A Dissertation presented to the Faculty of the Graduate School University of Missouri

In Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

by
KRISHNA CHAITHANYA HANUMANTHU
Dr. Steven Dale Cutkosky, Dissertation Supervisor

The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled

TOROIDALIZATION OF LOCALLY TOROIDAL MORPHISMS

presented by Krishna Chaithanya Hanumanthu a candidate for the degree of Doctor of Philosophy
and hereby certify that in their opinion it is worthy of acceptance.

Professor Steven Dale Cutkosky
Professorsor Zhenbo Qin
Professor Qi Zhang
Professor Kannappan Palaniappan

ACKNOWLEDGMENTS

I wish to express sincere gratitude to my advisor Professor Steven Dale Cutkosky. He was a consistent source of learning and warm support and he thoughtfully guided me through all stages of my doctorate. His teachings and encouragement will continue to instruct and inspire long beyond my years as a graduate student.

I thank Professors Hema Srinivasan, Zhenbo Qin, Qi Zhang, Ian Aberbach, Dan Edidin and Shuguang Wang for their teaching and support. I also thank the Department of Mathematics at University of Missouri for its financial support and for providing a conducive atmosphere for my research.

Special thanks go to Mr G. V. B. S. N. Raju who taught me mathematics in high school. He introduced me to mathematics and is an inspiration for my love of the subject.

I wish to express my deep gratitude to Chennai Mathematical Institute in India. Its novel program in mathematics played a critical part in my mathematical development. I thank all the faculty there, especially Professor C. S. Seshadri, for initiating me in this path.

Finally, I thank my mother, Uma Devi and father, Lakshman. Their love and support made it possible for me to work with little distraction. Their presence will continue to provide a happy background for all my future work.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii
ABSTRACT iv
Chapter

1. INTRODUCTION 1
2. PERMISSIBLE BLOWUPS 5
3. PRINCIPALIZATION 17
4. TOROIDALZATION 25
BIBLIOGRAPHY 33
VITA 35

TOROIDALIZATION OF LOCALLY TOROIDAL MORPHISMS

Krishna Chaithanya Hanumanthu
Dr. Steven Dale Cutkosky, Dissertation Supervisor

Abstract

Let X and Y be nonsingular varieties over an algebraically closed field k of characteristic zero. A toroidal structure on X is a simple normal crossing divisor D_{X} on X.

Suppose that D_{X} and D_{Y} are toroidal structures on X and Y respectively. A dominant morphism $f: X \rightarrow Y$ is toroidal (with respect to the toroidal structures D_{X} and D_{Y}) if for all closed points $p \in X, f$ is isomorphic to a toric morphism of toric varieties specified by the toric charts at p and $f(p)$.

A dominant morphism $f: X \rightarrow Y$ of nonsingular varieties is toroidalizable if there exist sequences of blow ups with nonsingular centers $\pi: Y_{1} \rightarrow Y$ and $\pi_{1}: X_{1} \rightarrow X$ so that the induced map $f_{1}: X_{1} \rightarrow Y_{1}$ is toroidal.

Let $f: X \rightarrow Y$ be a dominant morphism. Suppose that there exist finite open covers $\left\{U_{i}\right\}$ and $\left\{V_{i}\right\}$ of X and Y respectively such that $f\left(U_{i}\right) \subset V_{i}$ and the restricted morphisms $f: U_{i} \rightarrow V_{i}$ are toroidal for all i. f is then called locally toroidal.

It is proved that a locally toroidal morphism from an arbitrary variety to a surface is toroidalizable.

Chapter 1

Introduction

Fix an algebraically closed field k of characteristic 0 . A variety is an open subset of an irreducible proper k-scheme.

A simple normal crossing (SNC) divisor on a nonsingular variety is a divisor D on X, all of whose irreducible components are nonsingular and whenever r irreducible components Z_{1}, \ldots, Z_{r} of D meet at a point p, then local equations x_{1}, \ldots, x_{r} of Z_{i} form part of a regular system of parameters in $\mathcal{O}_{X, p}$.

A toroidal structure on a nonsingular variety X is a SNC divisor D_{X}.
The divisor D_{X} specifies a toric chart $\left(V_{p}, \sigma_{p}\right)$ at every closed point $p \in X$ where $p \in V_{p} \subset X$ is an open neighborhood and $\sigma_{p}: V_{p} \rightarrow X_{p}$ is an étale morphism to a toric variety X_{p} such that under σ_{p} the ideal of D_{X} at p corresponds to the ideal of the complement of the torus in X_{p}.

The idea of a toroidal structure is fundamental to algebraic geometry. It is developed in the classic book "Toroidal Embeddings I" [10] by G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat.

Definition 1.1. ([10], [1]) Suppose that D_{X} and D_{Y} are toroidal structures on X and Y respectively. Let $p \in X$ be a closed point. A dominant morphism $f: X \rightarrow Y$
is toroidal at p (with respect to the toroidal structures D_{X} and D_{Y}) if the germ of f at p is formally isomorphic to a toric morphism between the toric charts at p and $f(p) . f$ is toroidal if it is toroidal at all closed points in X.

A nonsingular subvariety V of X is a possible center for D_{X} if $V \subset D_{X}$ and V intersects D_{X} transversally. That is, V makes $S N C s$ with D_{X}, as defined before Lemma 2.3. The blowup $\pi: X_{1} \rightarrow X$ of a possible center is called a possible blowup. $D_{X_{1}}=\pi^{-1}\left(D_{X}\right)$ is then a toroidal structure on X_{1}.

Let $\operatorname{Sin} g(f)$ be the set of points p in X where f is not smooth. It is a closed set.

The following "toroidalization conjecture" is the strongest possible general structure theorem for morphisms of varieties.

Conjecture 1.2. Suppose that $f: X \longrightarrow Y$ is a dominant morphism of nonsingular varieties. Suppose also that there is a SNC divisor D_{Y} on Y such that $D_{X}=f^{-1}\left(D_{Y}\right)$ is a SNC divisor on X which contains the singular locus, $\operatorname{Sing}(f)$, of the map f.

Then there exists a commutative diagram of morphisms

where π, π_{1} are possible blowups for the preimages of D_{Y} and D_{X} respectively, such that f_{1} is toroidal with respect to $D_{Y_{1}}=\pi^{-1}\left(D_{Y}\right)$ and $D_{X_{1}}=\pi_{1}^{-1}\left(D_{X}\right)$

A slightly weaker version of the conjecture is stated in the paper [2] of D. Abramovich, K. Karu, K. Matsuki, and J. Wlodarczyk.

When Y is a curve, this conjecture follows easily from embedded resolution of hypersurface singularities, as shown in the introduction of [5]. The case when X and Y are surfaces has been known before (see Corollary 6.2.3 [2], [3], [7]). The case when X has dimension 3 is completely resolved by Dale Cutkosky in [5] and [6]. A special case of $\operatorname{dim}(X)$ arbitrary and $\operatorname{dim}(Y)=2$ is done in [8].

For detailed history and applications of this conjecture, see [6].
A related, but weaker question asked by Dale Cutkosky is the following Question 1.4.

To state the question we need the following definition.

Definition 1.3. Let $f: X \rightarrow Y$ be a dominant morphism of nonsingular varieties. Suppose that the following are true.

1. There exist open coverings $\left\{U_{1}, \ldots, U_{m}\right\}$ and $\left\{V_{1}, \ldots, V_{m}\right\}$ of X and Y respectively such that the morphism f restricted to U_{i} maps into V_{i} for all $i=1, \ldots, m$.
2. There exist simple normal crossings divisors D_{i} and E_{i} in U_{i} and V_{i} respectively such that $f^{-1}\left(E_{i}\right) \cap U_{i}=D_{i}$ and $\operatorname{Sing}\left(\left.f\right|_{U_{i}}\right) \subset D_{i}$ for all $i=1, \ldots, m$.
3. The restriction of f to $U_{i},\left.f\right|_{U_{i}}: U_{i} \rightarrow V_{i}$, is toroidal with respect to D_{i} and E_{i} for all $i=1, \ldots, m$.

Then we say that f is locally toroidal with respect to the open coverings U_{i} and V_{i} and SNC divisors D_{i} and E_{i}.

For the remainder when we say " f is locally toroidal", it is to be understood that f is locally toroidal with respect to the open coverings U_{i} and V_{i} and SNC
divisors D_{i} and E_{i} as in the definition. We will usually not mention U_{i}, V_{i}, D_{i} and E_{i}.

We have the following.

Question 1.4. Suppose that $f: X \longrightarrow Y$ is locally toroidal. Does there exist a commutative diagram of morphisms

where π, π_{1} are blowups of nonsingular varieties such that there exist $S N C$ divisors E, D on Y_{1} and X_{1} respectively such that $\operatorname{Sing}\left(f_{1}\right) \subset D, f_{1}^{-1}(E)=D$ and f_{1} is toroidal with respect to E and D ?

The aim of this paper is to give a positive answer to this question when Y is a surface and X is arbitrary. The result is proved in Theorem 4.2.

