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ABSTRACT 

 
 Launch ascent guidance is an area that routinely involves applications of optimization 

tools and optimal control theory.  The vacuum ascent trajectory problem has been formulated as 

a two-point boundary-value problem with an interior-point state constraint and is solved with a 

method of direct parameter optimization.  The direct method simplifies the more complicated full 

costate problem and an off-line trajectory optimization routine for the Ares V Cargo Launch 

Vehicle (CaLV) shows optimal performance as compared to trajectory simulations performed in 

the industry standard software, Optimal Trajectories by Implicit Simulation (OTIS).  The 

guidance solution may also be determined through an analytic method, developed by assuming 

polynomial approximations for the steering profiles and flight-path angle profiles.  The analytic 

solutions prove to be useful when applied to the Shuttle-based Powered Explicit Guidance (PEG) 

routine, where the results have been shown to converge to near a near optimal trajectory. 
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Chapter 1 
 
Introduction 
 
1.1  A Vision for Space Exploration 
 

In June 2001, NASA, through a program known as the Space Launch Initiative set 

for itself the goals of significantly increasing the safety and reliability of the second 

generation of launch vehicles [1].  In following with the Vision for Space Exploration, 

announced in 2004 by the President’s Administration, the Constellation Program will 

provide the next major step in space exploration, replacing the Space Shuttle in 2010 with 

a new generation of transportation systems aimed at providing crew and cargo access to 

the International Space Station (ISS), the Moon, Mars, and beyond [2].  An important 

component to the development of a next-generation launch system is driven by the 

Constellation’s Ares Project, whose architecture includes the Ares I Crew Launch 

Vehicle (CLV), the Ares V Cargo Launch Vehicle (CaLV), and the Orion Crew 

Exploration Vehicle (CEV).  The two-stage Ares I is derived from the Shuttle concept, 

and are comprised of the five-segment reusable solid rocket booster first stage, and the 

second-stage liquid oxygen/liquid hydrogen rocket system powered by a single J-2X 

engine [2].  Intended to lift crews and cargo into orbit, it will lift 25 metric tons and be 10 

times safer than the Space Shuttle, primarily due to an in-line design and a launch abort 

system.  The heavy-lift version of the CLV, the Ares V CaLV, will support future lunar 

exploration missions and will also consist of five Shuttle main engines on the core and 

two five-segment Shuttle-derived solid-propellant rocket boosters.  Although primarily 

designed to carry cargo, the Ares V CaLV can be human-rated to boost the crew 

exploration vehicle (CEV) into low Earth orbit (LEO) and trans-lunar orbit [3].  The 
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CLV/CEV combination will be a much anticipated vehicle, since it will replace the 

retired Space Shuttle fleet and provide a crewed transportation system to Earth orbits and 

trans-lunar space.   

The Constellation Program is driven by the desire to explore space, extending a 

human presence across the solar system with the intent to carry out a series of human 

expeditions, aiming for longer lunar occupation, and eventually establishing a permanent 

base on the Moon.  In order to contribute to the goals set forth by the Space Launch 

Initiative, the Ares Project seeks to maintain cost-effective operations, at minimum risk 

of loss of crew or mission and high levels of safety and reliability during all stages of 

flight.  Therefore, it is important for launch ascent mission planning to incorporate highly 

robust guidance and control algorithms. 

 
 
1.2 Background 
 

Launch ascent guidance is an area that routinely involves applications of 

optimization tools and optimal control theory.  In fact, on-board algorithms for solving 

the optimal ascent problem have been the foundation of closed-loop ascent guidance for 

upper stages of launch vehicles since the 1960s. 

 
 
1.2.1 Guidance Methods 
 
 Guidance algorithms for powered aerospace vehicles must compute the time-

varying steering commands of the thrust vector so that the vehicle achieves a desired 

target state (position and velocity).  Typically, launch or ascent guidance methods attempt 

to reach a target orbit with minimum fuel expenditure.   
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Figure 1.1:  General GN&C schematic.  

 
Guidance, Navigation, and Control (GN&C) functions are performed with the use of a 

flight computer, where the current navigation solution, following Fig. 1.1, is computed 

using rates from the Inertial Measurement Unit (IMU). For the purposes of this thesis, the 

estimated and true states are assumed to be equivalent.  Guidance then uses the estimated 

states from Navigation to determine the corrections that must be made to account for the 

vehicle's current location.  

 In general, guidance schemes may be divided into two basic philosophies:  

reference-path methods, and predictor/corrector methods.  The first philosophy attempts 

to guide the vehicle along a pre-planned reference path to the target, illustrated in Fig. 1.2 

(a); this technique has been used for entry guidance.  By contrast, a predictor/corrector 

guidance method, seen in Fig. 1.2 (b), re-computes a new path from the vehicle’s current 

state to the target in an iterative fashion, using the current states from the navigation 

function as the initial condition.  Predictor/corrector methods may provide a new path 

that meets a target condition at a different time than the reference path.  By solving the 

optimal ascent problem in this repeated fashion where the initial condition is updated by 

the current condition, the guidance solutions are in effect closed loop. 
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                           (a)          (b) 
 
Figure 1.2:  Basic guidance philosophies: (a) Reference path method, (b) Predictor/corrector method 
 
 Traditionally, predictor/corrector guidance methods have been used for early 

launch systems.  Classical vacuum ascent guidance algorithms based on optimal control 

theory include the Iterative Guidance Mode (IGM), employed for the Saturn V boosters 

[4], and the Powered Explicit Guidance (PEG) for the Space Shuttle [5].  In 

predictor/corrector guidance, the position and velocity at main engine cut-off (MECO) 

are predicted by using the current values of the states and the estimated thrust-steering 

parameters.  Maneuver target conditions are used to compute the desired position and 

velocity at MECO.  The predicted and desired MECO states are compared, and the 

differences are used to correct the steering parameters and the updated velocity vector 

[6].  The predictor/corrector method is then iterated upon until guidance convergence 

occurs.  Hanson [7,8] has recently argued that Advanced Guidance and Control (AG&C) 

technologies can dramatically reduce the probability of catastrophic failures for launch 

vehicles as well as reduce reoccurring operational costs.  In addition to meeting vehicle 

safety and reliability requirements, AG&C technologies are critical for reducing expenses 

involved with guidance and control analysis.  References 7 and 8 demonstrate AG&C 

methods applied to a reusable launch vehicle (RLV) and include simulation test results 

Vehicle State 

time 

Ref. 

target 

New path 

Vehicle State 

time 

Ref. 

target 



5 
 

for the ascent and entry phases.  It is very likely that AG&C concepts will need to be 

applied to the CLV in order to ensure safety and reliability requirements.   

 The solution to the optimal ascent trajectory requires the solution to a very 

complex two-point boundary value problem.  Dukeman [9] shows how judicious 

approximations are made to reduce the order and complexity of the state/costate system, 

and uses a multiple- shooting method which significantly reduces sensitivity to the 

guessed initial costates.  Recently, Lu et al. have developed a closed-loop ascent guidance 

scheme for atmospheric flight of an RLV, using the classical finite difference method for 

the two-point boundary-value problem to produce an on-board solution to the optimal 

ascent problem [10].  A multiple-shooting formulation, constraint simplification, and a 

more sophisticated numerical method have enhanced the robustness of an optimal 

vacuum ascent trajectory algorithm, and is a valuable tool in rapid planning of launch 

missions [11].  Calise et al. [12] use a hybrid collocation approach in which the optimal 

vacuum solution serves as the initial guess for the atmospheric flight and aerodynamic 

terms and path-related constraint terms are gradually introduced using a homotopy 

method.  This method demonstrates reliable convergence and indicates the feasibility of 

closed-loop endo-atmospheric guidance algorithms. 

 
 
1.3  Problem Definition 
 
 Solving the CLV guidance problem presents many challenges.  The presence of 

interior state constraints complicates the optimal control problem and traditional guidance 

algorithms do not know about constraints such as heat rate at payload fairing jettison, 

therefore, the solutions are only sub-optimal.  For example, Ref. 13 demonstrates a secant 
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trajectory optimization procedure combined with a min-H steepest-ascent algorithm that 

produces optimal lifting boost trajectories and displays an efficient convergence speed.  

Brusch [14] formulates the trajectory optimization problem as a constrained function 

minimization problem by modeling the control with a function of a finite number of 

parameters, where the guidance parameters that meet the desired end conditions are 

determined by assuming a particular form of the steering law that approximates the true 

optimal solution.  Trajectory optimizations of the CLV ascent stage using NASA 

Langley’s Program to Optimize Simulated Trajectories (POST) has shown that 

significant fuel savings may be realized by “lofting” the trajectory prior to the escape-

tower jettison.  A simple PEG algorithm applied to the CLV, however, cannot exploit 

potential fuel-saving maneuvers, as the traditional guidance system is restricted due to its 

built-in approximations of the dynamics.  The motivation for further guidance research, 

then, becomes to incorporate the capability to treat heat rate constraints into the Ares 

baseline guidance. These enhancements have potential application for real-time guidance 

of the Ares launch vehicles, as well as for rapid day-of-launch trajectory optimization. 

 
 
1.4  Thesis Objective 

 
The objective of this thesis is to develop advanced guidance techniques that improve 

fuel performance over the current Shuttle-based guidance methods.  The algorithm will 

be based on optimal control theory with interior-state constraints in order to anticipate 

and compensate for discrete events, i.e. escape-tower jettison and heat-rate constraints.  

