A STUDY OF PROPERTY AND KNOWLEDGE INHERITANCE IN 19TH CENTURY SCANIA, SWEDEN

A Thesis
presented to
the Faculty of the Graduate School
at the University of Missouri-Columbia

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts

by
Jeremy Rowles
Dr. Craig Palmer, Thesis Supervisor
MAY 2016
The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled:

A Study of Property and Knowledge Inheritance in 19th Century Scania, Sweden

Presented by Jeremy Rowles,

a candidate for the degree of Master of Arts,

and hereby certify that, in their opinion, it is worthy of acceptance.

Doctor Craig Palmer

Doctor Mary Shenk

Doctor Lori Thombs
Acknowledgements

I would like to thank Dr. Craig Palmer for his immeasurable guidance in completing this thesis. Also, I thank Dr. Lori Thombs, Lada Micheas, Emily Shireman, and Ray Bacon in their assistance and guidance in statistical analysis. Finally, I acknowledge Dr. Robert Walker for notifying me of the existence of the SEDD database.
Table of Contents

Acknowledgements

Introduction

Review of Literature

Description of Study Population

Data Source

Predictions of Analysis

Method of Analysis and Results

Discussion of Results
Introduction

Parents in all societies use various methods to ensure at least some of their children will have a similar or greater social status as the parents. These methods range from ensuring that the children are healthy and develop normally so that they will live as functional adults for a lengthy time, to teaching the children social norms and behaviors so that they will be able to operate in the social society that surrounds them when necessary (Low 1989). Another method parents use to maintain their children’s social status is the method of inheritance.

In societies where property is one of the primary indicators of class, inheritance of property is often one of the typical methods used by parents to pass their social class on to their children (Goody 1976, Mace 1996, Borgerhoff Mulder 2000). However, there is often a tradeoff when property is passed on to several children through inheritance, as property’s value is diminished the more it is divided, and thus the social status attached to the property could be diminished as well. Primogeniture is a common inheritance strategy when there is a danger of property being diminished through division. However, when primogeniture is in place, the eldest son is nearly ensured of retaining the social class of the parents, but the younger male siblings are at risk of decreasing in social class as they will have to find other means of finding property of their own to match their social class requirements (Baker & Micelli 2005).

Compare this to when knowledge is the primary indicator of class, instead of property. Knowledge and skills are inheritable, but knowledge and skills do not have the diminishment through division problem that property does. Knowledge can be portioned out repeatedly without losing any of its effectiveness (Low 1989, Shenk et al. 2010). Therefore, if knowledge was the
inheritance with the most effectiveness in maintaining the children’s social status, primogeniture or other heir-limiting strategies would probably not be enforced and the social status of the children would be more equal, regardless of whether they are younger or older in terms of birth order.

The purpose of this study is to compare property inheritance versus knowledge inheritance, analyzing the effects of both in terms of the resulting social status of the children by birth order. I will do this by using a database composed of public information on individuals who lived in Scania, Sweden throughout the 19th century. By separating the men in the database by whether they are sons of fathers whose social status is determined by property based occupations or knowledge based occupations, I will analyze the resulting social status of the sons by their birth order rank, oldest brother through to youngest brother. I predict that for sons of knowledge occupation fathers, birth order rank will have little to no effect in the resulting social class of the sons; whereas for sons of property occupation fathers, the resulting social class of the sons will decrease as their rank in birth order increases (e.g. the younger brothers will have tend to have lower classes than the elder brothers).
Review of Literature

Of the several fixed inheritance strategies, primogeniture is one of the most commonly used. In particular, primogeniture is the rule for land inheritance in 21% of all intensive agricultural societies (Murdock 1967; Murdock and White 1969). Primogeniture is most relevant in agricultural societies that have limited sources of land, and where the amount of land owned is the primary measure of wealth in that society (Shenk et al. 2010). Because the land is finite, a family will place a premium in not diminishing the land already acquired. Preventing the partitioning of the land during inheritance will be a primary determining factor in how land will be inherited, and primogeniture does this by granting the entire property to a fixed heir, the eldest son (Baker and Micelli 2005). By practicing primogeniture, the parents perform a tradeoff in choosing to not divide the property and giving the entire amount to a pre-selected, but not necessarily the most deserving, eldest son over giving portions of the property to the children who would more likely manage the property better, such as a highly intelligent daughter or a hard-working younger son. The eldest child is selected to reduce social tension early on about who will ultimately be the heir; a son is selected typically because of generations of male bias ingrained into the society (Hrdy 1993).

