi(Q) if 2.<qg<, 1=1-1 (1.60)
Next, (1.47) with o = 0, ¢ = 2, and classical embeddings give
VGp: FP*(Q) — FI Q) if 2o<p<l, 2=1-1 (1.61)

Interpolating by the complex method between (1.60) and (1.61) then yields (1.59) in full,

as long as % = % — % and 1 < ¢ < 1—38, a condition implied by (1.58). Finally, the reasoning

for the two-dimensional case is similar.
We conclude with a discussion pertaining to the regularity properties of solutions of
elliptic systems in domains with conical singularities. Consider the inhomogeneous Dirichlet

problem

L(D)u= f in Q, with zero boundary conditions, (1.62)

where L(D) is a homogeneous, strongly elliptic, constant coefficient, formally self-adjoint
system of order 2m, m € N, and 2 C R" is a domain with a conical point at the origin
O € R™. Assume that f vanishes near O and wu is the variational solution of (1.62). As is
well-known, u admits a power-logarithmic asymptotic expansion near O. Somewhat more

precisely, near the origin u behaves like a linear combination of terms of the form

og |z|)li—*

0<<l;
where the exponents \; € C are the eigenvalues of a certain polynomial operator pencil (on
a domain that is cut out of the unit sphere by the cone with vertex at O which is tangent
to the boundary of €2), and the functions wy ; are generalized eigenvectors corresponding
to A;. The operator pencil arises when taking the Mellin transform of L(D) and of the

operators intervening in the boundary conditions along this tangent cone.
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Specific information about the nature of the eigenvalues A; yields, in turn, regularity

properties for the solution u. For example,

p < min

L p
; {k—Re)\j} = u € W near O. (1.64)

In [57], V.Kozlov and V. Maz’ya have shown that, in the above setting,

ReXj >m—(n—1)/2. (1.65)

As a consequence of (1.64)-(1.65), we then have

n

k—m+(n—1)/2

u € W} near O, whenever p < +e, (1.66)

where € = £(2) > 0. Moreover, in [58], V.Kozlov and V.Maz'ya have also shown that
(1.65) and, hence, (1.66), is sharp in the case when 2m > n.

When m = 1, i.e., when L(D) is a second order operator, the above analysis gives that

2
u € WP near O, whenever p < 7711 +e. (1.67)
n—

While, strictly speaking, the Stokes system does not fit into this general narrative since it
is not elliptic in the sense of I.G. Petrovskii, the same circle of ideas can be adapted to this
somewhat nonstandard case. See, e.g., the work of V.A. Kozlov, V.G. Maz’ya and C. Schwab
in [60] as well as the monograph [59] for the lower dimensional case (n = 2, 3).

The relevance of the above observation is that % is also the critical integrability
exponent we have identified in (1.52). Thus, our results are consistent with the predictions
of the regularity theory for domains with conical singularities, and are sharp when n = 2, 3.

While it is not entirely clear whether that is also true when n > 4, we conjecture that this

is indeed the case.
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2 Smoothness spaces and Lipschitz domains

For a brief review of the Besov and Triebel-Lizorkin scales in the entire Euclidean space

R, the reader is referred to § 11.1.

2.1 Graph Lipschitz Domains

We start with a few basic definitions. A graph Lipschitz domain € C R"™ is simply the

domain lying above the graph of a real-valued Lipschitz function. That is,

Q={z=(2,2,) ER" I xR: 2, > (')}, where 2’/ = (21, ..., 7p_1),
(2.1)

¢ : R"~! — R is Lipschitz, i.e., Vi exists and belongs to L>(R"~1).

We denote by do the surface measure on 0f2, and by v the outward unit normal defined

a.e. (with respect to do) on 0. Hereafter, we will define Q4 by

Q=0 and Q_:=R"\Q (2.2)

Next, we define the cones

F/:-i: = {y = (y/ayn) € R1 : |y/| < i/{yn}a (2-3)

and for any z € R™, define

E(z) =z +T, (2.4)

In order to introduce the classical non-tangential maximal operator M, fix some k = £(0f2)
with k=1 > || V| pe. Then it can be shown that I'F(z) C Qu for all x € Q. When the
value of & is understood, we will often drop it from the notation and write I'F (z) = T'* ().

Now, for an arbitrary u : Q2+ — R, we set

M(u)(z) == sup {|u(y)| : y € TF(2)}, x € 0N (2.5)
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These conical regions also play a fundamental role in defining non-tangential restrictions to

the boundary. Again for v defined in 4, set

ul (x):= lim wu(y), forae. x € . (2.6)
y—x
M 6
Similarly, if (-,-) denotes the canonical inner product in R™ (although, later, the same
symbol is going to be occasionally used for the pairing between a space and its dual), we

set

dyu(x) = <V(:Jc), lim (Vu)(y)>, for a.e. © € 0N. (2.7)

y—x

yel+(x)

By LP(0%2) we denote the Lebesgue space of measurable, p-th power integrable functions
on Jf), with respect to the surface measure do. Next, consider the first-order tangential
derivative operators Or,, acting on a compactly supported function ¢ of class C! in a

neighborhood of 02 by

8Tjk¢ = yj((?kw)‘m—yk(ajw)‘m, j, k= 1, Lo, (28)

For every f € L} (09) define the functional On,,; f by setting

loc

Or, [ 1 Co(R") 2 ¢ > /a . f(0r,,1)) do. (2.9)

Thus, if f € L, .(09) has O, f € Li (09), the following integration by parts formula

loc

holds:

/ f(0r, 1) do = / (Or, [)vdo, V€ Ci(R™). (2.10)
o0 o0

For each p € (1,00) we can then define the Sobolev type space

L2(99) = {f € LP(0Q): O, f € LP(0R), jik=1,... n} (2.11)
For each 1 < p < oo this becomes a Banach space when equipped with the natural norm
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1l zeoq) = I fllLro0) + Z 107 flr (892)- (2.12)

k=1
If we set
— P
Vienf = (i, f),__ . Vf € I}(09), (2.13)
then for each function f € LF(09)
87—jkf = z/j(anf)k — zxk(anf)j, j, k= 1, ey 1, (2.14)

o-a.e. on Jf). In particular,

n n—1
IVian fl Lra0) = Z 10 fll Lr(002) = Z 105, fllro), Y feL{(09).  (2.15)
J.k=1 j=1

Furthermore, if 1 < p,p’ < oo are such that 1/p+ 1/p’ =1 then

[@n9do= [ 10,90 (2.16)
o0

o0

for every f € L1 (99Q), g € Llf/(OQ). In general, we shall call a first-order differential operator

tangential if it can be written as a (variable coefficient) linear combination of the operators

0

Tjk'
If Q C R” is the domain lying above the graph of a Lipschitz function ¢ : R"~! — R

then, for each p € (1, 00),

feLR(09Q) <= f(,e()) € LR, (2.17)

with equivalence of norms. As a corollary, we obtain from this that for any bounded

Lipschitz domain €2 in R",

24



Lip(9)) — LY(0Q)) and C*(R") o LY (09Q) densely (2.18)

whenever 1 < p < o0.
For each 1 < p < oo, LF(99) is a Banach space, densely embedded into L?(9f2). Fur-

thermore, since the mapping

(n—1)n

J: LY (09) — [LP(BQ)} : Jf = <f7 (aTjkf)ISj,k§n>a (2.19)

is bounded both from above and below, its image is closed. Now, L7 () is isomorphic to

the latter space and, hence, is reflexive. Thus, if for each 1 < p < oo, we set

L7, (09) = (Lll”(asz))*, p+1/p =1, (2.20)

it follows that

(L31(39)> = {(0Q),  1/p+1/p =1. (2.21)
We can now prove the following result.

Corollary 2.1 Let Q be a Lipschitz domain in R", 1 < p < o0 and fix j,k € {1,...,n}.

Then the operator

Dy, 1 LE(0) — LP(09) (2.22)

extends in a (unique) compatible fashion to a bounded, linear mapping

0

Tjk

: LP(0Q) — LP (09). (2.23)

Proof. For every f € LP(0Q), set
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Outoa)i= [ fon0d0 VeI 00), (2.24)

where 1/p+ 1/p’ = 1. Then the desired conclusion follows from the boundary integration

by parts formula (2.16). O

Corollary 2.2 Assume that Q is a Lipschitz domain in R™ and that 1 < p < co. Then for
every [ € L” (99Q) there exist go, g;r € LP(9), 1 < j, k < n (not necessarily unique) with

the property that

F=g0+ Y Orgjx in LP,(09). (2.25)
jk=1
Furthermore,
1llze oy = inf [llgollzoamy + Y- lgsnllzocany | (2.26)
4, k=1

where the infimum is taken over all representations of f as in (2.25).

Proof. Let p' € (1,00) be such that 1/p+ 1/p' = 1. If f € L?(09Q) is regarded as a
functional f : L’fl((?Q) — R, then foJ™!:ImJ — R is well-defined, linear and bounded
(where J is as in (2.19) with p in place of p). At this stage, the Hahn-Banach Theorem in
conjunction with Riesz’s Representation Theorem ensure the existence of go, gjr, € LP(09)

such that (2.25)-(2.26) hold. O

Let us also note that, as a simple application of the one of the standard consequences

of the Hahn-Banach theorem,

LP(O2) — LP [1(0R)  densely, for every p € (1,00). (2.27)

For an unbounded Lipschitz domain Q C R", the homogeneous LP-Sobolev space of

order one is defined as
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loc

LY(0Q) = {f € L} (09): 0., f € LP(09), 1 < j,k < n}. (2.28)

Clearly, for each p € (1,00), I'/f (02) becomes a Banach space modulo constants when

equipped with the homogeneous norm ||fHL-;1;(8m = [[Vianf |l r(00)-

2.2 Hardy spaces on graph Lipschitz surfaces

Throughout this section, we shall assume that € is as in (2.1), i.e., the unbounded domain
in R™ lying above the graph of the Lipschitz function ¢ : R"~1 — R. A surface ball S,(z) is
any set of the form B,(z) N 9Q, with x € 92 and 0 < r < co. When the center is already
specified or of no particular importance, we simplify the notation by writing S;..

For ”Tfl < p <1, the homogeneous Hardy space is then defined by

Hyy (09) = {f =Y " Nja; : a;j (p,po)-atom, (X;); € ﬁp}a (2.29)
i

where the series converges in Lip,.(99)’, the dual of Lip,(9), and equipped with the usual
infimum norm. Here, 1 < p, < oo is a fixed parameter and a measurable function a : 9Q —

R is called a (p, p,)-atom if there exists a surface ball S, C 9 such that

et L_l>
suppa € Sy, [|al[zro(a) < 7‘( )<”" r and / ado = 0. (2.30)
o0

Given the atomic characterization of Hardy spaces in the Euclidean setting, we have

f € Hy(09) <= f(, (V1 +[Ve()]? € HE(R"™). (2.31)

In particular, this shows that different choices of the parameter p, in (2.30) yield the same

vector space and topology on HY,(9€2). Let us also recall here the the well-known fact that
HP(R™Y) = FP? (R if =1 <p<i, (2.32)
where FPY(R"!) stands for the homogeneous Triebel-Lizorkin space in R"~!. See the

discussion on p.42 in [36]. For a precise definition, as well as basic properties of the latter

scale see, e.g., [35], [90]. Here we only wish to point out that, as remarked on p. 44 in [36],
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n—1

||9||F§vq(Rn—1) ~ Z H@ﬂ’}ﬁffﬂﬂgn—l) (2.33)
j=1

whenever 0 < p < o0, 0 < ¢ <00, s €R.
Recall that, for "T_l <p<1lande >0, a(pe)molecule adapted to a surface ball
S, C 08 is a function m € L'(0Q) N L?(99) satisfying

(@) Jpam(a)do(x) =0,
() (Ji Im@)2do()) " < 0G5, (2:34)

vz _ (=1 (3-3)
(4i7) (fsngrlT\Sgkr |m(z)|? da(x)) < 2¢k (2"“‘7“) : VE> 4.

It is well-known that there exists a finite constant k = k(9€2, p,e) > 0 such that

m is a (p,e)-molecule = m € HE,(9Q)) and [ml g (a0) < - (2.35)

For uniformity of notation, we find it convenient to define

HY,(0Q) for =1 <p<i,
HP(09) = (2.36)
LP(09Q) for p > 1.
Corresponding to one unit more on the smoothness scale we have the ‘regular’ Hardy
space H ;f (09), defined for ”T_l < p <1 as the P-span of ‘regular’ atoms. More specifically,

if [f] denotes the class of f modulo constants, define

HP(0Q) = {[f] . f € L},.(09) and there exist (\;); € /7 and a; regular (p, p,)-atoms
with 9, f = Z AiOr,, a; whenever 1 < j <n — 1}, (2.37)
i=1

where the series converges in Lip (92)’. Also, set HfHHLp(aQ) .= inf [ |As|P]}/?, where the
at
infimum is taken over all possible representations. Here, if (n —1)/n <p <1< p, < o0, a

function a € LE°(9Q) is called a regular (p, p,)-atom if there exists a surface ball S, so that
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1

(n—1) (p %)
supp a - Sra ||vtana||LPo(aQ) <r ° . (238)

In analogy with (2.31), it can be shown that

[f] € Hy"(09) <= [f(-,0())] € FP*(R™). (2.39)

Much as before, this shows that different choices of the parameter p, in (2.38) yield the
same vector space and topology on H, ;,;p (092). We also set
H)P(09) for =L <p<1,
HY(09Q) = (2.40)
I2(99) for p>1.

An alternative characterization of the quasi-norm in the space HY (92) is as follows.

Lemma 2.3 Let Q be as in (2.1) and assume that ”T_l < p < oo. Then for each j,k €

{1,...,n}

0, HP(0Q) — HP(Q) (2.41)

s a bounded operator. Furthermore,

Hy?(09) = {[f]: J € Lip(09) and 0, f € HL(00) 1<j<n—1},  (242)

and, in fact,

n—1
1z o0) = D 107, f | (o) (2.43)

j=1
Proof. The claim about (2.41) follows straight from definitions when 1 < p < oo, and by
analyzing the action of this operator on atoms when "T_l < p < 1. This also yields the
right-pointing inequality in (2.43). Now, the opposite inequality is trivial for 1 < p < oo,

n

so there remains to justify it when %1 < p < 1. In this scenario, we note that for every

j€{l,...,n—1} we have
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Ory f € HY(0Q) & V1+|Vp(a)2(0r, f)(a', o(a") € Hy(R™™) (2.44)

& Olf (@, p(a))] € Hy(R™™) & 0;[f(«/, ()] € FP (R,

by (2.32). In concert with (2.33), this ensures that

O, [ € HY(0R) for every je{l,...,n—1} = f(2',¢(z")) € FP2R™Y). (2.45)

If we now recall that, as proved in Proposition 3.4 in [66],

HEP(R) = FP2(R) for 21 < p <1, (2.46)

it follows that

Oy, [ € H,(0Q) for every j € {1,...n— 1} = f € H,P(9). (2.47)

This membership statement is accompanied by natural estimates and this finishes the proof

of (2.43). Now, (2.42) follows from this equivalence. O

The space H(89) in (2.37) is defined modulo constants. A “realization” of this as a

space of genuine functions is as follows. If ”T_l < p<1andp* € (1,00) is such that

— L (2.48)

S
D =

we set

ﬁiip((‘)(l) = {f e LF(0Q): f= Z)\jaj in L7 (0Q), (\;); € 7, a; regular (p, p,)-atom },
j=1
(2.49)

and equip it with the natural infimum quasi-norm. We then have:
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Proposition 2.4 ] ”Tfl < p <1, then the application

HyP(09) 5 f > [f] == f + R € HyP(09) (2.50)
18 an isomorphism.

Proof. The mapping (2.50) is clearly one-to-one. The fact that this is also onto follows from

the lemma below. OJ

Lemma 2.5 Let u be a tempered distribution in R™ with the property that Oju € HP(R™),

Jj=1,..n, for some p € (;47,n). Then there exists c € R such that u —c € L (R"),
._ np
where p* := oy

Proof. For each 1 < j < n, consider T} to be the convolution integral operator in R" with
the kernel (0;Ea)(x), where Ea denotes the fundamental solution for the Laplacian in R™.

Classical Calderén-Zygmund theory implies that

o1 = T;0 : HP(R") — HP(R"), 1<j,k<n, % < p < oo, (2.51)
n

are bounded operators. Furthermore, if nL+1 < p < 00, we have

0;T; =1, the identity operator on H?(R"), (2.52)

where repeated indices indicate summation, and if

, 1< pt< oo, (2.53)

"=
S|

n+1 ]?:

then

T; : HP(R") — LP"(R") (2.54)
boundedly, by the Fractional Integration Theorem.
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Next, let u be a tempered distribution in R™ with the property that there exists p €

(747,m) such that d;u € HP(R™) for each j =1,...,n. Set

fii=0ue HPRY),  j=1,..n, (2.55)

and note that, in the sense of distributions,

We claim that, in the sense of distributions,

8k(u—T]fj) :0’ k= 1,...,TL. (2.57)

Once (2.57) has been established, it follows that the tempered distribution u — T f; must

be a constant ¢ which, in turn, implies that

u—c=T;f; € LF (R"). (2.58)

which is what we wanted to prove. Therefore, it remains to justify (2.57). Using notational

conventions introduced earlier, we can re-write this in the equivalent form

I =0T} fj), k=1,..,n. (2.59)

To prove (2.59), based on (2.52) and (2.56), for each k we write

Ok(T;f5) = T30 fj) = T3 05 fx) = 05(Tifx) = i (2.60)
as desired. O

As a corollary of Proposition 2.4, we obtain that the definition of H, ;;p (092) is indepen-
dent of the particular choice of p, € (1,00]. Let us also point out here that, when used in

concert with (2.43), the fact that (2.50) is an isomorphism further entails
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n—1
1170000 = Wt om = S 19, fllin,on).  uniformly for f € HYF(09). (2.61)
7=1

A distinctive feature of E’;f (012) is that this space is local. This can be justified by an-
alyzing the action of multiplication by v € Lip,(9€) on regular atoms. To this end, it
is trivial to check that, if "T_l <p<1<p, < oo, then for each n > 0 there exists

C =C(092,1,n,p,p0) > 0 such that

A regular (p, p,)-atom supported in a surface ball of radius < n
(2.62)

= C~ 14 A is a regular (p, p,)-atom on Of).
A more refined version of this result, allowing for atoms supported in surface balls of arbi-

trary radii, is as follows.

Lemma 2.6 Let ) be Lipschitz domain in R™ and assume that ”Tfl <p<1landp* <p, <
q < 0o, where p* is as in (2.48). If 1» € Lip, (0Q) then ¥ A is, up to a fized multiplicative

constant, a regular (p, po)-atom on 0L whenever A is a regular (p,q)-atom on OS.

Proof. To fix ideas, let us assume that suppvy C Si, a surface ball of radius 1, and that

1Vl e 00) + [[Vian¥l|Le@) < 1. Fix a regular (p,q)-atom A on 99, ie. a function

1

A € L(09) satisfying supp A C S, for some r > 0, and [VianAll Laan) < r("_l)(%_E). In

1 1
particular, Poincaré’s inequality gives [|Allza@a0) < CT(|VianAllLa@aa) < C'TH(”*l)(q 2
Next, introduce 7 := min {r,1} > 0 and note that supp (¢» A) C Sz. Going further, write

Vien(W A) = Vign A+ (Vign) A =: I+ 11, and use Holder’s inequality in order to estimate

1) (L _1
llroon) < 119llzos 00| VianAll Lro(ssy < CF (5 q)HanAHLq(aQ)
< oG-, 0-0G-3) < oD -7) (2.63)

and

1) (L _1
ooy < [ Viantllzoom | Al (s < CF" G0 | Al Lony

< DD, e-D (1) o oatnmD(E 1), (2.64)
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It is only in the last step above that p, > p* is needed (when r is large). Altogether, the
estimates (2.63)-(2.64) give ||Vian(¥ A)llLroa0) < Cf("_l)(i_%), so C~ A is a regular

(P, po)-atom. O

We can now formally state the following.

Lemma 2.7 Let Q) be as before, and assume that v is a Lipschitz function, compactly

-1
supported on Q. Then for every p € ("=, 1]

f € HyP(09) = ¢f € HyP(09), (2.65)
plus a naturally accompanying estimate.

Proof. This is a direct consequence of Lemma 2.6. g

The spaces H?,(92) and H )P (992) have inhomogeneous counterparts, denoted by h?,(9€2)
and h(ll;p (092), respectively. To be precise, fix a graph Lipschitz domain Q@ C R™ as in (2.1)
and assume that "Tfl <p<1<p, <oo. Also, fix a threshold n > 0. Call a function

a € Li (09Q) an inhomogeneous (p, p,)-atom if for some surface ball S, C 95

loc

1 1
suppa C Sy, llallprogomy < 7" VG ), and
(2.66)
either r=mn, orr <mnand / ado = 0.
o0
We then define h?,(0€2) as the fP-span of inhomogeneous (p, p,)-atoms and equip it with

the natural infimum-type quasi-norm. One can check that this is a “local” quasi-Banach

space, in the sense that

h?,(99) is a module over C*(9Q) for any a > (n — 1) (l ) (2.67)

5

Different choices of the parameters p,, n lead to equivalent quasi-norms and

(r02)) " = DG (5q) (2.68)

It is also useful to note that
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L2,,,,(09) C hE,(9€), whenever =1 <p <1, ¢> 1. (2.69)

n

—1
Furthermore, for each p € (%=,1],

f € h(09) <= o)V + V()2 €, (R"1) = F* (R, (2.70)

in analogy with the case of homogeneous Hardy spaces. This characterizations shows that
as far as the space h?,(9Q) is concerned, the particular values of the parameters p, and n

(used in the normalization and support size of atoms) are immaterial.

Lemma 2.8 If Q) is as in (2.1), then

Hgt(ag) — hgt(ag)v Vp € (nT_lv 1] (271)

Proof. Of course, in the definitions of the various types of atoms discussed above, we could
have replaced “surface balls” with “surface cubes” (i.e., subsets of 9 which, in graph
coordinates, project onto genuine (n — 1)-dimensional cubes whose sides are parallel to the
coordinate axes in R"~1).

It suffices to show that there exists a finite constant C' > 0 with the property that
each (p,o0)-atom a : 92 — R supported in a surface cube @ of side-length r» > n has
lallpz (aq) < C. To see this, pick N € N such that n2N=1 < r < n2" and cover Q with
2N (1) surface cubes Q; of side-length comparable with 7. Then

oN(n—1) n—1 n—1

a= jz; Ajbj, where \; := (%) ! and b := (%)T(IXQJ.. (2.72)

Then suppb; € Qj, [bjll oy <0 7, and 20,7 AP < 280D (/) ~(n-1) < gn-1,
The desired conclusion follows. OJ

With €, p, p, as before and n > 0 arbitrary, we next define
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hiP(09) = {f € Lip.(0Q)": f = Z)\jaj, (Aj); € ¢? and a; regular (p, p,)-atom
J

supported in a surface ball of radius < 7 for every j}, (2.73)

where the series converges in Lip,(92)’, and equip it with the natural infimum quasi-norm.

Next, if p* is as in (2.48) then, by Poincaré’s inequality,

a regUIar (pa po)—atOIIl = ”CLHLP* (092) < C(aQ7p7p0)’ (274)
a regular (p, p,)-atom supported

= |lalra0) < C(0Q,1,p,p0).  (2.75)
in a surface ball of radius <€

Thus, if f = >222; Aja; is an atomic decomposition of f € hEP(69), it follows that the

series ) 2| Aja; converges both in LP"(09) and LP(0S2). As a consequence,

hEP(8Q) — LP(09) N LP" (09) (2.76)

and, hence,

RhEP(OQ) s HYP(9Q) — LP" (99 2.77
at at

boundedly, for each p € ("771, 1]. In particular,

I f1l Lo 00) < CHfHﬁ;p(aQ), uniformly for f € ﬁ;;p(am. (2.78)

Let us also record here the fact that, if ”T_l < p <1, we have

f € hgf(09) <= f(-, () € FP*(R™1). (2.79)

In particular, various choices of the parameters p,, 1 in (2.73) yield the same vector space
and topology on hLP(8€). The equivalence (2.79) also shows that the space h-P(89),

p € (2=1,1], is local, in the sense that for every function 1 € Lip, (09), we have

n
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fehiP(09Q) = o f € hi (%), (2.80)

plus a natural estimate.
The fact that FP?(R"™') = {f € PR ) NS (R 1) : [f] € FP*R 1)} for 2L <

p < 1 yields another alternative characterization of h;f (092), namely

hP(90) = {f € LL.(09Q): f e LP(99) and 3, f € H?(99), 1 <j <n— 1}, (2.81)

and moreover,

n—1
1112 00y = 1fllLron) + Z 107, f1 2, (002)- (2.82)
j=1

Let us also note here that if 2 is as in (2.1) and ”T_l < p <1, then for each j € {1,...,n—1},

0

Tjn

. hiP(8Q) — HP,(09)  boundedly. (2.83)

Indeed, this is implicit in (2.81)-(2.82).

We conclude this section by recording an elementary yet useful result.

Lemma 2.9 Let X be the graph of a Lipschitz function ¢ : R"™1 — R with ©(0) = 0 and
fix two functions £ € C§°(B(0,1)), ¢ € C§°(B(0,4)), with ( =1 on B(0,2). Also, assume
that k : ¥ x ¥\ diag — R is such that

k(a,y)| < Bl — gD, [ Vok(z,y) < Klz -yl V(w,y) €5 x T\ diag, (2.84)

and set

T () = /Z (1 - C@)k(r )W) () doly), €% (2.85)

Then for every j, k € {1,....,n}, p € ("T_l, 1] and q € (1,00), the operator
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07, T + L1(09Q) — HY.(Y) (2.86)
1s well-defined, linear and bounded.

Proof. Let ¢ € C3°(B(0,3/2)) be such that 0 < ¢ < 1 and ¢y = 1 on B(0,1). Set
Yo(e) 1= (), 1 (x) = (x/2) — () and Wi(x) = s (2-*1z) for i = 2,3.... Then 4 is
supported in the annulus A; := {z € R" : 2071 < |z| < 271} and Zi]io Vi(x) = (2 Na)
for N = 0,1,.... In particular, > 72 ;(z) = 1. Next, note that if ||f|zex) < 1 then
|Tf(z)| < €271 and O, | T f(z)] < C27™ on AjNE. For i = 0,1,..., we now set
a; == 2(”1)[7“(’“1)/1’]87].,c [T f], N = 2~ DI=(=1/Pl " Then suppa; € B(0,27%1) N X,
@il poo(sy < C- 9~ (1) (=1)/p and Js aido = 0. Consequently, each a; is a fixed multiple
of a (p,00)-atom on X. Furthermore, Y 2y A < oo by our assumptions on p. Since
O [Tf] = 22720 Miai, it follows that 0r, [T f] € Hy(X) and [|0r,, [T flllgr, sy < C. This

finishes the proof of the lemma. O

2.3 Bounded Lipschitz domains

Call an open set Q C R™ a bounded Lipschitz domain if there exist M > 0 and a family
of hyper-planes Il;, ¢ = 1,...,m, a choice of the unit normal N; to II;, and a function
i I; — R with |¢;(z) — ¢i(y)| < M|z — y| for all z,y € II;, which also satisfy the
following additional properties. First, for each ¢, in the system of coordinates induced by
(I1;, NV;) in R™, there exists an open, upright, doubly truncated, circular cylinder Z; such
that {Z;}1", covers 0€). Second, if €2; is the domain lying above the graph of ¢;, once again
considered in the system of coordinates induced by (II;, N;) in R™, and if tZ; denotes the

concentric dilation of Z; by factor ¢ > 0 then for each 4,

(2.87)
In the sequel, we shall call (Z;, ;) a coordinate chart for Q and refer to 9€2; as the graph

of ¢; in the system of coordinates induced by Z;. Also, a constant is said to depend on
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the Lipschitz character of ) if its size is controlled in terms of m, the number of cylinders
{Z;}, the size of these cylinders and the constant M.

Given a bounded Lipschitz domain Q C R™, set Q; := Q and Q_ := R"\ Q. The
nontangential approach regions I'f (), x € 99, are defined as I'F(z) := {y € Qv : [z —y| <
(14 k)dist (y,00)}, where k > 0 is a fixed parameter, while at every boundary point the
nontangential maximal function is given by M (u)(x) := sup {|u(y)| : y € T (z)} (with the
choice of sign depending on whether u is defined in Q4 or Q_).

For a bounded Lipschitz domain, the spaces LP(92) and L¥(9€) when 1 < p < oo,
as well as HP,(9Q), H:P(09), h2,(8) and hiP(09) when p € (=1,1], can be defined as
before. As a consequence, when 2 C R™ is a bounded Lipschitz domain and ”Tfl <p<1,

we have:

ht,(0Q)) = HE,(0Q) + R = HE,(0Q) + LI(9R) for each ¢ > 1,

P (99) — LP (99), where p* is as in (2.48),
(2.88)
LY(0Q) — hiP(6Q) = HLP(89Q) — LP"(8Q), for each ¢ > 1,

hP.(09), hLP(OQ) are modules over Lip (992).

Next, we record a couple of technical results which will not enter the discussion until

later on.

Lemma 2.10 Assume that "Tfl < p <1 and that Q C R™ is a bounded Lipschitz domain.
Also, fix a coordinate cylinder (Z,¢) and denote by ¥ the graph of ¢ in the coordinate

system induced by Z. Finally, let & € C§°(Z). Then there exists C > 0 such that

||gf”h;g’(ag) < CHfo[;%P(g)’ (2-89)
||EJ/C”hi’tP(aQ) < CHth};f(Z)’ (2-90)
”ff”ﬁif(g) < CHff”h}l%P(g) < CHf”h(ll%p(aQ)? (2~91)

where tilde denotes the extension by zero outside the support (naturally interpreted in each

case).
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Proof. Indeed, (2.89) is implied by Lemma 2.6, whereas (2.90) is a direct consequence of
(2.62), and (2.91) follows from (2.77) and (2.62). O

In turn, the estimates (2.89)-(2.91) permit one to prove that many of the properties
established for the scale htll’tp (092) when Q is a graph Lipschitz domain have natural counter-
parts in the setting of bounded Lipschitz domains. We continue by recording the analogue

of (2.81) in the case when 2 C R" is a bounded Lipschitz domain.

Proposition 2.11 Let 2 C R™ be a bounded Lipschitz domain, and assume that "Tfl <

p <1 and p* is as in (2.48). Also, assume that 1 < q < p*. Then

hbPaQ) = {f € LY (99): O, f € HY,(00), 1< j,k < n}

= {1 eL900): o f € W(00), 1< jik <n}, (2.92)

and in addition,

1 lh1e 00y = 11 Lo a0) + Z 107 f | 7, 00) = || fll Laan) + Z 107 fllne oe)- (2-93)
J:k=1 j.k=1

Proof. To get started, we claim that for each j,k € {1,...,n}, the tangential derivative

operator

0

Tjk

. hlP(09) — HP,(09) (2.94)

is well-defined, linear, and bounded. To prove this, fix 1 < p, < oo and observe that dr,, a
is a (p, po)-atom whenever a is a regular (p, p,)-atom. It is therefore natural to try to define

the operator (2.94) as

Or f = Z)\iaTjkai whenever f = Z Aia; in hllf(@Q). (2.95)

Nonetheless, due to the redundancy in the atomic representations of functions in hcll’tp (092)

the above observation alone does not guarantee that this operator is well-defined. See, e.g.,
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the discussion in [7]. In order to overcome this difficulty, it suffices to show that if {\;}; € ¢

and aj, j € N are (p, p,)-regular atoms, then

dXiai=0 in hP(0Q) = Y Ndr,ai=0 in hE(09). (2.96)

This, however, is a consequence of (2.76), the second line in (2.88), and (2.23). Hence, the
operator (2.94) is well-defined and bounded.

Turning to (2.92), let us note that, thanks to (2.88) and (2.94), the three spaces are
listed in increasing order. Hence, it suffices to show that if f € LI(9Q) has 0y, f € hf,(0Q)
for1 <j,k <n,then f € hlll%p (092). Note that all spaces involved are modules over Lip (092).
Hence, using a smooth partition of unity, matters can be reduced to the case when 0f2 is
replaced by ¥ C R", the graph of a real-valued Lipschitz function defined in R"~!, and f is
compactly supported on ¥. By further flattening ¥ to R”~! using a bi-Lipschitz change of
variables, we arrive at the following question. Prove that if f € Lim,(R" 1) — hP,(R"1)
has 9,f € hE,(R"!) for every j = 1,..,n — 1, then f € Ff”Q(Rnfl). However, since
hE(R™1) = FP2(R™1) for 2=l < p <1, this latter claim follows from well-known lifting
results for Triebel-Lizorkin spaces (cf., e.g., Proposition 2 on p.19 in [79]). Finally, the

equivalences in (2.93) are implicit in the above reasoning. O

In keeping with notation introduced in (2.36) and (2.40), if @ C R" is a bounded

Lipschitz domain, we set

W (09) for =L < p <1, hoP(9Q) for 21 < p <1,
hP(99) == HP(0Q)) =
LP(0Q) for p>1, LY (09Q) for p > 1.

(2.97)
Let us also point out that all these spaces have natural vector-valued versions, although we
shall make no notational distinction between the scalar and the vector-valued case; each

time, this should be clear from the context.
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2.4 Besov and Triebel-Lizorkin spaces in Lipschitz domains

Given an arbitrary open subset Q of R", we denote by f|q the restriction of a distribution

fin R to Q. For 0 < p,q < oo and s € R we then set

BY(Q) := {f distribution in Q : 3¢ € BYY(R") such that glo = f},
(2.98)

£l prra() = inf {llgll prany = g € BE(R"), gla=f},  f€BIM(Q).
A similar definition is given for FI'?(2) in the case when p < co. From the corresponding
density result in R™, it follows that for any bounded Lipschitz domain 2 and any 0 < p,q <

00, s € R,

C>(Q) — BPYQ) N FPQ)  densely. (2.99)

The existence of a universal extension operator for Besov and Triebel-Lizorkin spaces
in an arbitrary Lipschitz domain {2 C R™ has been established by V. Rychkov in [80]. To
state this result, let Rq denote the operator of restriction to 2, which maps distributions

from R" into distributions in 2,

Ra(u) :==u o u distribution in R". (2.100)

Theorem 2.12 ([80]) Let 2 C R™ be either a bounded Lipschitz domain, the exterior of a
bounded Lipschitz domain, or an unbounded Lipschitz domain. Then there exists a linear,
continuous operator Eq, mapping distributions in Q2 into tempered distributions in R™, such

that whenever 0 < p,q < +o0, s € R,

Eq : ALYQ) — ADYR"™) boundedly, satisfying Ra(Eaf) = f, Vf e A4(Q), (2.101)
for A= B or A=F, in the latter case assuming p < oo.

This and standard properties of retractions allow one to establish interpolation results
for Besov and Triebel-Lizorkin spaces in Lipschitz domains. More specifically, we have the

following analogue of Theorems 11.1-11.2.
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Theorem 2.13 Suppose 2 is a bounded Lipschitz domain in R™. Let ag,a1 € R, ag # a,

0<qo,q1,9<00,0<0<1, a=(1-0)ag+0bar. Then

(FDo(Q), FD(Q))gg, = BRYQ), 0<p< oo, (2.102)

07

(BE(Q). B )y = BLQ), 0<p< oo, (2:103)

Furthermore, if ap, 1 € R, 0 < po,p1 < 00 and 0 < qo, q1 < 00 satisfy min {qo, q1} < oo,

then

[FE9® (), Fr ™ (Q)]p = FEU(Q), (2.104)

where()<t9<1,oz:(l—t9)ao+00z1,%zlp;oejtpi1 and%zlq—_og+q%.

If ag, 1 € R, 0 < po,p1,q0,q1 < oo and min{qo,q1} < oo, then also

[BRo90(Q), BPL9L(Q)]g = BRY(Q), (2.105)

wher60<9<1,a:(l—ﬁ)a0+9a1,%:1}7;094—1% and%zlq—_oe—i—q%.

Finally, the same interpolation results remain valid if the spaces BY%(Q), FY4(Q) are

replaced by BY§(Q) and FY{(Q), respectively.

Recall now the standard LP-based Sobolev spaces in a Lipschitz domain :

WP(Q) == {f CLP(Q); Of e LP(Q), ¥y ] < k} l<p<oo, keNy, (2.106)

equipped with the norm

I llwr ) = Z 107 fll e (- (2.107)

1<k

In view of Theorem 2.12, for any Lipschitz domain 2, we have

WP(Q) = FP?(Q), 1<p<oo, keN. (2.108)

For 0 < p,q < 00, s € R, we set
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Aé’:g(Q) = {f € ADY(R") : supp f C O},
(2.109)

1 llara@) = 1f L agany, [ € AVS(Q),
where, as usual, either A = F and p < oo or A = B. Thus, B{{(Q), F7{(Q) are closed

subspaces of BYj(R") and F}{(R"™), respectively. In the same vein, we also define

LEo(Q):={f € LER") : supp f CQ}, 1<p<oo, seR, (2.110)

with the norms inherited from L ;(R").

For 0 < p,q < 0o and s € R, we also introduce

ARL(Q) := {f distribution in Q : g € AVI(Q) with g|o = [},
’ (2.111)
1l apa) = nf {l|gllapagny : 9 € ATG(Q), gla = f}, [ € ADL(9D),

(where, as before, A = F and p < oo or A = B) and, in keeping with earlier conventions,

L ,(2) == Fgf(Q) = {f distribution in Q: 3g € L} ;(Q) with glo = f}, (2.112)

if 1 <p<oo,seR. For further use, let us also make the simple yet important observation
that the operator of restriction to €2 induced linear, bounded mappings in the following

settings

Ra : ADI(R") — AP4(Q) and Rq: API(R") — APL(Q) (2.113)

$,2

for 0 < p,q <00, s €R.

It follows that if € is a bounded Lipschitz domain in R™ and 0 < p,q < 0o, s € R, then

P

C3(Q) — AYG(Q) densely, (2.114)
C™®(Q) — AP(Q) densely, (2.115)
C5°(Q) — ADI(Q) densely, (2.116)
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where, as before, tilde denotes the extension by zero outside 2 and A stands for either B or
F'. Indeed, the same proof as in the Remark 2.7 on p. 170 of [46] gives (2.114) and a minor
variation of it justifies (2.114) as well. Finally, (2.116) is a consequence of (2.114) and the

fact that Rg maps A7§(Q2) continuously onto AZZ(€2).

Proposition 2.14 ([91]) Assume that 2 is a bounded Lipschitz domain in R™, and suppose

that 0 < p,q < o0 and s > max(l/p —1,n(1/p— 1)) Then extension by zero defined as

_ f(x) ifxeq,
f(z) = (2.117)

0 ifz € R\ Q,
induces a linear and bounded operator from BgZ(Q) to BYG(Q) and, if p < oo, from FJZ(Q)
to Fﬁ’oq(Q). Furthermore, if max(l/p —1,n(1/p— 1)) <s<1/pand0 < p,q < oo, this

operator also maps BS(Q) to BL((Q) and, if min {p,1} < g, FJ(Q) to F7{(Q).

Ifl<pg<ooand 1/p+1/p'=1/¢+1/¢ =1, then

(AQJZ(Q))* =A"0(Q) if s>-1+1, (2.118)

(Af;ﬂ(@))* —A7T(@Q) i s <L (2.119)

Furthermore, for each s € R and 1 < p,¢ < oo, the spaces AY?(2) and AY§(€2) are reflexive.

As a consequence of (2.118)-(2.119) let us also note the following useful result:

Proposition 2.15 Let € be a bounded Lipschitz domain in R™, and assume that 1 < p,q <

oo, 1/p+1/p=1/q+1/¢ = 1. Then

(Bro@) =@,  (mra@) = o), (2.120)
provided —1 4+ 1/p < s < 1/p.

There is yet another type of smoothness space which will play a significant role for us.

Specifically, for 2 C R™ Lipschitz domain, we set

[¢]

AP9(Q)) := the closure of C3°(Q2) in API(Q), 0<pg<oo, seER, (2.121)
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where, as usual, A = F or A = B. For every 0 < p,q < oo and s € R, we then have

ARL(Q) — AZ”q(Q) — AP9(Q), continuously. (2.122)
The second inclusion is trivial from (2.121), whereas the first can be justified as follows. If
f € AZ4(Q), then there exists u € A((Q) such that Ro(u) = f. By (2.114), there exists
a sequence u; € C§°(2) such that @; — u in AP?(R™), which then implies u; = Rq(u;) —
Rao(u) = f in AY9(Q). This proves that f € A‘%’q(Q) and the desired conclusion follows
easily from this.

Going further, Proposition 3.1 in [91] ensures that

API(Q) = APU(Q) = AP9(Q), A€ {F, B}, (2.123)

whenever 0 < p,q < o0, max(l/p— 1,n(1l/p— 1)) < s<1/p, and min{p,1} < ¢ < oo in
the case A = F. Other cases of interest have been considered in [64], from which we quote

the following result.

Proposition 2.16 Let ) be a bounded Lipschitz domain in R™. Then

FPQ) = FPA(Q) (2.124)
provided
0<p<oo, min{l,p} <g<oo, and
(2.125)
dk € Nyg so that max(% - 1,n(% - 1)) <s—k< %.
Furthermore,
BP(6) = BLI(9) (2.126)
whenever
0<p,g<oo and 3k € Ny so that max <% - 1,n(% - 1)) <s—k< %. (2.127)
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2.5 Smoothness spaces on Lipschitz boundaries

For a € R set (a)+ := max{a,0}. Consider three parameters p, ¢, s subject to

0 <p,q <00, (n—l)(——l) <s<l1, (2.128)

and assume that 0 C R” is the upper-graph of a Lipschitz function ¢ : R*™1 — R. We
then define BY'?(9€) as the space of locally integrable functions f on 99 for which the

assignment R"! 5 z +— f(x,¢(x)) belongs to BYY(R"1) (cf. § 11.1). We then define

£l raaq) = £ 0( )l ra@n-1y- (2.129)

As far as Besov spaces with a negative amount of smoothness are concerned, in the same

context as above we set

f e BY(09) <= f(e()V1+[Ve()]? € BYY (R, (2.130)
1f e, o) = £ Co oDV + V)Pl e, ety (2.131)

As is well-known, the case when p = ¢ = oo corresponds to the usual (non-homogeneous)

Holder spaces C*(01), defined by the requirement that

x p—
| flles o) = I fllze@0) + sup M < 400. (2.132)
Ay ‘(L‘ - y‘
z,y€0)

All the above definitions then readily extend to the case of (bounded) Lipschitz domains in
R"™ via a standard partition of unity argument.
We now recall several properties of the Besov scales just introduced above which are

going to be of importance for us later on.

Proposition 2.17 For (n—1)/n<p<oo and (n—1)(1/p—1)y <s <1,

N )P 1/p
1152200 ~ £l o) + (/ /m e V@O TGP o0y an)) . (2133)
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See [64] for a proof of the equivalence (2.133).

Theorem 2.18 ([64]) Let Q be a Lipschitz domain in R™ and assume that the indices p
and s satisfy ”T_l <p<ooand (n— 1)(% —1); < s< 1. Then the following hold:

(i) The restriction to the boundary extends to a linear, bounded operator

Tr : Bff;(ﬂ) — BP9OQ) for 0<q<oo. (2.134)

P

Moreover, for this range of indices, Tr is onto and has a bounded right inverse

Ex : BP(0Q) — Bf_fl(ﬂ)' (2.135)
p

(ii) If p # oo, then similar considerations hold for

To: B, (Q) — BIP(99). (2.136)

P

In particular, the operator (2.136) has a linear, bounded right inverse

Ex : BPP(0Q)) — Ff_;_ql(ﬂ). (2.137)

P

Theorem 2.19 Let ) be a bounded Lipschitz domain in R™ and assume that ”T_l < p < o0,

m—=1)1/p—1)1 <s<1and min{l,p} < q < oo. Then

() ={f € FJf () : Tr f = 0} (2.138)
and
C(Q) — Fspfl/pz(Q) densely. (2.139)

Furthermore, a similar result is valid for the scale of Besov spaces. More specifically, if

2=l < p<oo, (n—1)(1/p—1)4+ <s<1and0<q< oo, then

B () ={f € B, () : Tr f =0} (2.140)

and
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C(02) — Bf_fl/pjz(ﬂ) densely. (2.141)

Proposition 2.20 Suppose that Q) is a bounded Lipschitz domain in R™. Furthermore,

assume that 0 < p,q,qo,q1 < 0o and that

either (n—l)(1 1) <sp#s1 <1,
+

1
(2.142)
-1 ~-D(Lf-1) < < 0.
or + (n )<p )+ S0 # 81
Then, with 0 <6 <1, s = (1 —0)sg + Os1,
(B2 (90), B0 (99)) 4 = BL9(09). (2.143)

Furthermore, if 0 < p;,q; < 0o are such that min{qy,q1} < oo and either one of the

following two conditions

either (n—1)<;—1) <si<1, i=0,1,
i +

(2.144)
1 A P
or —1%—(71—1)(1)7—1)Jr <s; <0, i=0,1,
is satisfied then
[BEy % (0%2), BEL T (0Q)]g = BY9(09), (2.145)
where
R 1. 1-6 [ 1. 1-6 [

Proposition 2.21 Let Q C R" be a bounded Lipschitz domain and fix (n—1)/n < p < oo,
0<q<o0, and (n— 1)(;17 — 1)+ < s < 1. Then, for each j, k € {1,...,n}, the tangential

derivative operator

Oy, + BP1(0Q2) — B (9%) (2.147)
1s well-defined, linear, and bounded.
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Next, we discuss an atomic decomposition result for the space BYP,(99Q) when (n —
1)/n < p < ooand (n— 1)(% —1); < s < 1. For a given, fixed parameter n = n(9€2) > 0,
call ag € L*°(09) an atom for BY?, (09) if

(1) 3.5 = S,, surface ball, such that supp (ag) C S, (2.148)
s—1_n=1
(2) [lasl[ze@o) < T (2.149)
(3) / as(z)do(z) =0 when r <n. (2.150)
o0

We have:

Proposition 2.22 For any bounded Lipschitz domain Q@ C R™ there exists n = n(92) > 0

such that the following is true. If (n —1)/n <p <1 and (n—1)(: —1) < s <1 then

P
. 1/p
I lzmnomy ~ it {3 Irsl?)
S
f= Z)\Sas, as are BYP (0)) atoms, {\s}s € Ep}, (2.151)
S

uniformly for f € BYP (982).

s

Lemma 2.23 Let Q C R"™ be a bounded Lipschitz domain and assume that k : 92 x 0Q \

diag — R is such that

k(z,y)] < kle =y 7, [V, k(e,y)| < kle -y V(2,y) € 99 x 09\ diag(2.152)

For a fized function € € Cg°(R™) set k(z,y) := [¢(x) — &(y)]k(z,y) and introduce

Cf(z):= /89 k(z,y)f(y)do(y), x € 0N (2.153)

Then for every s € (0,1) and q € (1,00), the operator

C: BY1(9Q) — LI(59) (2.154)
1s well-defined, linear, and bounded.
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Proof. Consider first the case of (2.154) when ¢ = 1. Our goal is to show that there exists

C > 0 such that

ICallpian) < C (2.155)

for every Bi; (0Q)-atom a. Recall the parameter n from Proposition 2.22 and note that if
a is an atom supported in a surface ball of radius > n then |lal|z1(50) < C(n,0Q) < oo.
Thus, (2.155) holds in this case since C maps L'(9Q) boundedly into itself. When a is
a B! (8Q)-atom supported in a surface ball S,(z,) with z, € 92 and 0 < r < 1, it is

elementary to establish that

/ Ca(z)| do(z) < Cr'=* < C' and / Ca(x)| do(z) < Cr'=*Inr < (2.156)
SQT(IO) BQ\SQT(xO)

for some finite C' = C'(9€2,n,x) > 0. From this, (2.155) follows. Hence, (2.154) holds when
g = 1. Since, by Schur’s lemma, C maps LP(92) boundedly into itself whenever 1 < p < oo,
the claim about (2.154) follows in its full generality from what we have just proved and

interpolation. O

We shall now briefly discuss the Triebel-Lizorkin spaces on the boundary of a bounded
Lipschitz domain Q C R", denoted in the sequel by F?(99). Compared with the Besov
scale, the most important novel aspect here is the possibility of allowing the endpoint case

s = 1 as part of the general discussion if ¢ = 2. To discuss this in more detail, assume that

either 0 <p <oo, 0<q< o0, (n—l)(m—1>+<s<l,
(2.157)

or "T_1<p<oo, g=2 and s=1.
The starting point in introducing Triebel-Lizorkin spaces on 0f2 is the case when 2 is the
domain lying above the graph of a Lipschitz function ¢ : R®~! — R. In this case, if (p, g, s)
are as in (2.157), we define F*?(0Q) as the collection of all locally integrable functions on

0%) such that

[flFpaa0) = I1F G eCDIEpa@n-1y < 00, (2.158)
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and F?% (99) is defined as the collection of all functionals f € (Lip, (952))" such that

1l 7ra o0y == I CeONV I+ VO P pra ga-1) < +o00. (2.159)

When (p, ¢, s) are as in (2.157), the Triebel-Lizorkin scale in R?~! is invariant under point-
wise multiplication by Lipschitz maps as well as composition by Lipschitz diffeomorphisms.
In turn, this can be used to define F2*?(9€) and F (92) when Q is a bounded Lipschitz
domain, via a standard partition of unity argument.

Some basic properties of the spaces just introduced are as follows. First,

FP20Q) = hP(0Q),  FP*0Q) = W5 (09), ™2 <p< oo, (2.160)
where hP(982), hi(9S2) have been introduced in (2.97). Second,
Proposition 2.24 Let Q2 be an arbitrary bounded Lipschitz domain in R™. Assume that the

indices s, S0, S1,D,P0, 490, ¢, P1,q1,0 are as in (2.146) and each of the two triplets (po,qo, So0)

and (p1,q1,81) satisfies (2.157). If also min {qo, q1} < oo then
[FE090(0Q), FEH(9Q)]g = FPUOQ),  [Fro(0), F24 (00)]g = F(0Q).  (2.161)

Finally, assume that each of the two triplets (p,qo,So) and (p,q1,s1) satisfies (2.157)

then

(FL(09), FLT (09))s,q = BYI(09),  (Fuy(09), FET(09))s,, = B (09)  (2.162)

so—1 s1—1

if so#s1,0<0<1,s=(1-6)sg+60s1 and 0 < ¢ < 0.

3 Rellich identities for divergence form, second-order sys-

tems

3.1 Green formulas

Let €2 be a domain in R” and denote by C°°(2) the class of smooth, complex-valued

functions defined in a neighborhood of €. Also, for two fixed nonnegative integers N, M,
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set € := [C®(Q)]N, F := [C®(Q)]M. In the sequel, we let (u,v) := Zgzl ugvg denote the
pointwise inner product in £, F, etc. Note that this pairing does not involve any complex

conjugation (i.e., is bilinear). Next let D : £ — F be the linear mapping given by

Du(z) = ( Z a?ﬁ(az)a"’u/g(x))a, ueé rve, (3.1)
ly|<m

i.e. a differential operator of order m in €, with smooth, complex-valued coefficients in 2,

acting on vector-valued functions. Its formal transpose is then given by

DT.F ¢ DTU(.ZC) — < Z (—1)‘V‘GV[aff‘ﬂ(m)va(ﬂﬁ)])Bv veF,z€Q.  (3.2)

[y|<m

If the superscript ¢ denotes complex conjugation then D*, the adjoint of D is

D*:F € Dui= [DT(UC)T. (3.3)

In fact, if we set D := (Du) (i.e. conjugate the coefficients of D), then

D* = (DT)C — (DC)T’ DT — (D*)c — (Dc)*’ (34)

and adjunction, transposition and conjugation are all involutions.

