A Thesis presented to the Faculty of the Graduate School University of Missouri

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

by
JAMES WESLEY CLEMENTS
Dr. Robert L. Bauer, Thesis Supervisor

The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled

LARAMIDE STRESS CONDITIONS AND DEFORMATION MECHANISMS DURING THE FORMATION OF DALLAS AND HUDSON DOMES, LANDER QUADRANGLE, WIND RIVER MOUNTAINS, LANDER, WYOMING

Presented by James Wesley Clements

A candidate for the degree of Master of Science

And hereby certify that in their opinion it is worthy of acceptance.

Professor Robert Bauer

Professor Francisco Gomez

Professor Erik Loehr

ACKNOWLEDGEMENTS

First, I would like to thank those who funded this research. The USGS Educational Mapping Program (EDMap), in cooperation with the Wyoming Geological Survey (WSGS), supported by field work and map publication. The Geological Society of America (GSA) helped fund research pertaining to structural problems associated with the Laramide structure formation.

Thanks to the University of Missouri and the department of Geological Sciences for the educational background and teaching assistantship that allowed me to prepare for my research.

Thanks to the University of Missouri Branson Field Laboratory for hosting me during one summer of educational experience and during my summer of research. The camp facilities provided me with a wonderful place to conduct and complete my research, with excellent sources of knowledge of the study area from visiting professors and literature collected over the several decades the camp has been in operation.

I would also like to thank the hundreds of private landowners who graciously allowed me to cruise around on their property, as well as Citation Oil and Gas for permission to map on their land.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF FIGURES v
LIST OF TABLES vi
LIST OF PLATES vii
ABSTRACT. viii
Chapter

1. INTRODUCTION 1
Location
Geologic Setting
Rock Units
Precambrian and Paleozoic
Mesozoic
Cenozoic
2. DEFORMATION FEATURES AND HISTORY. 22
Introduction
Methodology
Station-based Methods
Post-Data Collection MethodsMajor Deformation Features Identified from the Mapping
Origin of the Major Deformation Features
Relative Timing of Mapped Deformation Features
3. FRACTURE ANALYSIS AND DEFORMATION MECHANISMS 36
General Background
Buckle Folding versus Forced Folding
Buckle Folding
Forced Folding
Methods: Fracture Analysis
Field Collection
Station Based Digital Conversions
Fracture Analysis
Results
Results
Interpretations
Introduction
Regional Stress Patterns
Fold-Induced Fracture Patterns
4. SUMMARY AND CONCLUSIONS 57
APPENDIX
A. BEDDING DATA 62
B. JOINT DATA 76
C. STEREOGRAPHIC PROJECTIONS 103
BIBLIOGRAPHY. 107

LIST OF FIGURES

Figure Page

1. Tectonic map of the Western Cordillera of North America 2
2. Plate tectonic map of Kula, Farallon, and North American Plates. 3
3. Geologic map of the Wind River Mountains 5
4. Physiographic map of the study area. 9
5. COCORP seismic reflection profile 11
6. Crowd structures associated with fold formation 14
7. Rendering of map and deformation features. 27
8. Photograph of forelimb backthrust fault. 28
9. Photograph of backlimb duplex thrusts 29
10. Dual thrust model. 31
11. Buckle fractures from experiments by Currie et al (1962) 40
12. Fracture patterns associated with pericline formation 42
13. Fracture patterns associated with forced folding 44
14. Rose histogram for the Wind River Dip Slope 49
15. Rose histogram for the Dallas Dome forelimb domain 50
16. Rose histogram for the Dallas Dome backlimb domain. 51
17.Kinematic models of Sevier and Laramide Orogenies 53

LIST OF TABLES

Table Page1. Stratigraphic column of the study area... 16

LIST OF PLATES

Plate
File

1. Lander 7.5' Geologic Quadrangle. media file 1
2. Cross Section $A A^{\prime}$ media file 2
3. Cross Section BB' media file 3
4. Cross Section CC' media file 4

Abstract

Laramide fold forms along the northeastern flank of the Wind River Mountains in west central Wyoming include a series of doubly plunging folds arranged in a leftstepping en echelon pattern. The fold patterns and geometries are derived from regional scale tectonic stresses that have been complicated by local stress conditions associated with buckle folding and potential basement involved faulting (forced folding). The purpose of this study was to determine the foldinducing mechanisms forming Dallas Dome, a doubly plunging asymmetric anticline verging toward the core of the Wind River Mountains. The study involved geologic mapping of surface deformation, collecting and analyzing fault and fracture orientation data, and interpreting the results to deduce the fold's deformation geometry, the folding mechanisms and associated stresses. Mapping and well log constraints indicate that the geometry of the fold form is a result of local basement involved faulting, propagating upward into a dual thrust system in the overlying sedimentary units. The offset on the dual thrust system diminishes northward, where forelimb strata become decreasingly tilted and basement offset diminishes.

Regional fracture sets R1 (45/225) and R2 (75/255) were determined to be directly associated with maximum principal shortening directions during Laramide and Sevier Orogenies, respectively. Fold induced fracture sets include J1 (60/240), J2 (160/340), J3 (105/285), and J4 (55/235; 65/245). J1 was determined to be an extensional fracture set oriented sub-perpendicular to the

fold hinge of Dallas Dome, and is thus associated with the buckle folding mechanism. J2 strikes sub-parallel to the fold hinge of Dallas Dome with variable dip angles consistent with a conjugate shear set bisected by an associated extensional fracture set. As such, J2 could be associated with either buckle or forced folding. J3 is a conjugate shear set whose dip values range from 60-90-60 and is indicative of vertical stresses associated with forced folding. However, the orientation of J 3 with respect to the hingeline of Dallas Dome is not consistent with either forced folding or buckle folding models. The origin of this fracture set is unclear. Finally, J4 is a conjugate fracture set that is subparallel to normal faults that occur in the southern part of the study area, near the interchange with Derby Dome, and are interpreted as a response to extension associated with the en echelon interchange between Derby and Dallas Domes.

CHAPTER I: INTRODUCTION

The origin of basement-involved, Laramide, uplifts in the foreland of the western cordillera of North America (the Rocky Mountains) has been debated for many years (Berg, 1961; Blackstone, 1993; Brown, 1987; Erslev, 1993; Hamilton, 1981). Deformation typically terminates in a mountain foreland as fold-and-thrust belts that are restricted to the sedimentary cover. However, Laramide tectonism in the Rocky Mountains produced a series Precambrian cored uplifts along reverse faults, all of which lie east (in the foreland) of the Sevier fold-and-thrust belt (Fig. 1). This distinct style of deformation has invoked three levels of discussion. First, what was the tectonic nature of the western margin of North America that produced the Laramide uplifts (Bird, 1983; DeCelles, 2004; Dickinson and Snyder, 1978)? Second, was the force that produced the Laramide uplifts primarily vertical, or primarily horizontal (Berg, 1961; Stearns, 1971)? Third, how did this regional stress regime produce the various uplifts and their associated features (Brown, 1988; Gries, 1982)? The question of vertical versus horizontal tectonic stresses has been the focus of many studies (and contentious debate) across the Rock Mountains, but some of the most significant studies examined the Wind River Mountains of west-central Wyoming. Berg (1961) first postulated that the Precambrian cored Wind River Mountains were uplifted along a thrust fault that overlies an overturned sedimentary sequence along the southwestern margin of the mountain range. This hypothesis was later confirmed by the Consortium for Continental Reflection Profiling (COCORP) in a
study that involved a deep seismic reflection profile across the range and into the Wind River basin (Brewer, Smithson et al, 1980). The study found that the range was uplifted along a shallow reverse fault, dipping to the northeast at approximately thirty degrees (Brewer, Smithson et al, 1980). As such, results of this study strongly favors the horizontal compression hypothesis.

DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A.: American Journal of Science, v. 304, no. 2, p. 105.

Figure 1: Tectonic map of the Western Cordillera of North America. Light gray indicates extent of Sevier Orogeny, while bladed area indicates extent of Laramide deformation (Decelles, 2004).

Most researchers now accept that horizontal forces produced the Laramide uplifts. Many studies in the Rocky Mountains are now focused on determining the regional stress orientations that produced the Laramide deformation features and the tectonic regimes that produced the stress responsible for these features. Bird (1998) first compiled all available kinematic data from the foreland region in order to create a kinematic model that would depict regional stress evolution during the Laramide orogeny. He concluded that Laramide stresses were oriented E-W during earlier Laramide time, but later shifted to a NE-SW orientation. This shift in orientation has been associated with plate interactions along the margin of western North America, when the Farallon Plate began subducting beneath the North American Plate at a relatively shallow angle (Fig. 2).

Bunge, H. P., and Grand, S. P., 2000, Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon Slab: Nature, v. 405, no. 6784, p. 337-340.

Figure 2: Plate tectonic map showing relationship between Kula, Farallon, and North American Plates during Laramide time (Bunge and Grande, 2000).

Laramide regional stress states are expressed throughout much of the Rocky Mountain foreland. Major uplifts throughout the region strike perpendicular to Bird's Laramide regional stress orientation of NE-SW. This is particularly true of the Wind River Mountains, located in west central Wyoming. The Wind River Mountains were uplifted along a shallow reverse fault that is exposed along the southwestern margin of the uplift. Uplift exposed the Precambrian core of the range and tilted the sedimentary cover to the northeast.

Several studies along the northeastern flank of the Wind River Mountains have investigated a series smaller scale periclinal folds, including Hudson, Dallas, and Derby Domes (Fig. 3), that mimic the overall orientation of the range (Willis and Groshong, 1993; Craddock and Relle, 2003; Abercrombie, 1988; Kightlinger, 1997). These studies have been important in testing hypotheses developed for regional stress regimes that produced Laramide uplifts, but have been complicated by local stresses developing as a result of uplift of the Wind River Mountains and tilting of the sedimentary cover.