The ascent trajectory optimization problem is formulated such that the control is defined 

by a function of finite parameters and the control variable is the inertial attitude angle, as 
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in the IGM formulation for the Saturn V boosters.  By using the inertial attitude angle as 

the control, a nominal trajectory is more easily defined, as the direction of thrust is 

uncoupled from the path flown [13].  Then, the analytical solutions to the jump condition 

at payload fairing jettison will be developed, in an attempt to decrease the complexity of 

the optimization routine. 

In addition, this paper will investigate the solutions to the control by developing 

analytic solutions based on polynomial profiles for the steering angles and flight path 

angle.  Solved in an iterative fashion, the control variables will be updated by iterating on 

velocity and altitude convergence errors.  The converged solutions for the control will be 

used as an alternative method to provide the initial guess in an on-board, real-time PEG 

guidance simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3:  Major events from launch to MECO [15]. 

Start Simulation 
t0 = 155.9 sec 

Altitude 138,196 ft 
T1, m01, Isp1 

 

Staging Point 
tstage = 337.2 sec 

T2, m02, Isp2 

Payload Fairing Jettison 
tPLF  (free) 

mPLF = 12,868 lbm 
Heat Rate 0.1 Btu/ft2/s 

Main Engine Cutoff 
tfi (free) 

rT = 440,810 ft 
vT = 25.725 ft/s 
γT = 1.0064 deg 
iT = 28.5 deg 
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The Ares V CaLV design concept will be the main test case for this guidance algorithm, 

but the algorithm should be general enough to be extensible to similar vehicle concepts 

with different vehicle characteristics.  Figure 1.3 depicts the major events for the CaLV 

from launch to MECO, though for this thesis, only the vacuum portion of ascent flight 

will be considered.  The starting point for simulation has been denoted on the event 

timeline in Fig. 1.3, where the major events will be the ascent from start time after the 

initial solid rocket booster (SRB) separation to the MECO target conditions.  The ascent 

flight consists of two burn stages, where the first stage burns for a fixed time and the 

second stage has a payload fairing (PLF) jettison event at a free (undetermined) time.  

Trajectory simulations and performance have already been rigorously tested for the Ares 

V CaLV using the industry standard software, Optimal Trajectories by Implicit 

Simulations (OTIS), courtesy of the NASA Marshall GN&C and Mission Analysis 

branch, and will serve as the basis for comparison in this thesis. 

 
1.5  Thesis Overview 
 

The present chapter provides a broad overview of the subject of research for the 

thesis.  Chapter 2 provides a description of the computer simulation environment used to 

test the guidance algorithm, and Chapter 3 explains the vacuum guidance formulation and 

necessary conditions for optimal control.  Chapter 4 presents in detail the results of the 

off-line trajectory optimization.  Chapter 5 highlights the main features of the PEG 

guidance formulation and presents an analytical solution method for the vacuum ascent 

problem.  Chapter 6 presents the results of the analytic solution method and the PEG 

solutions which apply the analytic solutions, and finally, Chapter 7 discusses the merits 

of the algorithm and provides recommendations for future research.  
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Chapter 2 
 
Simulation Description 
 
2.1 Overview 
 

In order to evaluate the effectiveness of various guidance algorithms, it is desirable 

to create computer-based simulations of the vehicle during vacuum ascent.  This can be 

done by numerically integrating the equations of motion to propagate the vehicle’s 

trajectory forward in time.  The following sections describe the equations, coordinate 

frames, and assumptions used in the simulation environment.  All simulations were 

implemented in MATLAB version 6.5.0.   

 
 
2.2 Equations of Motion 
 

After the launch vehicle clears the dense atmosphere, the three-dimensional point-

mass equations of motion in vacuum are: 

 

     (2.1) 

 
where  is the vehicle position in the inertial reference frame, is the inertial velocity in 

the inertial reference frame,  is the gravitational acceleration, T is the engine thrust 

magnitude, and  is the unit vector which defines the direction of the thrust vector.  The 

vehicle mass rate, , is a function of the engine thrust, the magnitude of the gravity 

vector, g0, at some reference radius, R0 , and the specific impulse of the engine Isp. 



10 
 

2.3   Aerodynamic Heating Rate Constraint 
 

The simulation includes an evaluation of the free-molecular heat rate (FMHR) 

constraint at the time of payload fairing jettison: 

 
        (2.2) 

 
where c = 0.00128593 is an empirical constant.  Dynamic pressure ( ) is dependent on 

current flight conditions and is calculated from atmospheric density (ρ) and relative 

velocity (Vrel):  

     (2.3) 

 
The relative velocity is calculated from the difference in the inertial velocity ( ) and the 

cross product between the rotation rate of the Earth ( ) and the inertial position ( ). 

 
         (2.4) 

 
The rotation rate of the Earth is defined as  where the Earth rate 

(ωrate) is 7.2921159(10-5) rad/s.  Then the magnitude of the relative velocity is: 

 
     (2.5) 

 
Note that atmospheric density is a function of altitude and is determined by the Earth 

Atmosphere Model, which is described in more detail in a later section. 
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2.4   Reference Coordinate Frames 
 

There are a number of ways to define a coordinate frame, and those that pertain to 

this thesis are described below and illustrated in Figure 2.1.  They are all right-handed, 

rectangular Cartesian axes. 

Inertial Reference Frame ( ): a non-rotating, Earth-centered frame.  The axis 

points towards the North Pole.  The axis points towards the point on the Earth’s 

surface with zero longitude at time t = 0 (time at start of ascent).  The axis completes 

the right-handed set. 

Relative-Velocity Reference Frame ( ): a frame centered at the vehicle’s 

center of gravity (CG), which references the vehicle’s motion to the motion of the 

surrounding air.  The  axis points along the wind-relative velocity vector, .  The 

 axis is in the “local horizontal” plane (i.e. perpendicular to the inertial radius vector, 

).  The  axis completes the right-handed set such that it is pointing “upward” (i.e. 

away from the Earth.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.1: Coordinate Reference Frames 

 
Earth 
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2.5   Coordinate Transformations 
 

Converting a vector from one coordinate frame to another can be accomplished by 

some combination of rotation, translation, and scaling in order to match the orientation, 

origin of the new coordinate frame, and magnitude of the vector.  Only rotational 

transformations must be considered here, for the following two reasons: 

1. The non-inertial frames (which are accelerating with respect to the inertial 

frame) are centered at the vehicle’s CG, which is where the accelerations are 

applied. 

2. The only vectors for which transformations are made are acceleration vectors, 

which deal with changes in velocity rather than with velocities themselves. 

A rotational transformation is accomplished by taking the matrix product of the original 

vector ( ) with the basis vectors for the old frame ( ) as expressed in the new 

frame.  This yields the components for the new vector in the new frame ( ).  Matrix 

notation is an effective representation, where the basis vectors for the new frame are 

combined into a transformation matrix ( ). 

 

      (2.6) 

 
For this notation, vectors are considered column vectors unless otherwise stated.  The 

reverse transformation (  to ) can be calculated by using the inverse of the previously 

determined transformation matrix.  Since the matrix is composed of mutually orthogonal 

unit vectors, the matrix is orthonormal, thus the inverse is equivalent to the matrix 

transpose: 
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           (2.7) 
 

 
The transformation from relative velocity to the inertial frame is used to develop the 

equations of motion and heat rate constraint. 

 
Relative-Velocity to Inertial Transformation: The vectors which form the transformation 

matrix are the basis vectors of the relative velocity frame, as expressed in the inertial 

frame. 

 

    (2.8) 

 
where 
 

         (2.9) 

 

       (2.10) 

 
       (2.11) 

 
 
 
2.6   Environmental Models 
 

The atmospheric model and gravity model defined in this section are empirical 

descriptions of the Earth environment, from which forces on the vehicle can be derived.  

This allows the simulation to yield results which accurately represent the real dynamics 

of the vehicle. 
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2.6.1 Earth Atmosphere Model 
 

The atmospheric model used in the simulation environment is the Patrick 63 

Atmosphere Model, which represents a simplified model of the mean atmosphere at 

Kennedy Space Center.  The model, a function of geodetic altitude, evaluates density as a 

function of the input altitude, using a set of base densities and altitudes (ρref and href) and 

scale heights (hscale). 

    (2.12) 

 
 

For the purposes of this thesis, only the vacuum portion of ascent flight will be 

considered.  Therefore, there are no aerodynamic forces and the density calculation is 

only used to evaluate the heat rate constraint at the jettison event. 

 

2.6.2 Earth Gravity Model 
 

The gravitational acceleration used in the simulation environment comes from a 

simple inverse-square relation, where gravity acts in the direction opposite the radius 

vector: 

     (2.13) 

 
where µE = 3.986 x 1014 m3/s2 is the gravitational parameter of the Earth and r is the 

magnitude of the position vector, .  This gravitational acceleration formulation does not 

take into account the distortional effects due to a non-spherical Earth.  
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2.7   Simplified Vehicle Model 
 
In order to simplify the vehicle description, the following assumptions are made in the 
development of the guidance algorithm: 
 

1. The initial conditions  are given. 

2. Aerodynamic forces are neglected (i.e. vacuum flight). 

3. The thrust magnitude (T), vehicle mass rate ( ), and exhaust velocity (Vex) are 

piece-wise constant. 