Because the eldest son is the pre-selected heir to the property, the parents will invest more energy in the raising of that son to groom him into being the manager of the property and the maintainer of the family social standing. This parental investment will not only result in the eldest son being the most likely of the children to be capable of maintaining social status, but also will result in the other children at risk of falling in social status because they were deprived
of both needed parental guidance and also the family’s property through inheritance (Draper and Hames 2000, Borgerhoff Mulder 2000). For example, an eldest son of a noble family in 16th century Europe would receive more investment from his parents because he is the heir to the title, and it would be important to have a successful heir to carry on the lineage of the noble house (Boone 1986). The later born sons in the noble family would receive less preferential treatment, and would most likely live a life of a lower social standing, such as joining the clergy, or higher mortality, such as engaging in warfare or long-distance trade.

Inheritance methods and parental investment do not typically follow primogeniture and birth order rules when the valuable material inherited is not limited (Easterlin, Alter and Condran 1978, Draper and Hames 2000). When the inheritable material is not threatened by losing its effectiveness while being partitioned and distributed, then parents will tend to follow inheritance strategies that are much more equitable among the children, and thus will also be more equitable in parental investment (Low 1989, Burgerhoff Mulder 2000). Knowledge and skills are inheritable materials (Shenk et al. 2010) that can be possibly limitless, and therefore the effects of knowledge and skills should have completely different effects on the inheritance strategies of parents than finite land inheritance, particularly through its effect on parental investment choices. Knowledge can be portioned out as often as time allows, and sharing knowledge does not reduce the original source of knowledge in any way. This has been shown to be true with hunter-gatherers, where knowledge that is critical to the social success of the child is distributed evenly among children of the same sex (Low 1989). If the main criterion for a parent’s social status is their knowledge, such as with skilled laborers, academics, and professionals, the children of that parent could learn, or inherit, that knowledge in equal amounts, and therein could have equal
chances to achieve cultural success on the same level as the parent if there is a sufficient market for these knowledge based skills. The parent would not be constricted into choosing which child to favor based on how much inheritance the parent has to give, and with this constriction removed parental investment decisions would be radically different for a parent passing knowledge on as compared to a parent who is passing on finite land.
Description of Study Population

The population for this research consists of 11,722 individuals who lived in the Scania province of southern Sweden for the majority of the 19th century, beginning in 1813 to 1914. Scania lies in the southernmost edge of Sweden, forming the tip of the Scandinavian Peninsula. It is surrounded by water to the east, south, and west; to the east and south it is bordered by the Baltic Sea, and to the west are straits of water that form the borders that separate Sweden from Denmark. The area where most of the population lived was on or near rural farmland, but there were several villages and towns in the region as well.

During the period of this study, the Scania region of Sweden would be considered an agricultural economy. Most of the occupations of this period were related to farming, either as the owner of the farm, a farm foreman, or as a skilled or unskilled farm worker. In addition, fishing along the coastline was another method of food production. However, during this time nearly half the population was involved in non-farming occupations. Among this group were craftsmen, such as carpenters, masons and blacksmiths; persons involved in trade of goods, such as salesmen and shop owners; learned professionals, such as lawyers and academics; and members of the aristocracy, who owned and leased land as remnants of the feudal system established during Europe’s Middle Ages.

Beginning near the end of the 18th-century, the absolute division between the nobility and the peasant class began to diminish (Svensson 2006). One main cause of this change was the
passing of a series of Enclosure Acts. These acts allowed, among other things, the purchase of land that was previously prohibited from purchase due to it belonging to the crown or to the public at large. With new areas of land available for purchase to a wide class of individuals, commoners who were previously tied to the land of their feudal lord could themselves become a landlord of their own property. The authority and prestige of the traditional noble lord was thus diminished, and many individuals who would have been locked into the commoner class in the 18th century were able to move up in social class to rival the prestige of the nobility. It was clear that by the mid-19th-century, social mobility was common in Scania, where several avenues were available for one to move up and down in class, including by accumulating real property.