Figure 3 Geologic map of the Wind River Mountains and adjacent areas of west-central Wyoming. The trace of the Wind River thrust is along the southwestern margin of the range. Paleozoic rocks dip uniformly to the northeast away from the uplifted core of the range. Mesozoic rocks to the northwest and southeast of Lander are repeated as a result of basin-margin folding. Hudson and Dallas domes produced the repeated Mesozoic section immediately southeast of Lander. Mesozoic rocks along the western margin of the map are deformed by the Sevier fold and thrust belt. (from (Roberts, 1989)

Study Area

Hudson, Dallas, and Derby Domes formed along the basin margin of the
Wind River Mountains (Fig. 3) and mimic the overall orientation of the Wind River
Mountains, but they are offset in a left-stepping en echelon pattern toward the north. These features have been the topic of debate which stems from their
association with regional and local stress regimes (Willis and Groshong, 1993; Craddock and Relle, 2003; Brocka, 2007; Kightlinger, 1997). That is, are such features associated with local stresses that stem from tilting of the sedimentary cover, which results in space constrictions along the basin, or are they a result of smaller scale basement involved faulting? The COCORP seismic profile provides support for both end member hypothesis, but does not provide conclusive evidence for all small scale features. Further studies by Brocka (2007) determined that southern portions of Dallas Dome, Derby Dome, and northern portions of Sheep Mountain Anticline were the result of both local and regional stresses. However, further investigation is needed in order to test these conclusions.

The purpose of this study is to evaluate the mechanism of formation of Dallas and Hudson Domes using a combination of geological and structural mapping and fractures analysis. There are three principal components to this evaluation: 1) to determine whether forced folding, associated with local basement faulting, affected the domes, 2) to determine to what degree buckle folding, associated with regional stresses, produced the domes and their features, and 3) evaluate the degree to which local and regional stresses contributed to the folding process and to the interchange between Dallas and Hudson Domes. Brocka (2007) hypothesized that deformation and formation of the domes were a result of local basement faulting associated with regional stresses. I will test this hypothesis by comparing his results with my analysis to determine if any alternative hypotheses are plausible.

The specific objectives of this study, in order, were to:

1. Map the distribution of rock formations and deformation features contained within the Lander 7.5' Quadrangle and adjacent areas, which contain the majority of Dallas Dome and the adjacent interchange with Hudson Dome to the north.
2. Collect representative fault and fracture orientation data within the area.
3. Determine how the fault and fracture data are related to the mechanics of formation of Dallas and Hudson Domes. Are there fractures and faults associated with forced folding, buckle folding or some combination of these two mechanisms?
4. Determine whether the data and interpretations from Hudson and Dallas Domes are consistent observations and interpretations of Brocka (2007) for Derby Dome and its interchange with Dallas Dome and Sheep Mountain.
5. Evaluate whether the regional stress regimes inferred to have affected Hudson and Dallas Domes are consistent with those inferred for other similar Laramide structures associated with the broad region of the Laramide orogen.

Location

The study area is located on the northeastern flank of the Wind River Mountains in west-central Wyoming. Dallas Dome is one of several doubly plunging anticlines that flank the Wind River Mountains, with Hudson Dome to its north and Derby Dome and Sheep Mountain anticline to its south (Fig. 4). These
features are left laterally offset and trend in a general northwest-southeast orientation. Dallas Dome is located along highway 287, five to ten miles from Lander, Wyoming (Fig. 4). The study area is contained almost entirely within the Lander 7.5" Quadrangle, but is also contained within the Wolf Point, Lander SE, and Weiser Pass 7.5" Quadrangles.

Figure 4: Physiographic map of the study area. Individual gray boxes in 4B indicate the Lander (L), Lander SE (LSE), Wolf Point (WPt), and Weiser Pass (WP) 7.5' Quadrangles.

Geologic Setting

The study area lies near the western edge of Laramide deformation in the Rocky Mountain foreland of North America (Fig. 1). Laramide uplifts are distributed along the eastern extent of the North American Cordillera in the western United States, just east of the fold-and-thrust belt formed during the Sevier Orogeny (140-65Ma). The Laramide Rocky Mountains are especially distinct, because there are no other instances where basement involved uplifts occur $1200 \mathrm{~km}-1800 \mathrm{~km}$ from the zone of plate convergence (Fig. 2).

The stresses that produced these uplifts have been associated with the subduction of relatively hot, buoyant lithosphere of the Kula and Farallon Plates beneath the North American Plate. Work by Coney (1978) suggests that the convergence rate between the two active plates was about $14 \mathrm{~cm} / \mathrm{yr}$ in a northeast-southwest direction (Fig. 2). As a result, much of the stress was horizontally oriented and concentrated within the North American lithosphere. This process is a widely accepted mechanism for stress fields that induced Laramide uplifts and the associated flank structures, but because of the variable orientations of Laramide uplifts, their origins and relationships to principal stress regimes remains unclear (Willis and Groshong, 1993; Bunge and Grande, 2000; Dickenson and others, 1988).

The Wind River Mountains are some of the largest and best studied Laramide
uplifts. The range is oriented northwest-southeast, normal to the regional maximum principal stress produced by the shallow subduction of the Farallon Plate. The Wind River Mountains were the focus of studies by Berg (1962), who concluded that the uplift was a response a fold-thrust mechanism that uplifted Precambrian basement over the sedimentary cover along a relatively shallow thrust fault along the southwestern margin of the uplift. A subsequent COCORP seismic reflection profile later (Brewer, Smithson et al, 1980) later identified the orientation of the Wind River Thrust (Fig. 5). These results indicated the thrust had a dip of about thirty degrees and that Precambrian basement had been horizontally displaced a minimum of 21 km and offset vertically almost 14 km along the thrust. Furthermore, the offset resulted in a tilting of the sedimentary cover by ten to fifteen degrees eastward. The dip slope continues to the northeast toward the basin until it is interrupted by flank fold features such as Hudson, Dallas, and Derby Domes considered in this study.

> Brewer, J. A., Smithson, S. B., Oliver, J. E., Kaufman, S., and Brown, L. D., 1980, The Laramide Orogeny; evidence from COCORP deep crustal seismic profiles in the Wind River Mountains, Wyoming: Tectonophysics, v. 62, no. $3-4$, p. 165 .

Figure 5: COCORP seismic reflection profile across the Wind River Mountains and into the Wind River Basin. Profile clearly depicts the Wind River Thrust, as well as displacement on subsidiary reverse faults near the basin (Brewer, Smithson et al, 1980).

These fold structures form against the base of the Wind River dip slope (WRDS), and are expressed as asymmetrical doubly plunging periclinal folds (locally referred to as domes) that are offset laterally from one another in a left stepping en echelon pattern. The dome structures expose a series of Mesozoic rock units underlain by Paleozoic rock units (Abercrombie, 1988; Kightlighter; 1997 Willis and Groshong, 1993). Features within the study area include Dallas Dome, a strongly asymmetrical, west verging pericline, and the southern part of Hudson Dome, a slightly asymmetrical east verging pericline. Both structures serve as important culminations for the concentration of oil. In the following text, I refer to the Hudson Dome and Dallas Dome fold line as the HDFL.

Fold structures along the Wind River Basin margin, like Dallas and Hudson Dome, have been the focus of many studies to determine: (1) the relationship of regionally stresses to the formation of the structures (Berg, 1961; Brown, 1988; 1993; Willis and Groshong, 1993), (2) what mechanisms are induced by local stresses (Willis and Groshong, 1993), (3) the relationship of local stresses to the formation of the deformation features (Kightlinger, 1997; Abercrombie, 1989), (4) the deformational history of the HDFL(Willis and Groshong, 1997; Craddock and Relle, 2003), and (5) the relationship of the deformation to structural oil traps? Based on a regional mapping study of the Wind River Basin, Keefer (1970) concluded that the basin margin flank structures were associated with the shape of the larger uplifts. Willis and Groshong (1993) later completed a more specific study along the entire line of folded flank
structures, describing each fold structure and their geometries. Their study focused on mechanisms that produced the local folding and faulting, and their en-echelon displacements. Their study confirmed the presence of secondary "crowd" structures such as those described by Brown (1988, 1993) (Fig. 6). Crowd structures like these occur as a result of space problems created during layer-parallel slip and gradual tightening of folded sedimentary rock. Examples of various crowd structures occur across the study are and adjacent regions. Masters theses by Abercrombie (1989) and Kightlinger (1997), and a senior thesis by Meinen (1993) completed detailed structural mapping and analysis of individual folds to provide an understanding of the en echelon offsets between flank structures, fold thrust mechanisms associated with tightening of fold hinges, and the extent to which basement offset is a controlling factor in deformation. My work continues this analysis by testing previous hypotheses proposed by these studies.

Willis, J. J., and Groshong, R. H., Jr., 1993, Deformation style of the Wind River Uplift and associated flank structures, Wyoming, p. 337.

Figure 6: Crowd structures forming as a result of space constrictions during increased fold tightening and formation (after Brown, 1984) from Willis and Groshong (1993) that depict fault formation as a result of out-of-the-syncline deformation (Brown, 1984). Fault types shown above are similar to those that occur in the study area.

Rock Units

Rock units within the study area range from Precambrian to Quaternary in age. However, only rocks Triassic and younger are exposed. In this section, I define the lithology of the study area organized by their ability to form competent
or incompetent packages, as well as by their general attributes which were ascertained from a number of sources (Ahlstrand, 1978; Antweiler et al.,1980; Bell and Middleton, 1978; Boyd, 1993; Curry, 1990; Goodell, 1962; Haun and Barlow, 1962; Picard, 1978; Winn and Smithwick, 1980) and my field observations. It is important to establish an early understanding of how the stratigraphy influences structural competencies, because competency directly influences on how packages deformed and dissipate stresses that produced the HDFL. Sequences of units such as limestones, sandstones, and dolomites tend to produce a competent package that tends to undergo flexural slip and will deform brittlely. These rock packages most commonly contain fractures used for analysis in this study. In contrast, shales or weakly consolidated siliclastic units that are interlayered within a stronger units tend to form a structurally incompetent packages and contain few fractures. However, because incompetent packages can undergo internal deformation, they can vary in thickness to accommodate any space constrictions that occur in the stratigraphy as a result of deformation. For a simplified stratigraphic column of the study area, see Table 1 below.

Love, J. D., and Christiansen, A. C., 1980, Preliminary correlation of stratigraphic units used on 1 and 2 degree geologic quadrangle maps of Wyoming: Wyoming Geological Association Guidebook, Annual Field Conference, v. 31, p. 279-282.