4. The gravitational acceleration vector varies as a linear function of the position 

vector. 

Assumptions 2 and 3, along with linear steering, allows a closed-form solution for the 

thrust integral and requires no numerical integration or quadrature [16].  Another 

practical assumption is that the burn time for Stage 1, based on propellant loading and 

mass-flow rate, is fixed.  The burn time for Stage 2, including the time at payload fairing 

jettison, is a parameter for optimization.  Therefore, the final time for the complete 

trajectory (tf) is free.  Assumption 4 yields a closed-form solution of the costate equation 

and will be discussed in further detail in the next chapter. 

 
2.8   Simulation Initialization 
 

The trajectory generated by integrating the equations of motion depends on the 

vehicle’s state at the start of simulation, which occurs after the initial separation of the 

solid rocket boosters.  The vehicle state at simulation initialization will be specified by 

the vehicle characteristics and conditions taken from the OTIS design and mission profile 

for the Ares V CaLV. 
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2.8.1 Initial Position 
 
By definition of the inertial reference frame (refer to Section 2.5), the initial position 

vector can be defined in terms of latitude ( ), longitude (δ). 

                (2.14) 

 
 
Equation (2.14) determines the direction of the inertial position vector.  Altitude (h) 

varies as a function of the position ( ) and latitude ( ): 

 

   (2.15) 

 
 
such that oblateness of the Earth is taken into account and the Earth flattening rate (ε) is 

determined by: 

 

          (2.16) 

 
 
where rE,equitorial is 6,378,140 m and rE,polar is 6,356,750 m. 
 
Then, in conjunction with the simulation initialization from the OTIS mission profile, the 

inertial position vector is: 

 

 m            (2.17) 
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2.8.2 Initial Velocity 
 

The direction of the velocity can be varied, and is described in terms of an 

azimuth (β) and flight-path angle (γ).  Based on these parameters and the initial position, 

the direction of the velocity vector may be calculated by: 

 
              (2.18) 

 
 

Applying the azimuth, flight path angle, and position, specified by the OTIS mission 

profile, Equation (2.18) yields the following initial velocity vector: 

 

 m/s            (2.19) 

 
 
 
2.8.3 Target Location Specification 
 

In order to evaluate guidance performance, it is necessary to specify a target 

location, which is referred to in this thesis as MECO.  Guidance requires the target 

location in terms of the magnitude of the target’s inertial position (r), velocity (V), flight 

path angle (γ), and inclination angle (i).  Refer to Fig. 1.3, which depicts the major events 

from launch to MECO conditions.  The simulation initialization parameters taken from 

the OTIS profile are summarized in Table 2.1. 

Table 2.1: Summary of simulation initialization parameters 
Parameter Initial Target 

r 6,415,383 m 6,518,889 m 
V 1896.441 m/s 7840.675 m/s 
γ 10.6 deg 1.0064 deg 
i 28.5 deg 28.5 deg 
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The magnitude of the initial inertial position and velocity (r and V) evolve from the 

vectors previously stated in Equations (2.17) and (2.19).   

 
 
2.8.4 Vehicle Properties 
 

The vehicle properties for the Ares V CaLV at each staging point are also denoted 

in Figure 1.3 and are summarized in Table 2.2. 

 
Table 2.2:  Summary of vehicle properties. 

Event Parameter Value 
Start of Simulation mission elapsed time, t0 155.9 s 
Start of Simulation vehicle mass, m01 1,227,734 kg 
Start of Simulation vehicle thrust, T1 17,437,041 N 
Start of Simulation engine specific impulse, Isp1 414.7 s 

Staging Point mission elapsed time, tstage 337.15 s 
Staging Point vehicle mass, m02 307,837 kg 
Staging Point vehicle thrust, T2  1,306,665 N 
Staging Point engine specific impulse, Isp12 448 sec 
PLF Jettison mission elapsed time, tjett free 
PLF Jettison mass of PLF, mplf  5,837 kg 

 
 
The subscript 1 pertains to vehicle parameters for the RS-68 engine burn for stage 1, 

which has a fixed burn time.  Similarly, the subscript 2 pertains to vehicle parameters 

during the J-2X burn for Stage 2, where the initialized mass for stage 2 (m02) includes the 

RS-68 engine separation.  The PLF jettison event also occurs during stage 2, where the 

time of jettison (tPLF) is an optimization parameter and the burn time for stage 2 is free, 

thus the total flight time, tf is free. 
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Chapter 3 
 
Nominal Ascent Guidance Formulation 
 
3.1 Overview 
 

This chapter will present an off-line solution method, that is, a solution that is not in 

“real-time,” for the optimal vacuum ascent problem.  Based on optimal control theory, 

the costate solution can be expressed in closed-form and the state propagation can be 

expressed in an analytical solution derived from closed-form thrust integrals where the 

gravity integral is obtained by using a numerical predictor-corrector step.  A 

simplification to the full costate applies direct parameter optimization through a gradient-

based Matlab optimization toolbox to determine the optimal control during vacuum 

flight. 

 
 
3.2 Optimal Control Theory: Problem Statement 
 

As the traditional PEG and IGM guidance methods were developed from optimal 

control theory, it is necessary to define the two-point boundary-value problem for the 

rocket optimization problem.  The equations of motion have been presented in Chapter 2 

and can be recalled from Equation 2.1.  At the time of main engine cutoff, tf, k terminal 

state constraints are imposed: 

 
             (3.1) 

         
 

Examples of terminal constraints, which are nonlinear functions of the states, include 

final position magnitude (r), flight-path angle (γ), inclination (i), semi-major axis (a), 
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argument of perigee (ω), and longitude of ascending node (Ω).  In addition to the 

terminal state constraints, the vehicle must also meet the interior state constraint:  

 
 J/ft2/s       (3.2) 

 
defined by the FMHR constraint at the jettison event, evaluated with Eq. (2.2). 
 

 
Figure 3.1:  Classical orbital elements in the Earth-centered inertial (ECI) frame. 

 
Figure 3.1 depicts the classical orbital elements, where the angular momentum ( ) is the 

cross product between the position and velocity vectors.  The optimal thrust direction 

vector, , is determined by the solution of the optimal control problem that minimizes 

the performance index 

 

    (3.3) 

 
Recognizing that Eq. (3.3) integrates a set of constants, the optimal control attempts to 

minimize the final time, .  In addition to the terminal state constraints, the vehicle 

must also meet the free molecular heat-rate constraint at the PLF jettison event, 

previously defined in Chapter 2.  Thus, the optimization problem can be stated as 



21 
 

follows: Determine the optimal control (thrust direction) that minimizes the flight time 

(equivalent to maximizing the final vehicle mass) subject to the equations of motion [Eq. 

(2.1)], terminal constraints [Eq. (3.1)], and interior state constraint [Eq. (3.2)]. 

 
 
3.3 Vacuum Guidance Formulation 
 

The analytical vacuum optimal ascent guidance solution combines results from 

several vacuum trajectory studies performed over the past three decades (summarized in 

Refs. 10 and 12) and is shown here for completeness.  A key factor in developing the 

analytic vacuum solution is the linear gravity approximation, which enables a closed-

form solution to the costate equation.  The gravitational acceleration can be approximated 

by the so-called linear central gravity field: 

 

     (3.4) 

 
where  is the Schuler frequency.  This approximation allows for the 

preservation of the direction of gravity, which for ascent flight, is more important than 

the accuracy of its magnitude.   

Table 3.1:  Numerical comparison of gravity calculation 

  
Inverse-Square 

µE/r2 
Linear           
ω0

2r 

t = t0 9.685 m/s2 1.46E-08 m/s2 

t = tstage 9.418 m/s2 1.36E-08 m/s2 

t = tf 9.380 m/s2 1.35E-08 m/s2 
 
 

Table 3.1 compares the numerical values of gravity by evaluating the term with both the 

inverse-square model and linear model. The linear approximation causes a difference in 
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the magnitude of , but as r0 is continuously updated by the radius at the beginning of 

each guidance cycle, the effect of the difference carries little influence on the validity of 

the solution. 

 
 
3.3.1 Optimality Condition 
 

Following standard optimal control theory [17], the Hamiltonian is defined as: 
 

                 (3.5) 
 

Since L = 0, Eq. (3.5) simplifies to:  
 

     (3.6) 
 

for the rocket optimization problem, where vector  represents the equations of motion.  

The Hamiltonian expansion yields: 

 

   (3.7) 

 
where η is a scalar multiplier and  and  are the costate vectors.  The first two terms 

correspond to the right-hand side of the  and equations of motion, while the third 

term is included to constrain the control such that it is in fact a unit vector.  The 

optimality condition is derived by applying the maximum principle to the Hamiltonian, 

which results in the optimization sub-problem: 

 
        (3.8) 

 
where the asterisks denote the optimal values for the associated variables.  Applying the 

optimality condition: 
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      (3.9) 

 
the optimal control becomes 
 

        (3.10) 

 
Expanding Eq. (3.13), 
 

    (3.11) 

 

    (3.12) 

 
and the scalar multiplier is: 
 

       (3.13) 

 
 

Thus, η < 0, and substituting Eq. (3.13) into Eq. (3.10)  
 

     (3.14) 

 
results in the well known result that the optimal thrust direction unit vector must be 

aligned with the fuel-optimum vector ( ), also known as the primer vector [18]. 