Going further, recall that the principal symbol of (3.1) is the mapping

o(D;&)u := (zm Z ag‘ﬁ{VUg) ) EeR”, wekg, (3.5)

[v]=m

where, throughout this section, i := /—1. It follows that, for each £ € R™ and each

differential operator D of order m,

o(D%€) = (=1)"a(D;€), o(DT;€) = (~1)"a(D;€) ",

(3.6)
and o(D;§)" = o(D*;§).
Also, for any two differential operators D1, Do,
o(D1Dg;§) = o(D1;§)o(D2;§), £ €R™, (3.7)
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whenever the composition is meaningful.
Recall next that for a first-order differential operator D : £ — F, the following integra-

tion by parts formulas are valid:

/Q (Du,v°) do = /Q (u, (D*v)°) da: — / (io(D; v)u, v°) do, (3.8)

o0N

/Q (Du, v) dz /Q (u, Do) dar — / {io(D; v)u, v) do, (3.9)

o0
where do is the surface measure on 92 (assumed to be reasonably smooth), v is the outward
unit normal to 2, and the functions u € £, v € F, are sufficiently well-behaved near 0f2.
We continue to assume that D : £ — F is a first-order differential operator and consider
A:Q — CMXM 3 smooth, matrix-valued function (also occasionally identified with a zero-
order differential operator mapping F into F). With D and A as above, introduce the

second-order differential operator

L:=-D*AD, L:&—F, (3.10)

and the associated conormal derivative

92 == io(D*;v)AD, ot & — Flaa. (3.11)

v

For further reference, let us note here that

0(9,+€) = io(D*;v)Ao(D; €), (3.12)
so that in particular,
o(84;v) = —io(L;v). (3.13)
Also,
A=A"= L=L"—= o(L;§)" =0o(L;§), V¢ € R". (3.14)

It follows from (3.8) that
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/(Lu,vc> dx = —/(D*ADu,vC> dz
Q Q

_ / (ADu, (Dv)) da + / (040, v°) do. (3.15)
Q o0

Taking the complex conjugates of both sides and interchanging u and v also yields

¢ = — *Du )¢ dx w, (040)°) do. .
/Q<u,(Lv)>dx— /Q<AD (Dv))d +/ (u, (92)°) d (3.16)

o0

In particular,

= A" u, v%) — (u, (Lv)°) dz = A, 0% — (u, (040)°) do )
A= a = [ (L) = @) do = [ (@) = @0 do @7

i.e. the complex Green formula. Going further, note that replacing v by v¢ in (3.17) yields

the real Green formula

/Q<Lu,v) dxz/ﬂ(u,Lw dx—i—/m(afu,w da—/ (u, 32v) do (3.18)

oN
if A=A, D°=D (i.e., A and D have real coefficients) and A = AT,

3.2 The mother of all Rellich identities for second order systems

We continue to employ notation introduced in the previous section. Throughout this section,

we shall assume that

Du(z) = (z": a?ﬁ(x)(?jUB(w)) ue [C°Q)N, z e, (3.19)
j=1

1<a<M’
is a first-order differential operator with C! coefficients and that the matrix A is self-adjoint,

i.e.

A* = A. (3.20)

Then L, defined as in (3.10), becomes a self-adjoint, second-order partial differential oper-
ator. In order to continue, we need one more piece of notation. Specifically, if h= (hj)j :

1 — R is a smooth vector field, we set
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Viu = (Vhuj)g = (Z hjﬁju/g>ﬁ, ueé, (3.21)
j=1

with an analogous definition for Vfl: . In this context, Vj = h -V is the usual direction
derivative, in the direction of the vector h. It is useful to note that U(V‘;; €) = i<ﬁ,§>]g,

where Ig stands for the identity operator on £. Of course, a similar calculation applies to
f
\%

The following Leibnitz formula is readily checked:

Vilu, w) = (Vsu,w) + (u, Viw), Yu,w e &. (3.22)

Of course, a similar Leibnitz formula holds for functions in F.

If we now set [D, V] :== DV{ — V7 D, the symbol calculation

a([D,Val;€) = o(D; )ilh, ) Ig — ilh, )Ir o(D;€) =0, VEER",  (3.23)

shows that [D, V] is a first-order differential operator. Integrating by parts then yields

/ (040, (VEW) do = / (io(D*: v)ADu, (VEw)°) do
o0 o0

_ / (Lu, (VEw)©) dz + / (ADu, (DVEw)©) da
Q Q

= /(Lu, (VEu)©) da:—i—/(ADu, (V7 Du)°) da
Q Q

+/<ADu,([D,Vh]u)C> dx. (3.24)
Q

Next, observe that thanks to (3.22) and the fact that h has real-valued components, we

have the sequence of identities

(ADu, (Vi Du)®) = (ADu, Vi (Du)°)
= Vu(ADu, (Du)) — (Vi ADu, (Du)®)
= Vi(ADu, (Du)) — ([V7,, A]Du, (Du)")
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—(AVY] Du, (Du)®), (3.25)

pointwise in €. In this connection, we note that

o([V],Al:€) = i(h, &) IrA— A(i(h, €)IF) =0, VEeR™, (3.26)
so we may conclude that [V;;E , A] is a zero-order operator. Moreover, (3.20) allows us to

re-write the last term in (3.25) as (V7 Du, (ADu)) = ((ADu, (Vi Du)¢))°. Altogether,
(3.25) becomes

2Re (ADu, (Vi Du)) = V,(ADu, (Du)) + O(|Dul?|[VZ, A])). (3.27)

Returning with this back in (3.24) then yields

Re /a Q<a;‘u, (Viu))do = % /Q Vi (ADu, (Du)¢) dz + Re /Q (Lu, (Vi u)°) da
+ [ OUDUPINT. Al da

+/ O(|A||Du||[D, Vi]ul) dz. (3.28)
Q

This completes the first round of integration by parts. Our approach involves a sec-
ond round, based on the scalar Divergence Theorem, fQ Vifde = — fQ<diV h)fdx +
fag(ﬁ, v) fdo. Utilizing this in the context of (3.28), i.e. with f := (ADu, (Du)¢), gives a
first version of a Rellich-type identity. To state this formally, we let C’g(Q) denote the space
of bounded, complex-valued functions of class C' in a neighborhood of €, with bounded

first-order derivatives.

Theorem 3.1 Assume that Q C R" is a Lipschitz domain and let D be a first-order differ-
ential operator as in (3.19) with coefficients in C}(Q). Also, let the matriz-valued function
A satisfy (3.20) and define L as in (3.10).

Suppose next that u € C?(Q) is a RN -valued function for which M (Vu) € L%(0S), the
nontangential boundary trace Vu 0 ezists pointwise almost everywhere, and Vu and Lu are
sufficiently well-behaved in Q0 (e.g. being square integrable will do). Finally, fixz an arbitrary

vector field h € CH(Q) with real-valued components. Then there holds
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2Re/ (02, (V] u)) do
o0

_ / r ) (ADu, (Du)°) do — / (div h)(ADu, (Du)°) dz
o0 Q

+2Re/Q(Lu, (VEw)°) dx—i—/QO(|Du|2|[V]:,A]|)d:c

+/ O(|A||Du||[D, Vi]ul) dx. (3.29)
Q

In the second part of this section, we would like to further refine the above identity

under the additional assumption that

L is strongly elliptic. (3.30)

This entails that o(L;&) is an invertible matrix for any £ # 0. Loosely speaking, this
refinement is carried out by decomposing D into its tangential and normal component on

01, analogously to the standard decomposition

V = Vt,m + Va,/ (331)

of the full gradient operator in R into its tangential and normal components on 0f2.
Let us describe a procedure which, given an arbitrary first-order differential operator
P, allows one to decompose P as the sum of a tangential differential operator on 92 and a

suitable multiple of 94. The key observation is that the operator

7:=P —io(P;v)o(L;v)"toA (3.32)

is tangential on 02, in the sense that o(7; 1) = 0, which follows readily from (3.13). In the

case when this procedure is applied to D, the resulting tangential operator

70 := D —io(D;v)o(L;v) 1o} (3.33)

has the extra property that, on OS2,

o(D*;v) Aty = —id?} —io(D*;v) Ao (D; v)o(L;v) 192 = 0. (3.34)
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Now, writing D = io(D;v)o(L;v) 102 + 79 and expanding (ADu, (Du)¢) yields

(ADu,(Duw)®) = (iAo(D;v)o(L;v) " 0 u, (Du)®)
+(Arou, (ic(D;v)o(L; l/)flafu)%

+({Atou, (Tou)°)

= I+II+1II (3.35)
Observe that
I = (o(Lsv) 0w, (—io (D' v) ADu)) = (o(Liv) " 0, (=02u))  (3.36)
and that, by (3.34),
IT = (o(D*; v) Arou, (io(L; v) 102 u)¢) = 0. (3.37)
Thus, all in all,
(ADu, (Du)) = {(o(—L;v) "' 95w, (9;'u)°) + (Amou, (tou)©). (3.38)
Similarly, we decompose
Vi = (h,v)o(—L;v) 102 + 7, (3.39)
where
7 =V — (h,v)o(=L;v)~ oA (3.40)

is tangential, by our previous discussion. Thus,

Re (9;'u, (Viu)) = Re (9w, (mu)) + (0fu, (o(=L;v) "9 u)) (B, v)

= Re (0%, (rv)®) + (0(=L;v)"'0%u, (07 w))(h,v).  (3.41)
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Returning with (3.35)-(3.41) in (3.29) finally proves the following general Rellich-type

identity.

Theorem 3.2 Let 2 C R™ be a Lipschitz domain, and let D be a first-order differential
operator as in (5.19), with coefficients in C}(Q). Let the matriz-valued function A satisfy
(3.20) and assume that the second-order operator L introduced in (3.10) is strongly elliptic.
Next, assume that u € C?(Q) is a RN -valued function such that M(Vu) € L?>(09), the
nontangential boundary trace Vu 50 exists pointwise almost everywhere, and for which Vu
and Lu are sufficiently well-behaved in ) (e.g. being square integrable will do). Finally, fix

an arbitrary vector field he C’l}(Q) with real-valued components. Then there holds

- [ to(-Liv) 0t (0 )) ) do
B
:—/ (Atou, (Tou)) (h, V) d0+2Re/ (0%, (Tyu)°) do
o9 B
—2Re /Q(Lu, (Vu)°) dz+/ﬂO(\Du|2|[vf,A]|)d:c

—%/TOOAHDuMELVﬂuDdx, (3.42)
Q

where all O’s involve only dimensional constants.

4 The Stokes system and hydrostatic potentials

4.1 Bilinear forms and conormal derivatives

For A € R fixed, let

a?‘kﬁ()\) = jk(sa/g + Aéjﬁéka, 1<,k a,B<n, (4.1)

and, adopting the summation convention over repeated indices, consider the differential

operator L) given by

(Lai)o = 0j(alyy (N)Opug) = Aug + Ada(divir), 1<a<n. (4.2)
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The connection with the material in § 3.1 is as follows. Let N :=n, M := n?, and consider
the first-order differential operator Du := (9pug)1<k,g<n along with Av := (aZ§(A)vk@)1gj,agn-
Then D*v = —(0kvks)1<p<n and, consequently,

Lyu:= —D*ADu = (aj(a;f (A)akuﬁ)) (4.3)

1§a§n.
Thus, all the results from § 3 apply to the operator (4.2). There is, however, one important
nuance on which we would like to elaborate. Concretely, as a whole, the Stokes system does
not fit into the general framework considered in § 3 because of the divergence-free condition
imposed on 4 and because it involves a pressure function 7w which plays a different role than
(the components of) @. One of the aspects which is directly affected by this issue is the way
we shall define the conormal derivative for the Stokes system. More specifically, various
considerations dictate that the definition (3.11) should, in the case of the Stokes system, be

altered to

oM, m) = <1/ja?kﬁ()\)8ku5 - I/aﬂ') .

= [(Vﬁ)T + )\(Vﬁ)] v—mv on 08, (4.4)

where Vi = (Oyu;)1<jk<n denotes the Jacobian matrix of the vector-valued function @, and
T stands for transposition of matrices.
To illustrate the fact that this definition is natural, consider the issue of Green’s formulas,

as discussed in § 3.1. Then, introducing the bilinear form

AN Q) = a?,f()\)ff(,f, V&, ¢ n X n matrices, (4.5)

we have the following useful integration by parts formulas:

i b) = (i, ), @) — i, Vi) — m(div @ :
/Qi<L)\u—V7r,w>—:I:/Em(ay(u,ﬂ),tw /QiAA(V Vi) — w(divid),  (4.6)

and
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/(LAﬁ—VW,w>—<LAZB—Vp, ) = :I:/(E)li‘(ﬂ', ), ) — (O (10, p),ﬁ)-i—/?r(divw’)—p(divﬁ),
Q4 o Q4
(4.7)

which should be compared with (3.15) and (3.18) respectively. Above, it is implicitly as-
sumed that the functions involved are reasonably behaved near the boundary and at infinity
(if the domain of integration is unbounded). Such considerations are going to be paid ap-
propriate attention to in each specific application of these integration by parts formulas.
We next consider the issue of the (semi-) positiveness of the the bilinear form (4.5). As

a preamble, we shall prove the following lemma.

Lemma 4.1 For & an n X n matriz, n > 2, and a,b,c € R, let

Q&) = Qupe(§) = aléP +b|5(E+ &N + c|Tx(&)]%, (4.8)

where Tr stands for the usual matriz-trace operator, T denotes transposition, and |£| =

[Tr (€€M))Y2. Then
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a >0,

(1) Q&) >0 for every n x n matriz & — a+b>0,

a+b+cn >0,

a >0,
(ii) Ik >0 with Q(&) > k(€2 VE = a+b>0,

a+b+cn >0,

a >0,
(iid) Ik >0 with Q(€) > k|5(E+ETP VE — a+b>0, (4.9)

a+b+cn >0,

a >0,

(iv)  Fw>0withQE) > w[Tx () V¢ = a+b>0,

a+b+cn >0,

a >0,
(v)  Fr>0withQE) >k|5(E—EN? VE — a+b>0,

a+b+cn > 0.

\

Proof. Assume Q(&) > 0 for every n x n matrix £ and define ¢!, €2, &3 by

Jl»k = % (5j1(5k2 - 5j25k1)7 £j2k = % (5j15k2 + 5j25k1)7 and ;Sk = ﬁ (5]é410)
Then
Q(él) =a>0, Q(§2) =a+b>0, and Q(f?’) =a+b+ecn>0. (4.11)

Conversely, assume ¢ > 0, a +b > 0 and a + b+ c¢n > 0. Since
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e <3 +€NP < lef (4.12)

for every matrix £ we may write

Y

(&) alé* + A€+ €N — (a+b)2|Trgl

= a(lel? - 2re?) +v(1h€ + €T - ATrel)
> (a+)(15€+€NE - e
> 0. (4.13)

Then (i7) follows from (i) once we notice that

a > K,
Qa,b,c(ﬁ) Z K |‘£‘2 Vf — Qafn,b,c(g) Z 0 Vf — a + b Z R, (414)

a+b+cn > k.

Then (ii7) and (iv) follow by similar arguments, and (v) also follows easily after noticing

that

€7 =13+ €D +15(6 - €D (4.15)
This finishes the proof of the lemma. (Il

Recall now the bilinear form (4.5).

Proposition 4.2 For every \ € (—1, 1] there exists k) > 0 such that for every n X n-matriz

§

ANEE) = k€] for (N <1 and  Ay(£,€) > r €+ €T (4.16)

Also, for |\ <1, the Cauchy-Schwarz type inequality

Ay(£,0)? < ANE AN Q) (4.17)
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holds for every n x n-matrices &, . Finally, for every A > —1 there exists k) > 0 such that

AN(C, Q) > RAlC]? for every matriz ¢ with entries of the form i = &y (4.18)

Proof. Since Ax(§,€) = Qi-x2x0(§), Lemma 4.1 readily gives (4.16). The same lemma
also shows that, for |[A| < 1, the bilinear form (4.5) is nonnegative, hence the usual proof

of the Cauchy-Schwarz inequality gives (4.17). As for (4.18), it suffices to notice that, if

¢ = (&m)1<jk<n, then A(C,C) = [€]*|n* + A&, n)[*. O

4.2 Hydrostatic layer potential operators

We continue to review background material by recalling the definitions and some basic
properties of the layer potentials for the Stokes system in a Lipschitz domain @ C R™ n > 2.
Let w,_1 denote the surface measure of S"~!, the unit sphere in R", and let E(x) =

(Ejk(x))1<jk<n be the Kelvin matrix of fundamental solutions for the Stokes system, where

1 14 :
Ejp(z) = ( L xﬂzk) , zeR"\ {0}, n>3, (4.19)

C2wp_1 \n—2z"2 " o

and corresponding to n = 2,

TiTE

En(o) =~ (nloglel + T4 ) . 2= () € B2\ (0} (4.20)

Let us also introduce a pressure vector ¢(x) given by

1 x

q(z) = (gj(x))1<j<n = o © € R™\ {0}. (4.21)

Then we have

OpEji(x) =0 for 1 <j<n and 0jEj(r) =0 for 1 <k <mn, (4.22)
AEj,(x) = AELj(x) = 0kqj(z) = Ojqi(z) for 1 <4,k <n. (4.23)

Now, fix —1 < A <1, and define the single and double layer potential operators & and D)
by
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Sflx) = / Bx—y) fw)do(y), = ¢ 09,
o0

Difw) = [0 Do T o). agon,

o0

(4.24)

(4.25)

where 81’,\@){E ,q} is defined to be the matrix obtained by applying 83‘@) to each pair con-

sisting of the j-th column in F and the j-th component of ¢. More concretely,

(OB Dy — 2))ji = va(y)OaBij(y — 2) + MWa(y)OEaj(y — 2) — 4;(y — 2)vi(y). (4.26)

Let us also define corresponding potentials for the pressure by

of(x) = / @@ —y), F) doly)  z ¢ 09,
o0

o0

Then

ASf—VOf=0 and divSf=0 in R"\0Q,

and for each A € R,

ADA\f—VPyf=0 and divDyf=0 in R"\ 0.

Let us also consider the fundamental solution for the Laplacian,

L if n>3,

- —92 n— n—2
Ea(z) = (n=2)wn—1lz|
wlog|z| if n=2,

and the corresponding single and double harmonic layer potentials
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(4.27)

(4.28)

(4.29)

(4.30)

(4.31)



Saf(x) = / Ea(x—y)f(w)doly), ¢ 09, (4.32)
o0

Dafle) = [0 Eae - ) doly),  x ¢ 00 (4.33)
o0
Then
§=-VEx in R"\{0}, (4.34)
and so
Qf ==Y k(Safi) = —divSaf, (4.35)
k=1
Prf = (1 + A)divDaf. (4.36)

Let us now record a basic result from the theory of singular integral operators of
Calderén-Zygmund type on Lipschitz domains. To state it, recall that F denotes the Fourier

transform in R™.

Proposition 4.3 There exists a positive integer N = N(n) with the following significance.

Let Q be as in (2.1), fir some function

ke CNR™\ {0}) with k(—z)=—k(z) and k(Az) =X"""Yk(z) VA>0, (4.37)

and define the singular integral operator

Tf(z):= - k(x —y)f(y) do(y), x € R™\ 09Q. (4.38)

Then for each p € ("T_l, o0) there exists a finite constant C = C(p,n,0Q) > 0 such that

IM(T F)llzro0) < CllElsn-1llon | f e @0)- (4.39)
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Furthermore, for each p € (1,00), f € LP(0R2), the limit

Tf(e) = pv. | Ma=nf@)do) = i [ ko)) doty)
|:c1fya|ia

exists for a.e. x € 92, and the jump-formula

To| @)= lm TfE) = 4 e F )@ @) (@) + T @)

zEFf(a:)

1s valid at a.e. x € Of).

Let us now specialize (4.41) to the case of hydrostatic layer potentials.

(4.40)

(4.41)

Proposition 4.4 Let Q C R™, n > 2, be a graph Lipschitz domain and assume that 1 <

p < 0o. Then for each A € R, fe LP(0Q), and a.e. x € 012,

o @ = @) F@) + o [ (e =), Flu) dotw)

N[

—

D] (@) = (3 +K)fl@),

00+

where I denotes the identity operator and

Kafla) i=pov. 103, (B. My~ o)) Fo)doty),  weon.
oN

Furthermore, if K is the formal adjoint of Ky, then

Finally,

VienSf o= VienSf by i LP(8Q),

+

hence
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(4.43)

(4.44)

(4.45)
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Sf = Sf‘ :Sf’ in LP(9Q). (4.47)

o0

In fact, analogous formulas hold in the case when 2 C R™ is a bounded Lipschitz domain.

Proof. Recall that if m is an integer and P; is a harmonic, homogeneous polynomial of

degree j > 0 in R" then, as is well-known (cf., e.g., p. 73 in [87]),

FQy)(a) = ‘fﬁ)m (4.48)

where, with I denoting the standard Gamma function,

| =
—
NS,

)

m
2

Qi(®) 1= (“)im D and = (1P

. , 4.49
’x‘]+m F( ( )

w3 | +
|3

DI
+

provided either 0 < m < n, or m € {0,n} and j > 1. Based on this and (4.41), a

straightforward calculation gives the following trace formulas

0;(8a59)| (@) = F403(2) (805 — vale)v(x) J9(2) + 9555 9() (4:50)

valid at a.e. z € 99, for every g € LP(092), 1 < p < oo, where for each «, 3,5 € {1,...,n},

we have used the abbreviations

Supo(e) = | Fusle— o) dotw). @ €R"\ 00, (451)
9jSap 9(x) == p.v. /m(@anﬂ)(m —y)g(y)do(y), =€ (4.52)

In particular, for j € {1,...,n}, we have

—

0,57, 0 = F @) +ov. [ OP@-pidow).  @5)

—

at almost every x € 02, where ﬁan = f — v(v, f) is the tangential component of f In a

similar fashion,
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0889],, @) = T o) +pv. [@EN@ gl doly).  (15)
o0

for a.e. = € 9. Now, all the trace formulas in the statement of the proposition are direct

corollaries of (4.53) and (4.54). O

With the help of Proposition 4.3, we can now establish the following.

Proposition 4.5 Let Q2 C R", n > 2, be a graph Lipschitz domain. Then for "Tfl <p < o0,
there exists C = C(02,p) such that for any f= (f1, ey fn) in HP(0Q),

— —

IM(VS )l oony + IM(QF) ey + D IM(VSa fi)lleon) < Cll fllr(anf4-55)
k=1

Moreover, for X\ € R and 1 < p < oo, there exists C = C(02,p) such that for any
ferro9),

1M (D f)llzoa0y < Cll fllroy- (4.56)

Similar results are also valid when @ C R™ is a bounded Lipschitz domain, with HP(0S)

replaced by hP(0N2), its local version.
This result leads to the following corollary.

Corollary 4.6 Let Q@ C R™, n > 2, be a bounded Lipschitz domain, and fit A € R. Then

the operators

Ky, K5 : LP(0Q) — LP(89), (4.57)
S LP(0Q) — LY(0%), (4.58)

are well-defined, linear, and bounded whenever 1 < p < co. A similar result holds when €2
is a graph Lipschitz domain, except in this case the Sobolev space LY (09) is replaced by its

homogeneous version L¥(9Q).
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We now turn to the action of layer potential operators on Sobolev spaces of negative
smoothness. If  C R” is a bounded Lipschitz domain, p € (1,00), and f = (f1, ..., f) is a

vector whose components are functionals in L” | (9Q) = (Lﬁ’k@ﬂ)) , 1/p+1/p =1, we set

Sflz) = ( <Ejk(x . -)‘m, fk>>1<j<n, z € R"\ A9, (4.59)
k=1 -

where in this context, (-,-) is the duality bracket between L”(9€) and <L€/(89)> It is
then clear that this operator is compatible with (4.24), when the latter is considered acting
on LP(02) — L (99). This justifies our retaining the same piece of notation for the single

layer in (4.59). Similar considerations apply to the pressure potential

Qf(x) = zn: <qj(a: _ ‘)‘39’ fj>, z € R™\ 99 (4.60)

7j=1
Proposition 4.7 Let Q be a bounded Lipschitz domain in R™. Then the following hold for

each p € (1,00):

(i) For each f € LP [ (0%2), the pair (Sf,Qf) is a solution of the Stokes system in R™\ 9

(i.e. the formulas in (4.29) continue to hold).

(ii) There exists C = C(€2,p) > 0 such that

IM(S ooy < Cllf e, o0)- (4.61)
1

(11i) The boundary single layer operator

SF = sﬂam zsﬂm_, (4.62)
is well-defined as a function in LP(0Q) for each f € L? (0). Moreover,
S LP,(09) — LP(09) (4.63)

is a bounded operator, which is compatible with (4.58).
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(iv) If 1/p+ 1/p' =1, then the adjoint of (4.63) is

S: L7 (0Q) — L¥ (99). (4.64)

Proof. The claim in (i) is clear from (4.29) and (2.27). Next, if f € LP (09), Corollary 2.2

gives that, for every k = 1,2, ..., n, there exist functions gg, 9;°, 1 <7, s < n, such that

fe=9t+ > 0ng®s N9hllieon) + D 198N mr@a) < 201fillze o0 (4.65)

r,s=1 r,s=1

Based on this, the j-th component of S f can be expressed as

Sf(z)) = En Eji(z — y)gi(y) do(y)
J o0
k=1

-2 /8 0 Or, o [Ejk(z — y)]gi” (y) do(y), (4.66)

k=1r,s=1

for each x € R™\ 9. This and Calderén-Zygmund theory then give

IMSFlrony < O (Il + 3 168 Ivom) < Ol ooy (467)
k=1

r,s=1
justifying (4.61).
Formula (4.66) and Calderén-Zygmund theory also give that the pointwise nontangential

traces in (4.62) exist. In fact, since

o — o —

—vp(2)(0s Eji) (v (2)) + vs(2) (0, Eji) (v () = 0, (4.68)

it follows from (4.66) that there are no jump-terms when taking the boundary traces of S f

on JQ4. In particular, SﬂaQ+ = Sﬂag_ and, in addition, the j-th component of Sfis

(Sf); = kz /a Bl ~ )af(0) do )

~3 S o /a 0 [l = o (1) o). (4.69)

k=1r,s=1
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for a.e. x € 09Q. This also shows that the operator (4.63) is well-defined, bounded and
compatible with (4.58). Finally, the claim in (iv) is easily justified based on the fact that S

is self-adjoint as an operator on L?(92) plus a density argument. O

In the study of the action of the hydrostatic layer potentials on Hardy-type spaces, the

following standard result is going to be useful.
Lemma 4.8 Let ) be a graph Lipschitz domain in R™, n > 2, and consider a bounded,

linear operator

T : L*(09) — L?(09) (4.70)

such that there exists a locally bounded function k : {(x,y) : z,y € 00, x # y} — R with

the following properties.

(i) For each f € L*(0)),

Tf(x) = /8 k@i @) da(y), €00\ supp . (4.71)

(ii) There exist Cy,Cy > 0 such that

k(z,y)] < Colz —y|~"™ Y ifa,y €09, x#vy, (4.72)

Iy—yol

k(z,y) — k(x, < C ,
ke, ) = ko) < Cor =2

if ly —yo|l < Cilz —yol.  (4.73)

Then there ezists € > 0 small and k > 0 large such that if a is as in (2.30) then

m = Ta = k™ 'm satisfies the last two conditions in (2.34). (4.74)

If, in addition to (i) and (ii) above, the operator T also satisfies T*(1) = 0, in the sense

that

f € L*(09) with compact support, / fdo=0= / Tfdo =0, (4.75)
oN o
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then m is a fixred multiple of a (p,e)-molecule Hence, in this latter case, T extends as a

bounded operator

T : HY,(0Q) — HP,(09) (4.76)

for every "T_l <p<1l.
We can now establish the boundedness of the operator K3 on atomic Hardy spaces.

e . . . _1
Proposition 4.9 Let Q CR", n > 2, be a graph Lipschitz domain and "= <p < 1. Then

K}« HP,(0Q) — HP,(09) (4.77)

1s a bounded operator for each A € R. Moreover, a similar result holds when 2 C R™ is a

bounded Lipschitz domain, provided H®,(0Q) is replaced by its local version, ht,(0€).

Proof. This is a consequence of Lemma 4.8 once we check (4.75). To this end, assume that
fe L?(09) has compact support and satisfies faﬂ fda = 0. Next, set @ := Sfand m= Qf

in €, so that from (4.45),

—

K3 f = 0)(Sf, of)

—

1
+57f. 4.78
o 2 ( )

Thus, we need to establish that

/ )i, m)do = 0. (4.79)
o0
Note that the vanishing moment condition for f ensures that the above integral is absolutely

convergent and that

|Vi(z)| + |7(z)| = O(Jz|™") at infinity. (4.80)

To prove (4.79), fix a function ¢ € C§°(B(0,2)) with ¢y = 1 on B(0,1), and for each
R > 0 set ¥g(x) :=9(x/R). Then for each constant ¢ € R™, using the integration by parts

formula (4.6) with & := ¢ i€ gives
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R—o00

'< aﬂa,i(a,w) do, 5>

i [ (@)(@.7), vid) do
o0

lim /Q{A,\(VE,V(Q/JRE)) — rdiv (¢Ra}dx

R—o0

— Tm (IVa@)| + 7(@)]) IV n(a)] do
R—00 Joe: R<|z|<2R

< C lim R =0, (4.81)

by (4.80) and the fact that |[Viyg(z)| < C/R. Since ¢ was arbitrary, this gives (4.79), thus

finishing the proof of the proposition. O

Next, we wish to discuss the action of these various operators on Sobolev-Hardy spaces.
To set the stage, we first note that, from (4.25)-(4.26), for each A € R, j € {1,...,n}, and
FeLP(9),1< p < oo,

(0aF) @ = [ (m)@aBly = o)+ A0a(0) O, Eurly ~ o)

J

~vWasly - 0)) fey) doly), T ERM\ Q. (482)

Then for each f € H?(09), "T_l <p<oo,r,j€{l,..,n}, and x € R™\ 9, we may write

0.(DAf)j(0) = = [ [va0)(0:0u )y — 2) + o 4) 005 Ear)(y — 2
onN

V() (@ra)(y — )| fuly) do(y) (4.83)

= —/ [@M(y) (0aEji)(y — x) + A0, () (0 Eak) (y — ) — O, (@ (y — )| fr(y) do(y)
50

- / v (Y) AEk(y — ) + Avr (Y)(0a0i Ear) (y — ) — vr (1) (9591 (y — )] fi(y) do(y)-
o0
From (4.22)-(4.23), it follows that the integrand in the last line of (4.83) vanishes. By
further integrating by parts (cf. (2.9)) the tangential derivatives in (4.83) we arrive at the

identity
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0.(DF) (2) = [ [(@uB) 5 = £)(0r, 5)0) + NOEw)y — 2)(0r,, o) 0)
o0

—qk(y — 2)(0r,, k) (y) | do(y),

or equivalently,

=

0r(Drf)j = —0aSjk(0ra, fr;) — A0jSak(0ra, fr) — akSA(ﬁTijk) in R™\ 09. (4.84)

The same type of reasoning applies to (4.28). Specifically, we have for each x € R™\ 012,

Pfl) = (14 / vr (1) (Orgi) (5 — 2) fi(y) do(y)

o0

= —(1+)) / vr(Y)(0r Ok Ea)(y — @) fi(y) do(y)

o0N

= —(1+\) /(&M&Ea)(y —z) fi(y) do(y)

o0
= (14 [@EB2) - 2)(00, )W) do(w)
o0
= (14 N9 Sa0r, fi) @) (4.85)
whenever f € H?(09), "T_l < p < oo. With these identities in mind, we can prove the

following results.

Proposition 4.10 Fix A € R. Then for each graph Lipschitz domain Q CR"™, n > 2, and

”T_l < p < o0, there exists a finite constant C = C(98,p) > 0 such that

IM (VD) ooy + 1M (P oon) < CHﬂ|Hf(8Q)a Vf e HY(99). (4.86)

Furthermore, an analogous estimate holds in the case when @ C R™ is a bounded Lipschitz

domain, whenever f € R (09).
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Proof. This is a direct consequence of Proposition 4.3, (4.84), (4.85) and Lemma 2.3. O

Proposition 4.11 Let Q) C R™, n > 2, be a graph Lipschitz domain. Then for every A € R
and f € I2(09), 1 < p < oo, there holds

—

) (Drf, Prf) b, N(Drf, Prf) s in LP(092). (4.87)

A similar identity is also valid when Q C R™ is a bounded Lipschitz domain, whenever

fe L2(09).

Proof. This follows from (4.84), (4.85), (4.50), and (4.54).
O

Proposition 4.12 Let Q) C R™, n > 2, be a graph Lipschitz domain. Then for each A € R,

K, : HP(0Q) — HP(09) (4.88)

is a well-defined, bounded operator for every p € ("T_l, 00). Moreover, a similar result holds

in the case when @ C R™ is a bounded Lipschitz domain, provided HY(0SY) is replaced by
R (09).

Proof. Assume first that "T_l < p < 1. In this case, fix p, € (1,00), ¢ > 0 sufficiently small,
as well as r,s € {1,...,n} arbitrary. Also, let fbe a regular (p,p,)-atom. By (2.47) and
Lemma 4.8, it suffices to show that 0, K fisa (p, e)-molecule. Since this issue is dilation

invariant, there is no loss of generality in assuming that 0 € 0§,

supp f C $1(0)  and ||vtanﬂ|LP0(8Q) <1 (4.89)

Going further, we note that for each j € {1,...,n},

() = 30r,. fi(x),  (4.90)



at almost every = € 09Q2. Now, if 0;SA stands for the principal-value integral operator on

09 with kernel (0;Ea)(xz — y), then at almost every point on 0f2, we have from (4.84) and

(4.50)
35(Drf); o = 5Va( 0k — Vivi)Ory, fi — OaSjk (Ora f1)
+A %l/j(&m — I/al/k)amsfk - AﬁjSak(aTasfk)
—10k0r, fro + OuSa (0, fr), (4.91)
with a similar formula for 9,(Dj f )j o Note that
l/oé((gj — l/jl/k)a—rasfk = Va((sj - Vij)(Va(vtanfk)s - Vs(vtanfk)a)
= (vtanfj)s - Vij:(vtanfk)Sa (492)
and similarly,
Vj((sak - VOéVk‘)aTasfk‘ = _VjVs(vtanfk)kv (493)
4 aT,sjfk = Vsz(vtanfk)j - Vij(vtanfk)s' (4'94)
Thus, the jump-terms in VT(‘)S(D)\f)j 3Q_V58T(D)‘f)j 0 amount, to %Jl + %Jg — %Jg
where
Jl - V’r(vtanfj)s - Vs(vtanfj)r - VerVk(vtanfk)s + VstVk<vtanfk)r
= Onfi — ViviOr. [ (4.95)
Jo = _VstVr(vtanfk:)k + VerVs(vtanfk)k = 07 (496)
and
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Jz = VrVsz(vtanfk)j - VrVij(vtanfk)s - VstVr(vtanfk)j + VstVj(vtanfk)r

=  —vju0n,, fi (4.97)

Thus, %Jl + %JQ — %Jg = %&Tsfj, which cancels the last term in (4.90). In summary, all

the jump-terms cancel out, and we arrive at the identity

Or,.. (K _jj = Vsaoésjk(amrfk) + AVsajSak(aTmfk) - VSakSA(aTrjfk)

_yraasjk(ﬁms fe) = A urajSak((‘?MS fr) + I/T@kSA(aTSj fr), (4.98)

valid at almost every boundary point. Since Oy, fi is a (p,p,)-atom supported in S1(0),
Lemma 4.8 ensures that, up to a fixed multiple, each term in the right hand-side of (4.98)
satisfies the last two conditions in (2.34). There remains to show that m := 0, Kyf
integrates to zero on 0f).

To justify this, fix a function ¢ € C§°(B(0,2)) such that ¢» = 1 on B(0, 1), and for each

k € N set ¢y (z) := ¥(27%x). Note that O

Tsr

¥y is supported in the annulus A := Sok41 \ Sox
and satisfies |0y, Wil < C27F. Also, |Kyf(z)| < C27%=D for z € Ay. We can then

use (2.16) in order to estimate
[ oo mafw o) = | [ o v Rafle)dot) <cat o)
o0 o0N

Thus,

—

/ O, K f(x) do(z) = lim | 4u(@)dn. Kaf(z) do(z) =0, (4.100)
o0 o0

k—o0

as wanted. This finishes the proof of the proposition in the case when ”T_l < p < 1. Finally,
when 1 < p < oo, the desired conclusion follows from (4.90) and Proposition 4.10. O
4.3 Traces of hydrostatic layer potentials in Hardy spaces

Consider the following general trace result.
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Theorem 4.13 Let Q C R", n > 2, be the domain lying above the graph of a Lipschitz
function and assume that "T_l < p < oo, AN € R. Then there exists a finite constant

C = C(09Q,p,\) > 0 with the following property. Whenever @, 7 satisfy

Au=Vr, divi=0 1in Q,
(4.101)
M(Vi), M(m) € LP(09),

then

il € HY(0Q), ) (i, ) € HP(99Q), (4.102)

where the traces are taken in the sense described in § 11.6. Furthermore,

1lo0l 1 o) + 1185 (@ )| 00y < CIM (VD) Loo0) + CIM (7)l|o0)-  (4.103)

Finally, similar results are valid in the case when Q0 is a bounded Lipschitz domain in

R™. In this case, (4.101) imply

i| € nl(09Q), 0)i,m)ehP(0), and
o0 (4.104)

[dloallne o) + 102 (@ m)lleoo) < CIIM(VE) | Lr@) + ClIIM (7)o (20 -

Proof. The well-posedness of the Dirichlet problem for the Stokes system in Lipschitz
domains with data in L?(992), established in [34], and arguments which are well-understood
by now (cf.the proof of Proposition 3.1 in [71] for details in similar circumstances) imply

the following Fatou-type result:

(@, m) as in (4.101) and M () < oo a.e. on I = @ 0 exists a.e. on 092.  (4.105)

Moreover, since (4.101) imply that Anm = div V7 = div Ad = A(divd) = 0, we can utilize

the following result established by B. Dahlberg in [18],
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Ar =0 in Q and M(7) < oo a.e. on I =7 0 exists a.e. on Jf). (4.106)

Then the theorem follows from (4.105) and (4.106) whenever 1 < p < co. There remains

to consider the case when ”T_l < p < 1. In this scenario, we introduce the vector fields
Fro = (Opur)ej — (Qjur)er in Q, g, k,r€{1,..,n}, (4.107)

where {es}1<¢<y, is the standard orthonormal basis in R™. Note that, for each j,k,r,

M (F}Tk) € LP(0Q), F'jrk has biharmonic components,
div Fl, = 9;0kuy — djur =0 in Q, (4.108)

<F_;j7,"k7 1/> = yjﬁkur - ykﬁjur = 8Tjkur on Of).

Then (2.43) and Corollary 11.14 give that

ool gr@00) = Z 10r, 1l frp a0y < ClIM (V)] e (a6 (4.109)
k=1

This proves the first membership in (4.102) and part of the estimate (4.103).

To bring in the conormal derivative, define

ﬁj = Vu; + \0ju — mej, jedl,...,n}. (4.110)
Then
M(F;) € L(99), F; has biharmonic components,

div Fj = (Ly@)j — ;7 =0 in Q, (4.111)

<1*:"j,1/> = (9)(q, 7T))j on 09.

Then Corollary 11.14 gives 9 (i, 7) € HP(99Q) and

100 (@, ) || 7o a0y < CIM (V@) ooy + CIM (%) || 2o (59 - (4.112)
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The argument for the case when 2 is a bounded Lipschitz domain is similar, and this finishes

the proof of the theorem. O

We can now state the following result regarding the traces of hydrostatic layer potentials.

Corollary 4.14 Let Q) be a graph Lipschitz domain in R™, and assume that "T_l < p < o0,

A€ R. Then

63(8f,Qf)‘ ., :<$%I+Kj{)f in HPOQ), Ve HPOQ), (4.113)

+

D,\f‘mi: (i%IJrKA)f in HP(OQ), Vfe HP(09), (4.114)
7 — 7 ; P 7 P

0uSF) aT].ka]aQ_ in HPQ), Vfe HP(O9), (4.115)

in  HP(9). (4.116)

Moreover,

— —

RPN, =D P, in HP0Q), VeH[(09.  (4117)

Finally, analogous results hold in the case when @ C R™ is a bounded Lipschitz domain,

provided the Hardy spaces HP(9S) and HY(9SY) are replaced by their local versions.

Proof. Consider formula (4.113). This is going to be a consequence of the fact that K7 is

bounded on HP(0f2) the observation that, by Theorem 4.13, the assignments

H?(09) 3 f— o)NST, of) 20, € HP(5Q) (4.118)

are bounded, plus the fact that (4.113) holds when f is an atom for HP(952), thanks to

Proposition 4.4. All the other identities can be proved in a similar manner. ([l
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4.4 Integral representation formulas

We begin this section with the following useful representation formulas for solutions of the

Stokes system.

Proposition 4.15 [Green’s Representation Formulas]
Let Q@ C R™, n > 2, be either a bounded Lipschitz domain, or a graph Lipschitz domain.

For 1 <p < o fized, assume that the functions (i, ) satisfy

AU—Vr=0 in Q, divi=0 in Q, and M(Vi),M(r)e LP(0Q). (4.119)

Then @ and 7 also satisfy the following integral representation formulas (modulo constants):

() = Dy (ﬁ‘aﬂ)(x) - 8(83(11, w>) (2), zeQ (4.120)

w(z) = Py (ﬁ‘aﬂ)(a}) - Q(ag(ﬁ, 77)) (), zeq (4.121)

Proof. The identity (4.120) can be established, at least at the formal level, by specializing
Green’s formula (4.7) to the case when W := (Epj(x — -))1<k<n, p := ¢j(x — ), where x € Q
is fixed and j € {1,...,n} is arbitrary. If Q is a bounded Lipschitz domain, (4.120) can be
justified by writing (4.120) for a sequence of sub-domains ; approximating the original
in the fashion described in Theorem 1.12 on p. 581 in [94], and then letting j — oo. Here,
(4.105) and (4.106) are also used.

On the other hand, we also wish to establish (4.120) in the case when € is the upper-

graph of a Lipschitz function ¢ : R?~! — R. In this case, we will show that

d;ii(x) = 9;Dy (ﬁ‘m)(x) - ajs(ag(a,w))(x), reQ, 1<j<n,  (4.122)

which is enough to prove (4.120) modulo constants.

Fix x € Q, 1 < j < n, and for each r,s > 0, consider the bounded Lipschitz domain
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Dys:={y= " yn) ER"'xR: || <7, 0<y,— o)< s} (4.123)

Assume r and s are large enough so that « € D, and dist(x,0D, ) = dist(z,00).
In particular, (4.122) holds for the domain D, ;. Dividing the boundary of D, s into its

bottom, top, and vertical portions, we can write

ODyy = Byy UTyy U Vs, (4.124)
where
B,y = 0D,sN0Q,
T,s = {y= (v yn) € R xR: 1Y | <7, yn = @(2') + s},
Vie = {y= ') eER"'XR: [ =r, 0<yn—o(y) <s}.  (4.125)

Consider the version of (4.122) written for the domain D, ,, and let us break the right
hand side into three separate terms corresponding to integrals over the bottom, top, and

vertical portions of 0D, 4, In particular,

0ju(x) = I s+ 11 s + 111, 4, (4.126)

where the terms I, 5, Il s, and I11, ¢ correspond to integrals over B, , T} s, and V, , respec-
tively. Next, we will monitor what happens to these terms as the parameters r, s approach
infinity (in a suitable fashion).

We first claim that

—

0; S(fXST(o))(x) — 0 Sf(x) as r — oo for any fe LP(0Q),p > 1. (4.127)

Since = € () is fixed, for y € 02,
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IVE(x —y)| < 7 € L1(0Q) forevery 1<gq< oo, (4.128)

(1+ly[)"=

and so (4.127) follows by the Lebesgue Dominated Convergence Theorem. Note that (4.127)
also holds if we replace S with Sa. Now according to (4.84), we can rewrite derivatives on
D f as a sum of derivatives on & and Sa applied to tangential derivatives of f Then since
M(Vi), M(m) € LP(092), it follows from (4.127) that the term I, ¢ converges to the right
side of (4.122) as r — oco. By rewriting derivatives on the double layer as combinations of

derivatives on single layers as before, we can also show that

|II7’75‘

IN

/ (IVE(z —y)| + |VEa(z = y))(IVa(y)| + | (y)]) doy,  (4.129)

Tr,s

(s < /(IVE(m—y)|+IVEA(:E—y)I)(IVU(y)I+|7T(y)|)d0yo (4.130)
Vis

Estimating as in (4.128), for ¢ > 1, we can write

1 1
E(x—2)|%do, < C | ——————do,<C d

/'V (@=2)ffdo: < /(1+yz\)<n—1>q 7 / (1+ [y + senl) D “7
Tys Tys dD,. sNOQ

< C / ;dy/<cs(n—1)(1—® / ;dw

= (s + Jy/Nm—Da 7 = (14 Jw[)t=1a

—1 Rn—1
< Csn0-a), (4.131)

In particular, repeating the same argument also for Fa,

IVE(z — )+ VEa(@ = lpar,) < Cs" VGV, forany 1 < g<oo,  (4.132)

where the L estimate follows from (4.128). Then using (4.129), we can estimate I1, 3 by

1
11,4 < Cs™ " Vs (M (VD) ro0) + 1M (7)]|po0)) — 0 as s —oco. (4.133)
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Let us also note that if z € 0 is far away from x € Q, then for any w € I'(z),

|x — w| ~ |z — z|, and so in fact

C

Then for r large,
1
— . q - -
/ IM(VE(xz —))(2)|?do, < C / =T do,
B2T,S\BT',S BQT,S\B'P,S
< crin-Hi-9 (4.135)

and so after repeating the argument for Ea, it follows that

IM(VE(z — ) + M(VEA@ = )| asa 015, < CrVGD 0 for any 1 < g < 64.136)

Then using (4.130), we can show that for R large,

2R
1 Cs R
5 [ L dr < vy (V7D o + M) o) — 0 s B — o0.(4137)
p
R

Finally, (4.122) can be established by averaging (4.126) over r € [R,2R] and then taking
the limit as R and s approach infinity.
To establish (4.121), let {e;}1<¢<, be the standard orthonormal basis in R™ and for

x € Q, write

oo m)@ = [ ((VEaw—). 0@ m)a)) doty)
= o | [ (Bste-per. @) doty)
= o | [ (). 9B (e - i) o] - 0| [ stw)@cEa) e - vya]
= 0| [ (@)@, - ) + NP @B~ 1)) do] + 7(2)
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= —lim ((ajuf)(y)(agajEA)(x = y) + MOur) (y) 000k En) (x — y)) dy

e—0
yeQ
lz—y|>e
+m(x)
= (1 Nlm [ (@) W)O0Ea) (@ — y) dy + (),
yeQ
lz—y|>e

Above, (4.27) and (4.34) have been used in the first equality, (4.6) with @ := Ea(x — -)ey

in the third, AFA = § and the identity

ANV Vy(Eale = Jer) = (dndas + Adjadka ) (9j11a) (pEa)(@ = )oar

= —(0jue)(0;EA)(x — ) — AM(Opug) (O Ea)(x — -)(4.139)

in the fourth and, in the fifth, a well-know differentiation formula for singular integrals plus

the fact that

/ (000Ea)@)dw =0, Vjk € {1,....n}. (4.140)
Sn—l

On the other hand, since # is divergence-free, we have 0., ur, = —vy(9;u )]s, so (4.85)

gives

Pa(i], ) @) = (142985 0n,m)(@) = ~(1+ 0388 (1)) (@)
- (149, [ [ Bate - ) @u)o) da<y>]
— N9, [ [ 0Bs)e —)@0) dy}

= (1+2)lim (0;0kEa) (@ — y)(Ojur)(y) dy, (4.141)

yEeN
|lx—y|>e

where we have integrated by parts and used div @ = 0 in the third equality and differentiated
under the integral sign in the last step (here (4.140) was also used). Now, (4.121) follows

from (4.138) and (4.141). Once this is established for nice domains, we can use the same
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approximation arguments from the proof of (4.120) to prove (4.121) for bounded Lipschitz

domains and then also for graph Lipschitz domains. O
The previous representation formulas allow us to prove the following useful identities.

Proposition 4.16 Let Q C R™, n > 2, be a either a bounded Lipschitz domain or the upper

graph of a Lipschitz function. Then for any ”Tfl <p < oo,

S@OYNDAf,PAS)) = AT+ K0 (=31 + K\ f,  Vfehl(09). (4.142)
Proof. This follows by applying Green’s formula (4.120) to the functions @ = Dyf and

™ =P f and then taking boundary traces. O

Proposition 4.17 Let QL C R™, n > 2, be the domains lying above and below the graph of a
Lipschitz function. Assume (4, 1) solve the Stokes system in Q4 , and that M (Viiy), M(7y) €

LP(09Q) for p € [1,00). Then the following boundary identities hold:

(F3I + K)) (iix]oq) = S(9) (s, 74))  in HY(OQ), (4.143)
and
(:I:%I + K;i) (83(@, T4)) = (93\ (D(ti+laq), P(itlaq))  in HP(OQ). (4.144)
Proof. Since UV_ = —U, applying (4.120) and (4.121) to (ux,7+) gives
@y (z) = £Dy <ﬁi ]m) (x) T s(ag(ﬁi, wi)) (x), =z €y (4.145)
1 (z) = £Py (ai ‘m)(x) ¥ Q(@;\(ﬁi,wi))(x), r e (4.146)

Applying these identities in the definition of the conormal derivative, we can write
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O mi) = 0 (Da(@a |o0), Paliis lon) ) F ) (S(O(@x, ma)), QO ma) ) (4.147)

The jump relation (4.45) then gives

O (i, me) = +0 (Daliic lon), Paliix |oa) ) F (F31 + K3) (9 (i, 72) ),

(4.148)

which is enough to establish (4.144). Similarly, taking boundary traces in (4.145) and using

the jump relation (4.43) leads to

Uiy]on = £(£L1 + K)\)(dt|on) F S(0) (s, mr)),

from which (4.143) follows.

4.5 Boundary integral operators and the transmission problem

(4.149)

In this section we assume that 2 is a graph Lipschitz domain in R", n > 2. As usual, set

O, =0, Q0 :=R"\ Q. We begin with the following uniqueness result.

Proposition 4.18 Assume that (@, m+) are solutions to the Stokes system

Aty =Vmy, divig =0 in Qi, and M(Viuy),M(ry) € LP(09),

for some ”Tfl < p < o0, and that, in addition, they satisfy

liy|on = U-|oq and Op(tiy,my) = (i 7).
Then U+ and 7+ are constant.

Proof. Consider the functions

ﬁ+ in Q+, T+ in Q+,
and 7=

£
I

i_ in Q_, m_ in Q_.
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Then (u, 7) solves the Stokes system in R™. Let M (V) := max{M (Vu,), M(Vi_)}. Then

for every fixed x € R™ and R much larger than dist (z, 0), interior estimates give

(4.153)

Vi) < (-

After taking the limit as R — oo in (4.153), it follows that Vu = 0 in R”, and hence, @ is a

Lo\1/P _n=1 .
Vi) < CRTT M (VD) oo

r(z

constant vector. Then since Vr = A# = 0 in R", we know that m must also be constant. [J

Suppose that

fe HP(OQ),  §e HP(0Q), (4.154)

are arbitrary, and for each p € [0,1), consider the following transmission problems:

ﬁi,ﬁi as in (4.150),

ﬁi,ﬂ'i as in (4.150),

Ty)"  disloo —d-loo =g, (L) dtloo —d-loa = 7, (4.155)
alz\(ﬁ-i-a’rr-‘r) - u@{,\(ﬁ_,w_) = f7 :u’azi\(ﬁ-i-ﬂr-‘r) - 83\(7“_[—7’”—) = fa
.
Uy, 7+ asin (4.150), Uy, 7+ asin (4.150),
(T3F) § @iloa — pi-|oq = . (T3 nislon —@-lag = 7. (4.156)
L 63(64_,774_) - azi\(d—vﬂ'—) =/ 83‘(71_;,_,71'4_) - 813\(6—777—) =/

Let us remark that, given that €2 is a graph Lipschitz domain, a convenient interpretation
of the boundary condition @y |90 — U—|oq = ¢ in (T/fc)* is Op iy — Or i = Or;, g on 99,
for every j,k € {1,...,n}. Similar considerations apply to (Tf)

For any of the problems above and any "T_l < p < oo fixed, we will say that problem is

well-posed if for any data as in (4.154), there exists a solution (4,74 ) to the problem that

must be unique (modulo constants) and which also satisfies the estimate

|M (V) ooy + 1M (T)lzson) < C (I Flmroo) + 19lmpon) - (4157)
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Notice that when p = 1, all of the above problems are identical and can be solved by

the functions

—

U+ :=Dyg—Sfin Qr and 7L :=Prg— inn Q4. (4.158)

Furthermore, from Proposition 4.18, the solution is unique modulo constants. Now the

following claims are obviously true:

(Tj)* is well-posed <= (T},)", written with Q; and Q_ interchanged, is well-pose($.159)

(T;) is well-posed <= (T},") , written with Q4 and Q_ interchanged, is well-pose(#.160)

For p > 0 fixed, the following also hold:

(@y,my) and (d@—,7) solve (T,7)* for (f.9)

—

> (U4, m4+) and (pi—, pr—) solve (1)) for (f, ug), (4.161)

(@4, 74) and (@, 7_) solve (T},)* for (f,q)

—

> (pily, pry) and (@_,7_) solve (T,1) for (f, ug), (4.162)
(4, m4) and (7, 7_) solve (T;7)* for (f,§)

= (paly, pmy) and (i, pr—) solve (T, )" for (f. ug), (4.163)
(@4, m4) and (@, 7_) solve (T)}) for (f,g)

<= (piy, pmy) and (pii—, pr—) solve (T, Un ) for (uf, 7). (4.164)

From (4.163), we see that analyzing (Tj )* in the case p > 1 is equivalent to analyzing
(T,,)* in the case when p < 1 and vice versa. Of course, from (4.164), there is also a similar
connection between (7)) and (7),). With this in mind, in the sequel we will only deal

with the case when p < 1. Further interconnections between the well-posedness of the four

transmission boundary value problems in (4.155)-(4.156) are discussed below.