With property being an important indicator of class, the inheritance practices for property were critical for families to maintain or even increase their social class (Svensson 2006, Low 1990). The laws of Sweden during this time period stated that all children, including males and females, could lay claim to a share of their parents’ property upon the death of the parents. It was up to the families to ultimately decide how the property would be distributed among the children. However, the standard practice throughout Sweden of families’ preferred method of inheritance in the time period of question was for the eldest son to lay claim to the entire property of the parents upon the parents’ death, a de facto form of primogeniture (Dribe & Lundh 2005, Low 1990). If there were no sons in the family, then the eldest daughter would inherit the entire property, typically. Although there were several variations to this form of de facto primogeniture, such as families of very large farms deciding to split the property and allow more than one son to inherit part of the farm, the eldest son was more likely than not to inherit the entirety of the property (Low 1990). The younger sons did have options available for them to acquire property,
though, such as marrying a widow or an eldest daughter, or by acquiring wealth to be able
purchase unowned land.

Although inheritance of property was an important consideration for Swedish families, inheritance of knowledge was also something families paid attention to, mostly in the form of education for the children (Nilsson, Pettersson, & Svensson, 1999). Most Swedish families believed that education was important for their children, in particular vocational education that would benefit the children in practicing their occupations. Most Swedish children of the time period were educated at home; that is, the children were primarily educated by their parents. As such, children learned mostly from the knowledge base of their parents, which resulted in children being taught the occupational knowledge of the parents. Children of farmers were mostly taught what is needed to become a good farmer; children of fishermen were taught what was needed for fishing. As the 19th-century progressed, there was a growing trend for children to be taught by professional educators, in particular in learning how to read and write. Even with the growth of a professional educational system, home schooling remained the dominant source of education for Swedish children for the majority of 19th century.
Data Source

The data for this study come from the Scanian Economic Database (SEDD) version 3.1, a database collected by Centre for Economic Demography (CED), Lund University (Bengtsson, Dribe, and Svensson 2012). CED compiled the database by scouring public records of individuals throughout the Scania province. These records include: government census records, tax records, court documents, and local church records. With this collection of records, CED compiled the information to create the SEDD, listing the individuals that lived in the Scania region from the mid-18th century all the way to the late 20th century. With each record of an individual in the SEDD, there is also information about the person’s occupation, social status, and the person’s family members. The family information in the database includes the number of children, the number of brothers and sisters, the birth order of the siblings, and, if they also have a record in SEDD, the identifying information for the individual’s parents. For the occupation, CED converted the information from the various records on what the historical individual did for a living into an occupation code from the Historical International Standard of Occupations (HISCO).

HISCO is a standardized set of codes that are used to describe thousands of occupations (Leeuwen, Maas, & Miles 2002). It is useful for describing the occupations of European societies, particularly historical societies. To the best of their ability, from the records available, CED matched the information from the public historical records on a person’s occupation to its corresponding HISCO code. If a person had records that described more than one occupation,
CED created multiple records of for that person, one for each occupation that had its own HISCO code.

In addition to the HISCO code for occupation, the SEDD contained another set of codes to describe the individual’s social class, the Historical International Social Class Scheme (HISCLASS) (Van Leeuwen & Maas 2011). Created by the same group of researchers who created HISCO, HISCLASS is a coding scheme to categorize a person’s social class, based mostly on the person’s occupation, their HISCO code. Similar to HISCO, the HISCLASS works best for historical European societies. The HISCLASS code set used by SEDD contains a scale of 12 code numbers, with an inverse relationship between code number and social class ranking; the lower the code number the higher the social class of the individual. For each individual record in the SEDD, the CED has matched the individual’s HISCO occupation code to appropriate HISCLASS social class code.

Due to privacy and other legal reasons, the portion of SEDD that was available to this researcher was the publicly available version. The publicly available version only contains the records of individuals from 1813 to 1910, a total of 79,657 individuals. Further modifications and selections were done to the data by this researcher for the purposes of this study.

The first modification addressed the problem of individuals who had multiple records in the SEDD because they had multiple HISCO occupations in their lifetimes, and thus could have had multiple HISCLASS social class rankings. This researcher programmatically sorted the SEDD by HISCLASS. If an individual had multiple records with different HISCLASS codings,
the lowest HISCLASS code was retained and the others were discarded. Therefore, the highest social ranking achieved by an individual in his/her lifetime was retained in the database.

