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ABSTRACT 

 

 For more than twenty years, shipment consolidation has been utilized as a method 

to significantly decrease the costs of transporting goods, people, and information. Due to 

ever-increasing fuel costs and customer expectations, consolidation strategies are 

becoming even more important in the freight transportation industry.  

 Using the hub-and-spoke model has also been widely recognized as an effective 

design for shipment consolidation. This shipment consolidation takes advantage of 

transportation economies of scale by gathering the shipments from clustered origins 

around a transshipment center, called a hub, transporting them in bulk to other hubs, and 

distributing the shipments to clustered destinations. Shipment delivery times and 

transportation costs decrease as more and more shipments share vehicle capacity and 

allow for more periodic service and increased vehicle utilization.  

 Previous research and literature have addressed consolidation and hub-and-spoke 

network problems for years. However, many of the models focus on systems with larger 

shipment volumes that allow for very efficient network configurations and operation. The 

proposed research focuses on networks that consist of sparse or indefinite levels of 

shipment quantities and unclear opportunity to consolidate the various origins and 

destination.  

 This research proposes mathematical models and solution methodologies that will 

determine the most advantageous set of hub-to-hub routes for the consolidation and 

transportation of less-than-truckload (LTL) shipments, shipments that originally were 

transported individually by commercial trucking. A global network model to identify uni-

directional (one-way) routes between sets of two hubs is proposed as a binary integer 
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program. However, due to complexity concerns, a specialized methodology has also been 

designed to solve the original problem by solving a set of sub-problems that combine to 

form a global solution. The specialized methods include feasibility check, sub-problem 

optimization, and conflict resolution stages. 

 Data from a Fortune-500 manufacturing company, describing a large-scale 

domestic LTL network, has been provided as a case example for the proposed methods. 

Results are provided in which 8 scenarios are identified to save transportation cost when 

compared to previous policy. The methods can also be extended and tailored in a variety 

of ways. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

1.1 Road Transportation  

 

 

Road and truck-based transportation are among the most significant modes of 

freight transportation and their impact on the economy of the United States is revealed 

through vast amounts of freight bill and freight volume.  Road transportation includes 

both Less-than-truckload (LTL) transportation and Full Truckload (FTL or TL) 

transportation.  The objective of these transportation methods is to delivery shipments 

from dispersed origins to many other dispersed destinations in an efficient manner. While 

some private, production-based companies use their own vehicle fleet and workforce to 

provide these freight transportation services, there exists a large collection of commercial 

carriers and third-party companies that plan and execute such services at a competitive, 

yet profitable rate. 

 

 
Figure1.1 Freight Providers such as FedEx provide Less-than-truckload services.  
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The difference between shipping LTL and TL is substantial. Full Truckload 

transportation is usually reserved for one large shipment bound for just one destination or 

very few closely-located destinations. Because TL shipments are relatively large, there is 

little to no opportunity for the consolidation of shipments from multiple origins due to 

vehicle storage space and weight constraints.  

Service providers of full truckload transportation can be small, single-location 

operations that service a small region or they can be large companies with intricate 

transportation networks. These service providers, or carriers, typically provide one-way 

service from origin to destination. By making arrangements with customers in the 

vicinity of various destinations, the truckload provider can control the movement of 

trucks so as to reduce the amount of empty travel and backtracking, called back-haul, 

while giving the vehicle drivers the opportunity to return home for rest and time off. 

Larger truckload carriers can also create their own network of routes that service a very 

large area and determine effective relay points to allow their drivers to return to their 

respective homes.   

Commonly, truckload carriers use the largest available vehicles to ship larger 

orders at one time. The standard trailer has recently expanded from 48 to 53 ft long and 

approximately 8 feet wide and 10 feet tall. Often, TL carriers can offer other specialized 

service for specific product groups such as oversized loads, hazardous material, or 

refrigeration for perishable items. For safety reasons, government regulations restrict full 

truckload gross weight to 80,000 pounds, which includes the weight of the empty 

trailer(s) and truck as well
1
. The weight of any empty truck and trailer can exceed 30,000 

                                                
1 Regulations available at www.dot.gov > Federal Highway Administration Freight Management and 

Operations>Vehicle Size and Weight> Regulation 23 CFR 658 
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pounds, leaving approximately 50,000 pounds for freight. Therefore, trucks may “weigh-

out,” or become full with respect to weight limits. Similarly, due to the variety of sizes 

and shipment composition, full trailers may also “cube out” when the weight limit has not 

been reached but the overall trailer volume has been fully utilized.  Truckload rates are 

typically quoted on a per-mile basis that is dependent upon delivery geography, accessory 

services, and delivery deadline.  

Less-than-truckload transportation is very different from TL from both an 

operational and physical perspective. LTL carriers do business with all types of 

organizations from small businesses to large manufacturing companies. The objective of 

these carriers is to transport as many small shipments from a large number of origins as 

possible. The LTL carriers may perform local pickup functions from shipment origins 

and transport them to their own facilities, called hubs. In academia and industry alike, 

hubs go by many names such as transshipment points, distribution centers, make-

bulk/break-bulk centers, etc. At these points, shipments from many origins consolidate 

into larger vehicles, which are loaded with shipments that will be transported to closely 

located destinations. These trucks will transport the full trucks to another hub location, 

where the individual shipments will be dispersed to their respective destinations. Trucks 

used for longer distances of LTL transportation are similar to those used for full 

truckload, and have similar weight and volume constraints. The same government 

regulations affect how much they can carry in weight.  

In many ways, an LTL carrier employs TL strategies over long distance routes, 

called long-haul, but has the resources to service well-dispersed locations through 

extensive networks that may include more than several dozen hubs nationwide. In fact, 
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the LTL networks of companies like Yellow Freight or FedEx may consist of more than 

one hundred transshipment terminals. Transshipment terminals are centralized facilities 

that are used to very highly utilize vehicle space by combining shipments from different 

regions that are bound for similar destination areas. The extensive networks employed by 

LTL carriers to transport goods from very large numbers of origins to even more 

destinations are often referred to as hub-and-spoke, or simply hub networks. 

For shipments that travel relatively long distances, such as cross-country, the 

process of pickup, long-haul, and delivery may take an individual shipment through a 

series of several hub facilities, depending on the configuration and scope of that 

particular carrier’s network.   

 A shipment or set of shipments from a common origin is usually classified Less-

than-Truckload when it weighs more than 100 pounds (less than 100 pounds would 

typically be considered parcel) and less than 20,000 pounds. Shipment dimensions also 

greatly affect the decision to ship something LTL. For example, single shipments longer 

than 12 feet may be shipped TL. Naturally, shipments with very large weight or with very 

low density are commonly shipped TL because LTL companies want to ship many 

individual orders at once, making vehicle capacity very valuable.  

 

1.2 Less-than-truckload Pricing and Economics 

  

 The process of pricing LTL shipments is relatively complex. Typically, rates are 

based mostly on freight class. The National Motor Freight Association determines the 

National Motor Freight Classification, which defines the class for nearly all possible 
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items that might be shipped using LTL. This class is based primarily on product density, 

but also includes other factors like item value and fragility, or "loadability". Classes 

range from 50 to 500, which represent the percentage factor applied to a base rate. 

Typically, denser materials carry a rating lower than 100, thus reducing the base rate. 

Rates are determined by geographic location of the origin and destination as well. The 

resultant LTL rates are quoted on a per-100 pound (termed "cwt") basis. Therefore, a 200 

pound shipment rated at 112 cwt would cost $224 to ship. LTL carriers may also give 

significant discounts of greater than 50 % through contractual agreements with corporate 

customers that ship very high quantities.  

 In return for convenience and assurance of safe transport, LTL carriers demand 

high rates per shipment from customers, while still maintaining the cost feasibility of the 

customer. These customers typically could not afford to send each shipment directly to its 

destination, while maintaining strict shipping deadlines, without some method to 

significantly reduce the many fixed, variable, capital and operating costs of long-haul 

transportation. For the private company to justify using their own transportation 

resources, they must cover several costs, such as the leasing or purchasing of vehicles, 

the cost of additional storage space for the storage and handling of shipments, the costs of 

maintaining a dedicated workforce responsible for freight shipment and handling, and the 

fuel energy costs of operating freight vehicles. Therefore, one major method of reducing 

these costs, which increase with the number of shipments made, has been to consolidate 

many smaller shipments into a larger vehicle to be transported together, thus sharing the 

total cost among each shipment.  
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Unfortunately, companies should also be warned of the disadvantages of private 

shipment consolidation. Most methods of shipment consolidation increase inventory 

holding time of shipments, which may affect customer relationships. In addition, the 

common company may not have enough consolidated shipments to make up for the large 

costs of operating its own transportation network. Therefore, smaller companies with 

limited shipments may be at the mercy of the public LTL carrier.  

However, larger companies that have the adequate resources and shipment 

volume to consolidate have a strong case for private LTL transportation.  Firstly, the 

commercial LTL company's network often consists of both regional and local hubs that 

are used for transshipment and distribution operations. Therefore, the process of an 

individual shipment from the customer travelling through an extensive network with 

multiple stops often results in longer travel times, compared to more dedicated  routes. 

Secondly, shipments that are loaded and unloaded several times during the course of 

travel are subject to the inherent chance of shipment damage. Although commercial LTL 

carriers uphold certain operational standards, accidents do happen. By efficiently 

acquiring the physical resources and reallocating existing resources, private consolidation 

by an organization through its own transportation network can be a profitable venture. 

Because private LTL carriage introduces an opportunity for companies to 

significantly decrease logistics cost, it will be the main focus of this research, specifically 

the smaller company with limited shipment quantities. 
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1.3 Introduction to Consolidation Strategies 

  

 For both the commercial carrier and the company that decides to use private 

transportation resources for less-than-truckload shipments, there are three major types of 

freight consolidation strategies or techniques used to decrease costs. The first strategy is 

multi-stop consolidation, where less-than-truckload shipments are picked up and dropped 

off at respective locations by the same vehicle through multiple-stop routes. The second 

strategy is often referred to as temporal consolidation, where shipment schedules within 

one facility are adjusted so that many shipments are shipped using single large shipment. 

The third strategy is considered facility consolidation, where small shipments among 

several facilities travelling long distances are consolidated into large shipments travelling 

large distances and small shipments over small distances [13]. 

 For many manufacturing companies, temporal and facility consolidation tend to 

apply best because a large majority of the freight movement takes place between dense 

areas of production (manufacturing facilities or other shipment origins) and consumption 

(retailers or other vendors). Therefore, hub networks can be set up so that shipments that 

originate within a common area can combine together to make full truckloads that travel 

to closely-located destinations. This will allow the shipper to utilize their vehicles better 

and share the transportation cost among more shipments, effectively outweighing the cost 

of sending each order individually.  
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1.4 Hub-and-spoke Networks 

 

In recent years, hub-and-spoke networks have been implemented within the 

telecommunication and airline industries and applied by both parcel and freight carriers. 

These industries greatly rely on methods to reduce overall network costs, including 

transportation and infrastructure cost.  Fortunately, the opportunity may be present for the 

private enterprise to implement the same models to effectively minimize transportation 

costs. Hub models allow for the sharing of transportation costs by utilizing larger vehicles 

along common, direct routes, thereby distributing the transportation cost among large 

shipment quantities.  These types of models can take great advantage of clustered origins 

and destinations that are capable of encompassing large numbers of individual shipments. 

 In freight delivery applications, the hubs represent transshipment locations for 

consolidating smaller LTL shipments from various origins and de-consolidating the 

shipments before distributing them to their respective destinations. The hub facilities 

typically have a defined "service radius", which would determine which individual origin 

and destination facilities that can utilize the hub facility for consolidation. The spokes 

then represent the routes used for pickup and delivery operations. Networked hub models 

include several interconnected hub-and-spoke systems so that shipments from a wider 

range of origins travelling to a wider range of destinations can take advantage of 

consolidated transportation. Larger hub networks allow each individual shipment to take 

a choice of routes that allow for more opportunities to find significant logistics cost-

saving configurations.  
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Figure 1.2 Diagram of a Generic LTL Transportation Network. 

 

 Other modifications to the basic hub-and-spoke configuration exist to share the 

truckload transportation cost among a larger amount of shipments, which effectively 

lowers the total cost of transportation (or results in higher cost savings when compared to 

less-than-truckload transportation). The first extension to the classic hub-and-spoke 

model is a hub-and-spoke configuration with added LTL transportation. This model is 

utilized in instances when LTL cost is sufficiently lower for shorter distances, so that 

shipments can be added to a consolidated route with little additional cost. Another model 

is the classic hub-and-spoke model with intermediate hubs, where significant shipment 

volumes are dropped off for distribution, other shipments may be picked up, and the main 

route is continued to other hub locations.  Other approaches include expanding the 

service radius to consolidate more origins and destinations. 
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Figure 1.3 Extensions of the Classic Hub-and-spoke Consolidation Model 

 

 

 

1.5 Introduction to the Proposed Models 

  

 In this research, the classic hub-and-spoke configuration without extension will be 

the underlying model used with a mathematical programming framework to solve less-

than-truckload consolidation problems. The decision to implement a shipment 

consolidation policy is not an easy one for the private company with limited shipments; 

therefore, a method to help determine if consolidation is advantageous is much needed.  

 It has been argued that a private shipment consolidation and transportation 

strategy can decrease logistics costs by taking advantage of transportation economies of 

scale. The proposed model will be especially suited for the organization that currently 

relies on transportation service providers to deliver relatively smaller amounts of 

shipments to highly dispersed destinations. The model will also be better utilized by 
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companies with a well-documented history of less-than-truckload costs, origin and 

destination locations, and demand.  

 The mathematical model in the form of an integer program will define an existing 

distribution network consisting of shipment flow paths from several origins to several 

destinations, with each flow path described by the total amount or size of shipments. 

Each flow path will also be associated with the per-unit cost of direct transportation. A 

set of potential hub locations will be defined to act as consolidation centers where 

shipments from origins within a defined local service region will be gathered and shipped 

together to other consolidation centers, where they are distributed to their respective 

destinations. The fixed cost per trip of consolidated transportation between hubs will be 

defined as well as the per-unit cost of local transportation from each hub to its serviceable 

origin and destination points.  Space constraints will be set to limit the total amount of 

shipments that a consolidated truckload vehicle can transport at one time.  

 The goal of the mathematical model is to determine the set of one-way routes 

between two hubs, called hub arcs, which can be used for less-than-truckload 

transportation. Only routes that result in less transportation cost than previous less-than-

truckload costs are chosen.  Along with routes, the most beneficial assignment policy for 

the various origins and destinations will be determined. A specialized solution 

methodology is developed to solve the model. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 

 Much research has been conducted to investigate and model consolidation 

strategy and hub-and-spoke networks with applications in the fields of transportation 

logistics and distribution. For more than 20 years, strategical issues have been studied, 

including the effects of important network configuration parameters like dispatching 

policy and number of consolidation facilities on customer service issues like 

consolidation cycle time. Probabilistic models were employed to determine optimal 

operational aspects of consolidation like shipment dispatching. Hub-and-spoke models 

began as facility location problems and relied on mathematical programming to locate 

one hub within a set of demand nodes to model the distribution of goods from warehouse 

to retailer. Models varied in objectives, but typically minimized the total transportation 

cost of satisfying all demand points. Soon thereafter, facility location problems were 

extended to model the transportation of shipments from origin to destination. To 

determine the current state of consolidation research, literature in each of these uniquely 

significant areas was reviewed. The major issues that this literature review addresses are 

consolidation strategy, probabilistic models, and mathematical models used to determine 

optimal hub network design. 

The models proposed in this research will be inspired by the uncapacitated hub 

network design problem and hub arc location problem. While hub network design 

problems such as the p-hub median and hub location problem minimize total 
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transportation costs by changing hub location and node assignments, the hub arc location 

problem determines the best subset of hub-to-hub arcs that should be opened for 

consolidated truckload service.  

The literature that most inspired the proposed model are the Cluster Hub Location 

problem (CHLP), first formulated by Wagner in 2001[32, 33], and the Hub Arc Location 

problem (HAL), formulated by Campbell et al. in 2007[6, 7]. The contribution of the 

CHLP to this research is a non-restrictive node assignment policy, where each origin-to-

destination path of shipment flow can choose to use direct service, comparable to LTL, or 

use a hub-to-hub route representing consolidated truckload service. The main 

contribution of the Hub Arc Location problem is a focus on choosing arcs that would 

ensure enough volume to sustain relatively full and frequent service and justify the 

assumption of economies of scale. The Hub Arc Location problem assumes, however, 

that all shipment origins and destinations must utilize the resulting consolidation network. 