91



Proposition 4.19 Assume that & C R™, n > 2, is a graph Lipschitz domain and that

nl < p < 00, =1 < XA < 1. Then, for each (consistent) choice of the sign % in the

n

statements below, the following two claims are equivalent:

(i) the transmission problem (Tlf)* is well-posed for every p € [0,1),

(ii) the operator

i%“—ll + K3 : HP(0Q) — HP(09) (4.165)
is an isomorphism for every u € [0,1).

Moreover, for each (consistent) choice of the sign £ in the statements below, the follow-

ing two claims are also equivalent:

(iii) the transmission problem (Tlf) is well-posed for every p € [0,1),

(iv) the operator

i%l—“l + Ky : H?(0Q) — HY(09) (4.166)

is an isomorphism for every p € [0,1).

Proof. By (4.159)-(4.160), it suffices to prove all the desired implications for just one fixed
choice of the sign, since interchanging 24 with 2_ means that K becomes —K). In order
to fix ideas, we shall carry out the proof for the choice ‘plus’ of the sign, with this convention
being tacitly used throughout the proof.

As far as the implication (i) = (¢) is concerned, if the operator (4.165) is an isomor-

phism for every p € [0, 1), set

0,(DY G, Py §) + 195 (Dy 3, Py §) € H(9Q), (4.167)

=y
||

f-
o (%Lﬂ[ n KA> e BP(00), (4.168)
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where the superscripts 4+ indicate that the layer potentials in questions are considered as

mappings functions defined on 952 into functions defined in Q4. Then

Uy = sif2 + D5, (4.169)
T = ﬁQif} + P, (4.170)

solve (T,)* and obey natural estimates, i.e.

|M(Vs) o0y + 1M (m) ooy < C(Ifllomy + 13l momy)- (4171)

Let us now consider the issue of uniqueness for (7,7)* under the assumption that
(4.165) is an invertible operator. To this end, assume that (#y,m4) solve the homoge-
neous version of (T*)*. Subtracting the two versions of the identity (4.144) and keeping
in mind that 9} (ify,my) = po)(i_,7_) and i@i|gn = @_|sq allows us to conclude that
(1“+1I + K3)(0)(ii—,7—)) = 0. Thus, 0, (@i, 7—) = 0 and, further, 9} (@1, 7+) = 0. With
this in hand, the desired conclusion follows from Proposition 4.18. This concludes the proof
of (i1) = (7).

In the opposite direction, the a priori estimate associated with the version of (T Ij )*

when ¢ = 0 reads

100 (i, m4) — O (G, )l groy = IM(Vig)|| zoan) + 1M (7| 1r(o0)
+HIM (Vi) Leao) + M (7-) || Lr(90)64-172)

for any pair of functions (44,74 ) which solve the Stokes system in Q1 and satisfy i |s0 =
@_|pa, M(Vig), M(rs) € LP(0S). Specializing this estimate to the case when @ = Sh,
71 := Qh in Qu, with i € HP(09), then yields

17| 20 (o5 10 (@, =) — O (@, 74 )| Lo o)
< C[IM(Vi)| o) + 1M (m) | ooay + 1M (VE-) | Looay + M (7)o o0)]
< Cllop iy, my) — p (i, 7-) || o(on) = CH(%Ll + K3l o0 (4.173)
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where C' = C(Q,p, ) > 0 is a finite constant. Thus, {%ﬁ—ﬂ[ + K§}0<u<1 is a continu-
ously parametrized family of one-to-one operators with closed range (in particular, semi-
Fredholm) on HP(0f2), which are invertible (via a Neumann series) when pu is sufficiently
close to 1. The homotopic invariance of the index then gives that all the operators in
question are invertible on HP(012).

Consider next the equivalence (iii) <= (iv). First, when the operator (4.166) is an

isomorphism for each y € [0, 1), a solution to (7,) which satisfies (4.171) is given by

Ty = Dﬂ(%}f—l‘jﬂrm)_l(ﬁgﬁrsfﬂ S i 0y, (4.174)
- Pﬂ(%}f—gumf (ﬁgwsf)] O in Q.. (4.175)

Second, the a priori estimate associated with the problem (T;r ) implies that, for each

p € [0,1),

[@+loo — pi-|oollgroe) ~ [IM(VEg)|lLeeo) + 1M (74| e o0)

HIM (Vi) Lrog) + 1M (7-)l e 00),  (4.176)

for any pair of functions (i, 7+ ) which solve the Stokes system in Q4 and satisfy 9, (ii4, 74 ) =
ONi_,m_), as well as M(Viiy), M(r+) € LP(0R). Specializing (4.176) to the case when
i = Dyh, T+ = Pah in Qu, with h € HP(89), yields

1Pllmpoa)y = lld+loa = d-loallmr o)

IN

| M (Vi) o) + [|M(Vi-)|| Le o)

< Clliiyloa — pii-loal proa) = CIlGTET + KX gray,  (4.177)

where C'= C(Q,p, ) > 0 is a finite constant. With this in hand and arguing as before, we
then conclude that the operator (4.166) is an isomorphism for every u € [0,1).
There remains the issue of proving uniqueness for (7)) when the operator (4.166) is an

isomorphism for each p € [0,1). Once again, assume (@, 7+ ) is a solution of the homoge-
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neous version of (7,1). Then since iy |gn = pii—|sq and )iy, my) = O (ii—, m_), subtract-
ing the two versions of (4.143) yields after some simple algebra, (%if—/’j] +K ,\> (ﬁ, ‘89) =0.
Here, we have also made use of the fact that the single layer does not jump across 9€). Hence,

U_|an = 0, and so i4|spn = 0 as well. Then once again Proposition 4.18 may be invoked in

order to conclude. OJ

An immediate corollary of the result above is the following.

Proposition 4.20 Retain the same assumptions as in the statement of Proposition 4.19.

Then, for each (consistent) choice of the sign, the operator

AT + K} - HP(0Q) — HP(09) (4.178)

1
2

is an isomorphism for each p € (0,1) if and only if the operator

AT+ Ky HY (09) — HY(09) (4.179)
is an isomorphism for each p € (0,1).
Proof. This is a consequence of the proof of Proposition 4.19 and (4.161)-(4.162). O

The above proposition does not cover the case when p = 0, which corresponds precisely
to the operators which solve the Neumann problem (N) and the Regularity problem (R) in
(1.3). This particular aspect is dealt with in in the next chapter, in Theorem 5.9. In order
to better explain how the Neumann and Regularity problems are related to the transmission
problems, we first need to introduce the following definition.

With ”Tfl < p < oo fixed, we will say that (Tj) is semi-well-posed if for any fe HP(09)
and g € HY(09), there exists a solution (@+,7+) of (T,F) such that the functions %, and

7w+ must be unique (modulo constants) and also satisfy the estimate

IM (V@) ooy + IM (T )lzeoe) < C (I Flmroe) + 19lmpoe) - (4180)

Similarly, we will say that (7)) is semi-well-posed if there exists a solution (dt,m)

such that @_ and m_ must be unique (modulo constants) and satisfy
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M (Vi) rra) + 1M (7-)|[zra0) < C (\|ﬂ|Hp(aQ) + Hﬁ”Hf(@Q)) : (4.181)

With these definitions in mind, we can state and prove the following proposition that
details the relationship between the transmission problems and the Neumann and Regularity

problems.

Proposition 4.21 Let Q4 C R"™, n > 2, be a graph Lipschitz domains as before. Recall

(1.3). For "—;1 < p < o0 fized, the following statements are equivalent:
(1) (T;}F) and (T, )* are both semi-well-posed,
(2) (R) is well-posed in Q4 and (N) is well-posed in 2_,
(3) (T.}) and (T, )* are both well-posed.

Moreover, a similar result holds in the case when the roles of + and — are reversed.

Proof. First, we will show (1) = (2). Assume (7.}) and (7, )* are both semi-well-posed.
For any g € HY(0R), if (dx,m+) solves (T,}) with data (0, g), then (@4, 74) will solve (R)
in Q4 and also satisfy the appropriate estimate. For any f € HP(0NQ), if (4, m+) solves
(T;) with data (f,0), then (7_,7_) will solve (N) in Q_ and also satisfy the appropriate
estimate.

To establish uniqueness for (R), assume (u4,71) solves the homogeneous version of
(R) in Q. Let (@_,7_) be a solution to the Neumann problem (N) in Q_ such that
oMii_,m_) = )iy, 7). Then (#ly,m+) will solve the homogeneous version of (T;),
which implies that @4 and 74 must be constant. To establish uniqueness for (NV), assume
(ii—,m_) solves the homogeneous version of (N) in Q_, and let (@, 7+) be a solution to
the Regularity problem (R) in Q4 such that @y |sq = @_|sq. Then (ty,m+) will solve the
homogeneous version of (7, )*, and so 4_ and m_ must be constant.

Next, we will prove (2) = (3). Assume (R) is well-posed in Q4 and (V) is well-
posed in Q_. For any f € HP(0Q) and § € HP(8Q), let (iy,m.) be the solution to (R)
such that @1|gn = ¢ and let (@_,7_) be the solution to (N) such that O} (i7_,7m_) =

MMy, m4) — f. Then (@4, ) will solve (T;") and satisfy the appropriate estimates. To
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establish uniqueness, assume (14, m+) satisfies the homeogenous version of (7F). Then from
the uniqueness for (R), @y and 74 must be constant. In particular, since M (m.) € LP(0%2),
it follows that 7y = 0. Then (@_,7_) solves the homogeneous version of (V) in 2_, which
means ¢ and 7_ must also be constant.

Similarly, if (7_,7_) is the solution to (N) such that d}(@_,7_) = f and (@4, 74) is
the solution to (R) that satisfies i |gq = U_|aq + g, then (iy,m4) will solve (T, )* and also
satisfy the appropriate estimates. To establish uniqueness, assume (4, 7+) satisfies the
homeogenous version of (7, )*. Then @_ and 7_ must be constant due to the uniqueness
of solutions to (V). Then it follows that @ |so = 0 in HY(99), and so from the uniqueness
for (R), 4+ and 74 must also be constant. Since it is clear that (3) = (1), this finishes
the proof of the equivalence of the statements (1) — (3), and same result with the roles of

+ and — reversed follows similarly. O

5 The L? transmission problem with p near 2

5.1 Rellich identities and related estimates

Let Q C R™, n > 2, be either a graph Lipschitz domain or a bounded Lipschitz domain,

and fix a vector field h € C}(R™) with real-valued components.

Proposition 5.1 Assume that ti4+ = (u]:i:)lgkgn are real-valued vector fields and w+ are

real-valued scalar functions such that

Lyiiy = Vry, divie =0 in Qi M(Viy), M(ry) € L*(09). (5.1)

Then for every X € R,

/ AN(Vie, Vite) (hv)doe = 2 / (O)M(ite, s, Vpits) do + / (div i) A(Vie, Vits) d
o0 o0 Q4

19 / s (010) (D) — (i) Oy + M) (D5hi)| e
Qy
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= 2/<a£‘(ﬁi,ﬂ'i),vhﬁi> d0'+/0}f dx, (5.2)
onN Qi

and

/(ﬂi)%,u)da - —2/<8V1(ﬁi,7ri),(vvji)ﬁ>dai/(divﬁ)(ﬂi)de

o0 o0 Q4

+2 / (D)D) Oy — D) — (95h0) Oy | de
Qi

_ / (O (i1, 7s), (ViTs)R) dor + / OF da, (5.3)
o0 Qi

where (92[ denotes any function in Q4 such that, for some finite, purely dimensional constant

C >0,

Oy < C(|Vii<]” + |7+ [*)|VA]. (5.4)

Proof. As far as (5.2) is concerned, the idea is to start with (3.41) written for Ly, Q4+ and
i+ in place of L, Q and u, respectively. Also, D and A are as discussed at the beginning of
§ 4.1.

Note that the second solid integral in the right hand-side of (3.42) contains Lu which,
in our case, corresponds to Lyi+ = Vmy. We now further integrate by parts this gradient
operator and use the divergence-free condition on @4. The key aspect of this calculation is
that resulting boundary term combines well with the first integral in (3.41), in the sense that
it “completes” 9w to the correct conormal derivative 9, (ix, 7+ ) for the Stokes system.

This accounts for the form of the integrand in the first integral in the right hand-side
of (5.2). The first integral on the second line in (5.2) is a byproduct of the integration by
parts just described. Finally, all the other integrals in (5.2) can be easily traced back to
(3.41), finishing the proof of (5.2).

The identity (5.3) is a rewriting of formula (1.5) on p. 775 of [34], in the terminology of

conormal derivatives utilized in this work. This concludes the proof of the proposition. [
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The Rellich identities (5.2) and (5.3) will play a vital role throughout. Our first appli-

cation is the following estimate for the pressure term.

Proposition 5.2 Assume that

Aty = Ve, divie =0 in Qi M(Viy), M(rs) € L*(99). (5.5)

Then there exists C' > 0 such that for any € > 0,

/\ﬂi\Q(ﬁ,V) dagCs‘l/]Vﬁl—VﬁiIQWIda—i-a/\ﬂi\zlﬁ\ do
o0 o0 o0

+c/(|wi\2 e |2)| V] da. (5.6)
Qi

Proof. Combining (5.3) and (5.2) in the case A = —1 gives

/|7Ti2(ﬁ,1/> do = —2/(8;1(ﬁi,ﬂi),(VUi)ﬁ) da+/o,fda
o0 o0 Qi

_ /(8;1(ﬁi,wi),(Vﬁl—Vﬁi)ﬁ) da—/A_l(vai,wi)@, y>+/0;; do
o0 o0 Qi

= 2/<(Vﬁl — Viiy)v — mav, (VL — Vi )h) do
o

_ / A (Vite, Viie) (o, ) + / OF do. (5.7)
N Q4

Then since A_1(Vig, Viiy) = 3|Vl — Vii|?, the result follows by using Cauchy’s in-

equality with epsilon in (5.7). O

Proposition 5.3 For A\ € [—1,1], assume that

Lyiiy = Vry, divie =0 in Qi M(Viy), M(ry) € L*(09). (5.8)
Then there exists C > 0 such that for any € > 0 and any p € [0, 1),
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/ [AA(Vﬂ;, Vi) + pAy(Vi, w_)} (h,v) do
o0

< 33(1—61/1)2/ [|83\(ﬁ+77r+) - :u’ari\(ﬁ—aﬂ—)’Q + /’L‘vtanﬁ—l- - Vtanﬁ—‘2 ‘H‘ do

o0

b [ITP + fral? + VP + ] ] dor (5.9
o0

+19M/(|Vﬁ+|2+|7r+|2)|vﬁ|dx+ @/(|va_|2+|w_|2)|vﬁ|dx.
Q4 Q-

Proof. First, we point out that if diviy = 0 in Q4, then for every j € {1,...,n},

{(Viy)v}; = l/kﬁjuf = 8Tkjuf, (5.10)

and also

(Oylis, V) = 1 v; @uf =vj 6Tkjuf (5.11)

Combining the Rellich identities in (5.2) for @ and @_ gives

[ AL Vi) + uan(Va Vi) () do
o0

:2/(<ag<ﬁ+,ﬁ+),vha+>+u<ag(ﬁ_,7r_),vha_>) da+/o;dx+u/o; dx
o0 Qy Q_

— 2 [ (0@ my) — 0@, 7)Yty + Vi ) do

+2 <33(ﬁ+77f+) — (i, 7), Vyiiy + Mvhﬁ—> do

1—p
oQ
+/O,jdx+u/0h dz. (5.12)
Q4 Q_
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Using Cauchy’s inequality with epsilon, the last two lines of (5.12) can be bounded by
the right hand side of (5.9). From the definition of the conormal derivative, the third line

in (5.12) can be written as

o / (M, 1) — DM 7, Vails + Voil_) do

I—p
89
= _12—7#“ M(Viy)v — (Vu_)v, Vyiy + Vyt_) do
89
-1 /(<83(ﬁ+aﬂ+)>vhﬁ+> —(00(d_,7_), Vpi_)) do
89

_12_1/@3(@_,#_) + iy, y), Vil — Vpily)do.  (5.13)

o0
From (5.10), the second line of (5.13) can be bounded by the right side of (5.9). Applying

the Rellich identity (5.2) in the case A = 0 to the third line of (5.13) gives

— it [ (0Bt m), Vi) — (@07, Vo)) do
o0

== (Vi - (Vi P) ) do+ 12 [ OF ot gt [ 05 da
Q_

50 g,
e [( S = Wi )i+ 1 [ 0 da s 2 [ 0.
= Q4 Q_
~ [ (10t |~ v ) {F,v) do (5.14)
1—p v+ viu— y . .

o

Since |Vignti+|?> = Vianti—|? = (Viants — Vianii—, Vianiis + Viant_ ), the third line of (5.14)
can also be bounded by the right side of (5.9). This leaves the last term of (5.14), which
we will deal with in a moment. Splitting h into its normal and tangential components gives
Vh = Vi, + (h,v)d,. Using this along with the definition of the conormal derivative in
the last line of (5.13) gives

— 2 [ (0@ mi) + )@ o), Vil — iy ) do

[2/9]

101



= =2 [0 m) + 0T ) Vi T = Vi + (BT = Byi14) (R, v) ) do

= =2 [ (s, ms) + 0T ), Vi = Vi, Ty ) do

m
o0

. / (T + 7 )0, il — Byt ) (B, 1) do
o0

—f_ﬁL/(yaya_P — |04 [) {7, ) do (5.15)
o0

Notice that the last term in (5.15) cancels the last term in (5.14). Using (5.11) and Cauchy’s
inequality with epsilon, it follows that the third and fourth lines of (5.15) can be bounded
by the right side of (5.9). So combining (5.12), (5.13), (5.14), and (5.15) finishes the proof

of Proposition 5.3. O

The previous estimate gives us a good upper bound for terms involving the quadratic
form Ay(Vig, Viig). Our next result, which is specific to the case A = 1, seeks to bound
terms involving the full gradient, Vi1, by terms involving the symmetric part of the gra-

dient, Vii] + Vi, plus other terms similar to those in the right hand side of (5.9).

Proposition 5.4 Assume that Q@ C R™, n > 2, is a Lipschitz domain and that

Aliy = Vry, divie =0 in Qx, M(Viiy), M(my) € L*(09). (5.16)

Then there exists C' > 0 such that for any e > 0 and any p € [0, 1),

-

/ (V24 Va2 + 58 o, 2] (F.0) do

2(1-p)?
o0

= (1%/ [IWI + Vi |? + p|Vi + Vi_|?||h| do
oN

+5(10u)2/ [|81}(ﬁ+777+) - :uai(ﬁ—ﬂT—)P + :U’|Vtanﬁ+ - vtanﬁ—|2 |}_i| do
o0

te / (V2 + fro P + ul Vi + ] | do
o0
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+&/(!Vﬁ+!2+m!2)wﬁl dm+ﬂ/(|Vﬁ|2+|w|2)|vﬁdx.(5.17)
Q_

Qy
Proof. Consider the following algebraic identity for a,b € R,
ti(a—=0)" = 1 (a — pb)* — a® + pb*. (5.18)

Writing (5.18) with a = 74 and b = w_ and applying the Rellich identity (5.3) gives

1Mu/|7r+ —7_[*(h,v) do
[2/9]

s [ Py do — [y do i [ (a2 Ev) do
o0

o0N o0N

1iﬂ/(ﬂ'+ — pm)2(h,v) do—|—2/<8yl(ﬁ+,7r+),(Vﬁ+)ﬁ> do

o0 o0
—2u/<8;1(11’_,7r_),(V6_)ﬁ> da+/0,j dm+u/(9; dz.
80 o a_

= ﬁ /(77+ — ) (h,v) do + 2/ <8;1(1I+,7r+), (Vg + Vﬁl)ﬁ> do
o0 o0

o / (8, (Vii_, ), (Vii_ + Vil )R} do

o0
“2 [ @ me) — 00y (V7 Vi) do
o0
+2u/ <8,jl(ﬁ_, 7)), Vi — Vhﬁ+> do + / OFf da + 1 / Oy da(5.19)
o0 Q4 ol

Using the Rellich identity (5.2) in the case A = 0 along with the definition of the

conormal derivative, we can write

/ (Va2 + uVi_ 2] (7, v) do
o0

— [ 8@ ), i) + 2 0 7). Vo) do+ [ O dat [ O da
Q_

o0 Q
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— [ @M@ ). Va4 2 0} 7). Vo) do+ [ OF dwt [ O da
89 Oy Q-

"‘W/[@u_l(?ﬁﬂw) — oy N, m2), Vyily) — (O (g, my) — p O, (G-, m—), Vi

+2u / [<(va,)y, Uity — Viiio) + 12, (Vi — Vii_)v, v,ﬂm] do. (5.20)
o0

If we multiply (5.19) by 2(1;‘; y and add it to (5.20) and also apply the Rellich identity (5.2)

in the case A =1 to the first term in the third line of (5.20), we have

[ Ivase+uvap + g
o0

2
7T+—7T_‘ ] (h,v)do

= / [Ay(Vily, Viiy) + pAy (Vi Vi )] (h,v) do + 1 / Of dx + 12 / O; dx
N Q4 Q_

—18 [ Oy, my) — p oy, w), Vpily) do

o0

+24 / [((W—)v, Viils = Val-) + 12 ((Vily = Vi), vh@m} do
o0

batty [ = Py do + 22 [ (0@ ma), (VL + V)R do

o0 o0
A [ (o i, (Vi + Vil )i do
o0
= /<<9u1(17—77r—),vh71— — Viiiy) do. (5.21)
N
Notice also that
T — ,m_‘m —(1- u)<<v1ﬂ Vi), u> + ,u<8yﬁ+ - y>

+u<(va+ V), — <a;(a+,m) —pdl(a@_,m), y>(5.22)

Then using (5.10), (5.11), and (5.22), we can bound the first term of the fifth line of (5.21)

as follows,
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z(ifﬁ)z /(m — pm_)*(h,v) do < c/ Vil + Vi, ||| do
9] o0

+(1_CH)2/ [\33(17% 7)) — pO A, 7 ) + p|Vianty — Viani—|?||h] dg5.23)
o0

The next step is to observe that

—

Vhiis = Vi s + D) (hyv) = Vi, s + (VL + V)| (h,v) = [(Va)v] (),
(5.24)
and therefore from (5.10),

Vniy = Vii-| < |V, T+ Vil + |V T+ v

17| + 2(vwnﬁ+  Viand_| || (5.25)

Then the proposition follows by repeatedly applying Cauchy’s inequality with epsilon in
(5.21) while using (5.25) for the first term in the fourth line and the last term. Here, we

also use the fact that Ay(Viy, Vig) = %|VﬁiT + Viig |2 O

Using the previous two propositions, we can now prove our main estimates.

Corollary 5.5 Let Q C R™, n > 2, be a Lipschitz domain. For X € (—1,1], assume that

L)\ﬁi = V74, diviug =0 in Qi, M(Vﬁi), M(Tri) S L2(8Q). (5.26)

Finally, let h € C*(R™) and C, > 0 be such that

1< (h(z),#(z)) < C,, Ve . (5.27)

Then there exists C > 0 such that for p € [0,1),

/ 1V, ? + | Va_[?] do (5.28)
15)9)
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< (151#)6 / [‘azi\(ﬂ:F?ﬂ-Jr) - /Laz//\(ﬁfa7"-7)|2 + |vtanﬁ+ - vtan"jf|2
o0

el (VP + lm DIVl do+ S5 [V + o) V7] d5:29)
o a_

Proof. Choosing ¢ small enough in Proposition 5.2, we can show that

/WiPda < C/|Vﬁi\2do+(}/(]Vﬁi]2+ 7+ |?)|Vh| da. (5.30)

In the case A = 1, since A;(Viy, Viiy) = %|VU¢T + Vii+|?, combining Proposition 5.4,

Proposition 5.3, and (5.30) gives

/[|Vu+|2+,u|Vu |2 _El(lcu/[]Vqu + VI 2+ Vi 4+ Vi |?
o0 o0

+M/ U&i(aiﬁ-?ﬂ'-l-) - Maz%(ﬁ—vﬂ'—)‘Q —+ M’vtanﬁ—&- - vtanﬁ—’2:| do
0N

+510/ 1V, + ufvii_ ] do
o0

+r% / (Va2 + [ [2)|[ VA da + 4, / Vi [? + )| V| do

: 6251g“yl/ “8;(&*’ ) = p 0y (d—, w2 )? + | Vian s — Vtanﬂ!‘g] do
o0N

+<51 + m)c/ [|Vﬁ+|2 + M|w_\2] do
o0

Fa [ (VAP + i P9 do

Q4
+(10#/(yvu 2 4 | 2)|VF| da. (5.31)
Q_

Then the corollary follows by letting o = 2(1 — u)? and choosing &1 small enough. If
IA| < 1, there exists Cy > 0 such that |Vix|? < C\Ay(Viix, Viit), and so in this case, the

corollary can be proved more directly using Proposition 5.3 and (5.30). O
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Corollary 5.6 Let 0 C R", n > 2, be a Lipschitz domain and assume that, for some

Ae(—1,1],

Lyily = V7, divie =0 in Qu,  M(Viy), M(ny) € L*(09). (5.32)

Let h € C*°(R™) and C, > 0 be such that

1< (h(z),P(x)) < Co, Y € Q. (5.33)

Then there exists C > 0 such that for pn € [0,1),

/[|va+|2+u|va|2] do
o0

< (1_C;L)6 / [M’a,;\(ﬁ+,ﬂ+) - 33\(6_,7r_)’2 + ’vtanﬁ-‘r - Mvtan[’:—’z do
o0

e /(|va+|2 + |7 )| VA de + G255 /(|va|2 + |7_ )| Vh| d5.34)
Q4 Q_

Proof. For p € (0,1), the corollary follows by applying Corollary 5.5 to the functions

Up = pi—, T_:=Uy, py:i=pn—, p_ =Ty, (5.35)

and then dividing by p. For u = 0, this follows by simply taking the limit as g — 07. [

5.2 The case of a graph Lipschitz domain

In this section, we seek to establish the well-posedness of each of the various boundary value

problems stated in § 1 in graph Lipschitz domains.

Lemma 5.7 Let Q@ C R™, n > 2, be a graph Lipschitz domain as defined earlier. Then
there exists e = €(0) > 0 such that whenever 2—e < p < 2+¢ and p € [0, 1), the following
hold:
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(i) The operators :I:%l—”f + K3 are invertible on LP(0S),

(i) The operators :l:%l—ul + K are invertible on LP(9Q), on LX(9R), and on LE(9Q).

Proof. It is enough to prove the lemma in the case p = 2, since the extension to p €
(2 —€,2+ ¢) is then a consequence of abstract stability results. For f € L?(09) fixed, let

@y = 8f and 7y := Qf in Q. Then (@4, 7+) will satisfy

Aty =Vry, divie =0 in Q4

Uy]oo = U—_|aq, (5.36)
5.36

Op(iiy,my) — pop(i—,m ) = (=51 +p)I + (1 = wK3) f on 99,

M (Viig), M (m+) € L?(09).

Since 24 are graph Lipschitz domains, it is possible to select a constant vector field h that

satisfies the hypothesis of Corollary 5.5. Applying Corollary 5.5 then gives

Juva v uvi s <o [ (-4 55 P o (5.37)
o0 o0
Also, if we apply Corollary 5.6 in the case u = 0 with the roles of 4y and @_ reversed, we

get

/|w_|2da < C/yvtanﬁ_y2dazc/\vmnm?da < C/|Vﬁ+|2da. (5.38)

Then combining (5.37) and (5.38), and using (4.45) gives

£ 2200y = 100 (@, =) — 8 (d@y, m3) || 2000

< C|Vi_| 200y + ClIVit | r2a0)

—

< C| Vgl 200y < Cll(— %#IJF KX) flliz200)- (5.39)

From (5.39), it follows that %1—”] + K3 is one-to-one and semi-Fredholm for every p €

[0,1). Also, if p is sufficiently close to 1, we have that _%%I + K7 is invertible on
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L?(0R2) via a Neumann series. It follows from the homotopic invariance of the index that

%}JF—ZI + K3 is actually Fredholm with index zero for each p € [0,1), and therefore
%%—“I + K7 is invertible on L?(92). If we exchange the roles of (i@, 74) and (47—, 7_) in

the above argument, we can also show that 1 1+“ s + K3 is invertible on L?(012). By duality,
the operators +3 +“I + K, must also be invertible on L?(9%2).

Now, for § € L%(@Q), let @y = D)g and w3 = Prg in Q4. Then (dy,7y) will satisfy

Aty =Vry, divige =0 in Qy,

iy og — pil_loo = (L(1+ )T+ (1 — ) Ky) § on 09,

(5.40)
azi\(ﬁ-ﬁ my) = 83(6—7 ),
M (Viig), M(7+) € L?(09).
Applying Corollary 5.6 gives
/[|qu+|2 + ulVii_|*]do < c/ Vian[(3 1251 + K)dl|* do- (5.41)

onN
Also, if we apply Corollary 5.5 in the case y = 0 with the roles of @y and @_ reversed, we

get

Vi_|?do < C [ |0 d_,7_)|?do =C [ |0y, n)]?do < C | |Viiy|? deh.42
\ \ +> T+ +

Then combining (5.41) and (5.42), and using (4.43) gives

19 1200y = 0+ — G-l 12 (90)
< C|Viig |2 00) + ClIVE-| 2250
< C|Viasll2o0) < ClGT4T + E\)Fl i200)- (5.43)

From (5.43), it follows that 3 +“I + K, is one-to-one and semi-Fredholm for every p € [0,1),
and repeating the same arguments as above leads to the conclusion that the operators
+13HT 4 K are in fact invertible on L2(A€2). Since these operators are invertible on

21—p
L?(09) and L3(9N), we can establish
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191l 200y < CI(£ %17“[ + K3l 200 (5.44)

for any § € L2(09), which, after arguing as above, eventually allows us to conclude that

the operators +3 ﬁﬁ[ + K, are also invertible on L2(9Q). O

The invertibility of these operators allows us to prove the well-posedness of the associated

boundary value problems, as in the following theorem.

Theorem 5.8 Let Q2 C R", n > 2, be a graph Lipschitz domain, and set Q4 =, Q_ =
R™\ Q. Then there exists e = £(0Q) > 0 such that for any p € (2—e,2+-¢), the transmission
problems (Tj) and (Tj)* (cf. (4.155)-(4.156)) are well-posed for any u € [0,1). Moreover,
the Neumann problem (N) and the Regularity problem (R) (cf. (1.3)) are also well-posed

in Qy and Q_ foranyp € (2—¢€,2+¢).

Proof. The well-posedness of (Ti) and (T} £)* for any pu € [0,1) follows directly from
Lemma 5.7 and Proposition 4.19. Then Proposition 4.21 implies that (N) and (R) are also

well-posed. ]

With these results in mind, we can prove the following theorem.

Theorem 5.9 Let Q C R™, n > 2, be a graph Lipschitz domain and let ”T_l <P <2<

p1 < 0o. Then for X\ € (—1,1], the following are equivalent:

(1) the operators

%17#[ + K3 and — %%I + K3 are invertible on HP(09)
(5.45)
for all u €10,1) and for all p € (po,p1),
(2) the operators
%%I + K and — %1—“]4— K\ are invertible on HY (9Q)
(5.46)

for all w € 10,1) and for all p € (po, p1)-
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Proof. First, assume the operators i%%f—zl + K73 are invertible on HP(0S2) for all € [0,1)

and for all p € (po,p1). To prove the invertibility of %%I + K, and _%%I + K, on
HY(09), from Proposition 4.19, it is enough to show that the transmission problems (7))
and (7},7) are well-posed. In fact, given that (5.45) and (5.46) are invariant under changing
the roles of Q4 and _, we may further conclude from (4.159)-(4.160) that it suffices to
establish that just one of the problems (7,f), (T);) is well-posed.

To prove the well-posedness of (T;r ), we can actually reduce matters to the case when
f=0. To see this, let (U, p+) solve the reduced transmission problem with datum g+ (1 —
M)Sf. Then @y = 0y — Sf, 71 = py — Of will solve (T,f) and also satisfy the appropriate
non-tangential maximal function estimates. For the rest of the proof, we will deal with the

case when f: 0.

Fix p € (po, p1). First we claim that for § € HY(9Q),

8 |4+ K3) 7 02(Dag. Pa)] = Dag in Qs (5.47)

To prove this identity, it is enough to consider the case when ¢ is in a dense subclass of
HP(99). Assume § € HP(09) N L3(99). Using the jump formula (4.45), it can be shown
that the left and right sides of (5.47) yield the same conormal derivative. Since the conormal
derivatives of each side will be functions in HP(92) N L?(952), it follows from the uniqueness
for the L? Neumann problem that the left and right sides of (5.47) differ only by a constant.
Finally, since each expression decays at infinity, the identity must hold. Moving to the

boundary in (5.47) gives the useful identity

S|(F31 + K3)7'9)(Drg, Pag) | = (£31 + K))F on 99 (5.48)

Next, we claim that the functions

Ge = TS |(FH + KD TG+ KN)TONDAG P (5.49)
o=l Q(FH KN T G A + K{)T9N(DAT Pad)| (5.50)



satisfy the transmission problem (7, j ). The jump formula (4.45) gives

Op(de,ms) = T (Fol + KR)(F5l + KT G4 + K3)7'0)(DrgPAg)

= %(%%IJF K3)7'0)(DAg, PAg), (5.51)

=

and so 9 (iiy,my) = 9)(i_,n_). For a bounded, linear operator T, assume nI + T and

~I + T are invertible operators for 1,y € R. The for 4 € R, the resolvent identity

(L + 1)~ = p(y I+ 1) = (g + 1) (3T + T) = plnl + 7)) (7T + 1) (5.52)

holds. By applying (5.52) twice and also using the boundary identity (5.48), we can write

Uy |oo — pu-|oo
= 5 S (R + B = n(3 ] + K7 G4 + K3)7'0)(Drg Pag)|
= (31 + KD GELL + KD + K) 7 G141+ K3)7'0)(Dag. Pag)|

= (=31 + KD R+ K3) 710} (DG Pag)|

=S |((-31+ K™ = BT+ K) ™) 9)(Dag. Pag)|
= (51 + K\)j— (=31 + K\)§ = 3. (5.53)

To prove uniqueness for (Tlf ), we will first prove uniqueness for the H? Neumann problem
(N).
Assume (4, ) satisfies the homogeneous version of the H? Neumann problem in .

Define

i =8 |((-31+ K™ = BT+ KD ™) 9 (Pa@slon) Pal@slon))|  in Q- (5.54)

and
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o= Q (-3 + K™ = BT+ K702 (PA@slon), Pa@slan)|  in Q- (5.55)

Arguing as above using (5.48), it follows that @_|sn = Ut|aq. Since u_|gpo = U+|sn and

o)ty ,my) = 0, from (4.144) we have

(~31+ K3) (9@ 7)) = BT+ K3) (9 (s, m4)) =0, (5.56)

Since —11 + K7 is invertible on HP(99), it follows that

(-, m-) =0=8)(iy,m). (5.57)

Then from Proposition 4.18, 4 and 74 are constant. With a similar argument, we can also
prove uniqueness for the H? Neumann problem in €_.

Let us return to the issue of uniqueness for the transmission problem (7). Assume
(ti4,m+) solves the homogenous version of (7,f). Multiplying the version of (4.144) corre-

sponding to the sign minus by p and subtracting it from the version of (4.144) corresponding

to the sign plus and making use of the transmission conditions gives

(1= WG+ K3) (9@, m4) ) = 0. (5.58)

Since the operator %?_L—ZI + K3 is invertible, it follows that 9) (i, 71) = 0 = 9 (i—, 7_).
Now it follows from the uniqueness of the HP? Neumann problem that i+ and w4 are
constant. This finishes the proof of (1) = (2).

To prove (2) = (1), assume the operators :t%}f—ﬁ[ + K are invertible on HY (99) for
all p € [0,1) and for all p € (po,p1). To prove the operators :l:%}f—zl + K73 are invertible
on HP(0Q) for all p € [0,1) and for all p € (po,p1), it is enough to prove that (Tj)* are
well-posed for all 4 € [0,1) and for all p € (p,,p1), and using a similar argument as before,
this time we can reduce matters to the case when g = 0. We will focus on (T;r )*, as the

result for (7,7)* follows similarly.
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Fix p € (po,p1). First, we claim that for fe HP(09),

D [(i%I+K,\)_ISf = Sf Q.. (5.59)

To prove this identity, it is enough to consider the case when f € HP(9Q) N L2(8). Using
the jump formula (4.43), it can be shown that the left and right sides of (5.47) are equivalent
on the boundary. Since the boundary version of each side is a function in HY(99) N L3(99),
it follows from the uniqueness for the L% Regularity problem that the left and right sides of
(5.59) differ only by a constant. Then since each expression decays at infinity, the identity
must hold. Computing the appropriate conormal derivative for each side in (5.47) gives the

useful boundary identity

— —

O3 (AR + K)TUST), Pa((E3T + Kn)TIST)) = (F5+ K3) [ on 00(5.60)

Next, we claim that the functions

iy = 4Dy [(i%IJrK)\)‘l(—%}J_F—ZIJFKA)‘ISﬂ, (5.61)
T o= P [(i%um)fl(—%%u&rlﬂ, (5.62)

will satisfy (7,)* (with g = 0, as agreed). On the boundary, we have

Uelon = 7o (£31 + K0) (31 + K)) 7' (-3 24T+ K\) 'S = 4 (—3 7240 + K) 'S T,

and so Uy |gq = U_|gn. Also, using (5.52) twice gives

=3I+ K\ (-3 + K)) 'S
= (=31 + K27 = (B + Kx) ) SF. (5.63)



Using (5.63) as well as the boundary identity (5.60), allows us to write

Oy, my) — pdMiy,my) = O (D,\(( L+ K" ( BYES N sf))

'57).7
'57).7

— A+ K f— (A +E)DF =T (5.64)

02 (D31 + K \((31+ K71 87))

This proves the existence of a solution to the transmission problem (T/j )*. To prove
uniqueness, we will first establish uniqueness for the HY Regularity problem (R). Assume

(4,74 ) solves the homogeneous version of the H Regularity problem and define

7 =D, [((_51 +E) T - (AT KA)‘l)S(a,j\(er, m))] inQ_,

and
T =Py [((_51 + )T - (BT + KA)_1>S(83(E+, m)] in Q.
Arguing as above using the boundary identity (5.60), it follows that ) (i_,7_) = 9} (@4, 7y ).

Then since 9 (@i, m_) = 0, (i, 7+) and @1 |gq = 0, using (4.143) gives

(31 + K2 (i-lon) = (=31 + K)) (i [a0) = 0. (5.65)

Since %I + K is invertible on HY(99), we have that @_|9q = 0 = u|gq, and then it
follows from Proposition 4.18 that 4 and 7 must be constant.

Returning to the issue of uniqueness for (7, J )*, assume 4,74+ solve the homogeneous
version of (ler )*. Multiplying the version of (4.143) corresponding to the sign minus by p
and subtracting it from the version corresponding to the sign plus, and also making use of

the transmission conditions, gives

(1= ) (3 18T 4 K63 (i ]on) = 0. (5.66)

Since —lH“I + K is invertible on HY(9€), we have that @4 |sq = 0 = @_|gn. Then
from the uniqueness of the H! Regularity problem, @y and 7+ must be constant. This

finishes the proof of the theorem. 0
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We conclude this section with the following results.

Lemma 5.10 Let 2 C R", n > 2, be a graph Lipschitz domain. Then there exists € > 0

such that for p € (2 —¢,2 + ¢€), the operator

S LP(9Q) — LY (09), (5.67)

s an isomorphism.

Proof. For A € (—1,1] fixed, define the operator S~ : L3(99) — L?(09) by

§7U = (- + KT (DA + KT L PG+ ) TD) . (5.68)
Using (5.48) and (5.60), it can be shown that (5.68) is in fact the inverse of (5.67). O

Lemma 5.11 Let Q CR", n > 2, be a graph Lipschitz domain. If @ and 7 satisfy

Ail=Vr, divi=0inQ, M(Vi),M(r)ec L*(09), (5.69)
then there exists fe L?(09Q) and & € R" such that @ = Sf+ cin Q) and = Qf in 2.

Proof. This follows from Lemma 5.10 and the uniqueness (modulo constants) of the Regu-

larity problem. In particular, @ = S(S~!(i|pq)) + ¢ and m = Q(S~(ii]aq)). O

5.3 Inverting the double layer on L? for p near 2 on bounded Lipschitz

domains

We debut with a few preliminaries. Given a bounded Lipschitz domain 2 C R”, n > 2, for

each k € N we set

REq, = {Z ciXs,; ¢ € R¥ and %; connected component of 69}, (5.70)
J
R?)Qi = {Z CiX00; ¢ ¢j € R* and O; bounded connected component of Qi}5.71)
J

Ré’gi = {Z ciXo, : ¢j € R¥ and O; bounded connected component of Qi},(5.72)
J
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with the convention that, when k = 1, we agree to drop it as a superscript. In particular,

we have

and

where the sum is direct but not orthogonal. For instance, we have

[Raghr} - NRyn = {0} and [Ragi} - N R8Q+ = {0}, (5.75)

where the orthogonal complements are taken in L?(9€). Let us also point out here that

dimR§, =dimRE, =Fk-by,  dimRf =dimRj, =Fk-by1,
(5.76)
dimRE, =k - (by + bn1),
where the Betti numbers by, b,,_1 represent the number of bounded connected components

of 24 and €)_, respectively. Therefore, the intuitive interpretation of b,,_; is the number of

n-dimensional “holes” of (2.

Lemma 5.12 Let Q) be as above and fix A € R. Then the following identities hold:

S(wy)=0 in Qi, V¢ € Ryq, (5.77)
S(vyp)=0 on 09, Vi € Ryq, (5.78)
Ki(v) = Fivp  on 09, V) € Roq., - (5.79)

Proof. Let D be any bounded component of Q4 or Q_. For every x € R"\0Q and 1 < j < mn,

an integration by parts based on (4.29) gives
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(S(vxap))j(x) = /aD Eji(x — y)vi(y) do(y) = — /D(aszjk:)(fU —y)dy=0.  (5.80)

Thus, from (5.80) and (5.74),

S(vxsp) =0 in Qi, (5.81)

which readily yields (5.77). This identity further yields (5.78) by taking boundary traces.

Next, for any D, bounded, connected component of either 2, or _,

Q(vxap)(z) = /aD(au(y)EA)(y —x)do(y) = £xp(z), VzeR"\0Q, if D CQ4(5.82)

In particular,

R - d =0,
v eRon, = Q)| =0 and Q)| - )
) € Ry = Q(w)’am: 0 and Q(mp)‘m_: —.
Consequently,
(Fol + K3)(vy) = 8) <3(V¢)\Qi, Q(vw)!s@ =Fvy, Vo €Roq,, (5.84)
which further entails (5.79). O

We continue to introduce notation which will be useful hereafter. Let ¥ be the n(n +
1)/2-dimensional linear space of R"-valued functions ¢ = (¢j)1<j<n defined in R™ and

satisfying

Ojbp +Opp; =0,  1<j4,k<n, (5.85)

and note that

U= {w(:n) = Az +d: A, n x n antisymmetric matrix, and @ € R"}. (5.86)
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Now let

U(Qy) = {Z(¢j|oj)xoj : ; € U, O; bounded component of Q4 }. (5.87)
J

Then for A € (—1, 1], we can define

and

so that

dim U (9Q,) =

Finally, set

\I’l

which implies

RS, Al <1,

TNy = (5.88)
T(Qy), A=1,
TNINL) = T4 o0 (5.89)
n - by if|)\|<1, n-by_1 if|)\‘<1,
dim U2 (9Q_) = (5.90)
) by if A = 1, nlt) L, g if A =1,

(09) == {>_(¥jls;)xs; : ¥; € ¥, ¥; component of JQ}
j (5.91)

and UA(9Q) := R, if |\ < 1,

n- (bp + bp—1) if ’)\’ < 1,
dim U(9Q) = (5.92)
2D (by + byp) if A = 1.

Lemma 5.13 If Q) is as before, an alternate characterization of these spaces is

TeVNOy) «— e C*Qy) and A\(VE, Vi) =0 in Q. (5.93)
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Furthermore,

iy € UMNOL) = Alix =0 and divie =0 in Q. (5.94)

In particular, for every 1 € UM (Qy),

(1,0) solves the Stokes system in Q+ and satisfies ;) (1, 0) = 0. (5.95)

Conversely, if i+ and w4 satisfy the Stokes system in Qi and iy € W(Q4), then

T+ € Ro, and I (ily,m+) € VRaq, . (5.96)
Finally,
Da(Vi|on) = £+ in Qu, Vipi € U (Q), (5.97)
and
(F3I + K))ppe =0, Vipy € TN 90L). (5.98)

Proof. To see this, first assume ¢4 € UA(90). Then (4, 0) satisfies the Stokes system in
Q. where ¢+ denotes the natural extension of ¢+ to Q. Then (5.97) follows by invoking
(4.120), (5.96) and (5.77). Finally, (5.98) is a direct consequence of (5.97) and the trace
formula (4.43). O

Given a bounded Lipschitz domain  C R™ and p € (”771, o0), set

hh, (00) = {fe hP(OQ) = (fi) =0, Ve \I/A(aszi)}, (5.99)
BE L (09) = {f’e WPAQ) : (fop) =0, Yo € qﬂ(am}. (5.100)

When 1 < p < oo, we shall write L{’I]i(aﬁ) and LY, (09) in place of hﬁ’i (09) and h%,, (09),

respectively. For further use, we record here the following elementary lemma.
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Lemma 5.14 Let Q CR™, n > 2, be a bounded Lipschitz domain. Then

TAOQ) = VM0, ) @ UM IQ_) (5.101)

where the sum is direct. In addition,

v Ry [\Iﬂ(amr, (5.102)

where the orthogonal complement is taken in L?(0€)). Also, for every p € (1,00),

L‘zji(aﬂ) — LH(09Q) := {f € LP(0Q) : /mzfda = O}, (5.103)
€L €L
[Rsa|” = [Ria, | — Lho0), (5.104)
and
v Ry — LE(09). (5.105)

Proof. Consider the identity (5.101). In one direction, the right-to-left inclusion is a conse-
quence of (5.74), (5.87), and (5.91). Since, by (5.90) and (5.92), the spaces whose equality
we are trying to establish have the same (finite) dimension, there remains to show that the
sum is direct. To this end, assume that 1 € (99, ) N P (ON_) is arbitrary, and denote
by 1+ € UM(Q4) the natural extension of ¢ in Q4. Now, if we set ) := 1)+ in Qy, the fact
that 14 |aq = ¥—|aq ensures that (5.85) is satisfied by this function in R™, in the sense of
distributions. Hence, ¥ € ¥, and since it has compact support, ¢ must vanish in R™. This
forces 1» = 0 on 09, finishing the proof of (5.101).

All the other formulas in the statement of the lemma follow more or less directly from

definitions. The proof of the lemma is therefore complete. O

Moving on, for each f € L2(9), the functions

is(z) :=Sf(z), mi(z):=Qf(x), =z, (5.106)



solve the Stokes system

Aty —Vre =0, divit =0 in Qx, (5.107)

and satisfy

1M (Vi) || 2(00) + | M ()| ooy < CO2 )| 1|12 (00, (5.108)
|u_(z)| + \x|(]Vﬁ_(:c)\ + \ﬂ_(a?)]> =O0(|z]*™) as |z| — oo, if n>3.(5.109)

Moreover, if |, 90 f do = 0, then for any n > 2 the decay condition (5.109) improves to

@ ()] + o) (|93 ()] + |7 (@)]) = O(al'™) as |a| - oo. (5.110)

Consequently, Green’s formula (4.6) gives

/Q+<A,\Vﬁ+,VU+> dx = /BQ <Sf, <—%I+Kj‘\>f> do, (5.111)

and if either n > 3 or faQ fda =0,

/ (A\Vi_, Vi) de = —/m <Sf, (%HK;)f‘} do. (5.112)

For each p € (1, 00), set

B, (09) = {f’e 2(99) - /mw,f) do =0, Vi € V]Ragi}, (5.113)
and
Ky, (09) = {fe HCOE /mw,f) do =0, Vi € yRag}, (5.114)

with the convention that, when 1 < p < oo, we shall write L] , (9Q) in place of hf , (9).

For 1 < p < o0, let us also define
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2, (99) = {f e LP(9) / fdo=0, Vo e yRmi} (5.115)
o0
LP(09) = {f e LP(9Q) / fdo=0, Vi e VRBQ} (5.116)
o0
We can also prove the following.

Lemma 5.15 For any A € (—1,1] and p € (1,00),

UN0904) © HON-) = TN0Q) — LY (09) — L}, (09). (5.117)
Also, if 1 < p,p < oo satisfy 1/p+1/p' =1, then
(L{’Pi (09) /Ra. ) = LE, (00) /9N (0%%). (5.118)

Proof. This can then be easily checked from definitions with the help of the general formula

Yin: Y5t
(7;) =7 (5.119)
1

whenever X is a Banach space, 0 — Y5 — Y] — X are closed subspaces, and we have set

L={AeX*: Aly)=0, VyeY;},j=12. O

Finally, we are ready to state our next result. Before doing so, denote by Ker (7': A —

B) the null-space of a linear operator T" from A into B.

Proposition 5.16 Let 2 be a bounded Lipschitz domain in R™, n > 2. Then for each

v eR\ [—%, %] and XA € (—1,1], the operators

v + K3 2 L*(09) — L*(09), (5.120)
and
I + Ky : L2(0Q) — L3(09), (5.121)
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are injective. Moreover, if —1 < A <1, the operators
+3i1 4+ K Li;(@ﬁ)/yRmi — Lé;(@ﬂ)/yRaQi,

as well as

31+ Ky : Ly, (09) /9N 095) — L, (09)/9(99=),
1T+ Ky : LT, (09Q)/9Y005) — LT, (09Q)/T*(0Q5),

14 14+

are well-defined and injective. In addition,

Ker (£37 + Ky : L}, (0Q) — L}, (09)) = ¥}(99),

14 lvy
Ker (£31 + K : L2, (09) — L2, (09)) = ¥(09%),
Ker (£31 + K5 : L3, (09) — L, (09)) = vRaq, .
F F
Finally,
vRsq if n > 3,

Ker (S : L2(0Q) — L?(99)) =
vRopo @ W if n =2,

where, forn = 2,

W = {fGLii(aﬂ): Sf:() on 09, and Qf:() in Qy}

also satisfies

dimW < 2.

(5.122)

(5.123)

(5.124)

(5.125)
(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

Proof. Fix v € R, |y| > 4, =1 < XA < 1, and assume that f € L2(d9) is such that

27

—

(vI 4+ K3)f = 0. Also, let (uy, 7m+) be as in (5.106) and define u, 7 in R™ as in (4.152).