Secondly, a new category was created to separate the HISCLASS rankings by the type of occupation the social class is based on. The categories of HISCLASS occupation created were: property based occupations (i.e. farmowners, higher managers, etc.), knowledge based occupations (i.e. professionals, clerical personnel, etc.), and unskilled occupations (i.e. unskilled workers). These new occupational type category codes were assigned programmatically throughout the database, based on the database record’s HISCLASS coding.

Finally, a new variable was calculated to measure the change in class between father and son. It was created, programmatically, by subtracting the HISCLASS code of the sons from the HISCLASS code of the father, and storing the result with records of the sons. This change in status variable measures whether each son has a different status ranking than the father. If the variable is zero, there is no status change; if positive, the son has a higher social status than the father; if negative, the son has resulted in a lower social status than the father. Even though data was available to compare mothers and daughters, I excluded female data and focused solely on males as females were far less likely to be involved in occupations and property inheritance during the time period in question (Svensson 2006, Low 1990).

The total number of individuals that had no missing values in the necessary variables for this analysis was 11,789. The SEDD database was delivered as comma separated values file. Conversion of existing variables and creation of new variables were performed using Stata
programs written by CED, along with Python, MySQL, and SPSS programs created by this researcher.
<table>
<thead>
<tr>
<th>HISCLASS Code</th>
<th>Number of Individuals</th>
<th>Property/Knowledge/Unskilled Occupation Code</th>
<th>Class ranking Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Higher Manager</td>
<td>76</td>
<td>1 - Property</td>
<td>1 - Upper Class</td>
</tr>
<tr>
<td>2. Higher Professionals</td>
<td>221</td>
<td>2 - Knowledge</td>
<td></td>
</tr>
<tr>
<td>3. Lower manager</td>
<td>385</td>
<td>1 - Property</td>
<td>2 - Upper Middle Class</td>
</tr>
<tr>
<td>4. Lower Professionals</td>
<td>271</td>
<td>2 - Knowledge</td>
<td></td>
</tr>
<tr>
<td>5. Lower Clerical/Sales</td>
<td>28</td>
<td>2 - Knowledge</td>
<td></td>
</tr>
<tr>
<td>6. Foreman</td>
<td>32</td>
<td>1 - Property</td>
<td></td>
</tr>
<tr>
<td>7. Medium Skilled worker</td>
<td>1316</td>
<td>2 - Knowledge</td>
<td>3 - Middle Class</td>
</tr>
<tr>
<td>8. Farmer/Fisherman</td>
<td>3355</td>
<td>1 - Property</td>
<td></td>
</tr>
<tr>
<td>9. Lower skilled worker</td>
<td>1050</td>
<td>2 - Knowledge</td>
<td>4 - Lower Middle Class</td>
</tr>
<tr>
<td>10. Lower Skilled farm worker</td>
<td>1986</td>
<td>2 - Knowledge</td>
<td></td>
</tr>
<tr>
<td>11. Unskilled worker</td>
<td>878</td>
<td>3 - Unskilled</td>
<td>5 - Lower Class</td>
</tr>
<tr>
<td>12. Unskilled farm worker</td>
<td>2188</td>
<td>3 - Unskilled</td>
<td></td>
</tr>
</tbody>
</table>
Predictions of Analysis

Based on the aforementioned properties of inheritance of land and inheritance of knowledge, as well as Sweden’s tradition of inheritance favoring the eldest son by de facto primogeniture, it is predicted that the rate of change of social status by birth order of sons of fathers who work property based occupations will decrease significantly faster than the rate of social status change by birth order of sons of fathers who inhabit knowledge based occupations. That is, the eldest son of property based families will tend to have his social status stay static or increase based on his inheritance of the family’s property, whereas his younger brothers will be more at risk to lose status as they will have to work to find other means to acquire property to maintain the same status as the father. For the knowledge based sons, the decrease of status by birth order should be less, as the inheritance of knowledge should be more evenly spread among all the sons, regardless of birth order. Therefore, there should be little to no decrease of father to son social status change by birth order among the sons of knowledge based occupational families.
Methods of Analysis and Results