Chapter 2

Permissible Blowups

Let $f: X \longrightarrow Y$ be a locally toroidal morphism from a nonsingular n-fold X to a nonsingular surface Y with respect to open coverings $\left\{U_{1}, \ldots, U_{m}\right\}$ and $\left\{V_{1}, \ldots, V_{m}\right\}$ of X and Y respectively and SNC divisors D_{i} and E_{i} in U_{i} and V_{i} respectively. Then we have the following

Lemma 2.1. Let $p \in D_{i}$. Then there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X, p}$ and regular parameters u, v in $\mathcal{O}_{Y, q}$ such that one of the following forms holds:
$1 \leq k \leq n-1: u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of D_{i} and

$$
\begin{equation*}
u=x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}, \quad v=x_{k+1} \tag{2.1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}>0$.
$1 \leq k \leq n-1: u v=0$ is a local equation for $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of D_{i} and

$$
\begin{equation*}
u=\left(x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}\right)^{m}, v=\left(x_{1}{ }^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{t}\left(\alpha+x_{k+1}\right), \tag{2.2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}, m, t>0$ and $\alpha \in K-\{0\}$.
$2 \leq k \leq n: u v=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of D_{i} and

$$
\begin{equation*}
u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, \quad v=x_{1}{ }^{b_{1}} \ldots x_{k}{ }^{b_{k}}, \tag{2.3}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \geq 0, a_{i}+b_{i}>0$ for all i and $\operatorname{rank}\left[\begin{array}{cccc}a_{1} & \cdot & \cdot & a_{k} \\ b_{1} & \cdot & \cdot & b_{k}\end{array}\right]=2$.

Proof. This follows from Lemma 4.2 in [8].

Definition 2.2. Suppose that D is a SNC divisor on a variety X, and V is a nonsingular subvariety of X. We say that V makes SNCs with D at $p \in X$ if there exist regular parameters x_{1}, \ldots, x_{n} in $\mathcal{O}_{X, p}$ and $e, r \leq n$ such that $x_{1} \ldots x_{e}=0$ is a local equation of D at p and $x_{\sigma(1)}=\ldots=x_{\sigma(r)}=0$ is a local equation of V at p for some injection $\sigma:\{1, \ldots, r\} \rightarrow\{1, \ldots, n\}$.

We say that V makes SNCs with D if V makes SNCs with D at all points $p \in X$.

Let $q \in Y$ and let m_{q} be the maximal ideal of $\mathcal{O}_{Y, q}$.
Define $W_{q}=\left\{p \in X \mid m_{q} \mathcal{O}_{X, p}\right.$ is not principal $\}$. Note that the closed subset $W_{q} \subset f^{-1}(q)$ and that $m_{q} \mathcal{O}_{X, p}$ is principal if and only if $m_{q} \hat{\mathcal{O}}_{X, p}$ is principal.

Lemma 2.3. For all $q \in Y, W_{q}$ is a union of nonsingular codimension 2 subvarieties of X, which make SNCs with each divisor D_{i} on U_{i}.

Proof. Let us fix a $q \in Y$ and denote $W=W_{q}$. Let \mathfrak{I}_{W} be the reduced ideal sheaf of W in X, and let \mathfrak{I}_{q} be the reduced ideal sheaf of q in Y.

Since the conditions that W is nonsingular and has codimension 2 in X are both local properties, we need only check that for all $p \in W, \Im_{W, p}$ is an intersection of height 2 prime ideals which are regular.

Since X is nonsingular, $\mathfrak{I}_{q} \mathcal{O}_{X}=\mathcal{O}_{X}(-F) \mathcal{I}$ where F is an effective Cartier divisor on X and \mathcal{I} is an ideal sheaf such that the support of $\mathcal{O}_{X} / \mathcal{I}$ has codimension at least 2 on X. We have $W=\operatorname{supp}\left(\mathcal{O}_{X} / \mathcal{I}\right)$. The ideal sheaf of W is $\mathfrak{I}_{W}=\sqrt{\mathcal{I}}$.

Let $p \in W$. We have that $p \in U_{i}$ for some $1 \leq i \leq m$.
Suppose first that $q \notin E_{i}$. Then f is smooth at p because it is locally toroidal. This means that there are regular parameters u, v at q which form a part of a regular sequence at p. So we have regular parameters x_{1}, \ldots, x_{n} in $\mathcal{O}_{X, p}$ such that $u=x_{1}, v=x_{2}$.
$\mathfrak{I}_{q} \mathcal{O}_{X, p}=(u, v) \mathcal{O}_{X, p}=\left(x_{1}, x_{2}\right) \mathcal{O}_{X, p}$. It follows that $\mathfrak{I}_{W, p}=\left(x_{1}, x_{2}\right) \mathcal{O}_{X, p}$. This gives us the lemma.

Suppose now that $q \in E_{i}$.
Since $p \in W_{q}$, there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that one of the forms (2.1) or (2.3) holds.

Suppose that (2.1) holds. Since D_{j} is a SNC divisor, there exist regular parameters y_{1}, \ldots, y_{n} in $\mathcal{O}_{X, p}$ and some e such that $y_{1} \ldots y_{e}=0$ is a local equation of D_{j}.

Since $x_{1} \ldots x_{k}=0$ is a local equation for D_{j} in $\hat{\mathcal{O}}_{X, p}$, there exists a unit series $\delta \in \hat{\mathcal{O}}_{X, p}$ such that $y_{1} \ldots y_{e}=\delta x_{1} \ldots x_{k}$. Since the x_{i} and y_{i} are irreducible in $\hat{\mathcal{O}}_{X, p}$, it follows that $e=k$, and there exist unit series $\delta_{i} \in \hat{\mathcal{O}}_{X, p}$ such that $x_{i}=\delta_{i} y_{i}$ for $1 \leq i \leq k$, after possibly reindexing the y_{i}.

Note that $y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}$ is a regular system of parameters in $\hat{\mathcal{O}}_{X, p}$, after possibly permuting y_{k+1}, \ldots, y_{n}.

So the ideal $\left(y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}\right) \hat{\mathcal{O}}_{X, p}$ is the maximal ideal of $\hat{\mathcal{O}}_{X, p}$. Since $x_{k+1}=v \in \mathcal{O}_{X, p}, y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}$ generate an ideal J in $\mathcal{O}_{X, p}$. Since $\hat{\mathcal{O}}_{X, p}$ is faithfully flat over $\mathcal{O}_{X, p}$, and $J \hat{\mathcal{O}}_{X, p}$ is maximal, it follows that J is the maximal ideal of $\mathcal{O}_{X, p}$. Hence $y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}$ is a regular system of parameters in $\mathcal{O}_{X, p}$.

Rewriting (2.1), we have $u=y_{1}{ }^{a_{1}} \ldots y_{k}{ }^{a_{k}} \bar{\delta}$, where $\bar{\delta}$ is a unit in $\hat{\mathcal{O}}_{X, p}$.
Since $\bar{\delta}=\frac{u}{y_{1} a_{1} \ldots y_{k}{ }^{a} k}, \bar{\delta} \in \operatorname{QF}\left(\mathcal{O}_{X, p}\right) \cap \hat{\mathcal{O}}_{X, p}$, where $\operatorname{QF}\left(\mathcal{O}_{X, p}\right)$ is the quotient field of $\mathcal{O}_{X, p}$. By Lemma 2.1 in [4], it follows that $\bar{\delta} \in \mathcal{O}_{X, p}$.

Since $\bar{\delta}$ is a unit in $\hat{\mathcal{O}}_{X, p}$, it is a unit in $\mathcal{O}_{X, p}$.
We have

$$
\begin{aligned}
\Im_{W, p} & =\sqrt{\mathfrak{I}_{q} \mathcal{O}_{X, p}}=\sqrt{(u, v) \mathcal{O}_{X, p}}=\sqrt{\left(y_{1}^{\left.a_{1} \ldots y_{k}^{a_{k}}, x_{k+1}\right)}\right.} \\
& =\left(y_{1}, x_{k+1}\right) \cap\left(y_{2}, x_{k+1}\right) \cap \ldots \cap\left(y_{k}, x_{k+1}\right),
\end{aligned}
$$

as required.
We argue similarly when (2.3) holds at p.

Let Z be a nonsingular codimension 2 subvariety of X such that $Z \subset W_{q}$ for some q. Let $\pi_{1}: X_{1} \rightarrow X$ be the blowup of Z. Denote by $\left(W_{1}\right)_{q}$ the set $\left\{p \in X_{1} \mid m_{q} \hat{\mathcal{O}}_{X_{1}, p}\right.$ is not invertible $\}$.

Given any sequence of blowups $X_{n} \rightarrow X_{n-1} \rightarrow \ldots \rightarrow X_{1} \rightarrow X$, we define $\left(W_{i}\right)_{q}$ for each X_{i} as above.

Definition 2.4. Let $q \in Y$. A sequence of blowups $X_{k} \rightarrow X_{k-1} \rightarrow \ldots \rightarrow X_{1} \rightarrow X$ is called a permissible sequence with respect to q if for all i, each blowup $X_{i+1} \rightarrow X_{i}$ is centered at a nonsingular codimension 2 subvariety Z of X_{i} such that $Z \subset\left(W_{i}\right)_{q}$.