Since U4 |go = U—|gq, it follows that
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uwe WH(R™). (5.131)

loc

Next, based on Green’s formula (4.6), for each ¢ € R™ we may write

([ Faod) = oh) [ Fade=— [ (414 KDF.)do

—

_ _/m<a§(sf,gf)7a>da
_ /Q<AﬁV7r,E>/QAA(Vﬁ,V5)/Q7Tdiv5
= 0, (5.132)

which shows that f € L3(89). In particular, the improved decay condition (5.110) holds

which allow us to write

0 = /(99((7]—1—}(/\) ,Sf)do
= /m<(—7+%)(—%I+K§)f+(v+5)(§I+K;)fisf>da
- (_’Y+5)/ AA(Vﬁ’Vﬁ)der(—’y—é)/ ANVE, Vi) dz.  (5.133)
Q4

Consequently,

ANV, Vi) dz = 0, (5.134)
]Rn

since —y — % and —7—}—% have the same sign and the integrands in the last line of (5.133) are
nonnegative. Next, pick a function ¢ € C§°(R™) which is identically one in a neighborhood

of the origin and set ¢;(z) := ¢ (x/j), 7 € N. We have

lim [ A\(V(1;@), V(i) de = lim [ ¢?A\(ViE, Vi) do

Jj—oo Jrn j—o0 Jr
+Jim [ O(10s IV 1@V + Vs Plaf) de
J—00 Rn
= 0, (5.135)
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thanks to (5.134) and the improved decay of @ at infinity. Since, by (5.131), ¥;u € WHE(R"),

Plancherel’s formula (used twice) along with (4.18) then give

0 = lim [ A\(V(;id), V(i) da > k lim | |V (i) da
J—0 JRn J—0o0 JRrn
= ﬁ/ \Vil)? d. (5.136)

Thus, @ is a constant in R™ and decays at infinity, hence ultimately @ = 0 in R™. In turn,

this forces m4 € Rq_, prompting the conclusion that

F=o)u_,m_)— )iy, my) =v(my —7_) € vRyq. (5.137)

Now, from (5.137), (5.79) and assumptions, we get

0= (v + K3)f = (4T + K3)(vmy) = (7] + K)(vr-) = (v = §)(wms) — (v + 3)(v7(5.138)

Thus, 74 is a multiple of 7_, and so (5.137) implies fe vRpo, NvRyo_. Then f: 0, as
wanted. This finishes the proof of the fact that the operator (5.120) is injective.
To see that the operator (5.121) is also injective, assume f € L2(8) is such that

(vI + K,\)f: 0. Let iy = Dkfin Q4 and 7y = 77,\]?111 Q4. In particular,

i (z)| = O(Jz|'™") and |Vii_(z)| + |7 (2)] = O(|2[™"), as [x| — oo, (5.139)

which ensures that the integration by parts formula (4.6) works in Q4 to yield

—

0 = /((’yl + K\) [, 0)(Daf, Prf)) do
o002

=

- / (4 DT+ KT+ (—y+ (-3 + ) F,0)(Dr . Paf) do
o0

= (v+ ;)/AA(vm,vm)dH (v — ;)/AA(Vﬁ,VU)dx. (5.140)
Q4 Q-
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Since v + 3 and v — 3 have the same sign, it follows from (5.93) that @y € ¥*(Q4) and

therefore i+ |pn = ¥+ for some 1p € ¥NIN). Then applying (5.98) gives

0= (I + K\ f =0+ Ky — (7 + K- = (y+ Doy — (v — D). (5.141)

This implies that 1, is a multiple of 1_, and hence f € U0,) N T (HN_) = {0}.
Turning our attention to the operators in (5.122), we note that these are well-defined

since

(i%I + KA) (vps) =0, Vi € Rony, (5.142)

and, as a simple application of Green’s formula (applied in the bounded components of Q1)

shows,

(i%] + K;)ﬁ(asz) C L, (09). (5.143)

Consider next f € L?Pi(afl) such that (—37 + K;‘\)f: vy, for some ¢ € Rygg_. Our goal is
to show that f € vRpq_. To get started, we note that f € L%(99), thanks to (5.105). In
turn, the fact that f has vanishing moment ensures that if @+, 74+ are as in (5.106) then

(5.110) —and, hence, (5.112) — holds. Then

— —

/ A,\(Vﬁ+,V6+)da::/ <sf,(—;1+K;)f>da:/ (ST ve)do = 0. (5.144)
Qy 09 09

Thus from (5.93), @, € U(€2,). This implies Sf = ﬁ+‘6Q€ TA(0524) hence, from orthog-

onality considerations,

0:/ (F.Sdo = /<(;1+K;)ﬁsf>da= ANV, Vi) dz. (5.145)
o0 Q_

From (5.93), 4_ € \I/’\(Q_), and in particular, this implies that #_ is harmonic in Q_. Thus
m_ must be locally constant in {2_ and vanish in the unbounded component of {_. In other

words, m_ € Ro_ and, as a result, we have
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f=GI+EK)f = (=31 + K{)f = )i, 7-) — vp = —v[(m—lon) + ¢] € vRaq_(5.146)

We also need to show that if f € L?Di (09) is such that (31 + K;)f: vy for some
¢ € Rpq, , then necessarily fe VRpq., . To this end, observe that f: vp— (—%I+ K;‘\)fE
L3(092) by (5.143) and (5.105). With this in hand, the proof is carried out much as before.

Next, the operators in (5.124) are well-defined due to (5.98) and the fact that (as it can

be checked using Green’s formula in the bounded components of Q) ,

(£51 + K)\)Li(09) C LT, (09). (5.147)

1,v+

To see that these operators are injective, we will first show that

fer?, (99) and (—iI + K))f € UN0Q,) = f € TN 99y). (5.148)

To see this, let ¢ := (=31 + Ky)f € $N(9Q) and let @ = Dyf in Qx and 74 = Pyf in
Q4. Then (5.139) holds and (4.6) gives

/AA(Vﬁ_,Vﬁ_)da: _ —/<¢,ag(ﬁ_,7r_)>da

Q_ o0
=~ [wodm)do = [ (0, 2(5,0)) do = 05109
oN oN
where ¢) denotes the extension of ¢» € ¥*(9€2, ) into Q. It follows that @_ € ¥*(Q_), and

therefore, O (i, , 7wy ) = O (ii_,m_) = —vm_ € VRyq_. Then

/A,\(Vﬁ+,Vﬁ+) dx = — /<u+,a,§(ﬁ+,w+)> do = /<¢ + fivn_)do =0, (5.150)
Q4 a0 o0

since 7 € Ry and ¥, f € L{L(a@). Thus @, € ¥*(Q,), and so f= Utlon — ¢ €
TA(09).

In a similar fashion, we can also show that
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fer?, (00) and (31 + K)\)f € ¥} 00-) = f € ¥9Q-). (5.151)

1,1/+

Here we only wish to remark that in place of (5.149) we write

/A)\(vg+7vg+)d$ = /<¢a3f/\(ﬁ+aﬂ+)>d0
o 80

— /w,ag(a,w»da - /<u,ag(u},0)>da — 0, (5.152)

o0N o0

where i) € UAQ_) is such that ¢|sn = 1) := (A1 + K»)f. The fact that there are no decay
problems when using (4.7) in the next-to-last equality above is ensured by the fact that ¥
has, as any field in ¥*(Q2_), compact support. This finishes the proof of the claim made
about the operators in (5.124).

Consider next (5.125). For this, the right-to-left inclusion has been already established
in (5.98) (here (5.117) is also used), whereas the the opposite inclusion can be read off
(5.148) and (5.151). Once (5.125) has been established, (5.126) follows from Lemma 11.41

in the Appendix, granted that

+11 4+ K, are Fredholm with index zero on L*(99) and L?(9<2). (5.153)

However, this is proved in (5.166) and (5.168) below, independently of the current consid-
erations. This finishes the proof of (5.126). As for (5.127), the right-to-left inclusion is
a consequence of (5.79), while the left-to-right inclusion is implicit in the arguments just
below (5.143) and (5.146).

Finally, to prove (5.128), consider first the case when n > 3. Then the right-to-left
inclusion is contained in (5.78). To justify the remaining inclusion, assume that f € L%(9Q)
is such that Sf: 0. Consider the functions @4 := Sf in Q4 and 74 := Qf in Q4. Then
from (4.6),

—

/AA(Vﬁi, Viiy) dz = + /(Sf,aﬁ(ﬁi, 74)) do = 0. (5.154)
Q4 oN
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Then i+ € U*(Q.), which implies that A7y = 0 in Q4 and so 7+ must be locally constant.

Furthermore, we have

F=0Ma_,m_) — Oy, 74) = v(my — 7_) € VRq, (5.155)

which proves (5.128) when n > 3.

There remains to consider the case when n = 2, in which situation it may happen that
there exist vector fields in L?(9Q) which do not belong to vRyq, and yet are sent to zero
by S. For example, if Q = B(0,+/e) in R?, then Se; = 0 for j = 1,2; see, e.g. [62], p.98.
Nonetheless, any nonzero vector field f € W necessarily satisfies faﬂ f do # 0, otherwise
the argument in the previous paragraph (in which we take into account that 7, = Q f =0
in Q4) places it in ¥Rpq_, thus forcing f = 0, from orthogonality considerations. This
argument shows that the linear mapping W 3 1; — fasﬂ; do € R? is injective. Hence,
dim W < 2, proving (5.130).

As for (5.128) when n = 2, the right-to-left inclusion is clear from (5.129) and (5.78).
To prove the opposite inclusion, assume that f € L?(09) is such that S f = 0 on 91, and
set @ := Sf, 7 := Of in Q4. Then Jo AN(VE, V@) dz = [,,(0) (i, ), @) do = 0, since
ilpq = 0. Consequently, @ € U*(€) hence, 7 € R, by Lemma 5.13. This shows that
for every connected component O; of {24, there exists a constant ¢; € R with the property

that Qﬂ@j = ¢j. If we now set

bo
g:= (Z Can()j)I/ € VRyq, — Ker (S : L?(9Q) — LI(09)), (5.156)
j=1

then, by (5.82),

Qj = cixo, =Qf in Q. (5.157)

J

As a consequence, if h € VRyq_ denotes the projection of f — g onto VRygq, , we may write

F=(f~g—h)+(7+h), with §+h € vRog, ® vRoa_ = Roq and f— G —h € W, by
(5.157), (5.82) and (5.78). We are therefore left with showing that W N vRpq = 0. Indeed,
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if o+ € Rpq, are such that Q(vp +vep_) = 0in Q4, then (5.82) shows that ¢ = 0. Thus,
if vp, +vp_ € W — L2 (99) to begin with, then necessarily ¢ = 0, and the desired
conclusion follows. This last step finishes the proof of (5.128), and concludes the proof of

the proposition. ]

We continue the discussion of the operators in question with the following results.

Theorem 5.17 Let Q C R”, n > 2, be a bounded Lipschitz domain. Then there exists
e = e(0Q) > 0 with the property that for each p € (2 —¢,2+¢) the following statements are

true. First, the operators

VI + Ko, AT + K5 2 LP(09) — LP(99), (5.158)
vl + Ky : LY(092) — LF(09), (5.159)

are invertible whenever A € (—1,1] and v € R\ [—3, 3]. Second, the operators

+31 4+ K Lgi(aQ)/yRagi — pri(am/yRagi, (5.160)

along with

£31+ Ky : LY, (09)/9)095) — LT, (09)/T(095), (5.161)
11+ Ky LB, (09Q)/TN005) — LB, (99) /T (094 ) (5.162)

are also invertible whenever A € (—1,1].

Proof. From known stability results, it suffices to deal with the case p = 2 only. In this
scenario, pick a vector field h € C(R™) with supph C D such that <E, V) > K a.e. on
8Q, for some r = k(0Q) > 0. Fix f € L2(Q) and consider @+ = Sf, 7+ = Qf in Q.

Switching the roles of 7, and #_ in Corollary 5.6 and choosing i = 0 gives

IV 1250) < CllViant-|r200) + CIVS 2@ npy + 19F1l 220 np)
= C|Vianiit || r2(00) + CIVSfllz2(0_np) + Cl1QFll12(0_np)(5.163)
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Combining (5.163) and Corollary 5.5 then gives

£ 2200y = 100 (@, =) — 8 (s, m4) || L2002
< C|| Vi r200) + CIVE-| 12(50)

< C||Viy||z200) + ClIVS fllz@ npy + ClFl 2@ np)

—

< Cll(=3 25T + K3) fll 200 + CIVSlrz@,nm) + ClOFll 120, npy

+C|VSfllL2@_np) + ClIQf L2 np) (5.164)

Since (5.164) holds for each p € [0,1) and the operators

VS, Q: L*(09) — L*(Q+ N D) (5.165)

are compact, the homotopic invariance of the index then proves

vl + K3 : LP(092) — LP(09) is Fredholm with index zero
(5.166)

whenever 2—e<p<2+e¢, |y >3, and Xe(-1,1],
first when p = 2 and then when |p — 2| < e via perturbation results.
In a similar manner, if we consider iy = DAf_; Ty = 77,\fin Q4 for f € L2(09), we
can also show via Corollary 5.5 and Corollary 5.6 that given -y, A as before, there exists

C = C(092,7,A) > 0 such that

—

1F1lz2(00) < CIT + Kx) fll12(00) + residual terms, ¥ f e L} (09), (5.167)

where the residual terms yield compact operators from L?(952) into suitably chosen Banach
spaces. Again using the homotopic invariance of the index and also perturbation results, it

follows that

v+ Ky : LY(092) — LY (09Q) is Fredholm with index zero
(5.168)

whenever 2—e<p<2+e¢, |y >3, and Xe(-1,1].
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Then the invertibility claims made in the statement of (5.158) and (5.159) follow from
(5.166), (5.168), Proposition 5.16 and simple functional analysis. To also conclude that
the operators in (5.160) and (5.161) are invertible, it is enough to establish that they are
Fredholm operators of index zero.

First, let T} denote the operator %I + K acting from LP(0€2) to LP(0N2) and let T
denote the same operator acting instead from Lg A (0)/vRaq, to LI\JIfi (09)/vRpq, . Also,

let

v Ih L (090) — LP(09) (5.169)

denote the natural inclusion operator, and let

pr: LP(99) — LP, (992) (5.170)

be the projection operator given by

(fyi) dU)%’ (5.171)

[2}9]

prf::f—g;(/

where the ;s form an orthonormal basis of ¥*(92_). Also, let

pr: L2, (09) — L%, (99) /vRoq, (5.172)

denote the natural projection operator with regards to these spaces. Then using previous

arguments, we can show that the following diagram commutes:

pr T
b, (09) —— Lh, (09)/vRoq, N Lk, (99) /vRao,

l . Tﬁr (5.173)
LP(00) —————— LP(00) —— s [, (99)

The estimate (5.164) shows that 7} is a Fredholm operator of index zero. Since ¢, pr,

and pr are also clearly Fredholm, it follows from (5.173) that 75 must also be Fredholm.
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Furthermore, since the Fredholm index of ¢ is the opposite of the Fredholm index of pr, it
also follows from (5.173) that the index of 75 must be zero. The rest of the cases in (5.160)
and (5.161) follow similarly. Finally, that the operator in (5.162) is an isomorphism is a

consequence of the corresponding statement for (5.160) and duality (cf. (5.118)). O

5.4 Inverting the single layer on L” for p near 2 on bounded Lipschitz

domains

The goal of this first part of this section is to prove the following theorem.

Theorem 5.18 For each bounded Lipschitz domain 0 C R™ with n > 3 there exists € =

£(02) > 0 with the property that

S LP(AQ) / v R — LV () (5.174)
is an isomorphism for each p € (2 —¢,2+¢).

Proof. For starters, note that since S(vRpn) = 0 and since for every bounded connected

component D of Q4

/<Sf,y>da—/divsfdx—o, VfeLP(0Q), 1<p< o, (5.175)
oD D

the operator (5.174) is well-defined. Also, from known perturbation results, to prove the
theorem, it suffices to consider the case when p = 2. To this end, recall the identity (4.142).
From previous arguments, we know that :i:%[ + K, are Fredholm operators, and so from

(4.142), the operator

S : L?(09) — L3(09) (5.176)

must have a finite co-dimensional range, which further implies that its range is closed.
Combining this with (5.128) confirms that the operator in (5.176) is Fredholm. To finish

the proof, it is enough to establish that the Fredholm index of (5.176) is zero, since a similar
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argument as in the last paragraph of § 5.3 will then imply that (5.174) is also a Fredholm
operator with index zero. Since, by (5.128), the operator (5.174) is injective, this would be
enough to prove the theorem.

To show that (5.176) has index zero, consider the corresponding operator for the Lamé

system

S L*(09Q) — L3(09), (5.177)

defined in a similar manner as (5.176), except that the fundamental solution matrix £ =
(Ejk)jx is replaced by the fundamental solution E#* = (E;‘ };\)j,k for the Lamé system of

elastostatics, given by L,z = pAid + (A + p)Vdiv @, where

A 1 3u+ A 1 0; T S N 8
B (x) = <,u 2 .

(Q/L + >\) n—2 |x|n72 M(QN + )\) |$‘n > , zeR" \ {0}(5178)

a 2wp—1
Comparing (5.178) with (4.19) , it is clear that £} (z) — Ejx(z) and VE, (x) — VE; x(x)

as A — oo, uniformly for x in compact sets, and so

lim Sy = S, (5.179)
A—00

in the strong operator norm sense (as operators mapping L2(9€2) into L2(99)). Since it is
known that (5.177) is Fredholm with index zero when p > 0, A > —2# (cf., e.g., [33]), it
follows from (5.179) that (5.176) has index zero as well. O

Corollary 5.19 For each bounded Lipschitz domain  C R™ with n > 3, there exists € > 0

such that

S LP 1 (09)/vRyq — LE(09Q) (5.180)
is an isomorphism for each p € (2 —&,2 4 ¢).

Proof. Since (5.174) is a self-adjoint operator, Corollary 5.19 follows directly from Theo-

rem 5.18 and duality. O
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In the second part of this section we treat the case n = 2. The main novelty is that, for
two dimensional bounded Lipschitz domains, the structure of the null-space of the boundary

single layer changes, compared to the higher dimensional case. Cf. (5.128)-(5.130).

Theorem 5.20 Assume that Q C R? is a bounded Lipschitz domain. Then there exists

€ > 0 with the following properties. First, the space

{fell (09Q): Sf=0 ondQ, and Of =0 in O} (5.181)

is independent of p € (2—e,2+¢€). In particular, it agrees with the space defined in (5.129)

and we shall keep denoting this by WW. Second, for any p € (2 —e,2 + ¢), the operator

S Lp(c‘?Q)/yRag BW — L2, (09) := {fe L2,(09) : [yo(fr)do =0V ¢ w5}182)
s an tsomorphism.

Proof. Let € > 0 be such that

S LP(0Q) — LY(0%) (5.183)

is Fredholm with index zero whenever p € (2 —¢,2 + ¢). This can be arranged as before.
Then, it follows from Lemma 11.41 that that the null-space of S in (5.183) is independent

of p€e (2—¢,2+4¢). As a consequence,

Ker (S : LP(9Q) — LX(0Q)) = vRoq @ W,  Vpe (2—e,2+¢), (5.184)

where W is as in (5.129). Thus, if we temporarily denote the space (5.181) by W,, (5.184)
implies W, C Wy for any p € (2 —¢,2 +¢). On the other hand, the same type of argument
which led to (5.128) gives the opposite inclusion so that, altogether, W, = W, for each
p € (2 —¢,2+¢). This proves the first claim in the statement of the theorem.

Going further, the fact that
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/(Sf,d}}daz/ (f,8¢)do =0, VipeWw, (5.185)
o0 o0

proves that the operator (5.182) is well-defined. Given that S in (5.183) is Fredholm with
index zero if p € (2 —¢,2 4 ¢) and that WV is finite dimensional, it follows (similarly to
what we have done in the proof of Theorem 5.18) that the operator (5.182) also has index
zero. Since, as seen from (5.184), this is one-to-one, it ultimately follows that the operator

in question is an isomorphism. O

We conclude this section with another important result involving the single layer in two

dimensions.

Theorem 5.21 Let Q C R? be a bounded Lipschitz domain, and define the operator

S (Lp(ag) /VR@Q) o R> — I} (69) ® R (5.186)

by setting

S, @) := <Sg’+€, ][ g’da>. (5.187)
oN
Then, there exists € = £(OQ) > 0 such that S is an isomorphism for each p € (2 —&,2 + ¢).

Proof. From stability results (cf. Theorem 11.44), it is enough to treat the case when p = 2.

Consider the decomposition S = S, + 51 where

S,(7,8) = (S3,0)  and  Si(gd) = (5 ][m gda). (5.188)

Note that S is an operator of finite rank and is therefore compact. Then since S, = S is
Fredholm with index zero when p = 2, it follows that S =S, + S is also Fredholm with
index zero when p = 2. Now to show that S is an isomorphism, it is enough to show that
S is injective. Assume there exists § € L?(99) and ¢ € R? such that Joo Gdo = 0 and

SG=—¢ Set
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i+ = SG in Q4 m+ = QF in Q4. (5.189)

Using (5.111) and (5.112), for any A € (—1,1]

/A)\(Vﬁ+,VJ+)dm+/A>\(Vﬁ,Vﬁ)dm (5.190)
Qy 0

= / (5. (~31+ K3) 5~ (31 + K3) §) dor = —/<sg,§>da = /(agma —0.
o0 o0 o0
Then from (5.93), we know that @+ € W*(Q4) which further implies that 7+ € Ryo, and
Op (i, 1) € VRoq, . Then § = 0)(ii_,m_) — ) (iiy,T+) € VRyg and so ¢ = —SG = 0. This
shows that ([g],¢) = 0 as desired, which establishes that S is an isomorphism when p = 2.
U

5.5 LP-boundary value problems on bounded Lipschitz domains for p near

2

In this section we will focus on establishing well-posedness results for bounded Lipschitz

domains. Our first result in this regard is the following.

Theorem 5.22 Assume that 2 C R"™, n > 2, is a bounded Lipschitz domain and, as usual,
set Qp == Q, Q_ = R*"\ Q. Also, fix p € (0,1) and A € (—1,1]. Then there exists
e = e(0Q) > 0 such that for p € (2 —¢,2 + ¢€), the transmission boundary value problem,

concerned with finding two pairs of functions (s, m+) in Q4 satisfying

Aty = Vry, divie =0 in Qi

M(VEi)v M(Tri) € Lp(aﬂ)’
(5.191)

—

Ut

—U_
o0

=ge LP(00
90 ge 1( )7

ali\(ﬁ-‘r?ﬂ--i-) - Mali\(ﬁ—vﬂ-—) = fe Lp(aQ)a

and the decay conditions
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O(|z|>™™) as |z| — 00, if n >3,
U_(z) = B (5.192)
—iE(CL’)(fag fda) +O(|m]‘1) as x| — oo, if n =2,

dyii_ () = —L(9;B)(x) (/aQ fda) +O(|z]™) as |z] — o0, 1<j<n, (5.193)
O(|z|'=™) as |z| — o0, if n>3,

m_(x) = (5.194)
L(VEA)@), Jyq [do) +0(al™) as o] o0, if n=2,

has a unique solution. In addition, there exists C > 0 such that

M (Vi) e o) + |M (74l Lra0) < Cllgllrao) + Cl 1l Lo (o0)- (5.195)

Furthermore, a similar result holds if (5.191) -(5.194) are replaced by

Aty = Vry, divie =0 in Q4,

M(Viis), M(rs) € LP(9),
(5.196)

—uﬁ,‘ = §e LP(O9),

U
+‘ a0

o0

83(ﬁ+77r+) - 83(6—7’”—) = JFG LP(GQ),

and the decay conditions

O(lz[*™") as |z[ = oo, if n=3,
i_(z) = (5.197)
—FE(x) (fag fda) +O0(z|™Y)  as |z| = o0, if n=2,

0;u_(z) = —(0;F)(x) </BQ fda) +O(|z]™™) as |x] 500, 1 <j<mn, (5.198)
O(Jz|*™™) as |z| — 00, if n>3,

m_(x) = B (5.199)
<(VEA)(9:), S50 fd0> +O0(|lz|72)  as |z| — o0, if n=2.

Proof. Let £ > 0 be as in the statement of Theorem 5.17. Then for p € (2 —¢,2 + ¢), we

know the operators
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—%%I%—Kﬁ : LP(0Q) — LP(99), %%I—k Ky : LY(092) — LY (0Q)  (5.200)

are isomorphisms. Now, set

fii= = )(D5g.PYg) + nd)(Dy . Py §) € LP(9Q), (5.201)
7o (1ptl AT P
o= (ﬁﬁH KA> fi € LP(09), (5.202)

where the superscripts + indicate that the layer potentials in question are considered as

mappings from functions defined on 0f) into functions defined in €4+. Then

iy = 2S8TfH+D5g, (5.203)

T = 0% fo+ Pr, (5.204)

solve (9.31) and obey natural estimates, i.e.

IM (Vi) | ogon) + 1M () zogony < C(IT0zz0m + I lioom ). (5:209)

Let us now check the decay conditions (5.192)-(5.194). Clearly, (5.192) is a simple conse-

quence of (5.203) if n > 3. Going further, we note that

o — / - [ 2013 P o+ | oworara o
oN o0
- / fdo—(—p) [ 8)D}g.Plg)do
0N
_ / (5.206)
since
0)(D} g, Pxg) = 05(Dy§, Py g),  V§eLi(O9), (5.207)
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On the other hand,

fida = /(%Zﬂ[—i—f(}t)féda
o0

- /<—§I+K§)fgda+uﬁl/ fodo
o0 o

o0N

= A fado, (5.208)
PY)
so that
fodo =11 [ fido =11 / fdo. (5.209)
80 HJoa H Joa
Consequently, when n = 2,
i(x) = 158 falx)+D;ilx)

- s (f2 _ ][mf} da) () + 1iﬂE(w)(/@ﬂf2d0> +O(|z[ ™)

= —iE(:c) (/BQ fda) +O0(Jz|™h)  as |z| — oo, (5.210)

in agreement with the case n = 2 of (5.192). Finally, that (5.203)-(5.204) satisfy the
conditions (5.193)-(5.194) can be verified in a similar fashion.

Let us now consider the issue of uniqueness for (5.191)-(5.192). To this end, assume that
(ifx,7+) solves the homogeneous version of (5.191)-(5.194). The fact that f = 0 implies

that «_, m_ decay fast enough at infinity for the Green’s formulas

7y = +D, <ﬁi‘aﬂ> + S0, my)) in Qo (5.211)

to be valid. Based on (5.211), we may then write

0y (e, ) + (Wi‘ag)y - jE83(1)A <ﬂi‘aﬂ>’7)A (ﬁi‘as}» = (PA <ﬁi‘89)>‘agy

03 (S(0) (. m2)), QO (i, 7)) )
F(Q@ (e, me))|, v, (5.212)

o0

141



hence, invoking (4.121) and the jump-relations of hydrostatic layer potentials,

Op(Ws,ms) = %0, (D’\ (ﬁi ‘asz) P (ﬁi ‘8Q)>
:;(;%Iﬁ—ﬁj)(@ﬁ@@nwi)). (5.213)

Adding the two versions of the identity (5.213) and keeping in mind that 9) (i, 7.) =
poNi_, ), iy |pn = ii_|sq and that (5.207) holds allows us to conclude that (%Z—ﬂ] +
K3)(9)(ii_,m_)) = 0. Since ﬁ—ﬂ] + K3}) is an invertible operator, 9, (ii_,7_) = 0, and

further, 9 (iiy,m4) = 0. Moving to the boundary in each version of (5.211) then gives

(31 + Kx)(dx|oq) = lon = —(—51 + K)) (i@ on), (5.214)

from which it can be determined that @4 |9 = 0. Finally, it follows from returning to (5.211)
again that ¥4+ = 0 in Q4. This forces w1 to be locally constant, but since 7y = pw_ on 92
and 7_ decays at infinity, we must have 7+ = 0 in Q1 as well.

The result for (5.196)-(5.199) follows in a similar manner. More precisely, if

Gi =g+ (1—p)Sf e Lk (09), (5.215
g} = (%%Iﬁ-K)\)_ g1 € Lllj(ag),
then
iy = DY —S*f in Q, (5.216)
T o= = Prge— QFf in Q, (5.217)

will satisfy (5.196)-(5.199) and also (5.195). As for uniqueness, it can be shown using (5.211)

as above that solutions of the homogeneous version of (5.196)-(5.199) satisfy

<_%1+7u1 n KA) (@_|pa) = 0. (5.218)



It follows that i_|sn = 0 and therefore 4|5 = 0 as well. With this in mind, it can also
be shown using (5.213) and the transmission conditions that 9)(i@+,7+) = 0, and then

uniqueness follows much as above. O

Theorem 5.23 Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then for
A € (—1,1], there exists ¢ = () > 0 such that for p € (2 —¢,2 + ¢), the Neumann

boundary value problem, concerned with finding functions (i, ) in Q satisfying

;

Au=Vr, divi=0 in Q,

M(Vid), M(r) € LP(9Q), (5.219)

i, ) = f e LP(09),
has a solution if and only if f satisfies b,—1(Q) linearly independent constraints. More

specifically, (5.219) has a solution if and only if

fem (—%I + K32 Ly (9) — L, (aQ)). (5.220)

Whenever a solution of (5.219) exists, it is unique modulo adding to the velocity field func-

tions from WAN(Q). In addition, there exists C' > 0 such that

M (Vi) zraa) + 1M (7)) ra0) < C||ﬂ|LP(8Q)7 (5.221)

for any solution (u, ) of (5.219).
Finally, a similar result holds for the exterior domain R™ \ Q after including the decay

conditions

O(e™) as |al — oo, if n>3,
(z) = (5.222)
E(x) (fasz fda) +O(|lz|7Y)  as |z| — o0, if n=2,

0;ii(x) = (9;E)(x) (/ fda) +O(|z[™) as |z| =00, 1<j<n, (5.223)
[2)9]
O(lz|*™™) as |z| — o0, if n>3,
w(z) = (5.224)

<(—VEA)(x), oo fda>—|—0(\m|*2) as |z| = 0o, if n=2.
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In particular, a solution to the exterior problem exists if and only if

fem (§I+K; L L, (09) — Lgi(ag)), (5.225)
and solutions are unique modulo adding to the velocity field functions from WA(R™ \ ).

Proof. Let € > 0 be as in the statement of Theorem 5.17. Then for p € (2 —¢,2 +¢), we

know that the operator

—1I+ K} Lgi (09) /Ry — ngi (09) /v Rga_ (5.226)

is an isomorphism. Consider the claim that a solution for (5.219) exists if and only if (5.220)
holds.

To justify the right-to-left implication, if (5.220) holds, say f= (—%I + K3)g for some
g€ Lﬁ’i (092), then

=8¢ and 7w:=Qg (5.227)

will satisfy (5.219) and (5.221).
In the opposite direction, assume that f € LP(9€) is such that (5.219) has a solution

(@, 7). Then, if 1p € T}, say ¢ = )|aq for some 1 € (), we may write

A = b 0N, 7)) do = A4 u) do = 0. .
/mw, >do—/m<w,ay<, ) /m@(w,m, ) do =0 (5.228)

Hence, necessarily, f € Lg’i (09).

Having established this, we now use the fact that (5.226) is an isomorphism in order
to find g € L{’pi(f)ﬁ) such that (—17 + K})§ — f = v, for some ¢ € Ryq_. If we now
set w := 8¢ and p := Qg in €, then the pair (w — u, p — ) solves the interior Neumann
problem with datum v¢p. We will now make a claim which implies that, necessarily, ¢ = 0.

This, of course, entails f = (=3I + K3%)g, proving (5.220). The claim just alluded to above

is the following:
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if (i, ) solve (5.219) for f = v with ¢ € Ryq_, then ¢ = 0. (5.229)

To justify this claim, write (4.120) and recall (5.78) to conclude that @ = Dy (u|sq) in 2.
Going to the boundary then yields
i

€ Ker (—%I + Ky LY, (09) — Lfﬂ(ag)) — NI, (5.230)

by (5.125). Utilizing this back into (4.120) and relying on (5.97) further gives @ € U*(Q,).
Hence, v = 9)(ii,n) € vRyo, by (5.96) and, ultimately, ¢ = 0 given that the sum in
(5.74) is direct. This concludes the proof of (5.229).

To establish uniqueness, if the functions « and 7 satisfy the homogeneous version of
problem (5.219), then @ = D) (]pq) in €2, by (4.120). Going non-tangentially to the bound-
ary then yields (—17 + K))(ilpe) = 0 on 9Q which shows that iloq € Ker (=31 + K :
L]iw (0Q) — LY

1,I/+

(09)) = ¥N994), by (5.125), since ilan € L, (9Q) to begin with.
Hence, i|sq = ¥|aq for some function ¢ € Q). It remains to invoke (4.120) once again
in order to conclude that, by virtue of (5.97), @ = ¢ in Q. This establishes the claim made
about uniqueness for (5.219).

In the case of the exterior domain, a similar argument can be used to establish the
existence of a solution. The key observation is that the decay conditions (5.222)-(5.224)

are strong enough to guarantee that integral representation formulas analogous to (4.120)-

(4.121) hold in R™ \ Q. More specifically, we have

a(x) = —DA(U‘GQ)(:E)+S(8;\(U,7r))(a:), z e R\ Q, (5.231)
m(z) = —73,\<ﬁ‘m)(x)+Q(E){,\(ﬁ,w))(x), z e R"\ . (5.232)

These are proved starting with (4.120)-(4.121) written in Bg \ €2, where Bg is a ball of
radius R, large enough so that ) C Bp, then passing to the limit as R — oco. The decay
conditions (5.222)-(5.224) are then used to show that the contributions from 0Bp tend to
zero. With (5.231)-(5.232) in place, the proof of the uniqueness then proceeds as for the

case of bounded domains. O
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We can also state a similar result for the Regularity problem.

Theorem 5.24 Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then there
exists € = €(0Q) > 0 such that for p € (2—¢,2+¢), the Regularity boundary value problem,
concerned with finding functions (i, 7) in Q satisfying

Ad=Vr, divii=0 in €,

M(V@), M(r) € LP(9), (5.233)

has a solution if and only if
7 p
fe L17V+(8Q). (5.234)

In addition, the solution is unique modulo adding locally constant functions to the pressure,

and there exists C = C(2,p) > 0 such that

1M (V)| oo0) + 1M (7)o oe) < CllF 1 Lpo00)- (5.235)

Furthermore, a similar result holds for the exterior domain R™\ Q after including the

decay conditions

O(|x|*>™™) as |x| — o0, if n >3,
() = (5.236)
E(z)A+ O(1) as |z| — oo, if n=2,

( O(|x|1_") as x| — oo, if n>3,
0ju(z) = ) (5.237)
G E()A+ O(|z|7?) as |z| — oo, if n=2,

O(|z|*=™) as |z| — o0, if n >3,
m(x) = (5.238)

—,

(VEA(2), A) + O(|z|7?) as |a] — o0, if n=2,

where A € R? is an arbitrary vector, specified a priori. In particular, a solution exists if

and only if
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felt, (09), (5.239)

and solutions are unique modulo adding locally constant functions to the pressure.

Proof. Let € > 0 be as in the statement of Theorem 5.17. Then for p € (2 —¢,2 +¢), we

know that for each A € (—1, 1], the operator

I+ K,y Ly, (99Q) )T (8Q) — i, (9Q)/ T (8Q) is an isomorphism.  (5.240)

We now claim that, if n > 3,

T: 1%, (09) @ LP(99) — LF, (99),
(5.241)

T(G1,G2) == (31 + K)\)Gi + SG>  is onto.
To see that this is indeed the case, consider an arbitrary f € Limr (092). It follows then
from (5.240) that there exists g € Lf,w (82) with the property that ¢ := f— (3I+K)\)g1 €
T (09Q). Using (5.117) and Theorem 5.18, we can then find g € LP(09) with the property
that Sgo = . Thus, T(q1,g2) = f, proving the claim. In turn, (5.241) and (11.123) in the

Appendix show that there exists C' = C(£2,p) > 0 with the following property:

VfeL}, (09) (G, 5) € LY, (0Q) ® LP(OQ) with

l,l/+

(5.242)

T(G1,92) = f and ||Gillzeon) + 192l 2r@0) < CllfllLeoe)-
Next, to show that (5.246) has a solution when n > 3 for every given f e L¥  (09), it

1,1/+

suffices to observe that, if (g1, g2) € LY, (0Q) @ LP(9N) are as in the second line of (5.242),

1y

then

i:=Dyg1 +Sg» and 7:=Prgi + Qg (5.243)

will satisfy (5.233) and (5.235). To establish uniqueness, again, when n > 3, assume that @

and 7 satisfy the homogeneous version of (5.233). Then (4.120) implies S(9) (i, 7)) = 0 on
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0f). Hence, 9)(i, ) € vRyq, by (5.128). Utilizing this back in (4.120) and invoking (5.77),
we finally arrive at the conclusion that @ = 0 in €.
Turning our attention to the case when n = 2, consider in place of (5.241) the following

claim:

T:1%, (09) @ LP(09Q) @ R? — LT, (09),
(5.244)

T(G1,G2,¢) == (A1 + K)\)g1 + Sg> + & is onto.
The first step in justifying this claim is as before. Namely, given fe LII),w (09)), we can
find some g1 € LY, (9Q) for which Uy i=f — (31 + K))§ € T2 (09).

Since U2 (09) — L} ,(09), it follows from Theorem 5.21 that there exists g» € LP(99)
and ¢ € R? such that Sgo + ¢ = 1;0, and so the operator T in (5.244) is onto, as claimed.
With this in hand, the proof of the existence of a solution for (5.233), which satisfies natural
estimates, proceeds as in the case n > 3, treated before.

To prove uniqueness for (5.233) when n = 2, we note that the same argument as in the

case n > 3 shows that, if @ and 7 satisfy the homogeneous version of (5.233), then

oM@, 7)) =vo+1), forsome peRyg and 1 € W. (5.245)

Plugging this back in (4.120) and keeping in mind (5.77) and (5.184), we may conclude
that ¥ = —Sv and m = Q(vyp) in Q. In turn, this allows justifying the integration by parts
formula [, Ax\(V#, Vi) dw = [55(0) (@, 7), ) do. Since i|pq = 0, we finally conclude that
@ =0 in Q, by invoking (5.93).

The exterior problem can be solved in much the same way. In this case, the decay
conditions (5.236)-(5.238) with A = 0 are crucial for justifying (5.231)-(5.232) for solutions
of the homogeneous problem. Granted these identities, we once again arrive at (5.245),

after which the solution proceeds much as before. ]
We conclude this section with a similar result for the Dirichlet problem.

Theorem 5.25 Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then there
exists € = £(0) > 0 such that for p € (2 —¢,2+ ¢), the Dirichlet boundary value problem,

concerned with finding functions (i, ) in Q satisfying
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Ad=Vr, divii=0 in €,

M(@) € LP(9Q), (5.246)

11’89 = feL} (09),
has a solution which is unique modulo adding locally constant functions to the pressure. In

addition, there exists C' > 0 such that

IM (@) 1oo0) < CIfll Lo (o0)- (5.247)

Furthermore, a similar result holds for the exterior domain R™\ Q after including the decay

conditions

O(|z|*>™™) as |x| — o0, if n>3,
u(z) = (5.248)
E(x)A+0(1) as |z| — oo, if n=2,

O(|z|*™™) as |z| — o0, if n >3,
djii(x) = (5.249)
O E(x)A+ O(|z|72) as |x| — oo, if n =2,

O(|z|*™™) as |z| — o0, if n >3,
(z) = (5.250)

—.

(VEA(z), A + O(|z|72) as |z| — oo, if n =2,

where A € R? is an arbitrary vector, specified a priori. In particular, a solution to the
exterior problem exists if f € LY_(09Q) and the solution is unique modulo adding locally

constant functions to the pressure.

Proof. Let € > 0 be as in the statement of Theorem 5.17, and fix p € (2 —¢,2 +¢). Let us
now assume that n > 3. Using (5.162) and (5.126), it can be checked (much as in the proof

of Theorem 5.24), that

T : LB, (09) & LP(0Q) —> LB, (09),
(5.251)

T(g1,G2) == (31 + K)\)g1 + SG>  is onto,
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and

Vv fe b, (09) 3(f1, ) € L8, (0Q) & LP(0Q) with
(5.252)

T(G1,52) = f and |71l reaq) + 132l o) < Cllfllo@0)-

Now, given an arbitrary f € LY. (09), let (G1,42) € LY, (0Q) & LP(9N) be as in the second

line of (5.252). Then

U :=Dyg1 +Sg> and m:=Prgi + Qg2 (5.253)

will satisfy (5.246) and (5.247).

To establish uniqueness, assume @ and 7 satisfy the homogeneous version of (5.246).
With z, € Q fixed, let €1, be a sequence of sub-domains of {2 containing x, that converge
to Q in the sense described in Lemma 11.54 in the Appendix. Define Ej () == {Ejr(x)}x
where Fji, is as in (4.20), and let g; denote the jth component of ¢ as defined in (4.21).

Then for each 1 < j < n and each Q,, from Theorem 5.24, there exists v and ¢’ such that

Av=V¢q, divi=0 in Q,

M(V%), M(q') € LV (99), (5.254)

7= Ej(xo—)|o0,-

Then for each 1 < j < n and each g, let

—

G§ = Ej — v, 95 =q; — qd in Q,. (5.255)

Then é}" and g7 will satisfy

divGs =0in Q,,  G%| =0, (5.256)

and
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/ (AGS — Vg8, 1) dv = uj(zo). (5.257)
Qa

We now make the important claim that there exists a constant C' > 0 independent of «

such that

1M (VG 01y + 1M 1 0,y < CIE | (5.258)

Ly (o9’

This is a consequence of the specific way in which the solution of the Regularity problem
has been constructed in the proof of Theorem 5.24, Lemma 11.32 in the Appendix, in which
we take T, to be the operator (5.241) constructed for 92, in place of 99, and the fact that
the T, ’s, after being appropriately identified with operators acting on functions defined on
09, converge to T in the operator norm. See (11.207) and Lemma 11.54 in the Appendix
for a proof of this latter claim.

Combining (5.257) with (4.7) and (5.256) then gives

(o) = / (OGS, g2). i) dor (5.259)
0a

Then since M (@) € LP(02) and ilspq = 0, we can show via (5.259), (5.258), and the
Lebesgue Dominated Convergence Theorem that u;(x,) = 0 (for this step, Lemma 11.54 is
once again used to first replace the integral on 092, with one on 9€; cf. (11.192)-(11.194)).
Since z, was an arbitrary point in 2, it follows that @ = 0 in €2, as desired.

When n = 2, the same line of reasoning applies provided that, in place of (5.251), this

time we use

T: L, (09) @ LP(9Q) @ R? — LY, (09),
(5.260)
T(G1,52,@) = (31 + K\)Gi + SGa + @

The existence of a solution to the exterior Dirichlet problem can be established in much

the same way. To prove uniqueness, assume 4 and 7 satisfy the homogeneous version of
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(5.246) in the exterior domain R™ \ Q and also satisfy (5.248)-(5.250). Fix R > 0 large
enough that Q C By, where Bg := {z € R" : |z| < R}. Let D be the bounded Lipschitz
domain given by D := Br \ Q. Since @ and 7 satisfy the Stokes system in the exterior
of Q, it follows that w@|pp, € LY(0Br), and furthermore since ]gpq = 0, we can conclude
that #|pp € Lzl’,w(@D). Theorem 5.24 applied for the domain D then guarantees that
there exists a solution to (5.233) with data f = @|gp. Due to the uniqueness portion of

Theorem 5.25, the only possible solution is 4 and m, and therefore

Mp(Vd), Mp(r) € LP(OD), (5.261)

where Mp denotes the non-tangential maximal function associated with the domain D.

This implies that

M Vi), M(m) € LP(0Q), (5.262)
and then the uniqueness portion of Theorem 5.24 applied to the exterior domain forces
u = 0, as desired. O
6 Local L? estimates

For the duration of this chapter we assume that € is a graph Lipschitz domain in R™, n > 2,
and set 0, :=Q, Q_ :=R"\ Q. Here, we will prove estimates of a local nature which will

be useful throughout. For some fixed z, € 09, let

Sg = SR(.TO) = BR(ivo) N of2. (61)

Also, define

Dp = Dr(z,) = {x +te, : x € Sg, |t| < KR}, (6.2)
where k= k(0€2) > 0 is a fixed constant, and let
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Df:=DrNnQy and Dy:=DpNQ_. (6.3)

If Sg := Sg(x,), for each ¢ > 0 we also set S.g := Scr(z,), with a similar convention for

D.rg.

6.1 Pressure, Caccioppoli, and local boundary estimates

For the duration of this section, assume (4, 7y) satisfy

Aty =Vry in Q4

diviig =0 in Qi, (6.4)

M (Viiy), M(ny) € L2(0Q).

Our first local result is the following estimate for the pressure.

Lemma 6.1 For any q > 1, there exists C > 0 such that

3 i O :
<][ ﬁi]2d$> <C <][ |Vﬁi|2d:c> += < M(ﬁi)qda> ’ (6.5)
DR DR R SR

Proof. Parametrize Dﬁ by Sg x (0,kR) 3 (y,t) — y=*te, € D,js and fix two balls B C D;
of radii comparable to R and such that dist (B¥, 8D£) ~ R. Foreachy € Spandt € (0,kR)
with y + te, € B*, using the fact that the pressure decays at infinity, the Fundamental

Theorem of Calculus and interior estimates, we may write

| (y £te,)| < /too (VL) (y £ sepn)|ds < /00 |(Atg)(y £ sen)| ds

c1R

0o C][
= lis(z)| dz) ds
/clR ( 52 B(ytsen,cas) )

CR™ M (i+)(y). (6.6)

IN

IA

Hence,



According to the work of Bogovskil [6], it is possible to construct two vector fields @y

in DE with the following properties:

(1) divwi:ﬂ'i—B%(/DimJXBi in DE,
R

(ii) ws opt= 0, (6.8)

(iid) |Vl papt) < Cllmllz(p)-

Then integrating by parts, we have

/ o (div i) d = / AN(Vie, Vits)dz T / (ONite, mi), @i do,  (6.9)
DE DE oD%

and so using (6.8) and (6.7),

/\Wi\zdiﬁ = /A,\(Vﬁjmvwi)dx—i- /Wid:v ][wid:n
Dg

D% D% B*
3
< C/\VﬁiHVu?i\derCRg /]WiIde ][]Wi]dx
D% DE B*

N[ =
|

< C /\Vﬁi\de /\vum?dx
DE DE

Q=

%
+CR / mePde | R ][ M{(iis)! do
Dlﬂ; SR

2

N

< c /\vai\%zx /[Wilzdx

Dy Dy
2 ‘
+CR>71 / e |? da ][M(ﬁi)qda , (6.10)
DE Sr
which is enough to prove the lemma. 0
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Our next local result is the following Caccioppoli type estimate.

Lemma 6.2 Let p€[0,1), ¢>1, and 1 < s <t <2. Then there exists C > 0 such that

/|Vﬁ+|2das + u/|Vﬁ|2dx
DiR

+
DSR

IN

C . R
m / |U+‘2dl‘+ﬂ / |U7|2 dl’
D} D,

+CR"2 ( M(ﬁ+)qda> " < ][ M(ﬁ_)qd0> q]
Str Str
+C [ @ m ) - @), don (6.11)
Str

Proof. Let n € C§°(R™) be such that n > 0 and suppn C Dyg. Since Aty = Vmy and

diviy = 0 in Q4, using the integration by parts formula (4.6), we have that

/ AN(Vits, V(iits)) do = + / (ONits, i), i) do + / e div (2ids) do. (6.12)

+ +
D3y S2R D3k

Multiplying the minus version of (6.12) by 1 and adding it the plus version gives

[ A vera e + o [ AT Ve ds

+ _
D2R D2R

= / 7 div (n?iy) dz + p / m_div (n*i_) dx (6.13)

+ _
D2R D2R

+ / n (O3 (i, my),t) = p (@) 7-), @) do.
Sar
Expanding the terms V(n?i<) and div (n%@..) in (6.13) and using Cauchy’s inequality with

epsilon leads to the following estimate,
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/ P A\(Viiy, Vi) dx + p / " A\(Vi_,Vi_)dx

D3y Dip

<Co| [ (vaPlasPdot [ 190l ds
DS D3p

‘e / 02 (Ve [? + |y 2) di + g / 2 (Va_ 2+ |n_?) da

D37 D3g
+ / n? ‘(aﬁ(m,m),m —M<83(a_,7r_),ﬁ_>( do. (6.14)
Sa2r

Now for any 1 < s <t <2, let n have the following properties

nElOnDsR

supp 71 € Dig
(6.15)
0<n<1

[Vl <
Using (6.15) and Lemma 6.1 in (6.14) then gives

C
R(t—s)"

/AA(VﬁJF,VﬁJF)derM / AN(Vii_, Vii_) dz

+ —
DSR DSR
C

£ - |2 — 2
< R — o) /|u+| dx—i—,u/]u_| dx
Dt D,

+eC /\Vﬁ+\2dm+u/ \Vii_|? da

+ —
DtR DtR

(f o) e f v

+/ ’(8;\(17,’+,7r+),ﬁ+)—u(@l’,\(ﬁ_,w_),ﬁ_>‘ do. (616)
Str

+e CR™2
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Next, we claim that (6.16) can be improved to

/!Vﬁ+]2dm~|—,u/|Vﬁ|2dx

Diy Dy
< /!ﬁ+!2dw+u/\ﬁ_2dx +eC /\Vﬁ+\2dx+u/ \Vi_|? da
= R%(t—s)2
D Dy Dt D,
2 2
q q
+eCR" 2 < M(ﬁ+)qdo> +u< M(ﬁ_)qdcf)
StR StR
+ [ @@, - p@da m).d)| don (6.17)
Str

For |A| < 1, this follows by (4.16). For A = 1, (6.17) can be justified using the following

version of Korn’s inequality which we will prove in § 11.4.

Lemma 6.3 [Korn’s inequality]
Let D C R™, n > 2, be a bounded Lipschitz domain of diameter R and assume that 1 < p <
0o. Then there exists a finite, positive constant C' which depends on p and the Lipschitz

character of D but not on R, such that

IVl oy < C{IIVE+ Vi llzogo) + B @) |- (6.18)

uniformly for @ € LY(D).
Next, we state another useful result.

Lemma 6.4 [Hole Filling Lemma]
For any 0 < 0 < 1, a > 0, and any non-decreasing functions A and B, if f is locally

bounded and

f(s) < (t—s)"%A(t)+ B(t) + 0f(t) whenever 19 <s <t <y, (6.19)

then
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f(s) < C|(t—s)"*A(t) + B(t)} whenever 1o < s <t < 717. (6.20)

For a proof of the Hole Filling Lemma, see the Appendix. Now Lemma 6.2 follows by

choosing € small enough in (6.17) and applying the Hole Filling Lemma. O

Our next result is a local estimate for Viiy on the boundary.

Lemma 6.5 Let p € [0,1). Then there exists C > 0 such that

/ (Vi |* + p|Vi-|?) do
Sgr

< 1S [ (Vs = Viant- #1034 71) = p O} 7)) do

Sar

+R(1€u)3 { / (IVEy|* + 7y [?) da + p / (|Va_|* + |7 %) d:c] (6.21)

+ —
D2R D2R

Proof. For any 1 < s <t < 2, there exists a smooth vector field ﬁg such that

(Fuv) =1 on Sig, |K| < C(OQ), supph C D, |vﬁg|sR<tC_5).

Then by applying Proposition 5.2 with h = hl and e chosen small enough, we can show

(6.22)

that

R(t —s)

+
Dy StR StR

/yniyZdagc / (Ve |? + |me)?] dm+c/|vai|2da+;/|7ri\2da. (6.23)
SsR

Then from the Hole Filling Lemma, it follows that for any 1 < s <t < 2,

C

/|7ri|2da§ / [IVasl® + rsl?] da:—l—C/ Viido.  (6.24)
R(t —s)

SSR

+
Dix Str

Applying Proposition 5.3 with h= ﬁz also gives
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/ [AN(Vidy, Viiy) + pAr(Vi_, Vi )] do
SSR

< i [ 192070~ w0 )P + il Vranls — Vi 2] do
Str

b [ (VP 4 lme 4 n VTP + ] do

Str
+ﬁﬁ[ / (VL + |7y ]?) do + p / (V- |? + |m—|?) dq:](ﬁ.%)
Difr Dyn
which holds for any 1 < s < t < 2. Consider the case A = 1. Now, fix 1 < s <t < 2,
and let ¢/ := (s +t) and s’ = 3(s+1t). Then1 < s < ¢ <t <t < 2, and also
s'—s~t' —s ~t—t ~t—s. Then since 4(Viy,Viy) = 1|Vil + Viiy|?, applying

Proposition 5.4 with h= ﬁﬁl gives

/ [V, P + |V 2] do < / [A1(Viy, Vi) + pAy (Vi Vi_)?] do
Sskr Ss’R

+ e / 1005 74) = O, m) 2+l Vaans — Vianti- 2] do

SS/R

te / 1Vt 4 a2+ Va2 + il ] do

SS/R

+(1€M)R(s}—s)|:/ (IVEL? + |m4]?) do + p / (IVa_? + |7—[?) d@%..%)

+ —
DS’R DS/R

Combining (6.26) with (6.25) where s and ¢ are replaced by s’ and ¢ and ¢ is replaced by

£2(1 — p)? and also invoking (6.24) with s replaced by ¢’ gives

/ (Vs ? + plVi-P] do < =555 / 1041 71) = O, )+l Vaans = Vianti- 2] do

Ssr St/R

+eC / (V2 4 rs 2+ Va2 + il ] do

Sy R
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+6(10,u)3R(t’1—s)[/ (|Vﬁ+|2+|7r+|2) dz + / (|V2_L|2+|7r,|2) d:v}

Dt

t'R D

t'R

< ﬁ / [|83(ﬁ+,7‘(’+) - ,u@i(ﬁ,,w,)ﬁ + :U’|vtanﬁ+ - Vtanﬁ*|2} do
Str

+50/[Vﬁ+]2+u|Vﬁ_|Q} do
Str

+a(19,7)3 R [ / IV ? + |7y %) da + p / (IVa_? + |7_|?) d:r]. (6.27)
D:_R Digr
Since (6.27) holds for every 1 < s < t < 2, after choosing ¢ small enough, applying the Hole

Filling Lemma gives

[ v+ v
SSR

< ﬁ / [|8&(ﬁ+,ﬂ'+) - /j,a,l(ﬁ_,ﬂ_”z + :u‘vtcmﬁ-l- - vtanﬁ—‘ﬂ do
Str

bt | [ (V) e [ (977 ¢ ) dafoos

Dfp Din
which holds for any 1 < s < t < 2. This is enough to prove the lemma in the case A = 1.
For || < 1, there exists Cy > 0 such that |Viit|? < CyA\(Viig, Viig). In this case, (6.28)
is not needed, and the lemma follows more directly by combining (6.25) and (6.24) and
using the Hole Filling Lemma as above. g

The previous lemma also implies the following.

