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TOROIDALIZATION OF LOCALLY TOROIDAL MORPHISMS

Krishna Chaithanya Hanumanthu

Dr. Steven Dale Cutkosky, Dissertation Supervisor

ABSTRACT

Let X and Y be nonsingular varieties over an algebraically closed field k of

characteristic zero. A toroidal structure on X is a simple normal crossing divisor

DX on X.

Suppose that DX and DY are toroidal structures on X and Y respectively. A

dominant morphism f : X → Y is toroidal (with respect to the toroidal structures

DX and DY ) if for all closed points p ∈ X, f is isomorphic to a toric morphism of

toric varieties specified by the toric charts at p and f(p).

A dominant morphism f : X → Y of nonsingular varieties is toroidalizable

if there exist sequences of blow ups with nonsingular centers π : Y1 → Y and

π1 : X1 → X so that the induced map f1 : X1 → Y1 is toroidal.

Let f : X → Y be a dominant morphism. Suppose that there exist finite

open covers {Ui} and {Vi} of X and Y respectively such that f(Ui) ⊂ Vi and the

restricted morphisms f : Ui → Vi are toroidal for all i. f is then called locally

toroidal.

It is proved that a locally toroidal morphism from an arbitrary variety to a

surface is toroidalizable.
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Chapter 1

Introduction

Fix an algebraically closed field k of characteristic 0. A variety is an open subset

of an irreducible proper k-scheme.

A simple normal crossing (SNC) divisor on a nonsingular variety is a divisor

D on X, all of whose irreducible components are nonsingular and whenever r

irreducible components Z1, ..., Zr of D meet at a point p, then local equations

x1, ..., xr of Zi form part of a regular system of parameters in OX,p.

A toroidal structure on a nonsingular variety X is a SNC divisor DX .

The divisor DX specifies a toric chart (Vp, σp) at every closed point p ∈ X

where p ∈ Vp ⊂ X is an open neighborhood and σp : Vp → Xp is an étale morphism

to a toric variety Xp such that under σp the ideal of DX at p corresponds to the

ideal of the complement of the torus in Xp.

The idea of a toroidal structure is fundamental to algebraic geometry. It is de-

veloped in the classic book “Toroidal Embeddings I” [10] by G. Kempf, F. Knudsen,

D. Mumford and B. Saint-Donat.

Definition 1.1. ([10], [1]) Suppose that DX and DY are toroidal structures on X

and Y respectively. Let p ∈ X be a closed point. A dominant morphism f : X → Y
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is toroidal at p (with respect to the toroidal structures DX and DY ) if the germ of f

at p is formally isomorphic to a toric morphism between the toric charts at p and

f(p). f is toroidal if it is toroidal at all closed points in X.

A nonsingular subvariety V of X is a possible center for DX if V ⊂ DX and V

intersects DX transversally. That is, V makes SNCs with DX , as defined before

Lemma 2.3. The blowup π : X1 → X of a possible center is called a possible

blowup. DX1 = π−1(DX) is then a toroidal structure on X1.

Let Sing(f) be the set of points p in X where f is not smooth. It is a closed

set.

The following “toroidalization conjecture” is the strongest possible general

structure theorem for morphisms of varieties.

Conjecture 1.2. Suppose that f : X −→ Y is a dominant morphism of non-

singular varieties. Suppose also that there is a SNC divisor DY on Y such that

DX = f−1(DY ) is a SNC divisor on X which contains the singular locus, Sing(f),

of the map f .

Then there exists a commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π, π1 are possible blowups for the preimages of DY and DX respectively, such

that f1 is toroidal with respect to DY1 = π−1(DY ) and DX1 = π1
−1(DX)

A slightly weaker version of the conjecture is stated in the paper [2] of D.

Abramovich, K. Karu, K. Matsuki, and J. Wlodarczyk.
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When Y is a curve, this conjecture follows easily from embedded resolution of

hypersurface singularities, as shown in the introduction of [5]. The case when X

and Y are surfaces has been known before (see Corollary 6.2.3 [2], [3], [7]). The

case when X has dimension 3 is completely resolved by Dale Cutkosky in [5] and

[6]. A special case of dim(X) arbitrary and dim(Y ) = 2 is done in [8].

For detailed history and applications of this conjecture, see [6].

A related, but weaker question asked by Dale Cutkosky is the following Question

1.4.

To state the question we need the following definition.

Definition 1.3. Let f : X → Y be a dominant morphism of nonsingular varieties.

Suppose that the following are true.

1. There exist open coverings {U1, ..., Um} and {V1, ..., Vm} of X and Y re-

spectively such that the morphism f restricted to Ui maps into Vi for all

i = 1, ...,m.

2. There exist simple normal crossings divisors Di and Ei in Ui and Vi respec-

tively such that f−1(Ei) ∩ Ui = Di and Sing(f |Ui
) ⊂ Di for all i = 1, ...,m.

3. The restriction of f to Ui, f |Ui
: Ui → Vi, is toroidal with respect to Di and

Ei for all i = 1, ...,m.

Then we say that f is locally toroidal with respect to the open coverings Ui and Vi

and SNC divisors Di and Ei.

For the remainder when we say “f is locally toroidal”, it is to be understood

that f is locally toroidal with respect to the open coverings Ui and Vi and SNC
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divisors Di and Ei as in the definition. We will usually not mention Ui, Vi, Di and

Ei.

We have the following.

Question 1.4. Suppose that f : X −→ Y is locally toroidal. Does there exist a

commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π, π1 are blowups of nonsingular varieties such that there exist SNC divisors

E, D on Y1 and X1 respectively such that Sing(f1) ⊂ D, f1
−1(E) = D and f1 is

toroidal with respect to E and D?

The aim of this paper is to give a positive answer to this question when Y is a

surface and X is arbitrary. The result is proved in Theorem 4.2.
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Chapter 2

Permissible Blowups

Let f : X −→ Y be a locally toroidal morphism from a nonsingular n-fold X to a

nonsingular surface Y with respect to open coverings {U1, ..., Um} and {V1, ..., Vm}

of X and Y respectively and SNC divisors Di and Ei in Ui and Vi respectively.