We will often write simply permissible sequence without mentioning q if there is no scope for confusion.

Lemma 2.5. Let $f: X \rightarrow Y$ be a locally toroidal morphism. Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to a $q \in Y$.

I Suppose that $1 \leq i \leq m$ and $p \in\left(f \circ \pi_{1}\right)^{-1}(q) \cap \pi_{1}{ }^{-1}\left(U_{i}\right)$ and $q \in E_{i}$. Then I.A and I.B as below hold.
I.A. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and (u, v) in $\mathcal{O}_{Y, q}$ such that one of the following forms holds:
$1 \leq k \leq n-1: u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots x_{k}^{b_{k}} x_{k+1}, \tag{2.4}
\end{equation*}
$$

where $b_{i} \leq a_{i}$.
$1 \leq k \leq n-1: u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k} x_{k+1}=0$ is a local equation of $\pi_{1}^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}^{a_{1}} \ldots x_{k}^{a_{k}} x_{k+1}^{a_{k+1}}, v=x_{1}^{b_{1}} \ldots x_{k}^{b_{k}} x_{k+1}{ }^{b_{k+1}} \tag{2.5}
\end{equation*}
$$

where $b_{i} \leq a_{i}$ for $i=1, \ldots, k$ and $b_{k+1}<a_{k+1}$.
$1 \leq k \leq n-1: u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots x_{k}{ }^{b_{k}}\left(x_{k+1}+\alpha\right), \tag{2.6}
\end{equation*}
$$

where $b_{i} \leq a_{i}$ for all i and $0 \neq \alpha \in K$.
$1 \leq k \leq n-1: u v=0$ is a local equation for $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{m}, v=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{t}\left(\alpha+x_{k+1}\right), \tag{2.7}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}, m, t>0$ and $\alpha \in K-\{0\}$.
$2 \leq k \leq n: u v=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}, v=x_{1}^{b_{1}} \ldots x_{k}^{b_{k}} \tag{2.8}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \geq 0, a_{i}+b_{i}>0$ for all i and
$\operatorname{rank}\left[\begin{array}{llll}a_{1} & \cdot & \cdot & a_{k} \\ b_{1} & \cdot & \cdot & b_{k}\end{array}\right]=2$.
I.B. Suppose that $p_{1} \in\left(W_{1}\right)_{q}$. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and (u, v) in $\mathcal{O}_{Y, q}$ such that one of the following forms holds:
$1 \leq k \leq n-1: u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots x_{k}^{b_{k}} x_{k+1}, \tag{2.9}
\end{equation*}
$$

where $b_{i} \leq a_{i}$ and $b_{i}<a_{i}$ for some i. Moreover, the local equations of $\left(W_{1}\right)_{q}$ are $x_{i}=x_{k+1}=0$ where $b_{i}<a_{i}$.
$2 \leq k \leq n: u v=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
\begin{equation*}
u=x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}, v=x_{1}^{b_{1}} \ldots x_{k}^{b_{k}}, \tag{2.10}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \geq 0, a_{i}+b_{i}>0$ for all i, u does not divide v, v does not divide u, and rank $\left[\begin{array}{cccc}a_{1} & . & . & a_{k} \\ b_{1} & . & . & b_{k}\end{array}\right]=$ 2. Moreover, the local equations of $\left(W_{1}\right)_{q}$ are $x_{i}=x_{j}=0$ where $\left(a_{i}-b_{i}\right)\left(b_{j}-a_{j}\right)>0$.

II Suppose that $1 \leq i \leq m$ and $p \in\left(f \circ \pi_{1}\right)^{-1}(q) \cap \pi_{1}^{-1}\left(U_{i}\right)$ and $q \notin E_{i}$. Then II.A and II.B as below hold.
II.A There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and (u, v) in $\mathcal{O}_{Y, q}$ such that one of the following forms holds:

$$
\begin{equation*}
u=x_{1}, v=x_{2} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
u=x_{1}, v=x_{1}\left(x_{2}+\alpha\right) \text { for some } \alpha \in K \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
u=x_{1} x_{2}, v=x_{2} . \tag{2.13}
\end{equation*}
$$

II.B Suppose that $p_{1} \in\left(W_{1}\right)_{q}$. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and (u, v) in $\mathcal{O}_{Y, q}$ such that the following form holds:

$$
\begin{equation*}
u=x_{1}, v=x_{2} . \tag{2.14}
\end{equation*}
$$

The local equations of $\left(W_{1}\right)_{q}$ are $x_{1}=x_{2}=0$.

III $\left(W_{1}\right)_{q}$ is a union of nonsingular codimension 2 subvarieties of X_{1}.

Proof.
I We prove this part by induction on the number of blowups in the sequence $\pi_{1}: X_{1} \rightarrow X$. In X the conclusions hold because of Lemma 2.3 and f is locally toroidal. Suppose that the conclusions of the lemma hold after any sequence of l permissible blowups where $l \geq 0$.

Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence (with respect to q) of l blowups. Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowup of a nonsingular codimension 2 subvariety Z of X_{1} such that $Z \subset\left(W_{1}\right)_{q}$.

Let $p \in \pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(f \circ \pi_{1} \circ \pi_{2}\right)^{-1}(q)$ for some $1 \leq i \leq m$.
If $p_{1}=\pi_{2}(p) \notin Z$ then π_{2} is an isomorphism at p and we have nothing to prove. Suppose then that $p_{1} \in \pi_{1}^{-1}\left(U_{i}\right) \cap Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$.

Then by induction hypothesis (I.B) p_{1} has the form (2.9) or (2.10). Suppose first that it has the form (2.9).

Then the local equations of Z at p_{1} are $x_{i}=x_{k+1}=0$ for some $1 \leq i \leq k$. Note that $b_{i}<a_{i}$.

As in the proof of Lemma 2.3, there exist regular parameters $y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}$ in $\mathcal{O}_{X_{1}, p_{1}}$ and unit series $\delta_{i} \in \hat{\mathcal{O}}_{X_{1}, p_{1}}$ such that $y_{i}=\delta_{i} x_{i}$ for $1 \leq i \leq k$.

Then $\mathcal{O}_{X_{2}, p}$ has one of the following two forms:
(a) $\mathcal{O}_{X_{2}, p}=\mathcal{O}_{X_{1}, p_{1}\left[\frac{x_{k+1}}{y_{i}}\right]}^{\left(y_{i}, \frac{x_{k+1}}{y_{i}}-\alpha\right)}$ for some $\alpha \in K$, or
(b) $\mathcal{O}_{X_{2}, p}=\mathcal{O}_{X_{1}, p_{1}}\left[\frac{y_{i}}{x_{k+1}}\right]_{\left(x_{k+1}, \frac{y_{i}}{x_{k+1}}\right)}$

In case(a), set $\bar{y}_{k+1}=\frac{x_{k+1}}{y_{i}}-\alpha$. Then $y_{1}, \ldots, y_{k}, \bar{y}_{k+1}, y_{k+2}, \ldots, y_{n}$ are regular parameters in $\mathcal{O}_{X_{2}, p}$ and so $\hat{\mathcal{O}}_{X_{2}, p}=k\left[\left[y_{1}, \ldots, y_{k}, \bar{y}_{k+1}, y_{k+2}, \ldots, y_{n}\right]\right]$.

Let $c \neq 0$ be the constant term of the unit series δ_{i}.
Then evaluating δ_{i} in the local ring $\mathcal{O}_{X_{2}, p}$ we get,

$$
\begin{aligned}
\delta_{i}\left(y_{1}, \ldots, y_{k}, x_{k+1}, y_{k+2}, \ldots, y_{n}\right) & =\delta_{i}\left(y_{1}, \ldots, y_{k}, y_{i}\left(\bar{y}_{k+1}+\alpha\right), y_{k+1}, \ldots, y_{n}\right) \\
& =c+\Delta_{1} y_{1}+\ldots+\Delta_{k} y_{k}+\Delta_{k+2} y_{k+2}+\ldots+\Delta_{n} y_{n}
\end{aligned}
$$

for some $\Delta_{i} \in \mathcal{O}_{X_{2}, p}$.
Set $\bar{\alpha}=c \alpha$. Note that $\frac{x_{k+1}}{x_{i}}-\bar{\alpha}=\delta_{i} \frac{x_{k+1}}{y_{k}}-c \alpha=\delta_{i}\left(\bar{y}_{k+1}+\alpha\right)-c \alpha=\delta_{i} \bar{y}_{k+1}+$ $\left(\delta_{i}-c\right) \alpha$.

Since $y_{1}, \ldots, y_{k}, \bar{y}_{k+1}, y_{k+2}, \ldots, y_{n}$ are regular parameters in $\hat{\mathcal{O}}_{X_{2}, p}$ the above calculations imply that $x_{1}, \ldots, x_{k}, \frac{x_{k+1}}{x_{i}}-\bar{\alpha}, y_{k+2}, \ldots, y_{n}$ are regular parameters in $\hat{\mathcal{O}}_{X_{2}, p}$.