   

2.1 Consolidation Strategy 

 

 Significant research in consolidation strategy began in the early 1980's, when 

consolidation was first revered as an effective method to significantly decrease costs of 

delivering people, goods, and information. This research concentrated on the many 

variables that affect the performance of consolidation practices with respect to both cost 

and service level considerations.  

 In 1980, Masters [25] authored “The effects of freight consolidation on customer 

service.” Masters noted that other factors besides cost affect the effectiveness of 
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consolidation strategy. The average and variance of consolidation cycle times are of 

particular importance. This research addressed the affects of consolidation on both cost 

and delivery time.  

In his research, the number of geographic regions, maximum holding time for 

shipments, the design of the network, and the network objective were studied because the 

choice between minimizing cost, distance, and delivery time all affect where 

consolidation facilities are located and to what facility each customer is assigned. 

Discrete event computer simulation was used in his research to test consolidation 

strategies when varying customer order quantities and consolidation methods.   

The example network consisted of 399 points representing customer demand with 

shipment quantities proportional to population, 73 potential consolidation facilities, and 

only one source of order production located near Columbus, Ohio. A heuristic algorithm 

was used to create different scenarios, or configurations, that varied in number of 

consolidation facilities, costs, and time parameters. Masters performed an ANOVA to test 

the significant difference between configurations. The model used for the heuristics 

assumed deterministic flow, fixed order size, and uniform arrival rates. A search 

algorithm was used to locate the best consolidation points among the same region.  

 Results showed that all main factors were significant. The main conclusions were 

that freight consolidation reduces transportation cost, increases mean delivery time but 

does not increase the variance of delivery time. Among all factors, order characteristics 

greatly affect performance of a shipment consolidation policy. 

 In 1981, Jackson [16] published “Evaluating order consolidation strategies using 

simulation.” The paper studied the effects of the number of pool points (hubs), length of 
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maximum holding time, and the shipment release strategy (such strategies will be 

discussed in more detail in the next section). This research includes the application of a 

medium-sized company’s shipments with an average order size of 1,300 pounds. A 

simulation model was used to run experiments to test the affects of four factors, number 

of consolidation points, orders per day, order release strategy, and maximum holding 

time. The three measures were average cost per consolidation cycle, average cycle length, 

and the variance of cycle length.  

 It was determined that longer shipping intervals resulted in lower costs. 

Consolidation cycle times also increased for low-volume systems. With respect to the 

number of pool points, high volume and longer holding time justify more pool points. 

With respect to shipment release strategies, a schedule-based was cheaper, but slower, 

than using a combination of a scheduled- and weight-based strategy.  

 In 1984, Cooper [9] published “Cost and Delivery Time Implications of Freight 

Consolidation and Warehousing Strategies.” In this research, performance measures were 

studied for varying distribution strategies including traditional LTL from a warehouse, 

consolidated shipments from plants and warehouses, and LTL from plants. The variables 

that were studied were shipment holding time, quantity of annual orders, mean order 

weight, product classification, geographic distribution of demand, and plant location. A 

total of 96 combinations of factors were analyzed. A branch and bound procedure was 

used to select the warehouse locations from a set of 40 metropolitan areas. Each of the 96 

factor combinations were simulated using a batch-run of 250 days.  

 The main results of the research concluded that waiting four days as opposed to 

just one was always the lowest cost system. Among all variables, mean order weight 
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accounted for the most variance in the system. Mean order weight, product class, and 

annual orders also affected consolidation costs. In addition, the system with the lowest 

mean delivery time was not always the system with the lowest delivery time variance.  

 Results also concluded that direct LTL shipping was more expensive than 

consolidated shipping. However, for holding periods of just one day, the volume is not 

sufficient enough to save transportation cost. Lower product classes also required fewer 

consolidation points because of a decreased need for more consolidation points to reach 

weight-based discount points.  

In 1986, Jackson [17] continued research on consolidation with “A survey of 

freight consolidation practices.” This research was a study of the state of consolidation 

strategy by approximately 50 companies practicing freight consolidation. The author 

attempted to study why and how these companies use consolidation.  The author used 

questionnaires to gather information from companies across more than 10 industries 

about their consolidation practices and strategy. More than half of these companies were 

in the manufacturing industry. 

The first topic discussed deals with the reasons companies engage in freight 

consolidation. The authors reported that 84 % of companies found consolidation very 

important for cost reasons, and 77 % found consolidation beneficial for service. Among 

the cost factors, companies reported transportation cost reduction was more motivation 

than inventory carrying costs. Among the service level factors, the reduction of transit 

time was of the highest importance. The main disadvantages reported were longer order 

cycle and staffing.  
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 The second topic was the operational aspects of consolidation. The average 

maximum waiting or holding time for consolidated orders was around 2.7 days, with the 

most reported being 3 days. Also, 74 % of companies attempted to consolidate rush 

orders as well. Although no one dispatching rule for consolidation was reported, the most 

common methods were “scheduled sailing,” which dispatches orders to a consolidation 

facility on a specific day, and another method that uses the earlier occurrence of reaching 

a scheduled shipment date or weight limit. The average number of hub facilities was 20, 

with some companies reporting employing up to 130 hubs. Drop points were reported as 

performed frequently by more than 60 % of carriers, with only 1 stop being the most 

common.  

 The research also discussed the problems that arose for the companies 

consolidating shipments. The most common reported problems were meeting scheduled 

deliveries and customer service, availability of orders for consolidation, over, short, and 

damaged deliveries, and educating salespeople and customers. The most common reasons 

for failure of a consolidated shipment was from insufficient volume and customer service 

and timing issues.     

  In 1992, Pooley and Stenger [29] published “Modeling and evaluating shipment 

consolidation in a logistics system,” to discuss consolidation strategy when using a mix 

of multi-stop TL service and supplemental LTL service. The authors cited that 97% of 

firms that used some sort of consolidation used a multi-stop strategy.  

 The authors studied five factors that affect logistics system performance using a 

consolidation strategy. Network Design factor explores the significance of shipments on 

different lanes being independent. Mean order size, consolidation cycle time constraint, 
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LTL discounts, and geographic distribution of customer demand were also considered 

important factors.  

 Experiments to test the five factors on two consolidation strategies, vehicle 

routing and multi-stop, were conducting using data from two cases of shippers. One firm 

has two manufacturing plants and 4 distribution centers. The second firm has one central 

plant that distributes nationally. Results were found using three methods of computation: 

a shipment consolidation heuristic algorithm, computer simulation, and a MIP 

mathematical model. Experimental design was used to create a 2
k
 full factorial design, for 

which ANOVA was performed to determine significance of factors.     

 Results showed that the level of LTL discount, an increased cycle time, and 

larger-sized orders lowered costs. The distribution of orders was shown to have little to 

no effect. The most telling result of this study was that results did vary significantly 

between firms. Therefore, it is also concluded that consolidation strategy might be 

affected by the specific problem instance.  

 

2.2 Probabilistic Consolidation Policy 

  

 With respect to operational aspects such as consolidated shipment dispatching, 

other methods for determining effective consolidation policy have involved stochastic 

methods such as stochastic clearing systems and arrival processes. The objective of these 

models have been to determine the optimal consolidation strategy with respect to how 

long a consolidation cycle continues to wait for incoming shipments. Such decisions can 

be dependent on vehicle capacity restrictions as well as inventory holding costs. 
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Therefore, incoming shipments are typically described by stochastic arrival processes 

according to a probability distribution and the arrival process of consolidating incoming 

shipments to a hub has been of interest.  

In 1994, Higginson and Bookbinder [14] published “Policy recommendations for 

a shipment-consolidation program,” to discuss the decisions involved for a consolidation 

program with respect to the method of consolidation under various assumptions. The 

questions addressed were 1) Which orders should and should not be consolidated, 2) 

What triggers the dispatch of a consolidated load, 3) Is consolidation performed at the 

factory, vehicle, or warehouse, 4) Who performs the consolidation, the shipper, customer, 

or carrier, 5) What techniques will be used, and 6) As each order arrives, do we ship now 

alone, consolidate, or delay for future consolidation. 

 The factors that the authors considered most important to answer the 

aforementioned questions are the number of current unshipped orders, company policy, 

order due date, order destination, order type, weight, volume, and size, transportation 

mode, vehicle capacity, transportation cost, and inventory holding cost.  

 The authors then describe the three major dispatching policies used for order 

consolidation. A time policy dispatches consolidated orders at a specific date or time 

regardless of the amount of consolidation. For example, the shipment may be released 

when the oldest order reaches a certain age. A quantity policy holds orders until a total 

weight is reached. Finally, a time-and-quantity policy holds a shipment until the earlier of 

the two previous events occurs. 

 To begin their research, the authors used the Economic Shipment Weight (ESW) 

model (similar to Economic Order Quantity in inventory theory) to determine the optimal 
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load size that would minimize the transportation and inventory holding costs per order 

subject to varying target weights (or weight limits). These constraints represent vehicle 

capacity or other organizational policy. Results were also determined for varying 

maximum waiting time of an order, including .75 days, 1, 1.5, 2 days, as described in the 

time policy. The authors used a simulation model to test the unit costs and delay for the 

three possible policies. The authors use a Poisson arrival process, and Gamma-distributed 

order weights. A Paired-T test was used for testing significance between policies. 

Key results showed that low arrival and low due dates yield a different policy than 

high arrivals and long holding times. In addition, no one policy yielded a lowest per unit 

cost for all arrival rates. The time-and-weight policy yielded the smallest delay per order. 

The quantity policy performed well for short holding time allowances. The time policy 

resulted in very small loads for low arrival rates. The time policy also resulted in small 

holding times and performed better in this category than the time-and-weight policy. 

However, inventory costs overwhelm the time policy for cases of frequent arrivals and 

increased holding time. The time-and-quantity policy performs well for short holding 

time and but not as well as the quantity policy. For cases of low arrival rates and short 

holding times, the time-and-quantity policy was more expensive than a time policy. The 

time-and-quantity policy also resulted in a respectable unit-cost but performed the best 

among policies with respect to order delay.  

The authors also refer back to Jackson [17], which found that low volume systems 

suffer from greater transportation costs and more order delays. The authors suggest that 

the combination of high arrivals and long holding time results in lower costs if the 

holding costs are ignored. Otherwise, holding costs will overwhelm transportation costs. 
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Overall, the time strategy is performs better with respect to the addition of transportation 

and inventory holding cost, but is slower for high volume systems and comparable to 

other policies for low order volumes.  

 In 1995, Higginson [14] published “Recurrent decision approaches to shipment-

release timing in freight consolidation.” A recurrent decision model re-evaluates the 

release decision after every shipment arrives as opposed to the static release point 

determined by deterministic economic quantities. Due to the stochastic nature of 

customer orders, the non-recurrent approaches in other research often lead to less than 

optimal release points, as Economic Shipment Weight/Quantities (ESW/ESQ) are 

dependent upon only average weight, average arrival parameters, and average inventory 

holding costs.  

 In this paper, recurrent models are built and analyzed from both private and 

commercial carrier perspectives. A marginal analysis framework is used. As each 

shipment arrives, it is determined if we should wait until the next order arrives or 

dispatch immediately based upon stochastic shipment arrival and weight behavior.  

 The private carrier model assumes a fixed transportation cost and physical 

capacity constraints. Simulation results were given using Gamma-distributed weights, 

Poisson arrivals, and a vehicle capacity of 40,000 pounds. The proposed model yielded 

smaller delay for all arrival rates, but also tended to be more expensive than the 

deterministic ESW.  

 The common carrier model assumed fixed transportation cost, but allowed for 

unlimited capacity. In addition, customer service constraints restricted the order holding 
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time. The common carrier model outperformed the ESW with respect to cost. However, 

delay was increased.  

 In 2002, Bookbinder and Higginson [1] published “Probabilistic modeling of 

freight consolidation by private carriage” describing a stochastic clearing system 

approach to freight consolidation including consolidation quantity and related dispatch 

timing.  

In the first example, the authors show how to find the probability of meeting a 

target weight by a specified time deadline, for which a closed form solution exists.  The 

information gained from this type of problem can be used in a number of cases. The first 

case is when a target weight is less than vehicle capacity and the second case is when the 

target weight equals capacity. In the latter case, the probability also gives the percentage 

of vehicle capacity that will be utilized when the time deadline arrives. The deadline 

resultantly represents the maximum allowable inventory holding time, assuming 

homogenous orders.  

Next, the authors apply the previous probability concepts towards optimizing the 

holding quantity when considering inventory holding cost and bulk transportation cost. 

When considering the quantity of accumulated arrivals and the clearing system, the time 

between clearings represents a renewal process. In this process, the number of 

accumulated arrivals after each clearing is identically distributed. The optimal holding 

quantity minimizing total costs can be found based on the time it takes to reach certain 

levels of consolidation. In the cost equation, there are parameters to describe the cost per 

unit and a function describing the cost per unit time versus holding quantity.  Solving for 

the optimal quantity may be possible in closed form or by computing the integral of the 
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cost function. In addition, a method to find the optimal consolidated weight when the 

inter-arrival distribution and weight distribution are converted to a joint “order-weight” 

gamma distribution is developed.  

A four-graph nomograph is also developed through this research to depict the 

relationships between the different cost components of consolidation, the maximum 

allowable cycle waiting time, and the optimal weight.  Numerical results are given for 

two examples, assuming Gamma-distributed weights, a Poisson shipment inter-arrival 

process, a fixed transportation cost parameter, and an estimated inventory holding cost. 

The nomograph is then used to determine the optimal holding weight. Using a preferred 

level of vehicle utilization, the nomograph is also used to find the optimal shipment 

holding time.   

 In 2003, Cetinkaya and Bookbinder [8] published “Stochastic models for the 

dispatch of consolidated shipments." The authors used renewal and reward theory to 

determine optimal target weight and waiting time for the two major consolidation 

policies: time and quantity. They also formulated and compared results of using private 

carriage and commercial carrier service.  

 For private carriage, random variables represent the time between arrivals as well 

as the weight of each order. The number of arrivals by time t and the total weight 

accumulated for a given number of orders follows a renewal processes. For the quantity 

policy, orders are kept until a weight has been reached or exceeded. Then the shipment is 

dispatched and the process starts over again. The authors give formulations for the 

expected transportation and holding costs per cycle and long-run cost per unit time, 

where there is a fixed charge for each service and practically independent of the amount 
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in the consolidated load. For cases of Poisson arrivals and Exponential weights, a closed 

form solution for optimal weight is given. For the time policy, orders are held until the 

earliest order reaches a certain age, then shipment is sent and the process starts again. 

Costs are again determined as well as the optimal holding time by minimizing the cost 

function for cases of Poisson arrivals and Exponential weights.  

 Key results show that the optimal dispatch quantity under a time policy is larger 

than that for a quantity policy. However, the optimal quantity policy requires a larger 

holding time than the optimal time policy. Therefore, it is concluded that the time policy 

may be better-suited for customer service.    

  The same formulations are done for common carrier. In this case, the cost 

structure changes so that cost of the consolidated orders is proportional to the amount of 

shipped orders, which would represent current carrier rates and take volume-based 

discounts into effect. Key results showed for some cases that the optimal time and 

quantity policies show that orders not be consolidated at all. 

 

2.3 Hub-and-Spoke and Hub Network Models  

 

 Current research in consolidation has been primarily focused on using 

mathematical programming to design distribution networks that minimize transportation 

costs. Such models that used the hub-and-spoke design originated in previous years as 

facility location problems and located hubs within areas of clustered demand points to 

satisfy, for example, retail locations from production facilities. As supply chain logistics 

became more of interest, models adapted to include interconnected hub networks on 
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which flow is transported from origin to destination. These models determined optimal 

locations for consolidation hubs and the allocation policy for the different origins and 

destinations utilizing the hubs, or which origins and destinations would utilize hubs at all.  