Then we have the following

Lemma 2.1. Let p ∈ Di. Then there exist regular parameters x1, ..., xn in ÔX,p

and regular parameters u, v in OY,q such that one of the following forms holds:

1 ≤ k ≤ n − 1 : u = 0 is a local equation of Ei, x1...xk = 0 is a local equation

of Di and

u = x1
a1 ...xk

ak , v = xk+1, (2.1)

where a1, ..., ak > 0.

1 ≤ k ≤ n− 1 : uv = 0 is a local equation for Ei, x1...xk = 0 is a local equation

of Di and

u = (x1
a1 ...xk

ak)m, v = (x1
a1 ...xk

ak)t(α + xk+1), (2.2)

where a1, ..., ak, m, t > 0 and α ∈ K − {0}.
5



2 ≤ k ≤ n : uv = 0 is a local equation of Ei, x1...xk = 0 is a local equation of

Di and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bk , (2.3)

where a1, ..., ak, b1, ..., bk ≥ 0, ai + bi > 0 for all i and

rank

[
a1 . . ak

b1 . . bk

]
= 2.

Proof. This follows from Lemma 4.2 in [8].

Definition 2.2. Suppose that D is a SNC divisor on a variety X, and V is a

nonsingular subvariety of X. We say that V makes SNCs with D at p ∈ X if there

exist regular parameters x1, ..., xn in OX,p and e, r ≤ n such that x1...xe = 0 is a

local equation of D at p and xσ(1) = ... = xσ(r) = 0 is a local equation of V at p for

some injection σ : {1, ..., r} → {1, ..., n}.

We say that V makes SNCs with D if V makes SNCs with D at all points

p ∈ X.

Let q ∈ Y and let mq be the maximal ideal of OY,q .

Define Wq = {p ∈ X | mqOX,p is not principal}. Note that the closed subset

Wq ⊂ f−1(q) and that mqOX,p is principal if and only if mqÔX,p is principal.

Lemma 2.3. For all q ∈ Y , Wq is a union of nonsingular codimension 2 subvari-

eties of X, which make SNCs with each divisor Di on Ui.

Proof. Let us fix a q ∈ Y and denote W = Wq. Let IW be the reduced ideal sheaf

of W in X, and let Iq be the reduced ideal sheaf of q in Y .
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Since the conditions that W is nonsingular and has codimension 2 in X are

both local properties, we need only check that for all p ∈ W , IW,p is an intersection

of height 2 prime ideals which are regular.

Since X is nonsingular, IqOX = OX (−F )I where F is an effective Cartier

divisor on X and I is an ideal sheaf such that the support of OX/I has codimension

at least 2 on X. We have W = supp(OX/I). The ideal sheaf of W is IW =
√
I.

Let p ∈ W . We have that p ∈ Ui for some 1 ≤ i ≤ m.

Suppose first that q /∈ Ei. Then f is smooth at p because it is locally toroidal.

This means that there are regular parameters u, v at q which form a part of a

regular sequence at p. So we have regular parameters x1, ..., xn in OX,p such that

u = x1, v = x2.

IqOX,p = (u, v)OX,p = (x1, x2)OX,p . It follows that IW,p = (x1, x2)OX,p. This

gives us the lemma.

Suppose now that q ∈ Ei.

Since p ∈ Wq, there exist regular parameters x1, ..., xn in ÔX,p and u, v in OY,q

such that one of the forms (2.1) or (2.3) holds.

Suppose that (2.1) holds. Since Dj is a SNC divisor, there exist regular pa-

rameters y1, ..., yn in OX,p and some e such that y1...ye = 0 is a local equation of

Dj.

Since x1...xk = 0 is a local equation for Dj in ÔX,p , there exists a unit series

δ ∈ ÔX,p such that y1...ye = δx1...xk. Since the xi and yi are irreducible in ÔX,p ,

it follows that e = k, and there exist unit series δi ∈ ÔX,p such that xi = δiyi for

1 ≤ i ≤ k, after possibly reindexing the yi.
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Note that y1, ..., yk, xk+1, yk+2, ..., yn is a regular system of parameters in ÔX,p ,

after possibly permuting yk+1, ..., yn.

So the ideal (y1, ..., yk, xk+1, yk+2, ..., yn)ÔX,p is the maximal ideal of ÔX,p. Since

xk+1 = v ∈ OX,p , y1, ..., yk, xk+1, yk+2, ..., yn generate an ideal J in OX,p. Since ÔX,p

is faithfully flat over OX,p, and JÔX,p is maximal, it follows that J is the maximal

ideal of OX,p. Hence y1, ..., yk, xk+1, yk+2, ..., yn is a regular system of parameters in

OX,p.

Rewriting (2.1), we have u = y1
a1 ...yk

ak δ̄, where δ̄ is a unit in ÔX,p.

Since δ̄ = u
y1

a1 ...yk
ak

, δ̄ ∈ QF(OX,p)∩ ÔX,p , where QF(OX,p) is the quotient field

of OX,p. By Lemma 2.1 in [4], it follows that δ̄ ∈ OX,p .

Since δ̄ is a unit in ÔX,p, it is a unit in OX,p.

We have

IW,p =
√

IqOX,p =
√

(u, v)OX,p =
√

(y1
a1 ...yk

ak , xk+1)

= (y1, xk+1) ∩ (y2, xk+1) ∩ ... ∩ (yk, xk+1),

as required.

We argue similarly when (2.3) holds at p.

Let Z be a nonsingular codimension 2 subvariety of X such that Z ⊂ Wq

for some q. Let π1 : X1 → X be the blowup of Z. Denote by (W1)q the set

{p ∈ X1 | mqÔX1,p is not invertible}.

Given any sequence of blowups Xn → Xn−1 → ... → X1 → X, we define (Wi)q

for each Xi as above.
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Definition 2.4. Let q ∈ Y . A sequence of blowups Xk → Xk−1 → ... → X1 → X

is called a permissible sequence with respect to q if for all i, each blowup Xi+1 → Xi

is centered at a nonsingular codimension 2 subvariety Z of Xi such that Z ⊂ (Wi)q.

We will often write simply permissible sequence without mentioning q if there

is no scope for confusion.