Table 1: Simplified stratigraphic column of the study area including units shown in cross section (Love and Christenson (1980).

Precambrian and Paleozoic

The Precambrian basement and the Cambrian Flathead ($\sim 250 \mathrm{ft}$) form a competent package that acts as the forcing member beneath the fold line. Field notes taken from the core of Sweet Water Anticline (Fig. 4) by Abercrombie (1989) indicate that the Precambrian basement is composed of migmatites, schists, and granites, that are crosscut by granitic dikes. The Cambrian Flathead sandstone sits unconformably atop of the basement, and is a reddish-pink quartz sandstone which has been slightly hardened.

The Cambrian Gros Venture Formation ($\sim 700 \mathrm{ft}$) forms the first incompetent package in the sequence, and is composed of green, glauconitic shales that are interbedded with slabby lenses of quartz sandstone.

The Cambrian Gallatin Limestone (~275 ft), Ordovician Bighorn Dolomite ($\sim 150 \mathrm{ft}$), and Mississippian Madison Limestone ($\sim 400 \mathrm{ft}$) form the second structurally competent package in the sequence. The Gallatin Limestone is composed of interlayered limestone and dolomite, while the Ordovician Bighorn Dolomite is composed of a hard, tan-brown-gray, siliceous dolomite. A major unconformity between the Bighorn and the Mississippian Madison Limestone formed during a period of erosion between the Ordovician and the Mississippian. The Madison Limestone is a blue-gray limestone rich in fossil content, that are commonly preserved within layers of chert.

The Mississippian/Pennsylvanian Amsden Formation (~150 ft) creates the second structurally incompetent package in the sequence. The Amsden is a reddish-brown cross bedded sandstone which is overlain by interbedded reddish shale and limestone.

The Pennsylvanian Tensleep Sandstone (~400 ft) and Permian Park City/ Phosphoria Formation ($\sim 250 \mathrm{ft}$) form the third structurally competent package in the sequence. The Tensleep is composed of a buff, mature, fine- to coursegrained, friable sandstone which is very porous. It is a regional producer of oil and natural gas. The Tensleep is overlain by the Park City/Phosphoria Formation, which is a buff, slightly dolomitized limestone mixed with a variety of mudstones, cherts, and two thinly layered phosphate units.

Mesozoic

The Triassic Dinwoody (~60 ft) and Chugwater Group, which is composed of the Triassic Red Peak (~900 ft), Triassic Alcova (~10 ft), and Triassic Crow Mountain/Popo Agie (~100 ft) Formations, form a large incompetent package, despite having several highly competent zones. The Dinwoody Formation is composed of reddish siltstones, buff, slightly dolomitized sandstones, and greenish shales. The Triassic Red Peak Formation, which is the first formation that is exposed in the study area, sits atop the Dinwoody and is a hematitestained, fine grained, red sandstone that is interbedded with shales. The Triassic Alcova Formation sits atop the Red Peak Formation, and is a thinly bedded, gray, micritic limestone. The Alcova Formation is strongly resistant to weathering and erosion, is a highly competent unit, and thus provides a large amount of fracture data for analysis. The Triassic Crow Mountain/Popo Agie Formations are mapped together in the study area due to gradational contact. The Crow Mountain Formation is a hematite-stained reddish siltstone that is overlain by the Popo Agie Formation, which is a mixture of purple-red siltstone and fine grained sandstone. The uppermost beds of the Popo Agie formation contain an ocher yellow claystone and interbedded calcareous accretions. The upper contact between the Popo Agie and Jurassic Nugget Sandstones are easily identifiable in field studies.

The Upper Triassic/Lower Jurassic Nugget Sandstone (~470 ft) forms the next structurally competent package. It is separable into three distinct units. The first unit is largely composed of hematite-stained siltstone with some interbedded
sandstones. The middle unit is composed of very friable, fine grained sandstone that is a weak valley former. The upper unit is composed of friable, pink-buff and orange fine-grained sandstones that form hogbacks on the fold limbs. The Nugget Sandstone contains many fracture sets throughout the study area, and is an important source for my fracture analysis.

The Nugget Sandstone grades into Jurassic Gypsum Spring Formation ($\sim 175 \mathrm{ft}$), which is composed of interbedded hematite-stained siltstones, gypsum layers, and four very resistive limestone layers. The limestone layers range from one to four feet in thickness, and are useful when detecting deformation within the overall formation. Because the Gypsum Spring Formation is largely dominated by siltstones and gypsum, it is a structurally incompetent package between the Nugget and the overlying Jurassic Sundance Formation.

The Jurassic Sundance (~250 ft) and the upper Jurassic/lower Cretaceous Morrison/Cloverly ($\sim 350 \mathrm{ft}$) form a structurally competent unit comprised mostly of sands. The Sundance Formation contains a basal transgressive sequence which is identified by yellow-brown rip up clasts interbedded in a slightly dolomitic siltstone. The lower unit of the Sundance Formation is a reddish siltstone that is overlain by the upper unit, which is composed of an interbedded mixture of greenish, glauconitic sandstones and limestones. In northern portions of the study area, the Sundance Formation contains a large amount of shell hash that are not present in the southern portion. The Morrison/Cloverly Formations are grouped in the study area due to a very gradational contact nearly impossible to locate.

The Mesozoic strata ends with the structurally incompetent package of the Cretaceous Thermopolis (~150 ft), Muddy Sandstone (~30-50 ft), Mowry (~500 ft), Frontier ($\sim 1000 \mathrm{ft}$), and Cody Formations. The base of the Thermopolis formation is defined by the exposure of a rust-colored sandstone unit. The Thermopolis then grades into silts and sands of various color, and is capped near the top by brown and black shales, which are recognized at outcrop scale. The Muddy Sandstone sits atop the Thermopolis Formation along a very sharp contact, and is defined as a hard, fine to medium grained dirty sandstone with phosphatic grains. The Muddy Sandstone is one of the most recognizable in the sequence, as it lies between the shale-derived slopes of the Thermopolis and Mowry Formations. The Mowry Formation is a thick formation of interbedded gray shales and bentonite-rich siltstones. Weathered slopes of the Mowry are recognized by vegetation bands due to the bentonite concentrations, and makes it very easy to locate on aerial photographs. The Mowry Formation acts to dissipate fault offsets throughout most of the study area through internal deformation. The Cretaceous Frontier Formation is comprised of dirty orange sandstone layer interbedded with fossil-rich silts and shales. The contact between the Mowry and Frontier Formations is very difficult to determine based on its gradational nature. For this study, I defined the contact as the first thickly bedded, lithic quartz sandstone above the Mowry shales. There was additional difficulty when defining the contact between the Frontier and Cody Formations, as this too is a very gradational contact. However, I defined the contact by
recognizing the onset of the Cody's badland-type topography, wherever it was exposed.

Cenozoic

The Undifferentiated Miocene conglomerates were identified in two locations within the study area: on terraces associated with the Little Popo Agie River near Dallas Dome's core area, and at the top of Table Mountain. The conglomerates include large cobble to boulder sized igneous and metamorphic rock within a fine-grained matrix.

Quaternary Alluvium deposits were identified along drainage patterns throughout the study area. Alluvium deposits were, in many cases, defined by nutrient rich soils making way for healthy green vegetation, and unconformable relationships with the underlying lithified formations.

CHAPTER II: DEFORMATION FEATURES AND HISTORY

Abstract

Introduction Deformation features observed within the study area are largely a result of regional horizontal stresses applied to a heterogeneous sedimentary sequence containing preexisting weaknesses and competency contrasts. However, complex local stress regimes may also occur in response to folding and to the possible presence of compartmentalized basement faulting. The purpose of this chapter is to describe the mapped geological and structural features within the study area, to provide a basis for interpreting: 1) the origin of fracture sets across the area and 2) the deformation mechanisms that produced Dallas Dome.

Methodology

Field Methods and Techniques

Data collection and geologic mapping were done simultaneously. Bedding orientations were obtained using the right hand rule for dip direction and angle using a Brunton compass. The compass was set with a magnetic declination of fourteen degrees east. Station locations were obtained using Garmin handheld GPS devices GPSMap60 CS and Vista Cx. Measurements were made at a consistent interval, and deviated from that interval only when deformation became complicated or intensified. In many portions of the study area, it was impossible to obtain measurements or observations, due to hazardous environments (cliffs, e.g.), because structures were covered by float, or because
surfaces were so heavily eroded that measurements were considered unreliable. In addition, electromagnetic fields produced by powerlines, especially along the forelimb of Dallas Dome, locally created interference and accuracy issues with the Brunton Compass. Areas containing fracture data were measured to determine all possible joint sets preserved within that given area. Other information included in station descriptions were: lithologic descriptions and formation name at station, fracture descriptions, proximity to faults (where applicable), and confidence in measurements taken. Mapping was done on printed 1:12000 scale base maps. Where deformation intensity was greater, mapping scale was increased to 1:6000. Data recorded on maps included bedding orientations, contacts, and any existing faults.

Station-based Methods

Field data obtained during the day were later converted to digital format using computers at the University of Missouri Branson Field Laboratory. Field notes were transferred to computer using Microsoft Word. Bedding and fracture data were transferred to Microsoft Excel. Station locations were downloaded from handheld GPS devices onto National Geographic TOPO! software, which was then used to export station data as tab delimited text that could be entered into Microsoft Excel. Finally, station location data and bedding/fracture data were combined into one Excel file that could then be used to sort and filter data. Field maps were transferred to a paper base map of the Lander 7.5' Quadrangle.

Post-Data Collection Methods

Excel files including station locations and bedding/fracture data were converted into Apple iWork Numbers spreadsheets for home-based analysis. After sorting and filtering data, worksheets were exported as tab delimited files which could be read by Pangea Scientific's Spheristat 2.2 application, which is a stereographic projection program capable of plotting and statistically analyzing a wide range of three-dimensional orientation data. Planar data, including bedding and fracture orientations were plotted as poles to planes. The plotted data were contoured for percent concentration to distinguish clusters representing the fracture data sets affecting the study area and to determine the geometry of south Hudson Dome and north Dallas Dome. The 1:24000 base map developed while at the University of Missouri Branson Field Laboratory was transferred to digital format using ESRI's ArcGIS 9.2 Desktop software. The 1:24000 digital map was constructed by using a TIF file of the Lander 7.5' Quadrangle in order to create shapefiles depicting contacts between formations. Bedding orientation and fault symbols were created by ESRI and inserted from a digital database. Cross sections were created using Adobe Creative Suite 3.