 
 
3.3.2 Costate Differential Equations 
 
Based on the Hamiltonian in Eq. (3.7), the costate equations are defined as: 
 

     (3.15) 
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Substituting the linear central gravity field assumption, Eq. (3.4), the costate differential 

equations can be written as: 

 

          (3.16) 

 

          (3.17) 

 
where Eq. (3.17) indicates that the control rate is negative.  To obtain the closed-form 

solution to the position costate equation,  

 
           (3.18) 

 
Rearranging Eq. (3.18) produces the form of an undamped harmonic oscillator,  
 

     (3.19) 
 

whose solution is: 
 

            (3.20) 
 

The velocity costate is: 
 

   (3.21) 

 
where  and  are the unknown initial conditions for the costate.   
 

Analytical solutions to the state equations also exist and utilize the closed-form 

thrust integrals, Ic and Is, which assume constant thrust magnitude and linear steering, and 

have the form: 

         (3.22) 
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         (3.23) 

 
where .  Note, the thrust acceleration aT(t) is time-varying due to the 

changing mass. 

       (3.24) 

 
Calise et al. use Simpson’s rule to develop the thrust integral solutions [12], while Lu et 

al. use Milne’s rule, which offers a significantly higher precision [10].  In general, the 

thrust integrals first compute the new velocity based on the thrust force and constant 

gravity.  Then the gravity term, following the inverse-square relation, is added to 

propagate the predicted position and velocity.  The gravity is then calculated at the new 

predicted position.  An average gravity vector is formed over the entire burn and is used 

to update the propagated position and velocity vectors.   

The state equations: 

      (3.25) 

 

            (3.26) 

 
can be shown to have the solution [19]: 
 
  

            (3.27) 

 
where Ω is a 2 x 2 matrix consisting of the costate solution coefficients: 
 

             (3.28) 
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and  
 
 

               (3.29) 

 
 
From the costate solutions and thrust integrals in Equations (3.20)-(3.23) and the state 

equation in Equation (3.27), it is determined that the final states and costates are explicit 

functions of the initial costates,  and .   

 
 
3.3.3 Transversality Conditions 
 

The transversality conditions are conditions on the final costate and final 
Hamiltonian: 
 

        (3.30) 

 
where  is a column-vector of constant Lagrange multipliers.  The second condition is 

relevant for cases in which the final time (tf) is not specified.  A detailed discussion of the 

transversality conditions is given in Ref. 9, in which the satisfaction of the transversality 

conditions imply that the Keplerian part of the final Hamiltonian is zero.   

For the minimum-time problem, the initial costates are not completely 

independent, as they can be arbitrarily scaled by a positive constant without changing the 

necessary conditions for the optimal control problem.  For example, the costates may be 

scaled such that  

      (3.31) 
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where just one of the 6 components of  can be determined by the rest.  To avoid the 

issue of determining the sign of , the problem may be treated as a problem with seven-

unknowns, where the seventh unknown is the free final time, tf.  Then the condition on 

the final costates, 

 
              (3.32) 

 
becomes the seventh terminal condition, a simple, non-constraining condition. 

To summarize, the minimum-time, vacuum ascent guidance problem is 

formulated as a root-finding problem: 

 
      

 
s.t.       (3.33)          

                    
           
 

 
with seven unknowns made up of the initial costate ( ) and the final time (tf). As 

previously shown, the final states ( ) and costates ( ) are explicit function of the 

seven unknowns and the optimal control unit vector ( ) is in the direction of . 

 
 
3.4 Numerical Solution Method 
 

A typical solution approach to the two-point boundary-value problem is the 

shooting method outlined by Bryson and Ho [17].  The unknown costates and final flight 

time are the free variables that must be updated through iteration to meet the k terminal 

state constraints, optimality, and transversality conditions.  The shooting method updates 
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the estimates of the unknown conditions by computing the Jacobian, a matrix of first-

order partial derivatives, and the errors in the boundary conditions which result from that 

initial estimate. 

 
3.4.1 Direct Parameter Optimization 
 

The optimization problem can be greatly simplified by applying a direct 

parameter optimization method, which simplifies the full costate with the assumption of 

linear steering.  Recall from the previous section that  and the solution to 

 is a harmonic function.  Also recall  so that Eq. (3.21) may be rewritten as: 

 

       (3.34) 

 
Recognizing that the orbital rate is very small, apply small angle assumptions, , 

such that  and , Eq. (3.34) may be simplified to the form: 

 
       (3.35) 

 
Then for a direct parameter optimization approach, the control unit vector assumes the 

form: 

 

         (3.36) 

 
where the steering parameters,   and , are related to the costates by: 
 

       (3.37) 
 

             (3.38) 
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Recall from Chapter 2, the solution will consist of two burn stages: 1) a fixed-

burn for stage 1, and 2) a free burn time for stage 2, where a heat-rate constraint must be 

met at the optimal payload fairing jettison time (tPLF).  Under the assumption of linear 

steering, and using the direct method, the optimization problem becomes: 

      

 
s.t.       (3.39)          

                    
           
 
 

The optimal control desired for the entire ascent trajectory must maintain thrust-direction 

attitude continuity over the jettison event while also meeting the heat-rate constraint from 

Eq. (2.2) at the jettison time. 

 
        (3.40) 

 
The continuity condition in Eq. (3.32) determines the thrust-direction parameters at PLF 

jettison, . Such a trajectory yields a total of 11 optimization parameters: 6 initial 

steering parameters,  and , three additional steering rates after jettison, 

, jettison time, tPLF, and the burn time from the jettison point to the MECO 

conditions, tburn. 

 
3.4.2 Choosing the Initial Control Parameters 
 

An important consideration for optimization problems is choosing the initial 

control vector.  For the indirect method that uses the full costate, the optimal impulsive 

solutions are a possibility and Kern [20] uses an optimal two-impulse solution to obtain 
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starting iterations for the control vector.  Robbins [21] describes a technique to convert 

the impulses to finite burn arcs and Tarbet [22] uses a conjugate gradient algorithm 

instead of a weighted Newton-Raphson technique to obtain converged solutions. 

This thesis provides an approach using a direct optimization method.  In either 

case, the goal is to determine the vectors (  and ) that define the thrust direction ( ).  

A reasonable guess for the initial steering direction: 

 

               (3.41) 

 
such that the initial thrusting direction is approximately along the initial velocity vector.  

A reasonable guess for  is , which are typically small 

values relative to .  Recall from section 3.3.3, one component of  and is arbitrary 

and  and may be scaled by any positive factor without changing the solution.  To aid 

in the guesswork for the steering parameters, a “non-constraining” constraint: 

 
          (3.42) 

 
ensures that the components will all be less than unity and allows for upper and lower 

bounds to be placed on the parameters during the optimization routine.  

 
 
3.5 Analytical Costate Jump Condition 
 

Another simplification to the optimization problem can be made by developing the 

analytical solution to the position costate jump condition at payload fairing jettison.  

Given an interior-point state constraint of the form: 
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       (3.43) 
 

where N could be the FMHR constraint in Eq. (2.2), the necessary conditions are [17]: 
 

        (3.44) 

 

       (3.45) 

 
where (t-) represents the time before the jettison event, and (t+) represents the time 

immediately after the jettison event, and π is the jump condition.  For the rocket 

optimization problem, continuous thrust-steering directions are desired, and the constraint 

is not an explicit function of time, so Eqs. (3.44) and (3.45) specialize to: 

 

        (3.46) 

 
         (3.47) 

 
                  (3.48) 

 
Expanding out the “continuity of Hamiltonian” condition: 
 

 (3.49) 

 
The π parameter appears linearly in Eq. (3.49), and recognizing that the primer vector 

( ) is in the same direction as the control ( ), allows a solution in closed-form: 

 

    (3.50) 
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Substituting this expression back into Eq. (3.46) gives a closed-form expression for the 

position costate at the time of payload fairing jettison: 

 

           (3.51) 

 
Recall that  is really the rate of the primer vector, , or equivalently, 

, so the position costate ( ) should be discontinuous at the interior-point 

constraint (N).  Therefore, there should be a change in the slope of the thrust-steering at 

the PLF jettison event seen in its time history.  This expression makes intuitive sense.  

The lighter the payload fairing becomes, the less the change in  or , which means 

that the presence of the constraint does not change the optimized trajectory from the 

unconstrained optimized trajectory.  In other words, as the fairing becomes lighter and 

lighter, the optimal trajectory states will look more and more as if there were no 

constraint at all. 

Note that the N here could represent a dynamic pressure constraint or as in this 

case, the heat-rate constraint.  In either case, the same general form of the necessary 

condition applies and the new position costate is obtained in closed-form.  This represents 

a direct advantage over the direct optimization method discussed in the previous section 

where the new position costate represents three additional parameters that must be 

optimized.  The price paid for this benefit is the upfront analytical work and slightly more 

complicated coding.  This includes determining the expression for the partial derivative 

of the constraint with respect to position ( ) and then writing the code to evaluate the 

derivative expression and the resulting jump in the costate at the jettison event. 
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Chapter 4 
 
Results of the Off-line Optimization 
 
4.1  Overview 
 

Trajectory optimization routines have been developed that can easily test different 

guidance schemes.  In particular, the routine can optimize a heat-rate constrained ascent 

trajectory in vacuum flight.  This chapter investigates how the optimal control (thrust 

direction) may be found through a direct parameter optimization method, comparing the 

optimal trajectory solutions to the Ares V baseline guidance solutions demonstrated 

through OTIS.   