Lemma 2.5. Let f : X → Y be a locally toroidal morphism. Let π1 : X1 → X be

a permissible sequence with respect to a q ∈ Y .

I Suppose that 1 ≤ i ≤ m and p ∈ (f ◦ π1)
−1(q) ∩ π1

−1(Ui) and q ∈ Ei. Then I.A

and I.B as below hold.

I.A. There exist regular parameters x1, ..., xn in ÔX1,p and (u, v) in OY,q such that

one of the following forms holds:

1 ≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1...xk = 0 is a local equation

of π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bkxk+1, (2.4)

where bi ≤ ai.

1 ≤ k ≤ n − 1: u = 0 is a local equation of Ei, x1...xkxk+1 = 0 is a local

equation of π1
−1(Di) and

u = x1
a1 ...xk

akxk+1
ak+1 , v = x1

b1 ...xk
bkxk+1

bk+1 , (2.5)

where bi ≤ ai for i = 1, ..., k and bk+1 < ak+1.
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1 ≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1...xk = 0 is a local equation

of π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bk(xk+1 + α), (2.6)

where bi ≤ ai for all i and 0 6= α ∈ K.

1 ≤ k ≤ n − 1: uv = 0 is a local equation for Ei, x1...xk = 0 is a local

equation of π1
−1(Di) and

u = (x1
a1 ...xk

ak)m, v = (x1
a1 ...xk

ak)t(α + xk+1), (2.7)

where a1, ..., ak, m, t > 0 and α ∈ K − {0}.

2 ≤ k ≤ n: uv = 0 is a local equation of Ei, x1...xk = 0 is a local equation of

π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bk , (2.8)

where a1, ..., ak, b1, ..., bk ≥ 0, ai + bi > 0 for all i and

rank

[
a1 . . ak

b1 . . bk

]
= 2.

I.B. Suppose that p1 ∈ (W1)q. There exist regular parameters x1, ..., xn in ÔX1,p

and (u, v) in OY,q such that one of the following forms holds:

1 ≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1...xk = 0 is a local equation

of π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bkxk+1, (2.9)
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where bi ≤ ai and bi < ai for some i. Moreover, the local equations of (W1)q

are xi = xk+1 = 0 where bi < ai.

2 ≤ k ≤ n: uv = 0 is a local equation of Ei, x1...xk = 0 is a local equation of

π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bk , (2.10)

where a1, ..., ak, b1, ..., bk ≥ 0, ai + bi > 0 for all i, u does not divide v, v does

not divide u, and rank

[
a1 . . ak

b1 . . bk

]
= 2. Moreover, the local equations of

(W1)q are xi = xj = 0 where (ai − bi)(bj − aj) > 0.

II Suppose that 1 ≤ i ≤ m and p ∈ (f ◦ π1)
−1(q) ∩ π1

−1(Ui) and q /∈ Ei. Then

II.A and II.B as below hold.

II.A There exist regular parameters x1, ..., xn in ÔX1,p and (u, v) in OY,q such that

one of the following forms holds:

u = x1, v = x2 (2.11)

u = x1, v = x1(x2 + α) for some α ∈ K. (2.12)

u = x1x2, v = x2. (2.13)
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II.B Suppose that p1 ∈ (W1)q. There exist regular parameters x1, ..., xn in ÔX1,p

and (u, v) in OY,q such that the following form holds:

u = x1, v = x2. (2.14)

The local equations of (W1)q are x1 = x2 = 0.

III (W1)q is a union of nonsingular codimension 2 subvarieties of X1.

Proof.

I We prove this part by induction on the number of blowups in the sequence

π1 : X1 → X. In X the conclusions hold because of Lemma 2.3 and f is locally

toroidal. Suppose that the conclusions of the lemma hold after any sequence of l

permissible blowups where l ≥ 0.

Let π1 : X1 → X be a permissible sequence (with respect to q) of l blowups.

Let π2 : X2 → X1 be the blowup of a nonsingular codimension 2 subvariety Z of

X1 such that Z ⊂ (W1)q.

Let p ∈ π2
−1(π1

−1(Ui)) ∩ (f ◦ π1 ◦ π2)
−1(q) for some 1 ≤ i ≤ m.

If p1 = π2(p) /∈ Z then π2 is an isomorphism at p and we have nothing to prove.

Suppose then that p1 ∈ π1
−1(Ui) ∩ Z ⊂ π1

−1(Ui) ∩ (W1)q.

Then by induction hypothesis (I.B) p1 has the form (2.9) or (2.10). Suppose

first that it has the form (2.9).

Then the local equations of Z at p1 are xi = xk+1 = 0 for some 1 ≤ i ≤ k. Note

that bi < ai.
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As in the proof of Lemma 2.3, there exist regular parameters y1, ..., yk, xk+1, yk+2, ..., yn

in OX1,p1 and unit series δi ∈ÔX1,p1 such that yi = δixi for 1 ≤ i ≤ k.

Then OX2,p has one of the following two forms:

(a) OX2,p = OX1,p1 [
xk+1

yi
]
(yi,

xk+1
yi

−α)
for some α ∈ K, or

(b) OX2,p = OX1,p1 [
yi

xk+1
]
(xk+1,

yi
xk+1

)

In case(a), set ȳk+1 = xk+1

yi
− α. Then y1, ..., yk, ȳk+1, yk+2, ..., yn are regular

parameters in OX2,p and so ÔX2,p = k[[y1, ..., yk, ȳk+1, yk+2, ..., yn]].

Let c 6= 0 be the constant term of the unit series δi.

Then evaluating δi in the local ring OX2,p we get,

δi(y1, ..., yk, xk+1, yk+2, ..., yn) = δi(y1, ..., yk, yi(ȳk+1 + α), yk+1, ..., yn)

= c + ∆1y1 + ... + ∆kyk + ∆k+2yk+2 + ... + ∆nyn

for some ∆i ∈ OX2,p.

Set ᾱ = cα. Note that xk+1

xi
− ᾱ = δi

xk+1

yk
− cα = δi(ȳk+1 + α) − cα = δiȳk+1 +

(δi − c)α.

Since y1, ..., yk, ȳk+1, yk+2, ..., yn are regular parameters in ÔX2,p the above cal-

culations imply that x1, ..., xk,
xk+1

xi
− ᾱ, yk+2, ..., yn are regular parameters in ÔX2,p.