Set $\bar{x}_{k+1}=\frac{x_{k+1}}{x_{k}}-\bar{\alpha}$.
We get $u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots \bar{x}_{i}^{b_{i}+1} \ldots x_{k}{ }^{b_{k}}\left(\bar{x}_{k+1}+\alpha\right)$.
This is the form (2.6) if $\alpha \neq 0$ and form (2.4) if $\alpha=0$.
In case (b), set $\bar{y}_{k+1}=\frac{y_{i}}{x_{k+1}}$. Then $y_{1}, \ldots, y_{k}, \bar{y}_{k+1}, y_{k+2}, \ldots, y_{n}$ are regular parameters in $\mathcal{O}_{X_{2}, p}$ and so $\hat{\mathcal{O}}_{X_{2, p}}=k\left[\left[y_{1}, \ldots, y_{k}, \bar{y}_{k+1}, y_{k+2}, \ldots, y_{n}\right]\right]$.

Then $x_{1}, \ldots, x_{k}, \frac{x_{i}}{x_{k+1}}, y_{k+2}, \ldots, y_{n}$ are regular parameters in $\hat{\mathcal{O}}_{X_{2}, p}$. Set $\bar{x}_{i}=\frac{x_{i}}{x_{k+1}}$. $u=x_{1}{ }^{a_{1}} \ldots \bar{x}_{i}^{a_{i}} \ldots x_{k}{ }^{a_{k}} x_{k+1}{ }^{a_{i}}, v=x_{1}{ }^{b_{1}} \ldots \bar{x}_{i}^{b_{i}+1} \ldots x_{k}{ }^{b_{k}} x_{k+1}$.

This is the form (2.5).
By the above analysis, when $p_{1}=\pi_{2}(p)$ has form (2.9), if $p \in\left(W_{2}\right)_{q}$, then it also has to be of the form (2.9).

Suppose now that p_{1} has the form (2.10). Then the local equations of Z at p_{1} are $x_{i}=x_{j}=0$ for some $1 \leq i, j \leq k$.

Then as in the above analysis there exist regular parameters $y_{1}, \ldots, \ldots, y_{n}$ in $\mathcal{O}_{X_{1}, p_{1}}$ and unit series $\delta_{i} \in \hat{\mathcal{O}}_{X_{1}, p_{1}}$ such that $y_{i}=\delta_{i} x_{i}$ for $1 \leq i \leq k$.

Then $\mathcal{O}_{X_{2}, p}$ has one of the following two forms:
(a) $\mathcal{O}_{X_{2}, p}=\mathcal{O}_{X_{1}, p_{1}}\left[\frac{y_{i}}{y_{j}}\right]_{\left(y_{j}, \frac{y_{i}}{y_{j}}-\alpha\right)}$ for some $\alpha \in K$, or
(b) $\mathcal{O}_{X_{2}, p}=\mathcal{O}_{X_{1}, p_{1}}\left[\frac{y_{j}}{y_{i}}\right]_{\left(y_{i}, \frac{y_{j}}{y_{j}}\right)}$

Arguing as above in case (a) we obtain regular parameters $x_{1}, \ldots, \bar{x}_{i}, \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p}$ so that

$$
u=x_{1}{ }^{a_{1}} \ldots\left(\bar{x}_{i}+\alpha\right)^{a_{i}} \ldots x_{j}{ }^{a_{i}+a_{j}} \ldots x_{k}^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots\left(\bar{x}_{i}+\alpha\right)^{b_{i}} \ldots x_{j}^{b_{i}+b_{j}} \ldots x_{k}^{b_{k}} .
$$

This is the form (2.8) if $\alpha=0$.
If $\alpha \neq 0$, we obtain either the form (2.8) or the form (2.7) according as rank of $\left[\begin{array}{cccccccccc}a_{1} & \cdot & \cdot & a_{i}+a_{j} & \cdot & . & a_{j-1} & a_{j+1} & . & . \\ b_{k} & a_{k} \\ b_{1} & \cdot & \cdot & b_{i}+b_{j} & \cdot & . & b_{j-1} & b_{j+1} & . & .\end{array} b_{k}\right]$ is $=2$ or <2.

Again arguing as above in case (b) we obtain regular parameters $x_{1}, \ldots, \bar{x}_{j}, \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p}$ so that

$$
u=x_{1}{ }^{a_{1}} \ldots x_{i}^{a_{i}+a_{j}} \ldots{\overline{x_{j}}}^{a_{j}} \ldots x_{k}^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots x_{i}^{b_{i}+b_{j}} \ldots{\overline{x_{j}}}_{b_{j}} \ldots x_{k}^{{ }^{b_{k}}} .
$$

This is the form (2.8).
By the above analysis, when $p_{1}=\pi_{2}(p)$ has the form (2.10), if $p \in\left(W_{2}\right)_{q}$, then it also has to be of the form (2.10).

This completes the proof of I.A for X_{2}. Now I.B is clear as the forms (2.9) and (2.10) are just the forms (2.4) and (2.8) from I.A.

II We prove this part by induction on the number of blowups in the sequence $\pi_{1}: X_{1} \rightarrow X$.

Since $q \notin E_{i}$ and f is locally toroidal, f is smooth at any point $p_{1} \in f^{-1}(q)$. This means that the regular parameters at q form a part of a regular sequence at p. So we have regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X, p_{1}}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}, v=x_{2}$. This is the form (2.11). Thus the conclusions hold in X. Suppose that the conclusions of the lemma hold after any sequence of l permissible blowups where $l \geq 0$.

Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence (with respect to q) of l blowups. Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowup of a nonsingular codimension 2 subvariety Z of X_{1} such that $Z \subset\left(W_{1}\right)_{q}$.

Let $p \in \pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(f \circ \pi_{1} \circ \pi_{2}\right)^{-1}(q)$ for some $1 \leq i \leq m$.
If $p_{1}=\pi_{2}(p) \notin Z$ then π_{2} is an isomorphism at p and we have nothing to prove. Suppose then that $p_{1} \in \pi_{1}^{-1}\left(U_{i}\right) \cap Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$.

Then by induction hypothesis (II.B) p_{1} has the form (2.14). Then the local equations of Z at p_{1} are $x_{1}=x_{2}=0$.

There exist regular parameters \bar{x}_{1}, \bar{x}_{2} in $\hat{\mathcal{O}}_{X_{2}, p}$ such that one of the following
forms holds:

$$
x_{1}=\bar{x}_{1}, x_{2}=\bar{x}_{1}\left(\bar{x}_{2}+\alpha\right) \text { for some } \alpha \in K \text { or } x_{1}=\bar{x}_{1} \bar{x}_{2}, x_{2}=\bar{x}_{2} . \text { These two }
$$ cases give the forms (2.12) and (2.13).

Now II.B is clear as the form (2.14) is just the form (2.11) from II.A.

III Since $\left\{\pi_{1}{ }^{-1}\left(U_{i}\right)\right\}$ for $1 \leq i \leq m$ is an open cover of X_{1} and $\pi_{1}{ }^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ is a union of nonsingular codimension 2 subvarieties of X_{1} for all i by \mathbf{I} and $\mathbf{I I},\left(W_{1}\right)_{q}$ is a union of nonsingular codimension 2 subvarieties of X_{1}.

Chapter 3

Principalization

Let $f: X \longrightarrow Y$ be a locally toroidal morphism from a nonsingular n-fold X to a nonsingular surface Y with respect to open coverings $\left\{U_{1}, \ldots, U_{m}\right\}$ and $\left\{V_{1}, \ldots, V_{m}\right\}$ of X and Y respectively and SNC divisors D_{i} and E_{i} in U_{i} and V_{i} respectively.

In this section we fix an i between 1 and m and a $q \in Y$.
Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to q. Our aim is to construct a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ such that $\pi_{2} \circ \pi_{1}: X_{2} \rightarrow X$ is a permissible sequence and $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$ is empty.

First suppose that $q \notin E_{i}$. If $p \in \pi_{1}^{-1}\left(U_{i}\right)$, then by Lemma 2.5 one of the forms (2.11), (2.12) or (2.13) holds at p.

Theorem 3.1. Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to $q \in Y$. Suppose that $q \notin E_{i}$. Then there exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ with respect to q such that $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$ is empty.

Proof. If $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{2}\right)_{q}$ is empty, then there is nothing to prove. So suppose that $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{2}\right)_{q} \neq \emptyset$. By Lemma 2.3, it is a union of codimension 2 subvarieties of $\pi_{1}^{-1}\left(U_{i}\right)$.

Let $Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a subvariety of $\pi_{1}^{-1}\left(U_{i}\right)$ of codimension 2.

Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowup of the Zariski closure \bar{Z} of Z in X_{1}. Let $Z_{1} \subset \pi_{2}^{-1}(Z)$ be a codimension 2 subvariety of $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right)$ such that $Z_{1} \subset$ $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$.

By the proof of Lemma 2.5 it follows that $Z_{1} \cap\left(W_{2}\right)_{q}=\emptyset$.
The theorem now follows by induction on the number of codimension 2 subvarieties Z in $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$.

Now we suppose that $q \in E_{i}$.

