TOROIDALIZATION OF LOCALLY TOROIDAL MORPHISMS

Krishna Chaithanya Hanumanthu
Dr. Steven Dale Cutkosky, Dissertation Supervisor

ABSTRACT

Let X and Y be nonsingular varieties over an algebraically closed field k of characteristic zero. A toroidal structure on X is a simple normal crossing divisor D_X on X.

Suppose that D_X and D_Y are toroidal structures on X and Y respectively. A dominant morphism $f: X \to Y$ is toroidal (with respect to the toroidal structures D_X and D_Y) if for all closed points $p \in X$, f is isomorphic to a toric morphism of toric varieties specified by the toric charts at p and $f(p)$.

A dominant morphism $f: X \to Y$ of nonsingular varieties is toroidalizable if there exist sequences of blow ups with nonsingular centers $\pi : Y_1 \to Y$ and $\pi_1 : X_1 \to X$ so that the induced map $f_1 : X_1 \to Y_1$ is toroidal.

Let $f : X \to Y$ be a dominant morphism. Suppose that there exist finite open covers $\{U_i\}$ and $\{V_i\}$ of X and Y respectively such that $f(U_i) \subset V_i$ and the restricted morphisms $f : U_i \to V_i$ are toroidal for all i. f is then called locally toroidal.

It is proved that a locally toroidal morphism from an arbitrary variety to a surface is toroidalizable.