Set x̄k+1 = xk+1

xk
− ᾱ.

We get u = x1
a1 ...xk

ak , v = x1
b1 ...x̄i

bi+1...xk
bk(x̄k+1 + α).

This is the form (2.6) if α 6= 0 and form (2.4) if α = 0.

In case (b), set ȳk+1 = yi

xk+1
. Then y1, ..., yk, ȳk+1, yk+2, ..., yn are regular param-

eters in OX2,p and so ÔX2,p = k[[y1, ..., yk, ȳk+1, yk+2, ..., yn]].
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Then x1, ..., xk,
xi

xk+1
, yk+2, ..., yn are regular parameters in ÔX2,p. Set x̄i = xi

xk+1
.

u = x1
a1 ...x̄i

ai ...xk
akxk+1

ai , v = x1
b1 ...x̄i

bi+1...xk
bkxk+1.

This is the form (2.5).

By the above analysis, when p1 = π2(p) has form (2.9), if p ∈ (W2)q, then it

also has to be of the form (2.9).

Suppose now that p1 has the form (2.10). Then the local equations of Z at p1

are xi = xj = 0 for some 1 ≤ i, j ≤ k.

Then as in the above analysis there exist regular parameters y1, ..., ..., yn in

OX1,p1 and unit series δi ∈ÔX1,p1 such that yi = δixi for 1 ≤ i ≤ k.

Then OX2,p has one of the following two forms:

(a) OX2,p = OX1,p1 [
yi

yj
]
(yj ,

yi
yj

−α)
for some α ∈ K, or

(b) OX2,p = OX1,p1 [
yj

yi
]
(yi,

yj
yj

)

Arguing as above in case (a) we obtain regular parameters x1, ..., x̄i, ..., xn in

ÔX2,p so that

u = x1
a1 ...(x̄i + α)ai ...xj

ai+aj ...xk
ak , v = x1

b1 ...(x̄i + α)bi ...xj
bi+bj ...xk

bk .

This is the form (2.8) if α = 0.

If α 6= 0, we obtain either the form (2.8) or the form (2.7) according as rank of[
a1 . . ai + aj . . aj−1 aj+1 . . ak

b1 . . bi + bj . . bj−1 bj+1 . . bk

]
is = 2 or < 2.

Again arguing as above in case (b) we obtain regular parameters x1, ..., x̄j, ..., xn

in ÔX2,p so that

u = x1
a1 ...xi

ai+aj ...x̄j
aj ...xk

ak , v = x1
b1 ...xi

bi+bj ...x̄j
bj ...xk

bk .
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This is the form (2.8).

By the above analysis, when p1 = π2(p) has the form (2.10), if p ∈ (W2)q, then

it also has to be of the form (2.10).

This completes the proof of I.A for X2. Now I.B is clear as the forms (2.9)

and (2.10) are just the forms (2.4) and (2.8) from I.A.

II We prove this part by induction on the number of blowups in the sequence

π1 : X1 → X.

Since q /∈ Ei and f is locally toroidal, f is smooth at any point p1 ∈ f−1(q).

This means that the regular parameters at q form a part of a regular sequence at

p. So we have regular parameters x1, ..., xn in ÔX,p1 and u, v in OY,q such that

u = x1, v = x2. This is the form (2.11). Thus the conclusions hold in X. Suppose

that the conclusions of the lemma hold after any sequence of l permissible blowups

where l ≥ 0.

Let π1 : X1 → X be a permissible sequence (with respect to q) of l blowups.

Let π2 : X2 → X1 be the blowup of a nonsingular codimension 2 subvariety Z of

X1 such that Z ⊂ (W1)q.

Let p ∈ π2
−1(π1

−1(Ui)) ∩ (f ◦ π1 ◦ π2)
−1(q) for some 1 ≤ i ≤ m.

If p1 = π2(p) /∈ Z then π2 is an isomorphism at p and we have nothing to prove.

Suppose then that p1 ∈ π1
−1(Ui) ∩ Z ⊂ π1

−1(Ui) ∩ (W1)q.

Then by induction hypothesis (II.B) p1 has the form (2.14). Then the local

equations of Z at p1 are x1 = x2 = 0.

There exist regular parameters x̄1, x̄2 in ÔX2,p such that one of the following
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forms holds:

x1 = x̄1, x2 = x̄1(x̄2 + α) for some α ∈ K or x1 = x̄1x̄2, x2 = x̄2. These two

cases give the forms (2.12) and (2.13).

Now II.B is clear as the form (2.14) is just the form (2.11) from II.A.

III Since {π1
−1(Ui)} for 1 ≤ i ≤ m is an open cover of X1 and π1

−1(Ui)∩ (W1)q is

a union of nonsingular codimension 2 subvarieties of X1 for all i by I and II, (W1)q

is a union of nonsingular codimension 2 subvarieties of X1.

16



Chapter 3

Principalization

Let f : X −→ Y be a locally toroidal morphism from a nonsingular n-fold X to a

nonsingular surface Y with respect to open coverings {U1, ..., Um} and {V1, ..., Vm}

of X and Y respectively and SNC divisors Di and Ei in Ui and Vi respectively.

In this section we fix an i between 1 and m and a q ∈ Y .

Let π1 : X1 → X be a permissible sequence with respect to q. Our aim is to

construct a permissible sequence π2 : X2 → X1 such that π2 ◦ π1 : X2 → X is a

permissible sequence and π2
−1(π1

−1(Ui)) ∩ (W2)q is empty.

First suppose that q /∈ Ei. If p ∈ π1
−1(Ui), then by Lemma 2.5 one of the forms

(2.11), (2.12) or (2.13) holds at p.

Theorem 3.1. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Y .

Suppose that q /∈ Ei. Then there exists a permissible sequence π2 : X2 → X1 with

respect to q such that π2
−1(π1

−1(Ui)) ∩ (W2)q is empty.

Proof. If π1
−1(Ui)∩(W2)q is empty, then there is nothing to prove. So suppose that

π1
−1(Ui) ∩ (W2)q 6= ∅. By Lemma 2.3, it is a union of codimension 2 subvarieties

of π1
−1(Ui).