 
 
4.2  Off-Line Trajectory Optimization 
 

The direct parameter optimization method for the optimal control, discussed in 

Chapter 3, has been applied to three cases: 

1. Nominal Optimal Trajectory:  The nominal trajectory with 11 optimization 

parameters. 

2. Test Case 1:  The 14 parameter trajectory, where the additional 3 optimization 

parameters are the steering rates ( ) at the staging point. 

3. Test Case 2:  The 20 parameter trajectory, where the additional 9 optimization 

parameters are the steering rates and directions at the staging point and 

jettison point ( ). 

Trajectory optimization routines were developed by creating Matlab functions (mfiles).  

The optimization routine utilizes Matlab’s built-in function FMINCON.m, a gradient-
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based function that performs constrained non-linear optimization.  FMINCON.m 

attempts to find the constrained minimum of a scalar function of several variables starting 

at an initial estimate.  The main advantage of the direct parameter optimization approach 

is that the math and coding is much simpler than the indirect approach. 

 
4.2.1 Nominal Optimal Trajectory 
 

The nominal optimal trajectory case includes 11 parameters for optimization: , 

, , tPLF, and tburn, where tburn is the burn time from PLF jettison to the target 

conditions.  The trajectory disregards any atmospheric flight portions of ascent, and is 

initialized during vacuum conditions.  The reference trajectories (from OTIS) are 

available and comparison plots were made to verify acceptable performance of the 

optimization routine.  A summary of the optimization results, as well as the 

corresponding results from OTIS are listed in Table 4.1. 

 
Table 4.1:  Summary of optimization results. 

Parameter OTIS Optimization 

tPLF (s) 422.20 441.02 
tburn (s) 361.80 328.43 
tf (s) 784.00 769.45 

mf (kg) 166,630 173,430 
 
 
The optimization results display better performance over OTIS, but do not model the RS-

68 thrust tail-off or the J-2X start up transients, and assumes that the RS-68 burn has full 

thrust until J-2X start up.  These thrust transients, however, may easily be modeled by 

evaluating the integral of the thrust-time curve where it is more important to match the 

area under the curve than to model the exact shape of the thrust-time curve.  Figures 4.1 
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thru 4.6 show the important plots of the important trajectory parameters from the 

optimized results.   

 
Figure 4.1:  Plot of optimal altitude with OTIS comparison. 

 

 
Figure 4.2:  Plot of optimal inertial velocity with OTIS comparison. 

target altitude 

target velocity 



36 
 

 
Figure 4.3:  Plot of vehicle mass with OTIS comparison. 

 
 

 
Figure 4.4:  Plot of vehicle thrust with OTIS comparison. 
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Figure 4.5:  Plot of optimal flight path angle with OTIS comparison. 

 
 

 
Figure 4.6:  Plot of Free Molecular Heat Rate (FMHR) with OTIS comparison and jettison times 

denoted. 
 

target FMHR  

target γ 



38 
 

Figures 4.1 and 4.2 compare the ascent altitude and inertial velocity for the 

optimized trajectory and the reference OTIS trajectory.  Notice that in Figs. 4.1, the OTIS 

simulation shows the lofting effect, which has been known to improve fuel performance.  

Although the histories in Figs. 4.1 and 4.2 are noticeably different in the middle of the 

trajectory, the final states from the optimization still converge to the desired target 

altitude and velocity.  Figure 4.3 shows the vehicle mass histories and Figure 4.4 shows 

the vehicle thrust histories, where the modeling discrepancies and thrust transients which 

were disregarded in the optimization routine, are apparent.  Figure 4.5 shows the optimal 

flight-path angle history for the trajectory.  Figure 4.6 pertains to the heat-rate associated 

with ascent, and the heat-rates at jettison times for both the optimized results and OTIS 

results have been denoted.  The second peak, which occurs after the heat-rate constraint 

has been met, is unavoidable.  A solution to keep that peak below the heat-rate constraint, 

however, would be to raise the target conditions at MECO by a few thousand meters.  In 

general, the trends displayed by the optimization routine are consistent with the reference 

OTIS trajectory, indicating that the results are sufficiently accurate and optimal. 

 
 
4.2.2 Additional Degrees of Freedom 
 

Although the optimal control for the rocket optimization problem is desired at the 

initial point of trajectory and across the jettison event, it is advantageous to impose 

additional degrees of freedom to the optimization problem.  Allowing the optimizer to 

choose the additional steering parameters at the staging point and jettison point is a way 

to test and validate the assumption of linear steering. 
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Figure 4.7: Pitch steering profile for nominal case with 11, 14, or 20 free parameters indicated. 

 
 

Figure 4.7 is a plot of the pitch steering profile from the nominal optimized case and 

depicts the additional optimization parameters at the time of staging and time of payload 

fairing jettison.  Pitch (θ) is measured positive from the horizon to the thrust vector and 

projected into the vertical plane. 

 
 
 
 
 
 
 
 
 
 

Figure 4.8:  Depiction of pitch angle. 
 
 
Note that the pitch profile does in fact display the anticipated discontinuous thrust-

steering at the interior-point constraint (the PLF jettison) and Fig. 4.7 illustrates the 

Guess 
 

Guess 

 

Guess 

 

 

 
T 

θ 
Horizon 
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corresponding change in slope, previously discussed in chapter 3.  The ascent trajectory 

was re-optimized, allowing the optimizer to choose 1) 3 additional steering rate 

parameters at the staging point, , for a total of 14 optimization parameters, and 2) 9 

additional parameters for the steering rates and directions at the staging point and the 

jettison point, , , , for a total of 20 optimization parameters.  Although 

test case 2 allows the optimizer to choose the thrust directions,  and , it is 

expected that these directions remain continuous across staging and jettison events, as 

defined by the continuity condition from Eq. (3.40). 

Figures 4.9-4.14 illustrate the important trajectory parameters for the nominal 

case and the two test cases, and are again plotted along with the reference OTIS 

trajectory.   

 

 
Figure 4.9:  Plot of optimal altitudes for all test cases with OTIS comparison. 

 

target altitude 
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Figure 4.10:  Plot of optimal inertial velocity for all test cases with OTIS comparison. 

 
 

 
Figure 4.11:  Plot of optimal vehicle mass for all test cases with OTIS comparison. 

 

target velocity 
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Figure 4.12:  Plot of vehicle thrust for all test cases with OTIS comparison. 

 

 
Figure 4.13:  Plot of optimal flight path angle for all test cases with OTIS comparison. 

 

target γ 
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Figure 4.14:  Plot of Free Molecular Heat Rate (FMHR) for all test cases with OTIS comparison and 

jettison times denoted. 
 
 
The two test cases are essentially identical to the nominal solutions, where all three cases 

follow the same trajectory.  This implies that the linear steering assumption holds and the 

ascent trajectory solutions are in fact optimal. 

 
 
4.2.3 Analytical Costate Jump Condition 
 

The optimization routine was unable to converge for the analytical solution 

derived in Chapter 3.  The formulation of the analytical jump condition in Eq. (3.50) 

should determine the new position costate after payload fairing jettison evaluated with 

Eq. (3.51), where the optimization routing uses the steering parameter/costate 

relationships: 

 

target FMHR 
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        (4.1) 
 

              (4.2) 
  
Further work may need to be done in order to determine the correct implementation of 

the analytical jump condition into the optimization routine.  The convergence problems 

may involve the appropriate transformations from linear steering parameters (  and ) 

to true costates (  and ).  It will be convenient to take advantage of the analytic 

costate solution so that the complexity of the optimization routine is simplified, reducing 

the total number of parameters for optimization by eliminating the steering parameter 

estimates at PLF jettison.  
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Chapter 5 
 
An Analytic Approach for the Iterative Guidance Design 
 
5.1   Overview 
 

As most guidance algorithms operate under indirect methods, it is useful to develop a 

solution that can work for on-board guidance algorithms that operate in real-time, as in 

the Powered Explicit Guidance used for the Shuttle.  This chapter presents an analytical 

solution approach to the control, based on polynomial steering profile and flight-path 

angle profile assumptions.  The analytic solution may then be used as an alternative 

initial guess for PEG, where a full PEG guidance simulation has been developed in the 

Simulink environment. 

 
5.2   Powered Explicit Guidance (PEG) Procedure 
 
 The Shuttle-based Powered Explicit Guidance, is a guidance scheme consisting of 

four independent algorithms developed to handle all phases of Shuttle exoatmospheric 

powered flight.  The objective of PEG is to generate steering commands to place the 

vehicle in a desired position with a desired velocity and with minimal fuel usage [6].   
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PEG attempts to reach a desired MECO target, as illustrated in Fig. 5.1.  The velocity-to-

go vector, , is determined from the difference between the current space vehicle 

velocity,  , and the desired velocity at MECO, . 

 
 (5.1) 

 
PEG updates steering parameters every 1 second (the “guidance cycle”) and uses a 

simplified model of the system dynamics in the predictor step.  Full details of the explicit 

solutions to PEG can be found in Ref. 23, and are summarized in Appendix A. 