Major Deformation Features Identified from the Mapping

Mapping indicated that Dallas Dome is a strongly asymmetric, southwest verging, doubly plunging anticline, trending NW/SE, which is offset in a left stepping en echelon fashion from the adjacent part of Hudson Dome to the north
(Plate 1). Dallas Dome has a breached core of Mesozoic rock ranging from the Triassic Red Peak Formation to the Cretaceous Frontier Formation. Flat-lying Miocene undifferentiated and Quaternary Alluvium deposits locally overlie the breached core throughout much of the study area.

Dallas Dome is strongly asymmetrical towards it southern terminus, where the forelimb strata are overturned. Progressing towards its northern terminus, this asymmetry dissipates, as forelimb strata become less inclined. The backlimb of Dallas Dome, which dips into the adjacent Wind River Basin, remains consistent in its attitude from south to north termini, dipping between 15 and 25 degrees to the northeast.

Within the study area, four structural features were identified, and are briefly described here in order from most significant to least significant:

The forelimb fault (FLF) (Fig. 7i, ii - Box A) is a northeast dipping reverse fault with an inferred dip of 40 degrees (Plates 1-4). It is the most significant and continuous fault throughout the study area, and can be inferred where the Cretaceous Frontier formation sharply changes in attitude coming off the Wind River dip slope (WRDS) at 10 degrees, to a steep 75 to 90 degrees on the Dallas Dome forelimb.

The backlimb thrust (BLT) (Fig. 7i, iv - Box D) is a continuation of the backlimb thrust observed on Derby Dome by Brocka (2007). Brocka inferred the BLT to be steeply dipping, then shallowing until soling out into the Triassic Chugwater Group. Within the study area, it duplicates Cretaceous Muddy

Sandstone in the Lander SE 7.5' Quadrangle. As the fault proceeds to the northwest, it migrates into the Mowry Shale, where it terminates.

Figure 7i-iv: i) Rendering of Plate I showing the location of major deformation features in the study area. The FLF, FBT, BDTs, and BLT are contained within boxes A, B, C, and D, respectively. ii) Insets A and B combined to show FLF and FBT). iii) Inset C for BDTS. iv) Inset D for BLT. Tm represents Miocene undifferentiated sediments covering the fault.

The forelimb backthrust fault (FBT) is a high angle reverse fault (Fig. 7i, ii, Box B) that exists on the forelimb of Dallas Dome, and duplicates red units of the Jurassic Sundance Formation (Fig. 8). The fault progresses northward into the Jurassic Gypsum Spring formation, where it eventually terminates. The southern terminus of the FBT is not observed because it is covered by Miocene undifferentiated deposits.

Figure 8: Photograph of the forelimb "backthrust" fault, viewed to the north. Undifferentiated Miocene deposits in the foreground obscure the southern terminus of the fault.

The backlimb duplex thrusts (BDTs) (Fig. 7i, iii, Box C) are a set of low angle thrust faults (~ 20 degrees) that duplicate Triassic Alcova limestone (Fig. 9). The fault's northern terminus occurs within the Triassic Red Peak formation near
the nose of the fold. The southern terminus is covered by Quaternary alluvial deposits.

Figure 9: Photograph showing one of the backlimb thrusts (BDTs), viewed to the north.

Origin of the Major Deformation Features

Interpretations of the origin for each major deformation feature are constrained by surface mapping, field measurements, sparse well log information, and previous studies, and they are illustrated in cross sections AA', BB' and CC" (Plates 3, 4, and 5)

The geometry of Dallas Dome is strongly controlled by the FLF, which is interpreted to extend into the Precambrian basement (Plates 3-5). The FLF is interpreted to have a consistent dip of 40 degrees from the surface to the
basement, based on fault geometries on the COCORP seismic image and location of the fault from well log data provided by the Wyoming Oil and Gas Conservation Commission (well \#4901305576). Brocka (2007) observed the continuation of this fault to the southernmost extent of Dallas Dome, where it is accompanied by a parallel fault located 600 vertical feet above the FLF, referred to here as the Blind Reverse Fault (BRF). This interpretation is based on well log data from the Wyoming Oil and Natural Gas Conservation Commission (well log \#4901305576). In addition, Brocka (2007) inferred this subsurface geology based on well log data from the Wyoming Oil and Natural Gas Conservation Commission (well log \#1305420), and on his own surface measurements. He concluded that the offset along the FLF in the southern extent of Dallas Dome paled in comparison to the BRF.

The Blind Reverse Fault (BRF) dips 40 degrees to the northeast, and lies nearly 600 vertical feet above the FLF near the southern terminus of Dallas Dome. Near the southern extent of Dallas Dome, forelimb strata can be seen slightly overturned. As the fold progresses north, forelimb strata are restored to their normal, southwesterly dipping attitude, where bedding becomes increasingly shallow.

The formation of the BRF follows Berg's (1962) model for the formation of a dual thrust system, whereby the primary controlling fault, here the FLF, suffers sufficient offset such that forelimb strata are increasingly overturned, and a new fault develops and becomes the primary controlling fault (Fig. 10). The development of a dual thrust system forms can be viewed in three distinct
stages: early, middle, and late. Early stages of formation involve rotation of the forelimb strata such that they approach overturning, and the new fault forms. Middle stages of development show that forelimb strata become slightly overturned and offset along the new fault becomes apparent. The final stage of development in the dual thrust system shows that forelimb strata are significantly overturned, and that the new fault has experienced such offset that it becomes the primary controlling fault in the dual thrust system.

Figure 10: Early (top) and late (bottom) stages of evolution of the dual thrust model proposed by Berg (1962). Modified from Berg (1962).

Interpretations for both the FLF and BRF change significantly as the fold progresses towards its northern terminus. Near the southern extent of Dallas Dome, forelimb strata are nearly vertical, and supports the interpretation that evolution of the dual thrust system has reached the middle stage of development.

However, bedding returns to normal attitudes and becomes increasingly shallow towards the northern terminus of the fold form. This indicates that the dual thrust system becomes less evolved as the fold progresses north, and that the BRF becomes less significant. AA' illustrates FLF as the primary controlling fault, where the BRF has significant displacement but is not the dominant fault. Progressing north to AA', the BRF is illustrated as forming within the upper portion of the sedimentary sequence, and does not extend into the basement. As such, offset along the BRF diminishes to the north, such that north of BB', the BRF no longer appears. This is illustrated in CC', where the FLF is the primary controlling fault, and the BRF is no longer present.

The backlimb thrust (BLT) duplicates the Cretaceous Muddy Sandstone on the backlimb of Dallas Dome, and is a continuation of the backlimb thrust mapped by Brocka (2007). As the fault trace continues northwards, it cuts up section into incompetent layers of Mowry Shale, where it cannot be traced. While this feature is not contained within cross sections completed by this study, it is important to discuss why this feature occurs, and why it no longer continues. The BLT is interpreted to be a result of the progressive tilting of the backlimb of Dallas Dome. At some depth, the BLT forms as a detachment between units with high competency contrasts, which is most likely located within the Triassic Chugwater Group, where moderately competent sands are inter-layered with thick shales. The orientation of the BLT changes sharply as it approaches the surface, where it becomes very steep.

The BLT terminates shortly after cutting into the Mowry shale. Apparently, either the Mowry dissipates offset along the fault through internal deformation or the fault simply experiences a significant loss of displacement as it continues north from Brocka's study area, such that it is no longer expressed on the surface. The later interpretation seems more likely; since surface measurements in the Mowry do not indicate any internal deformation. The backlimb duplex thrusts (BDTs) that appear lower in the stratigraphic section, may have taken up displacement dissipated in the overlying BLT (see discussion below).

The forelimb backthrust (FBT) on the forelimb of Dallas Dome duplicates the Jurassic Sundance formation (Fig. 8). The southern terminus of the fault is covered by Miocene deposits, as there is no exposure of the fault to the south (Fig 7i, ii, Box B). The fault extends to the north where it cuts down section into the Jurassic Gypsum Spring formation, and eventually terminates. Formation of this fault is encouraged by the presence of the FLF and BRF, where the FLF cuts through the entire sedimentary sequence, and strata directly in front of the tip of the BRF are rotated such that they move from the hanging wall into the footwall. This may subsequently cause stresses parallel to bedding to concentrate within the sequence and become accommodated by slip along a detachment zone in relatively weak materials. The base of the Jurassic Sundance formation is primarily composed of weak silts and shales, such that faults may form and cut up-section

The backlimb duplex thrusts (BDTs) are a series of two low angle thrusts that duplicate the Triassic Alcova formation. These thrusts are located within the
core of the dome, adjacent to the Little Popo Agie River. The lower thrust duplicates the Alcova with as much 70 feet of displacement, while the upper thrust has a displacement of about 10 feet. Both faults terminate to the north in the Triassic Chugwater Group near the nose of Dallas Dome. The southern terminus appears to be concealed by Quaternary alluvial deposits. Like the backlimb thrust (BLT), these faults form as a result of layer parallel shortening as backlimb strata are tilted, and detachments form between contrasting competencies within the Triassic Red Peak formation. It is apparent from geologic mapping that the BLF and BDTs share a geographical relationship, as the northern terminus of the BLF and northern terminus of the BDTs nearly overlap along strike. As displacement dissipates along the BLF towards its terminus, stresses associated with tilting are transferred to deeper levels of the section to create the BDTs,, which have continued displacement beyond the terminus of the BLF and propagated further north in the fold.

Relative Timing of Mapped Deformation Features

This section focuses on constraining the relative timing and order in which the mapped deformation features discussed above. Here, each feature will be discussed in chronological order, from first to last. This order is determine based on field observations, as well as by geographical and geological relationships with one another, and by geometric relationships inferred for the features at depth and shown in cross sections $A A^{\prime}$ and $B B^{\prime}$.