A multiple regression model was conducted on the entire dataset to determine if birth order \((x) \) and the father’s occupation type \((y) \) significantly affects the change in social status from father to son \((\Delta S) \) - which is defined as the status of the son minus the status of the father). The dummy variable \((y) \) categorized the father’s occupation into two categories; property based occupations were coded as a “1” and knowledge based occupations were coded as a “0”. The multiple regression model was of the form:

\[
\Delta S = \beta_0 + \beta_1x + \beta_2y + \beta_3xy + e
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.135(^a)</td>
<td>.018</td>
<td>.018</td>
<td>.64254</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Int, Father Occupation Type, Birth Order
b. Dependent Variable: Son’s Status Change

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.372</td>
<td>.033</td>
<td>11.370</td>
</tr>
<tr>
<td></td>
<td>Birth Order</td>
<td>-.032</td>
<td>.019</td>
<td>-.064</td>
</tr>
<tr>
<td></td>
<td>Father Occ. Type</td>
<td>-.175</td>
<td>.020</td>
<td>-.133</td>
</tr>
<tr>
<td></td>
<td>Interaction</td>
<td>.006</td>
<td>.011</td>
<td>.022</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Son’s Status Change
The results for the multiple regression were counter to the predictions (Figure 1, Figure 2). For the calculated coefficient β_3 in the multiple regression model, a t-test was performed with the null hypothesis of $H_0: \beta_3 = 0$. This test would determine if the type of occupation of the father significantly affects the eventual social status of the child by birth order. If the null hypothesis is disproven, then there is evidence that the birth order effects of social status change is significantly different between property based families and knowledge based families. However, the p-value of the t-test was calculated to be .574, which means that the null hypothesis cannot be rejected. Therefore, I have no reason to believe that the occupation of the father, knowledge based or property based, has any effect in how the social status of his sons will develop, based on their birth order.

In addition, the test of the multiple regression had a negative coefficient for the term testing the effect of birth order on the status change difference from son and father status. This was surprising as it indicated that the status code of the son would tend to be smaller than the status code of the father as the son’s birth order increased, which means, by the way the status is coded, that the actual status of the son would tend to increase as the son’s birth order increased. However, the p-value of this term was .085, which would fail if the alpha for this test was the standard .05. In addition, the regression model does not capture enough of the variance of the son-father status change (it only captures 1.8%) to make these results fully valid.
I ran alternative analyses to better test this result of younger sons tending to have a better result than the older sons. Understanding that under primogeniture, the eldest son should have a distinct difference in status based off of inheritance by receiving almost all of the inheritance, and that the remaining sons would not have much of a difference among them as they would all receive nearly nothing in inheritance, I decided to group the sons into two groups: firstborn sons (coded as a 1) and non-firstborn sons (coded as a 0). I then ran a parametric two-sample t-test (figure 3, figure 4). The results of the t-test showed that non-firstborn sons, on average tended to have a lower status code change from their father than the firstborn sons. Again, the lower the status code change, the better the status in reality of the son. Non-firstborn sons were achieving better statuses than the firstborn sons. To further explore this, I re-ran the t-test, but this time split the sons into a property based father occupation group (figure 5) and a knowledge based father occupation group (figure 6). In both tests, these results showed the non-firstborn sons having lower status code changes, and thus were in reality achieving higher status than the firstborn sons. These tests give further evidence that the result of the multiple regression model was the correct one; younger sons tended to achieve higher statuses than the eldest son, even with primogeniture being the standard practice of inheritance and regardless of the occupation type of the sons’ father.

Figure 3 – Two-sample t-test firstborn sons and non-firstborn sons
(t=2.74, p-value = .06)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>-.1386</td>
<td>7210</td>
<td>.78413</td>
</tr>
<tr>
<td>1.00</td>
<td>-.0979</td>
<td>4576</td>
<td>.78541</td>
</tr>
<tr>
<td>Total</td>
<td>-.1228</td>
<td>11786</td>
<td>.78485</td>
</tr>
</tbody>
</table>
Figure 4 – Plots of the Two-sample T-Test
Figure 5 – Property t-test firstborn vs non-firstborn

\[t = 1.402, \ p = .161 \]

<table>
<thead>
<tr>
<th>Status</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>firstborn</td>
<td>1289</td>
<td>.1854</td>
<td>.63337</td>
<td>.01764</td>
</tr>
<tr>
<td>Chng.</td>
<td>2042</td>
<td>.1543</td>
<td>.61118</td>
<td>.01353</td>
</tr>
</tbody>
</table>