Lemma 6.6 Let pn € [0,1). Then there exists C > 0 such that

/(|va+|2 T+ ulVa_?) do
SR

< / (IV1anTs = BVian@- | + plO @y, ) = O, 7)) do

Sa2r
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+ i /(|Vﬁ+|2+|w+|2)d:c+u/(wﬁ!2+!7T’2)d93 - (6.29)

+ —
D2R D2R

Proof. For p € (0,1), this lemma follows by reversing the roles of Q4 and Q_, applying

Lemma 6.5 to the functions

Up = pu—, py=pr—, V- =14, p_ =Ty, (6.30)
and then dividing by p. For g = 0, the lemma follows by simply taking the limit as u — 0%.
6.2 Reverse Holder estimates
This section will be devoted to proving the following result.

Lemma 6.7 [Reverse Holder Inequality]

Let a € (1,2] and let Ds CR™, n > 2, be a family of Lipschitz domains such that

diam(Dg) ~ s ~ ]Ds\% and Dy C D, for s<t. (6.31)

If u € CY(R™) satisfies

/ \Vul|? de < (t—Cs)z /D lul?dx for every T <s<t<ar, (6.32)

then for any p > 0 and there exists C = C(p,a) > 0 such that

<][DT|u’2 dm)é < C( ][DET‘u|pdx)zl>. (6.33)

Proof. For p > 2, the lemma follows from Holder’s inequality. Assume 0 < p < 2. By

dilation, it is enough to consider the case when

][D ulP dz = 1, (6.34)
1

and to show that there exists a constant C > 0 such that
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][ 2 dz < C. (6.35)
Lh/a

Assume

/ |u|? dz > 1. (6.36)
Lh/a

Fix nQ—fQ < g < 2. By the Gagliardo-Nirenberg-Sobolev inequality, there exists a finite,

positive constant C' = C(n, q) such that

(][Dsyu\n”qq d) o c[s(][Dsyvu\q da:)'ll + (][Dsyuqu) ] (6.37)

After dilation, we are in the case when 7 = %, and so after applying Holder’s inequality and

(6.32) in (6.37), we have for 2 < s <t <1,

n—q

<][ ]u|nn7—qq d:z;) "

IN

cfs({ swdx)% +( ][Dswdx)ﬂ

1 1 1 2
2 2 2 2
dx + dzr|”. .
C[s o (t—9)? t |u|” dx T /t [ul az} (6.38)

Using the fact that 1 < s <1 in (6.38) then gives

n—q

() 5™ < s (g ) ()

INA
Q
F
|
(V)
/~
—~
~
[ -
VA
SN—
[
/N
w | =+
N—
)
—
vl
S
-}
&
£
[
Q
8
—
N[

< (ff;;) (/D uf dz)*. (6.39)

1
Define I(s) := (st |u]2da:> *and choose o € (0, 2= such that 2L o +p (1 — o) = 2.

n
nq n—q

Then by Hoélder’s inequality,

I(s)? = / \u|2dx:/ |7 [P 4

s Ds

(/DS |u]"%1 dx)a(/Ds |u]pdm>1_a < C(/Ds ]u\nn%lq dx)a, (6.40)
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and so by (6.39),

n—q

(n—q) n n—gq 1
I(s) et < o(/ M=z d:n) "< tcs(/ |u|2dx>2 — %I(t).
D - Dy -

From (6.41), it follows that

Inl(s) <CO+6Inl(t)—0In(t—s).

nqo

where 6 := 5n—q)

Inl(s) <CO+6Inl(s")—0In(s? —s).

Integrating (6.43) over s € [1,1] against % gives

1 1 1
/ lnI(s)dsgCO—i—H/ lnI(SV)dS—G/ ln(s”—s)@.
1 $ 1/a 1

/a 5 /a 5

By a change of variables, we can write

1 1 1
9/ lnI(sV)@ =19 lnI(s)@ < 710/ In I(s) @,
1/a Y 1/a

§ (1/a) s s

after which (6.44) becomes

1
(1-— 719)/1 InI(s) ds < C(8,7).

/a 5

Since I(s) is non-decreasing,

=00 i) <057 [ i) % <o)

which implies that

C(0,v,a)

I(3) <0710 = C(09,p, a).

Thus, the lemma holds.
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€ (0,1). In particular, if we let ¢ = s7 for some 6 < v < 1, then

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)



7 The transmission problem in two and three dimensions

The goal of this chapter is to establish the atomic theory for the transmission problems
(4.155), (4.156) in the case when 2 is a graph Lipschitz domain in R? or R3. In practice,
proving that (Tj ) is well-posed for arbitrary graph Lipschitz domains automatically implies
that (Tu_ ) is well-posed for arbitrary graph Lipschitz domains because of the symmetry of
the geometry. With this in mind, in subsequent work we will often drop the sign and just
refer to the transmission problems as (7,) := (T,7) and (T,)* := (T,})*.

Assume Q C R" is a graph Lipschitz domain, and set Q; := Q, Q_ := R"\ Q. We will
prove that there exists € = (9€) > 0 such that (7,) and (7,)* are well-posed for every

w € 10,1) and for

%—6<p<2—|—8, n =2, (7.1)
l—e<p<2+e n=3. (7.2)

With the case when p is near 2 well understood, we will first establish well-posedness

for p < 1, and then use interpolation to handle the case 1 < p < 2.

7.1 Uniqueness

Recall (4.155), (4.156). In this section, we will prove a few uniqueness results.

Theorem 7.1 Let Q be as above, n >3, p € [0,1), and fix "Tfl <p<n-—1. Assume that

there exists 1 < q < n — 1 with the following properties:

n 1

< n+1

1
il L 7.3
n—-1 "p q n-1 (73)

(4)
(ii)  for any f € LI(0R),§ € LI(9Q), a solution of (T},)* with data (f.§) ewist{7.4)

Then if (U, m+) solves the homogeneous version of (T),)*, the functions Uy, my, pi—, and

pum— must be constant. Moreover, the same result holds if we replace (T,,)* with (T},).

First, we record an auxiliary result, whose proof is given in the appendix.
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Lemma 7.2 [Hardy’s estimate]
Let Q CR™, n > 2, be the domain lying above the graph of a Lipschitz function p. Assume
w 1s biharmonic in Q and M (Vw) € LP(0Q) for some p < n—1. Then there exist constants

c=c(w) eR and C = C(0N) > 0 such that

1 1 1
1M (w = o)l Lo a0y < CIIM(Vw)||Lro0) where e (7.5)
Proof of Theorem 7.1. Assume (4, 7y) satisfy
Aty = Vry, divige =0 in Q4 M(Vig), M(ny) € LP(09), (7.6)
along with
| =T Oy, my) = pop(i_,m) on 9. (7.7)

Applying Lemma 7.2 to 4, there exists ¢+ € R™ such that M (iix — éx) € LP (09) where

1% = 11? — —L.. Using the first transmission boundary condition in (7.7),
¢ —é = (i, —¢ —(i_—2.)| e L (09 7.8
L= -] @ -] e o), (79)
and so ¢y = ¢ =: ¢. Let us re-denote w1 — ¢ by @+ and then we will show that 4@y = 0

and pii_ = 0. Fix 2, € R"\ 0Q and b € R". Also, let

—

U= E(—xO)b and Z]VI: (7(’_330)'57 (79)

where E and ¢ are as before. Then (¥, q) satisfies

AT —VG=0in R\ {z,},
(7.10)
div o = 0 in R,

We also have that 9)(,q) € () L"(99Q) and so by (7.4), we can find (W, p+) that solves
r>1
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AwL =Vps in Oy,
dividx =0 in Q4,
@‘

_ w,‘ , (7.11)

o0 o0N

Oy, pi) — pON(G-p) = (1 w) BNT,q) € LD,

M(Vwy), M(py) € LY(0Q).
Notice also that, by subtracting an appropriate constant as before, we can even choose

W so that M (wx) € L9 (9€). Then the functions

C_ji =Wy — ¥ and g4 :=pr —q, (7.12)

must satisfy

Aéi = ng: in Qi \ {$o}>

divéi:O in Q4

G| —a

. : (7.13)

[2/9]

Gy, g4) = no)(G_,g-),

M(VGy), M(g+) € L1(0R).
Fix R > 0, and let ¢ € C*° be such that

supp v C Bagr(,),

=1 on Bpg(z,),
(7.14)

IVellz= < G,

IVl < 5.
R

Applying the integration by parts formula (4.7) to (éi, g+) and (Yiy,Pmy) gives

/(LAéi — Vgs , Yiiy) dx
Qt
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— & [ (103G gu), 01 — @ (iTa.vms). Gl do+ (a0~ V(wma), G do
o0 Qi

+ / |9+ div (i) — m(div G)| da

— = [ [(02(Gu 90, 0) — (O + 00N 72),C) + [{Lai = Vs wGis)] do
o Q4

+ / <2(vai)Tv¢ F(AY)TL + A [(div T2)Vp + Ve Vip + (v%)@i} , éi> d
Qt

n /{—mw, Gi)+gs [w(div @i) + (e, Vi) | — moep(div éi)} dz. (7.15)
Qt

Let us set ¢ := iy in Q4, 7 := w4 in Q4, with similar conventions for C_j, g and w, p. If we
now multiply the minus version of (7.15) by p and add it to the plus version, and then use

(7.7) and (7.13), we obtain

( /(LA@ Vg, vity) dz + p /<LAG*_ Vg, i) dx(
Q_

Q4
< / ((8,0)@, G| do + / ‘ <2(W)Tw +EAY + A [(va)w + (v%)ﬁ} , c3> ‘ dx
0N

R™\0Q

+ [ [iave.G+ gl vo)] de (7.16)

R\

Define Ar := Bar(x,) \ Br(z,) and Sg := Ar NI Then using (7.14),

‘ /<Lxé+ — Vg4, Yiy)de + p /<LAé— — Vg, i) dx‘

Oy Q.
C A C A C = C . C -
<3 [+ [vaiéi+ G [mici+ G [+ g [ e
Sr AR AR AR AR
= [+ T+ IIT+ 1V +V. (7.17)

It also follows by direct calculation that
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|v] < and |q| < 7 on Ap. (7.18)

Rn—2

We will also need the following lemma which is proved in [31].

Lemma 7.3 For every Lipschitz domain Q C R™, n > 2 (assumed to be either bounded or
of graph type) and any number p > 0, there exists a finite constant C = C'(Q2,p) > 0 such

that the estimate

[ull Lo/ a1 () < CIM ()| Lr 00, (7.19)

holds for every continuous function u in €.

Applying Lemma 7.3 to the functions «, Vi, 7, W, Vi, and p allows us to conclude that

Vi,m € Ln-1(Qy), Vi, p € Li-1(Qy), @€ Ln-1(Qy), and @€ Li-1(Qy).  (7.20)

Combining (7.18) and (7.20), we see that there exists C' > 0 independent of R such that for

R > 1, the following estimates hold:

HGH < |l g#n + 17 g*n
(AR) Ln=T(AR) Ln»=T(ARr)

(R") < C(1+R™ VG Dy < ¢ (7.21)

- Rn—?

G a5y < IM ) Lo () + 11| o (5

<O+ G BYE <o+ RIG ) <0 ()
ol ey Dol 4 0y
e (R") & < C(1+R™ VG D) < (7.23)
It follows from (7.3) that
L L A T ! (7.24)
P ¢ p ¢ " n-1 Pt



and so we can define § > 0 by

1 1 1 1 1 -2

11on 1
p q n—1 p° ¢ P g p* ¢ n-—1
(7.17), b

8=

Returning to y (7.20)-(7.23) and Holder’s inequality, we have that as R — oo,

I < C</ |M(a'>p*>p* (/ IGI">q (RN < ORI g,

R SR SR
C n—1 n*

o< </ |w|3“1>” </ |G|H)”<R">1 rt o oo g
R AR AR
¢ o oo\ —B(n-1)

ar < S([ i G (R R < oR 0
R \Ja, Ap
C n—1 n—1

p*n \ p*n qn qn _n—1_n-1

= (/ ’ﬁ‘"l) (/ br“) (R "5 < CRPOD 0, and

R \Ja, An

n—1
v e S
R AR

Hence, from (7.16),

[0 = Voo vty da o [(1aG — Vg vy do =0 (7.27)
o Q_

As a direct consequence of the particular construction of the functions (G, g) as a fun-

damental solution for the Stokes system, it follows that

-

/ (LG — Vg, @) do = (ii(z,), D). (7.28)
R0

—

If 2, € Qy, then LyG_ — Vg_ = 0 in Q_ and so from (7.27) and (7.28), (@4 (20),b) = 0.
Then since this holds for every x, € {24+ and b € R", we must have i+ = 0. Similarly, if we
instead consider the case when z, € Q)_, it follows that pu_ = 0.

If we instead assume that (@4, 7+) solves the homogeneous version of (7),), then (7.7)

will be replaced by
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—

Ut

:uﬁ_‘ . OMdy,my) = 0Na@_, ) on 9. (7.29)

[2}9] o2

Proceeding in a similar fashion as before, this time we can use the hypothesis to construct

functions (G4, g+) that satisfy

AG: =Vgs in Qi) {z,},
div éi =0 in Q4
: (7.30)

_ @_‘
o0 H o0

NGy, 91) =0 (G_,g-),

M(VGs), M(gx) € L9(09),

\

along with (7.28). The rest of the proof follows similarly to the previous argument, except

this time we use (7.29) and (7.30) in place of (7.7) and (7.13). This concludes the proof. [J

Although the previous theorem is stated for n > 3, it will be most useful when n = 3,
since in this case, if % < p <1, we can always find ¢ close enough to 2 that satisfies (7.3)-
(7.4). Since we are also concerned with the two dimensional case, we will need the following

result (the reader is advised to revisit the conventions made at the beginning of § 7):

Lemma 7.4 Let Q C R? be a graph Lipschitz domain and set Q, = Q, Q_ = R"\ Q.
For u€[0,1) and % < p <1 fized, assume that (iix,m1) solve the homogeneous version of

either (T,,) or (T),)*. Then the functions Uy, 4, pi—, and pm_ are constant.

Proof. Since M (Viy) € LP(0N2), after subtracting a suitable constant from i, we can
conclude from Lemma 7.2 that M(iiy) € LP"(99) where 1% = 113 — 1. Then by Lemma 7.3,
the locally integrable function @ := @4 in Q4 satisfies @ € LI(R?), where 1/q = 1/(2p)—1/2.

Note that & < p < 1 forces g € (2,00). In the same context as that of (6.6), we now have

*C . 1/q
mewte) < [ S(f it (ras) " ds
¢cR S B(y=+sen,c28)
_ > ds —1-2
< Clitlgen | = ORI, (7.31)
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(where C depends on %), leading to

][ |ms|de < CR™72/4, (7.32)
Bt

in place of (6.7) and, further, to

1
2 2
(][ Hﬁda:) <C <][ Vi) dm) +CR™2/4, (7.33)
B(0,R)NQ2+ B(0,R)

in place of (6.5). With this in hand and by proceeding as in the proof of Lemma 6.2 we

obtain that, whenever p € [0, 1),

C
/ \Viiy > da + u/ \Vii_|*dx < 2/ |@|? dz + CR™*/4, (7.34)
B(0,R)N4 B(0,R)NQ— R? JB(0,2R)

which should be compared to (6.11). Using the fact that @ € LI(R?) for some q > 2, allows

us to estimate

< |@> dz < CR™*/1, (7.35)
R2
B(0,2R)
hence altogether
/ Vil |? dz + u/ \Vii_|>de < CR™Y/4, (7.36)
B(0,R)N B(0,R)NQ—

by (7.34)-(7.35), where C is independent of R. Letting R — oo then proves that @, is a

constant in 2 and that pu_ is a constant in Q_. 0

7.2 Atomic estimates

This section will be devoted to proving the following two results. Recall the conventions

made at the beginning of § 7.

Proposition 7.5 Assume Q C R™, n > 2, is a graph Lipschitz domain and fix X\ € (—1,1]

and p € [0,1). As usual, set Qy = Q, Q_ :=R"\ Q. Assume there exists 1 < q < Z—:% such
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that the operators :t; }"'ZI + K are invertible on LY(0S2) and the L9 Dirichlet problem is

well-posed. Then for P 1J2q < p <1, there exists C' > 0 such that for any f € HY (09Q) and
g e H:P(09), there exist functions (i, m+) that solve (T, w)* (cf. (4.155) and the discussion

in the beginning of § 7) and satisfy

| M (Vi) o) + [|M (7))l e 00)

] M (V)| o) + 1M (7 ooy < C (172000 + 1Pz, oy )737)

Proposition 7.6 Let 0 C R™, n > 2, be a graph Lipschitz domain in R", n > 2, and
set Qy = Q, Q_ = R*\ Q. Also, fir A\ € (—=1,1] and pu € [0,1). Assume there erists
1 < g < =3 such that the operators 3 1JF“I + K are invertible on L](0Y). Then for
;n 11qu < p <1, there exists C' > 0 such that for any f € H?.(09) and § € Hat’p(aﬂ), there

exist functions (s, m+) that solve (T,,) and satisfy

| M (Vi) Lraq) + M (74) || e a0

M (VT o) + 1M (7 ooy < C (17200 + 171, 0 )7:38)

Arguing as in the proof of Theorem 5.9, to prove Proposition 7.5, we can reduce matters
to considering the case when ¢ = 0. We will first consider the case when f is a (p, 00)-atom
as defined in (2.30). Fix p such that ( )q < p <1, and let @ be a (p,c0)-atom. Since

@ € L*(09), from Lemma 5.7, we can define

G = Ly S((-3EET+ K 71a) in Qu,
(7.39)
mei= 1 Q((-HEET + KD 7lE) i Ou
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Aty = Vry in Q4
diviig =0 in Qi,

:a’,‘ :

‘ o0 o0N

(s, my) —pdy(i-,m)=a on 09,

1M (Viis) 200) + 1M (7£)l|22(00) < Cll@ll200)-

Our goal is to show there exists C'= C(9€2) > 0 such that

(7.40)

M (Vi) ey + 1M ()l Leao) + pllM (Vi) || pr@o) + mll M (7-)||Lra0) < C. (7.41)

By dilation, it is enough to consider the case when a satisfies

suppa C 51(0), @l Loo a0y < 1, and /aQEidU =0.

To begin, we will need the following auxiliary result.

(7.42)

Lemma 7.7 Assume Q is a graph Lipschitz domain in R™, n > 2, and let a be as in (7.42).

Then for 1 < p < oo, there exists C = C (0, p) such that

[ M(Sa)r(a0) < C.

Proof. First, notice that there exists Cy(0€, k) > 0 such that

’.’I,'—y’ SCO‘Z_y‘a vx7y€897 ZGF(JJ)

Fix z = (2/,2,) € 0Q and z € T'(z). Then from (7.42), we can write

Si(z) = | E(z—y)d(y)do(y) = /S o (E(z —y) — E(2))d(y) do(y).

o0N

Then
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|E(z —y) — E(2)| < Clyl[(VE)(z — 0y)| §C|Z_|0yy||,”, (7.46)

for some 0 < 0 < 1. In particular, if y € S1(0) and z € 92\ Sa¢,(0), then

1 1
— Oyl > |z| =0yl > =—|z| — 0 S—Y 4
2= 8yl > |2l — bly] > - lal —blyl > 5l (7.47)

and so from (7.45) and (7.46),

" C
|Sd(z)] < P Vo € 00\ Sac, (0). (7.48)
Thus
_ Co /
/ |M(Sa)|Pdo < C T, dr < C. (7.49)
02\ S2cy (0) Rr-1\By (0) |2/
Also if n > 3, from (7.44),
Co

[M(Sa)(z)| < C |a(y)| do- (7.50)

sy(0) |7 —yI" 2
A similar estimate holds in the case n = 2 when the term |z — y|~(»=2) is replaced by

1+ |log |z — y||- In either case, it follows by Schur’s Lemma that

/ M(S@)P do < C P do < C, (7.51)
SQCO (0) SQCQ (0)

which, combined with (7.49), finishes the proof. O

The previous lemma allows us to prove the following useful estimate.

Lemma 7.8 Retain the same setting as in Proposition 7.5. Let the function @ be as in
(7.42) and (s, m1) be as in (7.39). Assume that there exists some q > 1 with the property
that the operator —%%I + K is invertible on L1(02) and the L? Dirichlet problem is

well-posed. Then there exists C = C(q,0) > 0 such that
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[ M ()| La(an) < C. (7.52)

Proof. First, since |Sd(x)| < M(S@)(z) for every x € 02, using the previous lemma we

have

1Sl Lra0) < C(09Q,p) for 1< p < oco. (7.53)

Since Uy |pn = U—|sa, multiplying the minus version of (4.143) by p and adding it to the

plus version gives

(1= ) (31T + K ) (elon) = S (92 (@r my) = ) (- 7)) = Sa. (7.54)
Since —%}f—l’j[ + K is an invertible operator on L?(9€), from (7.54) we have

-1
_ 1 (—%}f—zu KA) (Sa). (7.55)

Then from the well-posedness of the Dirichlet problem, we have

[M(tis)||paan) < Cllitloallraon)
< O3+ K Mleaow) - 1@l a0y < C, (7.56)

where, for a linear, bounded operator T mapping a quasi-Banach space X into itself,

|7l z(x) denotes the operator norm. This finishes the proof of the lemma. O

Next, define the boundary annulus

Ag = {(a,p(z'): o' € R"! R < |a| <2R} C 9N. (7.57)

For u defined in Q4, let
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M]%(u)(a:) = sup{|u(y)| : y € I'*(z), | —y| < R}, x € 092,
(7.58)
M (u)(x) == sup {[u(y)| : y e T*(2), |z —y| > R}, €I,

For any real homogenous constant coefficient elliptic operator L and a function u satisfying

Lu =0 in a domain D C R"™, we have the well-known interior estimate

[Du(r)] < C5~ %N (z)  max fu(2)], (7.59)
|zfx|<Tz

where 0(z) = dist(z,0D) and « is any multi-index (cf. [73]). Now there exists constants
n > 0and £* > 0, depending on I and & such that for any 2 € 99 and y € T*(z)\ Br(z),
it holds that B,r(y) C I'f () C Q4. Fix x € 9Q and let y € T () \ Br(z). Specializing

(7.59) to the case when the domain D = B,r(y) gives

C
Vis(y)| < —  max |d+(z)], (7.60)
77R |zfy\<%

and then since B,r(y) C 'L (), it follows that

Vit (y)) < %M*(@)(z» (7.61)

where M™ is the non-tangential maximal function associated with the cones Ff* (x). Taking
the supremum over both sides for y € I'(z) \ Br(x), we see that for any = € 0,
C

Mpg(Viig)(z) < ﬁM*(ﬁi)(x)- (7.62)

Next, we need a similar estimate for the function 7. Fix an x € 9Q and y € I'*(z) \

Bp(z). Let w = ‘z:;, and then for any ¢, |y + tw — z| = |y — x| + ¢. Since we know the

pressure decays at infinity, the Fundamental Theorem of Calculus gives us that

()] < /0 (V) (g + tw) dt = /0 () + 1) dr. (7.63)

Now since y + tw € TF(z) \ Byyr(z), for the same 1 and x* as before, we have By+r)(y +

tw) C T'E (2) and using a similar estimate as before gives
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|(AtL)(y + tw)| < ————= M*(ii1)(x). (7.64)

Then for any y € I'f(x) \ Bg(z),

mal)] € M) [ o dt < M) o) (7.65)

Taking the supremum of both sides then gives

c. ..
MF (rs)(z) < EM (tug)(z). (7.66)
Since 7(?—_123 < p <1, we have that ¢ < ’Sln—_].];)z < Z—:l Define
-1
’y::u—(n—l—p)>0. (7.67)

Then using (7.62), (7.66), Holder’s inequality, and Lemma 7.8, we can conclude that

p

1
M3 (Vi + M3 (rs)? < S [( M*(Ui)qda> "RV Te| < COR7. (7.68)
o0

RP

AR

We need to prove a similar estimate for M%(Viy) and M3(r+). The first step will be

to establish the following estimate.

Lemma 7.9 Let @ be as in (7.42) and (d+,7m+) be as in (7.89). If Sor N S1(0) = 0, then

/ [ywm? + mﬂ dz + 1 / [yw_ﬁ + yw_ﬂ dr < CR" > 3D, (7.69)

+ —
DR DR

Proof. Combining Lemma 6.1 and Lemma 7.8 gives

/|7ri|2da:§0/|Vﬁi\2dx+CR”_2_g("_l), (7.70)

+ +
Dy D

and so to prove the lemma, it is enough to show that
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/|Vﬁ+|2d:n+u/|Vﬁ|2da:§CR”_2_§("_l). (7.71)
Df; Dp

From (7.40), it is clear that

<83‘(ﬁ+,7r+),ﬁ+> —H <ari\(ﬁ—77r—)7ﬁ—> = <67 ﬁ+> =0 on Sip, (7'72)

and so combining Lemma 6.2 and Lemma 7.8 leads to the estimate

/ Vi, + p / Vi < W / i, 2 de + o / @2 da] + OR"HEOD
D:_R DS_R DtR D_
(7.73)
for every 1 < s <t < 2. Note that we can assume that
R < W / |ty |* do + / | \Qdm’] whenever 1 <s <t <2,
D Dy,
(7.74)

otherwise we can prove (7.71) directly by using (7.73). Now, using (7.74) along with

Lemma 7.73, we have

. . 2C . .
/|Vu+|2dx—|—,u / |Vu|2dx§R2(t_8)2{/|u+2dx+u/|u|2dx]. (7.75)

DjR DSR DjR D;R
Define
64_ in Q+,
U= (7.76)
d_ in Q_.
Then if u € (0,1), we can rewrite (7.75) as
/ Vil de < RQ / 2 da, (7.77)
Dsr
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and so applying Lemma 6.7 and using Lemma 7.8, we can conclude that

(f%Wﬁ“fﬁcﬁﬂ)W%mf§C<SRM<VM)SCR*”” (7.78)

aR

Combining (7.77) and (7.78) finally gives

C Lo 2(p_
/ Vits| dr < 5 / @2 de < CR" 27" 1), (7.79)
Dx Dsp
as desired. The analogous result follows similarly when p = 0, although in this case, we can

apply Lemma 6.7 more directly using (7.75). This finishes the proof of the lemma. O

Now assume Sgg N S1(0) = . Then 9) (@4, 74) — pO)(i_,m_) = 0 on Sgr. Using the

3,

well-posedness of the L? Regularity problem, we have for each s € [1, 5

/ [M%(Vﬁ+)2 + MM%(VJ_)Q] do < / My (Vity)? do + p / M, (Vi )? da}
Sk oDty oD,
< C|: / |vtanﬂ:+|2 do + H / |vtanﬁ—|2 dO’}
oD, oD,
< ¢ [[vaf+uvap
SSR
+C[ / Vi, |2 do + p / \va_Pda]zSO)
oDt \00 D \00
Integrating (7.80) over s € [1, 3] and applying Lemma 6.5 and Lemma 7.9 then gives

+ _
D3R D3R

< cR"3=5(n=D) (7.81)
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After covering Ar with a finite number of appropriate surface balls, we can then conclude

that

(7.82)

Analogous estimates for M (m1) follow via a similar argument. These estimates along with

(7.68) then guarantee that

/ [M(Vi, P+ M, )P + pM (VI + pM (5P| do < CR™. (7.83)
AR
Finally, using (7.83) along with the L? theory leads to the estimate,
/[M(Vﬁ+)p + M (m4)? + pM (Vi )P + uM(ﬂ,)p] do
o0
< / [M(Vﬁ+)p M (r )P + pM (V)P + MM(W_)p} do
S5(0)
3 / [M(Vi, )P+ M) + M (VT + M ()] do
Jj=3 A
27
V4 P
< C’[(/M(Vu+)2da)2 + (/M(w+)2da)2}

< c(/ lﬁ\zda)g + cizﬂ <, (7.84)
o9 J=3

which proves (7.41). With this in mind, we can finish the
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Proof of Proposition 7.5. For any fe H?,(09), we can write f: Z;’;l Aj @; such that each
1 : :

a@; is a p-atom and <Z‘;‘;1 By |p) P < 2|[fllg», (90~ For each @; we can find @, and 7. that

solve (7.40) with datum d; and also satisfy (7.41). Then the functions iy = 72, A; aﬂi

and mp =3 70, Al will satisfy

Aty = Vg in Q4
diviiy =0 in Qg
ﬁ+ — ’&:,‘ 5
o0 o0 (7.85)
ali\(ﬁ-‘r’ﬂ-i-) - /’Lali\(ﬁ—vﬂ-—) = f on 897
M (Vi) ey + [[M (7))l 2r00)
Tl M (V)| e a0) + M (T-)||Le@0) < Clf a2, 00)-
Since we have reduced matters to the case when g = 0, Proposition 7.5 follows. U

Next, Proposition 7.6 can be established in a similar fashion. Here, we can reduce
matters to considering the case when f = 0 and § = @ where @ is a regular (p, c0)-atom

satisfying

suppa C 51(0), a(0) =0, [Vianall Lo 90y < 1. (7.86)

We need to prove that there exists a solution that satisfies (7.41). Now since @ € L?(9Q),

we can define

Uy 1= %DA((—%HJIﬂ—K)\)_lC_L‘) in O,
(7.87)
Ty = — Py ((—%H—”I—i— KA)’lEi> in Q4.

By Proposition 4.5, (4.29), (4.47) and (4.45), the functions @y, w4 will satisfy
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Aty = Vry in Q4
diviig =0 in Qi,
=d, (7.88)

oMty ,my) = O)d_,7_) on 09,

1M (Vi) 200) + 1M (m£)l|22(00) < Cllll 1250

Since we also have @ € L1(0%2), it follows from Proposition 4.5 that

M (@) Laa0) < ll@ll aan) < C, (7.89)

which we will use in place of Lemma 7.8. We can also replace (7.72) with

(81;\(ﬁ+777+)7ﬁ+> — K (8;\(12’_,7r_),ﬁ_> = (83(ﬁ+77+)76> =0 on Sap. (7'90)

The rest of the proof of (7.41) follows as before except this time, we use Lemma 6.6 in
place of Lemma 6.5 to establish (7.81) from (7.80). This is enough to establish Proposi-
tion 7.6. We can now prove the following result regarding p < 1. Before stating it, recall

(1.3), (4.155), (4.156) and the conventions made at the beginning of § 7.

Lemma 7.10 Let n = 2 or 3, and let Q@ C R™ be a graph Lipschitz domain. Also, set
Qp :=Q, O :=R"\ Q and fir A € (—1,1] along with u € [0,1). Then there exists € > 0

such that the boundary value problems (T,), (T,,)*, (N), and (R) are well-posed for every

2(n—1)
n+1

—e<p<l.

Proof. For pn € (0,1), the well-posedness of (7},) and (7},)* follows by choosing ¢ sufficiently
close to 2 and applying either Proposition 7.5 or Proposition 7.6 followed by either Theo-
rem 7.1 or Lemma 7.4. In the case p = 0, the same argument proves that (7,) and (7,)*
are semi-well-posed, and since this will also hold when the roles of 2, and €)_ are reversed,
we can conclude from Proposition 4.21 that (73), (7,)*, (IV), and (R) are also well-posed.
O
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7.3 Interpolation arguments

Throughout this section, assume that 2 C R"™, n = 2,3, is a graph Lipschitz domain, and

set Q1 =, Q_ :=R"\ Q. Recall from Lemma 5.7 that the operators

1ptl N P
(igﬁprfg) L LP(09) — LP(9) (7.91)

are well-defined, linear, and bounded for each p € [0, 1), whenever 2 —¢ < p < 2+¢. Let us

denote by Ty the version of (7.91) corresponding to p = 2. We aim to show that whenever

2(n—1)

w1 — € <p <1, there exists C = C(Q, u, p) > 0 such that

|Tsdll o 90y < C. ¥ HE,(09) — atom. (7.92)

Consider the case of T (the claim about T_ is handled similarly) and fix an H%,(09)-atom

a. From the arguments in § 7.2, we know the functions

iy = =-8(T4a@) in Qy  and  my = - O(T4a@) in Q4 (7.93)

—p

solve (7},)* with data (0, @) and satisfy the estimate

M (Vi) ey + 1M (Vi) |l ran) + 1M (V=) eaq) + plIM(Va-)| L) < O7.94)

where C' is independent of @. From the well-posedness of the Regularity problem, we also

have

1M (V)| Lr o) + 1M (V7| Lr 90)
< CHU—”Hi#’(aQ) = C”ﬁ-&-HH;P(aQ) < CHM(VU-F)HLP(&Q); (7.95)

and so (7.94) can be improved to

M (Vi) Loo0) + [M(Vr)l e@e) + M (VE-)| ooy + [[M(VE- )| e og) < C (7.96)
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Thus,

—

Tyl g 00y = 109G, ms) = (i, 7)o (o0

IA

M (Vi) o) + M (V)| Lean)
HIM (Vi) Leaq) + IM(Vr_)| e 0)
< ¢ (7.97)

by jump-relations, Theorem 4.13, and (7.96).
Our next claim is that if f € HP,(99Q) N L2(99) then T4 f € L2(9Q) satisfies

1T Fll 1z, o) < CllFaz, 909 (7.98)

where C' > 0 is independent of f. To see this, we shall invoke an observation made in (6.5)
on p. 948 of [74], which we state here in a slightly more general form than we need in the
current context. Specifically, if =1 < p < 1 and f € HP,(09Q) N L2(8Q), there exist a

sequence of coefficients (\;); € ¢! and a sequence of HE,(92)-atoms @}, such that

JF: Z?; Aj @ in Hgy(0Q), Z?; Al < CHﬂ|H§t(8Q)a and (7.99)

I = Z;vzl Aj d@; converges to fin L2(09) as N — oo.
Now if we consider such a decomposition of f_: on the one hand, T4 fN is Cauchy in
H3,(09), hence convergent in Hz,(09) to some gy for which [|gi (|57 90y < CHﬂ|H§t(aQ)’
thanks to (7.92). On the other hand, Tify — Tof in L?(09Q). Consequently, for any

vector-valued function 1/7 € Lip (092) with compact support,

V- Tefdo= lim | - Tufydo = (g (7.100)
— 00 Q

oN
where (-, -) stands for the distributional paring on 9 (i.e., the pairing between Lip,,,,,(92)
and its topological dual). This proves that 77 f = g4, from which the estimate (7.98) follows.

This establishes that
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1ptl . D D
(#3254 K7) HE(00) — HE(09) (7.101)

are well-defined, linear, and bounded whenever 2(7;:11) — & < p < 1, and further, by inter-
polating (7.101) with (7.91), that
1ptl AL e P
<j:§ml + KA> . HP(8Q) — HP(9) (7.102)
are well-defined, linear, and bounded whenever 2(7?7_:11) —e<p<2+e.

In summary, the above reasoning shows that for u € [0, 1),

LU+ K - HP(09) — HP(99) isomorphically, for 20=1 — 2 < p <242 (7.103)

With (7.103) in hand, we can prove the following theorem.

Theorem 7.11 Let n = 2 or 3 and Q@ C R™ be a graph Lipschitz domain. As usual, set
Q= Q, Q= R\ Q. Then there erists ¢ = £(0Q) > 0 such that for X € (—1,1],
wel0,1), and 2(:7;11) — e <p<2+e¢, the boundary value problems (T,), (T,,)* in (4.155)-

(4.156) as well as (N) and (R) in (1.8) are well-posed.

Proof. The well-posedness of (7),) and (7},)* follows from (7.103), Theorem 5.9, and The-
orem 4.19. Since this result will also hold if the roles of 2, and €)_ are reversed, the

well-posedness of (V) and (R) follow from Proposition 4.21. O

8 Higher dimensions

In this chapter, we adapt the arguments of Z.Shen from [83] and [84] in order to extend

our results to the case when n > 4. Specifically, our goal is to prove the following theorem.

Theorem 8.1 Assume that Q@ CR™, n >4, is a graph Lipschitz domain and set Q4 := ),
Q_ :=R"\ Q. Then there exists ¢ = () > 0 such that the transmission problems (Tﬁc)

and (Tui)* from (4.155)-(4.156) are well-posed for any p € [0,1) and any 2(:7;11) —e<p<
2+ ¢e. Moreover, the Neumann problem (N) and the Regularity problem (R) in (1.3) are

2(n—1)
n+1

well-posed for

—e<p<2+e.
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To accomplish this, we will consider the following auxiliary problem,

Ay =Vmy in Qi
diviig =0 in Q4

() { iy

—pu_| =geLPoN .
L hi-| =5 e ow), (8.1)

81//\(a+7 7T+) = 83\(677777)7

M(is) € LP(99).

\

Above, the equality 9, (ii4,m4) = 9, (i—,7_) has to be (suitably) understood in L (99,
when p is near 2. Since the operator %}f—ﬁ[ + K is invertible on LP(9R2) for p near 2, we

can show that the functions

de=DA(GELI+K)7'F)  and  mei=Py((BELI+ K)TYF) in 0 (82)

solve (8.1) and also satisfy the estimate

1M (i)l e o0y < Cllgl e o0), (8.3)

as long as p is near 2. In this chapter, we will extend this result to include 2 — ¢ < p <

2(:__31) +¢e. A key step is to prove the following Reverse Holder estimate for the non-tangential

maximal operator.

Lemma 8.2 [Reverse Holder estimates]
Let Q CR™, n >4, be a graph Lipschitz domain. As usual, set Q4 := Q and Q_ :=R"\ Q.
Assume Aty = Vry, diviiy = 0 in Qy, and define M (i) := max{M (i), M(d-)} and

P = 2%:31). If M(Viit), M(n1) € L*(09) and iy — pii— = 0 on Siagr for pu € [0,1), then

(f, oma)* < o(f, v

2
+CR< / raéom,m—a,éw_,w_)\?do) L (84)
So56R

The Proof of Lemma 8.2 is going to be presented in the next section.
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8.1 Preliminary estimates

Recall the definitions of Sg and D¥ from (6.1)-(6.3). We will start with the following result.

Lemma 8.3 If Atiy = Vry, divig =0 in Qy and M(Viiy), M(my) € L*(09), then

/\Vﬁ+\2d$—|—u/|Vﬁ_|2d:p
D} Dg

Sg/ [M (1) + pM (d-)?] dU+CR//L|8l’/\(7j+7ﬂ-+)_ali\(ﬂ’_,ﬂ._)|2do,

SQR S2R

c / O (@4 )|y — i | do (8.5)
Sar

Proof. From Cauchy’s inequality, we have that

| [ . - piod.m. )| do
Sar

= / ‘(33(17+77T+)a17+—WL>+M<33(17+77T+) — (i, 7). ii-)| do (8.6)

Sar

< [ (103 molls - o] + g RION T ) = O ) + LM (T )?) do

Sar

Utilizing (8.6) in Lemma 6.2 along with the estimate

/|ﬁi|2dx < C’R/M(ﬁi)Qda (8.7)
DE Sr

is enough to verify (8.5). O

Let M+ denote the non-tangential maximal functions associated with the bounded
R

domains D;. Consider the following lemma.

Lemma 8.4 Assume Aty = Vry, divig = 0 in Qyp. If M(idy), M(Viy) belong to
L?(09) and iy — pii— = 0 on Sgg, then
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/ (Mppy (Vi )2 Mpy (7)) do + g / (Mp_ (Vi) + M, (r)?)do (8.8)
SR SR

<C / p|dN iy, my) — oNa_,w )P do + — / )? + pM(i-)?) do.
Ssr
Proof. Using the well-posedness of the L? Regularity problem on bounded domains, it

follows that for s > 1,

/(MDé(Vﬁi)Q—l—MD%(wi)z)daSC/ \Viantis|* do 4+ C / |Viants|> do.  (8.9)

Sr SsR ODE N4

Integrating (8.9) over s € [1,2] gives

C
/(MDi(vaiF + M (m4)?)do < C / \ViiL|? do + = / \ViiL|? do. (8.10)
Sr Sor D;‘:R

Applying Lemma 6.6 and Lemma 6.1 and using the assumption that #y — p— = 0 on Sgp

leads to the estimate

[ Ot (Vi 4 My (ra?) do g [ (M (VT 4 My (5 ) dor

R
SR SR

2| vl su [ vapas| o [0 - o P o

DIR Dip S4r
C . o
+ﬁ / (M (iiy)? + pM(3-)?) do. (8.11)
S4r

Then applying Lemma 8.3 and using the fact that «y — pti_ = 0 on Sgr gives

/ (Mppy (Vi )2 Mpy (7)) do + g / (Mp_ (Vi) + M, (r)?)do (8.12)
SR SR
<Cu [ ) — O P do + o [ (M@ + () do
SsRr SsRr
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which finishes the proof. O
At this point, we can proceed with the

Proof of Lemma 8.2. Let x € Sk and y € '+ (x) be such that |y — 2| > ¢R. Then interior

estimates yield

i (y)] < C][ lit|dz < C M (iiy) do. (8.13)
BCR(y)

Sar

From (8.13), it follows that for any p > 0,

(. wpra) < s )
SR z€SR

IN

cf My do<C ( M(ﬁi)2da> C814)
Sar

Saor

Then to prove the lemma, it is enough to show that

Pn

1
< or( {0 - O o
S128R

+C ( ][SHSRM@Q da>% : (8.15)

< M]O{(Q_[i)p” d(f)
Sgr

Next, we claim that for x € S,

M+ (Viy)(2)
0/~ D .
Mg(iy)(x) < C / 2 ——do(2) +C M (idy) do. (8.16)
|z — 2| Sar
2R
Let y € Ty (z) such that |y — x| < cR. Let w := ‘z:;, and ¢y =y + cRw. Then y € T'y(z)
and cR < |y’ — x| < 2¢R, and
, cR d cR
i) - al = | [ gla el < [T R @
From interior estimates, for 0 < t < cR,
Vip(y+tw) < C Vi (2)|dz < C MD;R(VTZ+)(2) do(z). (8.18)

Bet (y+tw) Sct ()

189



Then combining (8.17) and (8.18), and using Fubini’s theorem yields

=DM (Vi) (2) dt do(z)

IA
Q
—

+
2R

<

/ Moy, (Vi )(2) do(2). (8.19)
Sa2r(x)

|z — z|"—2

Then using (8.19) and (8.13) for ' gives

@i () < s (y) — di(y)| + lds ()]
< / MDJR(Wf)Q(z) do(z)+C{  M(ay)do. (8.20)
|z — 2| Sor

Taking the supremum over y proves the plus version of (8.16). The minus version follows
similarly. Multiplying the minus version of (8.16) by x'/? and adding it to the plus version

gives

My (Vi) (2) + 2 M, (Vii_)(z)
MA@ (@) + MR @) < 0 [ Pt |x_‘; e do(2)
Sa2r
+C ][ (M(ﬁ+)+u1/2M(ﬁ,)) do. (8.21)

S2Rr

Then by Fractional Integration Theorem, it follows that

1

(][SR (Mz%(@) + u1/2MIg(ﬁf))pn dg) P

NG

2
<CR ( ][ (MD+ (Viiy) + p/>M - (w_)) da>
SQR 2R 2R

+C (M(ﬁ+) + ul/zM(ﬁ_)> do

S2Rr
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<CR < ][S (MD;R(WL)? + MMD;RN?I—)?) da)
2R

NI

+C < ][SQR (M (iiy)? + p M(id-)?) da) . (8.22)

Applying Lemma 8.4 gives

1

<][ S (M) + ' 2nap(a-) ) da> )

1
2

<C ( ][SmR (M(i4)? + pM(i-)?) da>

+CR ( ][ w|oN (i, my) — 83‘(71_,7r_)\2d0> 0 (8.23)
S16R

For 1 € (0,1), this is enough to establish (8.15) and prove the lemma. In the case p = 0,

the estimate (8.23) gives that

( SRMg(m)Pn da) d <C < M (iiy)? do>é . (8.24)

Therefore to finish the proof, we still need to show that if @4 = 0 on Sjogr, then

S16R

x :
(f. apayrar)™ < cr(f b -0 )Pds)
SR S128R

+C ( ][SlzgRM(ﬁfda);. (8.25)

Since @4 = 0 on Sieggr, we can apply Lemma 8.4 with 4 = 0 and get

. . C .
[ @amPdo<c [ Oty (Vi + My (moP)do < o [ M@ do

S16R S16Rr S128R

Arguing as before using fractional integration estimates, we have

1 1 1
< MY (7 ) da> "< CR( M- (Vﬁ_)2da> ‘Lo ( M(ﬁ_)2da> °
SR Sor 2R Sar
(8.27)
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Now, applying Lemma 6.5 with g = 0 and 4 exchanged with #_ leads to the estimate

/\Vﬁ_nggc/m,j(a da—i—/ (VE_|2+|n_[)de.  (3.28)
Sr S2Rr

Similarly, using Lemma 6.1 and apply Lemma 8.3 with y = 0 and %, exchanged with u_

gives

/(]Vﬁ_]2+]7r_]2)d:v<g/M(ﬁ_)Qda—l—C’/|83(1I_,7r_)\|ﬁ_|da

Dy Sa2r Sar

gg/M(a_)QdHCR/ O 7w )Pdo. (8.29)

Sar

Combining (8.10) with (8.28) and then using (8.29) yields

/MD2R( J<7 / M(@_Y2do +C / O, 7 )2 do (8.30)

Sar S16Rr S16R

Then using (8.30) in (8.27) gives

1 1
( MO )P da) " < CR ( ][ ]8{,\(11_,77_)\2d0) g c( M(ﬁ_)2da>
Sr S16R S16R

<
1
A A 2 ?
< or( f_ @) -2 n )P ) (5:31)
S16r
1 1
- \2 2 A/ 2 2
+C( M(u_) da) —|—C'R<][ |0 (g, 7)) >
S16R S16R
Combining (8.26) with (8.31) is enough to establish (8.25) and finish the proof. O

We will also need the following technical lemma which is proved by Z. Shen in [84].

Lemma 8.5 Assume 0 < 8 <1 < a and 1l < g < p. Also, let Qo be a cube in R™ and
F € LY(2Qq), f € L1(2Qq). Suppose that there exist Cy,Cy > 0 with the property that for
each dyadic sub-cube Q of Qo with |Q| < B|Qo|, there exist two integrable functions Fg and

Rg on 2Q such that |F| < |Fg| + |Rgl| on 2Q, and
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N

(][2Q’RQ’pda:>; < O [][aQ\Fdx+][Q|f|dx] , (8.32)

][ |Fg| dx
2Q

IN

CQJ[QW dz. (8.33)

Then

1 1
<][ ]F|qu> ‘<ol |Fldz+C < ][ \f|qu> ’ (8.34)
Qo 2Qo 2Qo

where C' = C(p,q,C1,Ca,a, 3,n) > 0.
The following version of Gehring’s Lemma is also necessary.

Lemma 8.6 [Gehring’s Lemma]
Fizp>1, and let 1 < q < p. Assume there exists functions g,h € LP(0Q) and K > 0 such

that for any surface ball Sg,

(][SRIQIP daz>; <K <][SQR|g|qda>; + (][52R|h|p d0>’17 ' (8.35)

Then there exist €, > 0 and C > 0, depending only on K, p and q, such that if 0 < e < &,

then

/ g+ do < C / WP+ dor. (8.36)
o0 o0

For a proof of this lemma, see the Appendix. Our next lemma will show that that the

estimate (8.3) for solutions of (8.1) continues to hold for larger values of p.

Lemma 8.7 Let Q C R™, n > 4, be a Lipschitz domain, and set p, := 2(51:31). Then there

exists ¢ = () > 0 such that for any § € L2(0Q) — LP(09) then the L?-solution (4, m+)

of (8.1) satisfies the estimate

/M(ﬁ)p do < C(2,p) / |g|P do for every p € (2,pn + ), (8.37)
o0 o0
where, as before, M (@) := max{M (dy), M (u_)}.
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Proof. First, let (i+,7+) be asin (8.2). Since § € L3(99), we have M (iix.), M (Viit), M(ny) €
L?(09Q). Applying Lemma 7.2 then gives that M (i) € LP*(0Q). We need to show that
w4 satisfies (8.37). Fix S C 99Q. Choose ¢ € C3°(R™) such that ¢ = 1 on Syogr, ¢ =0 on
90\ Saser, |6] < 1 and [Vg| < &. Define o := D, ((%}j—zhu KA)—I((M)) in Q4 and set
0t =P, ((%}f—gl + KX)—1(¢§)) in Qt. Set M () := max{M (¥, ), M(7_)}. Using the L?

well-posedness estimate for vy, we have

/M(U)Qda <C / 9)? do. (8.38)
o0 Sas56R
Let Wy (= @y — Uy and py := m4 — n+. Then we have Wy — pw_- = g — ¢g = 0 on

Siasr and 9 (W4, p1) = O (W_, p—) on Q. Set M (W) := max{M (), M(#_)}. Applying

Lemma 8.2 we then obtain

( M (@) da) "< c( M(w)2da) ° (8.39)
SR S128R

Combining (8.39) and (8.38) then gives

M@ do)" < C (M(@)? + M(5)?) do
Sr S128R

N[

N

< C ( ][5256R (M(@)*+13) da> : (8.40)

Then applying Lemma 8.5 with

F:= M(@)?, Fs,:=M(@)?* Rs,:=MW)? f:=13% and q¢c(1,p,/2),(8.41)

we obtain, with p := 2q € (2,p,),

( SRM(ﬁ)p d0>; <C < S2RM(6)2da>% +C ( ][52R|§|p d0> " (8.42)

Since this holds for every 2 < p < p, and M (@), g € L1(99Q) for every 2 < g < p,,, it follows

from Lemma 8.6 that there exists € > 0 such that
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/M )P do < C, / |gIP do whenever 2 <p<p,+e. (8.43)
o0N
This finishes the proof. O

The previous estimate allows us to establish the invertibility of the boundary integral

operators in the following theorem.

Theorem 8.8 Let Q C R™, n > 4, be a graph Lipschitz domain and fix p € [0,1). There
exists € > 0 such that for2—e < p < 2(n 1) + €, the operators :l:1 1+"I + K\ are invertible

on LP(092).

Proof. This has already been established in the case when p is near 2. Let ¢ > 0 be

as in Lemma 8.7 and fix 2 < p < 2(: U4 e Let g € LP(0Q). Then there exists g; €

LP(9Q)NL3(09) (j € N) such that g; converges to § in LP(99), as j — oo. Since & F’;I—FKA

is an invertible operator on L?(0R2), for each j € N, there exists fj € L2(99) such that

(3TET + Ky f = G- (8.44)

For j fixed, let @y = Dyfj in Qs and 74 = Pyf; in Qu. Then (@x,7+) solves (8.1) with

datum g;. Then by Lemma 8.7,

/|fj\pd0—/]u+—u |pda<2p/M pda<C/\g]] do, (8.45)

which proves that fj € LP(092). Repeating the above argument with the functions f; — ﬁ;

and g; — gk, j, k € N, we can conclude that

1f; = filleoon) < CIGj — Gillroay Vi k € N (8.46)

Since {g;}; is a Cauchy sequence in LP(0), it follows that { f;}j is a Cauchy sequence in
LP(89), and so there exists f € LP(99) such that f; converges to f in LP(0S2). Then, for

every j € N, formula (8.44) gives

\|(%1JI+ KA)f Gllr(o0) < ||(%1—“I—|—K,\)(f fj)HLp o) + 195 — Gllron),  (8.47)
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so letting j — oo yields that (%}J_F—ZI + K))f = g. Thus, the operator %}J_F—ZI + K, maps
onto LP(0N), and is therefore semi-Fredholm on LP(912) for every p € [0,1). For u close

11l+p

3 1_“I + K is invertible on LP(0f2) via a Neumann series, so it

enough to 1, the operator
has index zero. Then %%I + K has index zero on LP(9Q) for all u € [0,1), so it is, in

fact, invertible on LP(0RQ) for all p € [0,1). If we reverse the roles of 4, and 4_ and repeat

the argument, we can show that the operator —%if—ﬁ[ + K is also invertible on LP(9).

This completes the proof. ]
‘We conclude this section with

Proof of Theorem 8.1. Since the operators i%if—ﬁ[ + K are invertible on LP(9f2) for

2(n—1)
n—3

+ €, by duality, the operators flleyry K3 are invertible

uE[O,l)and2—5<p< 21—p

on LP(0Q) for p € [0,1) and 2(:_;11) — e < p < 2+e. Then the theorem follows from

Proposition 4.19 and Theorem 5.9. ]
8.2 The Dirichlet problem
This section will be devoted to proving the following result.