 Many hub models with differing assumptions and objectives have been modeled 

for more than 20 years.  Models have attempted to locate hubs within both discrete and 

continuous space. Objective functions have been designed to minimize a number of 

measures, including cost, distance travelled, and time. There have also been many 

varieties of hub network design problems that vary in origin and destination node 

assignment policy, capacity of hubs and links, and inclusion of shipment attributes such 

as weight and volume. The progression of these models and methods to solve them is the 

subject of this section.  

 Among the first class of distribution network problems were location-allocation 

problems, models in which hub facility locations are chosen within areas of distributed 

demand. Another decision included assigning the demand points to a facility in such a 

way as to minimize the transportation costs of satisfying all demand. In many models, the 

number of hub facilities was variable, but a hub-opening cost was incurred with the 

opening of each hub. Location-allocation problems included models such as the Weber 

problem, which locates facilities in continuous space, and the p-median problem, which 

minimized the total cost of allocating all demand points to only p number of hubs.  

 As the Weber problem locates hub facilities in continuous space, it also assumes 

that each demand point will choose to be serviced by the nearest hub location, which 

resembles a demand-weighted facility location problem, but with multiple potential 

facility locations. The work of Brimberg et al.[2] in 2001, improved upon methods to 
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solve the Weber problem. The authors give a history of algorithms used to solve both 

small-scale and larger problems, with up to 170 facilities and 1400 demand points. The 

authors do an extensive review of heuristics used to solve the multisource Weber 

problem, including tabu search, a p-median heuristic which extends the discrete solutions 

to continuous space, a variable neighborhood search, a genetic algorithm which is 

described as an “intelligent stochastic search technique”, and a relocation heuristic that 

utilizes a defined neighborhood of a facility location. Among new heuristics, genetic 

algorithms (GA) perform well for a small quantity of facility locations and tabu search 

(TS) with drop/add procedures performs better for large instances. Another method, 

variable neighborhood search, was also declared as the best overall method. 

 Location-allocation problems quickly evolved to include interconnected hub 

networks in which flow is transported from origin to destination. The p-median problems 

led to formulations of the p-hub median problems, hub location problems and the hub 

network design problem, along with several other model variations. 

 P-hub median problems are network design problems that typically include 

decisions regarding both hub location and origin and destination node allocation policy. 

The objective of the p-hub median is to minimize total transportation costs. The 

formulation defines origin-to-destination flow for each unique ordered pair and a per-unit 

transportation cost is given between all pairs of points. This cost has been in different 

cases proportional to the distance between two points or based on known carrier rates. 

The problem seeks to locate p number of hubs throughout the total n points and allocate 

each point to a hub such that the total transportation cost is minimized.  
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 Formulations have also differed in node assignment policy. The multiple 

allocation policy allows for origin-to-destination flow to travel through several hubs. The 

single allocation models limit the assignment of each origin and destination point to only 

one hub and the routing of flow must travel between only these two hubs. There also may 

or may not be a fixed cost for opening hubs. Early models also required every origin-to-

destination pair to utilize the hub network so that direct connection is not allowed.  

 

 2.3.1 Hub Location and P-Hub Problems 

 

In 1986, O'Kelly [26] was among the very first to model the networking of hubs within a 

consolidation setting when "The Location of Interacting Hub Facilities" was published. 

Although O'Kelly describes situations of one hub, similar to a Weber Problem, the one-

hub model is also concerned with switching and consolidating at the central hub location. 

In this way, different origins that are shipping to the same destination can combine their 

shipments at the central hub. However, there is no incentive for the amalgamation of 

shipments.  

 A model for locating two new hubs within a transportation network was also 

developed. These hubs would be opened in continuous space. For this model, the cost for 

transportation from each origin and destination to its assigned hub facility is proportional 

to the distance. The cost for transportation between hub facilities is also proportional to 

the inter-hub distance, but a discount factor between zero and one is applied to cost to 

represent transportation economies of scale. The model is formulated as a binary integer 

program resembling a quadratic program due to variable interaction terms. However, the 
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author proposes that for the case of locating two hubs, the problem is convex and can be 

solved numerically when the two hubs and all origin and destination points are 

partitioned into non-overlapping regions. 

 An example problem using 1970 airplane passenger data from the Civil 

Aeronautics Board included 25 origin and destination nodes. Among 300 different 

partitions, 203 could be solved numerically and the remainder cases were eliminated due 

to symmetry or similarity. Results were shown for varying inter-hub discount factors. 

Results showed that the two-hub model performed better than the one-hub model. Shortly 

thereafter, more research was completed by O'Kelly [27] in 1987 that formulated a non-

convex Quadratic Program to solve the problem of opening 2, 3, and 4 new hubs from a 

fixed set of potential hub sites.  

 In 1991, “Heuristics for the p-hub location problem” was published by 

Klincewicz [19]. This research formulated and proposed several methods of solving the 

p-hub location problem similar to O'Kelly's formulation [27]. In the p-hub location 

model, various origins transport generic items to several destinations. A network is 

created so that flow can travel together on paths that account for the majority of the travel 

distance. In the p-hub model, p number of facilities act as hubs and the remaining points 

are assigned to these hubs. The authors show that this problem is NP-Complete. Even 

when the hub locations are fixed, the problem becomes a quadratic assignment problem. 

When the hubs are not fixed, several methods have been designed to pick a preliminary 

hub location and use local search heuristics to find better hub locations.  

 The author then explains several heuristics that can be used to locate hubs in 

relatively good locations for problems with several possible hub locations. Although 
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complete enumeration can be done for small problems, larger problems need heuristic 

solutions. The first heuristic is an exchange procedure based on improvement rules. The 

next heuristic is a clustering approach that places hubs in the locations of largest flow, 

and assigns nodes to each hub which will constitute a cluster. It then changes the hub 

location to the point nearest to the centroid of the cluster.  

 Example problems were solved using airline passenger data with varying numbers 

of hub locations and total nodes. The clustering algorithms, exchange heuristics, and 

enumeration methods were compared. For small problems, enumeration worked very 

well. However for a case of 50 nodes, enumeration was not considered. Exchange 

heuristics took over 10 CPU seconds for larger problems and clustering was efficient as 

well. Enumeration for medium-sized cases took 50-1000 seconds.    

  In 1995, O'Kelly and Skorin-Kapov [32] published "Lower Bounds for the Hub 

Location Problem" and extended methods to solve the original formulation of O'Kelly 

[28] by finding lower bounds based on the triangle inequality and upper bounds.  

 In 1996, Campbell [4] published “Hub location and the p-hub median problem." 

This is one of the first works to define the p-hub median problem. The model is 

formulated for both single and multiple allocation policies and two heuristic procedures 

are proposed. This model is a linear integer program inspired by the hub location problem 

of O’Kelly and others.  

  Heuristic procedures are described for the single-allocation problem. The first is 

a greedy-interchange heuristic, which uses a greedy method to place p hubs within the 

space and the interchange phase replaces hubs with non-hub nodes where a change will 

result in lower costs. Then two different heuristics are proposed as supplements to the 
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previous procedures. These heuristic procedures are compared to an enumeration 

heuristic for problems with 10, 15, 25, and 40 nodes. The enumeration heuristic evaluates 

all possible hub locations where points are assigned to a hub based on distance, not least 

cost. The number of hubs also varied between 2 and 6 and the discount factor varied 

between 0 and 1. The heuristic that considers all possible single-allocation designs gave 

good results, but could be applied to the largest of problems. Enumeration also performed 

well. For larger problems, a different heuristic performed relatively well. The main result 

was that the two supplementary heuristics applied to multiple allocation solutions can 

yield good single allocation solutions.  

In 1998, O'Kelly and Bryan [28] published “Hub location with flow economies of 

scale” to redefine the discount structure for the bundling of flows along inter-hub links in 

hub network design problems. To date, such discounts were given as a constant factor 

between 0 and 1 that is independent of the total amount of flow along a path. In these 

instances, the discount factor was applied to inter-hub links without regard to the degree 

of consolidation. In practical settings, a non-linear relationship exists between the amount 

of aggregated flow along inter-hub links and transportation cost discounts. 

 The authors start by reviewing the multiple allocation hub location model, where 

the transportation of flow from origin to destination can be accommodated by any path 

via any number of existing hubs. Then, they describe a non-linear transportation cost 

function that allows the inter-hub discount to be dependent upon flow along those links 

between hubs. As the inter-hub flow increases, so does the discount. This cost structure is 

similar to a classic view of volume discounts, where if volume increases to a certain 

level, a discount is employed and results in lower cost per item. However, the cost 
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function proposed is on a continuous scale. In the original model, the discount remained 

constant as flows along a path increased. The authors show how the traditional model 

underestimates discount for large volumes of flow and overestimates the discount for 

small volumes. The cost function can also be tailored to a specific problem by changing 

certain parameters affecting its curve.  

 Due to the independence imbedded within traditional p-hub median models, they 

determine the policy for each interacting pair individually. However, the non-linear cost 

function and associated discount structure tends to affect the overall optimal design as 

some pairs may act in a way detrimental to their own total costs but beneficial to the 

overall network costs. This occurs when the bundling of more flow along inter-hub links 

improves the discount. Therefore, an increased quantity of flow shares a lower total cost, 

resulting in decreased cost per flow.  Because the non-linear cost function is difficult to 

incorporate into an already difficult problem to solve, the nonlinear function is 

approximated as piece-wise and linear. Then, the traditional model is formulated 

incorporating the new cost function. The new model formulation could then be described 

as a linear program, capable of finding exact solutions.  

An example is discussed based on airline passenger data with 20 nodes to 

compare results between the traditional multiple allocation hub location problem and the 

new model.  Example problems were solved with two, three, and four hubs. Effective 

discount values using different cost function curves, in terms of a constant percentage 

similar to the scale factor of the original problem, were estimated.  When results were 

described, large amounts of flow amassed on few links, which is clearly a result of the 

discounts received with large amounts of flow. As a result, minimum total costs were 
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found. Had the flow been more evenly distributed among links, costs would have been 

larger.  

 In 1998, Pirkul and Schilling [29] published “An Efficient Procedure for 

Designing Single Allocation Hub and Spoke Systems.”  The heuristic proposed by the 

authors is a Lagrangian Relaxation, which can produce solutions and measure how close 

the solution is to optimality.  

 For the Lagrangian formulation, the authors relaxed the constraints that required 

all nodes be assigned to only one hub. The relaxation was made under the assumption 

that if a pair of nodes used a given hub-to-hub connection, the origin node has to be 

assigned to one hub, and its destination is assigned to the other hub. In using Lagrange 

Relaxation, the problem became separable. After solving example problems with the 

proposed solution methods, results were poor (a 10-20% optimality gap). Consequently, 

the authors decided to include another constraint within the relaxed problem that resulted 

in solutions very close to optimal. The example problems varied between 10, 15, 20, and 

25 nodes, 2, 3, and 4 hubs, and the discount factor was also varied. The relaxation results 

showed optimal solutions for 63 of 84 test problem and best known solutions to 20 

problems. 

 In 2002, Mayer et al. [25] published "HubLocator: an exact solution method for 

the multiple allocation hub location problem." This paper concentrated on the un-

capacitated, multiple allocation, hub location problem and a branch-and-bound procedure 

to solve it. Lower bounds are found from a dual of the LP relaxation. The problem was 

previously formulated as a binary integer problem that resembled a plant location 

problem by exchanging directed traffic flow paths and hub-to-hub paths with single-letter 
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notation. Transportation costs were linear and proportional to the amount of traffic with 

consolidated routes applied a constant discount factor. In this formulation, a cost is 

incurred to open hubs.  

 To solve the problem, the authors created a dual-ascent procedure that is the 

engine behind HubLocator. Experimental results used data from the Civil Aeronautics 

Board. The data contained 25 cities. The constant discount factor was also varied. It was 

determined that HubLocator and CPLEX performed much faster than a previous Branch-

and-Bound procedure. The authors also commented that an extension could allow for 

non-hub nodes to be directly connected. 

  

 2.3.2 Non-restrictive Policies 

 

In 2001, Sung and Jin [34] published “Dual-based approach for a hub network design 

problem under non-restrictive policy.” They were among the very first to propose a non-

restrictive hub network design. Under previous models, each origin and destination node 

was required to participate within the consolidation process through either single or 

multiple allocation schemes. However, a non-restrictive policy would allow any origin-

to-destination flow path to continue to use a direct connection, comparable to LTL 

service, if such a decision resulted in lower transportation cost. 

 Given a set of nodes representing various origins and destinations and a set of 

clusters in which all the nodes are located, one node per cluster is selected as a hub 

through the solution procedure. Each node in the cluster must connect only to the hub in 

its cluster if it chooses to connect to a hub at all. This model is anon-restrictive in that a 
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node has the choice of using direct service from origin to destination or connecting 

through a series of exactly two hubs. All origin and destination nodes are potential hub 

locations, with node-specific hub construction costs.  

 In this model, flow from origin to destination is deterministically defined in 

general unit terms and for each such set of origin-destination pairs, direct transportation 

costs may be pair-specific and are defined on a per unit flow basis. Transportation costs 

for all combinations of nodes must also be defined for cost comparison of direct 

connection and connection via hubs. In other words, costs must be defined for any node 

to another node in the same cluster for the case that all nodes could possibly serve as a 

hub. To account for economies of scale and quantity-based discounts, the transportation 

costs for potential hub to hub connections between clusters is discounted by a constant 

factor between 0 and 1. This will promote the bundling of flows at the hubs where such 

bundling results in lower cost than using a direct connection.  

 The mathematical formulation is a binary integer program in which some decision 

variables determine which nodes will serve as hubs and other variables determine 

whether origin to destination paths will connect directly or via hubs. The objective 

function seeks to minimize total network cost. The various cost components are direct 

connection cost, cost of hub to hub connection including local transportation to and from 

hubs and the hub to hub path cost, and hub opening or construction cost.  

 To solve this problem, the authors propose a dual-based approach by taking the 

dual of the Linear Program relaxation of the original formulation. With the dual 

formulated, the authors give the complementary slackness conditions as well. The authors 

then utilize a two-step procedure including dual-ascent and dual adjustment procedures to 
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find an optimal solution. The dual ascent procedure finds a feasible solution to the dual 

problem and the dual adjustment procedure reduces the complementary slackness 

quantity. When a solution of the dual and its constructed primal solution satisfy 

complementary slackness conditions, an optimal solution is found. However, when 

complementary slackness conditions are violated, a dual adjustment is needed. The dual 

adjustment procedure used attempts to decrease the dual gap between the primal and dual 

solutions. However, when this is not completely achieved, a feasible, but not optimal, 

primal solution is found. Along with detailed description of the solution procedure used, 

the authors give experimental results when varying the number of clusters, the 

distribution of demand, and the hub to hub discount factor, alpha.  

 Another approach at non-restrictive hub network design was in 2006, when Yoon 

and Current [37] published “The hub location and network design problem with fixed and 

variable arc costs: formulation and dual-based solution heuristic." In this multi-

commodity flow problem, similar to hub location and network design problems, the three 

major costs are fixed hub opening cost and fixed and variable cost of establishing arcs. 

The formulation assumed there is no capacity for arcs, each demand path can be 

connected directly or through hubs, origin or destination nodes cannot act as hubs, and 

multiple hub assignments are allowed.  

The model is formulated by defining an undirected graph of nodes and edges as 

well as directed flow paths. The set of potential hubs sites is separate from the set of 

terminal nodes. Each flow path is defined as a commodity and each commodity’s amount 

of demand is defined. Binary variables denote the location of opened hubs and the 

inclusion of flow paths within the network. Continuous variables represent the proportion 
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of a commodity’s flow that uses a given arc. There is a fixed cost for opening each hub 

and there is a fixed and per-unit cost for including arcs. There is no discount factor for 

transporting over hub to hub arcs.  

The solution method proposed in the literature is a three-stage heuristic. The first 

stage is a dual ascent procedure that uses the dual of the LP-relaxation to solve for a 

lower bound, the second stage is determining a feasible solution from the dual solution, 

and the third stage uses the dual solution to eliminate some arcs and hub locations from 

consideration. The complete dual formulation is given.  

After the three stages of the heuristic are described in detail, computational results 

are given. The heuristic solutions are compared to optimal solutions of the original primal 

solutions using CPLEX. Problem cases were randomly generated. From this, the various 

costs for arcs were derived mainly from Euclidean distance. Hub opening and demand 

flows were also randomly generated from an interval of values. In total, the number of 

terminal nodes, the number of candidate hubs, and the flow paths were varied.  

