The main result of this thesis is a generalization of Green’s Theorem:

Theorem 1. Suppose $\Omega \subseteq \mathbb{R}^2$ is open, $K \subset \Omega$ is compact with a positively oriented piecewise C^1 boundary ∂K. Let $P, Q : \Omega \to \mathbb{R}$ be functions such that P and Q are differentiable on K and $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ is continuous on K. Then

$$\int_{\partial K} P \, dx + Q \, dy = \int \int_K \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

After proving the above theorem we prove two further results: a generalization of the Divergence Theorem for \mathbb{R}^2 and a generalization of Cauchy’s Integral Theorem. The statements of the two theorems are given below.

Theorem 2 (Generalization of the Divergence Theorem). Suppose $\Omega \subseteq \mathbb{R}^2$ is open and $K \subset \Omega$ is compact with C^1 boundary. For any vector valued function $\vec{f} : \Omega \to \mathbb{R}^2$ differentiable on K with $\text{div} \vec{f}$ continuous on K, the following holds

$$\int_{\partial K} < \vec{f}, \vec{\nu}> \, d\sigma = \int \int_K \text{div} \vec{f} \, dx \, dy,$$

where $\vec{\nu}$ is the outward unit normal to K.

Theorem 3 (Generalization of Cauchy’s Integral Formula). Suppose $\Omega \subseteq \mathbb{C}$ is open, and $K \subset \Omega$ is compact with piecewise C^1 boundary. Let $f : \Omega \to \mathbb{C}$ be such that f is differentiable at each $z \in K$ and $\frac{\partial f}{\partial \bar{z}}$ is continuous on K. Then,

$$f(\zeta) = \frac{1}{2\pi i} \int_{\partial K} \frac{f(z)}{z-\zeta} \, dz - \frac{1}{\pi} \int \int_K \frac{\partial f}{\partial \bar{z}} \frac{1}{z-\zeta} \, dx \, dy \quad \forall \zeta \in K.$$