Theorem 8.9 Let 2 C R™, n > 2, be a graph Lipschitz domain. Then there exists € =

e(0) > 0 such that for each

2—e < p<oo, if n=23,
(8.48)
2 2(n—1) .
—€<p<ﬁ+€, Zf 7124,
the Dirichlet problem
AU=Vmr, divi=0 in Q,
M (@) € LP(092), (8.49)

— :_) P
CIR f e LpP(o9),

\

has a solution, which is unique modulo adding functions which are constant in 2 to the

pressure term. In addition, there exists a finite constant C > 0 such that
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IM (@)l 2o a0y < Cll fll 2o (o02)- (8.50)

Proof. Let A € (—1,1]. From Theorem 8.8, (7.103), and duality it follows that the operator

1+ K : LP(0Q) — LP(9Q) (8.51)

is an isomorphism for each p as in (8.48). Then the functions

—

@ =Dr((3T+ Ky f) and 7 ="P\((A+K\)f) (8.52)

will solve (8.49) and satisfy (8.50).

Turning our attention to the issue of uniqueness, let (@, ) solve the homogeneous version

2(::31) + ¢). To fix ideas, assume that € is the upper-graph

of (8.50) for some p € (2 — ¢,
of a Lipschitz function ¢ : R"~! — R satisfying ((0) = 0, and for each R > 0, consider the

bounded Lipschitz domain

Dg:={z=(2',2,) eR" ! xR: |2/| <2R, 0 <z, — p(z') < 2R}. (8.53)

As it will be shown in § 9.2, via arguments which are independent of the present consider-
ations, there exists some finite constant C' > 0 which depends only on p and the Lipschitz

character of €2, such that

Mp, (i)’ do < C \@[P do, (8.54)
aDR 8DR

where Mp,, stands for the nontangential maximal operator associated with the domain Dp.
In order to continue, set Si := B(0, R) N0 and denote by Vi := dDpg\ (SR U(Sr+ Ren)>
the lateral side of the boundary of the domain Dg. Then, with MY as in (7.58), we may

write
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M@ do < Mp, (@) do < C |i|P do
Sr O0DR 0DRr

= \u|pda+C/ —l—Ren)\de—i—C/ [P do

IN

\u]pda—i—C/ (- + Re)P do

= IR+IIR7 (855)

since u vanishes on d€2. Next, observe that if n > 0 is a sufficiently small constant depending

only on 012, then for each x € ¢, interior estimates and Lemma 7.3 give

n—1
(@ + Rey)| < C<][ ) 7
B(erRen,nR)
< CR™7 ||l gomsin 0y < CR™7 |M(@)]] zoon)- (8.56)

In particular,

limp_ o |i(x + Rey,)| = 0 for each x € 09,
(8.57)

and |t(- 4+ Rey,)| < M (@) for each R > 0,

so that,

lim Ilpr =0, (8.58)

R—o0

by Lebesgue’s Dominated Convergence Theorem. Let us now replace R by 7R in (8.55) and

then integrate the resulting inequality for 7 € [1,3/2]. If we consider the pipe-like region

Pr:={rx=(2,2,) ER" I xR: R/2<|2/| <4R, 0 <z, — p(z') < 4R},  (8.59)

then, on account of (8.58), we obtain
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3/2 3/2
MY (@) do < C’/ [TRerrc/ IL.gdr
Sr 1 1

IN

CR™! / |d dz +o(1) < C M(@)? do + o(1) (8.60)
Pr S4r\SRr/2

as R — oo. However, since M (@) € LP(0S2), we also have fS4R\SR/2 M(@)Pdo = o(1) as

R — o0. Hence, by Lebesgue’s Monotone Convergence Theorem,

M(@)P do = lim MY (@)P do = 0. (8.61)
Gi9) R—oo Jgp
From this we may, of course, conclude that @ vanishes in 2. O

9 Boundary value problems in bounded Lipschitz domains

9.1 Localization arguments

Let © be a bounded Lipschitz domain in R™ and consider an open, finite cover of 92 with
coordinate charts (Z;, ¢;), i = 1,...,m. Also, for each 7, denote by ¥; the graph of ¢; in the
system of coordinates induced by Z;.

For fixed p € [0,1), =1 < XA < 1, denote by T the operator i%i—ﬁ[ + K on 0f), where

K is as in (4.44), and let T} stands for i%}f—lfjf + K on %;, where K} is as in (4.44) but

with 9 replaced by ;. In particular, for each p € (2, 1] (which we shall henceforth

n

assume) there exists C' = C'(\, u, p) > 0 such that

Il gew,) < ClITflgs,)  VfEHF (), 1<i<m. (9.1)

Next, let {&;}1<i<m be a family of smooth functions with compact support in Z; which form
a partition of unity in a neighborhood of 9. Also, for each 4, let ¢; € C§°(Z;) be such that
¢; = 1 in a neighborhood of supp&;. Then, with A and p as above, for any f € hig’(aﬁ), we

may write

Hf”h(ll’tp(ag) < CZ ”fith;*g’(aQ) < CZ ||5Z'Nf||f{';ip(zi) < CZ ||E(€zf)||ﬁ;tp(zb)
=1 =1 =1
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m

< O IGTHEN  gipesy +C DN = OTEN i s, (9-2)
i=1

i=1
m n—1 m n—1
< C;Z}II%JQ W Ee (50 +CZ;Z;II5 (1= Q)T &N a7, (=,)-
i=1 j= ? J

Above, the first inequality uses the fact that f = >, & f on 09, the second one follows
from Lemma 2.10 (here, tilde denotes the extension by zero outside the support to a function
defined on ;), the third is based on (9.1), while the fourth one is implied by Lemma 2.7.
Finally, the fifth inequality is a consequence of (2.61) (here, the tangential derivative op-
erator 0 w is defined as before, but relative to the system of coordinates induced by Z; in
R™).

We adopt the following terminology. Call an expression of the form |Rf||x residual if R
maps h}f (0) compactly into the quasi-Banach space X'. Recall the index p* from (2.48)
and observe that for each ¢ € (1,p*), the operator of multiplication by &; is compact from
hiP(8Q) into L4(%;). This and Lemma 2.9 show that the terms in the last double sum in
(9.2) are residual. In order to continue, note that there exists a family of ‘nice’ singular

integral operators { Ry }1<k<n, on 02, such that

n
T=+51£0,, + ) Ridy,. (9.3)
k=1

0

Tjn

In fact, from the identity (4.98), the Ry’s can be taken to be principal-value singular integral
operators on J€2 whose kernels are of the form OyE(x — y) or OxEa(r —y), 1 < k < n.

Furthermore, we also have

1<i<m, (9.4)

where R}C is the version of Ry written for X; in place of 9€). Consider now a typical term

in the next-to-the-last double sum in (9.2), and for a fixed ¢ € (1,p*), note that

0,3 6T &Ny < CIGTHEN htpgsy < CIGTHED o on

Q

IGT3 (&) [ Lago) + 11071 [GTi(&F)lInz, (o0
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= GT(EPlLaoe) + 107 [GTE Nz, 00); (9.5)

thanks to (2.83), (2.91), (2.93), and the fact that the integral operators T; and T" have the

same kernel. Since

ge (1,p") = hlP(0Q) — L1HQ) compactly, (9.6)

and since (;T¢ maps L1(0N2) boundedly into itself, we may conclude that the first term in

the bottom line of (9.5) is residual. Regarding the second term, using (9.4) we may write

Op [GT &) = (97 G)T(&f) + > GR (97 &) ) + A= (0 &)f

k=1
n
£3 10 G0 f DGRk, 1)). (9-7)
k=1
Again, granted (9.6) and the fact that the operators (0, ()T, CiRk(BT@kfi) map L2(09Q)
mn J
boundedly into itself, we may further deduce that the first three terms in the right hand-side
of (9.7) give rise to residual expressions. There remains to consider the terms in the last

line in (9.7) which, with the help of (9.3), we further transform as

ST 4D GRG0, 1) = 3Gl &0, 1) % 31760, T+ 36RO, 1)
= > GlRK&)(0r ) + &0y (T). (98)
k=1

Since for every p € (21, 1] there exist ¢ > 1 and s € (0,1) such that h?,(0Q) — B?1(99)
compactly and since L4(0€) — hP(952), Lemma 2.23 shows that each [Rj, fi]aszk gives rise
J

to a residual expression. If we also note that

€:0,: (TDllnp, (o) < Cl0si, (TH)lanygom) < CITFllairany (9.9)

then the above reasoning proves that, whenever ”Tfl <p<1l,pel0,1)and -1 <A <1,

there exists a constant C' > 0 such that
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Hthl r(o) < Cll(£ %1—“[ + KA)f||h1 roo) + residual expressions, (9.10)

for every f € hlP(09).

The estimate (9.10) leads to the following results.

Proposition 9.1 Forn = 2,3, let Q) C R" be a bounded Lipschitz domain and assume that

€10,1) and —1 < A < 1. Then there exists € > 0 such that

LT 4 Ky hyP (09) — b, (09) (9.11)
are Fredholm operators of index zero for each 2(:;11) —e<p<Ll

Proof. The estimate (9.10) shows that the operators +3 1JF“I + K are bounded from below
modulo compact operators on hiP(8Q) for each p € [0,1). In particular, (9.11) are semi-
Fredholm operators. Since they are invertible when g is sufficiently close to 1, the homotopic
invariance of the index may be invoked in order to conclude that this one-parameter family

of operators (indexed by p) consists of Fredholm operators with index zero. O

Corollary 9.2 Let Q C R, n > 2, be a bounded Lipschitz domain and assume that 1 €

2(n—1)

[0,1) and —1 < XA < 1. Then there exists € > 0 such that for p € (%7

—&,2+¢),

AT + Ky : b (09Q) — BE(09) (9.12)
are Fredholm operators of index zero.

Proof. The case p < 1 is covered by the previous proposition. When p > 1, we can derive
an estimate corresponding to (9.10) in a similar fashion as before, although in this case,
since we are dealing with classic Sobolev spaces L{(9), the argument is a little more
straightforward. Again, this type of estimate is enough to prove that the operators in

question are Fredholm with index zero. O

As a result of the previous theorem when p = 0, it can also be shown that the operators
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(0Q2) — hY

+31+ K : B} D, (09) (9.13)

Lyt

are Fredholm with index zero. In particular, using Lemma 11.41 and (5.125) then gives

(0Q) — hY

Lyt

Ker(:l:%[—l—K)\:hp

Lyt

(asz)) = TN00y), (9.14)

2(n—1)
n+1

for each p € ( -2+ 5). We can now prove the following theorem.

Theorem 9.3 Let Q) C R™, n > 2, be a bounded Lipschitz domain and assume —1 < A < 1.

Then there exists € > 0 such that for p € (2(:;11) —&,2+¢), the operators
HIEAT + Ky BT (09) — h(09) (9.15)

are isomorphisms for all u € (0,1). Moreover, corresponding to the case p = 0, the operators

£51+ Ky : b, (09)/3N0Q5) — B, (09) /0 (09z) (9.16)

1,v4+

are also isomorphisms.

Proof. From Theorem 5.17, we know the above operators are isomorphisms when p is near
2. Then since L?(99) is dense in h§(012), the operators in (9.15) must have dense range.
From Corollary 9.2, the range is also closed, and so the operators are surjective. Since
they are also Fredholm with index zero, this implies that the operators in (9.15) are in fact
isomorphisms.

Arguing as in the last paragraph of § 5.3, it follows from Corollary 9.2 that the operators
in (9.16) are Fredholm with index zero. Since we know that (9.16) are isomorphisms when

pis near 2 and L2, (9Q) is dense in hY

T 1., (092), these operators must have dense range for

each p in the desired range. Since the range is also closed, the operators in (9.16) must be

onto, and therefor they are in fact isomorphisms. ]

At this point, we are ready to prove the following result with regards to the invertibility

of the single layer.
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Theorem 9.4 For each bounded Lipschitz domain 0 C R™ with n > 3, there exists € =

e(092) > 0 with the property that

S - RP(992) / vRon — hE(09) (9.17)

2(n—1)
n+1

is an isomorphism for each p € ( —&,2+¢).

Proof. First, note that the operator (9.17) is well-defined due to (5.78) and (5.175). We

will show that

Ker(S L hP(09) — hf(am) = vRyq. (9.18)

Assume fe hP(09) is such that Sf: 0. Then 4y := Sfin Q4 and 74 = inn Q. satisfy

Aty = Vg in Q4

div Z_[i =0in Qi,
(9.19)
U+]on = 0,

M(Viy), M(ry) € LP(99).

Since M (Viy) € LP(0Q2), by Lemma 11.9, it follows that M (@) € P (092) where 1% =

% — ﬁ Then since p* > 2 — ¢, uniqueness for the L? Dirichlet problem guarantees that

i+ are locally constant. Then 74 are also locally constant, and so it follows that

F=oNa_,m_) =iy, my) = v(my —7_) € vRyq, (9.20)

which proves (9.18). From (4.142), we know that

S0 (0)(DA(), PA() = (31 + Ky) o (=31 + K)), (9.21)

as operators on hi(9€). Although the identity (4.142) was originally proven for p > 1, by a

density argument, it must also hold for ”T_l < p < 1. Now from Corollary 9.2, we know that
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the operators £3/ + K are Fredholm for p € (2(:7;11) —&,2+¢), and hence from (4.142),

we can conclude that the operator

S : hP(0Q) — hY(0%2) (9.22)

has a finite codimensional range, which in turn implies that its range is closed. Now since

2(n—1)

the operator in (9.22) has closed range and (9.18) holds for all =~

—e<p<2+4e¢,
it follows that (9.17) is injective and has closed range for all values of p in this range.
Furthermore, from Theorem 5.18, the operator in (9.17) is an isomorphism when p is near

2, and so applying Theorem 11.47 from the Appendix, it must be an isomorphism for all

2(n—1)
n+1

—e<p<24e. O

Since (9.17) is a self-adjoint operator, the following corollary follows immediately by

duality.

Corollary 9.5 For each bounded Lipschitz domain  C R™ with n > 3 there exists € =

£(02) > 0 with the property that for each

2—e<p<oo if n=3, (9.23)
2(n—1) .
2_€<p<ﬁ+€ an24, (924)
the operator
S IP (89) / v Rya — L2(Q) (9.25)

s an tsomorphism.
We also have the following results for n = 2.

Theorem 9.6 For each bounded Lipschitz domain Q C R? there exists € = £(0Q) > 0 with

the property that the operator

S (hp(a(z) /VR@Q) B R — 1L (00) ® R, (9.26)
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given by

801, = <S§+ @ f dia) | (9.27)

18 an isomorphism for each p € (% —&,2+¢).

Proof. Arguing as in the proof of Theorem 9.4, we can establish that (9.22) is a Fredholm
operator for each p € (% —¢&,2+¢). Recall the decomposition S =S, + S as defined
in (5.188). Since we know S, = S is Fredholm, and S; is compact (being an operator
of finite rank), it follows that S is also Fredholm, and therefore has closed range for all
pE (% —¢,2+4¢). Since S is an isomorphism for p = (2—¢, 2+¢) according to Theorem 5.21,
it has dense range for all p € (% —¢,2+ ¢), and therefore it is onto for all p in this range.
Applying Theorem 11.47 from the Appendix, we can conclude that S is an isomorphism for

each p in the desired range. O

It can also be shown that (9.26) is a self-adjoint operator, and so the following corollary

follows immediately by duality.

Corollary 9.7 For each bounded Lipschitz domain 2 C R? there exists € = (08) > 0 with

the property that the operator

S: (Lfi L(09) /V]Rag) OR? — [2(IQ) & R (9.28)
as in (9.27) is an isomorphism for each 2 —e < p < 0.
Next, we state another result involving the single layer in two dimensions.

Theorem 9.8 For each bounded Lipschitz domain 2 C R? there exists € = €(98) > 0 with

the property that

s:hp(ag)/ymm@w%hijw(am = {fe W / (ﬁ@dazOVngW} (9.29)
w ’ a0
s an isomorphism for each p € (% —&,2+¢), where W is as in (5.129).
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Proof. From Theorem 9.6, we know S is an isomorphism for each p € (% —&2+¢). In
particular, S has index zero, and so since S & S — S; where S; as in (5.188) is compact, it
follows that S must have index zero for each p € (% —¢,2+¢). Using (5.184) and applying

Theorem 11.41 then gives

Ker (S : hP(09) — hY(0Q)) = vRogo ® W,  Vpe (3 —¢,2+¢), (9.30)

and therefore (9.29) is indeed an isomorphism for each p in the desired range. U

Consider now the following transmission boundary value problem for the Stokes system:

Aty —Vrye =0 in Qg,

M(Vﬁi), M(ﬂ':t) S Lp(aﬁ),
(9.31)

Ty| —i
+ oQ

_f P
L= Femon),

iy ms) — p O} (i, 7_) = § € hP(99),

along with the decay conditions

O(|z)>*™) as |z|— o0, if n>3,
u_(z) = (9.32)
—iE(a:) (fagg’da) +0(|z|™Y  as |z| — oo, if n=2,

0;u_(z) = —i(ajE)(a:) (][mg‘da) +O0(|z|™) as |z] — 00, 1 <j<mn, (9.33)

O(Jz]*"™) as |z| — o0, if n >3,
m_(z) = (9.34)
5<VEA)(x) 7 f89§d0> +O(z]2)  as |z — oo, if n=2.
Above, Q C R" is a bounded Lipschitz domain, u € (0,1) is the transmission parameter
and we have set Q, := Q, Q_ := R"\ Q. Also, when "Tfl < p < 1, the integral f89§d0
should be interpreted as <<gg, Xo9) eg) L<per with (-, ) denoting the duality pairing between
RP(9Q) and C—1D/P=1) ().

We can now prove the following result.
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Theorem 9.9 Assume that Q@ C R", n > 2, is a bounded Lipschitz domain and that

”T_l <p<oo, =1 <A< 1. Then the following claims are equivalent:
(i) the problem (9.31)-(9.34) is well-posed for every p € (0,1);
(ii) the operator
SUET + K3 hP(09) — hP(0Q) (9.35)
is an isomorphism for every p € (0,1);

(iii) the operator

VLT + Ky < BE(09) — B(09) (9.36)
is an isomorphism for every p € (0,1).

Proof. The proof of the implication (i7) = (i) follows exactly as in the proof of the first
part of Theorem 5.22. In the opposite direction, the a prior: estimate associated with the

version of (9.31) when f = 0 reads

100 (i, m4) — O (i, ) lwoy = IM(Viig) || zoan) + 1M (7)o o0)
HIM(VE-)| Lo ooy + 1M (7-) || Lraa) (9-37)

for any pair of functions (4, 7+ ) which solve the Stokes system in Q1 and satisfy i |s0 =
U_|oq, M(Viy), M(my) € LP(0R). Specializing this estimate to the case when @y = Sﬁ,

71 := Qh in Q4, with i € hP(8), and arguing as in (4.173) then yields

2]l w00y < Cll(31+ K300 (9.38)

where C' = C(Q,p, ) > 0 is a finite constant. Thus, {1’“1] + K*}O ) is a continu-
<p<
ously parametrized family of one-to-one operators with closed range (in particular, semi-

Fredholm) on AP(052), which are invertible (via a Neumann series) when p is sufficiently
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close to 1. The homotopic invariance of the index then gives that all the operators in
question are invertible on hP(052).

Consider next the equivalence (i) <= (iii). First, when the operator (9.36) is an
isomorphism for each p € (0,1), a solution to (9.31)-(9.34) which satisfies (5.205) is given
by

Ty = —Sg—i—D,\[(%“—lI—l—K)\) I(Sﬁ—i-ﬁf)} n O, (9.39)
myo= Qi P (3 K (5544 7)| ooy (9.40)
7 = ——Sg+MD [(1““[4—[@) 1<5g+ ﬁfﬂ n O, (9.41)
T o= —;ngr;m[(;gtium)1(Sg+uﬁf)] in Q. (9.42)

Second, if the problem (9.31) is well-posed for each p € (0,1), then

[wiyloo — d-|oollw@a) ~ [IM(VEL) @) + 1M (74) | L 0)

HIM (Vi) rraq)y + 1M (=) Lra0)» (9.43)

for any pair of functions (i, 7+ ) which solve the Stokes system in Q4 and satisfy 9, (ii4, 74 ) =
N, m_), as well as M (Viig), M(ny) € LP(99). Indeed, this is the apriori estimate as-
sociated with the version of (9.31) in which we multiply by u the first boundary condition,
re-denote pi— by u_, and take § = 0. Now, specializing (9.43) to the case when 4y = D;ﬁ,

7+ = Pyh in Qu, with h € B2(8), yields

IRlleony = llisloa — @-loalloa)
< |IM(Viy) | zeaa) + 1M (7)) + 1M (V=) Lroa) + 1M (7-) [l Lro0)
< COllptslae — u-loallnr o0y = C||(%L1 + K)\)hHh” 89)> (9.44)

where C'= C(Q,p, ) > 0 is a finite constant. With this in hand and arguing as before, we

then conclude that the operator (9.36) is an isomorphism for every u € (0,1).
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There remains the issue of proving uniqueness for (9.31) when, say, the operator (9.36)
is an isomorphism for each p € (0,1). Once again, if (@, 7+) is a solution of the homo-
geneous version of (9.31)-(9.34), Green’s formulas (5.211) hold. Multiplying the version of
(5.211) corresponding to the sign minus by v, then adding it to the the version of (5.211)

corresponding to the sign plus yields, after taking boundary traces

—

Ut

— _ l — _ _l —
Qﬂw_‘aﬂ_ (21 * KA) <u+‘aﬂ> 'u< o+ KA) (u_ aQ)’ (9.45)

,

since the single layer does not jump across 9§ and 0 (i, my) = po)(i_,7_). Thus,

keeping in mind that @y |gq = U_|gq yields, after some algebra, (%Z—ﬂ]—i—lﬁ) <ﬁ+ ‘(m) =0

Hence, 4 |sq = 0, and so i_|pq = 0 as well. If in place of (4.152), we now set

iy in Oy, T+ in Qi
and 7= (9.46)
puu_ in Q_, pr_ in Q_,

<y
I

then the pair (@, 7) solves the Stokes system in R™ and decay at infinity. Interior estimates

then force that @ = 0 from which the desired conclusion follows. O

Running the same type of argument as above, but for the transmission problem

Aty — Ve =0 in Q4,

M(Vﬁi), M(Wi) c LP(aQ),
(9.47)

—uﬁ_‘ = § e (%),

.
+‘ o9

o0

Oty my) — i, m_) = F € hr(09),

with decay conditions

O(lz™) as |z| = oo, if n>3,
i_(z) = (9.48)
(@)oo fdo) +O(al™) as [a] = o0, if n =2,

0jii_(x) = (8jE)(aj)(/89 fda) FO(|z]™) as |z| — o0, 1<j<mn, (9.49)
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O(Jz|'™™) as |z| — o0, if n>3,
n_(z) = (9.50)
<VEA)(37) s Joa fda> +O0(|lz|7?) as |z| — o0, if n=2.

in place of (9.31)-(9.34), yields the following result.

Theorem 9.10 Let Q@ C R", n > 2, be a bounded Lipschitz domain and assume that
2=l < p < oo, =1 < XA < 1. Then the fact that the transmission problem (9.47)-(9.50) is

well-posed for each p € (0,1) is equivalent with each of the following two conditions:

— 3BT+ K 2 hP(092) — hP(0Q)) isomorphically, ¥ € (0,1), (9.51)
—%Z—EI + K : Wi (09) — kY (99Q) isomorphically, ¥V pu € (0,1). (9.52)

We can now also prove the following theorem.

Theorem 9.11 Let Q@ C R™, n > 2, be a bounded Lipschitz domain and assume that

2(n—1)

—1 < X< 1. Then there exists € > 0 such that for p € ( e

—&,2+¢),

AT+ K5 RP(0Q) — hP(09) (9.53)

are isomorphisms for all p € (0,1). Furthermore, corresponding to the case p = 0, the

operators

i%] + Ky : hgé(aﬁ)/yRagi — h{’%(ag)/y]&mi (9.54)
are also isomorphisms.

Proof. Let p € (2(:7;11) —e,2+4¢). If p€(0,1), it follows from Theorem 9.3, Theorem 9.9,
and Theorem 9.10 that the operators in (9.53) are isomorphisms. If we can show that the
operators in (9.54) are Fredholm with index zero, then we can finish the proof by arguing
as in the proof of Theorem 9.3.

From Theorem 9.4, we know that (9.22) is a Fredholm operator of index zero. Now,

returning to the identity (9.21) and using Corollary 9.2, we can conclude that
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O2(DA(), Pa() : WE(DQ) — hP(99) (9.55)

is also a Fredholm operator of index zero.
For f € hP(0Q), let Uy = Sfin O and 74 := Of in Q4. Applying (4.144) to these

functions leads to the identity

O (DAGSF), PA(ST)) = BT + K{)(—3T + K3)f, V[ eh?(09). (9.56)

Although (4.144) only holds as stated for p > 1, the identity (9.56) still holds for
"T_l < p < 1 by virtue of a density argument. Now, since the operators (9.55) and (9.22)
in the left hand side of (9.56) are Fredholm and the operators in the right side commute, it

follows that the operators

+11+ K} hP(09Q) — hP(0Q) (9.57)

both have a closed, finite co-dimensional range as well as a finite dimensional kernel. Hence,

they are both Fredholm. Now that we know the operators

AT+ K3 hP(09Q) — hP(09) (9.58)

are Fredholm for all u € [0,1), it follows that the Fredholm index must be constant for
all o in this range. Thus the operators in (9.57), which correspond to the case p = 0, are
Fredholm with index zero. Finally, arguing in a similar fashion as in the last paragraph
of § 5.3, we can show that the operators in (9.54) are also Fredholm with index zero, as

desired. OJ

We conclude this section with two corollaries.

Corollary 9.12 Let Q C R™, n > 2, be a bounded Lipschitz domain and assume that

—1 < A< 1. Then there exists € > 0 such that for each
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2—e<p<oo ifn=23,

(9.59)
2—e<p< 2(:__31) +e  ifn >4,
and each p € (0,1), the operators
T+ K LP(09) — LP(09) (9.60)

are isomorphisms for all u € (0,1). Moreover, corresponding to the case = 0, the operators

£11+ Ky LB, (09) /9 (0905) — LB, (99) /T (90) (9.61)
are also isomorphisms.

Proof. This follows from Theorem 9.11 and duality. g

To state our second corollary, we need some preparations. Recall the duality result from
(2.68). The dual of hl,(95) involves the local BMO space. which we briefly review. For

some fixed 0 < r, < diam (0€2), the space bmo (02) is then introduced as

f € bmo (09) £, feL*o9) and sup ][ |f — fa,|do < o (9.62)
Ay .stlﬁrfac<e ball/ A,

(with fa, :==F A, f do, where the barred integral indicates averaging), and is equipped with

the natural norm. Then (cf. [17])

(h}w(ag))* =bmo (90) and  hL,(99) = (vmo (aQ))*, (9.63)
where
f € vmo (09) £, f € bmo (012) and lim sup ][ |f — fa,|do | =0 (9.64)
—V\aA, _stuhrfac<e Ib%all Ay

is Sarason’s space of functions of vanishing mean oscillation. Define the spaces bmo,, (052),

vmo,, (0Q) and Cy, (09) in an analogous fashion to (5.115).
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Corollary 9.13 Suppose that Q@ C R™, n € {2,3}, is a bounded Lipschitz domain and

assume that —1 < X\ < 1. Then, for each p € (0,1), the operators

i%%l + K : bmo (02) — bmo (012),

1

z

+ I+ K : vio (0£2) — vmo (99),

11+
21-p

—

are isomorphisms. In addition, corresponding to the case u = 0, the operators

+17 + K, : bmo,, (99)/0*(992) — bmo,, (9Q)/T*(9Q5),
+11 + K : vino,, (09)/¥*(0Q5) — vmo,,, (9Q)/T*(002+),

are isomorphisms. Finally, there exists € > 0 such that

O<a<%+€ ifn=2,

O<a<e ifn=3,

the operators

AT+ Ky 0 C(00) — C%(09),  pe(0,1),
11+ Ky : C5(09) /T (090%) — C2,(09) /T (00)

are also isomorphisms.

Proof. This follows from Theorem 9.11, the above discussion and duality.

(9.65)

(9.66)

(9.67)

(9.68)

(9.69)

(9.70)

(9.71)

O

9.2 Main well-posedness results with nontangential maximal function es-

timates

We can now state some of our main results. The first involves the transmission problem.

Theorem 9.14 Assume that Q@ C R"™, n > 2, is a bounded Lipschitz domain and set

Oy =0, Q0 :=R"\Q. Also, fizrpu € (0,1) and X € (—1,1]. Then there exists ¢ = £(0Q) > 0

such that for each
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2(n—1)

T —E<p<2+e (9.72)

the transmission boundary value problem, concerned with finding two pairs of functions

(U, my) in Qg satisfying

Aty = Vmy, divige =0 in Qi,

M(Vﬁi), M(Wi) c Lp(aQ),
(9.73)

—i_| =gen o0
‘89 ‘89 g € h(09),

O iy, ) — poy (i, m_) = f € (),

\

and the decay conditions

O(|z|>™™) as |z| — 00, if n>3,

u_(x) = (9.74)
—iE(x) (faﬂ fda) +O(|lz|7Y)  as |z| — o0, if n=2,

dji—(x) = —(9;E)(x) (/8Q fda) +O0(lz|™) as |z| =00, 1<j<mn, (9.75)
O(|lz|*™) as |z| — o0, if n>3,

m_(z) = . (9.76)
LVEA) @) (fy [do) +0(|?)  as o] =00, if n=2,

has a unique solution. In addition, there exists C > 0 such that

[M (Vi) || Lo o) + 1M (7+)| r90) < Cllgllnea0) + C|l Flliw o62)- (9.77)

Proof. This follows directly from Theorem 9.3 and Theorem 9.9.

This leads us to our next result for the Dirichlet problem.

Theorem 9.15 Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then there

exists € = £(0) > 0 such that for each
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2—e<p<oo if n=2,3, (9.78)
2(n—1) .
2—8<p<ﬁ—|—6 an24, (979)

the interior Dirichlet boundary value problem

Ad=Vr, divi=0 in Q,

M (@) € LP(09), (9.80)

0 o fe Ly (09),
has a solution, which is unique modulo adding functions which are locally constant in € to

the pressure term. In addition, there exists a finite constant C > 0 such that

IM (@)l 2o 20y < Cll 1l Lo (002 - (9.81)

Similar results are valid for the exterior Dirichlet problem, formulated much as (9.80)

with the additional decay conditions

O(|z|>™) as |x| — o0, if n >3,
u(z) = (9.82)
E(x)A+0(1) as |z| — oo, if n=2,

O(Jz|t™™) as |z| — o0, if n >3,
Oju(x) = ) (9.83)
O;E(x)A+ O(|z|72) as |z| — o0, if n=2,

O(|z[*=") as 2| — 00, if n>3,
(z) = (9.84)

—.

(VEA(z), A + O(|z|72) as |z| — oo, if n =2,
for some a priori given constant A e R2. Also, the standard nontangential maximal operator

in (9.81) should be replaced by its truncated version.

Proof. Fix A € (—1,1]. From Corollary 9.12, for any f € L%, (99), there exists gy € L%, (8)
and ¢, € UMHN_) such that (AT + K\)g + Y, = f. Since 1, € LE(N), according to

Corollary 9.5, when n > 3 there exists go € L” (92) such that Sgs = 1170. Then
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will satisfy (9.80) and (9.81). The case n = 2 can be treated in a similar manner. In
this case, using Corollary 9.7, we can instead find g» € L*(9€) and & € R? such that
SGs + &= 1b,. Then

’J = D)\gi + S§2 + E and = PAgl + Q§2 (986)

will satisfy (9.80) and (9.81). Existence of solutions for the exterior Dirichlet problem can
be established in a similar fashion. This time, when n = 2, we can invoke Theorem 9.6 in

order to be able to choose gs such that

/aQ Godo = A, (9.87)

which, in turn, will guarantee that the solution just constructed has the appropriate decay,
as prescribed in (9.82)-(9.84). Finally, uniqueness in the case p > 2 follows from uniqueness

for the case when p is near 2, which is guaranteed by Theorem 5.25. ]

Theorem 9.16 Assume that Q@ C R™, n € {2,3}, is a bounded Lipschitz domain. Then
there exists e = £(02) > 0 such that if (9.69) holds then the interior Dirichlet boundary

value problem

Ad=Vr, divi=0 in Q,

7€ Cu(Q), (9.88)

uaﬂ fECV+(8 )7

\

has a solution, which is unique modulo adding functions which are locally constant in € to

the pressure term. In addition, there exists a finite constant C > 0 such that

[l ooy + sup dist (wvaﬁ)l_O‘IVﬁ(w)l} < | fllow (o0 (9.89)

217



Similar results are wvalid for the exterior Dirichlet problem with the additional decay

conditions (9.82) imposed.

Proof. This is proved much as Theorem 9.15, with the help of Corollary 9.13. ([l

We next discuss the case of the Dirichlet problem with data from BMO and VMO
spaces. A few preliminaries are necessary. Given a Lipschitz domain 2 C R", define the set

of Carleson measures, Car ({2), as the subclass of Borelian measures p on 2 satisfying

112l car () := sup {'urn—_l sz e df), 0 <r<diam (GQ)} < 0. (9.90)

We shall also make use of a distinguished subclass, Car,(Q2), of the space of Carleson

measures in {2, defined by

def

p€ Cary(Q) <= p € Car () and lim | sup ————F—— | =0. (9.91)
0—0 €N rT
0<r<sé

Theorem 9.17 Assume that Q C R™, n € {2,3}, is a bounded Lipschitz domain. Then the

interior Dirichlet boundary value problem

Ad=Vr, divii=0 in €,

|Vii|2dist (-, Q) dx € Car (), (9.92)

7| = f € bmo,, (8Q
uém f € bmo,, (0€2),

has a solution, which is unique modulo adding functions which are locally constant in Q) to

the pressure term. In addition, there exists a finite constant C > 0 such that

| [Widdist (-, 092) d| ¢y 0y < Ol Fllbmo (o0 (0.93)

and

Vi 2dist (-, 090) dz € Cary(Q) < f € vmo (89). (9.94)
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Similar results are wvalid for the exterior Dirichlet problem with the additional decay

conditions (9.82) imposed.

Proof. The invertibility of the relevant boundary integral operators has been established in
Corollary 9.13. With this in hand, the we proceed largely as in the proof of Theorem 9.15.
The only novel aspect is that, in the current context, we need to know that the double
layer operator D) maps functions from BMO on the boundary into densities of Carleson
measures. This, however, is covered by the following general result. Let k € C>°(R™\ {0})
be an odd function which is homogeneous of degree —(n — 1). Also, fix some b € L*°(0)

and assume that the operator

T = [ ke )i o). ze9 (9.95)
satisfies
71 =const in Q. (9.96)
Then
H (Tf)’89||bmo(8§2) + H |VTf|2dISt (769) dx”Car(Q) < CHbemo(aQ)' (997)
See [69] for a proof of this claim. The proof of the theorem is therefore finished. O

We now turn to the following result for the Regularity problem.

Theorem 9.18 Let Q C R”, n > 2, be a bounded Lipschitz domain. Then there exists
e = €(0Q) > 0 such that for each p as in (9.72), the interior Regularity boundary value

problem

Ad=Vr, divi=0 in Q,

M(Vii), M(x) € LP(09), (9.98)

— :_’ p Q
i =FEh (0%2),

1,1/+
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has a solution, which is unique modulo adding functions which are locally constant in € to
the pressure.

In addition, there exists a finite constant C' > 0 such that

| M (V)| Lr a0y + [|M(7) || ra0) < C||ﬂ|h’1”u(89)' (9.99)

Similar results are valid for the exterior Regularity problem, formulated much as (9.98)

with the additional decay conditions (9.82)-(9.84).

Proof. Since the operator

ST+ Ky Y, JoN00-) — KE

1,I/+ 1,I/+

/TN AN_) (9.100)

is an isomorphism for each p as in (9.72), we can find g; € h’f7y+(8Q) and 1, € UNIN_)
such that (%IJF Ky)q +1/70 = f Since 9, € hY , if n > 3, it follows from Theorem 9.4 that

1,

there exists go € hP(02) such that Sgo = 1),. Then

i = Dy\g1 + Sga and m:=Prg1 + Qg (9.101)

will satisfy (9.98) and (9.99). When n = 2, it follows from Theorem 9.6 that there exists

Go € hP(09) and & € R? such that S§ + &= 1),. In this case,

U:=Dyxg1 +Sg2+ ¢ and T = Prg1 + Qg (9.102)

will satisfy (9.98) and (9.99). Existence of solutions for the exterior regularity problem can
be established in a similar fashion. Much as in the case of the Dirichlet problem, when
n = 2, it is possible to choose ga such that (9.87) holds. This guarantees that our solution
has the appropriate decay, as prescribed in (9.82)-(9.84). As for uniqueness, an inspection
of the corresponding argument in the proof of Theorem 5.24 shows that the same technique

can be used in the current context as well. OJ

We finish this section with the following result for the Neumann problem.
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Theorem 9.19 Let Q C R™, n > 2, be a bounded Lipschitz domain and fiz A € (—1,1].
Then there exists € = €(02) > 0 such that for each p as in (9.72), the interior Neumann

boundary value problem

AU=Vmr, divi=0 in Q,

M(Vid), M(x) € LP(9), (9.103)

i, m) = F e hr(00),

has a solution if and only if

femm (—%I K3 1 1, (09) = Wy (aQ)) . (9.104)

Moreover, this solution is unique modulo adding to the velocity field functions from ¥ (Q).

In addition, there exists a finite constant C' > 0 such that

IM (V)| ooy + 1M (1)l ooy < Cll Flineon)- (9.105)

Finally, a similar result holds for the exterior domain R™ \ Q if we include the decay

conditions
O(|z|>™™) as |z| — 00, if n >3,
() = (9.106)
E(ac)(f89 fda) +O(|lz|7Y)  as |z| — o0, if n=2,
0;ii(w) = (ajE)(x)(/ fda) +O(jz|™) as || — o0, 1<j <, (9.107)
a0

O(lz|*™™) as |z| — o0, if n>3,
(z) = (9.108)

<(—VEA)(x), oo fda> L O(2|™?)  as 2| — oo, if n=2.
More precisely, a solution to the exterior problem satisfying the above decay conditions exists

if and only if

fem (%IJFK; (LD (09) — Lgi(am), (9.109)
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and solutions are unique modulo adding to the velocity field functions from WA(R™ \ ).

Proof. Since we have established in Theorem 9.11 that the operators (9.54) are isomorphisms
and also that (9.14) holds for each p in the desired range, the proof that a solution exists if
and only if f is as in (9.104) follows exactly as in the proof of Theorem 5.23. The claim for
the exterior Neumann problem, along with the corresponding uniqueness statement, follows

similarly. ]

10 The Poisson problem for the Stokes system

10.1 Stokes-Besov and Stokes-Triebel-Lizorkin spaces

Here we shall adapt the standard Triebel-Lizorkin and Besov scales to the Stokes system.

Concretely, for a bounded Lipschitz domain 2 in R™, n > 2, and 0 < p,q¢ < 00, a € R, we

set
SBPI(Q) = {(a,w) € BP(Q) @ BP9, (Q) : A— Vr =0, divi =0 in Q} (10.1)
SFPA(Q) = {(a, 7)€ FPUQ) @ FP9 (Q) : Al — V=0, divi =0 in Q} (10.2)
(with the convention that p < co in the latter case) equipped with the norms || - [|gppa(q),

|- llsBra(), naturally induced by Be?() © BY?(Q) and F&*(Q) @ F? (), respectively.

In particular,

SFPP(Q) = SBPP(Q) for every a € R, 0 < p < 0. (10.3)
Our next few results focus on some of the properties of these spaces.

Theorem 10.1 Let Q2 C R™, n > 2, be a bounded Lipschitz domain. Then for every a € R,

0<p<oo,

SFP1(Q) is independent of g € (0, 00). (10.4)
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Furthermore, for any p € (“=1,2], q € (0,00) there exists C = C(S2, p,q) > 0 such that

1M (V)| oon) + IM(m)llLro0) < Cll@, )lsprs (@)- (10.5)

Proof. If ¢1,q2 € (0,00), we have

SFPO(Q) [Fg»ql(mmKerA?] @ [Fgﬂ(Q)ﬂKerA} (10.6)
_ [Fgm (Q) N Ker A2] @ [Fgfi(g) N Ker A} ,
by Theorem 11.15. Thus, SFY?(Q) C FY®(Q) & FP4(Q) and, hence, SFY?(Q) C

SEY®(Q). Similarly, SEY?(Q) C SEY?(Q), so ultimately, SFy*(Q) = SFy%(Q), prov-

ing (10.4). Finally, (10.5) is a consequence of (10.6) and Theorem 11.16. O

Corollary 10.2 Let Q C R™, n > 2, be a bounded Lipschitz domain. Then for each A € R,

the conormal derivative assignment (i, ) — O} (i, 7) induces a bounded operator
0y SFP () — hP(09) (10.7)

whenever"T_l<p§2andO<q<oo.

Proof. This follows directly from (10.5) and Theorem 4.13. O

Recall that (-,-)g, and [-, -] stand, respectively, for the real and the complex method of

interpolation.

Theorem 10.3 Let Q@ C R™, n > 2, be a bounded Lipschitz domain and assume that
0<qo,q1,q <00, ag,a1 ER, ag # a1, 0< 0 < 1. Also, set a = (1—0)ay+ 0ay. Then, if

0 <p<oo,

(SFz(@), SFED(Q)) = SBEIQ), (10.8)

0,q

and if 0 < p < o0,
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(SngIO(Q) , SBgvlql(Q)) = SBPI(Q). (10.9)

0,9

Let 0 < po,p1 < 00, 0 < qo,q1 < o0 with min{qo,q1} < 00, ap, 1 ER, 0 <0 <1 and

seta:(lfG)ao+0a1,%:1p;09+%, andézlq—;equ%. Then

[SFE™(Q), SER™ (@), = SFEY(Q). (10.10)

anally; Zf ap,a1 € R, 0 < po,p1,q90,q1 < 00 with min {QOaih} < 090, then

[sBE™(Q), SBI™ (@) = SBLQ), (10.11)
_ 1_1-0 , 6 1 _1-9 , 6
where 0 < 0 <1, a = (1—0)ag + O, > = 0 T oo Cmdg—qio"‘qfl-

Proof. Fix an open cube Q C R™ containing €, and for and i = 0, 1, set

X, = FE(Q) @ FU(Q), 7= FIv% (@) @ FIU% (@),

(10.12)

Vo= FO00(Q\ Q) @ Fii¥ ((Q\ Q) — Zi.
As discussed in [50], the spaces X + X1 and Yy + Y7 are analytically convex (cf. the
discussion preceding (11.144) for a definition). Let Eg denote Rychkov’s extension operator
truncated near § so that it maps the distributions from the Triebel-Lizorkin scale in Q to
distributions supported in the cube @, with preservation of smoothness. Also, set L(u, 7) :=

(AT — Vm,divd) and

Mi(z) = E(x —y)i(y) dy, x € R", (10.13)
R?’L
Oilz) = / gz —y), @) dy, xR, (10.14)
Oaf(z) = Ex(z—y)f(y)dy,  xeR" (10.15)
R
In particular,
AI-VO =1, divll=0, Alla=1I, (10.16)

224



where I stands for the identity operator. The intention is to use Lemma 11.43 with D :=

Lo Eg and

G, f) := (RQ (Hu7+ VIIa f) Ra (@w+ f)) (10.17)

where R is the operator of restriction to 2. Note that, in the notation of Lemma 11.43,
X;(D) = SFL"(Q) for i = 0, 1. There remains to check that K := DoG — I, as a bounded
linear operator from Z; into itself, actually maps Z; into Y;, ¢ = 0, 1. To this end, for every

pair of test functions ((E,w) € CX(Q) & CX (), and every (W, f) € Z;, we compute

(Do G~ I)(@, ). (6,9))

- <(A [Hw+ VHAf] )Q—v[@uw f}

L div[ma -+ viLag]| ). @)
Hence, K(w, f) = 0 in Q which proves that K maps Z; into Y;. Then (10.8) and (10.10)

follow from Lemma 11.43. A similar argument works for the Besov scale and this finishes

the proof of the theorem. O

10.2 Conormal derivatives on Stokes-Besov and Stokes-Triebel-Lizorkin

scales

Let X be a Banach space with dual X*. For every n x n matrix I = (F}¥)a,; with entries

from X, and every n x n matrix G = (Gf)gﬁk with entries from X*, and each A € R, we set

AN(F,G) = a (\(FP, GY), (10.19)

where (-, -) is the duality pairing between X and X*, and ajo.f (A) are as in (4.1). While our
notation does not emphasize the dependence of (-,-) and A on X, the particular nature of
X should be clear from the context in each case.

The main results of this section are as follows.
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Proposition 10.4 Let @ C R*, n > 2, be a bounded Lipschitz domain and assume that

0<s<1l,1<pg<oo, A€ R. Then

0, SBYY, () — B, (09) (10.20)

given by

<a,§(ﬁ, ), J> = A, (va, VEX(J)) - <7r,divEx(1/7)>, v e B (0Q),  (10.21)

15 a well-defined, bounded operator, where Ex is the extension operator introduced in Theo-
rem 2.18 and 1/p+1/p' =1, 1/q+1/¢ = 1.
Furthermore, for every (i, ) € SB?fl/p(Q) and W € Bf:z:rl/p,(ﬁ), the following inte-

gration by parts formula holds:

Ay (va, vw) - <7r,div w> + <a§(a, ), Tm>. (10.22)

s+1/p

Al — Vr =0, divii = 0 in Q. Also, ¢ € B}"1(99) forces Ex(() € BY"7 | (). Conse-

Proof. Assume that (@, 7) € SBY% (). Then @ € Bgf%(ﬂ), TE Bff%fl(g) and we have

—,

quently, thanks to Proposition 2.15, the matrix VEx(¢)) € Bf/_’i/_l/p(Q) = (Bffl/p_l(ﬁ))

pairs well with Va € Bf_’f%_l(Q). In a similar fashion, div Ex() € (Bgfl/p71(9)> pairs

well with = € B”Y, (). This shows that 9 (i, ) € (B{”;@'(@Q)) = BP9, (69) and
P

1

107 (@, ) || gra (o) < C\|’J|h3§fl @ t CHWHB:_‘;IL_I(Q)‘ (10.23)
p

P
This finishes the proof of the well-posedness and boundedness of the operator (10.20)-
(10.21).

Going further, what we have proved up to this point yields

<83(ﬁ, ), Tr w> = A, (w, VEx(Tr w)) - <7r,div Ex(Tr) w> (10.24)

so (10.22) follows as soon as we establish that
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Ay (va, vw) - <7r, div w> =0,  vVaeBl", (%) with Trd = 0. (10.25)

Since, by Theorem 2.19, C°(Q2) is dense in {W € Bf,f;ﬂ/p,(ﬁ) : Trad = 0}, it suffices to
prove (10.25) when @ € C2°(£2). However, in this scenario, the identity in (10.25) follows

from the fact that A4 — V& = 0 in the sense of distributions in €. O

Proposition 10.5 Assume that Q C R", n > 2, is a bounded Lipschitz domain and that

0<s<1l,1<pqg<oo, NeR. Then

0y SFVE (Q) — BYY(09) (10.26)

given by

<a§<a, ), J> = A, (w, VEX(QE)) - <7r,div EX(J)>, v e BYP(99),  (10.27)

is a well-defined, bounded operator, where Ex is the extension operator introduced in Theo-
rem 2.18 and 1/p+1/p' =1, 1/q+1/¢ = 1.
In addition, the following identity holds for any (i, 7) € SFffl/p(Q), w e Ff;g+1/p,((2),-

Ay (w, vw) - <7r, div w> + <a,§(ﬁ, ), Tr w> (10.28)
Proof. This closely parallels that of Proposition 10.4. U

Note that the definitions (10.21)-(10.27) correspond to a formal application of Green’s
formula (4.6). The applicability of this point of view is limited to the range 1 < p,q < oo,

as B (09) fails to be a dual space if min{p, ¢} < 1. We nonetheless have:

Theorem 10.6 Let Q be a bounded Lipschitz domain in R™, n > 2. Also, assume that

A € R. Then the conormal operator from Proposition 10.4 extends to a bounded mapping

o) SBffl/p(Q) — BP9(09Q), whenever

(10.29)
n—1 1
= <p<oo, 0<g< oo, (n—1)<5—1>+<5<1.
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Analogously, the conormal operator from Proposition 10.5 extends to a bounded mapping

o) SFffl/p(Q) — BPP(09Q), whenever

(10.30)
1=l < p<oo, 0< g < oo, (n—l)(%—1>+<s<1.
Proof. Call a point in R? with coordinates (s,1/p,1/q) “good” if
) : SFffl/p(Q) — FP%(09Q) is well-defined and bounded. (10.31)

Furthermore, call a region £ C R “good” if all points in E are good. Then by Proposi-

tions 10.4-10.5 and Corollary 10.2, the following set is good:

{(s,%,%):l<p<oo,0<s<1} and {(1,}0,%);”7—1<p§2}. (10.32)

Also, by Theorem 10.3 and Proposition 2.24,

E good = the convex hull of E is good. (10.33)

Finally, if for any E C R® we denote by Pr,,E the projection of E onto the (horizontal)

zy-plane, we note that

E good open set in R = 9 : Sprl/ () — BPP(09) is bounded
T (10.34)

whenever (s,1/p) € Prg,F and 0 < ¢ < oo.

Indeed, this is a consequence of (10.8) and (2.162) (with p = ¢), plus (10.4) and the fact
that diagonal Besov and Triebel-Lizorkin spaces coincide.
With this information available, the end-game in the proof of the theorem is as follows.

First, by (10.32)-(10.33), the interior of the parallelogram with vertices at

0(0,0,0), A(1,0,0), B(1,1,1), C(0,1,1) (10.35)
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is a good set, and so is the segment with end-points

P(LEY, QU ). (10.36)

See picture below:

»
-

@)
TI—y

Figure 5

By (10.33), it follows that the pyramid with vertex at @ (given in (10.36)) and whose
base is the parallelogram with vertices as in (10.35) is good. Since the projection of this

pyramid on the (s,1/p)-plane is the region described by

{(s,%>:0<p<oo, (n—l)(%—1)+<s<1}, (10.37)
it follows that the conormal derivative operator is bounded under the conditions specified
in (10.30).

Finally, the corresponding claim about (10.29) is a consequence of what we have just

proved, (10.8) and (2.162). This finishes the proof of the theorem. O

10.3 The conormal derivative of the Stokes-Newtonian potentials

Let Q € R™ n > 2, be a bounded Lipschitz domain and assume that ”T_l <p <1,
(n— 1)(% —1) < s < 1. Call mg € L®(92) a BYP,(0Q) molecule if there exist M > "le

and a surface ball S centered at xg € 92 and having radius r € (0, diam ) such that
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(1) |ms(@)] <7 (L4 r Yz —ag)) M forzed,  (10.38)

(2) ms(x)do, =0 if r <. (10.39)
o0

The molecular theory developed by M. Frazier and B. Jawerth in the Euclidean setting can

be adapted to the case of Lipschitz surfaces. In particular, we have (see [64] for a proof):

Proposition 10.7 Let (n —1)/n < p < 1 and (n — 1)(% —1) < s < 1. Then, given an

arbitrary bounded Lipschitz domain  C R™, n > 2, there exists n = n(0Q) > 0 such that

F o ~ nt{ (3 s)”
S

f= ZASmS, mg’s are BYP (02) molecules, {\s}s € EI(}OAO)
S

uniformly for f € BYP (98).
Conversely, there exists C = C(09, s,p, M,n) > 0 such that for any countable family

{mg}s of BYP (0Q) molecules and any numerical sequence {\g}g € (P,

3o xsms
S

AssumethatseR,0<p§1,p§q§oo,andp<p1<+oo,deﬁne,]::%,andﬁx

B (90) = Cl{As}sller- (10.41)

an integer L > max{[J —n — s],—1}. Let 2 be a bounded Lipschitz domain in R", n > 2,
6 €N, and p > 1 are constants depending on 2. Under these circumstances, call a function

Aq a rough atom for FI{(Q) if

(1) 3Q € R" such that supp A C Q C Q and pQ C €, (10.42)
(2) Al prragny < QPP (10.43)
(3) / 2V A(x)dr =0 if |y| <L and 1(Q) <277, (10.44)

The following result has been proved in [64].
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Theorem 10.8 Let 2 be a bounded Lipschitz domain in R™, n > 2, and assume that
0,4, S,p1,J, L are as above. Then there exist f € N, and p > 1 such that any f € Fz’g(Q)

can be expanded in a series

f= Z Mg A with convergence in S’ (R™), (10.45)
kEZ

where the atoms Ay, satisfy (10.42)-(10.44) and {\;}kez € (P. Furthermore,

ez ~ it {3 sllers £ = 37 Axdi . (10.46)
where the infimum is taken over all possible representations of f in a series of atoms satis-
fying (10.42)-(10.44).