Let Z ⊂ π1
−1(Ui) ∩ (W1)q be a subvariety of π1

−1(Ui) of codimension 2.
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Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let

Z1 ⊂ π2
−1(Z) be a codimension 2 subvariety of π2

−1(π1
−1(Ui)) such that Z1 ⊂

π2
−1(π1

−1(Ui)) ∩ (W2)q.

By the proof of Lemma 2.5 it follows that Z1 ∩ (W2)q = ∅.

The theorem now follows by induction on the number of codimension 2 subva-

rieties Z in π1
−1(Ui) ∩ (W1)q.

Now we suppose that q ∈ Ei.

Remark 3.2. Suppose that π1 : X1 → X is a permissible sequence with respect to

some q ∈ Ei. Let π2 : X2 → X1 be a permissible blowup with respect to q. Let

p1 ∈ π2
−1(π1

−1(Ui)) ∩ (W2)q. Then clearly p = π2(p1) ∈ π1
−1(Ui) ∩ (W1)q.

Suppose that p1 is a 1 point. Then the analysis in the proof of Lemma 2.5 shows

that p also is a 1 point.

Suppose that p1 is a 2 point where the form (2.10) holds. Then the analysis in

the proof of Lemma 2.5 shows that p is a 2 or 3 point where the from (2.10) holds.

Suppose that π1 : X1 → X is a permissible sequence with respect to q ∈ Ei.

Let p ∈ π1
−1(Ui) ∩ (W1)q be a 1 point. By Lemma 2.5, there exist regular

parameters x1, ..., xn in ÔX1,p and u, v in OY,q such that u = x1
a, v = x1

bx2 where

a > b.

Define Ωi(p) = a− b > 0.

Let Z ⊂ π1
−1(Ui) ∩ (W1)q be a codimension 2 subvariety of π1

−1(Ui).

Define Ωi(Z) = Ωi(p) if there exists a 1 point p ∈ Z. This is well defined
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because Ωi(p) = Ωi(p
′) for any two points p, p′ ∈ Z.

If Z contains no 1 points, we define Ωi(Z) = 0.

Finally define

Ωi(f ◦ π1) = max{Ωi(Z)|Z ⊂ π1
−1(Ui) ∩ (W1)q is an irreducible

subvariety of π1
−1(Ui) of codimension 2}

Example: Let p ∈ π1
−1(Ui) ∩ (W1)q be a 1 point.

Suppose that f has the forms u = x1
5, v = x1

2x2 where x1, ..., xn are regular

parameters in ÔX1,p and u, v are regular parameters in OY,q .

Then Ωi(p) = 5− 2 = 3.

Note that, by Lemma 2.5, in a neighborhood of p the local equations of (W1)q

are x1 = x2 = 0 . This is a codimension 2 subvariety of π1
−1(Ui) ∩ (W1)q, say Z.

Then we also have Ωi(Z) = 3.

On the other hand, let p′ ∈ π1
−1(Ui) ∩ (W1)q be a 2 point.

Suppose that f has the forms u′ = x1
′x2

′4, v′ = x1
′2x2

′ where x1
′, ..., xn

′ are

regular parameters in ÔX1,p′ and u′, v′ are regular parameters in OY,q .

Then in a neighborhood of p′, the local equations of (W1)q are x1
′ = x2

′ = 0 .

This is again a codimension 2 subvariety of π1
−1(Ui)∩ (W1)q, say Z ′. Now we have

Ωi(Z
′) = 0.

Theorem 3.3. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei.

There exists a permissible sequence π2 : X2 → X1 with respect to q such that

Ωi(f ◦ π1 ◦ π2) = 0.

Proof. Suppose that Ωi(f ◦ π1) > 0. Let Z ⊂ π1
−1(Ui) ∩ (W1)q be a subvariety of
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π1
−1(Ui) of codimension 2 such that Ωi(f ◦ π1) = Ωi(Z).

Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let

Z1 ⊂ π2
−1(Z) be a codimension 2 subvariety of π2

−1(π1
−1(Ui)) such that Z1 ⊂

π2
−1(π1

−1(Ui)) ∩ (W2)q. We claim that Ωi(Z1) < Ωi(Z).

If there are no 1 points of Z1 then we have nothing to prove. Otherwise, let

p1 ∈ Z1 be a 1 point. Then π1(p1) = p is a 1 point of Z by Remark 3.2.

There are regular parameters x1, ..., xn in ÔX1,p and u, v in OY,q such that

u = x1
a, v = x1

bx2. There exist regular parameters x1, x̄2, ..., xn in ÔX2,p1 such that

x2 = x1(x2 + α).

u = x1
a, v = x1

b+1(x2 + α). Since p1 ∈ (W2)q, α = 0.

Ωi(Z1) = Ωi(p1) = a− b− 1 < a− b = Ωi(Z).

The theorem now follows by induction on the number of codimension 2 sub-

varieties Z in π1
−1(Ui) ∩ (W1)q such that Ωi(f ◦ π1) = Ωi(Z) and induction on

Ωi(f ◦ π1).

Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei.

Let Z ⊂ π1
−1(Ui)) ∩ (W1)q be a codimension 2 subvariety of π1

−1(Ui). Let

p ∈ Z be a 2 point where the form (2.10) holds.

There exist regular parameters x1, ..., xn in ÔX1,p and u, v in OY,q such that

u = x1
a1x2

a2 and v = x1
b1x2

b2 .

Define ωi(p) = (a1 − b1)(b2 − a2). Then since p ∈ (W1)q, ωi(p) > 0.

Now define ωi(Z) = ωi(p) if p ∈ Z is a 2 point where the form (2.10) holds.

If there are no 2 points of the form (2.10) in Z define ωi(Z) = 0. Then ωi(Z) is
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well-defined.

Finally define

ωi(f ◦ π1) = max{ωi(Z)|Z ⊂ π1
−1(Ui) ∩ (W1)q is an irreducible

subvariety of π1
−1(Ui) of codimension 2}

Theorem 3.4. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei.

Suppose that Ωi(f ◦ π1) = 0. There exists a permissible sequence π2 : X2 → X1

with respect to q such that Ωi(f ◦ π1 ◦ π2) = 0 and ωi(f ◦ π1 ◦ π2) = 0.