 
 
5.3   Analytic Solutions to the Ascent Guidance Problem 
 

The analytical solution for the control is derived from polynomial assumptions for the 

ascent trajectory steering profiles.  More precisely, the pitch angle (θ) can be shown to 

follow linear tangent steering and polynomial profiles can also be assumed for the flight 

 

VD 

VD 

Figure 5.1:  PEG ascent guidance to target MECO conditions. 
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path angle (γ), measured from the horizon to the velocity vector, and the steering angle 

(α), the angle measured from the velocity vector ( ) to the projection of the vehicle 

thrust.   

 

 
Figure 5.2:  Orientation of pitch, steering, and flight path angles. 

 
 
Following the angle orientations depicted in Fig. 5.2, the steering angle has a direct 

relationship to both the pitch and flight path angles: 

 
     (5.2) 

 
Recall that the thrust-steering is discontinuous at the jettison event, thus the linear 

steering assumption forms two controls: 1) the control vector from start of simulation to 

PLF jettison, and 2) the control vector from PLF to MECO conditions.  Therefore, the 

analytical solution can also be broken into two parts, corresponding to the same start and 

terminal events.  The remainder of this chapter examines the relevant steering profiles 

from the off-line optimized solutions (θ, γ, α).  From these profiles, the analytic solutions 

are developed by substituting polynomials that approximate the optimal solutions, 

allowing the states to be determined analytically. 

 
 
 
 
 

θ 

α 

γ 
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5.3.1   Analytic Solution: Part One 
 

This section will present the analytic solution from simulation initialization to 

PLF jettison.  The analytic solutions can be derived from the polynomial steering profile 

assumptions and the ascent equations of motion.  Recall from Eq. (2.1): 

       (5.3) 

 
which can also be expressed using scalar equations: 
 

       (5.4) 
 

                    (5.5) 
 

               (5.6) 

 
where the thrust acceleration (aT) can also be defined as a function of the exhaust velocity 

(Vex) and a time constant : 

 

           (5.7) 

 
In order to solve the equations of motion [Eqs. (5.4) – (5.6)] analytically, it will be 

convenient to rewrite the sinγ and cosα terms as polynomials.  
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Figure 5.3:  Profile for the sine of the flight path angle from the optimized solutions. 

 
 
 

The profile shown in Fig. 5.3 illustrates the sine of the flight path angle, resulting 

from the off-line optimal ascent trajectory.  It is obvious that the sinγ profile will assume 

two polynomial approximations, a quadratic polynomial from start of simulation to the 

staging point, and a linear polynomial from the staging point to PLF jettison: 

 
  stage 1          (5.8) 

 
       stage 2 to PLF         (5.9) 

 
The unknown quadratic coefficients in Eq. (5.8) can be determined by solving at initial 

time t0  

              (5.10) 
 
and differentiating Eq. (5.8) with respect to time t0: 
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             (5.11) 

 
where Eq. (5.6) may be substituted with the initial steering angles, α0 and γ0.  Then  
 

              (5.12) 
 

and b2 can be determined by solving Eq. (5.8) and substituting the fixed stage 1 burn time 

(t1) and corresponding flight-path angle at the staging point (γstage1).  Similarly, the linear 

polynomial coefficients in Eq. (5.9) are determined by substituting the appropriate times 

and flight-path angles, such that: 

              (5.13) 
 

                (5.14) 

 
where Tgo is the free burn time from the staging point to the PLF jettison event. 
 

To determine the analytic relationship for the cosα term, recall the steering 

relationship from Eq. (5.2).  Then applying trigonometric relations: 

 
             (5.15) 

 
Pitch steering (θ) follows linear tangent steering [5]: 
 

       (5.16) 
 

and is derived from the two-dimensional (planar) optimal control problem.  Linear 

steering in combination with the quadratic sinγ profile determines that the cosα profile 

may also be approximated with a quadratic polynomial for the burn from start of 

simulation to the staging point: 

             stage 1       (5.17) 
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Likewise, linear steering in combination with the linear sinγ profile results in a linear 

cosα profile: 

         stage 2 to PLF  (5.18) 
 

 
 

 
Figure 5.4:  Profile of the cosine of the steering angle, α, from the optimized solution. 

 
 
 

The quadratic and linear polynomial approximations are verified by the profile shown in 

Fig. 5.4.  Substituting Eqs. (5.8), (5.9), (5.17), and (5.18) into Eq. (5.5), and assuming 

gravity (g) is a constant determined from the inverse-square relation: 

      (5.19) 
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where aT1, Vex1, and τ1, are the vehicle constants for stage 1, and tstage1 refers to the fixed 

burn time for stage 1.  Equation (5.19) results in an analytic integral for the velocity from 

start to staging: 

(5.20) 
 

Applying similar substitutions for the linear polynomial approximations, the analytic 

velocity integral from staging to PLF is: 

 (5.21) 

 
where Vex2, and τ2, are the vehicle constants for stage 2.  The integrals for the position: 
 

            (5.22) 

 
are determined by substituting the quadratic (or linear) sinγ polynomial.  The velocity 

term now assumes a quadratic (or linear) solution of Eq. (5.20) [or Eq. (5.21)]: 

 
           (5.23) 

 
                (5.24) 

 
Substituting Eq. (5.23) into Eq. (5.22) results in the integral solution for position from 

start until staging: 

 

(5.25) 
 

while substituting Eq. (5.24) results in the integral solution for position from staging until 

PLF jettison: 
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  (5.26) 

 
Notice that there needs to be knowledge of the initial flight path angle (γ0) and its 

derivative ( ) in order to solve Eqs. (5.8)-(5.14).  The initial flight path angle is known 

from the set initial conditions (r0 and V0) and may be determined from Eq. (5.6) if an 

initial estimate of α0 (or θ0) is made.  The additional free parameters needed to evaluate 

the analytic solutions include the position and velocity at the staging point (rstage1 and 

Vstage1), the burn time from staging to the PLF jettison event (Tgo), and the pitch angle at 

PLF jettison (θPLF).  The target conditions (rPLF and VPLF) for the analytic solutions to part 

one of the ascent trajectory are fixed due the heat-rate constraint at PLF jettison, such that 

meeting the target states at PLF jettison meets the heat-rate constraint from Eq. (2.2). 

 
 
5.3.2   Analytic Solution: Part Two 
 

The second part of the analytic solution pertains to the trajectory from PLF 

jettison to MECO conditions.  Refer to Fig. 5.3, which shows that for the second solution, 

only one quadratic polynomial approximation is required for the sinγ profile, and 

subsequently, only one quadratic polynomial approximation is required for the cosα 

profile.  The corresponding analytic solution for the velocity is: 

 (5.27) 
 

where Tgo is the unknown burn time from PLF jettison to target conditions.  The integral 

solution for the position is: 
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 (5.28) 
 

The parameters needed to solve the analytic solutions for part one that have been 

developed in this chapter are presented in Table 5.1. 

 
Table 5.1:  Summarization of parameters for analytic solutions to part one of the ascent trajectory. 

Part One:  Start of Simulation to PLF Jettison 
Event Parameter Condition 

Start of burn position, r0 known 
Start of burn velocity, V0 known 
Start of burn flight path angle, γ0 known 
Start of burn steering angle, θ0  (or α0) free 
Staging point position, rstage1 free 
Staging point velocity, Vstage1 free 
Staging point flight path angle, γstage1 free 
Staging point burn time for stage 1, tstage1 known 
Target Conditions position, rPLF known 
Target Conditions velocity, VPLF known 
Target Conditions flight path angle, γPLF known 
Target Conditions steering angle, θPLF  (or αPLF) free 

Target Conditions Tgo free 
 
 
The parameters needed to solve the analytic solutions for part two are presented in Table 

5.2. 

Table 5.2:  Summarization of parameters for analytic solutions to part two of the ascent trajectory. 

Part Two:  PLF Jettison to MECO 
Event Parameter Condition 

Start of burn position, rPLF known 
Start of burn velocity, VPLF known 
Start of burn flight path angle, γPLF known 
Start of burn steering angle, θPLF free 
Target Conditions position, rf known 
Target Conditions velocity, Vf known 
Target Conditions flight path angle, γf known 

Target Conditions Tgo free 
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The polynomial relationships and analytical solutions for position and velocity aid 

in reducing the number of free parameters listed in Tables 5.1 and 5.2.  The analytic 

solution for part one requires only three of the free parameters listed in Table 5.1: γstage1, 

θPLF, and Tgo, where Tgo is the burn time from the staging point to the PLF jettison.  The 

initial sinγ coefficients in Eqs. (5.8) may be determined by assuming at least one of the 

initial steering angles, either θ0 or α0, which allows for the remaining relationships in Eqs. 

(5.9)-(5.14) to be solved. Table 5.2 indicates that there are two free parameters needed to 

evaluate the analytic solutions for part two.  The initial guess for Tgo, that is, the burn 

time from PLF jettison to MECO conditions, can be approximated by the impulsive 

solution: 

          (5.29) 

 
where the ideal impulsive change in velocity is the difference between the desired speed 

and initial speed, ΔV = VD – V0.  Thus, the analytic solutions for part two are dependent 

on only one initial guess for the unknown initial pitch angle, θPLF.  For both the analytic 

solutions to part one and part two, boundary conditions, where appropriate (desired initial 

and final steering angles and desired initial and final positions and velocities) were 

extracted from the off-line optimized ascent trajectory solutions. 

 
 
5.3.3 Iterative Updating Procedure 
 

After making initial guesses for the appropriate unknown parameters, the analytic 

relationships, defined in the previous section, determine the projected ascent trajectory.  