The front limb fault (FLF) is interpreted to be equivalent to the basement controlling fault described by Berg (1962) in his dual fold thrust system for the Wind River uplift. As such, the FLF is believed to be a major early feature leading to the formation of Dallas Dome, and because of its relationships with other deformation features, this fault is the first to form among the observed features.

Soon after the FLF formed, the blind reverse fault (BRF), overlying the FLF formed due to over-tightening of the hinge of Dallas Dome.

There is no evidence to constrain the relative timing for the forelimb backthrust fault (FBF), the backlimb fault (BLF), or the backlimb duplex thrusts (BDTs). Based on geometric relationships between the FLB and BRF with the FBF, it can be inferred that the FBF formed later in the sequence, and sometime before the faults existing on the backlimb. However, this interpretation is highly speculative.

Based on interpretations made by Brocka (2007), tear faults within the basement, creating the left stepping en echelon style of the folds, do not affect the trend of the backlimb thrust. Thus, the backlimb fault is interpreted to have formed sometime after the FLF and BRF. Because the BDTs share a somewhat speculative relationship with the BLF, these faults are believed to have formed sometime after both basement involved faults. Relative timing between the BDTs and the BLF is speculative, but because the basement controlling fault has been interpreted to have originated southwest of the study area, and progressed towards the NW, it might be inferred that the BDTs formed after the BLF.

CHAPTER III: FRACTURE ANALYSIS AND DEFORMATION MECHANISMS

General Background

The previous chapter was devoted to introducing and describing the various deformation features, from the large scale folds to the small scale faults. This chapter will focus on using models and concepts derived from previous studies, along with my own data from this study, to interpret the progressive formation of these structural features and to deduce the mechanisms responsible for their formation.

Two end member folding mechanisms, buckle folding and forced folding, are the most likely mechanisms responsible for the formation of Laramide basin margin folds (Stearns, 1978; Cosgrove and Ameen, 2000; Brown, 1988). While each of these mechanisms is distinct, they may occur simultaneously during the folding process in response to the same regional stress regime (Cosgrove and Ameen, 2000). In Laramide foreland areas, forced folding models for the generation of basin margin folds are similar to the larger scale mechanisms that may drive Laramide mountain building (e.g. Berg, 1962). Forced folds were first described by Stearns (1978) as those that have a final shape and trend that are the same as the shape and trend of the forcing member below. Works by Brown
(1988) and Willis and Groshong (1993) have applied this concept to the formation of many of the features that occur in Laramide basin-margin folds (Fig. 6) which are the result of the forced fold mechanism. Progressive shear associated with offset along basement faults acting as the forcing members can also be modeled using trishear concepts first introduced by Erslev (1991) and later adapted by several other workers (e.g. Almendinger, 1998; Bump, 2003). Trishear modeling is a kinematic computer simulation model that calculates and illustrates the progressive strain developing within a triangular shear zone directly in front of a fault tip (cf. Erslev, 1991; Bump, 2003).

The second of the two end member hypotheses, buckle folding, occurs in response to layer-parallel shortening within a layered sequence. The shortening may be produced by regional tilting (e.g. uplift of an adjacent mountain range) or by large-scale regional stress regimes. In the study area, buckle folding and forced folding may occur simultaneously, since both involve responses to horizontal shortening. While previous workers (e.g. Willis and Groshong, 1993) attribute Laramide foreland deformation to forced folding, buckle folding in response to progressive tilting of the sedimentary cover rock (e.g. in response to uplift of the Wind River Mountains) may be an equally significant folding mechanism.

Because of the complexities that originate within basin margins, like those in the study area, the mechanisms leading to the formation of basin margin fold structures can be difficult to interpret. In order to make reasonable interpretations of structural features and their mechanisms of formation, it is
important to further understand how buckle folds and forced folds are similar, and how they are different. The next section of this chapter introduces both end member models, and how fracture patterns can be used to suggest which end member mechanism is more significant within a given area. This relationship is the basis for the fracture analysis and interpretations for my study area.

Buckle Folding versus Forced Folding

Buckle Folding

Buckle folding is defined as a folding produced in response to instabilities occurring during layer-parallel shortening. In the study area, the deformation takes place within the sedimentary sequence with no involvement of basement rock in the associated deformation. Such folds tend to be periclinal in shape. That is, their aspect ratio, defined as the ratio of half the fold's wavelength to the hinge length, typically lies between 1:5 and 1:10 (Cosgrove and Ameen, 2000). In addition, buckle folds tend to die out very quickly in a profile scale, starting from the central area and progressing towards their ends (Cosgrove and Ameen, 2000).

Fracture generation during buckle folding can be regional and local in nature, and can occur before and during folding. Regionally derived fracture sets are commonly less complicated and tend to be more uniform as a result. Regional fracture sets commonly occur as extension joints that are normal to the least principal normal stress $\left(\sigma_{3}\right)$ and contain the greatest principal stress $\left(\sigma_{1}\right)$ in the plane of fracture. Such fractures commonly form perpendicular to the fold
hingelines of concomitantly developing folds. Fractures derived from local stress fields, in contrast, are far more complicated and far less uniform, as they are bound to the formation of local structures and not to the regional stress orientations.

The relationship between regional and local stress-induced fracture sets is similar to the relationship between extensional and shear fracture sets formed during buckle folding. That is, extensional fracture sets are far less complicated and more uniform than shear fracture sets, as a result of uniform stress regimes. Extensional fracture sets are commonly characterized by steep dip angles and may strike parallel and perpendicular to the fold hinges in response to stresses produced during the folding process. For instance, those fractures forming perpendicular to the fold hinge, tend to be the result of extensional stresses derived from bending of the sedimentary sequence. Twiss and Moores (2007) discuss experiments by Curie and others (1962) that illustrate the stress field produced in response to buckling of a photo-elastic gelatin bar positioned such that its length is normal the least principal imposed stress (Fig. 11a). During folding, extensional fracture set B forms subparallel with the fold hinge, as a result of local concentrations of extensional stress on the convex side of the fold (Fig. 11c). In contrast, extensional fractures striking perpendicular to the hinge line tend to form as a result of lateral expansion of the sedimentary sequence as layer parallel shortening occurs. The experiment also accounted for the formation of these fractures (set A), but indicate that they form prior to folding when bedding is parallel with the maximum principal stress (Fig. 11b). As such, it
is difficult to determine the nature of such fractures, as they may be the result of localized stresses or regional stresses (Cosgrove and Ameen, 2000).

Currie, J. B., Patnode, H. W. and Trump, R. P., 1962, Development of folds in sedimentary strata: Geological Society of America Bulletin, v. 73, p. 655-674.

Figure 11: Stress distribution in a gelatin bar undergoing buckling by layer parallel shortening, including a schematic of the experiment (A), stress orientations in the bar prior to folding (B), and stress trajectories in the bar after folding (C). Solid lines indicate the greatest principal stress, while dashed lines indicate the least principal stress. The shaded area indicates where layer parallel principal stress is tensile. Fracture sets A through E are described in the text(after Currie and others, 1962).

Shear fracture sets formed during buckle folding are far more complicated and less uniform throughout the folded area that those formed by regional stresses alone. Regional stresses inducing buckle folding will inherently produce local stresses associated with the buckling of the layered sequence as well. In addition, a sequence undergoing buckling may experience layer parallel slip
between layers that may alleviate stress within some layers, but magnify stress in others. Local stresses produced by folding typically form conjugate shear fractures that wrap around the pericline, since layer parallel slip in such a feature occurs in all directions (Fig. 12). Twiss and Moores (2007) recognized these fractures as sets A, C, and E (Fig. 11c), where A occurs just before folding, C forms during folding on the concave side of the fold, and E forms on the convex side of the fold. Fracture sets C and E occur as a result of compressive and extensional stress concentrations within the fold, respectively. In general, conjugate shear fractures may be used to determine the local σ_{1} stress orientations related to their location on the fold. The acute bisector of a conjugate shear set gives this σ_{1} orientation (Cosgrove and Ameen, 2000).

The formation of both extensional and conjugate shear fractures as discussed above will form in an ideal system where sedimentary rocks are statistically homogenous and have experienced no periods of deformation previous to folding. However, geologic settings conducive to these characteristics are uncommon, especially in the Western Cordillera of the United States, which has experienced several episodes of deformation. Studies by Bergbauer and Pollard (2004) determined that when preexisting weaknesses in the sequence are present, they tend to control the formation of new fracture sets throughout the area. As such, fracture orientations discussed by Stearns (1978) may only conform to an idealized setting.

Stearns, D. W., 1978, Faulting and forced folding in the Rocky Mountains foreland, in V. Matthews, Ed. Laramide Folding Associated with Basement Block Faulting in the Western United States. Geological Society of America Memoir 15.

Ramsay, J. G., 1967, Folding and fracturing of rocks: United States, 568 p.

Figure 12: Periclinal dome with associated fracture patterns that are characteristic of buckle folds (a) (Stearns, 1978). 1b and 1c illustrate local stress perturbations due to folding of the cover rock (Ramsay, 1967).

Forced Folding

Forced folds are folds whose "final overall shape and trend are dominated by some forcing member below" (Stearns, 1978). One of the most common forced fold settings is associated with the folding of the sedimentary cover overlying fault offset of a rigid basement material. Such folds will inherently exhibit different geometries depending on the amount of slip and the type of displacement on the basement fault. For example, folding resulting from normal dip-slip along a fault will be geometrically different from folding produced by reverse dip-slip along a similar fault. Since faults can extend for long distances, forced folds formed over long fault traces in underlying basement can have much higher aspect ratios than buckle folds (Cosgrove and Ameen, 2000). Additionally,
the fracture patterns associated with forced folds will also be different as result of the nature of offset on the forcing member.

The profile geometry of forced folds strongly depends on the amount and sense (normal or reverse) of slip along the basement fault (e.g. Ameen 1988, 1992; Richard 1990, 1991; Richard and Krants, 1991; and Nino et al, 1988). In cases where the basement fault motion is reverse or reverse oblique dip slip, layer-parallel shortening produces buckle folding in the sedimentary cover as well as forced folding. In contrast, forced folds overlying normal dip-slip faults form by the draping of the strata across the fault. This process results in layer-parallel elongation and no associated buckle folding in the sedimentary sequence.