Key results showed that as hub fixed costs increase, the number of paths that do 

not use hubs increase as well. With regards to heuristic performance, the case of 25 

terminal nodes and 10 hub candidates resulted in a 15% optimality gap. The optimal 

solutions could not be determined using CPLEX due to excess computing time for large 

problems, but for smaller problems, it was able to determine that the heuristic solutions 

were optimal for the majority of cases.   

 In 2007, Wagner [35] published “An exact solution procedure for a cluster hub 

location problem.” The author of this article begins with the problem definition and 

formulation as Sung and Jin [34]. However, he proposes an adapted form of the original 
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math model as a mixed integer program and a different solution procedure using 

constraint-programming.  

The new model formulation significantly reduces the total number of decision 

variables throughout the solution procedure by only defining variables for origin to 

destination paths based on a current set of opened hubs as opposed to all nodes which we 

know could possibly serve as hubs. Also, binary variables can be relaxed in the new 

model with negligible gap between optimal LP and IP solutions. With the significant 

reduction in variables, the problem size and complexity is somewhat limited, giving the 

opportunity to use standard solvers to solve the problem. The proposed LP-relaxation can 

be then solved optimally for relatively large instances in short time. 

In the solution procedure for the newly formulated model, the author gives both a 

preprocessing step and a constraint programming procedure. The preprocessing stage 

attempts to filter out only a certain limited number of potential hub locations by 

comparing the cost differential between a stated hub location and another potential hub 

node in the same cluster. If it is occurs that the cost differential is more beneficial for a 

different hub location, the original hub location is deemed suboptimal. By performing 

this step for all such potential hub locations throughout the constraint programming 

procedure, we can identify the locations that could never serve as optimal hubs before 

comparing costs of all possible network designs. 

The constraint programming approach in conjunction with the aforementioned 

preprocessing procedure attempts to locate the optimal hub location and then determine 

the optimal allocation of nodes to hubs, keeping in mind that some nodes may be forced 

to connect directly to other nodes without using the hub network. The author included the 
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pseudo-code in his literature. Experimental results are given in this literature when 

varying the number of nodes, the number of clusters, distribution of nodes among 

clusters, and discount factor alpha. Flow amounts are taken from a uniform distribution 

[0,100]. The author also compares results and solving time to the results of Sung and Jin. 

It appears that his exact LP procedure takes less total time to solve than the original dual-

based approach. In a very small percentage of instances (17/4050), a branch and bound 

procedure had to be employed to reach integer solutions.  

Finally, the author proves the CHLP is NP-Hard by Turing-reducing a travelling 

salesperson problem of n nodes to a CHLP with n clusters and n nodes per cluster. He 

also noted that preliminary results using tabu search and genetic algorithms were 

encouraging for use in allocating nodes to different hub locations.  

  

 2.3.3 Hub Covering Problem 

 

Hub covering problems are important for hub network design applications with 

timeliness issues. These models determine hub and spoke network designs such that 

commodities (specific product flow from origin to destination) arrive within a time limit. 

The model is formulated by defining flow paths between origin and destination points. 

The time is takes for flow to travel for every possible pair of nodes is defined as well 

because any node is a potential hub node. The objective is to minimize the number of 

hubs that need to be opened to accommodate all flow paths subject to time limits. 

Therefore, the total time from origin to first hub to second hub to destination for all pairs 

must not exceed a user-specified limit. It is assumed that opening hubs will incur fixed 
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and operating cost. However, because this amount of cost is not easily estimated, the 

number of hubs opened is the variable studied. For hub to hub paths, the travel time is 

discounted by a constant scale factor between 0 and 1 to represent faster delivery when 

flow from several areas is consolidated. Binary variables represent the location of a hub 

at a given node 

  In 2003, Kara and Tansel [17] published “The single-assignment hub covering 

problem: Models and linearizations." In this research, the authors propose several 

linearizations of the standard hub covering problem because the original formulation 

includes a non-linear time constraint. For the first linearization, the authors prove that an 

optimal solution to the linearization is also optimal for the original. The authors then 

propose three linearizations to a hub set covering problem that differs from the hub 

covering problem through a set covering constraint.  

Experimental runs were performed on a 1970 set of airline passenger data for sets 

of 10-25 nodes and varying discount factors. The hub set covering linearizations could 

not solve the 25 node problem optimally, but of three linearizations, the third performed 

the best. Results also showed that decreasing the time limit for certain flow paths 

increased the minimum number of hubs necessary. When the discount was decreased, the 

minimum number of hubs only remained constant when the time limit increased.  

 In 2007, Wagner [36] published “Model formulations for hub covering 

problems." In the formulation, transport time is proportional to the distance between two 

points. This time is also discounted for inter-hub routes, similar to hub network design 

formulations. This is justified by assuming that consolidated flows will allow shipments 

to wait less and be delivered more frequently.  
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 The formulation for single allocation with quantity-independent discount factors 

minimizes the cost of opening hubs such that each node is connected to exactly one hub 

and that the time limit for any flow is not exceeded. There is no definition of the amount 

of flow between two points. For quantity-dependent discount factors, the amount of flow 

between two points is defined and is used to calculate discount factors unique to each 

path a certain flow will take. Because the discount factors are used for time limit 

purposes only and not cost, the discount factors are located in the constraint set and used 

for determining feasible hub locations.  

 For a multiple allocation policy with a constant discount factor, binary variables 

are used to represent assigning non-hub nodes to hubs as well as the opening of hubs. 

There is no constraint that requires each point to be assigned to exactly one hub. The 

objective has also changed to minimize the number of opened hubs instead of the total 

fixed cost of opening hubs. For each of the traditional hub covering models, the authors 

proposed revised formulations that could be used to solve the problems easier. These 

formulations were compared to the original formulations through example cases.  

 Numerical results are given for cases of constant discount factors, and data is used 

from a 1970 airline passenger set of 25 cities. The time limits and discount factors are 

varied. The revised model with single allocation policy and quantity-dependent discount 

performed well compared to the original model. Therefore, another case of 50 nodes and 

alpha discount of .75 was compared to the single-allocation, quantity-dependent model. 

The proposed multiple allocation model is applied to a problem instance with 100 nodes 

and alpha of .75.  For varying time limits, the revised model outperformed the original 

model and solution procedure.  
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  2.3.4 Service Network Design Problems 

 

Service Network Design problems refer to tactical decision models that determine 

terminal operation and freight transport and routing. Although the underlying network 

design resembles that of hub-and-spoke models, more emphasis is placed upon 

determining empty vehicle routing, the scheduling of vehicle movements, and 

consolidation strategy versus handling costs and service level. By including explicit 

consideration for service level, these problems give insight into using decision variables 

for hub-to-hub service levels during consolidation.  

 Service Network Design models are most often modeled as deterministic, fixed 

cost, capacitated, multi-commodity network design problems. These traditional network 

design models consists of origin nodes, destination nodes, and the network paths 

connecting origins to destinations with characteristics such as distance, capacity, and 

cost. Fixed costs are incurred for using certain links in addition to the cost for the volume 

of flow using that link. The objective is to minimize total costs of operating along the 

various links. Binary variables determine whether links are opened and separate variables 

determine the percentage of flow for each origin to destination that uses each link. As 

capacity constraints limit the flow on each link, specific flow paths may be split among 

several routes. From this model, other models can be derived by relaxing capacity 

constraints or adding other problem-specific behavior. In fact, this model can be adapted 

to fit TSP or VRP problems. 

 One early model of solving multi-attribute, multicommodity network design 

problems was published by Popken [31] in 1994, entitled "An algorithm for the multi-
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attribute, multicommodity flow problem with freight consolidation and inventory holding 

costs." In this model, vehicles have both weight and volume constraints. Commodities 

have weight, volume, and holding cost attributes. The underlying structure of the 

consolidation network includes transshipment terminals that serve origin to destination 

demand through at most 1 terminal that is used as a transshipment center to combine 

shipments bound for common destinations.  

 Popken's model decides how many vehicles travel along each network arc, with 

defined fixed cost per vehicle and amount of time each vehicle requires to travel the 

various network arcs. Inventory costs are also time-based. Another decision includes how 

much of each commodity flows on each arc. The problem is neither concave nor convex; 

therefore, exact global solutions cannot be easily discovered.  

 Popken found heuristic solutions to an example problem with 100 origins, two 

terminals, one destination, 302 network arcs, and 200 commodity flows. The origin 

consolidation region is 400 miles wide and the transshipment center is 500 miles from the 

destination.  

 In 2000, Crainic [9] published “Service network design in freight transportation” 

to address tactical planning of consolidation operations and resource allocation so as to 

achieve certain levels of customer service while minimizing cost. The proposed model, 

termed the service level network design problem is described and formulated. A decision 

variable for service frequency determines how often a resource must be employed to 

transport the total shipment volume over time. To depict service level considerations, 

delay and congestion behavior is added to the formulation. The optimal solution will 

determine an effective timetable for vehicles and network configuration.  
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 To include stochastic behavior within the classic framework, stochastic service 

network design was developed. In 2006, Lium et al. published [22] “Stochastic service 

network design: the importance of taking uncertainty into account” to discuss the context 

of uncertainty within the framework of network design. They state that solutions to 

deterministic models often perform worse in real situations than solutions to stochastic 

models. Some methods, like robust optimization, give solutions that will be cost feasible 

for a large percentage of the time.  

 The proposed model is based on a deterministic, fixed cost, capacitated, multi-

commodity, service network design formulation. The goal is to minimize costs subject to 

demand, and service constraints while determining the optimal flow paths and fixed cost 

of network service. Assumptions are stated such that there is a fleet of vehicles with set 

capacity but no limit on number of vehicles, terminal operations are instantaneous, 

transport movements take one period of time, demand has set deadline, fixed cost of 

operating a vehicle (regardless of utilization), and no cost or time delay for terminal 

operations.  

 A space-time network is built and each time period consists of identical sets of 

locations. Arcs represent a service or holding activity if the arc begins and ends in the 

same location. A fixed cost is defined based on performing service on an arc. Each 

commodity has a defined demand, creation time, and delivery deadline. A complete 

network is given. Truck capacities are defined. Decision variables represent the amount 

of a commodity going from terminal to terminal in the next time period. Another variable 

represents the number of trucks that service the path from terminal to terminal between 

periods. The objective function minimizes the cost of vehicles moving between terminals. 
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Also, the model proposed extends a basic model to include the outsourcing of orders that 

cannot meet deadlines which have associated costs of outsourcing and not meeting 

deadline.  

 

 2.3.5 Other Network Design Problems 

 

Over the years, various other models have been developed to solve similar consolidation 

network design problems. This section will briefly describe other methods and models 

developed. 

 In 1992, Koskosidis and Powell [20] published “Clustering algorithms for 

consolidation of customer orders into vehicle shipments.” The subject of the literature is 

the Capacitated Clustering problem. In this model, a set of customer orders is partitioned 

into clusters and served by different vehicles from a facility that supplies orders. This 

model is related to both the assignment problem in facility location and the p-hub 

network problem. 

 The mathematical formulation defines the set of customers, the set of candidate 

hub facilities, the set of vehicles, the per-unit cost of traveling from any point to any other 

point, the quantity of demand for each customer, and the capacity of each vehicle. Binary 

variables represent the allocation of a customer to each specific hub as well as the 

opening of hub facilities. The objective is to minimize the total cost of transportation 

within each cluster subject to vehicle capacity constraints and a single-assignment policy.  

 To solve the problem, a primal heuristic algorithm was proposed in 1984 that 

assigned hubs using a greedy method and attempted interchanges of hub locations and 
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customers between clusters to improve performance. This heuristic was the basis for this 

literature. In the proposed heuristic, customers are assigned to greedy-located hubs based 

on closest distance while also satisfying cluster capacity constraints. After customers are 

allocated, a new hub is chosen within each cluster to minimize total costs. Then 

improvements are made to customer allocation through pair-wise interchanges of 

customers between clusters.  

 To evaluate performance of the heuristic, the authors used Lagrangian relaxation 

and sub-gradient optimization to obtain lower bounds for the problem. The constraint 

used for relaxation was a single assignment constraint. Another method was used for hub 

selection as well. This method chose the customers with the largest demand as the hub 

locations. Three different forms of this method are proposed and they are varieties of a 

knapsack assignment procedure.  

 Computational results are given for the heuristic algorithm and the 

implementation of each of the three hub selection heuristics as well as a hybrid heuristic 

using Lagrangian relaxation and the iterative heuristic. The numbers of customers ranged 

from 10 to 100, the capacity of vehicles were chosen to challenge the capacity 

constraints, and demand size for customers was varied.  

 Results showed the iterative heuristic and the hybrid relaxation performed well, 

and that one of the hub selection heuristics was significantly outperformed by the other 

two. The primal randomized heuristic from 1984 did provide very good solutions but 

took significantly more time to solve, and the hybrid heuristic was still better. For this 

reason, a random hub generation procedure was not suggested.  
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 In 1996, Min [23] published “Consolidation terminal location-allocation and 

consolidated routing problems." Spatial consolidation was described as determining 

which customers and routes will be combined to form large shipments, which was the 

subject of this research.  

 Spatial consolidation design also includes locating consolidation points, 

determining which customer orders are consolidated and to what hub they will be 

allocated, and the sequence of customer delivery. The authors propose a heuristic to 

aggregate customers, locate hubs and allocate points to hubs based on nearest distance, 

and configure routing tours that serve multiple customers.  

 The problem neglects holding time. Consolidation points are given as separate 

terminals from origins and destinations. The problem is defined by supply sources that 

supply several demand points/customers.  The number, size, and location of consolidation 

terminals are determined. Then origin and destination points are allocated to hubs. Then 

tours are built on each group of sources and customers subject to vehicle capacity 

constraints. An initial solution phase separates customers into clusters such that the 

capacity of a vehicle is not exceeded through a statistical clustering technique. Once 

clusters are formed, another phase locates and allocates points to hubs.  

 In the first model, total cost of transportation to and from suppliers and clusters of 

customers is minimized. There is also cost of opening consolidation hubs. Then a 

common branch and bound procedure is used to solve TSP’s for each cluster of demand.  

 An application is included with this research. There are 8 potential hub sites, 10 

supply sources and 92 customers. The results are compared to cost of routing shipments 

without consolidation of suppliers. The solution located 4 hubs to serve 10 clusters from 
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10 supply sources.  They state that the total error caused by the clustering and statistical 

methods is no more than 20%.  

  In 2004, “Designing Distribution Networks: formulations and Solution Heuristic” 

was written by Lapierre et al. [21]. The purpose of this paper is to provide a model that 

determines optimal number and location of transshipment centers, the choice of carrier 

type for each route, and where shipments will be consolidated based on weight and 

volume. The problem integrates carrier selection between TL, LTL, and parcel, it allows 

for direct connection. This is an example of network design with central transshipments 

points and no inter-hub connections. This model is especially useful for problems with 

many nodes serving as both origin and destination. 

 In the model, origin-destination pairs are defined to represent the flow of 

shipments. For these pairs, the weight and density for the shipments is given. Then each 

shipment is given a class according to density. Decision variables represent whether a 

shipment will connect directly, and whether each shipment will travel through any hub 

locations. The objective is to minimize costs of direct shipments, and the costs from/to 

transshipment centers.  Therefore, there are no inter-hub connections or costs. The 

bundling of flows will occur at central transshipment centers that combine flows that are 

traveling to common destinations, and not to clusters of destinations. Therefore, it is not 

necessary to define inter-hub connections. The problem can also be defined as combining 

the right combinations of volume and weight such that the volume and weight-based cost 

functions are minimized.  

 The authors describe a hybrid heuristic combining tabu search and variable 

neighborhood heuristic to solve the problem. Variable neighborhood search showed 
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promising results for large problems.  To define the search neighborhood, they consider 

the routing of shipments having a higher priority than the placement of hubs. The first 

order neighborhood is defined by all possible routes that one shipment could take. The 

second order neighborhood is defined by the set of changes that two shipments could 

make. Then more sophisticated methods determine the list of neighbors to choose from. 

The tabu search procedure is based around the changing of each shipments route. 

Therefore, the future changing of routes can be controlled through standard tabu rules. 

The variable neighborhood search uses large neighborhoods within the local search to 

avoid local optima.   