The parameters are updated through an iterative procedure that corrects the errors in the 
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projected and desired position and velocity, (rend, Vend) and (rD, VD), respectively.  For the 

analytic solution to part one, the iterative procedure first attempts to find the correct Tgo 

through a linear search based on the velocity errors: 

        (5.30) 

 
where dt/dV is the inverse of Eq. (5.4) and Verror=VD – Vend.  The remaining two 

parameters are updated by using the position error, but there is only one condition to 

update two parameters.  This issue is resolved by using the pseudoinverse of a matrix, 

which performs the matrix inverse of a non-square matrix.  Then the parameter updates 

(δu) based on the position error (δr) becomes: 

      (5.31) 

 
where  is a scaling factor that adjusts the search direction, and M is the matrix of 

partials that is constructed by making small changes in the parameters and ‘shooting’ 

perturbed trajectories so that the partials are finite differences: 

 

            (5.32) 

 
The pseudoinverse finds the solution that minimizes .  Then the parameter updates 

are: 

          (5.33) 

 
The iterative procedure for the analytic solutions to part two follows a similar updating 

procedure, where the Tgo estimate (time from PLF to MECO) is updated using the 
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velocity errors and the initial guess for the pitch angle at PLF jettison, θPLF, is updated 

using the resulting position errors. 

 
 
5.3.4 Applying the Analytic Solutions to PEG 
 

PEG solves the two-point boundary-value problem for vacuum flight through an 

iterative process with fixed initial conditions.  The routine initializes the controls: 

     (5.34) 

 
and uses the impulsive solution for the initial ΔV.  Then the velocity to be gained by 

thrust is: 

           (5.35) 

 
 
where ΔV is just a scalar.  Therefore, the analytic solutions developed thus far, can serve 

as an alternative initialization for PEG, where the scalar ΔV’s from the analytic solutions 

can be used to determine . 
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Chapter 6 
 
Results of the Analytic Solution Method 
 
6.1  Overview 
 

This chapter examines the analytical solution approach to the optimal control 

problem, substituting polynomial approximations for the steering profiles.  The solutions 

to the analytic approach were applied to PEG, the Shuttle-based guidance routine, 

modeled in Simulink, where the alternative initialization provided by the analytic 

solutions proved to be useful for convergence of the vacuum flight problem. 

 
6.2   Results of the Analytic Solutions: Part One 
 

The analytical solution method described in Chapter 5 has been formulated into an 

iterative routine that updates initial guesses on steering angles (θ and γ) and time-to-go 

(Tgo) by correcting the errors in both position and velocity.  Initial results of the ascent 

trajectory showed significantly large errors in the projected position, leading to the 

presumption that there were issues with the inherent polynomial approximations for sinγ 

and cosα.  To adjust these errors, it was decided that the projected position should be 

calculated using trapezoidal integration, instead of assuming a quadratic (or linear) 

profile for the velocity (V) as in Eq. (5.25).  The trade-off for this adjustment is the 

introduction of a numerical integral into the analytic solutions.  The solutions, however, 

show a more similar convergence to the optimal values with this numerical adjustment.   

The optimal trajectory solutions obtained through off-line direct parameter 

optimization will serve as the basis for the desired values of the unknown parameters, 

previously denoted in Chapter 5.  Based on these solutions, the initial guesses for the 
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unknown parameters were chosen close to the optimal values in order to provide a faster 

convergence rate for testing purposes.  An initial angle (θ0) was assumed to be 27 deg, 

where the remaining unknown parameters are summarized in Table 6.1. 

Table 6.1:  Initial guesses for analytical solutions. 
Parameter Value Optimal 

Solution Part One    

θPLF 17 deg 17.03 deg 
γstage1 5 deg 5.37 deg 
Tgo 100 sec 103.87 sec 

Solution Part Two     
θPLF 17 deg 17.03 deg 

 
 
The more complicated analytic solution for part one makes up the more interesting set of 

results, and will be the bulk of the discussion in this chapter.  Using the estimates listed in 

Table 6.1, the initial analytical results are summarized in Table 6.2. 

 
Table 6.2:  Converged parameter values from analytical solutions for part one. 

Converged Solutions 

Scalar Iterations Integration Steps Tgo(sec) θPLF (deg) γstage1(deg) 

αs = 1 247 N1= N2= 100 131.81 21.36 9.36 
 
 
Recall αs is the scalar that adjusts the search direction of the pseudoinverse.  For the 

solutions to part one, which include quadratic and linear polynomial approximations for 

both sinγ and cosα, N1 refers to the number of integration steps taken for the quadratic 

approximation and N2 refers to the number of integration steps taken for the linear 

approximation.  The burn time, Tgo, for the solution to part one, refers to the burn time to 

the PLF jettison event, relative to the staging point.  The converged solutions listed in 

Table 6.2 all bear a significant difference from the optimal values.  Figures 6.1 and 6.2 

show the resulting velocity and position profiles from the analytic solutions.   
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Figure 6.1:  Analytical solution for velocity for part one. 

 

 
Figure 6.2:  Analytical solution for position for part one. 

target altitude  

target velocity 
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Though the target conditions are reached, the differences in the analytical solution 

and direct curve fit for the velocity profile in Fig. 6.1 indicate that the converged 

parameter solutions could benefit from adjustments to the iteration procedure.  This 

includes adjusting the step size of the scalar search direction (αs) and the number of 

trapezoidal integration steps, N1 and N2.  Table 6.3 summarizes just a few variations of 

these factors and the resulting parameters: 

 
Table 6.3:  Converged solutions with variations in iteration parameters. 

Converged Solutions 

Case Scalar Iterations Integration Steps Tgo(sec) θPLF (deg) γstage1(deg) 

1 αs = 1 247 N1= N2= 100 131.81 21.36 9.36 
2 αs = 1 593 N1= N2= 50 235.37 34.44 22.43 
3 αs = 1 116 N1= N2= 200 99.49 15.23 3.23 
4 αs = 1 133 N1=50, N2= 200 111.28 17.67 5.67 
5 αs = 0.5 494 N1= N2= 100 131.86 21.36 9.36 
6 αs = 0.5 178 N1= N2= 300 90.2 13.22 1.23 
7 αs = 0.25 433 N1=100 N2= 200 106.73 16.69 4.69 
8 αs = 0.25 426 N1=100 N2= 300 97 14.71 2.72 

  
 
The highlighted portions of Table 6.3 were determined to be the combinations of 

parameters that provided the “best” converged solutions, that is, the converged solutions 

were close to the desired optimal values.  Case 4 produces steering angles close to the 

optimal values, while Case 7 produces a converged solution for Tgo that is closer to the 

optimal jettison time.  In either case, the converged solutions provide a “good” initial 

guess for the full PEG guidance simulation. 

 
6.3   Results of the Analytic Solutions: Part Two 
 

The results of the analytic solutions for part two, that is the solution from PLF to 

MECO, are summarized in Table 6.4. 
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Table 6.4:  Converged parameter values from analytic solutions to part two. 

Converged Solutions 

Iterations Tgo(sec) θPLF (deg) θf (deg) 

5 336.52 17.64 20.56 
 
Figures 6.3 and 6.4 show the resulting position and velocity profiles for the analytic 

trajectory from PLF to MECO. 

 

 
Figure 6.3:  Analytic solution for position for part one. 
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Figure 6.4:  Analytic solution for velocity for part two. 

 
 
The converged solutions are very close to the optimal off-line results, and Fig. 6.4 shows 

that the analytic solutions follow match well to the polynomial approximation. 

The full analytic solution for the ascent trajectory has been plotted in Figs. 6.5 and 

6.6.  The results of the off-line optimization have also been included for comparison. 



64 
 

 
Figure 6.5:  Analytic radius vs. optimal radius. 

 
 

 
Figure 6.6:  Analytic velocity vs. optimal velocity. 
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The analytic solutions result in a longer flight time, and as indicated on Figs. 6.5 and 6.6, 

predict a later PLF jettison time than the optimal jettison time.  The results of the analytic 

solutions have been summarized in Table 6.5. 

 
Table 6.5:  Summarization of analytic results. 

Parameter Optimization Analytic 
tPLF  (s) 441.02 468.93 
tf  (s) 769.45 805.46 

rf  (km) 6518.89 6518.89 
Vf  (km/s) 7.84 7.84 

 
 

Though the analytic solutions did not converge to the optimal values, the idea of 

producing an analytic result is to provide PEG with an initial “good” guess. 

 
 
6.4   PEG Solutions 
 

The PEG algorithm, which solves the on-board guidance problem in real-time, has 

been modeled in Simulink and is shown here for completeness: 
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Figure 6.7:  Block diagram of PEG modeled in Simulink. 
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The ascent problem has been divided into three sub-problems: 

1. Mode 1:  Start of simulation to PLF jettison. 

2. Mode 2:  Staging point to PLF jettison. 

3. Mode 3:  PLF jettison to MECO conditions. 

where the guidance routine attempts to match the final states to the appropriate target 

conditions.  The first mode should be the most difficult, as it is trying to match a 

trajectory from the starting point, through the staging event, to the PLF jettison event, 

where recall the states at PLF jettison are fixed due to the heat-rate constraint imposed at 

the jettison event. 

The first important result to note, is that when PEG self starts with the 

initialization presented in Section 5.3.4, the PEG routine will not converge on its own.  