Fracture distributions associated with dip slip basement offset were studied experimentally by Ameen (1988) using wooden "basement" blocks, below a "sequence of strata" represented by layered wax of differing competencies. The layers were imprinted with strain marker grids along two orientations of the model: one in the profile section, and the other on the surface of the layers. The grid was used to show how strain within the layers changed during progressive fault offset. Results of the model showed that the cover deformed by both rigid body rotation and also by internal deformation (Cosgrove and Ameen, 2000). Both types of definition progressively decrease away from the location of basement offset towards the surface. Further analysis of the experiment indicated that the formation of strain fields and fractures associated with deformation are closely related to the sense of motion along the fault. For example, fracture patterns associated with normal faulting tend to be uniform
throughout the fold as a result of relatively uniform extensional stresses that occur over the entire extent of the fold during progressive normal faulting (Fig. 13A). In contrast, fracture patterns associated with reverse faulting tend to be less uniform in both time and space. For instance, along some parts of the developing fold, local stresses may begin as compressional stresses but progressively change to extensional regimes as the fault offset and associated folding progress. As a result, fracture patterns associated with reverse faulting in the basement will change over time, and thus can create complex distribution of fractures in the folded area (Fig. 13B).

Cosgrove, J. W., and Ameen, M. S., 2000, A comparison of the geometry, spatial organization, and fracture patterns assocaited with forced folds and buckle folds: Geological Society Special Publications, v. 169, p. 7-21.

Figure 13: Forced folds and associated fracture patterns due to pure dip-slip reverse faulting (a) and pure dip-slip normal faulting (b) (Cosgrove and Ameen, 2000).

Methods: Fracture Analysis

Fracture orientations were collected and analyzed in three separate stages: 1) field collection, 2) digital conversion at the field station, and 3) fracture analysis while at the University of Missouri in Columbia. The three stages are described in the sections below.

Field Collection

Fracture orientations were collected from structurally competent formations during the field geologic mapping. Orientations were obtained using the Brunton GeoTransit compass. As a result, all information collected in the field was expressed as dip azimuth and inclination. Orientation data were transferred using a water-resistant field notebook, in addition to a digital voice recorder. Fracture orientations were collected as frequently as possible in order to obtain a large number of orientations within the dataset. In most locations only one orientation of each fracture set was recorded. However, in some cases larger numbers of one set were recorded to show the dominance of one set over another. All station locations containing fracture data were recorded as waypoints in UTM coordinates using Garmin handheld GPS receivers with an accuracy of ten meters or less.

Station Based Digital Conversions

After returning from the field to the University of Missouri Branson Field Laboratory in Sinks Canyon, orientation data were recorded into a Microsoft

Excel worksheet and converted to a form that would be accepted by Pangea Scientific's SpheriStat 2.2 analysis software. Dip azimuth measurements were converted to strike directions for the observed fractures by subtracting ninety degrees from the dip azimuth. This conversion reformats the data to fit the right-hand-down-dip rule for collecting strike and dips in the field. Station locations were downloaded from Garmin handheld GPS receivers used in the field, to the National Geographic TOPO! software application. Upon extraction, station locations were converted into a text file readable by Microsoft Excel. Station location worksheets and fracture orientation worksheets were combined to yield a single worksheet containing station number, station location in UTM coordinates, strike and dip of fracture sets, and from what rock formation the fracture sets were taken from at that location. Conjugate sets were noted where they were observed. However, in most cases it was difficult to decipher conjugate sets in a timely manner while in the field. Instead, most conjugate relationships were evaluated while at the University of Missouri in Columbia using the SpheriStat software application.

Fracture Analysis

Once back at the University of Missouri in Columbia, worksheets containing all pertinent data (e.g. location, orientation) were converted into a tab delimited text file in Microsoft Excel. Text files were uploaded into Pangea Scientific's SpheriStat version 2.2 software application for fracture analysis. After the initial analysis, orientation data compiled in the Microsoft Excel worksheets
were separated by waypoint ranges into three location groups: 1) stations originating from the Wind River dip slope, 2) stations originating from the forelimb of Dallas Dome, and 3) stations originating from the backlimb of Dallas Dome. These three groups were subsequently compiled into three separate Microsoft Excel worksheets, and the data were exported as tab delimited text files that could be read by the Spheristat software application. Wind River dip slope fracture data were analyzed first in order to determine regional stress induced fractures that could not have been produced by local stresses associated with folding processes. Analysis of fracture sets within the forelimb and backlimb areas of Dallas Dome followed thereafter in order to determine fracture sets associated with fold generation and its mechanisms. All fracture sets were evaluated using stereographic projections and rose diagrams generated by Spheristat.

Results

This section is broken into two separate subsections. The first describes the results from the fracture analysis of each of the areas listed above. The second interprets the results of the analysis in the context of previous regional tectonic studies (Coney, 1978; Bird, 1998), and kinematic the models of Bird (1998).

Results

In addition to the three data regions noted above, data from the forelimb backthrust fault, as well as the backlimb duplex thrusts (duplicating the Triassic Alcova Limestone), were analyzed in order to determine the mechanisms of fracture generation in the vicinity of these structures. The order in which these features are discussed is: 1) the Wind River dip slope, 2) the Dallas Dome forelimb and associated faults, and 3) the Dallas Dome backlimb and associated faults.

The Wind River dip slope contains two prominent regional fracture sets, R1 and R2. (Fig. 14). R1, the most common of the three sets, has an azimuth of 45/235 degrees; and the R2 fracture set has a dominant azimuth of $85 / 265$ degrees.

Figure 14: Rose diagram showing preferred joint orientations on the Wind River Dip Slope.

The Dallas Dome forelimb contains two additional fracture sets: J1, a highly dominant fracture set with an orientation of 65/244, and J2, a much less common set with an orientation of $150 / 330$. Outcrops adjacent to the forelimb back-thrust fault on the Dallas Dome forelimb indicates similar fracture sets (Fig. 15).

Counting Parameters

Number of Data Points in Set	251
Number of Data Points Included	179
Type of Data	Planes (Strike)
Range of Dip Angles	$60^{\circ}-90^{\circ}$
Class interval	5°
Class Alignment	Start at $0^{\circ} \mathrm{N}$
Kurtosis, k, of Smoothing Function	825
Half-width of Smoothing Function	$\pm 2.3^{\circ}$
Unweighted Calculation	

Frequency Statistics

Mode (Peak)	14.5%
Azimuth Range of Mode	$70^{\circ}-75^{\circ}$
Smooth Peak	12.8%
Azimuth of Smooth Peak	65.0°
Expected Value, E	2.8%
Standard Deviation	1.8%
95% Confidence Level	$>6.4 \%$
${ }^{* *}$ The distribution has a preferred trend. ${ }^{* *}$	

Figure 15: Rose diagram showing preferred orientations on the forelimb of Dallas Dome.

The Dallas Dome backlimb contains all fracture sets found within the Wind

River dip slope and the Dallas Dome forelimb fracture analyses (Fig. 16).

Additional fracture sets found on the backlimb include J3 (110/290), and J4 conjugate set (60/240 and 75/255). J3 ranges widely in strike orientation. Dip angles for J3 also vary from 60-90-60. The J4 conjugate set forms around the J1 set, and are dominantly by large dip angles exceeding 75 degrees.

Counting Parameters

248 Number of Data Points Included 230 Planes (Strike) Type of Data \qquad Range of Dip Angles \qquad $60^{\circ}-90^{\circ}$ Class interval \qquad Class Alignment
Kurtosis, k, of Smoothing Function Start at $0^{\circ} \mathrm{N}$ Kurtosis, k, Smoothing Function Unweighted Calculation

Frequency Statistics

Figure 16: Rose diagram showing preferred fracture orientations on the Dallas Dome backlimb.

Interpretations

Introduction

The overall objective of this study was to deduce the mechanisms of fold formation and their associated stress orientations. To develop a basis for comparison between my results from Dallas Dome and previous work, this section considers: 1) previous studies of regional stress patterns believed to be associated with the tectonic development of the Sevier and Laramide orogenies (Bird, 1998; Coney, 1978), and 2) fold-induced stress patterns (Ameen, 1990; Cosgrove and Ameen, 2000; Twiss and Moores, 2007), associated with buckle and forced folding.

Regional Stress Patterns

Regional stress orientations during the Sevier and Laramide orogenies have been studied using several methodologies, including: paleomagnetic studies, stress and strain indicators, and fault offsets (Willis and Groshong, 1993; Groshong et al., 1978; Brown et al., 1981; Brown, 1988; McElhnny and Lock, 1995; Van Alstine and de Boer, 1978). Bird (1998) compiled available data from such studies to produce kinematic models for maximum principal shortening directions during Sevier and Laramide times (Fig. 17a-c). He also produced kinematic models for the stress fields created during rotation of the Colorado Plateau. Bird concluded from his results that the mean principal shortening direction for the Sevier Orogeny was approximately E-W (90/270), while during
the Laramide Orogeny, the principal shortening direction had changed to a NESW orientation (40/220).

Bird, P., 1998, Kinematic history of the Laramide
Orogeny in latitudes 35 degrees - 49 degrees N,
Western United States: Tectonics, v. 17, no. 5, p.
780.

Figure 17a-c: kinematic model results developed by Bird (1998) showing the progressive change in mean shortening direction from Sevier orogeny (A) to Laramide orogeny (C).

Coney (1978) completed vector analyses for Sevier and Laramide Orogenies using plate motions between Farallon and North American Plates to deduce convergence velocities. Coney concluded that from 155-80 m.y. (Sevier Orogeny), the two plates converged at a rate of $8 \mathrm{~cm} / \mathrm{yr}$ along an azimuth of 75 degrees; and from 80-40 my (Laramide Orogeny), plate convergence occurred at a rate of $14 \mathrm{~cm} / \mathrm{yr}$ along an azimuth of 45 degrees.