 Results of the proposed algorithm were compared to TS and VNS alone as well as 

standard CPLEX optimizer programs. Example rates structures were taken from a real 

rate calculator. Number of nodes was varied between 10, 20, and 40, including one 

transshipment center. To simplify the problem, shipments were of the same class.  Results 

concluded that the hybrid heuristic outperforms either of the two separate heuristics.  

 In 2006, Sung and Yang [33] published “An exact algorithm for a cross-docking 

supply chain network design problem.” The problem consists of locating cross-docking 

centers and allocating vehicles for the pickup and delivery services while satisfying 

service deadlines and demands. Each demand point is assigned to just one center. To 

different vehicle choices are available and their costs will vary. It is different from other 

hub network design problems by considering vehicle utilization.  

 The formulation is path-based. Sets of origin and destination nodes and cross-

docking centers are defined. Graph edges represent the paths from origins to centers and 

centers to destinations. Also defined are deterministic demands from origin to destination 
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and the set of demands that can be routed between centers. Parameters include fixed 

setup costs of centers, unit vehicle service costs and capacities, transportation time for 

direct movements, and handling and sorting times at each center. Decision variables 

represent the number of vehicles allocated, the existence of each service route, the service 

policy of each node, and the existence of centers. The authors also propose a set-

partitioning formulation as well.  

 The authors show that valid inequalities of another study can be used to obtain a 

cutting-plane scheme of the same problem. Then the authors compare the lower bounds 

of the LP-relaxations of the path-based, cutting-plane, and set-partitioning formulations. 

The authors show that the lower bound of the LP-relaxed set-partitioning formulation can 

be used to derive exact solutions of the problem. A branch-and-price algorithm is derived 

from this formulation. The first solution procedure determines optimal service policies 

and a second procedure determines the optimal number and mixture of vehicles. The 

second procedure uses local search. A branching scheme is employed to resolve 

fractional allocations of demand.  

 An example was run using the branch-and-price algorithm and CPLEX was used 

to solve LP-relaxations. The number of nodes was varied between 20, 25, and 30 nodes. 

Results show the proposed algorithm is efficient and effective.  

 

 2.3.6 Hub Arc Location Problem 

  

In 2005, Campbell [5, 6] published "Hub Arc Location Problems: Part 1-Introduction and 

Results" and follow-up research in "Hub Arc Location Problems: Part 2-Formulations 
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and Optimal Algorithms." The second work developed an enumeration-based optimal 

algorithm to solve the Hub Arc Location Problem. 

 This Hub Arc Selection model takes a different approach to minimizing 

transportation cost by determining which hub to hub arcs within the complete graph 

should be selected as optimal lanes for consolidated truckload transportation. Given a set 

of origin-destination pairs and shipment quantities along those paths, the solution to the 

model will determine the optimal set of hub-to-hub arcs that should be opened to serve 

the shipments at minimum cost. The number of such hub-to-hub arcs that will be opened 

is a parameter set by the decision-maker when formulating the model.  

Traditional hub network design problems have dealt with decisions regarding hub 

arcs and access arcs, which are the paths from hub nodes to non-hub nodes. Assuming 

complete graphs, deciding where the hub locations would be also determined which hub 

arcs would be chosen as an active part of the network. Another facet of the traditional 

hub network design problem has been to determine which access arcs area part of the 

network, which is equivalent to choosing which non-hub nodes would participate in the 

hub network. Regardless of the access arc allocation policy, which determines to how 

many hubs each non-hub node can potentially be assigned, when the hub locations are 

not fixed, the problem is NP-Hard. 

 The motivation behind a non-complete graph originates from application areas 

where it is not practical for each hub node to be connected to all other hub nodes such as 

telecommunications networks with expensive infrastructure. Another motivation comes 

from the problem of traditional models in dealing with demand distributions and arc 
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volumes, which affects the validity of the constant discount structure. Time-sensitivity 

issues arise also when all hubs must be visited.  

 This hub arc location model determines which out of all possible hub arcs should 

use costly, limited transportation resources. For comparison, the p-hub models assume 

that flow paths may only visit one hub location between the two nodes. The hub arc 

location models in this research relax the assumption the flow between two hubs are 

discounted by a constant factor. They define a new type of arc, the bridge arc, that 

connects two hubs, but without a reduced cost. The proposed model is considered a q-hub 

arc location problem when it seeks to minimize the cost of opening q hub arcs. The p-hub 

problem with a p of two is equivalent to the q-hub arc problem with a q of one.   

 Results for q-hub arcs problems are compared to p–hub problems for 

experimental cases with 10-25 nodes and varying discount factors. The value of q was 

varied between 1 and 3. Results showed that HAL4, the special case when hub arcs are 

connected, performed best out of all hub arc location models. Compared to p-hub 

location models, the optimal solutions of both models involve the same hubs.  

   

 2.3.7 Application 

 

Although the depth of hub network models has been growing over the years, one would 

expect that the number of real-world applications has also been increasing. Fortunately, 

the results of one such application was published also as scholarly research, which gives 

a closer look at the potential for such models within a practical setting. 
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 In 2007, Cunha and Silva [10] published “A genetic algorithm for the problem of 

configuring a hub-and-spoke network for a LTL trucking company in Brazil.” In this 

case, the un-capacitated, single-assignment hub location problem is applied to an LTL 

trucking company in the country of Brazil. For this case, the traditional objective function 

has been altered to more accurately portray the economies of scale in that situation. This 

created a non-linear objective function, which necessitated advanced solution methods. 

 The mathematical formulation follows the traditional model where nodes are 

defined to represent origins, destinations, and possible hub locations. Necessary 

parameters such as per-unit cost, flow quantity, as well as an inter-hub cost discount 

factor were also defined for origin-to-destination flow paths. This discount factor, which 

would take values between 0 and 1, is not constant but dependent upon the amount of 

flow travelling on each hub-to-hub link. Binary decision variables are defined to 

according to whether a node is assigned to a hub. 

 The genetic algorithm (GA) designed to give heuristic solutions to the hub 

location problem uses strings of 0 and 1’s to represent whether or not each node will 

serve as a hub.  The authors cite literature that have found GA beneficial to solving 

similar types of problems and support the authors’ variety of GA against other previous 

genetic algorithms. The genetic algorithm proposed includes a standard crossover 

procedure, a mutation procedure, a local search heuristic using shift and swap movements 

for improving offspring, and a simulated annealing approach to accepting and rejecting 

certain assignments.  

 This literature also includes experimental results of a data set originally used by 

other researchers in past years based on airline passenger data consisting of the 25 largest 
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cities of an original set of 100. Results were found from running the model with several 

subsets of the original 25 cities. Discount factors as well as fixed hub opening costs were 

varied within the model. GA parameters were also varied including crossover and 

mutation probability and population size. Results were compared to results from a 

previous study which used the p-hub median problem, which found that the new solution 

methods improved solutions in a majority of the cases. 

 In addition, the model proposed in this literature was applied to the case of a LTL 

company in Brazil. Parameters were estimated to depict the then-current practices in 

Brazil including the discount structure for hub to hub links. In total, 46 nodes were 

considered. The original configuration of the hub network in Brazil had 8 hubs in 

operation, whereas the solution of the hub location problem found that cost was 

minimized with only 2 hubs. However, management of the company raised level-of-

service concerns with only 2 hubs opened, so they requested the addition of two 

additional hubs. The optimal four-hub configuration resulted in little additional cost with 

increased service level.  
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CHAPTER 3 

 
HUB NETWORK DESIGN MODEL 

 

 

 

After completing a thorough literature review to determine the current state of 

shipment consolidation research and methods in the important fields of study associated 

with shipment consolidation, it was determined that a deterministic, mathematical model 

could be employed to determine the optimal configuration of a shipment consolidation 

network for the private company.  

Past research on consolidation strategy revealed that freight consolidation reduces 

transportation cost compared to less-than-truckload, but also increases mean delivery 

time.  Also, it was shown that longer consolidation cycles resulted in lower transportation 

costs. Not surprisingly, it was determined that shipment characteristics such as size and 

arrival rate greatly affect the consolidation performance. Finally, feedback from 

companies that used consolidation revealed the most common reasons for failure were 

insufficient volume and customer service issues. 

 Past research on probabilistic consolidation modeling revealed that a schedule-

based strategy performs better than a schedule-and-weight-based strategy with respect to 

the addition of transportation and inventory holding cost. However, a schedule-and-

weight policy yielded the smallest delay per order. It was also found that a recurrent 

approach that re-evaluates a consolidation process as each individual shipment arrives 

yields a smaller delay for any shipment arrival rate, but tended to yield more expensive 

solutions than a deterministic Economic Shipment Quantity approach.  
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Past research on hub network design models revealed a number of different ways 

to mathematically model consolidation network design problems and use established 

solution procedures to find both good heuristic solutions and optimal solutions. The 

transportation of shipments from origin to destination through consolidation facilities 

lends itself well to hub location and network design problems. The early hub location 

models were formulated as quadratic programs, which are generally hard to solve. 

However, newer binary integer programs have been solved using a number of methods. 

Later models also allowed for varying node assignment policies, including a non-

restrictive policy which allowed origin-to-destination flow to be connected directly 

without the use of hub facilities. This non-restrictive policy is particularly useful to 

determine whether a consolidation policy is better than employing strictly less-than-

truckload transportation for each individual shipment.    

 

3.1 Model Objective 

  

 The purpose of this research is to propose a hub network model that can be 

employed by private organizations to identify areas of opportunity for shipment 

consolidation within an existing less-than-truckload network. For small manufacturing 

companies with relatively sparse less-than-truckload networks, determining areas to 

implement shipment consolidation is much more difficult than for the larger company. 

The time it takes to consolidate larger amounts of shipments is significantly longer, 

which often adversely affects customer satisfaction because earlier shipments must wait 

until the vehicle is adequately full. Therefore, the proposed model is also designed for 
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less-extensive transportation networks as a method of both screening for clear 

opportunities to implement shipment consolidation and optimizing the network design to 

maximize the amount of transportation cost savings.  

 The models described in this chapter attempt to determine a consolidation strategy 

that will result in significant cost savings, if one exists. That is, it is directed towards 

those organizations that have previously relied on less-than-truckload transportation to 

satisfy their customer demand. With that said, the decision maker should also have access 

to the type of data that is used as input to the model, including past transportation costs 

and facility location information.  

 While the models are focused on determining all available areas for cost savings, 

the models may also be tailored to determining the least-cost method of designing a new 

consolidation network. However, when designing a new transportation network, the 

decision to implement shipment consolidation is not always obvious. Factors such as 

less-than-truckload shipment quantities and their origins, destinations, and size may 

significantly affect cost parameters that may, in result, prevent the opportunity for 

effective shipment consolidation. These cost parameters should also be studied in detail 

by anyone looking to significantly alter current shipping practices. 

 

3.2 Pitfalls of Previous Models 

 

The proposed mathematical model hopes to avoid some pitfalls of other hub 

network models. It also encourages the decision-maker to carefully consider what type of 

model is best for its own situation. The major pitfalls are outlined in detail in this section. 
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While each pitfall should be addressed individually, some should also be considered 

simultaneously. When combined, they can overshadow optimal or good solutions to hub 

network design problems. The common pitfalls are as follows: 

 

Pitfall #1: Shipment quantities and composition are uniformly deterministic 

Pitfall #2: Transportation costs are proportional to flow  

Pitfall #3: Shipment quantities are assumed to fully utilize transport vehicles 

Pitfall #4: All nodes are allowed to house hub/consolidation functions 

  

  Pitfall #1 is of concern due to the nature of current freight pricing structures. 

Less-than-truckload rates are typically quoted based on shipment distance, geographical 

location of both origin and destination, weight of shipment, class of shipment, as well as 

contractual discount rates between the shipper and carrier. Truckload rates are often 

quoted based on geographical location, but are typically independent of total size or 

quantity of the truckload shipment.  

Fortunately, previous models such as the Cluster Hub Location Problem [32], p-

hub, and general hub network models have allowed the modeler to imbed unique cost 

structures for different flow paths to depict unique product mixes and regional shipping 

rates through indexed cost parameters. However, there is little opportunity to account for 

origins with a large product mix as well.  

Previous hub network models define local and consolidated transportation costs 

for a given path as directly proportional to the quantity of flow using that path. These 

costs are calculated by multiplying a constant cost per unit by the total quantity of units 
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using that path. This equates to an overestimation of local pickup and delivery costs 

because it assumes each origin and destination will be visited once every time the 

shipments are transported either directly to the destination or through the consolidation 

network. This practice neglects any opportunity to efficiently visit multiple nodes. Total 

network costs are also ill-estimated when ignoring shipment composition.  

 Pitfall #3 occurs because the discount structure in most hub network models 

misrepresents the economies of scale in freight transportation. While the constant 

discount factor alpha may be reasonable for cases of high-volume lanes with 

deterministic and stable demand, it is not realistic in many other cases. In the majority of 

previous research in hub network modeling, the constant discount factor is applied to the 

total consolidated transportation cost, which is proportional to the aggregated cost of each 

individual flow path
2
.  

 In many ways, the assumption is made that truckload transportation cost is 

proportional to the cost of the individual shipments inside the vehicle. However, the cost 

of hub-to-hub (truckload) transportation is independent of the amount of flow that has 

been consolidated or the cost of each individual shipment. Only in instances when the 

vehicle capacity is completely utilized and the product mix is well-known can a constant 

discount factor, applied to the sum of all individual shipments, properly reflect truckload 

costs. To address this issue, the proposed model will view the consolidated truckload 

costs as a fixed cost per trip, with total cost dependent upon the frequency of service.  In 

doing this, consolidated truckload cost will be comparable for any amount of vehicle 

utilization (disregarding additional fuel consumption for full trucks). When total volume 

                                                
2 In O'Kelly and Bryan[27] and Cunha and Silva [11], the discount factor is not constant, but proportional 

to flow. 
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of the consolidated shipments exceeds the capacity of one vehicle, the number of vehicles 

or frequency of service will need to be increased as well, affecting total costs. This will 

be one of the main contributions of our model, given that our example case contains data 

for sparse origin and destination locations in relatively smaller quantities.  

 Additionally, as it is assumed that enough flow will be available at each hub to 

accommodate a full truckload, it is implied that shipments will not have to wait for other 

shipments before a truck is full. In the absence of adequate shipment quantities, cost, 

timeliness, and customer satisfaction issues all directly affect the consolidation strategy. 

When a truck is not full, there will be a higher effective cost per shipment, and when a 

truck is full there will be a lower cost per shipment. Furthermore, any significant waiting 

time for consolidation will likely negatively affect the customer satisfaction, which has 

been of increasing importance to today’s organization.  

 The loss of customer satisfaction when shipments from various origins are held 

until there is sufficient quantity to effectively utilize vehicle capacity is a major concern 

for most manufacturing firms and shipment carriers alike.  By better utilizing the 

capacity of the long haul vehicle, shipments share more of the long haul costs. However, 

by waiting longer to consolidate more, customers must wait longer for their shipments. 

Therefore, the vendor should incur some sort of customer dissatisfaction penalty. In some 

cases, this cost will be enough to completely prohibit the shipments from using the 

consolidation system. In other cases, it would still be beneficial to use the network, but 

total savings will be decreased. It is the hope of the proposed models to avoid any loss of 

customer satisfaction by providing clear, concise solutions that identify practical 

solutions to a consolidation strategy decision.   
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Figure 3.1 Effects of Cumulative Shipment Waiting Time on Consolidation Performance  

 

  

 Pitfall #4 describes a definition that is not practical, and also adds unwanted 

complexity to hub network design problems. Due to organizational constraints, it is not 

possible to place a hub in every origin and destination node. In fact, it may only be 

possible to place the hub in a few potential locations such as a large manufacturing 

facility or existing warehouse. Therefore, the hub locations in the proposed model will be 

fixed, allowing for the optimal selection of consolidated truckload lanes through arc 

selection rather than choosing the optimal hub from a set of potential hubs. The problem 

of selecting the optimal hub from a set of potential would add unwanted complexity to 

our problem. It is not of the greatest concern to locate the precise location of hubs, but 

more with what areas have the highest potential for significant cost savings through less-

than-truckload consolidation.  
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3.3 Mathematical Formulation  

 

In this section, a hub network model will be introduced that includes both hub arc 

location/selection decisions, as well as origin and destination node assignment decisions. 