Therefore, recognizing that instead of requiring a thrust vector, the key factor to initialize 

PEG is to provide a good initial estimate of the ΔV’s, the analytic solutions serve as the 

alternative method to initializing the guidance routine.  Then, the scalar ΔV’s from the 

converged analytic solutions are applied to PEG by: 

 

                (6.1) 

 
where  is a unit vector aligned with the velocity and  is the velocity vector 

evaluated from the navigation guidance pass. 

Table 6.6 lists the scalar values of ΔV determined from the converged analytic 

solutions and can be substituted into Eq. (6.1) to determine the initial estimates of the 

velocity-to-go for PEG.  Table 6.7 summarizes the results of PEG, using the updated 

version of the initial estimates. 
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Table 6.6:  Scalar values of ΔV as determined by analytic solutions. 

Event ΔV (km/s) 
Start to Staging 4.0763  
Staging to PLF 0.562  

PLF to MECO 1.9707  
 
 

Table 6.7:  Summarization of PEG results. 
Parameter Value 

Final mission elapsed time 771 s 
Final simulation time 326.9 s 
Final position (r) error 5.5 m 
Final velocity (V) error 0.2781 m/s 
Final flight path angle (γ) error 7.59x10-4 deg 
final inclination (i) error  -6.62x10-8 deg 
final mass (m) 172,780 kg 

 
 
Table 6.8 compares the final values of the jettison time (tPLF), total flight time (tf), and the 

final vehicle mass (mf) from the PEG solutions and the off-line optimal solutions.   

 
Table 6.8:  Comparison of PEG simulation results.  

Parameter Optimization PEG 
tPLF (s) 441.02 444.00 
tf (s) 769.45 771.00 

mf (kg) 173,430 172,780 
 
 
The PEG guidance solutions produce a slightly longer total flight time, exceeding the 

optimal total flight time by approximately 1.5 seconds.  This seemingly small flight time 

difference, in fact, still impacts the optimal fuel consumption, where the longer PEG 

solution results in a final mass of 172,780 kg, corresponding to an excess of 650 kg of 

burned fuel than the optimized solution.  Figures 6.8–6.13 illustrate the important 

trajectory parameters from the converged solutions resulting from PEG, and are 

compared to the optimal off-line trajectory parameters, previously presented in Chapter 4.   
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Figure 6.8:  Converged solutions for radius of the ascent trajectory. 

 

 
Figure 6.9:  Converged solutions for velocity of the ascent trajectory. 
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Figure 6.10:  Converged solutions for vehicle mass. 

 
Figure 6.11:  Converged solutions for the Free Molecular Heat Rate (FMHR). 

 



71 
 

 
Figure 6.12:  Converged solutions for the pitch steering profile. 

 
Figure 6.13:  Converged solutions for the flight path angle profile. 

 PEG 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In general, using the alternative initialization parameters to determine , PEG is 

able to converge to the desired target conditions.  Figure 6.8 shows the ascent radius 

history for the PEG solution and the optimal solution.  Note, PEG deviates from the 

optimal solution from the start of initialization to the PLF jettison, then seems to match 

the optimal profile upon reaching the PLF jettison event.  Figures 6.9 and 6.10 show that 

the velocity and vehicle mass solutions match almost identically.  The heat-rate constraint 

history has been plotted in Fig. 6.11, where the trends in the PEG profile and optimal 

profile are very close.  Most importantly, it is evident that the heat-rate constraint which 

fixes the target states at the PLF jettison point, has been met in the PEG simulations, and 

the jettison time matches that of the optimal value.  The pitch profile in Fig. 6.12 

illustrates where PEG may have convergence problems.  The pitch steering predicted by 

PEG is very poor (when compared to the optimal pitch profile) from the start of 

simulation to the jettison event.  Once the PLF jettison event occurs, though, the pitch 

profile matches the optimal solution.  Despite the discrepancy in the PEG pitch profile to 

the optimal profile, PEG still does a good job of estimating the pitch angle until the 

staging point.  During the burn from the staging point to PLF jettison, PEG is very 

unstable, until Tgo is approximately 40-60 seconds, where upon, the guidance routine 

holds the last solution.  This is a standard substitution used in PEG as the solutions 

typically diverges for “short” values of Tgo.  Figure 6.13 shows the flight path angle 

history, where the PEG profile deviations from the optimal solution are due to the non-

optimal analytic solutions, which used polynomial approximations for the steering 

profiles. 
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It is interesting to note that the predicted jettison time from the PEG routine 

becomes fairly unstable at the staging point, shown in Fig. 6.14, at approximately 337 s.   

 

 
Figure 6.14:  Predicted PLF jettison time vs. mission elapsed time. 

 
 
The predicted MECO time, shown in Fig. 6.15, however, is very stable, and the mission 

elapsed time actually ends at the predicted MECO time of 771 s.  The initial transient 

portion occurs for approximately the first ten passes to PEG, then stabilizes. 
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Figure 6.15:  Predicted MECO time vs. mission elapsed time. 

 
 

If the ascending node and angle of inclination histories resulting from the PEG 

solution are examined, the problems with steering, and thus, the deviation from the 

optimal solution, may be attributed.  Figures 6.16 and 6.17 indicate that the respective 

angles are not only being constrained at the initial and final states, but also are being 

constrained at the staging point and the jettison event. 
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Figure 6.16:  Profile of ascending node from PEG solution. 

 

 
Figure 6.17:  Profile of angle of inclination from PEG solution. 
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These additional constraints, which are not imposed in the optimal solutions, may be the 

cause of unnecessary out-of-plane steering, which would result in the unstable pitch 

profile and the longer flight times.  Further testing could be done to eliminate these extra 

constraints and to verify whether the PEG solution would then match the optimal off-line 

ascent solution.  

 Perhaps another explanation for the poor PEG convergence of the ascent solution 

from start to PLF is the use of Jaggers’ PEG formulation [23].  The complicated routine, 

formulated for the upper stage of the Shuttle, may not be able to handle the interior-point 

constraint discussed in this thesis.  This would explain why the PEG simulation exhibits 

more optimal performance from PLF jettison to MECO conditions.  Therefore, future 

work would include reformulating the PEG routine to determine how to release the extra 

constraints on steering at the staging points and to properly incorporate the interior state 

constraint for the first stage of the ascent trajectory. 
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Chapter 7 
 
Conclusions 
 
7.1  Summary and Conclusions 
 

The vacuum ascent trajectory for the Ares V CaLV is solved using optimal control 

theory with interior-state constraints.  Under the assumption of linear steering, the full 

costates were simplified and a method of direct parameter optimization was applied to 

find the optimal control steering parameters.  Comparisons to the OTIS trajectory, 

provided by the Marshall Space Flight Center Trajectory and Performance Team, show 

similar trends in the trajectory parameters, despite simplifications in atmospheric and 

vehicle modeling made in the optimization routine. 

The analytic solutions were also shown to successfully converge to the optimized 

trajectory.  Though the inherent polynomial approximations caused slight differences in 

the optimal solutions, because the overall goal was to provide the on-line guidance 

simulation with an appropriate initial estimate, these differences were deemed negligible. 

Utilizing the analytic solutions as the initialization, the PEG simulation successfully 

converged to target conditions.  The PEG solution also showed good comparison to the 

off-line optimization solution, and especially performed well during the second thrust 

stage from PLF jettison to the MECO conditions.  Without the analytic solutions, PEG 

could not converge, which implies that the analytic solution may provide an alternate 

method in determining a good initial estimate for PEG to start its algorithm. 
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7.2  Future Work 
 

Although this thesis presents the feasibility of using optimal control theory, direct 

optimization, and analytical methods to solve the ascent trajectory problem, there still 

remains a significant amount of work.  First, the proper transformation, which would 

transform the linear steering parameters into the full costates, needs to be formulated, so 

that the analytic costate jump condition may be included in the optimization routine.  It is 

desirable to take advantage of the analytic solution, as it decreases the number of 

parameters needed for optimization.  Additional work should also be done by 

reformulating the PEG simulation, where the unnecessary constraints may be causing the 

solution to deviate from the optimal off-line solution. 

To further validate the optimization routine, Monte Carlo simulations should be 

performed, which should include dispersions in the initial state vector and atmospheric 

characteristics.  The simulations for this thesis used a fairly simple method of modeling 

atmospheric characteristics.  A more complex, realistic method of modeling the 

atmospheric characteristics should be applied to the optimization routine in order to 

verify its robustness. 
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Appendix A 
 
Exoatmospheric Powered Flight Guidance and Trajectory 
Optimization 
 
A.1  Powered Explicit Guidance 
 
The solution to the two-point boundary-value problem for exoatmospheric guidance and 
trajectory optimization considers all necessary conditions for optimality.  A brief 
summary of the PEG method will be presented here, but full details are discussed in Ref. 
21. 

 
Figure A.1:  Basic PEG routine schematic. 
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The iterative PEG algorithm, described by the basic schematic in Fig. A.1, self-starts with 
an arbitrary initial value , sets  as a unit vector aligned with the velocity 
vector, and uses the impulsive solution for the initial .  Then PEG computes the basic 
first order integrals, L, S, J, Q, K, and the Predictor step projects a trajectory to determine 
the predicted states,  and .  The Corrector step makes the proper adjustments to 
determine the velocity-to-go, .  A convergence test is performed to determine whether 
the desired velocity has been met, and is either returned to the vehicle’s guidance scheme, 
or goes back to the initialization step. 
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