Remark 3.2. Suppose that $\pi_{1}: X_{1} \rightarrow X$ is a permissible sequence with respect to some $q \in E_{i}$. Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be a permissible blowup with respect to q. Let $p_{1} \in \pi_{2}^{-1}\left(\pi_{1}{ }^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$. Then clearly $p=\pi_{2}\left(p_{1}\right) \in \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$.

Suppose that p_{1} is a 1 point. Then the analysis in the proof of Lemma 2.5 shows that p also is a 1 point.

Suppose that p_{1} is a 2 point where the form (2.10) holds. Then the analysis in the proof of Lemma 2.5 shows that p is a 2 or 3 point where the from (2.10) holds.

Suppose that $\pi_{1}: X_{1} \rightarrow X$ is a permissible sequence with respect to $q \in E_{i}$.
Let $p \in \pi_{1}{ }^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a 1 point. By Lemma 2.5 , there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}{ }^{a}, v=x_{1}{ }^{b} x_{2}$ where $a>b$.

Define $\Omega_{i}(p)=a-b>0$.
Let $Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a codimension 2 subvariety of $\pi_{1}^{-1}\left(U_{i}\right)$.
Define $\Omega_{i}(Z)=\Omega_{i}(p)$ if there exists a 1 point $p \in Z$. This is well defined
because $\Omega_{i}(p)=\Omega_{i}\left(p^{\prime}\right)$ for any two points $p, p^{\prime} \in Z$.
If Z contains no 1 points, we define $\Omega_{i}(Z)=0$.
Finally define

$$
\begin{array}{r}
\Omega_{i}\left(f \circ \pi_{1}\right)=\max \left\{\Omega_{i}(Z) \mid Z \subset \pi_{1}{ }^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}\right. \text { is an irreducible } \\
\text { subvariety of } \left.\pi_{1}^{-1}\left(U_{i}\right) \text { of codimension } 2\right\}
\end{array}
$$

Example: Let $p \in \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a 1 point.
Suppose that f has the forms $u=x_{1}{ }^{5}, v=x_{1}{ }^{2} x_{2}$ where x_{1}, \ldots, x_{n} are regular parameters in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v are regular parameters in $\mathcal{O}_{Y, q}$.

Then $\Omega_{i}(p)=5-2=3$.
Note that, by Lemma 2.5, in a neighborhood of p the local equations of $\left(W_{1}\right)_{q}$ are $x_{1}=x_{2}=0$. This is a codimension 2 subvariety of $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$, say Z. Then we also have $\Omega_{i}(Z)=3$.

On the other hand, let $p^{\prime} \in \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a 2 point.
Suppose that f has the forms $u^{\prime}=x_{1}{ }^{\prime} x_{2}{ }^{\prime 4}, v^{\prime}=x_{1}{ }^{\prime 2} x_{2}{ }^{\prime}$ where $x_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}$ are regular parameters in $\hat{\mathcal{O}}_{X_{1}, p^{\prime}}$ and u^{\prime}, v^{\prime} are regular parameters in $\mathcal{O}_{Y, q}$.

Then in a neighborhood of p^{\prime}, the local equations of $\left(W_{1}\right)_{q}$ are $x_{1}{ }^{\prime}=x_{2}{ }^{\prime}=0$. This is again a codimension 2 subvariety of $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$, say Z^{\prime}. Now we have $\Omega_{i}\left(Z^{\prime}\right)=0$.

Theorem 3.3. Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to $q \in E_{i}$.
There exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ with respect to q such that $\Omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$.

Proof. Suppose that $\Omega_{i}\left(f \circ \pi_{1}\right)>0$. Let $Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a subvariety of
$\pi_{1}^{-1}\left(U_{i}\right)$ of codimension 2 such that $\Omega_{i}\left(f \circ \pi_{1}\right)=\Omega_{i}(Z)$.
Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowup of the Zariski closure \bar{Z} of Z in X_{1}. Let $Z_{1} \subset \pi_{2}^{-1}(Z)$ be a codimension 2 subvariety of $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right)$ such that $Z_{1} \subset$ $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$. We claim that $\Omega_{i}\left(Z_{1}\right)<\Omega_{i}(Z)$.

If there are no 1 points of Z_{1} then we have nothing to prove. Otherwise, let $p_{1} \in Z_{1}$ be a 1 point. Then $\pi_{1}\left(p_{1}\right)=p$ is a 1 point of Z by Remark 3.2.

There are regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}{ }^{a}, v=x_{1}{ }^{b} x_{2}$. There exist regular parameters $x_{1}, \overline{x_{2}}, \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p_{1}}$ such that $x_{2}=x_{1}\left(x_{2}+\alpha\right)$.
$u=x_{1}{ }^{a}, v=x_{1}{ }^{b+1}\left(x_{2}+\alpha\right)$. Since $p_{1} \in\left(W_{2}\right)_{q}, \alpha=0$.
$\Omega_{i}\left(Z_{1}\right)=\Omega_{i}\left(p_{1}\right)=a-b-1<a-b=\Omega_{i}(Z)$.
The theorem now follows by induction on the number of codimension 2 subvarieties Z in $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ such that $\Omega_{i}\left(f \circ \pi_{1}\right)=\Omega_{i}(Z)$ and induction on $\Omega_{i}\left(f \circ \pi_{1}\right)$.

Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to $q \in E_{i}$.
Let $\left.Z \subset \pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{1}\right)_{q}$ be a codimension 2 subvariety of $\pi_{1}^{-1}\left(U_{i}\right)$. Let $p \in Z$ be a 2 point where the form (2.10) holds.

There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}{ }^{a_{1}} x_{2}{ }^{a_{2}}$ and $v=x_{1}{ }^{b_{1}} x_{2}{ }^{b_{2}}$.

Define $\omega_{i}(p)=\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)$. Then since $p \in\left(W_{1}\right) q, \omega_{i}(p)>0$.
Now define $\omega_{i}(Z)=\omega_{i}(p)$ if $p \in Z$ is a 2 point where the form (2.10) holds. If there are no 2 points of the form (2.10) in Z define $\omega_{i}(Z)=0$. Then $\omega_{i}(Z)$ is
well-defined.
Finally define

$$
\begin{array}{r}
\omega_{i}\left(f \circ \pi_{1}\right)=\max \left\{\omega_{i}(Z) \mid Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}\right. \text { is an irreducible } \\
\text { subvariety of } \left.\pi_{1}^{-1}\left(U_{i}\right) \text { of codimension } 2\right\}
\end{array}
$$

Theorem 3.4. Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to $q \in E_{i}$. Suppose that $\Omega_{i}\left(f \circ \pi_{1}\right)=0$. There exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ with respect to q such that $\Omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$ and $\omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$.

Proof. Since $\Omega_{i}\left(f \circ \pi_{1}\right)=0$, there are no 1 points in $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$. Let $X_{2} \rightarrow X_{1}$ be any permissible blowup. Then by Remark 3.2 it follows that $\pi_{2}{ }^{-1}\left(\pi_{1}{ }^{-1}\left(U_{i}\right)\right) \cap$ $\left(W_{2}\right)_{q}$ has no 1 points. Hence $\Omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$.

Suppose that $\omega_{i}\left(f \circ \pi_{1}\right)>0$. Let $Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ be a codimension 2 irreducible subvariety of $\pi_{1}{ }^{-1}\left(U_{i}\right)$ such that $\omega_{i}\left(f \circ \pi_{1}\right)=\omega_{i}(Z)$.

Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowup of the Zariski closure \bar{Z} of Z in X_{1}. Let $Z_{1} \subset \pi_{2}^{-1}(Z)$ be a codimension 2 subvariety of $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right)$ such that $Z_{1} \subset$ $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{i}\right)\right) \cap\left(W_{2}\right)_{q}$. We prove that $\omega_{i}\left(Z_{1}\right)<\omega_{i}(Z)=\omega_{i}\left(f \circ \pi_{1}\right)$.

If there are no 2 points of the form (2.10) in Z_{1} then $\omega_{i}\left(Z_{1}\right)=0$ and we have nothing to prove. Otherwise let $p_{1} \in Z_{1}$ be a 2 point of the form (2.10).

By Remark 3.2, $p=\pi_{2}\left(p_{1}\right) \in Z$ is a 2 or 3 point of form (2.10).
Suppose that $p \in Z$ is a 2 point. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}{ }^{a_{1}} x_{2}{ }^{a_{2}}$ and $v=x_{1}{ }^{b_{1}} x_{2}{ }^{b_{2}}$. Also the local equations of Z are $x_{1}=x_{2}=0$.