The mathematical formulation is a case of the uncapacitated hub network design 

problem, which will determine the optimal location of consolidation hubs and policy for 

each origin-destination pair. Each pair has the opportunity to use direct connection 

service, comparable to less-than-truckload (LTL) service, or hub to hub connection 

representing full truckload service via consolidation hubs. These consolidation hubs hold 

and consolidate shipments from multiple sources in order to gather enough shipments to 

justify full truckload service. If a full truckload can be utilized well enough, total 

transportation costs will be shared among a large number of shipments, reducing the cost 

per unit for each shipment and becoming more cost-efficient than using direct 

transportation methods.   

 The node-allocation policy is different than both traditional single and multiple 

allocation policies. Similar to single allocation models, optimal routing of flow from 

origin to destination will not be allowed to travel through more than two hubs. Each path 

starts at the origin and travels through exactly two intermediate hubs before reaching its 

destination. Likewise, the splitting of unique flow paths between multiple hub to hub 

paths will be prohibited.  However, when one particular node acts as the same origin or 

destination node for several unique flow paths, that node can send shipments to any 

number of different consolidation hubs, depending on which hub is optimal for each flow 

path. If necessary, the node policy can be considered a single-allocation policy. 
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 The model is also strictly based upon determining uni-directional (one-way) hub 

arcs that connect two distinct hubs. The model will not consider other opportunities for 

other cost-saving measures, such as additional LTL services or multiple-hub routes (see 

pages 8-9). 

  

 3.3.1 Definitions 

 

Given a directed graph containing flow paths between two nodes represented by the 

ordered pair (i,j), where the index i is the origin node and the index j is a destination 

node. Let N be the set of nodes with indices 1….n, that represents the origins and 

destinations of the original distribution network and M be a set of potential hub locations, 

1….m, where M is a subset of N. Note that the nodes in M may be origin and/or 

destination nodes and also note that a given origin node may also be a destination node 

for a different flow path while keeping the same index n. The model defines dij as the 

distance between any two nodes, i and j, and define sij as the quantity of flow between 

two nodes i and j, where i and j are members of the set N. I define cij as the unit cost for 

direct connection service from origin node i to destination node j, each members of N. 

The cost for connection between hub nodes i and j by one consolidated truck, contained 

within the set M, is defined as a fixed cost fij. The parameter w is defined as the capacity 

of each full truck.  

The model also defines a cost parameter for "local" transportation services, such 

as pickup and delivery service from each hub to its assigned non-hub nodes. The cost 

parameter c is defined as the transportation cost per mile. The parameter  is defined as 
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the maximum allowable distance between a hub node and any other origin and 

destination nodes serviced by that hub.  

The decision variables are Xij and Xijkl, both binary integer variables. Variable Xij 

equals 1 when a direct connection (by-passing consolidation) is made between nodes i 

and j, and 0 otherwise. Variable Xijkl equals 1 when a shipment path from i to j is routed 

through hubs k and l, where i and j are members of set N and hub nodes k and l are 

members of the set M. Note that when Xij equals 1, Xijkl must equal 0.  

 

Name Description 

(i, j) flow paths from origin node i to destination node j 

N Set of origins and destinations 1,2,....n 

M Set of potential hub locations 1,2,....m 

dij Distance between nodes i and j 

sij Flow between nodes i and j  

cij Cost per unit for direct connection of nodes i and j 

fkl Fixed cost parameter for connection of hub k to hub l 

 Maximum allowable distance from a hub to any node  

w Vehicle capacity factor for inter-hub vehicles 

c Local pickup and delivery cost parameter 

Figure 3.2 Summary of Definitions 

 

 3.3.2 Formulation 

 

The following mathematical formulation is a binary integer program that determines the 

most cost-beneficial hub network configuration, complete with consolidation hub 

locations and origin and destination node allocation. Assuming a non-restrictive policy, 

origin to destination flow paths may choose to use direct service (traditional LTL) or 

consolidated truckload service. 
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Minimize 

 

 

 

Subject to: 

 

 

 

 

 

    

 

 

The objective function seeks to minimize the total cost of transportation, 

including both direct LTL shipments and consolidated TL shipments. With potential hub 

locations in fixed positions, we seek to find which hub to hub connections are available 

for consolidated transportation and which origin and destination nodes will utilize this 

service in order to minimize total distribution costs. 

The first term in the objective function is the summation of direct connection 

(LTL) costs over all origin to destination pairs that utilize the direct connection service. 

The specific cost per unit flow is multiplied by the amount of flow between the origin and 

its corresponding destination and this cost will enter the objective function only when the 

binary variable equals 1. The cost parameter is variable for each flow path so that unique 

cost/price structures of LTL transportation can be built into the model.  

The second term is the cost for consolidated truckload service between hubs.  The 

amount of flow is aggregated for all flow paths that utilize the same pair hubs, which is 
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controlled by the binary variable Xijkl. We also restrict the consolidated truckload service, 

given as number of vehicles serving a given uni-directional hub to hub path, to be integer. 

Integrality is enforced by the ceiling operator that rounds up the quotient of aggregate 

flow and consolidated vehicle capacity. The resulting service level will be multiplied by 

the truckload cost parameter fkl for each unique hub to hub path and these costs will be 

summed for all two-hub pairs.  

The last component of the objective function represents the local transportation 

cost, which is a product of the local pickup and delivery cost parameter and the distance 

between the origin or destination node and its corresponding hub location. The local 

service cost will include a factor of 2 to represent transporting from the hub to the origin 

or destination and back. This scheme for accounting for local pickup and delivery will in 

fact overestimate local transportation cost by neglecting any other local vehicle routing 

scheme. While vehicle routing may decrease local costs, such a process also involves 

other operational details that are outside the purpose of this more strategic hub model.  

The maximum operator implemented for local transportation costs does ensure 

that we account for instances when the same physical location serves more than one flow 

path so that local distance is not redundantly counted. However, we are able to account 

for this local cost more than once for instances when the same origin or destination node 

is an active component of different hub-to-hub arcs. When this occurs, it is reasonable to 

assume that coordination, scheduling, and other issues may require that the local 

pickup/delivery service frequency is different than the consolidated truckload service 

frequency. Therefore, we may want to account for local cost more than once for a given 

origin or destination node.  



 

66 

 

The costs of pickup and delivery in this model are designed to depict separate 

production facilities or customer locations have no visibility of other locations. It is also 

assumed that there will be no local vehicle capacity constraint. The local cost parameter 

may include such costs as fuel, vehicle operating cost, vehicle depreciation, etc. The 

binary variable Xijkl will control whether the local cost enters the objective function 

because local cost should only be included when the hubs are used for consolidated 

transportation.  

The first constraint, Equation 1, allows only one such strategy for each origin to 

destination pair. If the direct connection variable Xij takes a value of 1, then all possible 

two-hub paths must not be utilized by that origin and destination. Equations 2 and 3 

prohibit origins and destinations from being assigned to hubs when those points are not 

within the maximum allowable distance. For example, when an origin node is within the 

maximum allowable distance from a hub node, will be greater than 0. This 

positive value is multiplied by G, which partially allows access of that origin-destination 

pair to a set of hubs for consolidated service. When the node is not within the maximum 

allowable distance from the hub, will be less than 0, which is multiplied by 

the large constant G, effectively prohibiting the possibility of consolidated service. When 

both constraints are considered, flow paths between i and j can only be assigned to a 

consolidated truckload route between two particular hubs if the origin and destination 

nodes are within the allowable distance of those hubs. Constraint 4 defines each variable. 
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3.4 Model Complexity  

 

The formulation proposed is difficult to solve optimally, primarily because of the 

non-linearity of the objective function and potential size of the problem. For example, a 

case with 25 hub locations, 200 origin-destination pairs, and each non-hub node within 

the local service region of two hubs, would require                                          

 variables. This equates to   (≈ ) possible 

solutions. We can also extend the analysis of the problem size for a problem with p hub 

locations, n origin-destination (OD) pairs, and each OD pair within the local service 

region of m hub locations. For a complete graph of OD pairs, there would be n + nm
2
 

variables. Therefore, as the number of hubs or node pairs increases, the size of the 

solution space increases exponentially (although an incomplete graph would greatly 

reduce the solution space). The number of constraints also increases with the size of the 

problem. The number of constraints to represent constraint 1 increases exponentially with 

how many hubs each non-hub node may potentially be assigned. The number of defined 

hubs as well as the number of hubs that service both origins and destinations affects 

constraints 2 and 3. For our example, there may be 

  constraints for each origin-destination 

pair, which would require 5 * 200 = 1000 constraints to represent Constraint 1. The 

number of service region constraints (Constraints 2 and 3) might also be potentially large 

depending on the location and number of OD pairs because the number of constraints 

increases with the number of non-hub and hub nodes. In conclusion, the complete 

enumeration of the solution space is infeasible, even as constraint 1 restricts variable 
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assignment (if Xij is 1, then its counterpart, Xijkl, must equal 0 for any combination of hub 

nodes k and l). 

If the objective function were linear with respect to its variables and cost 

components, the problem would be much easier to solve. However, Maximum (max) and 

Ceiling ( ) operators provide for a non-linear objective function and solution space. 

This behavior should not be overlooked. It is known that as the number of variables 

increases, the number of local optima also increases. In addition, the relative size of each 

flow path with respect to the vehicle capacity affects the consolidated truckload cost, and 

the amount of nodes that act as both origin and destination affect the local transportation 

cost components. The integration of these factors all affect the value of the objective 

function.   

A solution procedure that would efficiently solve such a non-linear Integer 

Program is not well-documented. For example, exchange and improvement heuristics 

were applied to the Quadratic Assignment problems of early p-hub network models. 

Therefore, it may require a specialized heuristic or enumeration-based solution procedure 

such as branch-and-bound or linear relaxation. For instance, using a possible relaxation of 

the non-linear operators as fathoming criteria may provide good bounds. For instance, a 

relaxation of the ceiling operator would provide non-integer number of truckloads 

required. This method may be useful in cases where smaller vehicles can be utilized or 

the frequency of consolidated truckload service can be easily adjusted in practice. A 

relaxation of the maximum operator to over-count local transportation costs may be used 

to give upper bounds.  Other heuristic methods to solve the problem may include 

assigning flow to consolidation hubs according to the ratio of its direct connection cost 
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and its total size.  The structure and convexity of the problem should be studied in greater 

detail to generate ideas of how to find good or optimal solutions.  

Because the problem is difficult to solve directly as it is a binary integer program 

with non-linear behavior, a different approach to solving the problem has been 

developed, which focuses on hub to hub arc selection, hub to hub service level, and node 

assignment decisions. A feasibility check, sub-problem optimization model, and 

specialized solution methodology will attempt to take particular advantage of the problem 

structure.  By considering this problem structure, it is possible to reach theoretically 

optimal solutions to the original problem, namely determining all cost-effective locations 

to implement less-than-truckload consolidation.  

 

3.5 Specialized Solution Methodology 

 

Due to complexity concerns of the original model, a specialized methodology is 

proposed to determine the optimal set of consolidation scenarios within a shipment 

network and the optimal origin and destination node allocation policy for each scenario. 

Once optimal solutions are found for each scenario, they will be integrated into a global 

solution.  

The procedure starts with a feasibility check that will significantly reduce the 

solution space with regards to feasible hub-to-hub arcs and potential hub locations. The 

method compares the total cost for direct connection service against the cost for 

consolidated truckload service.  If the total cost of direct connection for all flow paths 

within the two hubs' service regions is less than the cost of one full truckload on that 



 

70 

 

path, there is no need for consolidation service between the two hubs. That is not to say 

that either hub cannot be a future hub location, but the hub-to-hub arc will not be a 

component of the optimal network.  

The second stage of the procedure is an optimization routine that will determine 

the optimal consolidated truckload service level between each hub to hub arc as well as 

the node assignment policy for each origin and destination node within the service 

regions of the hubs. Because we determined the set of hub to hub arcs that are not 

feasible only when disregarding local cost, this routine will now consider all cost 

components including local cost such that we might eliminate more hub to hub arcs or be 

able to justify economical consolidation. 

The last stage of the solution procedure compares each optimal solution of the 

two-hub scenarios and determines the global optimal hub network by resolving any 

duplicate origin and destination node-to-hub assignments that were included within our 

local solutions.  For relatively large-scale, yet sparse networks consisting of highly 

dispersed origins and destinations and varying levels of shipment volumes, the proposed 

methodology will be a very useful tool to pinpoint the specific lanes that will result in 

significant and sustainable cost savings. 

To begin the solution procedure, the set H(k)  is defined as the set of all nodes 

located within the boundary of the local service region of the potential hub location k, 

according to the maximum-allowable service radius defined in the original problem. The 

solution procedure that will solve the hub-and-spoke network problem includes the 

following Stages: 
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Stage 1: Feasibility Check of Hub Arcs 

Stage 2: Solve Sub-model for Remaining Hub Arcs 

Stage 3: Resolve Conflicts of Duplicate Assignments 

Stage 4: Integrate Local Solutions and Discount Duplicate Local Costs 

 

Stage 1 of the solution procedure should be executed for all unidirectional 2-hub 

pairs of the original problem. For example, if there are n potential hubs, then there are      

n(n-1) different pairs that should be considered. After completing the feasibility check, 

the optimization model should be solved for all remaining scenarios. Stage 3 is used to 

resolve assignment conflicts when origins or destinations are part of multiple sub-

solutions. Stage 4 seeks to integrate the sub-solutions into a global solution and end by 

identifying any duplicate local costs within the global solution. 

 

3.5.1 Stage One: The Feasibility Check 

 

Stage 1 of procedure consists of the feasibility testing for all two-hub pairs and their 

respective hub arcs within the entire set of potential hub location. The purpose of this 

procedure is to aid in determining the set of feasible locations for consolidation for 

networks with sparse shipment locations of varying shipment quantity. If many areas of 

high shipment volume exist, there will naturally be many such feasible consolidation 

areas. However, for sparse networks, the procedure will eliminate many lanes, which 

decreases the amount of effort needed to identify potentially beneficial opportunities. For 

each set of hub nodes k and l, if   , then there should be no 
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consolidated truckload service from hub k to hub l.  This inequality compares the cost of 

one consolidated truckload between two hubs with the total direct connection cost 

between those hubs’ service regions.  

 Regardless of any local pickup cost or cost of multiple trips, if the total cost of 

direct connection is less than even one truckload, we know there is no possibility for 

consolidation to be advantageous at any truckload service level. This inequality will 

always filter out infeasible solutions to the hub arc selection problem because the local 

pickup or delivery cost will always be positive (regardless of local cost shared between 

more than one flow path), and the frequency of consolidated truckload service might in 

fact be greater than one trip per planning period (because of vehicle weight/volume 

capacity constraints). 

This feasibility check will determine which hubs and hub-to-hub arcs should still 

be in consideration within an optimal network design. It is also important to note that a 

specific hub can also be excluded from the potential optimal hub set if such a hub fails 

for all of its own two-hub feasibility checks. 

  

 3.5.2 Stage Two: Solve Sub-Model for Remaining Two-Hub Scenarios 

 

During Stage 2, a new mathematical model is formulated to determine which remaining 

two-hub scenarios result in positive cost savings. The new formulation uses previously 

defined flow paths (i, j) and node-to-node distances, as well as network cost parameters. 

However, new variable Yi is a binary variable that equals 1 if i  H(k) utilizes 

consolidated truckload service and 0 otherwise.  Zj is a new binary variable that equals 1 
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if j H(l) utilizes consolidated truckload service and 0 otherwise.  Xijkl is defined as a 

binary variable that equals 1 if the flow path (i,j) uses consolidated truckload service 

through hubs k and l. Finally, n is defined as the service level variable which represents 

the number of truckloads employed between the two hubs. The formulation is as follows: 

 

Maximize 

 

 

Subject to: 

 

                  

 

     

  

 Although we consider the same cost components, the revised model differs from 

the original model in many regards. First, the two objective cost components include the 

direct connection cost for a given set of flow paths that utilize the given two-hub pair, the 

consolidated truckload cost (dependent upon the variable service frequency and fixed 

truckload cost parameter) and local pickup and delivery cost. We also notice that in this 

formulation the local cost does not contain a maximum operator. When considering only 

two hubs within the scenario, any origin or destination node can only be assigned to its 

respective hub exactly one time, which leaves no opportunity for counting local cost 

more than once.  