Proof. Since Ωi(f ◦π1) = 0, there are no 1 points in π1
−1(Ui)∩(W1)q. Let X2 → X1

be any permissible blowup. Then by Remark 3.2 it follows that π2
−1(π1

−1(Ui)) ∩

(W2)q has no 1 points. Hence Ωi(f ◦ π1 ◦ π2) = 0.

Suppose that ωi(f ◦ π1) > 0. Let Z ⊂ π1
−1(Ui) ∩ (W1)q be a codimension 2

irreducible subvariety of π1
−1(Ui) such that ωi(f ◦ π1) = ωi(Z).

Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let

Z1 ⊂ π2
−1(Z) be a codimension 2 subvariety of π2

−1(π1
−1(Ui)) such that Z1 ⊂

π2
−1(π1

−1(Ui)) ∩ (W2)q. We prove that ωi(Z1) < ωi(Z) = ωi(f ◦ π1).

If there are no 2 points of the form (2.10) in Z1 then ωi(Z1) = 0 and we have

nothing to prove. Otherwise let p1 ∈ Z1 be a 2 point of the form (2.10).

By Remark 3.2, p = π2(p1) ∈ Z is a 2 or 3 point of form (2.10).

Suppose that p ∈ Z is a 2 point. There exist regular parameters x1, ..., xn in

ÔX1,p and u, v in OY,q such that u = x1
a1x2

a2 and v = x1
b1x2

b2 . Also the local

equations of Z are x1 = x2 = 0.

Then there exist regular parameters x1, x̄2, x3..., xn in ÔX2,p1 such that x2 =
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x1x̄2 and u = x1
a1+a2x̄2

a2 and v = x1
b1+b2x̄2

b2 .

ωi(Z1) = ωi(p1) = (a1 + a2 − b1 − b2)(b2 − a2)

= (a1 − b1)(b2 − a2) + (a2 − b2)(b2 − a2)

< (a1 − b1)(b2 − a2) = ωi(p) = ωi(Z) = ωi(f ◦ π1).

Suppose that p ∈ Z is a 3 point. There exist regular parameters x1, ..., xn in ÔX1,p

and u, v in OY,q such that u = x1
a1x2

a2x3
a3 and v = x1

b1x2
b2x3

b3 . After permuting

x1, x2, x3 if necessary, we can suppose that the local equations of Z are x2 = x3 = 0.

Then there exist regular parameters x1, x2, x̄3..., xn in ÔX2,p1 such that x3 =

x2(x̄3 + α) and u = x1
a1x2

a2+a3(x̄3 + α)a3 and v = x1
b1x2

b2+b3(x̄3 + α)b3 .

Since p1 is a 2 point, we have α 6= 0 and a1(b2+b3)−b1(a2+a3) 6= 0. After an ap-

propriate change of variables x1, x2 we obtain regular parameters x̄1, x̄2, x̃3, x4, ..., xn

in ÔX2,p1 .

u = x̄1
a1x̄2

a2+a3 and v = x̄1
b1x̄2

b2+b3 .

Since the local equations of Z ⊂ π1
−1(Ui) ∩ (W1)q are x2 = x3 = 0, b2 − a2

and b3 − a3 have different signs. So a1 − b1 has the same sign as exactly one of

b2 − a2 or b3 − a3. Without loss of generality suppose that (a1 − b1)(b2 − a2) > 0

and (a1 − b1)(b3 − a3) < 0.

Let Z ′ be the codimension 2 variety whose local equations are x1 = x2 = 0

defined in an appropriately small neighborhood in π1
−1(Ui). Then the closure Z̄ ′

of Z ′ in π1
−1(Ui) is an irreducible codimension 2 subvariety contained in π1

−1(Ui)∩
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(W1)q.

ωi(Z1) = ωi(p1) = (a1 − b1)(b2 + b3 − a2 − a3)

= (a1 − b1)(b2 − a2) + (a1 − b1)(b3 − a3)

< (a1 − b1)(b2 − a2) = ωi(Z̄ ′) ≤ ωi(f ◦ π1).

The theorem now follows by induction on the number of codimension 2 subvarieties

Z in π1
−1(Ui)∩ (W1)q such that ωi(f ◦π1) = ωi(Z) and induction on ωi(f ◦π1).

Remark 3.5. Let π1 : X1 → X be a permissible sequence with respect to q. Let i

be such that 1 ≤ i ≤ m.

If q /∈ Ei then by Theorem 3.1 there exists a permissible sequence π2 : X2 → X1

with respect to q such that σi(f ◦ π1 ◦ π2) = 0.

If q ∈ Ei then it follows from Theorems 3.3 and 3.4 that there exists a permis-

sible sequence with respect to q π2 : X2 → X1 such that Ωi(f ◦ π1 ◦ π2) = 0 and

ωi(f ◦ π1 ◦ π2) = 0.

Theorem 3.6. Let f : X −→ Y be a locally toroidal morphism between a nonsin-

gular n-fold X and a nonsingular surface Y . Let q ∈ Y .

Then there exists a permissible sequence π1 : X1 → X with respect to q such

that (W1)q is empty.

Proof. First we apply the Remark 3.5 to X and i = 1.

Suppose that q /∈ E1. Then by Remark 3.5, there exists a permissible sequence

π1 : X1 → X with respect to q such that σ1(f◦π1) = 0. Hence π1
−1(U1)∩(W1)q = ∅.

Now suppose that q ∈ E1. It follows from Remark 3.5 that there exists a

permissible sequence π1 : X1 → X with respect to q such that Ω1(f ◦ π1) = 0
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and ω1(f ◦ π1) = 0. So there are no 1 points or 2 points of the form (2.10) in

π1
−1(U1) ∩ (W1)q. But if Z ⊂ π1

−1(U1) ∩ (W1)q is any codimension 2 irreducible

subvariety of π1
−1(Ui), then a generic point of Z must either be a 1 point or a 2

point of the form (2.10). It follows then that π1
−1(U1) ∩ (W1)q is empty.

Now we apply Remark 3.5 to the permissible sequence π1 : X1 → X and i = 2.