Then there exist regular parameters $x_{1}, \overline{x_{2}}, x_{3} \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p_{1}}$ such that $x_{2}=$
$x_{1} \overline{x_{2}}$ and $u=x_{1}{ }^{a_{1}+a_{2}}{\overline{x_{2}}}^{a_{2}}$ and $v=x_{1}{ }^{b_{1}+b_{2}}{\overline{x_{2}}}^{b_{2}}$.

$$
\begin{aligned}
\omega_{i}\left(Z_{1}\right)=\omega_{i}\left(p_{1}\right) & =\left(a_{1}+a_{2}-b_{1}-b_{2}\right)\left(b_{2}-a_{2}\right) \\
& =\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)+\left(a_{2}-b_{2}\right)\left(b_{2}-a_{2}\right) \\
& <\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)=\omega_{i}(p)=\omega_{i}(Z)=\omega_{i}\left(f \circ \pi_{1}\right) .
\end{aligned}
$$

Suppose that $p \in Z$ is a 3 point. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=x_{1}{ }^{a_{1}} x_{2}{ }^{a_{2}} x_{3}{ }^{a_{3}}$ and $v=x_{1}{ }^{b_{1}} x_{2}{ }^{b_{2}} x_{3}{ }^{b_{3}}$. After permuting x_{1}, x_{2}, x_{3} if necessary, we can suppose that the local equations of Z are $x_{2}=x_{3}=0$.

Then there exist regular parameters $x_{1}, x_{2}, \overline{x_{3}} \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p_{1}}$ such that $x_{3}=$ $x_{2}\left(\overline{x_{3}}+\alpha\right)$ and $u=x_{1}{ }^{a_{1}} x_{2}{ }^{a_{2}+a_{3}}\left(\overline{x_{3}}+\alpha\right)^{a_{3}}$ and $v=x_{1}{ }^{b_{1}} x_{2}{ }^{b_{2}+b_{3}}\left(\overline{x_{3}}+\alpha\right)^{b_{3}}$.

Since p_{1} is a 2 point, we have $\alpha \neq 0$ and $a_{1}\left(b_{2}+b_{3}\right)-b_{1}\left(a_{2}+a_{3}\right) \neq 0$. After an appropriate change of variables x_{1}, x_{2} we obtain regular parameters $\overline{x_{1}}, \overline{x_{2}}, \tilde{x_{3}}, x_{4}, \ldots, x_{n}$ in $\hat{\mathcal{O}}_{X_{2}, p_{1}}$.

$$
u={\overline{x_{1}}}^{a_{1}}{\overline{x_{2}}}^{a_{2}+a_{3}} \text { and } v={\overline{x_{1}}}^{b_{1}}{\overline{x_{2}}}^{b_{2}+b_{3}} .
$$

Since the local equations of $Z \subset \pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ are $x_{2}=x_{3}=0, b_{2}-a_{2}$ and $b_{3}-a_{3}$ have different signs. So $a_{1}-b_{1}$ has the same sign as exactly one of $b_{2}-a_{2}$ or $b_{3}-a_{3}$. Without loss of generality suppose that $\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)>0$ and $\left(a_{1}-b_{1}\right)\left(b_{3}-a_{3}\right)<0$.

Let Z^{\prime} be the codimension 2 variety whose local equations are $x_{1}=x_{2}=0$ defined in an appropriately small neighborhood in $\pi_{1}{ }^{-1}\left(U_{i}\right)$. Then the closure \bar{Z}^{\prime} of Z^{\prime} in $\pi_{1}^{-1}\left(U_{i}\right)$ is an irreducible codimension 2 subvariety contained in $\pi_{1}^{-1}\left(U_{i}\right) \cap$
$\left(W_{1}\right)_{q}$.

$$
\begin{aligned}
\omega_{i}\left(Z_{1}\right)=\omega_{i}\left(p_{1}\right) & =\left(a_{1}-b_{1}\right)\left(b_{2}+b_{3}-a_{2}-a_{3}\right) \\
& =\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)+\left(a_{1}-b_{1}\right)\left(b_{3}-a_{3}\right) \\
& <\left(a_{1}-b_{1}\right)\left(b_{2}-a_{2}\right)=\omega_{i}\left(\bar{Z}^{\prime}\right) \leq \omega_{i}\left(f \circ \pi_{1}\right) .
\end{aligned}
$$

The theorem now follows by induction on the number of codimension 2 subvarieties Z in $\pi_{1}^{-1}\left(U_{i}\right) \cap\left(W_{1}\right)_{q}$ such that $\omega_{i}\left(f \circ \pi_{1}\right)=\omega_{i}(Z)$ and induction on $\omega_{i}\left(f \circ \pi_{1}\right)$.

Remark 3.5. Let $\pi_{1}: X_{1} \rightarrow X$ be a permissible sequence with respect to q. Let i be such that $1 \leq i \leq m$.

If $q \notin E_{i}$ then by Theorem 3.1 there exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ with respect to q such that $\sigma_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$.

If $q \in E_{i}$ then it follows from Theorems 3.3 and 3.4 that there exists a permissible sequence with respect to $q \pi_{2}: X_{2} \rightarrow X_{1}$ such that $\Omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$ and $\omega_{i}\left(f \circ \pi_{1} \circ \pi_{2}\right)=0$.

Theorem 3.6. Let $f: X \longrightarrow Y$ be a locally toroidal morphism between a nonsingular n-fold X and a nonsingular surface Y. Let $q \in Y$.

Then there exists a permissible sequence $\pi_{1}: X_{1} \rightarrow X$ with respect to q such that $\left(W_{1}\right)_{q}$ is empty.

Proof. First we apply the Remark 3.5 to X and $i=1$.
Suppose that $q \notin E_{1}$. Then by Remark 3.5, there exists a permissible sequence $\pi_{1}: X_{1} \rightarrow X$ with respect to q such that $\sigma_{1}\left(f \circ \pi_{1}\right)=0$. Hence $\pi_{1}^{-1}\left(U_{1}\right) \cap\left(W_{1}\right)_{q}=\emptyset$.

Now suppose that $q \in E_{1}$. It follows from Remark 3.5 that there exists a permissible sequence $\pi_{1}: X_{1} \rightarrow X$ with respect to q such that $\Omega_{1}\left(f \circ \pi_{1}\right)=0$
and $\omega_{1}\left(f \circ \pi_{1}\right)=0$. So there are no 1 points or 2 points of the form (2.10) in $\pi_{1}{ }^{-1}\left(U_{1}\right) \cap\left(W_{1}\right)_{q}$. But if $Z \subset \pi_{1}^{-1}\left(U_{1}\right) \cap\left(W_{1}\right)_{q}$ is any codimension 2 irreducible subvariety of $\pi_{1}^{-1}\left(U_{i}\right)$, then a generic point of Z must either be a 1 point or a 2 point of the form (2.10). It follows then that $\pi_{1}^{-1}\left(U_{1}\right) \cap\left(W_{1}\right)_{q}$ is empty.

Now we apply Remark 3.5 to the permissible sequence $\pi_{1}: X_{1} \rightarrow X$ and $i=2$.
If $q \notin E_{2}$ there exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ such that $\sigma_{2}(f \circ$ $\left.\pi_{1} \circ \pi_{2}\right)=0$. Hence $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{2}\right)\right) \cap\left(W_{2}\right)_{q}=\emptyset$.

If $q \in E_{2}$ then as above there exists a permissible sequence $\pi_{2}: X_{2} \rightarrow X_{1}$ such that $\pi_{2}^{-1}\left(\pi_{1}{ }^{-1}\left(U_{2}\right)\right) \cap\left(W_{2}\right)_{q}$ is empty.

Notice that we also have $\pi_{2}^{-1}\left(\pi_{1}^{-1}\left(U_{1}\right)\right) \cap\left(W_{2}\right)_{q}=\emptyset$.
Repeating the argument for $i=3,4, \ldots, m$ we obtain the desired permissible sequence.

Chapter 4

Toroidalization

Theorem 4.1. Let $f: X \longrightarrow Y$ be a locally toroidal morphism from a nonsingular n-fold X to a nonsingular surface Y with respect to open coverings $\left\{U_{1}, \ldots, U_{m}\right\}$ and $\left\{V_{1}, \ldots, V_{m}\right\}$ of X and Y respectively and $S N C$ divisors D_{i} and E_{i} in U_{i} and V_{i} respectively. Let $\pi: Y_{1} \rightarrow Y$ be the blowup of a point $q \in Y$.

Then there exists a permissible sequence $\pi_{1}: X_{1} \rightarrow X$ such that there is a locally toroidal morphism $f_{1}: X_{1} \rightarrow Y_{1}$ such that $\pi \circ f_{1}=f \circ \pi_{1}$.

Proof. By Theorem 3.6 there is a permissible sequence $\pi_{1}: X_{1} \rightarrow X$ such that there exists a morphism $f_{1}: X_{1} \rightarrow Y_{1}$ and $\pi \circ f_{1}=f \circ \pi_{1}$.

Let $p \in X_{1}$. Suppose that $p \in \pi_{1}^{-1}\left(U_{i}\right)$ for some i such that $1 \leq i \leq m$. If $\pi_{1}(p) \notin f^{-1}(q)$ then we have nothing to prove. So we assume that $\pi_{1}(p) \in f^{-1}(q)$.