The first constraint ensures that if a node pair does not use the hub nodes k and l, 

then the nodes i and j do not use the truckload arc connecting the two hubs. The second 
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constraint requires that the total flow between all the origin nodes and destination nodes 

within the two service regions of the hubs must be less than the available capacity of the 

truckloads, given as the number of truckloads multiplied by each truck’s individual 

capacity, w. Therefore, when a given number of truckloads limit the total flow available 

for consolidation, the optimal decision will include which origins and destinations should 

be included in truckload service.  

If the optimal objective function value is positive, the cost of direct connection for 

the set of origins and destination nodes within the local service region outweighs the cost 

of local pickup and delivery and full truckload costs for a given number of truckloads 

over the planning period. Therefore, it would be beneficial to use a consolidated full 

truckload as opposed to direct connection.  

Although the sub-model formulation remains an integer program, solving this 

model is much easier than solving the original model. Because we originally assumed 

that each set of hub-to-hub routes that share local service need to account for local cost 

due to coordination and scheduling concerns, we do not need to worry about duplicate 

local service costs. In addition, the integrality operator (ceiling) can be lifted by an 

integer variable to determine the service level between each hub for consolidated service.  

As each sub-problem only considers a unidirectional path between two hubs and 

the feasible set of hub arcs will be considerably less than the original set of all hub arcs, 

the solution space for the global solution of integrating each sub-problem is considerably 

smaller than the original formulation. For example, a sub-problem with n origin nodes, n 

destination nodes, m OD pairs, we would have only n Yi variables, n Zj variables, and m 

Xijkl variables, which equals a total of (n+n+m) variables. If our original problem has 
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been reduced during the feasibility check to a set of q hub-to-hub arc routes, the number 

of solutions for the global problem is q2
(2n+m)

 . With both linear objective functions and 

constraints, the sub-model formulation is relatively easy to solve optimally.  

Although the number of two-hub scenarios increases exponentially with the 

number of potential hub locations, the feasibility check for each scenario can be run in 

constant time. Therefore, it can be concluded that enumeration or heuristics are not 

necessary to solve the original consolidation network design model due to a very 

tractable sub-model formulation. In addition to finding optimal solutions, the specialized 

methodology may have an added benefit of a much faster running time to solve the global 

problem, given an automated version of the process. 

The mathematical model proposed in Stage 2 can be solved by commercial 

software packages such as LINGO that utilize a branch-and-bound procedure. If 

necessary, the integer program may be changes to a binary integer program by converting 

the integer variable n to its binary representation. This does not add a significant number 

of variables because there is only one such n variable for each sub-problem.  

 

Alternate Iterative Solution Method for Sub-Model 

 

If preferred, the sub-model for each two-hub scenario may also be solved 

iteratively, increasing the n variable by 1 for each iteration. In doing so, n will become a 

defined model parameter.  Sub-problems would begin by setting the n parameter to 0. 

Depending on the relative size of shipment flow paths, if a point is reached when the 
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optimal solution does not improve for a number of subsequent iterations, we can stop the 

process.  

When n equals 0, the optimal solution includes no origins, destinations, or paths 

between them due to a capacity constraint.  

When n equals 1, the optimal solution will choose the optimal combination of 

flow paths with the largest original LTL cost and smallest local cost, as long as they 

outweigh the truckload cost. The paths with large LTL cost will likely be relatively large 

shipments that are within the vehicle capacity, if they exist.  

For each iteration, it is important to note that once an origin and destination is 

within a solution, other flow paths associated with those points may be included with no 

additional local cost. Therefore, more flow paths may automatically enter the solution if 

their inclusion does not violate the capacity constraint.   

As n increases, if we find that a solution in non-increasing, the consolidated 

truckload cost and local cost outweighs the combined original LTL cost. If this occurs, 

there are three cases: 

Case 1) There are no flow paths remaining and the consolidated truckload cost 

and local cost outweighs the combined original LTL cost. 

Case 2) There are flow paths remaining that are smaller than the excess capacity, 

but they are not in the solution because they require new local cost that outweighs their 

contribution to the original LTL cost. Therefore, they may wait until enough excess 

capacity exists in the next iteration in which their origins and destinations are in the 

solution because of another flow paths inclusion. 
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Case 3) There are flow paths remaining that are more than the excess capacity, 

but they are not in the solution because they violate the capacity constraint.  

A good rule-of-thumb to find a good solution of this problem is created based on 

the aforementioned problem behavior:  

Rule. If a current solution is non-improving, we will increase n by one at most 

times, where  is the largest flow path remaining and w is the vehicle 

capacity. If there are other flow paths remaining, then waiting for the largest flow path 

will give all other flow the opportunity to enter an improving solution. Waiting the 

additional iterations will allow the largest flow path the opportunity to create an 

improving solution. The allowance for additional iterations will also give flow paths from 

Case 2 the opportunity to find their respective origins and destinations within a solution. 

If after the additional iterations, not one improving solution is found, the procedure is 

ended and the best solution to date is used. 

 

3.5.3 Stage Three: Resolve Duplicate Assignments 

 

After all sub-problems from the set of potential hub-to-hub arc routes have been 

optimized with respect to cost savings opportunity, the results must be further analyzed. 

Depending on the problem data set, each origin or destination point may be within the 

maximum allowable distance of more than one hub, for instance, when two potential 

hubs have overlapping service regions that share certain origins or destinations. 

Therefore, in our solutions, the same origin-to-destination path may be routed through 

different hub sets. After solving each sub-problem, each scenario contained positive cost 
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savings; however, they shared one or more flow paths that contributed to the success of 

each sub-problem. This is not in accord with the original model and should be resolved in 

order to find feasible solutions to the optimal network design. Figure 3.1 shows this 

scenario. Otherwise, if all flow paths are only components of one sub-solution, the 

addition of all two-hub sub-solutions forms a globally-optimal solution. 

 

 
Figure 3.3 Conflicting Sub-solutions 

 

 

Depending upon the specific example case and original network configuration, 

conflicts can occur in several situations when integrating the various two-hub solutions. 

Conflicts occur when one or more origin-to-destination flow path is included within the 

optimal solution for two or more unique sub-problems, with the possibility that one hub 

is a component of all sub-problems.  

 When a unique flow path is shared by two optimal sub-solutions, the global 

solution is impacted by the interactions of each sub-solution. The decision becomes what 

is the optimal arrangement for the different origin and destination nodes and their 

associated, directed flow paths. In this case, the path allocation problem becomes a 
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combinatorial problem itself.  Figure 3.5 shows the flow paths shared for a conflict 

instance. 

 

 
Figure 3.4 Origin-to-destination Flow Paths within a Potential Conflicting Scenario  

 

 

In most cases, the number of conflicting flow paths is small enough that it is 

possible to enumerate each different solution with and without each specified flow path. 

Scoring the objective function of each existing sub-problem solution simultaneously for 

complementary assignments of the shared flow paths will determine which solution is 

better. If the scenarios cannot share the shipments in a way that adding solutions would 

exceed the best of the individual scenario solutions, the best existing scenario is chosen 

and the other scenario will not consolidate and continue to employ less-than-truckload 

transportation. 
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Figure 3.5 Conflict Resolution Chart for Four Shared Flow Paths 

 

The enumeration process involves changing the value of the Xij variable 

corresponding to each flow path sij within each existing scenario solution. If the absence 

of the variable removes the origin or destination from the solution as well, then the 

corresponding Y or Z variable should also be adjusted. Finally, the solutions are scored 

with the existing objective function. The objective function values for each scenario with 

complementary variable assignments are combined. Then, the best solution among the 

maximum global solution and the maximum original sub-solution is chosen. Figure 3.5 

gives an example of a conflict resolution procedure chart using the case described in 

Figures 3.3 and 3.4.  

For cases with several conflicting scenarios (more than two), it may suffice to 

simply pick the scenario with the best solution and dismiss the others when there are 

several shared flow paths. Other more complicated conflicts may require a small-scale 

SCENARIO 1 SCENARIO 2 GLOBAL 

S11 S12 S21 S22 OF 1 S11 S12 S21 S22 OF 2 OF1 + OF2 

1  1 1 1  0 0 0 0   

0 1 1 1  1 0 0 0   

1 0 1 1  0 1 0 0   

0 0 1 1  1 1 0 0   

1 1 0 1  0 0 1 0   

0 1 0 1  1 0 1 0   

1 0 0 1  0 1 1 0   

0 0 0 1  1 1 1 0   

1 1 1 0  0 0 0 1   

0 1 1 0  1 0 0 1   

1 0 1 0  0 1 0 1   

0 0 1 0  1 1 0 1   

1 1 0 0  0 0 1 1   

0 1 0 0  1 0 1 1   

1 0 0 0  0 1 1 1   

0 0 0 0  1 1 1 1   
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implementation of the global model in Section 3.3 and solved using non-linear techniques 

or rounded solutions of its linear relaxation.  

 

3.5.4 Stage Four:  Integrate Local Solutions 

 

At this point, it is important to recall that local costs for different two-hub scenarios do 

not have to be discounted for duplicate local transportation because of coordination issues 

between different consolidation scenarios. If desired, local costs may be discounted for 

origin or destination nodes that are components of more than one sub-solution if the 

scenarios have the same optimal service frequency, n. Resultantly, the individual 

solutions for each two-hub pair and their corresponding hub arcs are mapped to the entire 

network, complete with each non-hub node's assignment policy to its hub. A 

consolidation network has now been created.  
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CHAPTER 4 
 

CASE STUDY 
 

 

 

Through detailed exploration of current literature and research, and the case of a 

real less-than-truckload network of a U.S. manufacturer, it was determined that the case 

fits the hub-and-spoke model very well. Therefore, the proposed model could be applied 

to this particular situation in attempts to realize significant logistics cost savings. To 

realize these savings, efforts can be concentrated on the large numbers of small, unique 

LTL shipments for which the many example company branches are responsible every 

day.  

  

4.1 Company Background3 

  

 The example company was founded and became incorporated around the turn of 

the 20
th
 century. Now, this company is a diversified manufacturer that researches, 

designs, and produces products for the home, office, and automobile industry.  

 The business is divided into many business units among several business groups 

that comprise four unique segments. The company currently owns approximately 200 

branch operations that represent manufacturing, warehousing, corporate, and 

administrative operation. The first, and largest, segment consists of business units 

producing bedding and furniture components, as well as fabric and foam products. The 

                                                
3 Information current as of January 2008. 



 

83 

 

next segment includes groups that produce retail displays, storage products, and office 

furniture components.  Yet another segment consists of two groups that produce steel 

wiring and tubing as well as other wire products for use throughout a variety of the 

company's business segments. Finally, the last segment includes business groups that 

produce automobile interiors and bodies as well as industrial machinery for the textile 

industry, printing, and factory automation.  

 This company has also expanded its operations in North America to include 

Mexico and Canada, and overseas to include Europe and Asia. Other facilities are located 

in South America and South Africa.   

 The company currently employs approximately 33,000 employees, with the 

majority working in production. Roughly one-third of employees are located 

internationally and approximately fifteen percent of employees are represented by labor 

unions.  

 

4.2 Operations and Policy 

 

With operations and markets in nearly all 48 contiguous states, the company 

operates a very large scale domestic distribution network. This network is in charge of 

delivering subassemblies, component goods, and finished goods to retailers and other 

production facilities all throughout the country in a timely manner. To accomplish this 

feat, both rail and road-based transportation is employed. Full-truckload (FTL or TL) and 

rail transportation is primarily used for long-haul transportation and distribution of full 

containers of goods produced in both its overseas and domestic production plants. Less-
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than-truckload (LTL) is used to distribute smaller, specialized shipments between its 

branch operations and suppliers, vendors, and other customers. Shipment destinations 

may also include company branches and other private organizations with production 

facilities of their own. 

 Truckload transportation accounts for approximately one-half of the total 

shipments that the company is responsible for, which amounts to over 3000 per week. 

Corporate management obtains visibility of these shipments due to the implementation of 

a centralized transportation planning software, TMS (Transportation Management 

System) to record, plan, and dispatch Full Truckload transportation. In total, there are 

estimated over 600 TL carriers utilized throughout the U.S. to serve company truckload 

transportation needs.  

Less-than-truckload accounts for the other approximate half of road transportation 

with an estimated 3000 to 4000 shipments per week. Corporate headquarters currently 

has nearly complete visibility of branch LTL shipments due in part to a recent centralized 

initiative to decrease the number of less-than-truckload carriers for domestic branches to 

just a small number of core carriers, which requires high branch compliance. The 

impressive corporate visibility results from information sharing and data collection of 

LTL shipment history into a centralized database. Through this process, corporate 

management also records the many different properties of LTL shipments.  

The company currently uses the industry-standard Czar  freight rating software 

for less-than-truckload transportation pricing. The shipper uses the Czar program to find 

the rate of an LTL shipment by inputting zip codes of origin and destination as well as 

weight (in pounds) and the class of the shipment. There are also opportunities to input the 
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agreed carrier discount, minimum charges, accessorial charges, etcetera, per the FAK. 

The FAK (Freight of All Kind) contains important details about the agreements the 

company has with the core LTL carriers. This information includes LTL rate discounts 

for each carrier as well as the policy on accessorial charges for specialized services and 

exceptions to the base rate. 

Outside of utilizing public, commercial TL and LTL carriers, the company owns 

and leases a significant amount of freight vehicles and trailers to partially satisfy other 

transportation needs. Each company branch is given a certain amount of trucks and 

trailers for private use. Apart from branch transportation resources, the company also 

owns and operates its own transportation company, an operation that operates like other 

commercial TL carriers, with service many company branches. This transportation 

company owns a relatively smaller fleet with the majority of resources based in the 

Southern and Midwestern United States. 

 

4.3 Data provided  

 

A large amount of data and information describing the many facets of regulation, 

corporate policy, and operations was provided by the company.  

The most important source of data was the LTL History Database, a Microsoft 

Access database file of all the Less-than-truckload shipments of which corporate had 

visibility beginning March, 2006 and ending June, 2007. The database includes all North 

American shipments for all branches. The shipment history database includes information 

on shipment date, carrier used, processing date, branches involved, origin City, State, and 
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Zip, destination City, State, and Zip, amount paid, purchase order number, accessorial 

charges, shipment class, shipment weight, and fuel surcharge cost. 

A full truckload “Lane Rate” document was provided, which represented a 

summarized analysis of historical FTL shipments. This spreadsheet file gave aggregated 

and averaged information on the FTL shipments made since March, 2006. It includes and 

separates both Branch carrier and public TL carrier entries. It gives information on the 

total amount paid, fuel charges, number of trips, and number of stops per trip for every 

combination of shipment origin and destination city in North America.  

Individual branch information was also given in spreadsheet form, which gives 

the number of employees, address, contact information, and purpose (warehouse, 

production, administration) of each company branch facility.  

 

4.4 Consolidation Constraints 

  

 The following constraints for the example application were placed by company 

officials.  

 

1) Shipments cannot be stacked within the same truckload 

 This equates to the constraint that shipments cannot be placed on top of one 

another inside a consolidated truckload trailer. The company manufactures a large 

mixture of products with varying shape, size, composition, and fragility.  

 Although there are some exceptions, like foam, that may be easily stacked without 

damaging other shipments, we were forced to assume no stackability because shipment 
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information about product or material was not given within the provided data. Therefore, 

there would be no way for us to prohibit, for example, a glass fixture or automotive 

component being stacked on top of anything else. There may be the opportunity including 

stackability issues in extended models. 

 

2) Individual pieces are to be combined as one shipment, with the measure (weight, 

volume, etc.) of the combined shipment as the sum of the individual orders.  

 This assumption was important to make for cases when shipments originating 

from the same location, processed on the same date, and travelling to the same 

destination contains multiple pieces that vary in class, weight, or other properties. 

 

3.) No capital cost can be incurred for hub construction, retro-fitting, storage space, and 

material handling. 

 The company cannot build new facilities for warehousing or consolidation. 

However, existing warehouses, distribution centers, or manufacturing facilities are 

capable housing consolidation operations, with preference given to utilizing existing 

warehouses or distribution centers rather than production facilities. Therefore, the 

example application case will place hubs in existing facility locations.  