The regional joint sets identified by my study are consistent with both these previous studies. $\mathrm{R} 1(45 / 235)$ is the dominant regional fracture set located within the study area, and subparallel with the maximum principal stress orientation proposed by Bird (1998) (40 degrees) for the Laramide Orogeny, and subparallel with the convergence direction given by Coney (45 degrees). R1 is therefore interpreted to be a result of Laramide regional shortening during which the Farallon Plate subducted shallowly beneath the North American Plate at a rate of $14 \mathrm{~cm} / \mathrm{yr}$. R2 (85/255), the second most prominent regional fracture set in the study area, is oriented subparallel to the mean shortening direction and convergence direction proposed by Bird (1998) (90 degrees) and Coney (1978) (75 degrees) for the Sevier Orogeny, respectively. R2 is therefore interpreted to have formed as a result of stress fields generated during the Sevier Orogeny. Based on this interpretation, R1 is younger than R2.

Fold-Induced Fracture Patterns

Fold-induced fracture sets have been studied extensively by several workers (Ameen, 1988; Cosgrove and Ameen, 2000; Bergbauer and Pollard,

2004; Stearns, 1978; etc.). Generation of fracture sets within a sequence may form from one of two mechanisms: buckle folding and forced folding. In buckle folding mechanisms, fractures are generated by layer parallel slip. Two of the most common fracture sets induced by buckle folding are extensional and conjugate shear fracture sets that form with preferred orientations relative to the fold's hinge line (Cosgrove and Ameen, 2000). The extensional fractures occur both perpendicular and parallel to the hinge line but do not reflect regional stress orientations (Cosgrove and Ameen, 2000). Conjugate shear fractures formed from buckle folding are typically more complex than extensional fractures, as the geometries of conjugate shear sets vary based on their geographic location along the fold. In regards to forced folding, both extensional and conjugate shear fracture sets may form, though the latter is much more common. Conjugate shear sets forming as a result of forced folding are typically oriented such that their geometries indicate vertical uplift, which is one component of offset on dipslip faults (Cosgrove and Ameen, 2000). These fracture sets also tend to strike sub-parallel to the fold hinge, a characteristic similar to extensional fractures associated with bending stresses during buckle folding. In a forced fold setting, conjugate shear fractures may be oriented such that their acute bisector is normal to the hinge line of the fold, while maintaining high dip angles (see Fig. 13 and previous discussion). These fracture sets are similar to those formed during buckle folding. However, because conjugate shear fractures sub-perpendicular to the hinge line in forced fold settings are not greatly affected by their spatial relationship to the fold, they tend to be more uniform.

Fold induced fracture sets observed within the study area include J1 (65/245), J2 (150/330), J3 (110/290), and J4 (60/240 \& 75/255). J1 is an extensional fracture set that forms sub-perpendicular to the fold hinge of Dallas Dome. As such, J 1 is interpreted to be the result of buckle folding. J2 strikes sub-parallel to the fold hinge of Dallas Dome with variable dip angles consistent with a conjugate shear set bisected by an associated extensional fracture set. As such, J2 could be associated with either buckle or forced folding. J3 is a conjugate shear set whose dip values range from 60-90-60 and is indicative of vertical stresses associated with forced folding. However, the orientation of J3 with respect to the hingeline of Dallas Dome is not consistent with either forced folding or buckle folding models. Thus, the origin of this fracture set is unclear. Finally, J 4 is a conjugate fracture set that is subparallel to normal faults that occur in the southern part of the study area, near the interchange with Derby Dome, and are interpreted as a response to extension associated with the en echelon interchange between Derby and Dallas Domes.

CHAPTER IV: SUMMARY AND CONCLUSIONS

Fold forms occurring along the northeastern basin margin of the Wind River Mountains in west central Wyoming form ultimately as a result of regional tectonic stresses associated with uplift of the mountain range. Locally derived basement involved faulting formed as a result of over-tightening of the backlimb of the Wind River uplift, which led to high amounts of buckle folding within the sedimentary cover. Layer parallel shortening experienced during buckling induced the formation of several thrust features such that crowding could be accommodated. The study area was evaluated to determine to what degree this deformation was a result of forced folding versus buckle folding.

This study utilized a combination of surface mapping, fracture analyses, and fault/fold analyses in order to test previous hypotheses regarding these fold forms' formation and the stresses that produced them. The study was conducted in order to: 1) determine whether forced folding, associated with local basement faulting, affected the domes, 2) determine to what degree buckle folding, associated with regional stresses, produced the domes and their features, and 3) evaluate the degree to which local and regional stresses contributed to the folding process and to the interchange between Dallas and Hudson Domes. In order to address these topics, several objectives for this study were set. This section restates each objective and summarizes conclusions that were obtained while pursuing these objectives.

The first objective of this study was to map the distribution of rock formations and deformation features contained within the Lander 7.5' Quadrangle and adjacent areas, which contain the majority of Dallas Dome and the adjacent interchange with Hudson Dome to the north. From this objective, the following conclusions were made:

1) Dallas Dome hosts four major deformation features, including the front limb reverse fault, the backlimb thrust, the forelimb backthrust, and the backlimb duplex thrusts, in addition to the blind reverse fault illustrated on cross sections AA' and BB' (Plates 2 and 3). The geometry of Dallas Dome is strongly controlled by the front limb fault, a reverse fault with a 40 degree dip to the northeast. In the southern portion of Dallas Dome, the front limb fault is accompanied by a basement reverse fault, which parallels the front limb reverse fault and lies 600 vertical feet above the front limb fault. Formation of the blind reverse fault results in a dual thrust wedge, and occurs as a result of slight overturning of forelimb strata. The basement reverse fault suffers significant displacement near the southern portion of the fold, but diminishes towards the north, as forelimb strata shallow in dip. The backlimb thrust and backlimb duplex thrusts form as a result of tilting and layer parallel slip of backlimb strata, in order to accommodate crowding. A small forelimb backthrust fault (shown on Plate 3) occurs on the forelimb formed as a result of layer-parallel shortening and counterclockwise rotation on the steepening forelimb of the fold.

The second objective was to collect fault and fracture orientation data within the study area. The following conclusions were made regarding this objective:
2) The Wind River dip slope contained three regional fracture sets, R1 (45/225), R2 (85/175), and R3 (25/205). The forelimb of Dallas Dome contained fracture sets J1 (60/240) and J2 (160/340). The backlimb contained R1, R2, R3, J1 and J2 fracture sets, with additional sets J3 (105/285) and J4 (55/235 and 65/245).

The third objective was to determine how the fault and fracture data are related to the mechanics of formation of Dallas and Hudson Domes. The following conclusions were made regarding this objective:
3) R1 and R2 are regional fracture sets produced in response to the maximum maximum principal stress conditions during the Laramide orogeny, Sevier orogeny, and rotation of the Colorado Plateau, respectively.
4) J1, J2, J3, and J4 are fold induced fracture sets produced by local stress fields. J1 is an extensional fracture set associated with buckle folding. J2 is a conjugate fracture set bisected by an associated extensional fracture set, and may be associated with either buckle or forced folding. J3 is a conjugate shear set whose orientation reflects vertical stresses associated with forced folding, but is not observed in
either forced fold or buckle fold models. Thus, the nature of J 3 is unclear. J 4 is a conjugate fracture set that is subparallel to normal faults that occur in the southern part of the study area, near the interchange with Derby Dome, and are interpreted as a response to extension associated with the en echelon interchange between Derby and Dallas Domes.

The fourth objective was to determine whether the data and interpretations from Hudson and Dallas Domes are consistent observations and interpretations of Brocka (2007) for Derby Dome and its interchange with Dallas Dome and Sheep Mountain. The following conclusions were made:
5) Data and interpretations produced during this study were somewhat consistent with observations and interpretations by Brocka (2007). Points not consistent between the two studies include orientations of joint sets associated with Laramide orogenic shortening and presence of Sevier stress fields (R2). J2 is not a fracture set associated with regional tectonism, as suggested by Brocka.

The fifth and final objective of this study was to evaluate whether the regional stress regimes inferred to have affected Hudson and Dallas Domes are consistent with those inferred for other similar Laramide structures associated with the broad region of the Laramide orogen. The following conclusions can be made for this objective:
6) Fracture analysis of Hudson and Dallas Domes indicates that regional stress regimes affecting the study area are consistent with those observed along other structures associated with the broad region of the Laramide orogeny. R1 and R2 are associated with the Laramide orogeny and Sevier Orogeny, respectively. These fracture sets were found to be within limits of mean principal shortening directions and maximum principal stress orientations inferred by Bird (1998) and Coney (1978).
Appendix A: Orientations taken throughout the extent of Dallas Dome and the southern extent
of Hudson Dome. Orientations were obtained using the right thumb rule.

Stn	Easting	Northing	Strike	Dip Angle	Formation
1	691748	4740598	167	65	Jn
1	691748	4740598	168	58	Jn
2	691941	4740124	140	56	Jn
2	691941	4740124	153	68	Jgs
4	691637	4739898	145	20	Kms
6	691958	4740035	145	86	Jgs
8	692170	4739691	160	62	Jn
10	692362	4739379	150	60	Jn
12	692175	4741554	354	32	Kms
14	692327	4740837	340	36	Jm
18	691012	4741468	185	37	Kms
20	691235	4741622	187	32	Jm
21	691720	4743067	355	50	Kms
24	691694	4741969	340	29	Jgs
25	691687	4741982	315	24	Jgs
29	691920	4741807	355	35	Jm
30	691836	4741835	345	38	Js
31	694400	4739452	315	18	Kf
32	693895	4738882	320	50	Kms
34	693811	4738863	330	30	base Kt
35	693669	4738779	330	40	base Jm
38	689830	4746277	15	10	Kms
62	689515	4747823	335	22	base Kt
63	689563	4747795	330	20	base Kt

 Hudson Domes. Specific areas that were sampled include the Dallas backlimb (DBL), Hudson backlimb (HBL), the Dallas/Hudson interchange (NTCHNG), the Dallas forelimb (DFL), and the Wind River Dip Slope (DPSLP).

```
\i= \
```


 -


```
\
```


 으요 | < |
:---
1

 -

高

 .