Suppose first that $q \notin E_{i}$. Then by Lemma 2.5 one of the forms (2.12) or (2.13) holds at p. So there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that

$$
u=x_{1}, v=x_{1}\left(x_{2}+\alpha\right) \text { for some } \alpha \in K, \text { or } u=x_{1} y_{1}, v=x_{2} .
$$

Let $f_{1}(p)=q_{1}$. There exist regular parameters $u_{1}, v_{1} \in \mathcal{O}_{Y_{1}, q_{1}}$ such that

$$
u=u_{1}, v=u_{1}\left(v_{1}+\alpha\right) \text { or } u=u_{1} v_{1}, v=v_{1}
$$

according as the form (2.12) or the form (2.13) holds. In either case, we have $u_{1}=x_{1}, v_{1}=x_{2}$, and f_{1} is smooth at p.

Now suppose that $q \in E_{i}$.
By Lemma 2.5 there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that one of the forms (2.4), (2.5), (2.6), (2.7), or (2.8) of Lemma 2.5 holds.

Suppose first that the form (2.4) holds. Then since $m_{q} \hat{\mathcal{O}}_{X_{1}, p}$ is invertible, there exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ such that $u=$ $x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}} x_{k+1}$ for some $1 \leq k \leq n-1$.

Further $x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}^{-1}\left(D_{i}\right)$ and $u=0$ is a local equation for E_{i}.

Let $f_{1}(p)=q_{1}$. There exist regular parameters $\left(u_{1}, v_{1}\right)$ in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=u_{1}$ and $v=u_{1} v_{1}$. Hence the local equation of $\pi^{-1}\left(E_{i}\right)$ at q_{1} is $u_{1}=0$.

$$
u_{1}=x_{1}{ }^{a_{1}} \ldots x_{k}^{a_{k}}, v_{1}=x_{k+1} .
$$

This is the form (2.1).
Suppose now that the form (2.5) holds at p for $f \circ \pi_{1}$. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ and $1 \leq k \leq n-1$ such that $u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k} x_{k+1}=0$ is a local equation of $\pi_{1}^{-1}\left(D_{i}\right)$ and

$$
u=x_{1}{ }^{a_{1}} \ldots x_{k}^{a_{k}} x_{k+1}{ }^{a_{k+1}}, v=x_{1}{ }^{b_{1}} \ldots x_{k}^{b_{k}} x_{k+1}{ }^{b_{k+1}}
$$

where $b_{i} \leq a_{i}$ for $i=1, \ldots, k$ and $b_{k+1}<a_{k+1}$.
Let $f_{1}(p)=q_{1}$. There exist regular parameters u_{1}, v_{1} in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=$ $u_{1} v_{1}$ and $v=v_{1}$. Hence the local equation of $\pi^{-1}\left(E_{i}\right)$ at q_{1} is $u_{1} v_{1}=0$.

$$
u_{1}=x_{1}{ }^{a_{1}-b_{1}} \ldots x_{k}{ }^{a_{k}-b_{k}} x_{k+1}{ }^{a_{k+1}-b_{k+1}}, v_{1}=x_{1}^{b_{1}} \ldots x_{k}^{b_{k}} x_{k+1}{ }^{b_{k+1}} .
$$

This is the form (2.3). Note that the rank condition follows from the dominance of the map f_{1}.

Suppose now that the form (2.6) holds. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ and $1 \leq k \leq n-1$ such that $u=0$ is a local equation of $E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}^{-1}\left(D_{i}\right)$ and

$$
u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=x_{1}{ }^{b_{1}} \ldots x_{k}{ }^{b_{k}}\left(x_{k+1}+\alpha\right),
$$

where $b_{i} \leq a_{i}$ for all i and $0 \neq \alpha \in K$.
Let $f_{1}(p)=q_{1}$. There exist regular parameters u_{1}, v_{1} in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=$ $u_{1} v_{1}$ and $v=v_{1}$. Hence the local equation of $\pi^{-1}\left(E_{i}\right)$ at q_{1} is $u_{1} v_{1}=0$.

$$
u_{1}=x_{1}{ }^{a_{1}-b_{1}} \ldots x_{k}{ }^{a_{k}-b_{k}}\left(x_{k+1}+\alpha\right)^{-1}, v_{1}=x_{1}{ }^{b_{1}} \ldots x_{k}{ }^{b_{k}}\left(x_{k+1}+\alpha\right) .
$$

If rank $\left[\begin{array}{cccc}a_{1}-b_{1} & . & . & a_{k}-b_{k} \\ b_{1} & . & . & b_{k}\end{array}\right]=2$ then there exist regular parameters $\overline{x_{1}}, \ldots, \overline{x_{n}}$ in $\hat{\mathcal{O}}_{X_{1}, p}$ such that $u_{1}=\overline{x_{1}} \bar{a}_{1}^{a_{1}-b_{1}} \ldots{\overline{x_{k}}}^{a_{k}-b_{k}}, v_{1}={\overline{x_{1}}}^{b_{1}} \ldots{\overline{x_{k}}}^{b_{k}}$. This is the form (2.3).

If rank $\left[\begin{array}{cccc}a_{1}-b_{1} & . & \cdot & a_{k}-b_{k} \\ b_{1} & . & . & b_{k}\end{array}\right]<2$ then there exist regular parameters $\overline{x_{1}}, \ldots, \overline{x_{n}}$ in $\hat{\mathcal{O}}_{X_{1}, p}$ such that $u_{1}=\left({\overline{x_{1}}}^{a_{1}} \ldots{\overline{x_{k}}}^{a_{k}}\right)^{m}, v=\left({\overline{x_{1}}}^{a_{1}} \ldots{\overline{x_{k}}}^{a_{k}}\right)^{t}\left(x_{k+1}+\beta\right)$, with $\beta \neq 0$. This is the form (2.2).

Suppose that the form (2.7) holds. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ and $1 \leq k \leq n-1$ such that $u v=0$ is a local equation for
$E_{i}, x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and

$$
u=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{m}, v=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{t}\left(\alpha+x_{k+1}\right),
$$

where $a_{1}, \ldots, a_{k}, m, t>0$ and $\alpha \in K-\{0\}$.
Suppose that $m \leq t$. There exist regular parameters u_{1}, v_{1} in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=u_{1}$ and $v=u_{1}\left(v_{1}+\beta\right)$ for some $\beta \in K$.

$$
u_{1}=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{m}, v_{1}=\left(x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}\right)^{t-m}\left(\alpha+x_{k+1}\right)-\beta .
$$

If $m<t$ then $\beta=0$. So $u_{1} v_{1}=0$ is a local equation of $\pi^{-1}\left(E_{i}\right)$ and we have the form (2.2). If $m=t$ then $\alpha=\beta \neq 0$ and u_{1} is a local equation of $\pi^{-1}\left(E_{i}\right)$. In this case we have the form (2.1).

Suppose that $m>t$. Then there exist regular parameters u_{1}, v_{1} in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=u_{1} v_{1}$ and $v=v_{1}$.

$$
u_{1}=\left(x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}\right)^{m-t}\left(\alpha+x_{k+1}\right)^{-1}, v_{1}=\left(x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}\right)^{t}\left(\alpha+x_{k+1}\right) .
$$

We obtain the form (2.2).
Finally suppose that the form (2.8) holds. There exist regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ and u, v in $\mathcal{O}_{Y, q}$ and $2 \leq k \leq n$ such that $u v=0$ is a local equation of E_{i} and $x_{1} \ldots x_{k}=0$ is a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and $u=x_{1}{ }^{a_{1}} \ldots x_{k}{ }^{a_{k}}, v=$ $x_{1}{ }^{b_{1}} \ldots x_{k}^{b_{k}}$, where rank $\left[\begin{array}{llll}a_{1} & \cdot & \cdot & a_{k} \\ b_{1} & \cdot & \cdot & b_{k}\end{array}\right]=2$.

We have either $a_{i} \geq b_{i}$ for all i or $a_{i} \leq b_{i}$ for all i. Without loss of generality, suppose that $a_{i} \leq b_{i}$ for all i.

Let $f_{1}(p)=q_{1}$. There exist regular parameters u_{1}, v_{1} in $\mathcal{O}_{Y_{1}, q_{1}}$ such that $u=u_{1}$
and $v=u_{1} v_{1}$. Hence the local equation of $\pi^{-1}\left(E_{i}\right)$ at q_{1} is $u_{1} v_{1}=0$.

$$
u_{1}=x_{1}{ }^{a_{1}} \ldots x_{k}^{a_{k}}, v_{1}=x_{1}{ }^{b_{1}-a_{1}} \ldots x_{k}^{b_{k}-a_{k}} .
$$

Further, $\operatorname{rank}\left[\begin{array}{cccc}a_{1} & . & a_{k} \\ b_{1}-a_{1} & . & . & b_{k}-a_{k}\end{array}\right]=2$. This is the form (2.1).

Now we are ready to prove our main theorem.

Theorem 4.2. Suppose that $f: X \longrightarrow Y$ is a locally toroidal morphism between a variety X and a surface Y. Then there exists a commutative diagram of morphisms

where π, π_{1} are blowups of nonsingular varieties such that there exist SNC divisors E, D on Y_{1} and X_{1} respectively such that $\operatorname{Sing}\left(f_{1}\right) \subset D, f_{1}^{-1}(E)=D$ and f_{1} is toroidal with respect to E and D.