We are now in a position to discuss the main result of this section.

Theorem 10.9 Consider a bounded Lipschitz domain @ C R™, n > 2, and supposed p, q, s
are fized such that ”T_l <p<oo,(n—=1)(1/p—1)y <s<1and0 < q < oo. Then, for

each A € R,

Op(1L,8) : BYY, () — BI, (09), (10.47)
Op(ILO) - FIY -, o(Q) — BIT(0Q),  if p# oo, (10.48)

are well-defined, linear, and bounded operators.

Proof. We start with implication (10.48) for =1 < p <1, (n —1)(1/p—1) < s < 1 and

p < q < co. By Proposition 10.7 and Theorem 10.8, it is enough to show that 9 (II, ©)

maps rough Fffl/pizo(Q)—atoms to BYP, (092)-molecules.
Note that current restrictions on indices imply that rough Fffl p—2 o(Q2)-atoms satisfy

(10.42)—(10.44) with L > 0. Consider first such a rough atom A supported in a Whitney
cube Q C Q, with center g € @ and pick g € 9 such that |z — zg| = dist (zg, 0N).
Then set m := 9)(II(A),O(A)) on IQ which, so we claim, is a molecule for B, (99)

concentrated about the surface ball S := B(zg,1(Q)) N 0.
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The claim will be justified by checking (10.38)-(10.39). Take the vanishing moment
condition, required when [(Q) is small. Assuming that this is the case, A has one vanishing

moment and, for every ¢ € R",

< aﬂmda,é’> = /E,Q<m’6>da:/(m@l/’\(HA’@A)aadU

- /Q<AHA—V@A,5>dx:/Q<A,E>dx

_ </nAdx, 5> —0, (10.49)

by Green’s formula (4.6), written with @ = IIA, 7 = OA, @ = ¢, p = 0, the first identity in
(10.16) and the support condition on A. Thus, f@Q mdo = 0, as desired.
Turning to size estimates, we observe that m can be expressed in the form (recall that

z¢ is the center of @),

m@)zlxa%ﬁE@My@z&@uaau@xDaMA@w@, (10.50)
for some £ € C2°(Q2) such that £ =1 on Q, £ vanishes outside some small neighborhood ¢@),
c=c(Q)>1,0<¢<1, and V€ < OUQ)L

For the range of indices we are currently working with,
Fo, (R™) — LP (R™), if s+5-2-t=-1-21, (10.51)

where p; > 1 is the index appearing in (10.43), chosen sufficiently close to 1, and pa > p;.
Also, (LP(R"))* = szl2 (R™), so that (10.50) together with (10.51) and (10.43) imply

11
()| < OB g g, Al ey < CUQIPPIE s (10.52)

)7

where

Fy(y) = (33(1){15,(1}(?; —2) = Ny {E,Hwg - fr))é“(y), y € R™ (10.53)

We can see that
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€()]

|z —y|"

+C| (B (B0} Y — 2) = 0 {B. @Hag — ) )| IVE()]

IV (y)|

= I+1I. (10.54)

By the Mean Value Theorem,

II < Cly—=ql suwp |V.[0),{E.q}Hz—2)]"| |VEW)
z€[y,zq]
< CUQ) sp ———— |VEW), (10.55)
z€[y,xqQ) |l‘ - Z|
so that
I1<C sup ——, (10.56)
z€ly,xqQ) |$ - Z’

since |V¢| < % Using the property that @ is a Whitney cube for 2 and keeping in mind
that y € cQ, z € 09, z € [y,xg], some elementary geometry leads to the conclusion that

|z — xg| < Ol — z|. Consequently,

II<CUQ)™ <1 n W) - (10.57)

The same reasoning shows that a similar estimate holds for I, so that altogether,

IV el gy < Q) » (1 + W) . (10.58)

Similarly,

|z — g

HQ)

|z — 2q]

>n <ClQ) <1 T

12l ot gy < cu Q)" v (1 + ) ., (10.59)

where the last inequality rests on the observation that [(Q) is bounded by the diameter of
the domain Q. Then by (10.52), (10.58), and (10.59),
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Im(z)] < CLUQ)* ™% <1 + W>_ . (10.60)

Now, by definition, |zg — zg| = dist (zg, 0f2), so that |z — 25| < | — zg| + |zg — zs| <

2|z — zg| for every z € 0. If we now set r := [(Q), then

_ 11z — 1 _
1+M21+,MZ, 1+M : (10.61)
T 2 T 2 T
which entails
-n
m(z)] < Cr* T <1 + M) . (10.62)
r

This proves (10.38) with M := n+s—1 > "le and justifies the claim that m is a molecule for
BPP (09) concentrated about the surface ball S = S, (zg). At this stage, Proposition 10.7
applies and yields that, for ”T_l <p<land (n—1)(1/p—1) < s <1, the operator (10.48)
is well-defined and bounded, first for p < ¢ < 0o, and then for the complementary range,
0 < g < p, by embeddings.

To further expand this range, we shall rely on the observation that

—

/ (0117, 01), f)do = / (i, Dy f) dex, (10.63)
o0 Q

i.e., the conormal derivative of Newtonian potential can be viewed as the adjoint of the
double layer. Then, Proposition 10.11, the duality results in (2.118)-(2.119) and interpola-
tion with what we have just proved allows us to cover the range of indices described in the
statement of the theorem.

Finally, the claim made about the operator (10.47) is a consequence of the boundedness
of (10.48), the duality reasoning described in the paragraph above (in particular, contribut-

ing to the case p = co) and interpolation. ]

10.4 The conormal on Besov and Triebel-Lizorkin spaces: the general

case

Let Q C R™, n > 2, be a bounded Lipschitz domain and assume that 1 < p,qg < 00, 0 < s <

1. Ifd e Bﬁf%(ﬁ), TE Bi’féil(Q) and f € Bffiizo(ﬁ) are such that A7 — Vr = flg in
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€, then as suggested by (4.7), it is natural to define 9, (i, ™) 5 € B (0Q) = (B’f_’% (89)) ,

1/p+1/p=1,1/¢+1/¢ =1, X € R, by setting

—' -,

<a§(a, ™ 7 ¢> - < 7 Ex(1/7)> + AA<V1I, VEx( *)) - <7r,div EX(¢)>, v e BV (09),
(10.64)
where Ex is the extension operator introduced in Theorem 2.18. The conditions on the
indices p,q, s ensure that all duality pairings in the right-hand side of (10.64) are well-
defined. Similar considerations apply to the case of Triebel-Lizorkin spaces. As before, this
duality-based approach is restricted to the case when 1 < p,q < oo, as B2, (9Q) fails to be

a dual space if min{p, ¢} < 1. We nonetheless have:

Theorem 10.10 Let Q be a bounded Lipschitz domain in R™, n > 2, and assume that
"Tfl <p<ooand (n—1)(1/p—1);+ <s<1,0<qg<o0. Also, assume that A € R. Then
one can define a concept of conormal derivative, i.e. a bounded, linear application

(@, 7, f) — N, W)f mapping B4 (Q) onto B2, (09), where

—

B2YQ) = {(a,n, f)eBr (@) 0B

»q P
" s+%fl(Q) @B

q .
5%72’0(9) : (10.65)

AG— V1 = flo and divd = 0 in Q}
which is compatible with (10.64) when 1 < p,q < oo. Furthermore, there exists a linear,
bounded, right-inverse of (10.65).

Similar conclusions are valid in the context of Triebel-Lizorkin spaces, i.e. for the ap-

plication

—

(@, m, f) — O, 7'[')];' mapping FL1(Q) onto BYP (0), where

F29(0) = {(@m. f) e L@@ FIL (@)@ FT L, (@) (10.66)

AG — V7 = flo and divd = 0 in Q}

assuming that p # oo.

Proof. Set
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N
9

it m) ;= 63(71— [Hﬂ ‘Q ™ [@ﬂ ]Q> +a§(nf, ef) (10.67)

where, in the right-hand side of the above equality, the first conormal derivative is taken in
the sense of (10.29) in Theorem 10.6, while the second one is taken in the sense of (10.47)
in Theorem 10.9. The properties of this conormal derivative claimed in the statement of

the theorem then follows from this. O
Remark. In what follows, we agree to simplify the notation by writing 0 (i, 7) in place of
9, (i, m)g, whenever Ad — Vrr =0 in Q.

10.5 Layer potentials on Besov and Triebel-Lizorkin spaces

In this section we establish mapping properties for the hydrostatic layer potentials on Besov

and Triebel-Lizorkin spaces in Lipschitz domains.

Proposition 10.11 Let Q2 be a bounded Lipschitz domain in R™, n > 2, and assume that

)\ER,"T_l<p§oo, (n—l)(%—l)+<s<1, and 0 < g < o0o. Then

Dy : BP(9Q) — Bff% (Q), (10.68)
S: B (09) — Bff% (), (10.69)
Py : BP(0Q) — Bff%_l(Q), (10.70)
Q: BV (00) — Bgfifl(fz), (10.71)

are well-defined, bounded operators. Furthermore,

Dy : BP(00) — FY1, (), (10.72)
S : BYP (0Q)) — Fff% (Q), (10.73)
Pas BEP(09) — FUY, (9, (10.74)
Q : BT, (09) — FP4, (), (10.75)

P

are also well-defined and bounded provided s,p,q are as before and p # oco.

236



Proof. From Theorem 11.18 and Theorem 11.15 it follows that

Dy : BYP(0Q) — HY (& A?) = FP'%, () N Ker A? (10.76)

P »
is well-defined and bounded whenever 0 < p, ¢ < oo, (n—l)(‘;lj—l)Jr < s < 1, provided ¢ = oo
if p = co. This and real interpolation (cf. Proposition 2.20 and Theorem 2.13) then justify
(10.68) and (10.72) (in the latter case, we also use monotonicity of the Triebel-Lizorkin scale
to cover the case ¢ = 00). That the operators in (10.70)-(10.71) and (10.74)-(10.75) are also
well-defined and bounded is a consequence of (4.35)-(4.36) and the mapping properties of
the harmonic layer potentials on the Besov-Triebel-Lizorkin scale proved in [64].

As regards S, Theorem 11.19 and Theorem 11.15 give that

S: B (09) — HY (& A?) = FP9, (Q) N Ker A? (10.77)

1
p

is well-defined and bounded for 0 < p, g < oo, (n — 1)(% —1), <s <1, granted that ¢ = oo
if p = 0o. Then, much as before, the operators (10.69), (10.73) are seen to be well-defined
and bounded. ]

Recall next the boundary layer potential operators K) defined in (4.44), its formal
adjoint K7, and S introduced in (4.47).

Proposition 10.12 Let Q be a bounded Lipschitz domain in R", n > 2. If (n —1)/n <

p < oo and (n — 1)(}17 — 1)1 <s<1,0<qg< o0, A €€R, then the operators

K : BP9(99Q) —s BP9(9Q), (10.78)
K% B9 (89) — B2 (69), (10.79)
S': BP9, (99) — BPI(99), (10.80)

are well-defined, linear, and bounded.

Proof. Since
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TroDy =il + K, TroS =85, (10.81)

the claims about (10.78) and (10.80) are consequences of Proposition 10.11 and Theo-

rem 2.18. Finally, using the fact that

9 0(S8,Q) =3I+ K3, (10.82)

together with Theorem 10.6 and Proposition 10.11, the claim about the operator (10.79)

follows as well. O

For a given bounded Lipschitz domain €2 in R™, n > 2, the range of indices for which the
boundary layer potentials for the Stokes system are invertible on the Besov scale considered
on Jf) depends on the dimension n of the ambient space and the Lipschitz character of €.
The latter is manifested by a parameter € € (0, 1] which can be thought of as the measuring
the degree of roughness of Q (thus, the larger ¢ the milder the Lipschitz nature of 2, and
the smaller e, the more acute Lipschitz nature of Q). To best describe these regions, for
each n > 2 and € > 0 we let R,, . denote the following sets. For n = 2, Ra . is the collection
of all pairs of numbers s, p with the property that either one of the following two conditions

below is satisfied:

(I2) : O§%<s+% and 0<s<ite
(10.83)
(I1) : —%<%—8<1—;E and %<s<1.

Corresponding to n = 3, R3 . is the collection of all pairs s, p with the property that either

of the following two conditions holds:

(Is): 0<, <5+ and 0<s<e,
(10.84)

(II3): —-5< <1% and ¢ <s<1.

D=
1Y

Finally, corresponding to n > 4, we let R,, . denote the collection of all pairs s, p with the

property that
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(I,) : 2(’;7:31)—8<%—ni1<%+6and0<3<1,1<p<oo. (10.85)

To proceed, we shall now introduce some versions of the boundary Besov spaces which
are well-suited for the formulation and treatment of boundary value problems for the Stokes
system in Lipschitz domains. Concretely, if €2 is a bounded Lipschitz domain in R", n > 2,

and (n —1)/n < p < oo, (n—l)(f—1)+<s<1 0 < g < o0, we set:

B (09) = { € BL9): | (v, Fdo =0, Vi € I/Ragi}, (10.86)
Brs0) = {feBrion) / (. f}do =0, Vi € vRon ). (10.87)

o0
B 40 (09) = {FeBr00) /mw, fdo =0, Vi € WN00) ), (10.89)
BU L (09) = {[eBrioo): /mw, ) dor =0, Y€ W} if n=2. (10.89)

On these spaces, below we show that the boundary hydrostatic layer potentials are invertible

for suitable indices p, g, s. We have:

Theorem 10.13 Assume that Q is a bounded Lipschitz domain in R™, n > 2. Then there
exists € = €(Q2) € (0, 1] with the following property. If (n—1)/n < p < oo, (n— 1)(7 -1)4 <

s<1,0<q<o00, and A € (—1,1], then the operators

11+ K« BRZ (99Q) /9 (001) — B (99) /3 (90), (10.90)
+41+ K3 : B™, w2 (09) /vRyq. — BY ql w» (09) /v Roq, (10.91)
S : BP9 (09) /vRgq — BPE(0Q) if n >3, (10.92)
S BU9 (09) /vRaq ® W — BU'1,,(09Q) if n=2, (10.93)
S (Bf;ql(asz) /yRaQ) &R? — BPUIN) &R if n=2, (10.94)

are invertible whenever the pair (s,p) belongs to the region R, ., described in (10.83)-
(10.85).
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Proof. This follows from the invertibility results on Hardy spaces from § 9.1 and repeated

applications of the complex and real method of interpolation. O

10.6 The Poisson problem with Dirichlet and Neumann boundary condi-

tions

Here our goal is to describe the ranges of indices for which the Poisson problem for the
Stokes system equipped with Dirichlet or Neumann boundary conditions is well-posed for
data in Besov and Triebel-Lizorkin spaces in bounded Lipschitz domains. As a preamble,

we record some useful integral representation formulas.

Proposition 10.14 Assume that € is a bounded Lipschitz domain in R™, n > 2, "—;1 <

p<oo, (n—1)(1/p—1)y <s<1, and 0 < g < oco. Then for every number A € R and

every pair (4, 7) € SBffl(Q) there holds

P

i = D\(Tr@0) — S(O) (@, 7)) in Q,
(10.95)
7 =Px(Trd) — Q(O)(u,m)) in Q.

Similar integral representation formulas are walid in the context of Triebel-Lizorkin

spaces, i.e. when (i, ) € SFffl (Q), granted that p # oc.

P
Proof. These formulas follow from (4.120)-(4.121), a density argument, and the mapping

properties of the operators involved (established earlier). ]

We are now ready to state and prove the first main result of this section, dealing with

the inhomogeneous problem for the Stokes system with Dirichlet boundary condition.

Theorem 10.15 Let Q2 be a bounded Lipschitz domain in R™, n > 2, and for "T_l < p < oo,

0<qg<oo, (n-— 1)(% — 1), < s <1, consider the following boundary value problem,

Ai—-Vr=feBl, (@), divi=geB, (Q),
! g (10.96)
i€ B, (Q), meBM, (@), Tri=heBMO0)

1_
» s+p 1

subject to the (necessary) compatibility condition
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/ (v, h) do = / g(x)dx, for every component O of ). (10.97)
00 (@)

Then there ezists ¢ = £(2) € (0, 1] such that (10.96) is well-posed (with uniqueness modulo
locally constant functions in ) for the pressure), if the pair (s,p) belongs to the region Ry, ¢,
described in (10.83)-(10.85).

Furthermore, the solution has an integral representation formula in terms of hydrostatic
layer potential operators and satisfies natural estimates. Concretely, there exists a finite,

positive constant C' = C(Q,p, q,s,n) such that

Hm|BZ_’fl(Q)+||7r||B:_’:’%_1(Q)/RQ+ < CHfHB:f%_Q(Q)+C||9||B:f%_l(9)+CHhHB§’q(8Q)' (10.98)

p
Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e. for

the problem

AI_L‘—VW:fEFff%72(Q)7 leﬁ:gerpiqifl(Q%

(10.99)

(TR Fffl(Q), TeFr™,
p p

(Q)7 Tra = g € B?p(ag)v
where the data is, once again, made subject to (10.97). This time, in addition to the previous

conditions imposed on the indices p, q, it is also assumed that p,q < oo.

Proof. Let ¥ be such that

ve Bffiil(ﬁ), divi =g in Q. (10.100)

For example, we may take

v:= VIlag (10.101)

where TIa : Bffl_l(Q) — BfflJrl is the harmonic Newtonian potential in  (i.e., the
P p

operator of convolution with Fa from (4.31)). Next, consider ), p for which
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(i, p) € BV, (Q) @ B, ((Q), AG—Vp=f—AF and divii =0 in Q. (10.102)

For this, we may take 0 := H(f— AY) and p := @(f— AY), where II, © are as in (10.13)-
(10.14). We now claim that

Trd 4 Trdd — h € B2, (59). (10.103)

+

To see this, we first observe that Tro + Tr — h € B2(9€). To check the orthogonality

condition on vRpq, , by virtue of (5.73) it suffices to note that for every ¥ € Rg, we have

/<(m7+ﬂw),u>wda _ /wdiv(ﬁ—mﬁ)da:
o2 Q

- /gwda?:/ (v, by do, (10.104)
Q o0

by (10.97). This proves the claim made in (10.103).

Next, we make the claim that if n > 3, then

T BL,(09) © BYY, (09) — B, (09),
(10.105)

T(Gg1,G2) = (%I + K)\)g1 + Sga  is onto.
To justify this claim, consider an arbitrary f € BEY . (082). Then (10.90) gives that there
exists 71 € BYy, (99) such that ¢ := f— (37 +K))d € ¥ (9Q). This, (5.117), and (10.92)
then guarantee the existence of some go € BY (9) with the property that Sgs = 1/7

Consequently, T'(g1, g2) = f, proving the claim.

Having established (10.103) and (10.105), we can now produce a solution for (10.96) in

the form

U =0+ W+ Drg1 + Sgo, = p+ Prg1 + Qgo, (10.106)
where
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(G1,52) € BPE (09) @ BYY (0Q) are such that T(g1, ) = h — Tro — Trad. (10.107)

Furthermore, it is implicit in the above construction that (10.98) holds. The case n = 2 is
handled analogously, so we omit the details.
To prove uniqueness, assume that i, 7 solve the homogeneous version of (10.96). We

may then conclude that (u,7) € SBff; (©) and Proposition 10.14 gives

P

i = —S(9) (i, 7)) in Q. (10.108)

Taking boundary traces of both sides then yields

S(9p (i, ) =0 in BYY(0Q), (10.109)

so that 9} (i, 7) € VRpq. Returning with this in (10.108) and invoking (5.77), (5.83), then
gives @ =0 in Q and 7 € Rq, , as desired.
For the Triebel-Lizorkin scale a very similar approach works as well. Thus, the proof of

the theorem is complete at this point. ]

Our second main result in this section pertains to the Poisson problem for the Stokes

system with Neumann boundary conditions.

Theorem 10.16 Let 2 be a bounded Lipschitz domain in R™, n > 2, and for "T_l < p < oo,

0<q<o0, and (n— 1)(% — 1), < s <1, consider the following boundary value problem:

Aﬁ—Vw:ﬂQ, FeB™, _(Q), divi=0inQ,

s+5-2,0
(10.110)
U € Bff%(Q), TE Bff%_l(Q), oM, W)f: h € B2 (992,
where the data are assumed to satisfy the necessary compatibility condition
) (Hf, @f) —helm (—%1 + KB, (00) — Bgflﬂ(aﬂ)). (10.111)

Then there exists € = €(2) € (0, 1] such that (10.110) has a unique solution (modulo adding

to the wvelocity functions from WA(Q)) if the pair s,p belongs to the region R, described
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in (10.83)-(10.85). In addition, the solution (normalized so that [o(d(x),(x))dx =0 for

every 1 € WN(Q)) satisfies the estimate

Hﬁ”B:f%(Q) + HW”B:_‘;’%_I(Q) < CHfHBZf%_Z’O(Q) + Cllh| gra 50 (10.112)

An analogous well-posedness result holds for the problem

Aﬁ—Vw:ﬂQ, FeFrr (Q), divi=0inQ,

s+2-2,0
(10.113)
deFr(Q), we PP (Q), )= h e B (59),
p p
assuming that p,q < oo, and
) (Hf, @f) —helm (—%I + KB, 4, (00) - Bfﬁ’l’wi(aﬁ)). (10.114)

Proof. The fact that (10.111) is a necessary condition for the solvability of (10.110) can be

proved following the same set of ideas as in the case of (9.104), after observing that

@i=a—1f, p=n—0f (10.115)

solve

AW —Vp=0inQ, divd =0in Q,

e BIL(9), pe Bl (%), (10.116)

O) (W, p) = h — OY(IIf, O f) € BY, (99).

In turn, granted (10.111), existence is seen by taking

£
I

If — S(—3I+ K3) Y @) (TLf,0f) — h), (10.117)

T o= Of — Q(—i1+ K)o (IS, Of) - h). (10.118)
Given our earlier results on the mapping properties of the hydrostatic layer potentials plus

the current assumptions on the indices s, p, g, this is easily seen to solve (10.110).
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To establish uniqueness, if the functions 4 and 7 satisfy the homogeneous version of
problem (10.110), then @ = D, (Tr @) in 2, by (10.95). Taking boundary traces (in the sense
of Besov spaces) then yields (—37+K,)(Tr @) = 0 on 9. This shows that Tru € ¥*(0),
by a variant of (5.125). Hence, Tr i = 1|sn for some function ¢ € ¥*(Q,). It remains to
invoke (10.95) once again in order to conclude that, by virtue of (5.97), @ = ¢ in Q. This
establishes the claim made about uniqueness for (10.110).

The treatment of (10.113) is analogous, and this finishes the proof of the theorem. [

A less precise formulation of Theorem 10.16 is that problems (10.110), (10.113) have
solutions for data (f: ﬁ) belonging to a finite co-dimensional subspace of B?fl/p72,0<ﬂ) &

BY%(09) and Fffl/p_2 o() @ BYP(0Q), respectively, and uniqueness holds up to a finite
dimensional space.

To see this, let us rephrase condition (10.111) as

A
sfl,\Il_F

(f.h) € & 'Im (—%I YKL BPY L (09) — Bffl’\pi(aQ)), (10.119)

where @ is the bounded, linear application given by

®: B, o(Q) @ B (09) 3 (f,h) — 8) (H 7. f) —Fe BP9 (0Q).  (10.120)

Since Ker(—11 + K} B§f17\lli(89) — Bf’_qlv\yi(aﬁ)) is, thanks to (10.91), a space of finite
codimension in Bffl (02), the desired conclusion now follows from Lemma 11.42 in the
Appendix.

In the case when R™ \ Q is connected, we can further rephrase Theorem 10.16 in the

following fashion.

Theorem 10.17 Assume that Q be a bounded Lipschitz domain in R™, n > 2, with con-
nected complement and that =1 < p < 00, 0 < q < o0, and (n — 1)(% -1, <s< 1
Then there exists € = () € (0, 1] such that the Poisson problem for the Stokes system with

Neumann boundary condition
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- - e D,q s .
Au—Vw-ﬂQ, fEBs+%_2,0(Q)7 divi =0 in Q,
(10.121)
ic Bff%(Q), T e quf (), ), ™)y =he B (09),
has a unique solution (modulo adding to the velocity functions from WN(Q)) if the pair

s,p belongs to the region Ry . described in (10.83)-(10.85) and the data (f, E) satisfy the

necessary compatibility condition

/<f,¢> d:c:/ (h,)do, Vi€ TNQ). (10.122)
Q oN

In addition, the solution (normalized so that [, -9 =0 for every ¢ € TNQ)) satisfies the

estimate

Hﬁ”B:f%(Q) + HW”B:_‘;’%_I(Q) < CHfHBZf%_Z’O(Q) + Cllh|| gra 50 (10.123)

Moreover, an analogous well-posedness result holds for the problem

Aﬁ—Vrr:ﬂQ, ferq Q), divi=0inQ,

L 20(
(10.124)

deFrL(Q), meFPY, (), )i, m)p=he B (09),

P P

assuming that p,q < co.

Proof. Given that we are assuming that €)_ is connected, it follows that Rgq_ = 0. Thus,

in the current context, (10.91) becomes

—31+ K3 : B2, (992) — B

vy s74

(8(2) isomorphically, (10.125)

if s,p,q are as in the statement of Theorem 10.13. As a consequence, the image of the

operator —31 + K3 acting on BY 4 (09) is the entire space B2, (99). In turn, this

—1,%% —1,%%
implies that the compatibility condition (10.111) takes the form
) (Hf @f) e B, L, (00). (10.126)



In other words,

/aQ (o2(nf.0F), v)do= /m<ﬁ,¢> do, Ve U (99). (10.127)

At this point, there remains to observe that

/m <a§ (Hf, @f) , ¢> do = /Q<f(x),zp(x)> dr, Y € UNQ), (10.128)

as is clear from (4.7) and (5.95). This proves that, in the current context, (10.111) reduces

precisely to (10.122), finishing the proof of the theorem. O

11 Appendix

11.1 Smoothness spaces in the Euclidean setting

Here we briefly review Besov and Triebel-Lizorkin scales in R™. One convenient point of view
is offered by the classical Littlewood-Paley theory (cf., e.g., [79], [90]). More specifically, let
E be the collection of all systems {(; };?‘;0 of Schwartz functions with the following properties:

(i) there exist positive constants A, B, C such that

supp (¢o) C {z: |z] < A}

(11.1)
supp (¢j) C {z: B2~ <|z| < C2*1} ifjeN;
(ii) for every multi-index « there exists a positive, finite constant C,, such that
sup sup 2j|°“|60‘(j(x)| < Cq; (11.2)
z€R” jeN
(iii)
(o]
Zgj(x) =1 for every z € R". (11.3)
§=0

Let s € R and 0 < ¢ < oo and fix some family {(;}32, € E. Also, let F and S'(R")
denote, respectively, the Fourier transform and the class of tempered distributions in R"™.

Then Triebel-Lizorkin space F"(R") is defined for each 0 < p < oo as
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) = {F e SEY: Wl = | (R G1) |
j=0

Lp(E") < oo}
(11.4)

If 0 < p < oo then the Besov space BY'?(R™) can be defined as

> - 1/q
Br®") = {f e SR : | fllppa = (D 129F  GFNpan) < o0}
= (11.5)
A different choice of the system {(;}32, € E yields the same spaces (11.4)-(11.5), albeit
equipped with equivalent norms. Furthermore, the class of Schwartz functions in R" is
dense in both BY?(R™) and F?*Y(R") provided s € R and 0 < p,q < o0o.

As far as the real method of interpolation is concerned, we note the following classical

result.

Theorem 11.1 (¢f. [90]) Let apg, 1 € R, ap # a1, 0 < qo,q1,9 < o0, 0 < 0 < 1,
a=(1-0)ayg+0ay. Then

(Fay (R™), F " (R™))g,qg = BRI(R"™), 0<p<oo, (11.6)
(Ba* (R"), BE(R"))g,y = BL*(R"), 0<p<oo. (11.7)
Turning to the complex method of interpolation, we have:

Theorem 11.2 Let ag, a1 € R, 0 < pg,p1 < 00, and 0 < qo,q1 < 0o with the property that

either max {po, qo} < 0o, or max {p1,q1} < co. Then

[F&y ™ (R™), FG " (R™)]p = FL(R™), (11.8)

Wh€7“€0<9<1,az(l—@)a0+9a17l:ﬂ+i

1 1-6 [
P Po p1’ and q = T

q0 q1°

Furthermore, if ap, o1 € R, 0 < po,p1,90,q1 < 00 and min{qo, q1} < 0o, then also

By (R™), By (R")]o = BLI(R), (11.9)

wher60<9<1,a:(l—ﬁ)ao+0a1,%zlp;oejtp%, and%zl—_e+ﬁ.
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When p, g > 1, this is well-known; cf. [35], [89]. For the entire scale p,q > 0, the result has
been established in [66], [50].

11.2 Gehring’s lemma

Let us first recall the definition of a space of homogeneous type, as introduced by R. Coifman
and G. Weiss in [17]. Assume that ¥ is a set equipped with a quasi-distance, i.e. a function
d:¥ x X — [0,00) satisfying d(z,y) = 0 & x =y, d(z,y) = d(y,x) and such that there

exists k > 1, called concavity constant, for which

d(z,y) < k(d(z,2) +d(z,v)), Vz,y,z € X. (11.10)

In turn, a choice of a quasi-distance naturally induces a topology on 3 for which the balls
B(z,r):={y € ¥: d(z,y) < r} (which, unlike the case of a metric space, are not necessarily
open when x > 1) form a base. A well-known theorem of Macias and Segovia ([61]) asserts
that the original quasi-distance function on 3 can be replaced by an equivalent one which
has the additional property that the associated balls are open. It is also well-known that >
is compact if and only if u(X) < +oo.

A space of homogeneous type is a structure (X, d, p), where d is a quasi-distance on the
set ¥ and p is a measure defined on the minimal sigma-algebra containing all Borel sets
and all balls, and which is doubling, i.e., there exists a A > 1, called the doubling constant,

such that

0 < u(B(z,2r)) < Au(B(z,r)) < oo, VeeX Vr>0. (11.11)

In the sequel, if A > 0 and B = B(x,r), we shall use the notation AB := B(z, \r). Also,
the symbol f indicates integral average, and LP(X,du) stands for the Lebesgue space of
u-measurable, p-th power integrable functions on Y. The following Calderén-Zygmund

decomposition result and Vitali covering lemma are well known. See, e.g., [2], [17].

Lemma 11.3 Given a space of homogeneous type (X, d, ), there exists ¢ > 1 depending

only the concavity constant k such that the following holds. If B = {Ba}aca is a family
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of balls and E := |, By is p-measurable and p(E) < oo, then there exists a sequence of
mutually disjoint balls {Bj}jen C B such that any B € B is contained in some cBj;. In

particular, E C |J; ¢B;.

Lemma 11.4 For every space of homogeneous type (X, d, i) with the property that the balls
are open sets there exists a finite constant ¢ > 1, depending only on the concavity constant
k (in fact, the same constant as in Lemma 11.3) with the following significance. Assume
that f € LY(X,du) is a nonnegative function and that X > chf dp. Then there exists a

sequence of mutually disjoint balls B; = B(xj,7;), j € N, such that

][ fdug)\<][ fdu VjieN, (11.12)

cBj B

f <X pointwise p-a.e. on X\ U cB;. (11.13)
JjEN

We are now ready to state the main result in this section which is a version of the
celebrated Gehring’s lemma [38], proved here via an approach more akin to the work in

[43].

Proposition 11.5 Assume that (X,d, 1) is a non-compact space of homogeneous type and
that 1 < g < p. Also, suppose g, h are two non-negative functions, g € LP(X,du), and there

extst K > 0 and n > 1 such that

1 1 1
<][ g d,u) ’ <K (][ g7 d,u) ! + <][ hP d,u> ! for every ball B C ¥. (11.14)
B nB nB

Then there exists €, > 0, depending only on p,q, K,n and k, A (the concavity and doubling

constants for (X,d, u), respectively), such that whenever 0 < e < &,

/gp+€ dp < 0/ RPYE dy, (11.15)
P ¥

where C > 0 depends only on p,q, K,n, k, A and €.

Proof. From an earlier discussion, by eventually replacing the original quasi-distance on 3,
there is no loss of generality in assuming that the balls in ¥ are open sets. Assume that

this is the case, and for each r > 0, set
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Gr={xeX¥:g(z)>r} and H,:={xeX: h(z)>r}. (11.16)

For each fixed t > 0 we now perform a Calderén-Zygmund decomposition for the function
gP at level (At)P, with A > 1 to be specified later. This gives a sequence of mutually disjoint

balls {B;};jen and a constant ¢ > 1 such that

][ g’ < (AP < ][ g’ and ¢P < (M)P  prae on X\ U cB;. (11.17)
cBj B; jeN
Cf. Lemma 11.4 above. In particular, G\ C |J; ¢B; so by (11.17) we have

[ eansy [ gausoer Y ues) (11.18)
G)\t ] CB]' j
Next, #(%Bj) anj\Gt g9 dp < t9, so we may write

1
? 1 1
][ g% dp = / g% dp + / g% dp
1
1 q
gldu | +t
(M(T]B]) /773jﬂGt )

1 1
< 2t+-/ rm (11.19)
tq_l /"[’(TZB]) T]B]‘ﬂGt

where, in the second and third inequalities, use has been made of the elementary estimates

Q=

(a—I—b)% §a%+b% valid for any a,b > 0 and M% < t+ 2L valid for any M > 0, t > 0

ta—1

(here ¢ > 1 is used). Going further, a similar argument gives

1 1
» P 1 1
<][ hP d,u> ’ < / WPdp | +t<2t+ ——- / hPdp.  (11.20)
nB nB;NH; =t u(nBj) JyBnm,
A combination of (11.14), (11.17), (11.19) and (11.20), now gives

1
At < ][ g’ du ’ < (2K +2)t+ ELSN / gldu
o Bj o tq_l ﬂ(nB]) nBjﬂGt

1 1 /
+| - WP dp | . 11.21
<tp‘1 1(nBj) Jyp;nm, ”) (h.21)




Hence,

K 1
(A —=2K —2)u(nBj) < / gl dp + / hP dp. (11.22)
¢ nB;NGt 2 nB;NH

At this stage, we fix A > 2K + 2 (so that A > 1) for the remainder of the proof.

Next, Lemma 11.3 and the doubling property (11.11) ensure that there exists a set
N’ C N such that

the balls {nBj/};env are mutually disjoint,

and ,u(U 'f]Bj) < Z w(nBj),

jeN j'eN’

(11.23)

where C” depends only on A and . In concert with (11.11), (11.22) and the fact that the
balls in the family {B;};en are mutually disjoint, this estimate allows us to write, for some

C" depending only on A and k,

SoueBy) < "y uBy) ="u(|U B;) < (U nB;) <C'C" S unBy)

jen jen jeN jeN Jen
C K / 1
QN — gldu+ — / h? dp
A—2K —2 ]’EZN/ (tq nBj/ﬂGt tp nBj’mHt
C K 1
< .z 2 ‘p = hP d 11.24
= A—2K—2Lq/@g ’”Ltp/Ht ”]’ 2y

where C := C'C” depends only on A and x. Note that the last step above uses the first

condition in (11.23). From this and (11.18) we then obtain

CN\P K
g’ du < [ — / g? du—i—/ hP du] . (11.25)
/G)\t A—=2K =2 [t17P Jg, H,

Recall that A > 1 and p — ¢ > 0, so that G); C G¢, and further,

/ gPdu = / glgP du < /\pqtpq/ g du. (11.26)
Gi\G ¢ Gi\Gxt Gy

By adding (11.25) and (11.26) we arrive at
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CEN O
Pip < (o N 2 [ gt () [ WPdp. (112
s o) e i (i) [ oo

Multiplying both sides of this last inequality by t%, for some o € R to be chosen momentarily,
and then integrating with respect to ¢ in the interval (0,7), with 7' > 0 an arbitrary, fixed

number, yields an estimate of the form

T T
/ ( / to‘gpdu> dt < O / ( / th+aquu> dt
0 Gy 0 Gy
+Cl/ (/ tahpdu) dt, (11.28)
0 H:

where

CKNP CAP

— \P—4 — c
Co=AN""+ 3= O =y g9

(11.29)

Let us now fix @ > —1 and use Fubini’s theorem to compute

T T
/ </ t*gP d,u> dt = / (/ t“xa, dt> gP du (11.30)
0 Gt > 0

min {g(x), T} N , 1 ol 14a
-] vt ) oo d(o) = — [ g [win{o.7)] " d

since x¢, () = 1 if and only if g(x) > ¢. Similarly,

> 1
t*hP du> dt = —— [ hPTotlay, 11.31
/0 </Ht a+1 > ( )

Finally, & > —1 and p > ¢ force p — ¢ + o > —1 and the same type of argument as before

gives

T
1 p—q+a+l
prata gt g ) dt = / q[min ,T} d
/0 </Gt g M) p—qta+l zg 9.7} s

1
_ Pimin {g,T
p_q+a+1/zg[ {9, T}

253

IN

a+1
} dp.  (11.32)



Altogether, for each T' > 0 we obtain

C()(Oé + 1)

» . T a+1d
min { g, —_—
/29 [ {g }] u P—T

. a+1
/ q° [mm{g,T }} dp
¥
+C4 / hProtl dy, (11.33)
X

with Cp,C; as in (11.29). Note that the integral in the left-hand side matches the first

integral in the right-hand side and is finite for each T" > 0 since

a+1
/ gP {min {g,T}} dp < Tt / 9P du < 400, (11.34)
P P

given that the function g belongs to LP(X,du). Consequently, in order to absorb the first

term from the right-hand side into the left-hand side we need to choose o« > —1 such that

p—q+a+1>(a+1)Cy. If Cy > 1, this requirement becomes 0 < a+1 < é’o__ql. However,

if A > max{2K + 2,1} then Cp > 1, as is visible from (11.29). We obtain

a+1
/gp [min{g,T}} du < 02/ prrotl gy, (11.35)
> >

where Cy is independent of T. By letting T — oo and invoking Lebesgue’s Monotone

Convergence Theorem, we may now conclude that (11.15) holds whenever 0 < ¢ < ¢, :=

pP—q
Co—1"

Finally, the case € = 0 follows directly from (11.14) by writing

() g ([, )+ (550) ([, ) 02

where R > 0 is arbitrary and Br := B(z,, R) for some fixed point x, € ¥, and then letting

R approach infinity. Since ¢ < p, the coeflicient of the first integral in the right-hand side
goes to zero, whereas the the coefficient of the second one stays bounded. This finishes the

proof of the proposition. O
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11.3 Hole-filling lemma

Lemma 11.6 Let f be an arbitrary locally bounded function on R with the property that
there exist real numbers 0y, 61, nondecreasing functions A and B, a > 0, and 6 € (0,1)

such that

F(8) <[AR)(t =) "+ B@)]+0f(t) forall p<s<t<b. (11.37)

Then there exists C > 0 such that

f(r) <CIAR)(R—r)"“+ B(R)] forall 6 <r<R<6b. (11.38)

Proof. Fix o € (0,1) arbitrary and let tg = r, t;41 = t; + (1 — o)(R — r)o?, for each i > 0.

Then t = R, and

n—1 n—1
th—r=th—to=» (tiy1—t;)=(1-0)(R—71)Y o' =(R-r)(1-0"). (11.39)
=0 i=0

Thus, for each 1,

ft) < [A(ti) (1 —0) (R —r) %0~ + B(tit1)] + 0. (ti1) (11.40)
< JAR)(A = o) (R —1)"% " + B(R)] + 0f (tis1).

Multiplying (11.40) by 6 we obtain that

0 f(t;) < I(00~*) + 0"B(R) + 0" f(tiy1), (11.41)

where [ := A(R)(1 —0)"%(R —r)~“. Summing up (11.41) over 4, we obtain

n n n n+1
DO f(t) <I> (B0~) +B(R)Y 6 + ) 60 f(ty). (11.42)
i=0 =0 =0 i=1
Hence, after subtracting Y 6% f(¢;) from (11.42), we see that
i=1
Fr) < 1Y (007 + B(R)Y 0"+ 0" f(tns1). (11.43)
i=0 =0
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Now we select o € (0,1) so that fc~ < 1. Then, after letting n — oo in (11.43), since
f(tnt1) stays bounded, we get that
1 1

e T BB (11.44)

flr)y <1

If now C := max{ﬁ, 15}, we have that

flr) < C(+B(R) = CIAR)(1 - o) (R —r)"" + B(R)]

IN

ClA(R)(R—r)"*+ B(R)].

11.4 Korn’s inequality

The goal of this section is to prove Lemma 6.3. For a Lipschitz domain D in R™ and
1 < p < oo, we set LY(D) to be the LP-based Sobolev space of order one in D, let LZI”O(D)
denote the closure of C2°(D) in L(D), and let L” (D) be the dual of Lgfjo(D), where
1/p+1/p =1.

We start with a result of independent interest.

Lemma 11.7 Let D C R"™, n > 2, be a bounded Lipschitz domain and suppose that 1 < p <
00. Then there exists a finite constant C' > 0 depending only on n, p, the diameter of D, and
the Lipschitz character of D such that every distribution w € L” (D) with Vu € L” (D)

has the property that u € LP(D) and

lullze(py < ClIVullre (py + Cllullze (b (11.45)

holds.

Proof. The problem is local in character, and hence, there is no loss of generality assuming
that D C B(0,1) is a Lipschitz domain which is starlike with respect to some ball B C D,
of radius comparable to the diameter of D via constants which, in turn, depend only on the
diameter and the Lipschitz character of D. Assuming that this is the case, fix a function
6 € C;°(B) with [0 = 1. In this context, Bogovski1 has constructed a linear operator J

with the following properties. First, for each 1 < ¢ < oo,
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J : L4(D) — L% (D) (11.46)

is bounded, and if R := diam (D), then

the operator norm of J in (11.46) is < C(9D, q, R). (11.47)
Second,
Jp € C°(D) whenever ¢ € C5°(D), (11.48)
and third,
divTJp=¢p—10 (/ o(x) d:c) for any ¢ € C5°(D). (11.49)

Then, for any ¢ € C3°(D), we may write

[(u, 0)| < [{u, div T)| + [{u, 0)] {0, 1)]
< [(Vu, T + [{w, O)llell 1o 1)
= IIVUHL{I(D)||«790||L11{0(D) + [{w, Ol el oy
< CUIVullpr  (py + Ku, O)Dllell oy - (11.50)

Since C°(D) is dense in L¥ (D), we see that u € (LPI(D))* = LP(D). Finally, since
|(u,0)] < ||uHinl(D)||9HL]{jO(D) < C(0)|[ullzr (), We also see that (11.45) holds. O

Next, the goal is to prove the following Korn type estimate.

Proposition 11.8 Let D be a Lipschitz domain of diameter R and assume that 1 < p < co.

Then there exists a finite constant C > 0 which depends only on p and the Lipschitz character
of D such that

][ r(py < C'{HW_H' Vi || Loy + CR_IHEHLP(D)}a (11.51)

uniformly for @ € LY(D).
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Proof. Given how the estimate (11.45) dilates with respect to R, matters can be readily

reduced to the case when R = 1. Next, for each j, k € {1,...,n}, we set

Ejk(ﬁ) = %(@uk + aku]'). (11.52)

so that (Vi + Vi), = 2¢;x(@). A direct calculation then shows that

&Bjuk = aié‘jk(ﬁ) + @aik(ﬁ) — aké‘ij(ﬁ), Vi, g, k. (11.53)

In particular, by Lemma 11.7 and the fact that V : LP(D) — L” (D) is bounded,

Y M0surllrpy < €D N0Durllr oy + C Y 195urllze (o)
ok Jk i ok

<O 0@l )+ C D lukllLrpy
2

Z’?j7k:

<O ejn(@ ooy + Cllil ooy
ik
< C||Vu + VﬁTHLp(D) + Cl[4d| e (- (11.54)

Now (11.51) readily follows from this. O

11.5 Hardy’s estimate

Let L be a homogeneous, constant coefficient, elliptic operator. The aim of this section is

to present a result which can, in essence, be attributed to Hardy.

Lemma 11.9 [Hardy’s estimate]
Let Q C R?, n >3, be the domain lying above the graph of a Lipschitz function ¢ : R" ™! —
R. Assume w is a null-solution of L in Q@ and that M (Vw) € LP(0Q) for some p < n — 1.

Then there exist constants ¢ = c¢(w) € R and C = C(92) > 0 such that

1 1 1
1M (w = )l 00) < CIM(V)llzoon) where = 2= 2=

(11.55)

Prior to presenting the proof of this proposition we isolate one technical aspect.
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Lemma 11.10 Assume that Q is a graph Lipschitz domain in R™, n > 2, and that u €

CY(Q), C >0 and o > 1 are such that

|Vu(x)| < Cdist (z,00)” 7, Vo e (11.56)

Then for each x € Q, the limit

c:= lim u(z + tey) (11.57)

t—o0

exists, is independent of x, and, moreover

lu(x) — c| < Cdist (z,00)' 7, Ve (11.58)

Proof. For every x € € and ¢t > 0 set

c(x,t) :=u(x + te,) + /too(anu)(x + sey,) ds. (11.59)

By (11.56), the integral in (11.59) is absolutely convergent, and, obviously, the expression
in the right hand-side is independent of ¢ > 0. We may thus abbreviate c¢(z) = c(x,t).

Hence, the limit

lim u(x + te,) = lim ¢(x) = c(x) exists for every z € Q. (11.60)

t—o00 t—o00

To prove that this limit is actually independent of x, observe that if z,y € ) are
arbitrary, fixed, and ¢ > 0 is sufficiently large, then every z € [x + te,,y + te,] belongs to
2 and dist (z,09) > Ct. Therefore, by (11.56) and the Mean Value Theorem,

lu(z + tey) — u(y + ten)| < C(OQ, z,y,u)t™ — 0 as t — oo, (11.61)

which shows that ¢(x) = c(y), for every z,y € Q. If we now let ¢ € R be ¢(z), z € Q, then
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lu(z) — ¢ < /000 |(Opu)(z + seyn)|ds

C [dist (x,00) + s “ds = O dist (z,00) 2, (11.62)
0

IN

proving (11.58). O

In applications, we typically start with a null-solution u of an elliptic operator in {2 which
satisfies M (Vu) € LP(0R2) for some 0 < p < n — 1. Fix € Q and set R := dist (x, 092).

Then by interior estimates and (11.64) below,

|Vu<x>rsc(][3( Rmrwp) < CR™F | M(Va) | o ony, (11.63)

Note that 0 < p < n — 1 implies a := (n — 1)/p > 1, so the previous discussion about the

decay of u applies.

Lemma 11.11 For every Lipschitz domain Q2 (bounded, or of graph type) in R™, n >
2, there exists a finite constant C = C(2) > 0 with the following property. For every

measurable set E2 C ) and every measurable function u: 0 — R, one has

/ |u(z)|dx < C[dist (E,09Q) + diam (E / M(u (11.64)

where

UE) :={x€oQ: T (x)NE # 0} (11.65)

Proof. For every 6 > 0, set O := {x € Q : dist (z,0) < §}. As shown in [41], for a class
of domains containing those which are Lipschitz, there exists C' = C(£2) > 0 such that, for

every measurable function v : Q2 — R,

/ lv(x)|dx < C§ M (v) do, (11.66)
Os o0N
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uniformly in 6 > 0. Let us specialize this to the case when § := dist (E, 92) + diam (F) and

v := uxg. Since, in this scenario, £ C Og, we may write

/ ]u(:r)]dac:/ \(ux) (@) dz < 05/ Muxp)do <C5 | M(u)do, (11.67)
E Os o0 UE)

as desired. m
We are now ready to discuss the

Proof of Lemma 11.9. The argument below is due to Russell Brown [9] and we are most
grateful to him for allowing us to include it here. According to [27], for any « > 0, we have

interior estimates of the form

mu»ascf ], (11.68)
B(x,6(x)/2)

where §(z) := dist (z,09Q). Let v = (2/, z,,) and T = (2, ¢(2’)). Then since by Lemma 11.11

][ |w|* dx < C'][ | M (w)|* do, if R~d(z), (11.69)
B(x,R) Scr(T)

we have that

Q=

lw(z)| < C (][s (_)|M(w)|°‘da> , (11.70)
e5(z) (T

hence, further,

jw(z)] < C5(x)~ & | M(w)|| 1o (a6 (11.71)

Now since the components of Vw are also null-solutions of L in €2, we can conclude that

V()| < C8(@) T | M(Vw)||oony- (11.72)

In particular, by Lemma 11.10, we can choose ¢ € R such that u := w— ¢ vanishes at infinity

(in the quantitative sense described there). Fix € 9Q and let y = (v/,yn) € I'(z). Then
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/y (1) dt’ /oo|vu(y',t)|dt:/OO|Vw(y',t)|dt. (11.73)

Yn Yn

Choose « so that 5 < a <min{1, p}. Now applying (11.70) with Vw in place of w gives

lu(y)| < C/OO (fs ( )|M(vw)ya da)a dt. (11.74)

Let M denote the Hardy-Littlewood maximal function on 0f2. Then by definition,

][S ( )|M(Vw)\ada < M(M(Vw)*)(x), (11.75)
and so from (11.74),
lu(y)| < CM(M(Vw)a)éfl(a:) /00 / t”1*1 M(Vw)*(z)do(z) dt. (11.76)
" (@)

Notice that if z € S (z), then |z — z| < ct. So by switching the order of integration, we get

CMM (Vo)) E () / M(Vw)®(2) ( /OO ﬂ% dt) do(2)
[2)9]

=
—~~
<
=~
N

clz—z|

M(Vw)*(z)

|z — z|"—2

< OM(M(Vw)®)a ()
o0

do(z)

< OM(M(Vw)®)a~Y(z) I;(M(Vw)®)(z), (11.77)

where, for 0 < 6 < n — 1, Iy denotes the fractional integration operator given by

Ioh(z /|x Z‘n —do(z), w0 (11.78)

Taking the supremum over all y € I'(z) in (11.77), we have

M (u) () < CM(M(Vw)®)a () I (M (Vw)*)(x), (11.79)

and so
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/ M) do < C / (MM (Tw))P" ED (1 (M (Tw))P do. (11.80)
[5)9] o0

Choose r > 1 so that

l-ayr=1--L_=L, (11.81)

Then by Holder’s inequality,

/ M(u)? do < C ( / (M(M (V)2 )P 2 da) ( / (I1 (M (Vw)®))P™ da) :
0N o o
(11.82)

Let ¢ := g, so that 1 < ¢ < n — 1, and pick ¢* such that qi* == — ﬁ Then from our

1
q

choice of r in (11.81), we have the following:

Applying the identities to (11.80) gives

/ M) do < C ( / (MM (Vw)®))? da) ( / (I (M (Vw)*))* da) (11.84)
0N

o0 o0
It is well known that for 1 < ¢ <n —1, M is a bounded operator from L?(92) to L1(0%2),

and I; is bounded from L7(99) to LI (99). Then since M (Vw)® € L4(99), it follows that

/ M) do < c( / (M(Vw)o‘)qda)
oN

o0 0N
i ¢
= C ( /M(Vw)pda> =C ( /M(Vw)pda> . (11.85)
o0 o0



and so finally we can conclude

M (u)| o+ a0y < ClIM(Vw)||Lo(a0), (11.86)

finishing the proof of the lemma. O

11.6 Traces in Hardy spaces

Here we record some useful trace theorems in Hardy spaces for functions in Lipschitz do-

mains, which have been recently proved in [44]. The first such result reads as follows.

Theorem 11.12 Let Q be a graph Lipschitz domain in R™, n > 2, with outward unit

normal v, and fix

1 1 1 1
DT cr <1 suchthat -+~ =~ (11.87)

n p q T
Consider also D : C*(Q,CN) — C%(Q,CM) a homogeneous, first-order differential operator

0<p,qg<oo,

with constant, complex coefficients (i.e., as in (3.1) for m = 1), and denote by D* its
(formal) adjoint and by o(D;€&) € CM*N ¢ € R™, its symbol (cf. (3.5)).

Assume that F € C1(Q,CN) and G € C1(Q,CM) are two functions which satisfy

DF=0 and D*G=0 in Q, (11.88)
M(F) € LP(8Q),  M(G) € LI(09), (11.89)

and which are null-solutions of certain strongly elliptic, self-adjoint, second-order, homoge-
neous, (real) constant coefficient, differential operators. Let (-,-) denote the canonical inner

product in CM | and for every e > 0, define

F.(z) = F(x +cen), Ge(z):=G(x+cee,), x€Q, (11.90)
where e, = (0,...,0,1) € R".
Then (o(D;v)F,G:) € H},(0Q) for each ¢ > 0, the limit
(c(D;v)F,G) = lir51+<a(D; v)F,G.) (11.91)
E—>
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exists in H],(02), and there exists a finite constant C = C(02,n,p,q) > 0 such that

(o (D; V) F, G|z, 00) < C | M(F)||Lra0)l| M (G) | Laa0)- (11.92)

Furthermore, when r = 1, one can define the trace (o(D;v)F,G) € H},(0Q) C L*(09) in a

non-tangential pointwise sense, as

(c(D;v(x))F(z),G(z)) = lim (o(D;v(x))F(y),G(y)), ata.e. € N (11.93)

y—x

yel(z)
Finally, in the case when G (F, respectively) is a constant function, one can allow the index

q (p, respectively) in (11.87) to take the value oo as well.