Figure 6 – Knowledge t-test firstborn vs non-firstborn

\[t = 2.179, \ p = .029 \]

<table>
<thead>
<tr>
<th>Status</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>firstborn</td>
<td>1807</td>
<td>.0243</td>
<td>.67912</td>
<td>.01598</td>
</tr>
<tr>
<td>Chng.</td>
<td>2990</td>
<td>.0184</td>
<td>.64565</td>
<td>.01181</td>
</tr>
</tbody>
</table>
Discussion of Results

There are many reasons why the results of the analysis disagree with the predictions stated. The first reason is to acknowledge the many limitations of the SEDD database as presented. Due to privacy and legal reasons, there is no identifying information at all in the public version SEDD, including birth dates and death dates. This lack of timing information is problematic, as Sweden was transitioning from an agricultural based society to a modern industrialized one beginning in the mid-19th century. As Sweden industrialized, the inheritance of land would be less and less a primary concern of inheritance then it was when Sweden was primarily agricultural. My analysis of land-based property inheritance would possibly fit better if we were able to eliminate the individuals in SEDD who were born in the latter 19th-century or 20th-century.

This timing of industrialization of Sweden is an important issue that needs to be addressed in any future analysis, as Sweden undergoes the demographic transition as it industrializes, and as it transitions primogeniture inheritance becomes less and less the preferred inheritance strategy of the population (Bertocchi 2006). However, the demographic transition could reveal a way to provide timing information for the SEDD Scania population. As a society passes through the demographic transition, families have less and less number of children (Mulder 1998). By reorganizing the database by families instead of individuals and by counting the number of children in the family, a pattern might may appear where we can group families by the number in family; families with the most children would appear earlier in history and families with the least children would appear later in history.
Also, the lack of dating information prohibits us from inferring necessary details of the individuals’ life history, such as how long they lived. One possible scenario that we are unable to test is if most sons achieved their social status before the death of their parents. If so, the inheritance of property would be not be as important than if the inheritance was earlier in the son’s life; a person who is already a millionaire inheriting a million dollars from his deceased parents would still be a millionaire.

This leads to the final deficit in the SEDD data, which is that we do not know how the person achieved their social status or their occupation. We assume that they followed the historical narrative that they were most likely taught by their parents at home, but we have no way of identifying when or how often that was not the case. There could be dozens of life events that determine how these individuals became who they were recorded as being in the public records, but we are unable to see what those life events were. Therefore, any analysis of this data will have issues in determining the results of these thousands of lives.

However, there is a possibility that we are not missing any critical data, for which we still would need an explanation for why our predictions failed. Assuming all of our assumptions were true, a possible explanation could be that property was the dominant factor of social class, even if property was not necessary for the individual to pursue his occupation. Based on the historical descriptions, the ability to purchase new land with the passing of the enclosure acts beginning in the 18th century allowed people who were once restricted to the peasant class to live in a manner similar to the nobility and royalty. This desire to mimic the noble class in a way that was once
prohibited may have put a premium on property being a commonly understood signal of one’s social status. A wealthy lawyer may not need land to pursue his occupation, but he would probably desire a large amount of land to signify that he is of high social status. If this desire for land to signify social status is true, then that would help explain why occupational type does not affect inheritance strategies for 19th century Scania. A Scanian family would not want to divide any land among sons as that would diminish the resulting social class signal among the sons.

This, however, does not explain why, in our data, social status appears to rise as birth order increases. If primogeniture was the common practice in Scania, how is it that the younger children are increasing in social status faster than the oldest children? A possible explanation could be that the younger children know that they cannot rely on the inheritance for their status, and therefore are more likely to choose other strategies to maintain or increase their social status. During this time period, possible strategies could be to marry into a family of similar to higher status, particularly one that does not have any sons to inherit the property. Another strategy could be to accumulate personal wealth and buy property that is for sale. These chosen strategies may actually be more productive in status gains than the eldest sons’ strategy of relying on inheritance of their parents’ property.

These possible explanations are educated guesses of what was occurring in Scania in the 19th century. With the data we have available, we do not have the means to accurately identify what exactly occurred to explain these trends. Hopefully, as the SEDD database matures into newer versions with more detailed data, we will be able to identify correct inheritance strategies.
of the Scanian population, particularly how it could have been affected by the difference between property and knowledge based occupations.
LITERATURE CITED