Proof. Let $E^{\prime}=\bar{E}_{1}+\ldots+\bar{E}_{m}$ where \bar{E}_{i} is the Zariski closure of E_{i} in Y. There exists a finite sequence of blowups of points $\pi: Y_{1} \rightarrow Y$ such that $\pi^{-1}\left(E^{\prime}\right)$ is a SNC divisor on Y_{1}.

By Theorem 4.1, there exists a sequence of blowups $\pi_{1}: X_{1} \rightarrow X$ such that there is a locally toroidal morphism $f_{1}: X_{1} \rightarrow Y_{1}$ with $f \circ \pi_{1}=\pi \circ f_{1}$.

Let $E=\pi^{-1}\left(E^{\prime}\right)$ and $D=f_{1}^{-1}(E)$.
We now verify that E and D are SNC divisors on Y_{1} and X_{1} respectively and that $f_{1}: X_{1} \rightarrow Y_{1}$ is toroidal with respect to D and E.

Let $p \in X_{1}$ and let $q=f_{1}(p)$.

Suppose that $p \notin D$, so that $q \notin E$. There exists i such that $1 \leq i \leq m$ and $p \in \pi_{1}{ }^{-1}\left(U_{i}\right)$. Then $q \notin E=\pi^{-1}\left(E^{\prime}\right) \Rightarrow q \notin \pi^{-1}\left(E_{i}\right)$. So $p \notin f_{1}^{-1}\left(\pi^{-1}\left(E_{i}\right)\right)=$ $\pi_{1}^{-1}\left(D_{i}\right)$. Then f_{1} is smooth at p because $\left.\left.f_{1}\right|_{\pi_{1}-1} U_{i}\right)$ is toroidal.

Thus $\operatorname{Sing}\left(f_{1}\right) \subset D$.
Suppose now that $p \in D$. Let $p \in \pi_{1}^{-1}\left(U_{i}\right)$ for some i between 1 and m. If $q \notin \pi^{-1}\left(E_{i}\right)$ then f_{1} is smooth at p and then $D=f_{1}^{-1}(E)$ is a SNC divisor at p. We assume then that $q \in \pi^{-1}\left(E_{i}\right)$.

Case $1 q \in E$ is a 1 point.
q is necessarily a 1 point of $\pi^{-1}\left(E_{i}\right)$.
Then $\pi^{-1}\left(E_{i}\right)$ and E are equal in a neighborhood of q. Hence $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and D are equal in a neighborhood of p. Since $\pi_{1}^{-1}\left(D_{i}\right)$ is a SNC divisor in a neighborhood of p, D is a SNC divisor in a neighborhood of p.

Since $\left.f_{1}\right|_{\pi_{1}-1\left(U_{i}\right)}$ is toroidal there exist regular parameters u, v in $\mathcal{O}_{Y_{1}, q}$ and regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ such that the the form (2.1) holds at p with respect to E and D.

Case $2 q \in E$ is a 2 point.
q is either a 1 point or a 2 point of $\pi^{-1}\left(E_{i}\right)$.

Case 2(a) q is a 1 point of $\pi^{-1}\left(E_{i}\right)$.
There exists regular parameters u, v in $\mathcal{O}_{Y_{1}, q}$ and regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ such that the form (2.1) holds at p. There exists $\tilde{v} \in \mathcal{O}_{Y_{1}, q}$ such that u, \tilde{v} are regular parameters in $\mathcal{O}_{Y_{1}, q}, u \tilde{v}=0$ is a local equation for E at $q, u=0$ is a
local equation of $\pi^{-1}\left(E_{i}\right)$ at q, and

$$
\tilde{v}=\alpha u+\beta v+\text { higher degree terms in } u \text { and } v
$$

for some $\beta \in K$ with $\beta \neq 0$.
Since $\pi_{1}{ }^{-1}\left(D_{i}\right)$ is a SNC divisor in a neighborhood of p, there exist regular parameters $\bar{x}_{1}, \ldots, \bar{x}_{n}$ in $\mathcal{O}_{X_{1}, p}$ such that $\bar{x}_{1} \ldots \bar{x}_{k}=0$ is a local equation of $\pi_{1}^{-1}\left(D_{i}\right)$ at p. Since $x_{1} \ldots x_{k}=0$ is also a local equation of $\pi_{1}{ }^{-1}\left(D_{i}\right)$ at p, there exist units $\delta_{1}, \ldots, \delta_{k} \in \hat{\mathcal{O}}_{X_{1}, p}$ such that, after possibly permuting the $x_{j}, x_{j}=\delta_{j} \bar{x}_{j}$ for $1 \leq j \leq k$.

$$
\begin{aligned}
\tilde{v} & =\alpha u+\beta v+\text { higher degree terms in } u \text { and } v \\
& =\alpha x_{1}^{a_{1}} \ldots x_{k}^{a_{k}}+\beta x_{k+1}+\text { higher degree terms in } u \text { and } v \\
& =\alpha \delta_{1}^{a_{1}} \ldots \delta_{k}^{a_{k}} \bar{x}_{1}^{a_{1}} \ldots \bar{x}_{k}^{a_{k}}+\beta x_{k+1}+\text { higher degree terms in } u \text { and } v
\end{aligned}
$$

Let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{X_{1}, p}$ and let $\hat{\mathfrak{m}}=\mathfrak{m} \hat{\mathcal{O}}_{X_{1}, p}$ be the maximal ideal of $\hat{\mathcal{O}}_{X_{1}, p}$.

Since $\beta \neq 0, \overline{x_{1}}, \ldots, \overline{x_{k}}, \tilde{v}$ are linearly independent in $\hat{\mathfrak{m}} / \hat{\mathfrak{m}}^{2} \cong \mathfrak{m} / \mathfrak{m}^{2}$, so that they extend to a system of regular parameters in $\mathcal{O}_{X_{1}, p}$.
$\operatorname{Say} \overline{x_{1}}, \ldots, \overline{x_{k}}, \tilde{v}, \tilde{x}_{k+2}, \ldots, \tilde{x}_{n}$.
$u \tilde{v}=\overline{x_{1}} \ldots \overline{x_{k}} \tilde{v}=0$ is a local equation of D at p, so D is a SNC divisor in a neighborhood of p, and u, \tilde{v} give the form (2.3) with respect to the formal parameters $x_{1}, \ldots, x_{k}, \tilde{v}, \tilde{x}_{k+2}, \ldots, \tilde{x}_{n}$.

Case 2(b) q is a 2 point of $\pi^{-1}\left(E_{i}\right)$.
Then $\pi^{-1}\left(E_{i}\right)$ and E are equal in a neighborhood of q. Hence $\pi_{1}{ }^{-1}\left(D_{i}\right)$ and D are equal in a neighborhood of p. Since $\pi_{1}^{-1}\left(D_{i}\right)$ is a SNC divisor in a neighborhood of p, D is a SNC divisor in a neighborhood of p.

Since $\left.f_{1}\right|_{\pi_{1}-1\left(U_{i}\right)}$ is toroidal there exist regular parameters u, v in $\mathcal{O}_{Y_{1}, q}$ and regular parameters x_{1}, \ldots, x_{n} in $\hat{\mathcal{O}}_{X_{1}, p}$ such that the one of the forms (2.2) or (2.3) holds at p with respect to E and D.

Bibliography

[1] Abramovich D., Karu K., Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), 241-273.
[2] Abramovich D., Karu K., Matsuki K., Wlodarczyk J., Torification and factorization of birational maps, JAMS 15 (2002), 531-572.
[3] Akbulut S., King H., Topology of algebraic sets, MSRI publications 25, Springer-Verlag, Berlin.
[4] Cutkosky S.D., Local monomialization and factorization of morphisms, Asterisque 260, Societe Mathematique de France, 1999.
[5] Cutkosky S.D., Monomialization of morphisms from 3-folds to Surfaces, Lecture Notes in Mathematics, 1786, Springer Verlag 2002.
[6] Cutkosky S.D., Toroidalization of dominant morphisms of 3-folds, Memoirs of the American Mathematical Society, Volume 190, Number 890, Amer. Math. Soc., 2007.
[7] Cutkosky S.D., Piltant O., Monomial resolutions of morphisms of algebraic surfaces, Communications in Algebra 28 (2002), 5935-5959.
[8] Cutkosky S.D., Kascheyeva, O. Monomialization of strongly prepared morphisms from nonsingular n-folds to surfaces, J. Algebra 275 (2004), 275-320.
[9] Danilov V.I., The geometry of toric varieties, Russian Math, Surveys 33:2 (1978), 85-134.
[10] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings I, Lecture Notes in Mathematics 339, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

VITA

Krishna Hanumanthu was born March 23, 1981, in the state of Andhra Pradesh, India. After finishing high school in Andhra Pradesh in 1998, he went to Chennai Mathematical Institute in Chennai, India. There he received his Bachelors (19982001) and Masters (2001-2003) degrees in mathematical sciences. In Fall, 2003, he came to University of Missouri to pursue a doctorate in mathematics. He plans to graduate in May 2008. After that, he will join the Department of Mathematics at University of Kansas as a visiting assistant professor in mathematics.