If q /∈ E2 there exists a permissible sequence π2 : X2 → X1 such that σ2(f ◦

π1 ◦ π2) = 0. Hence π2
−1(π1

−1(U2)) ∩ (W2)q = ∅.

If q ∈ E2 then as above there exists a permissible sequence π2 : X2 → X1 such

that π2
−1(π1

−1(U2)) ∩ (W2)q is empty.

Notice that we also have π2
−1(π1

−1(U1)) ∩ (W2)q = ∅.

Repeating the argument for i = 3, 4, ...,m we obtain the desired permissible

sequence.
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Chapter 4

Toroidalization

Theorem 4.1. Let f : X −→ Y be a locally toroidal morphism from a nonsingular

n-fold X to a nonsingular surface Y with respect to open coverings {U1, ..., Um}

and {V1, ..., Vm} of X and Y respectively and SNC divisors Di and Ei in Ui and Vi

respectively. Let π : Y1 → Y be the blowup of a point q ∈ Y .

Then there exists a permissible sequence π1 : X1 → X such that there is a locally

toroidal morphism f1 : X1 → Y1 such that π ◦ f1 = f ◦ π1.

Proof. By Theorem 3.6 there is a permissible sequence π1 : X1 → X such that

there exists a morphism f1 : X1 → Y1 and π ◦ f1 = f ◦ π1.

Let p ∈ X1. Suppose that p ∈ π1
−1(Ui) for some i such that 1 ≤ i ≤ m. If

π1(p) /∈ f−1(q) then we have nothing to prove. So we assume that π1(p) ∈ f−1(q).

Suppose first that q /∈ Ei. Then by Lemma 2.5 one of the forms (2.12) or (2.13)

holds at p. So there exist regular parameters x1, ..., xn in ÔX1,p and u, v in OY,q

such that

u = x1, v = x1(x2 + α) for some α ∈ K, or u = x1y1, v = x2.
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Let f1(p) = q1. There exist regular parameters u1, v1 ∈ OY1,q1 such that

u = u1, v = u1(v1 + α) or u = u1v1, v = v1

according as the form (2.12) or the form (2.13) holds. In either case, we have

u1 = x1, v1 = x2, and f1 is smooth at p.

Now suppose that q ∈ Ei.

By Lemma 2.5 there exist regular parameters x1, ..., xn in ÔX1,p and u, v in

OY,q such that one of the forms (2.4), (2.5), (2.6), (2.7), or (2.8) of Lemma 2.5

holds.

Suppose first that the form (2.4) holds. Then since mqÔX1,p is invertible,

there exist regular parameters x1, ..., xn in ÔX1,p and u, v in OY,q such that u =

x1
a1 ...xk

ak , v = x1
a1 ...xk

akxk+1 for some 1 ≤ k ≤ n− 1.

Further x1...xk = 0 is a local equation of π1
−1(Di) and u = 0 is a local equation

for Ei.

Let f1(p) = q1. There exist regular parameters (u1, v1) in OY1,q1 such that

u = u1 and v = u1v1. Hence the local equation of π−1(Ei) at q1 is u1 = 0.

u1 = x1
a1 ...xk

ak , v1 = xk+1.

This is the form (2.1).

Suppose now that the form (2.5) holds at p for f ◦ π1. There exist regular

parameters x1, ..., xn in ÔX1,p and u, v in OY,q and 1 ≤ k ≤ n− 1 such that u = 0

is a local equation of Ei, x1...xkxk+1 = 0 is a local equation of π1
−1(Di) and

u = x1
a1 ...xk

akxk+1
ak+1 , v = x1

b1 ...xk
bkxk+1

bk+1 ,
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where bi ≤ ai for i = 1, ..., k and bk+1 < ak+1.

Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u =

u1v1 and v = v1. Hence the local equation of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1
a1−b1 ...xk

ak−bkxk+1
ak+1−bk+1 , v1 = x1

b1 ...xk
bkxk+1

bk+1 .

This is the form (2.3). Note that the rank condition follows from the dominance

of the map f1.

Suppose now that the form (2.6) holds. There exist regular parameters x1, ..., xn

in ÔX1,p and u, v in OY,q and 1 ≤ k ≤ n− 1 such that u = 0 is a local equation of

Ei, x1...xk = 0 is a local equation of π1
−1(Di) and

u = x1
a1 ...xk

ak , v = x1
b1 ...xk

bk(xk+1 + α),

where bi ≤ ai for all i and 0 6= α ∈ K.

Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u =

u1v1 and v = v1. Hence the local equation of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1
a1−b1 ...xk

ak−bk(xk+1 + α)−1, v1 = x1
b1 ...xk

bk(xk+1 + α).

If rank

[
a1 − b1 . . ak − bk

b1 . . bk

]
= 2 then there exist regular parameters x̄1, ..., x̄n in

ÔX1,p such that u1 = x̄1
a1−b1 ...x̄k

ak−bk , v1 = x̄1
b1 ...x̄k

bk . This is the form (2.3).

If rank

[
a1 − b1 . . ak − bk

b1 . . bk

]
< 2 then there exist regular parameters x̄1, ..., x̄n in

ÔX1,p such that u1 = (x̄1
a1 ...x̄k

ak)m, v = (x̄1
a1 ...x̄k

ak)t(xk+1 + β), with β 6= 0. This

is the form (2.2).

Suppose that the form (2.7) holds. There exist regular parameters x1, ..., xn in

ÔX1,p and u, v in OY,q and 1 ≤ k ≤ n− 1 such that uv = 0 is a local equation for
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Ei, x1...xk = 0 is a local equation of π1
−1(Di) and

u = (x1
a1 ...xk

ak)m, v = (x1
a1 ...xk

ak)t(α + xk+1),

where a1, ..., ak, m, t > 0 and α ∈ K − {0}.

Suppose that m ≤ t. There exist regular parameters u1, v1 in OY1,q1 such that

u = u1 and v = u1(v1 + β) for some β ∈ K.

u1 = (x1
a1 ...xk

ak)m, v1 = (x1
a1 ...xk

ak)t−m(α + xk+1)− β.