 5

 응高

Easting
694457
694457
694457
694364
694364
694364
694327
694327
694327
694327
694327
694327
694327
694258
694258
694258
693008
693008
692945
692945
692945
692945
692945
692945
692945
692945
692945
693001
693001

으́ -

Faulted

 $\stackrel{0}{0}$

 Dip An

 -

 -

 응 N N $\stackrel{1}{\circ}$

范
 $\stackrel{0}{0}$

둔 in in

 Dip An
装

Northing
4736660
4736660
4736660
4736660
4736586
4736586
4736641
4736641
4736641
4736641
4736641
4736401
4736401
4736401
4736401
4736401
4736467
4736467
4736467
4736467
4736467
4736508
4736508
4736508
4736508
4736508
4736579
4736579
4736579

 Dip An

Faulted
 Formation ©

 $\stackrel{\text { ® }}{\text { 禀 }}$
Northing

Faulted

 Strike

Northing
4736275
4736227
4736227
4736227
4736227
4736227
4736227
4736396
4736396
4736396
4738956
4738956
4738598
4738598
4739310
4739310
4739432
4739432
4739727
4739727
4739727
4739727
4739343
4739343

Appendix C

Contoured equal area stereographic projections poles to fracture planes collected for each domain and used in the fracture analysis. Fracture data was not rotated to remove tectonic tilting in these diagrams because of lack of control on bedding orientation during formation. The domains are labeled for each figure below: 1) Wind River dip slope, 2) Dallas Dome forelimb, and 3) Dallas Dome backlimb. Data concentrations were determined using the Gaussian $\mathrm{K}=100$ method where the fractional area is 1% of the hemisphere and " n " is the number of data points for each count. Densities are counted by multiples of sigma "S" over "E", which is the expected count. Scales to the right of each diagram represent the densities of these multiples of sigma over the expected value.

1: Wind River Dip Slope

2: Dallas Dome Forelimb

3: Dallas Dome Backlimb

REFERENCE CITED

Abercrombie, S., 1989, Structural analysis of the Sheep Mountain-Beaver Creek thrust area, Fremont County, Wyoming [Master's thesis]: Baylor University: Waco, TX, United States, 71 p.

Ahlstrand, D. C., 1978, Permian carbonate facies, Wind River basin, Wyoming: Guidebook - Wyoming Geological Association, no. 30, p. 89-99.

Allmendinger, R. W., 1992, Fold and thrust tectonics of the Western United States exclusive of the accreted terranes: GSA, v. G-3, p. 583.
-, 1998, Inverse and forward numerical modeling of trishear fault-propagation folds: Tectonics, v. 17, no. 4, p. 640.
-, 1999a, Numerical analyses of trishear fault-propagation folds; implications for geometry, growth strata, strain evolution, and fracturing: Annual Meeting Expanded Abstracts - American Association of Petroleum Geologists, v. 1999, p. A4.
-, 1999b, Propagation-to-slip ratio and fold style in fault-propagation folds; perspectives gleaned from trishear modeling: Abstracts with Programs Geological Society of America, v. 31, no. 7, p. 237.

Angelier, J., 1994, Fault slip analysis and palaeostress reconstruction, in Hancock, P. L., ed., Pergamon Press : Tarrytown, NY, p. 53.

Antweiler, J. C., Love, J. D., Mosier, E. L., and Campbell, W. L., 1980, Oligocene goldbearing conglomerate, southeast margin of Wind River Mountains, Wyoming: Guidebook - Wyoming Geological Association, no. 31, p. 223-237.

Bell, L. H., and Middleton, L. T., 1978, An introduction to the Cambrian Flathead Sandstone, Wind River basin, Wyoming: Guidebook - Wyoming Geological Association, no. 30, p. 79-88.

Berg, R. R., 1961, Laramide tectonics of the Wind River Mountains, p. 70-80.
-, 1962, Mountain flank thrusting in Rocky Mountain foreland, Wyoming and Colorado: Bulletin of the American Association of Petroleum Geologists, v. 46, no. 11, p. 2019.

Bergbauer, S., and Pollard, D. D., 2004, A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap Anticline, Wyoming: Geological Society of America Bulletin, v. 116, no. 3-4, p. 294.

Bird, P., 1983, Horizontal Farallon Plate subduction and Laramide epeirogeny: Abstracts with Programs - Geological Society of America, v. 15, no. 5, p. 404.
-, 1998, Kinematic history of the Laramide Orogeny in latitudes 35 degrees -49 degrees N, Western United States: Tectonics, v. 17, no. 5, p. 780.

Blackstone, D. L., Jr.;, 1993, The Wind River Range, Wyoming; an overview, Guidebook - Wyoming Geological Association: United States, Wyoming Geological Association : Casper, WY, United States, p. 121.

Boyd, D. W., 1993, Paleozoic history of Wyoming: Memoir - Geological Survey of Wyoming, v. 5, p. 164-187.

Brewer, J. A., Smithson, S. B., Oliver, J. E., Kaufman, S., and Brown, L. D., 1980, The Laramide Orogeny; evidence from COCORP deep crustal seismic profiles in the Wind River Mountains, Wyoming: Tectonophysics, v. 62, no. 3-4, p. 165.

Brocka, C.G., 2007, Laramide stress conditions and deformation mechanisms during the formation of Derby and Dallas Domes, Weiser Pass Quadrangle, Wind River Mountains, Wyoming.

Brown, W. G., 1984, Basement involved tectonics, foreland areas: AAPG Continuing Education Course Note Series, v. 26.
-, 1988, Deformational style of Laramide uplifts in the Wyoming foreland: Memoir - Geological Society of America, v. 171, p. 1.
-, 1993, Structural style of Laramide basement-cored uplifts and associated folds: Memoir - Geological Survey of Wyoming, v. 5, p. 312-371.

Bump, A. P., 2003, Reactivation, trishear modeling, and folded basement in Laramide uplifts; implications for the origins of intra-continental faults: GSA Today, v. 13, no. 3, p. 4.

Bunge, H. P., and Grand, S. P., 2000, Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon Slab: Nature, v. 405, no. 6784, p. 337-340.

Cosgrove, J. W., and Ameen, M. S., 2000, A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds: Geological Society Special Publications, v. 169, p. 7-21.

Craddock, J. P., and Relle, M., 2003, Fold axis-parallel rotation within the Laramide Derby Dome Fold, Wind River basin, Wyoming, USA: Journal of Structural Geology, v. 25, no. 11, p. 1959.

Cristallini, E. O., and Allmendinger, R. W., 2002, Backlimb trishear; a kinematic model for curved folds developed over angular fault bends: Journal of Structural Geology, v. 24, no. 2, p. 289.

Currie, J. B., Patnode, H. W. and Trump, R. P., 1962, Development of folds in sedimentary strata: Geological Society of America Bulletin, v. 73, p. 655-674.

Curry, W. H., III;, 1990, Early Cretaceous Muddy Sandstone of western Wind River basin, Wyoming: Guidebook - Wyoming Geological Association, v. 41, p. 182.

DeCelles, P. G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A.: American Journal of Science, v. 304, no. 2, p. 105.

Dickinson, W. R., and Snyder, W. S., 1978, Plate tectonics of the Laramide Orogeny: Memoir - Geological Society of America, no. 151, p. 355.

Dunne, W. M., and Hancock, P. L., 1994, Palaeostress analysis of small-scale brittle structures, in Hancock, P. L., ed., Pergamon Press : Tarrytown, NY, p. 101.

Erslev, E. A., 1991, Trishear fault-propagation folding: Geology Boulder, v. 19, no. 6, p. 617.

Erslev, E. A., and Rogers, J. L., 1993, Basement-cover geometry of Laramide fault propagation folds: Special Paper - Geological Society of America, v. 280, p. 125.

Hamilton, W., 1981, Plate-tectonic mechanism of Laramide deformation: Contributions to Geology, v. 19, no. 2, p. 87.

Haun, J. D., and Barlow, J. A., Jr.;, 1962, Lower Cretaceous stratigraphy of Wyoming, p. 15-22.

Keefer, W. R., 1970, Structural geology of the Wing River basin, Wyoming: U. S. Geological Survey Professional Paper.

Kightlinger, C. L., 1997, Detailed structural analysis of the Lander-Hudson oil field (and adjacent anticlines); east flank Wind River Mountains, Fremont County, Wyoming.

Love, J. D., and Christiansen, A. C., 1980, Preliminary correlation of stratigraphic units used on 1 and 2 degree geologic quadrangle maps of Wyoming: Wyoming Geological Association Guidebook, Annual Field Conference, v. 31, p. 279-282.

Maxson, J. A., and Tikoff, B., 1996, Hit-and-run collision model for the Laramide Orogeny, Western United States: Geology Boulder, v. 24, no. 11, p. 968.

McElhinny, M. W., and Lock, J., 1995, Four IAGA paleomagnetic databases released in one package: Eos Trans. AGU, v. 76, p. 266.

Meinen, T. W., 1993, Structural analysis of the en echelon arrangement of Dallas and Derby anticlines.

Picard, M. D., 1978, Stratigraphy of Triassic rocks in West-central Wyoming: Guidebook - Wyoming Geological Association, no. 30, p. 101-130.

Ptasynski, H., 1957, Dallas Dome-Derby Dome area, Wyo. Geol. Assoc., Guidebook, 12th Ann. Field Conf., Sept. 1957., WGA, p. 127-131.

Ramsay, J. G., 1967, Folding and fracturing of rocks: United States, 568 p.
Roberts, S., 1989, Wyoming geomaps: Geological Survey of Wyoming : Laramie, WY, United States.

Stearns, D. W., 1978, Faulting and forced folding in the Rocky Mountains foreland, in V. Matthews, Ed. Laramide Folding Associated with Basement Block Faulting in the Western United States. Geological Society of America Memoir 15.

Stesky, R. M., 1995, Spheristat 2 User's Manual: Brockville, Ontario, Canada, Pangaea Scientific, 198 p.

Van Alstine, D. R., and de Boer, J., 1978, A new technique for constructing apparent wander paths and the revised Phanerozoic path for North America: Geology, v. 6, p. 137-139.

Willis, J. J., and Groshong, R. H., Jr.;, 1993, Deformational style of the Wind River Uplift and associated flank structures, Wyoming, p. 337.

Winn, R. D., Jr.;, and Smithwick, M. E., 1980, Lower Frontier Formation, southwestern Wyoming; depositional controls on sandstone compositions and on diagenesis: Guidebook - Wyoming Geological Association, no. 31, p. 137-153.