A suitable version of the above theorem holds for bounded Lipschitz domains, in which
scenario it is natural to employ the local Hardy spaces hl,(9f2), introduced in § 2.3. Con-

cretely, we have the following.

Theorem 11.13 Let Q) be a bounded Lipschitz domain in R™, n > 2, and fir 0 < p,q < o©
and "T_l < r <1 such that 1/p+ 1/q = 1/r. Consider also a homogeneous, first-order

differential operator D with constant coefficients and two functions

Fect,cy), Gect,cM, (11.94)

which are null-solutions of certain strongly elliptic, self-adjoint, second-order, homogeneous,

(real) constant coefficient, differential operators in ), and such that

DF =0 and D*G=0 in 9, (11.95)

M(F) e LP(09), M(G) € L1(99). (11.96)

Then there exists a finite constant C = C(0Q,n,p,q) > 0 and a function in hl,(09),
denoted by (o(D;v)F,G), for which

(o (D; V) F, G)||nr,00) < C 1M (EF) | zea0) | M(G)] La(on) (11.97)
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and such that the following holds. Let Z be a coordinate cylinder for 0, with axis in the
direction of a unit vector (pointing into Q) denoted by e,, and pick a function ¢ € C§°(R")

with supp ¢ C Z. Then

liI(I)lJr (o(D;v(x))F(x +een), G(x + geyp)) ((z) do(z)
e=0" Jzrnon

- / (0(D; V)F, G) ¢ do, (11.98)
o

where the last integral above stands for the paring between hl,(0S2) and Lip (092).
Finally, in the case when G (F, respectively) is a constant function, one can allow the

index q (p, respectively) to take the value oo.

The case when F' is the gradient of a harmonic function u with M (Vu) € LP(0Q2), G = 1,
and D = div has been proved by B.Dahlberg and C.Kenig in [20], based on duality and
a refinement of an extension theorem due to N. Varopoulos [93]. The approach in [44] is
more akin to the work of M. Wilson [96]. In applications to the Stokes system in Lipschitz
domains, the following particular case of Theorem 11.12, Theorem 11.13 is going to be of

particular importance.

Corollary 11.14 Let Q C R™, n > 2, be a graph Lipschitz domain, with outward unit
normal v, and assume that "T_l <1 < 1. Then there ezists a finite constant C = C(09,r) >

0 such that for any divergence-free vector field F : Q — R" with biharmonic components for

which M(F) € LP(0RQ) there holds

(v, Fy € H,(00) and (v, )l 00 < CIM (Bl 1o o0y, (11.99)

Above, (v, ﬁ) on 082 is considered in the sense of Theorem 11.12. Furthermore, a similar
result is valid in the case of a bounded Lipschitz domain @ C R™, n > 2, in which case

(11.99) reads

(v, F) € hpy(09)  and  [[(v, F)llar,00) < CIM(F)| oo, (11.100)
with (v, ﬁ} on 00 defined in the sense of Theorem 11.13.
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Proof. Consider F as above, G =1, ¢ = 00, p = r and D := div (so that D* = —V). In
particular, DF = 0, D*G = 0, M(F) € LP(0Q), M(G) € L>®(d9Q) and (o(D;v)F,G) =
i(v, F). Then (11.99), (11.100) follow directly from Theorem 11.12 and Theorem 11.13,

respectively. O

11.7 Spaces of null-solutions of elliptic operators

Let L = Z‘ ~=m a,07 be a constant coefficient, elliptic differential operator of order m € 2N
in R™. For a fixed, bounded Lipschitz domain €2 C R™, n > 2, denote by Ker L the space of
functions satisfying Lu = 0 in Q. Then, for 0 < p < oo and « € R, introduce HE (Q; L) the

space of functions u € Ker L subject to the condition
(a)—1
lullgz .0y = 16~V @[ o) + Z V7| o) < +oo. (11.101)
j=0
Above, V7 stands for vector of all mixed-order partial derivatives of order j and {(«) is the
smallest nonnegative integer greater than or equal to «;, i.e.,
«, if a is a nonnegative integer,
(@) :=1q [a]+1, ifa>0, o ¢ N, (11.102)

0, if a <0,
where [-] is the integer-part function. Parenthetically, let us point out that an equivalent

quasi-norm on HE,(Q; L) is given by

165~V || o) + sug\U(w)\, (11.103)
S

where O denotes some fixed compact subset of 2. The following result has essentially been
established in [64]; see also [50], [70]. It extends results from [46], where the authors have
dealt with the case 1 < p,q < 00, s > 0, L = A, and [1] where the case 1 < p,q < 00, s > 0,

L = A? is treated.

Theorem 11.15 Assume that L is a homogeneous, constant coefficient, elliptic differential

operator and that Q@ C R™, n > 2, is a bounded Lipschitz domain. Then

HE (Q; L) = FPI(Q2) NKer L (11.104)
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for every a € R, 0 < p < o0, and 0 < q < co. In particular, for each fired o € R and
0 < p < o0, the space FY'Y(Q) NKer L is independent of q € (0,0).

Furthermore, corresponding to p = oo, there holds
rrs( L) = B,fi?o(Q) NKer L (11.105)

for each k € Ny and s € (0,1).
Our next result is as follows.

Theorem 11.16 Let Q) be a bounded Lipschitz domain in R™, n > 2, and assume that L is
a homogeneous, constant (real) coefficient, symmetric, strongly elliptic differential operator

of order 2m, m € N. Then if u € F231+1/p(§2) for some =1 < p < 2,0 < q< o0, and

Lu =0 in §, it follows that M (V™ 'u) € LP(0Q) and a natural estimate holds.
In the proof of this theorem, the following result from [64] is going to be useful.

Lemma 11.17 Assume that Q is a bounded Lipschitz domain in R™, n > 2, and that L
is as above. Also, fit k € Ny, 0 < p < 00, and s € R with sp > —1. Then there exists a

relatively compact subset O of Q0 and C > 0 such that

ze0

(/Q((S(m)s|u(x)|)pdm>1/p <C [(/Q(a(x)8+k\vku(x)y)pd;,;)””+sup ]u(l‘)]], (11.106)

uniformly for u € Ker L.

We now present the

Proof of Theorem 11.16. Recall the area function

A () = (/F( AT a)*, zeon. (11.107)

As proved by Dahlberg-Kenig-Pipher-Verchota in [22], for every 0 < p < oo, there exists
C > 0 such that
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m—1
1M (V"™ )| ooy < CILANY™ )| zoae) + C D IV ull 1 q). (11.108)
7=0

If {Q;}; is a Whitney decomposition of € into Euclidean cubes @); of side-length [(Q;), we

may then estimate

P 5
/ (A(Vm—lu)(96)> do, = / (/ 5(y)2—n]Vmu(y)|2x{yep(x)}dy> doy (11.109)
oQ aa NJa
- / (Z 5(y)g_n|vmu(y)|2X{yer(;g)}dy>Edax =:1.
o0 J Q;

If y € Q; and = € 02 such that y € I'(z), then x € A;, where A; is the “cone shadow” of
Qjon %, ie., Aj = {z € 00 : T(z)NQ; # 0}. In particular, o(A;) ~ I(Q;)" !, uniformly
in j.

Assume that 0 < p < 2. Then

)
I < / /5y2‘"Vmuy2x oy’ do,
m;( SV e d)

EJj/A [z(Qj>(][Qj\vmu|z);r N

O UQ T, IV < C [ 3l
; % "

IN

IN

< C““||§anfl+1/p(ﬂi) < C||u|yF5;3m/p(Q), (11.110)

provided % > n(% — 1) (or, equivalently, p > ”T_l) For the second inequality in (11.110),

we have used the fact that the function V™u € Ker L satisfies the reverse Holder inequality

1

<][Q.|vm“|2>é = C(][QJV"LW)F’ (11.111)

J
where Q;f is concentric double of ;. Let us also point out that the next-to-last estimate
in (11.110) follows straight from definitions when 1 < p < 2 and is a consequence of
n—1

Lemma 11.17 when *—= < p < 1. Finally, the last estimate in (11.110) is implied by
Theorem 11.15.
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The above argument shows that [ AV )| 1raq) < C’Hu||Fp,ql+1/ (- Since we also
m— p

have Ff/’Z(Q) < L"/("=1)(Q), the desired conclusion now follows from (11.108). O

11.8 Singular integral operators on Sobolev-Besov spaces

We start with a result describing mapping properties on Besov spaces of integral operator

modeled upon the hydrostatic double layer.

Theorem 11.18 Let Q be a (bounded or graph) Lipschitz domain in R™, n > 2. Consider

the integral operator

Tf(x)= /89 k(xz,y)f(y)doy, x € (), (11.112)

satisfying the following conditions:

(1) T1 = const, (11.113)
(2) |VFE(z,y)| < Cle —y|” "D, k=1,.. N, (11.114)
for some positive integer N. Then, with 6 := dist (-, 00),
k—1
1872 VAT Al iy + 3 IV T Fliviey < CllAll sz oy, (11.115)
j=0

granted that k € {1,...,N}, ”T_l <p< o0, and (n — 1)(% -1y <s<l

For a proof of Theorem 11.18 see [64]. The next result gives an analogue of Theo-

rem 11.18 for single layer-like integral operators.

Theorem 11.19 Let Q be a bounded Lipschitz domain in R™, n > 2, and consider the

integral operator

Rf(z) = /m Ko p)f()do,,  zeQ, (11.116)

whose kernel satisfies the conditions

IVEVIk(z,y)| < Clo —y|~ "2 4) 5= 0,1, (11.117)
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fork=1,2,.... N, where N is some positive integer. Then

k—1
1 .
18* 2 IV R [[| o) + D IV R ooy < Cllflgre o), k=1,2,.., N,  (11.118)
j=0

granted that 21 < p < oo and (n — 1)(% -1 <s<l

Once again, see [64] for a proof.

11.9 Functional analysis on quasi-Banach spaces

In the first part of this section we discuss a number of results related to Fredholm theory
on quasi-Banach spaces. Since such a topic has intrinsic interest, we adopt a slightly more
general point of view and record a body of results which is richer than the one strictly
required by the applications to the kind of partial differential equations pursued in this
work.

The following useful results appear in [81].

Theorem 11.20 (Finite Dimensional Extension Theorem) Assume thatY is a closed

subspace of a Hausdorff linear topological space X, and that M is a finite dimensional sub-

space of X. Then'Y + M is closed in X.

Theorem 11.21 (Finite Codimension Theorem) If Y is a closed subspace, of finite
codimension in a Hausdorff linear topological space X, and M is any algebraic complement

of Y, then X =Y & M.

Proposition 11.22 Assume that X is a closed subspace of a Hausdorff linear topological
space. IfY and Z are two linear subspaces of X which complement each other (i.e., Y ®Z =
X ) then'Y and Z are closed in X.

Theorem 11.23 Assume that X is a closed subspace of a Hausdorff linear topological space.

Then X is finite dimensional if and only if X is locally compact.

Proposition 11.24 If S : Y — Z and T : X — Y are linear transformations acting on
vector spaces, both of which have finite dimensional kernels, then the composition ST : X —

Z also has finite dimensional kernel and, moreover,
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dimKer (ST : X — Z) = dimKer(T:X —Y)
+dim [Ker (S:Y - Z)NIm (T : X - Y)|. (11.119)

To be precise, this is stated and proved in § 8 of [81] in the case when X =Y = Z, but

the same elementary reasoning applies in the slightly more generality above.

Definition 11.25 Let X be a wvector space. A quasi-norm is a nonnegative real-valued

function || - || on X such that

[zl =0 <= 2=0,  Jlaz| =laflzfl,  llz+yl <s(lc]+Ilyl), (11.120)

where x,y € X, a is any scalar, and kK > 1 is independent of x and y.

Call X a quasi-Banach space if there exists a quasi-norm for which this X complete.

Theorem 11.26 (Aoki-Rolewicz Theorem) Let X be a quasi-Banach space. Then there

exists 0 < p <1 and an equivalent quasi-norm || - || on X such that

[z +yl” <z’ + llyll”,  Va,y e X. (11.121)

Definition 11.27 If X and Y are quasi-Banach spaces, denote by L(X,Y) the space of
linear, continuous operators from X to Y. An operator T € L(X,Y) is said to be compact
if the image under T of any bounded subset of X is a relatively compact subset of Y. Finally,

denote by K(X,Y) the space of compact operators from X into Y.

We equip £(X,Y’) with the natural quasi-norm |||z x,y) := sup{||Tz|ly : * € X, [[z]x <

1}.
Suppose that X is a quasi-Banach space and T' € £(X, X ). We claim that the operator

A +T is invertible (with I denoting the identity) on X for any A € R with |\| large enough.

Indeed, the inverse can be given in the form of a Neumann series

A +T) ' =) (1A', (11.122)
j=0
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which converges in the operator norm if |A| is large enough. To see this, by the Aoki-
Rolewicz Theorem, there is no loss of generality in assuming that X is a p-Banach space,
for some p € (0,1]. Then || Y0, (—LPATITI|L o < SN L NI ) <
AL Z;-V:M(]M_l/pHT||L(X’X))jp which is a piece of a convergent geometric series if ||T']| £ x, x) <

Al

Theorem 11.28 Let X and Y be quasi-Banach spaces. Then L(X,Y) is a quasi-Banach
space and KC(X,Y) is a closed, two-sided ideal in L(X,Y).

When X =Y, this follows from the discussion in § 3 (p. 3.1) in [81]; see also Proposition 9.5
on p.9.3 in [81]. Once again, having X =Y is inessential for the current purposes.

Next, we record a result proved in [51]; cf. Proposition 7.8 on p. 132, and Proposition 7.9
on p.134. To state it, given two quasi-Banach spaces, we let G1(X,Y) denote the set of

isomorphic embeddings of X into Y, and G3(X,Y") the set of open mappings of X into Y.

Proposition 11.29 For any two quasi-Banach spaces X and Y, the set G;(X,Y) is open
in L(X,Y),7=1,2, and G1(X,Y)NG2(X,Y) is both closed and open in either of G1(X,Y),
Go(X,Y).

The result below is contained in Lemma 4.11 on p. 74 of [51].

Proposition 11.30 Suppose that X, Y are two quasi-Banach spaces. Then A + K has
closed range for any A € G1(X,Y) and K € K(X,Y).

Consider next two quasi-Banach spaces (X, | - [|x), (Y,||-|ly) and let T: X — Y be a
linear, bounded operator. Define x(T; X,Y) to be the smallest constant so that if y € Y
then there exists x € X so that Tz = y and ||z||x < k(T X,Y)|ly|ly. Note that, by the
Open Mapping Theorem (which remains valid in the context of quasi-Banach spaces; cf.

Theorem 1.4 in [51]),

k(T; X,Y) is finite if and only if 7" maps X onto Y. (11.123)

We also let n(T; X,Y) be the largest constant so that n(T; X,Y)||z||x < ||[Tz||y for each

x € X. Once again by virtue of the Open mapping Theorem,
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n(T; X,Y) > 0 if and only if T is injective with closed range. (11.124)
The result below has been proved in [48].

Lemma 11.31 Suppose that (X,| - ||x), (Y, |- |ly) are two quasi-normed spaces such that
X is complete. Also, suppose that T : X — Y is a linear, bounded operator for which the
following property is true: there exist 0 < Cy < 400 and 0 < a < 1 such that for each y in
the unit sphere of Y one can find x € X with ||z||x < Cp and ||y — Tz|y < a.

Then T is onto and k(T; X,Y) < Cy for some Cy depending exclusively on Cy, the

quasi-norm constant of X and a.
We shall also need a variant of Lemma 11.31 for sequences of operators.

Lemma 11.32 Assume that X, Y are Banach spaces and that (T,,)aen i a sequence of
bounded, linear operators, mapping X intoY , converging to some T : X — Y in the operator

norm. If T is onto, then there exists C' > 0 and aqg such that

Va>ag, VyeY =3z € X sothat To,x =y, ||z|x <C|yly- (11.125)

Proof. This is a consequence of Lemma 11.31. Specifically, there exists Cj such that if
y € Y has ||y|ly = 1 then there exists x € X with ||z||x < Cp and Tx = y. Then we may
write | Toz ~ylly = [[Taz ~ Telly < 2l x[|Ta ~ Tllogxy) < CollTa — Tllzexy) which shows
that, for sufficiently large «, we always have “good” approximate solutions to T,z = y and
this, by Lemma 11.31, gives an actual solution with the desired control of the quasi-norm.

O
Definition 11.33 Let X and Y be quasi-Banach spaces. Call T € L(X,Y) Fredholm if:

(1) T has a closed range,
(2) T has finite codimensional range,
(3) KerT is finite dimensional and topologically complemented in X .
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Set ®(X,Y) :={T € L(X,Y) : T Fredholm} and define the index function

ind: o(X,Y) — Z, ind7 := dim (Ker T') — codim (Im T"). (11.126)

Occasionally, if we wish to stress the spaces on which the operator T is considered, we may
write index (T : X — Y), Ker (T : X — Y), etc. When X = Y, the above definition
becomes a particular case of that in § 6 in [81]. Again, X = Y has been assumed there
merely for convenience, and that removing this assumption does not affect the subsequent
analysis.

As pointed out in § 6 of [81], it is not always the case that a finite dimensional subspace
E of a Hausdorff, linear topological space X is necessarily topologically complemented.

However, this does happen whenever X* separates X.

Definition 11.34 If X and Y are two quasi-Banach spaces, set

oL (X,Y) = {T'€L(X,Y): T has closed range and a finite dimensional

kernel, which is topologically complemented in X}, (11.127)

and

O_(X,Y):={T € L(X,Y): T has closed range and finite dimensional cokernelf11.128)

The set of semi-Fredholm operators is then defined as ®_(X,Y) U ®(X,Y). The index

function (11.126) can then be extended to the set of all semi-Fredholm operators by setting

index : ®_(X,Y)U®,(X,Y) — ZU {+oo},
(11.129)

index T := dim (Ker T') — dim (coker T")

275



Clearly,

B(X,Y)=d_(X,Y)Nd (X,Y). (11.130)

As shown below, the demand of “having closed range” is superfluous (and, hence, it

may be omitted) in the above definitions of semi-Fredholmness and Fredholmness.

Lemma 11.35 Let X, Y be two quasi-Banach spaces and assume that T € L(X,Y) is such
that TX has finite codimension in'Y (i.e. there exists M, finite dimensional subspace of Y

such that M +TX =Y ). Then TX is closed in'Y .

Before presenting the proof, let us note that if X, Y are quasi-Banach then for any

T € L(X,Y),

Y
TX has finite codimension in Y <= dim (ﬁ) < +00. (11.131)

Furthermore, the codimension of TX in'Y is equal to the dimension of the space Y/TX.

Proof of Lemma 11.35. Let M be a finite dimensional subspace of Y such that M+TX =Y.
By further refining it (e.g., replacing it by a complement of M NTX in M), it can be also
assumed that M NTX = {0}. Being finite dimensional, M is closed. Consider then
Ty : X x M — Y, defined by Ti(x,y) := Tx + y, which is linear, continuous, and onto.
Since KerTh = Ker T x {0} — X x {0}, it follows that TX = T7(X x {0}) is closed in Y,

by invoking the next lemma. O

Here is the result alluded to above:

Lemma 11.36 Let X, Y be two quasi-Banach spaces and assume that T € L(X,Y) is such
that TX is closed. If X, is a closed subspace of X with the property that KerT C X,, then
TX, is closed in'Y .

Proof. Since X, is closed in X, then X,/KerT is closed in X/KerT. However, T :
X/KerT — TX is an algebraical and topological isomorphism, and 7'X, can be identi-
fied with the image of this latter operator of the closed subspace X,/KerT. Thus, T'X, is

closed in T'X and, further, in Y. O
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The following lemmas further summarize various properties of Fredholm and semi-

Fredholm operators which we will find useful later on.

Theorem 11.37 Let X and Y be Banach spaces and let T € L(X,Y). Then the following

assertions hold.

(1) If T € 2L (X,Y) and S € ®4(Y, Z) then ST € &4 (X, Z) and

index (ST') = index (S) + index (7). (11.132)

(2) If X and Y have reasonable dual spaces, then T € ®L(X,Y) if and only if T* €
O (Y*, X*). Moreover, index (T') = —index (7).

(3) T € . (X,Y) if and only if T is bounded from below modulo compact operators. That
is, there exist a quasi-Banach space Z, a compact operator K : X — Z, and a positive

constant C such that

|zl x < C||Tz|ly + |Kz|z for any z € X. (11.133)

In particular, 4 (X,Y) is open in L(X,Y) and @1 (X,Y) is stable under addition of

compact operators.

(4) The set ®_(X,Y) is open in L(X,Y) and ®_(X,Y) is stable under addition of com-

pact operators.

(5) If Xo is a closed subspace of X and T € ®,(X,X) with TXo C Xy, then T|x, €
P, (Xo, Xo).

(6) T € ®(X,Y) if and only if there exist S1,52 € L(Y,X) and K1 € K(Y,Y) and
Ky € K(X,X), such that

TS, =1y + Ky, ST =1Ix+ Ks. (11134)
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In fact, we may take S = So € ®(X,Y) (i.e., T is Fredholm if and only if it is

invertible modulo compact operators).

(7) The index function (11.129) is continuous.

Proof. The claims in (1) and (6) appear in § 6 and § 8 of [81], at least when X =Y, and
an inspection of the proof shows that this restriction can be easily removed.

Let us consider (3). In one direction, if 7' is bounded from below, modulo compact
operators, introduce A = (T,K) : X — Y @& Z (with the latter space equipped with the
natural quasi-norm ||(y, 2)|lvez := ||lylly + ||z||z). Then (11.133) amounts to n(A; X,Y &
Z)>0,ie. Ae G1(X,Y & Z) (in the terminology of Proposition 11.29) . Since (0,—K) €
K(X,Y®Z), Proposition 11.30 then gives that (7,0) = A+(0, —K) has closed range. Thus,
T has closed range, as desired. To show that N := Ker T, which is a closed subspace of X,
is finite dimensional, it suffices to check that its unit ball is sequentially relatively compact
(here, Theorem 11.23 is used). To this end, fix an arbitrary sequence {z;}; of vectors in X
with [|z;]|x <1 and T'z; = 0. Without loss of generality, it can be assumed that {Kxz;};
converges in Z. Writing (11.133) for = x; — x, then proves that {z;}; is Cauchy, hence,
convergent in X. This concludes the proof of the fact that, for an operator in £(X,Y),
being bounded from below modulo compact operators entails membership to &, (X,Y).

Conversely, if T € ®,(X,Y) and Z is a topological complement of KerT (which, by
Proposition 11.22, means that Z is closed in X), define K : X = KerT & Z — Z by
K(z,y) := x. Since K has finite rank, K € K(X,Z). Then, since T : Z — ImT is
an isomorphism, for each x € X with ¢ = z, + vy, v, € Z, y € KerT, we may write
lollx < sllzollx + Iyllx) < x(ITwolly + IKIl7) = £(ITaly + [KIl7). Thus, (11.133)
follows.

Next we consider (4). Let T' € ®_(X,Y). Then there exists M C Y such that ¥ =
TX ® M and dim M < +oo. Define T : X ® M — Y by T(z,m) := Tz + m. Then T is
onto, and hence from (11.123), C, := k(T; X ® M,Y) < +oo. Let R € L(X,Y) be such
that || Rl z(x,y) < ﬁ Define R : X ® M — Y by R(z,y) = Rz, and so HRHL:(X@M,Y) <
27(1}0' Then from the definition of k(T3 X @ M,Y), for any y € Y,|jy|ly < 1, there exists

(z,m) € X & M such that T(z,m) =y and ||(z,m)| xem < C,. Then
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ly — (T + R)(z.m)lly < |Blleixany)ll(zm)llxen < 3, (11.135)

and so it follows from Lemma 11.31 that 7 + R is onto. Then

Y=Im(T+R)={Te+m+Re:zecX,meM}=(T+RX+M, (11.136)

and so the range of T+ R has finite codimension in Y. From Lemma 11.35, T'4+ R has
closed range, and so T'+ R € ®_(X,Y). Therefore ®_(X,Y) is open in L(X,Y).

To see that ®_(X,Y) is stable under addition of compact operators, let 7' € ®_(X,Y")
and K € K(X,Y), and we will show that T+ K € ®_(X,Y). First we will treat the
case when 7' is onto. Using (11.123), define C; := x(T;X,Y’). Since K € K(X,Y), there
exists an operator K1 € K(X,Y) of finite rank such that [|[K — Ki[[z(x,y) < ﬁ Define
T, =T+ (K — Kj), and let y € Y, ||y|ly < 1. From the definition of x(T; X,Y), there

exists © € X such that y = Tx and ||z|x < C;. Then

ly - Tially = ly - T — (K — Kyl < | K - Kl eoerllzllx < 3, (11.137)

and so Lemma 11.31 implies that T is onto. Then since T'+ K = T} + K; and K; has
finite rank, it follows that T'4+ K has finite codimensional range, and then Lemma 11.35
implies that the range of T'+ K is closed. This establishes that 7'+ K € ®_(X,Y) under
the assumption that T is onto.

Next, we consider the general case. Let M C Y be such that Y = TX & M and
dim M < +o0o. Define T,K : X ® M — Y by

T(z,y):=Tz+y and K(z,y):= Kx. (11.138)

Since T is onto and K is compact, using the previous case, we know that T+ K has closed

range of finite codimension in Y. Then since

Im(T+K)={Tz+y+Kz:zcX,yc M}=Im(T+ K) + M, (11.139)
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it follows that the range of T'+ K has finite codimension in Im (7' + K). Then the range
of T'4+ K also has finite codimension in Y. Lemma 11.35 then implies that the range of
T + K is also closed, and hence T'+ K € ®_(X,Y). This finishes the proof of (4). For the

remaining items, the interested reader is referred to [49]. O

As a consequence of (6) above, we have the following. Consider U a topological space
and let U 5 XA — T\ € &, (X,Y)UP_(X,Y) be a continuous mapping. Then the function
U > X\ — dim (KerTy) — dim (coker 7)) € Z U {£oo} is locally constant. In particular,
A — index (T}) is constant on each connected component of U.

In the next corollary we single out a consequence of the last point in the above lemma

which is particularly relevant for us in applications.

Corollary 11.38 If T € L(X, X) is such that \XI + T is a semi-Fredholm operator for any
AeER, A > %, then M + T is actually a Fredholm operator with index zero for any A in

the indicated range.

Proof. Recalling that for |A| large enough the operator AI+7 is invertible (see the discussion
preceding Theorem 11.28), the point (6) in Lemma 11.37 gives that index (A +T") = 0 for

any A € R with [A| > 1. Hence, the conclusion follows. O

Lemma 11.39 Let X, Y, Z be quasi-Banach spaces and consider the commutative diagram

0—X —)Yy—2Z2—0
! i ! (11.140)
00— —)Y—2Z—0
where all arrows are linear and bounded and the horizontal sequences are exact. Then the

following hold:

(a) If two vertical arrows are isomorphisms then so is the third one.

(b) If two vertical arrows are Fredholm operators then so is the third one. Moreover, the
index of the middle vertical arrow is the sum of the indexes of the other two vertical

arrows.

280



Lemma 11.40 Let X, Y, Z, W be quasi-Banach spaces and consider the commutative

diagram

X —)

[ (11.141)

zZ— W
where all arrows are linear and bounded. If three of the four arrows are Fredholm operators

then so is the fourth one.
The following result is going to be of importance for us.

Lemma 11.41 Let X;, Y, j = 1,2, be two quasi-Banach spaces such that the inclusions
X1 — Xo, Y1 — Y; are continuous, and the second one has dense range. If T € ®(X1,Y1)N
®(Xs,Y2) is such that index (T : X1 — Y1) = index (T : Xo — Ya) then Ker (T : X; —
Y1) =Ker (T : X9 — Ys).

Proof. Since T'X1 has finite codimension in Y7, there exists a finite dimensional subspace M
of Y7 such that TX; & M = Y; (direct, non-orthogonal sum). We claim that TXo+ M = Y5.
To prove the claim, observe that Y1 = T X; + M C T Xs + M. Hence, since Y] is densely
embedded into Y5, so is T X9 + M. Moreover, because T X5 is closed and M is finite

dimensional, Theorem 11.20 implies that T' X+ M is closed in Y. Combining these results,

the claim follows. Going further, by using the claim we obtain that dim(TgI(l) =dimM >

dim (T§?2> which, in turn, implies that dim coker (7" : X; — Y1) > dimcoker (T : Xo — Y3).

The latter inequality together with the fact that the index of T is the same when acting from
X; onto Yj for j =1 and j = 2 give that dimKer (T : X1 — Y7) > dimKer (T : Xo — Y3).

The reversed inequality is obvious, thus the conclusion follows. ]

Lemma 11.42 Let X,Y be quasi-Banach spaces and assume that T € L(X,Y). If Z — Y
is a closed subspace of finite codimension, then T~'Z is a closed subspace of finite codimen-

sion in X.

Proof. Since T is continuous and Z is closed, it follows that 7717 is closed as well. Next,

consider the linear operator
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T X/T*lz — Y/Z, Tla] := [T, (11.142)

where for each z € X, [z] stands for the class of x in X/T~'Z, and [T'x] stands for the class

of Tx in Y/Z. Clearly, T is one-to-one which then entails

dim (X/T—lz) < dim (Y/Z) < foo. (11.143)
Thus, T~'Z is a space of finite codimension in X. ([l

We conclude this section with several stability results proved in [48], [50]. First, we
need to recall some definitions. A quasi-Banach space X is called analytically convex if
there is a constant C' such that for every polynomial P : C — X we have ||P(0)|x <
Cmax|, 1 [|[P(2)|x. It is shown in [47] that if X is analytically convex it has an equivalent
quasi-norm which is plurisubharmonic (i.e. we can insist that the constant C' above can be
taken to be 1). Let us also point out that being analytically convex is equivalent to the

condition that

<C 11.144
o, I @ = € g 1M .

for any analytic function f: {z € C: 0 < Rez < 1} — X which is continuous on the closed
strip {z€ C: 0 <Rez < 1}.

Clearly, any Banach space is analytically convex. Other useful criteria for analytic
convexity can be found in [47], [26], [50]. The relevance of this concept stems from the fact
that Calderén’s complex method of interpolation, originally devised for Banach spaces, can
be most naturally adapted to analytically convex quasi-Banach spaces. A more thorough
discussion in this regard can be found in [50]. Here, we only wish to quote a result which

has been proved in [50].

Lemma 11.43 Let X;, Y;, Z;, i = 0,1, be quasi-Banach spaces such that XoN X7 is dense
in both Xg and X1, and similarly for Zy, Z1. Suppose that Y; — Z;, i = 0,1 and there

exists a linear operator D such that D : X; — Z; boundedly for ¢ = 0,1. Define the spaces
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X;(D):={ue X;: DueY;}, i=0,1, (11.145)

equipped with the graph norm, i.e. ||ulx,(py = |lullx, + [[Dully;, i = 0,1. Finally, suppose
that there exist continuous linear mappings G : Z; — X; and K : Z; — Y; with the property

DoG =1+ K on the spaces Z; for i =0,1. Then, for each 0 < 6 <1 and 0 < q < o0,

(Xo(D),Xl(D)),g’q = {u € (Xo,X1)97q : Du e (K),Yl)g,q}. (11.146)

Furthermore, if the spaces Xg + X1 and Yy + Y7 are analytically convex, then

[Xo(D), X1(D)]o = {u € [Xo, X1]g : Du € [Yo,Vilg}, 0 €(0,1). (11.147)

We continue with a very useful result which essentially asserts that, on a complex in-
terpolation scales of quasi-Banach spaces, the property of being invertible is stable and the
inverses are compatible. The Banach space version can be found in [13], [86], [3], [85], [95].

The theorem below was proved in [50], following earlier work in [48].

Theorem 11.44 Let Xy, X1 and Yy, Y7 be two compatible couples of quasi-Banach spaces
and assume that Xo + X1 and Yy + Y1 are analytically convex. Also, consider a bounded,
linear operator T : X; — Y;, j =0,1. If Xg := [Xo, X1]p and Yy := [Yo, Y1]g, then for each

0 € (0,1), then T induces a bounded linear operator
Ty: Xg — Yy,  0€(0,1), (11.148)
in a natural fashion. Moreover,
1ol -, < 1T 15" x| TS, —x,0 6 € (0,1). (11.149)

Assume next that there exists 6, € (0,1) such that Ty, is an isomorphism. Then there
exists € > 0 such that Ty continues to be isomorphism whenever |0 — 0,| < €.
Furthermore, if I is any open subinterval of (0,1) with the property that Te_l exists for

every 0 € I, then Te_l agrees with T, ' on Yy N Yy for any 0,0 € I.
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Theorem 11.45 Under the hypotheses of Theorem 11.44, if Ty, is surjective and has finite-

dimensional kernel then there exists € > 0 so that dim ker Ty is constant for |0 — 0, < €.

Theorem 11.46 Retain the same hypotheses as in Theorem 11.44 and assume that YoN'Y;
is dense in each Yy for 0 < 6 < 1 (which is automatic for the case of inner complex
interpolation). Then if Ty, is Fredholm, there exists ¢ > 0 so that Tp is Fredholm for

|0 — 0p| < € and the index is constant.
Our last result in this section is a global stability theorem from [48].

Theorem 11.47 Retain the same hypotheses as in Theorem 11.44 and, in addition, assume
that there exists 0, € I such that Ty, : Xg, — Yo, is an isomorphism. Then, if n(Ty) > 0
for all 0 € I orif k(Ty) < oo for all @ € I, it follows that Ty : X9 — Yy is an isomorphism

forallB € 1.

11.10 Surface to surface change of variables

The following result, of general nature, from [42] is going to be useful for us.

Proposition 11.48 Let Q) C R™ be a bounded Lipschitz domain, O an open neighborhood of
Q, and let F : O — R™ be an orientation preserving C™-diffeomorphism. Then Q= F(Q)
is a Lipschitz domain and if v,v and 0,0 are, respectively, the outward unit normals and

surface measures on 02 and BSN), then

(DF~H)T(vo F1)
(DE=H)T(vo F~H)|’

v (11.150)
=|(DF YT (voFY|(|det DF| o F!) F,0, (11.151)

where (DE~Y)T denotes the transposed of the Jacobian matriz of F~1, and F.o is the

push-forward of the measure o.

Below, we study how tangential derivatives transform under changing variables in the am-

bient Euclidean space.
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Proposition 11.49 In the context of Proposition 11.48, and assuming 1 < p < oo, one

has

I lmomy = 1F o F  lwoye Ifllizom = 1F 0 F M lppomy- (11.152)

Furthermore, for every j, k € {1,...,n},

(DF YT [(Vianf @ v — v @ Vignf) o F-H(DF 1)

Oz, (fo F7h) = DFTTG T Mo (11.153)

Proof. The first equivalence in (11.152) is a direct consequence of Proposition 11.48, whereas
the second follows from (11.153) and Proposition 11.48.
Consider now the identity (11.153). For each j,k € {1,...,n}, denote by Oz, the

tangential derivative on 0 given by v;0; — v;0;. We then have

Oz, (fo F™Y) = 00u(foF ") = dj(fo F7Y)

= U;((0cf) o F1YOLE, — k(0 f) o FTHO, F7L. (11.154)

Employing Proposition 11.48 we further write

(DF )T (o 1) (VfoF~ ), (DF )y,
(DF )(qu Bl
[(DF~)T(VfoF )@ (voF ') (DF )

Ui((0cf) o FYORF, ! =

= M (11.155)
(DF1)T (v o I
where for two vectors a,b € R" with a = (ay,...,a,) and b= (b1,...,b,), we have set a ® b
to stand for the n x n matrix whose ij entry is given by
(a®b)ij == ab;, 0,5 €{1,...,n}. (11.156)

Thus, based on (11.154) and (11.155),
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[(DE~H)T((VfoF ) ® (vo FTH))(DF )],
[(DF=1)T(vo F71)|

@F YTV F )@ (o FH))(DF )],

Oz, (fo F7Y) =

(DF1)T(vo F1)] (11.157)
This further gives,
5 — [(DF‘I)T(a®b—b®a)(DF_1)]kj 158
Tjk(fo ) - ‘(DF_I)TO/O F_l)’ ) ( : )
where
a:=VfoF' —and b:=voF . (11.159)

Since, generally speaking, a @ b —b® a = ap ® b — b ® ap where ap := a — (a - b)b, we may

finally conclude that, for every j, k, (11.153) holds. O

11.11 Truncating singular integrals

Recall that a function ¢ : U — R, U open subset of R™ is called Lipschitz provided that
there exists M > 0 such that |p(z) — ¢(y)| < M|z — y| for all z,y € U. The best constant
in the above inequality is called the Lipschitz constant of .

The following is an old result of Rademacher (cf.[77]).

Lemma 11.50 Let ¢ be a real-valued, Lipschitz function defined in an open set U of R™.
Then for each 1 < j < n, 5‘67% exists at almost every point x in U and ng; € L>®(U,R).
In fact, ||V| L~ is the Lipschitz constant of ¢ and for almost every x € R™ there exists a

vector V(x) such that

i [P+ Y) = o(2) = (Vo(2),9) |
ly/10 |yl

= 0. (11.160)

If U CR™, call ®: U — R™ bi-Lipschitz if there exist 0 < M7 < Ms < oo such that

Milz —y| < |®(z) — @(y)| < Malx —y|,  Va,yeU (11.161)
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When U is an open set, it is known (cf. [77]) that necessarily m > n, ® is an open mapping,

the Jacobian matrix D® = (0;®r)1<j<n, 1<k<m €Xists a.e. in U and

rank D®(z) = n for a.e. x € U. (11.162)

Our goal here is to establish the following.

Proposition 11.51 Let A : R™ — R™ be a Lipschitz function with Lipschitz constant M,

and assume that F : R™ — R, F € CN(R™), for some sufficiently large N € N, F is odd

function. For z,y € R™ with x # y we set K(x,y) := ‘gc_ly'nF (A(Tx):;(y)>, and for e > 0,

define the truncated operator

T.f(x) ::/l_ N K(z,y)f(y)dy, z € R"™ (11.163)

As is well-known (cf., e.g., [67]), if 1 < p < oo and f € LP(R™) then the limit lim._o T. f (x)

exists for almost every x € R™ and the operator

Tf(x) = hIT(l]Tgf(JZ‘), r e R", (11.164)

is bounded on LP(R™).

Assume that B :R™ = R™, m/ > n, is a functions satisfying

M~ Yo —y| < |B(z) - B(y)| < M|z —y|, Va,yeR", (11.165)
for some M > 1. Then if 1 <p < oo and f € LP(R™), the limit

lim K(x,y)f(y) dy, (11.166)
e=0J|B()-B(y)|>¢

exists and is equal to T f(x) (as defined in (11.164)) for almost every x € R™. In other

words, for any function B as in (11.165), one has the representation

Tf(x) = lim K(z,y)f(y)dy, (11.167)
e=0J|B(2)-B(y)|>e

for almost every x € R™.

To prove it, we isolate the key technical step in the form of a lemma, stated below.
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Lemma 11.52 Let A: R™ — R™ and B : R" — R™, m/ > n, be functions satisfying

|A(z) — A(y)| < M|z —y|, and (11.168)

MYz —y| <|B(z) - Bly)| < M|z —y|, Vaz,yeR", (11.169)

for some constant M > 1. Also let F : R™ xR — R be a C', odd function. Fiz z € R" and

for each € > 0 consider

Ue) = {y €R": 1> |z —y| >}, (11.170)
Vie) :={y eR": [(DB)(z)(x —y)| > ¢, [z —y| <1}, (11.171)
W(e) = {y €R": |B(z) — B(y)| > ¢, |z —y| < 1}. (11.172)
Then
8 o i ) = 8 e ()
e

provided the Jacobian matrices (DA)(z) and (DB)(z) ezist, rank (DB)(z) = n, and one of

the above three limits exists and is finite.

Proof. Without loss of generality we can take z = 0, A(0) =0, B(0) = 0. By Lemma 11.50
there exist nonnegative functions 14 (t) and np(t) defined for ¢ > 0, so that na(t) | 0,

np(t) | 0ast | 0and

[A(y) = (DA)(0)y| < ly[na(lyl), (11.174)

|B(y) — (DB)(0)y| < |yl ns(ly]), (11.175)

for y € R™. If, for each & > 0, we now introduce A(e) := {y € R": ¢ > |y| > ¢||(DB)(0)|| "'}

then V(e) \ U(e) € A(e). Employing the properties of F', the fact that V(e) \ U(e) is
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symmetric with respect to the origin and the estimate (11.174), the absolute value of the

difference of the first two limits in (11.173) is estimated by

lim
el0

1 Ay)

/V(a)\U(a) WF(ﬁ) dy
1 1 A(y) A(-y)

- lalﬁ)li /V(s)\U(e) W[F(ﬁ) +F< |y|y )} W

o1 1 Ay) A(—y)
“im3 [ P - (450

<[ sup [(DF) hm/ Ally Iyl dy
[ElI<M

< Climna(e) =0, (11.176)
el0

which proves the first equality in (11.173).
In order to prove the second equality in (11.173), observe that for each point y €
(e)\W () we have M~t|y| < |B(y)| < ¢, so that |y| < eM. That is,

yeV(Ee)\We) = |yl <eM and |B(y)|<e. (11.177)

Based on this, we may conclude that

y € V(e\W(e) = [(DB)(0)y| < |(DB)(0)y — B(y)| + [B(y)| < eMnp(eM) +e (11.178)

and, further,

yeV(Ee)\W(e) = e < |(DB)0)y| <eMnp(eM) +e. (11.179)

From (11.177) and (11.179) we may therefore conclude that

V(e)\W(e) € Z(e; M np(eM); (DB)(0)) (11.180)

where we have set
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Z(e;a;R):={yeR": ¢ <|Ry| <ea+e},
(11.181)

ife>0,a>0,and R is am' X n matrix of rank n.

Let Hf\, be the k-dimensional Hausdorff measure in RY. To estimate the size of Z(e;a; R),

we first note that

Z(e;a;R) =¢Z(1;a; R), Ve >0. (11.182)

On the other hand, if we set H, := {Ry : y € R"} then, since R is a rank n matrix, H,, is

an n-dimensional plane in R™ and R : R™ — H,, is a linear isomorphism. Hence
n )

HZ(Z(l;a;R)) = HZ({yG]R":1<|Ry|§a+1}>

< CH, ({Y €H,:1<|V|<a+ 1}). (11.183)

Simple geometric considerations show that the

tim 74, ({Y € Hy s 1< Y] <a+1}) =0. (11.184)

From this, (11.182), (11.180) and the fact that ng(e M) — 0 as ¢ — 0, we finally deduce

that

A (VEWE)

e—0 en

— 0. (11.185)

Since the expression ‘xjy‘nF<A(Tx):;4|(y)> restricted to V' (e)\W (e) (itself, a subset of {y €
R™ : eM > |y| > ¢||(DB)(0)||~'}) is pointwise of the order e ", we conclude that the
integral of this function over the set V(£)\W (g) converges to zero as € — 0.

Moving on, an argument analogous to (11.179) gives that

e —eMnp(eM) < |(DB)(0)y| < ¢, (11.186)
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uniformly for y € W(e)\V(e). Thus, for reasons similar to those discussed above, the

F(A(x)_A‘(y)) over W (e)\V (¢) also vanishes as € | 0, which completes the

integral of | =y

1
z—y[®

proof of the second equality in the conclusion of the lemma. O
After this preamble, it is straightforward to carry out the

Proof of Proposition 11.51. The claim in (11.167) is an immediate corollary of Lemma 11.52
and (11.162). O

11.12 Approximating Lipschitz domains

For various purposes, it convenient to approximate, in a suitable sense, a given Lipschitz
domain with a sequence of sub-domains. Several variants can be found in the literature.
See, for example, [72] and [94] for such approximating schemes involving C'*°-smooth sub-
domains. For us here, however, the following approximation result, proved by A.P. Calderén

in [11], is particularly useful.

Lemma 11.53 Consider a bounded Lipschitz domain 2 in R™, n > 2, with surface measure

o and outward unit normal v, along with a Lipschitz vector field h on 09, satisfying

h(z)|=1 and (h(z),v(z)) >k for a.e. x€ O, (11.187)

where k € (0,1) is a fized constant. Let Q4 be the subset of Q defined by

Q= Q\{z—sh(z): 2€dQ, 0<s <t} (11.188)

Then there exists a small positive number t,, depending only on the Lipschitz character

of ), the Lipschitz constant of ﬁ, n, and K, such that the following hold.

(i) Whenever 0 <t < to, {4 is a Lipschitz domain and

O = {z — th(z) : = € 9Q}. (11.189)
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(i)

(iii)

(iv)

(v)

There exists a covering of Q2 with finitely many coordinate cylinders which also form
a family of coordinate cylinders for 0, for each t € (0,t,). Moreover, for each such
cylinder C(r,h), if ¢ and @; are the corresponding Lipschitz functions whose graphs
describe the boundaries of Q0 and Qy respectively in C(r, h), then ||Vi||ree < ||Vl Lo

and Vi — Vo pointwise a.e. ast — 0.

Consider the mapping Fy : R" — R™ defined by Fi(x) = x — tﬁ(x) Then F; is

bi-Lipschitz, uniformly in t € (0,t,). As a consequence,

Ay 00 — 0%,  M(x):=x —th(z), =zc 9, (11.190)
is a bi-Lipschitz function for each t € (0,t,) and the Lipschitz constants of Ay and
A~ are uniformly bounded in t.

For every t € (0,t,) and every x € 02, there holds Ay(x) € I'(x) and

sup |r — A¢(x)| < Ct, (11.191)
€N

for some finite, positive constant C = C(2, ﬁ)

For each t € (0,t,), there exist positive functions w; : 02 — R4, bounded away from

zero and infinity uniformly in t, such that, for any measurable set F' C 052,

/wtdaz/ doy, (11.192)
F Ae(F)

where doy denotes the surface measure on 0. In addition,

sup |1 — w(x)| < Ct, vVt e (0,t), (11.193)
€00}

where C' is as before.
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(vi) If vy is the outward unit normal vector to 0, then, with C as above,

sup |v(z) — v (A(2))| < Ct, Vit e (0,t,). (11.194)
x€00)

We wish to complement this lemma with several related results (working in the same

context as above). First, consider a function

ke CNRM\{0}), k(—z)=—k(z), k(\z)=\""k(z)if A >0, (11.195)

where N = N(n) is a sufficiently large integer. To this, we associate the singular integral

operator

Tf(x) := lim kE(x —y)f(y)do(y), x € 0N. (11.196)

e—0t

lz—y|>e
yeo

Furthermore, let Ty, t € (0,t,), denote the version of the integral operator (11.196) written
for 0€); in place of ).

We claim that for each p € (1, 00), there exists C(2, h, k,p) > 0 with the property that

ITi(f o Ay oAy = Tfllrwony < Ctlfllirony, Vit € (0,to). (11.197)

To prove this claim, for € 0Q and t € (0,t,) we write

T(f o Ay D(Au(e)) = lim / E(Au(z) — o) FATY (W) o)

e—0t

[Ag(x)—y'[>e
y’eaﬂt

—  lim / k(A(z) — M) f ()i () do(y)

e—0t
[At (@)= At (y)|>e
yeoN

— im / k(Fi(z) — Fi(y)) £ (y)wr(y) do(y)

e—0t
|Fy(z)—Fi(y)|>e
yeoN)

= lim k(Ae(x) — Ae(y)) f(y)we(y) do(y). (11.198)

e—0t

|z—y|>e
yeIN
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Above, the first equality follows from (11.196), the second from (11.192), the third uses
the definition of F} introduced in (4i7) in Lemma 11.53, and the fourth is a consequence of

results in § 11.11. Consequently,

Ty(f o A7) (Ae(2)) = Tf(2) = Ry f(x) + R f(x), (11.199)

where, for z € 9Q and t € (0,t,), we have set

Rif(z) = lim k(Ar(z) — Ae(y)) f () wi(y) — 1] do(y), (11.200)
b

Ri@) = dim [ k) - M) - ke - p) @) doly). (11201
lz—y|>e
yeoN

The operator R} is amenable to Calderén-Zygmund theory (either directly, or after changing

variables back to 9€);) and, by (11.193), we thus obtain

IRt Fllvon) < Clilwe = 1 flzr o) < C I | o o0 (11.202)

uniformly for ¢ € (0,t,). As for the contribution from R2?f, first note that, by the Mean

Value Theorem,

RIf(z) = lim [E(Ay(z) = Ae(y)) — k(z — )] f(y) do(y)

= t | R}pf(x)dd, (11.203)
0

Riyf(x) := lim (VE)(z —y — 0t(h(z) — h(y)))(h(z) — h(y)) f(y) do(y)- (11.204)

lz—y|>e
yeN
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By Calderén-Zygmund theory, we have

IR o.f Nl Lro) < Cllf e on), (11.205)

uniformly for ¢ € (0,t,) and 6 € [0, 1]. From this and (11.203), we then obtain

IRZ fll Leo0y < C Sl o0, (11.206)

uniformly for t € (0,%,). In concert, (11.202), (11.206) and (11.199) prove (11.197).

Next, we claim that if 1 < j,k <n and 1 < p < 0o, then there exists C' > 0 such that

10r,,.f = 1071, (F 0 Ay DV 0 Adlloian) < CtllVianSlle(an), Yt E (0,t),  (11.207)

where 0, is the tangential derivative operator on 02 introduced in (2.14), and 87% is its
J

version relative to 9€);. Of course, it suffices to prove the pointwise inequality

|0 f = 107 (f o A7D] o Ay] < Ct|Vignf| on 09, Vit € (0,t,), (11.208)

where Vi, is the tangential gradient on 92. To see this, bring in (11.153) written for the

change of variable mapping Fy(z) = z — t h(z). Using the fact that

DF,=1+0(t), DE'=I1+0(@), (DFFY"=1+0(t), tec(0,t,), (11.209)

and recalling (11.194), we obtain from (11.153) and (11.150) that

[(Vtanf) o Ftil ® (DFtil)T(V © th1)] .

oA = .
- (fody) (DE; )T (vo F7Y)

(DF D)o F) @ (Vianf) o F |

_ kj o 1
O e

= [(Vin) o A7 @11 = [14® (Teanf) 0 A7Y] 4+ OU(Veans) 0 A7)
kj kj
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= (1);(Vian )k o A7 = W)k (Vianf)j 0 A7+ Ot(Vianf) 0 A7)
= Wo A )i(Vian ko Ayt = (v o Ay De(Vians)j o A + Ot (Vianf) 0 AY)
(Orsf) 0 A+ O(t|(Vianf) 0 A1) (11.210)
This clearly implies (11.208).

Lemma 11.54 In the context of Lemma 11.53, let K be the double layer potential operator
for the Stokes system on 9K, and denote by K3 the corresponding operator considered on

0. Then for each p € (1,00),

IS — [KS(F o AT 0 Adllroey < Ctllfllirany  VEE(O,t),  (11.211)
where C' > 0 depends only on  and p.

Proof. Fix f € LY(09) with [fllzeae) = 1. Also, recall from (4.98) that there exist

Calderén-Zygmund type operators Ty, on 0€, along with their counterparts T;k,m on 0€,
for which the following commutation identities hold:
07, K\ = TjkrsOr, ., 07 K} = TjppsOrt Vi ke{l,..n} (11.212)
Turning to (11.211) in the earnest, we first note that
1S = [KX(f o Ay D)) o Adlliaoey < Ct, Vi€ (0,1,), (11.213)
by (11.197) (and (11.194)). Fix now j,k € {1,...,n} and consider
1871, (K f) = Or (K (f 0 A7 )] 0 Ad)l| oo - (11.214)

Given the goal we have in mind, it is permissible to replace terms in (11.214) with other
expressions that differ from these by residues whose LP norm on 9 is O(t). With this
convention in mind, 0, ([K*(f o A;1)] o Ay) can then be replaced, thanks to (11.207) and

(11.212), by
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[0, K*(f 0 A7) 0 Ay = [Tl (Bre (f 0 A7) 0 Ar. (11.215)

J

Going further, recall that Or,, K f = Tjgs (0r,. f) and note that this last term can be replaced
by [fl’;krs((aﬁsf) oAy )] o Ay, by (11.197). This matches the last expression in (11.215), up

to an error that can be estimated as follows:

1@ f) 0 AT = Op (Fo AT Dllzroyy & 10, f = (1, (F 0 A7) © Adll1oan)

= Ot), (11.216)

by (11.192) and (11.207). Thus, all errors have been shown to have proper control, and the

estimate (11.211) is proved. O
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