If m < t then β = 0. So u1v1 = 0 is a local equation of π−1(Ei) and we have

the form (2.2). If m = t then α = β 6= 0 and u1 is a local equation of π−1(Ei). In

this case we have the form (2.1).

Suppose that m > t. Then there exist regular parameters u1, v1 in OY1,q1 such

that u = u1v1 and v = v1.

u1 = (x1
a1 ...xk

ak)m−t(α + xk+1)
−1, v1 = (x1

a1 ...xk
ak)t(α + xk+1).

We obtain the form (2.2).

Finally suppose that the form (2.8) holds. There exist regular parameters

x1, ..., xn in ÔX1,p and u, v inOY,q and 2 ≤ k ≤ n such that uv = 0 is a local equation

of Ei and x1...xk = 0 is a local equation of π1
−1(Di) and u = x1

a1 ...xk
ak , v =

x1
b1 ...xk

bk , where rank

[
a1 . . ak

b1 . . bk

]
= 2 .

We have either ai ≥ bi for all i or ai ≤ bi for all i. Without loss of generality,

suppose that ai ≤ bi for all i.

Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u = u1
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and v = u1v1. Hence the local equation of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1
a1 ...xk

ak , v1 = x1
b1−a1 ...xk

bk−ak .

Further, rank

[
a1 . . ak

b1 − a1 . . bk − ak

]
= 2. This is the form (2.1).

Now we are ready to prove our main theorem.

Theorem 4.2. Suppose that f : X −→ Y is a locally toroidal morphism between a

variety X and a surface Y . Then there exists a commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π, π1 are blowups of nonsingular varieties such that there exist SNC divisors

E, D on Y1 and X1 respectively such that Sing(f1) ⊂ D, f1
−1(E) = D and f1 is

toroidal with respect to E and D.

Proof. Let E ′ = Ē1 + ... + Ēm where Ēi is the Zariski closure of Ei in Y . There

exists a finite sequence of blowups of points π : Y1 → Y such that π−1(E ′) is a

SNC divisor on Y1.

By Theorem 4.1, there exists a sequence of blowups π1 : X1 → X such that

there is a locally toroidal morphism f1 : X1 → Y1 with f ◦ π1 = π ◦ f1.

Let E = π−1(E ′) and D = f1
−1(E).

We now verify that E and D are SNC divisors on Y1 and X1 respectively and

that f1 : X1 → Y1 is toroidal with respect to D and E.

Let p ∈ X1 and let q = f1(p).
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Suppose that p /∈ D, so that q /∈ E. There exists i such that 1 ≤ i ≤ m and

p ∈ π1
−1(Ui). Then q /∈ E = π−1(E ′) ⇒ q /∈ π−1(Ei). So p /∈ f1

−1(π−1(Ei)) =

π1
−1(Di). Then f1 is smooth at p because f1|π1

−1(Ui) is toroidal.

Thus Sing(f1) ⊂ D.

Suppose now that p ∈ D. Let p ∈ π1
−1(Ui) for some i between 1 and m. If

q /∈ π−1(Ei) then f1 is smooth at p and then D = f1
−1(E) is a SNC divisor at p.

We assume then that q ∈ π−1(Ei).

Case 1 q ∈ E is a 1 point.

q is necessarily a 1 point of π−1(Ei).

Then π−1(Ei) and E are equal in a neighborhood of q. Hence π1
−1(Di) and D

are equal in a neighborhood of p. Since π1
−1(Di) is a SNC divisor in a neighborhood

of p, D is a SNC divisor in a neighborhood of p.

Since f1|π1
−1(Ui) is toroidal there exist regular parameters u, v in OY1,q and

regular parameters x1, ..., xn in ÔX1,p such that the the form (2.1) holds at p with

respect to E and D.

Case 2 q ∈ E is a 2 point.

q is either a 1 point or a 2 point of π−1(Ei).

Case 2(a) q is a 1 point of π−1(Ei).

There exists regular parameters u, v in OY1,q and regular parameters x1, ..., xn

in ÔX1,p such that the form (2.1) holds at p. There exists ṽ ∈ OY1,q such that u, ṽ

are regular parameters in OY1,q, uṽ = 0 is a local equation for E at q, u = 0 is a
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local equation of π−1(Ei) at q, and

ṽ = αu + βv + higher degree terms in u and v,

for some β ∈ K with β 6= 0.

Since π1
−1(Di) is a SNC divisor in a neighborhood of p, there exist regular

parameters x̄1, ..., x̄n in OX1,p such that x̄1...x̄k = 0 is a local equation of π1
−1(Di)

at p. Since x1...xk = 0 is also a local equation of π1
−1(Di) at p, there exist units

δ1, ..., δk ∈ ÔX1,p such that, after possibly permuting the xj, xj = δjx̄j for 1 ≤ j ≤ k.

ṽ = αu + βv + higher degree terms in u and v

= αx1
a1 ...xk

ak + βxk+1 + higher degree terms in u and v

= αδ1
a1 ...δk

ak x̄a1
1 ...x̄ak

k + βxk+1 + higher degree terms in u and v

Let m be the maximal ideal of OX1,p and let m̂ = mÔX1,p be the maximal ideal

of ÔX1,p.

Since β 6= 0, x̄1, ..., x̄k, ṽ are linearly independent in m̂/m̂2 ∼= m/m2, so that

they extend to a system of regular parameters in OX1,p.

Say x̄1, ..., x̄k, ṽ, x̃k+2, ..., x̃n.

uṽ = x̄1...x̄kṽ = 0 is a local equation of D at p, so D is a SNC divisor in a

neighborhood of p, and u, ṽ give the form (2.3) with respect to the formal param-

eters x1, ..., xk, ṽ, x̃k+2, ..., x̃n.
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Case 2(b) q is a 2 point of π−1(Ei).

Then π−1(Ei) and E are equal in a neighborhood of q. Hence π1
−1(Di) and D

are equal in a neighborhood of p. Since π1
−1(Di) is a SNC divisor in a neighborhood

of p, D is a SNC divisor in a neighborhood of p.

Since f1|π1
−1(Ui) is toroidal there exist regular parameters u, v in OY1,q and

regular parameters x1, ..., xn in ÔX1,p such that the one of the forms (2.2) or (2.3)

holds at p with respect to E and D.
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