 

4.5 Data Preprocessing 

 

Before we were able to analyze the data, we filtered to include only the most 

relevant data. This equated to removing shipments within the LTL shipment history that 
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indicated for what the company was not responsible for paying, all shipments that 

included either origins or destinations outside of the United States, as well as expedited 

shipments, because those are not capable of being held extended periods of time for 

consolidation. Other measures were taken to format the given data in a way that would 

permit its use within the proposed mathematical model. 

  

 4.5.1 Defining the Unit for Shipment Flow 

  

When consolidating unique shipments with varying dimensions of weight and volume, 

full truckloads are frequently filled to capacity with respect to one such measure before 

another. Assuming no stackability, the two units that determine the number of vehicles 

necessary to provide truckload service are weight and the floor-space of the vehicle 

storage container. The question that has to be answered is which factor will limit the 

utilization of a full truckload more. Characteristics of the individual shipments 

determined that weight was not the most accurate unit to define the combined size of 

consolidated shipments. Therefore, each shipment flow path was converted to an 

estimated measure of volume and surface area. 

To convert each shipment to volume and vehicle floor-space utilization, both the 

class and weight given within the LTL history database were converted using a density 

factor specific to each class. The density factors were ascertained from the National 

Motor Freight Classification (NMFC) Committee Density Guidelines described the 

relationship between freight class and shipment density. The estimation for vehicle floor-

space utilization is as follows: 
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Truck Space Utilization (%) = (Shipment weight/ Shipment density) 
2/3

/ 424 

 

 Dividing the shipment weight by the shipment density will give an estimation of 

the shipment volume, which assumes a strictly cubic shape with equal dimensions. 

Calculating the cubic root of this value will result in the length of each dimension. 

Squaring this result will then determine the approximate surface area of a shipment. 

Finally, dividing the surface area by the surface area of a standard trailer of 53 foot length 

and 8 foot width will determine the percentage of truck space that each shipment will 

consume. 

 

 
Class Density 

 (lbs/ft3) 
Conversion 
 Factor 

Class Density 
 (lbs/ft3) 

Conversion 
 Factor 

50 55 .018 110 8.5 .118 

55 42.5 .024 125 7.5 .133 

60 32.5 .031 150 6.5 .154 

65 25 .040 175 5.5 .182 

70 20 .050 200 4.5 .222 

77.5 15 .067 250 3.5 .286 

85 13 .077 300 2.5 .400 

92.5 11.5 .087 400 1.5 .666 

100 10 .100 500 1 1 

Figure 4.1 Density Conversion Factors for Shipment Classes 

 

 

 It was determined that volume and vehicle floor-space would be used to describe 

the size of shipments after analyzing the LTL shipment data. Because shipment weights 

were provided, it was possible to compare the combined weight to the estimated vehicle 

utilization for each shipment path between two zip codes. Out of 2,730 records of 
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shipments, approximately 84 percent filled truckload floor-space capacity before weight 

capacity was filled.  When analyzing the top 450 shipment "lanes" estimated larger than 1 

truckload, truckloads were filled quicker using floor-space utilization by an average of .8 

truckloads. This analysis reveals that shipments are generally lower density items. 

Therefore, using vehicle floor-space utilization is a more fitting unit of measure for less-

than-truckload shipments. 

 

4.6 Less-than-truckload Network 

 

As described in the previous sections, the LTL shipment data provided was 

converted from class and weight to the proportion of a common freight trailer. With all 

shipments converted, we examined the current LTL transportation network at a high level 

to check for any clear opportunities for LTL consolidation. Aggregating the data on the 

state, city, and zip code levels and mapping the data were all great tools for representing 

the shipment data and identifying areas with high potential for transportation cost savings 

through consolidation.  

 When trying to determine where to consolidate LTL shipments using the hub and 

spoke model, the very large lanes typically present themselves clearly simply through 

numbers. For areas with very large shipment volumes relative to vehicle capacity and 

very high costs of shipping relative to consolidated, truckload shipping are clear areas to 

consolidate with high potential for cost savings. These areas can be determined from 

simply aggregating the shipment date at the city level and comparing LTL shipment 

volume and cost figures against the corresponding consolidated truckload estimates. 
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However, for well-distributed shipment origins and destinations of relatively smaller-

volume shipping lanes, it is harder to "eye-ball" the situation.  

 The analysis began by examining the existing transportation network and flow of 

goods, and several things stood out. First, it was apparent that the network was indeed 

very well distributed but also sparse in terms of significant lanes of LTL shipments. 

Varying levels of shipments originate from places all around the United States, but larger 

single shipment "lanes" are only originating in select locations. Considering that the data 

included all shipments within a 65 week period and no one city-level shipping lane 

included more than 18 estimated truckloads, there were no clear opportunities for weekly 

consolidating policy by simply looking at the numbers. Assuming a truckload was 

dispatched once per week, this lane would utilize approximately 28% of each truckload. 

 By analyzing the numbers and viewing a map of the shipping lanes, it was 

apparent that many areas appeared to be good candidates for consolidation. Places that 

contained a large amount of originating shipments included the Los Angeles area, the 

Dallas/Ft. Worth area, Denver, several cities within North Carolina, Atlanta, Chicago, 

Carthage, Tupelo, among others. These origins generally align with the location of 

company production facilities and/or warehouse facilities. Destinations are much more 

distributed throughout the United States. However, Florida did stand out as a state that 

had no significant production but very highly distributed consumption. This may imply 

that the state is a bad candidate for consolidation efforts, due to a high cost of local 

pickup and delivery cost for any hub and hub service region and increased truckload rate 

to make up for relatively empty back-haul.   
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 Other noticeable behavior of the company's LTL network was the abundance of 

one-way transportation lanes and noticeable lack of areas that contained large amounts of 

both origins and destination. Typically, bi-directional routes are preferable over uni-

directional routes due to the potential for fully utilized back-haul trailers, which 

encourage lower rates, and dedicated trucking service, which improve driver satisfaction 

and route management.  

 Figure 4.2 shows a pictorial representation of the major origin and destination 

points within the example company's less-than-truckload network. 
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CHAPTER 5 
 

EXAMPLE CASE AND RESULTS 
 

 

 

To illustrate the mathematical modeling and solution approach proposed in this 

research, an example case will be solved with data provided by the example company. 

With thousands of shipments being transported every year between many unique origins 

and destinations and little branch coordination, the company is a good candidate for a 

shipment consolidation policy.  

 

5.1 Model Parameters 

  

 5.1.1 Set of Origin and Destination Nodes and Flow Paths 

 

Origin-to-destination flow paths were defined using the converted shipment quantities 

from the provided less-than-truckload shipment data. Flow values and original LTL costs 

were aggregated at the 5-digit zip code level. Therefore, these zip codes also defined the 

individual origin and destination nodes.   
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Figure 5.1 Origin and Destination Flow Paths with Aggregated Flow  

 

  

 5.1.2 Potential Hub Locations  

 

For the general case, the company employing the proposed model is capable of defining 

the set of potential hub locations in whatever way it sees fit. In fact, the model is capable 

of adding a cost component to account for hub opening, construction, or operating costs. 

However, per consolidation constraints, potential hub locations in this case will be 

existing company facilities, whether production or distribution centers, that are located 

nearly relatively clustered areas of origin or destination points. These areas were chosen 

by studying Figure 4.2 and reviewing other company data. Therefore, potential hub 

locations were chosen from existing facilities with no hub costs. To illustrate the model's 

effectiveness to a general scenario, the set of potential hubs was also chosen semi-

arbitrarily from the entire set of origin and destination nodes.  
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Figure 5.2 Locations of Potential Hub Facilities 

 

  

 
Figure 5.3 List of Hub and Non-hub Nodes within each Local Service Region.  
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 Once hubs were chosen, the set of origin and destination nodes were filtered 

based upon the distance from nearby hub locations. In accord with the model definitions 

and constraints, only nodes within the local service region of a hub are considered. In this 

case, the local service region was set to 50 miles. Figure 5.3 shows the set of nodes 

within each hub's service region.  

 

 5.1.3 Hub-to-Node and Hub-Hub Distances 

 

All distances between both hub and non-hub nodes were found using the on-line mapping 

site MapQuest, a web query, and VBA macro within Microsoft Excel. In doing this, 

distances were estimated along common interstate highway and local routes. The 

following figure shows the web query code used with Excel. 

 

 
Figure 5.4 Web Query to Calculate Distance between Nodes 
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 5.1.4 Redefining Original LTL Costs 

 

As previously defined in the mathematical models, sij and cij represent the flow measure 

and cost per unit flow for LTL shipments, respectively. However, we know the rates of 

LTL shipments to be dependent on multiple factors such as weight and class values. 

While it may be possible to loosely approximate a cost per pound or cost per shipment 

based on class, it would be much more difficult to approximate and evaluate a cost 

function based on multiple factors.  

 By using historical data, there is no need to define the cost function at all. 

Specifically, the aggregated amount paid by a company along a given flow path should 

encompass all information about the relationship between cost, weight, class, and any 

other factors. Therefore, we can ignore the cost function altogether, given that the 

underlying dependencies between cost and factors like weight or class will not change 

during the future. We can then redefine direct connection costs as the historical aggregate 

value and use this value as the basis of comparison against a consolidation policy. Using 

historical data will be better than any approximation because it contains the true behavior, 

so long as the time period for aggregating historical data is the same for the planning 

period for full truckload service.  

After redefining the costs for direct connection, a new aggregate LTL cost is 

defined as ij, which will replace the product of the cost parameter, cij, and the flow 

value, sij, for each flow path (i,j). Even after removing the need for sij within the direct 

connection term of the objective function, sij is still used to calculate the cost of 
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consolidation because the total flow and truck capacity will determine how many full 

truckloads are needed between two hubs throughout the planning period.  

  

 5.1.5 Other Model Parameters 

 

Because the provided cost and shipment quantity data was aggregated for a 65 week 

period, the scalar amount (65) was used throughout the mathematical formulation to scale 

relevant costs, such as the consolidated truckload cost and the local pickup and delivery 

costs. These costs were defined as a fixed cost per occurrence. Due to the aggregated 

period of 65 weeks, these costs needed to be adjusted to make a fair comparison with 

historical values.  

 The local cost parameter included a 4 dollar per gallon fuel charge (in accordance 

with national average fuel price) and a vehicle fuel economy of 7 miles per gallon. 

Truckload cost was the grand historical average for all shipments made during the same 

65 week period, estimated as a $1.50 per mile effective rate. 

 

5.2 LINGO Model  

  

 The proposed mathematical model was coded to be solved by the LINGO 

optimization software package. LINGO uses a branch-and-bound procedure to determine 

the optimal variable decisions and calculates the optimal objective function, complete 

with reduced costs for decision variables. The following figure shows the code used to 

implement the proposed model.  
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Figure 5.5 LINGO Code 

 

 

 

5.3 Case Results 
 

  

 Stage1 of the solution procedure (The Feasibility Check) was implemented in 

Microsoft Excel by comparing the aggregated LTL shipment cost matrix with the 

estimated consolidated truckload cost matrix at a service level of one truckload per week.  

The feasibility check determined which hub to hub scenarios should be considered as 

further potential consolidation scenarios. Sample results are shown in the following 

figure.  
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Figure 5.6 Excel Feasibility Matrix  

 

   

 After completing the feasibility check, there were 27 candidate scenarios that 

were solved using the optimization model. These scenarios can be seen in Figure 5.7. For 

each of the 27 two-hub scenarios, the relevant mathematical model parameters were 

defined.  

 

 
Figure 5.7 Resulting Scenarios after Stage 1: Feasibility Check 

                 Origin Hub 

             

             Destination Hub 
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Figure 5.8 Example Spreadsheet for sub-problem between Zip Codes 32837 and 30012 

 

  

 Microsoft Excel was used to input the appropriate data within LINGO 

optimization Software. Figure 5.8 shows an example spreadsheet used within Stage 2 to 

solve each sub-model. With the input data properly defined for each potentially-optimal 

scenario, LINGO was used to determine if each sub-problem results in positive cost 

savings in a consolidation network configuration.  

 LINGO was used to optimize all 27 consolidation scenarios. If the optimal 

objective value was positive, the solution reflected a clear opportunity for cost savings 

through consolidation. The following figure shows example results from one such sub-

problem. An objective function value greater than zero indicated that consolidation of the 

specified non-hub locations results in a cost that is cheaper than using less-than-truckload 

for each associated shipment. The optimal service level is also determined to be one 

truckload per week. LINGO results also show the individual origin and destination node 

assignment policy, represented by X, Y, and Z variables.  
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Figure 5.9 Example LINGO Results 

 

 

Confidential 
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 After solving each sub-problem during Stage 2, there were 9 scenarios that 

resulted in positive costs savings. However, two such scenarios included four common 

origin-to-destination shipment flows. While there were several other instances where 

more than one service regions overlapped, none of these instances resulted in a conflict of 

cost-saving solutions.  

 Resultantly, Stage 3 was employed to determine if there is an effective way that 

both scenarios can share the shipment flow and remain cost-saving scenarios. Figure 5.9 

shows the two scenarios and the overlapping service regions, which includes two nodes 

that are components of two different solutions. 

 

 
Figure 5.10 Conflicting Solutions 
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 Stage 3 was then employed to determine the optimal policy for each of the two 

previous solutions that wrongly include four common shipment flows. The objective then 

was to determine if both solutions can withstand a distribution of the common shipment 

flow and remain cost-saving scenarios. If the scenarios cannot share the shipments in a 

way that integrating solutions would exceed either scenario, the scenario with larger cost 

savings is chosen and the other scenario will continue to employ less-than-truckload 

transportation.  

 The method used to solve this problem was enumeration of the possible ways to 

distribute the common shipments. The enumeration was completed in Microsoft Excel by 

changing the value of each Xij variable (and Y or Z variable, if necessary) within each 

solution. The following figures show the results of the enumeration process. 

 

 
Figure 5.11 Scenario 1 Variable Assignments and Objective Function Values 
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Figure 5.12 Scenario 2 Variable Assignments and Objective Function Values 

 

 

 After enumerating the various assignments, it was determined that the two 

scenarios could not share the four shipment flows and both remain cost-saving scenarios. 

Therefore, it was determined that Scenario 2 resulted in the largest cost savings and was 

chosen as a component of the resulting global solution. Figure 5.12 shows the various 

locations for hub locations within the global solution.  

 

 

 
Figure 5.13 Hub Locations in the Global Solution 
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The following figure shows the various solutions, including the origin and 

destination cities that serve as hubs employing less-than-truckload consolidation. It is 

noteworthy that Portland, Oregon and Georgetown, Kentucky are hub locations for more 

than one scenario. This may be beneficial in practice, because if there are hub-opening or 

operating costs, the total cost for all hubs is decreased when compared to opening two 

separate facilities.  

 

Scenario Origin City Destination City 

1 Atlanta, GA Lakeland, FL 

2 Phoenix, AZ El Paso, TX 

3 Tupelo, MS Georgetown, KY 

4 Indianapolis, IN Chicago, IL 

5 Seattle, WA Portland, OR 

6 Los Angeles, CA Portland, OR 

7 Linwood, NC Williamsport, MD 

8 Georgetown, KY Louisville, KY 

Figure 5.14 Summary of Consolidation Scenarios 

 

 For the 8 scenarios that resulted in cost savings, it is also important to know how 

much better they are with respect to the original less-than-truckload costs for those flow 

paths that were determined to be consolidated. By dividing the cost savings by the 

original less-than-truckload cost, a percent savings can be calculated.  These results can 

be seen in Figure 5.15. It is important to note that zero local pickup and delivery costs 

result from hub locations serving as the only origin and destination points that employ 
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shipment consolidation. The following costs and cost savings are normalized on a 100-

point scale to ensure privacy of information. It is also important to note that the amount 

of original LTL cost varied for each scenario, which translates into different absolute 

measures of cost savings for each scenario.  

 

Scenario 
Original 

LTL Cost 

Truckload 

Cost 

Local  

Cost 

Cost 
Savings 

1 100 61 21  19 

2 100 80 0 20 

3 100 69 14 17 

4 100 87 0 13 

5 100 81 9 10 

6 100 88 10 2 

7 100 79 18 3 

8 100 92 0 8 
 Figure 5.15 Summary of Savings 
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CHAPTER 6 
 
 

CONCLUSIONS 
 
 
 

6.1 CONCLUSIONS  

  

In our particular case, we must also be very aware of the limitations of this 

application with respect to the nature of less-than-truckload shipping. The stochastic, 

random, and intermittent nature of less-than-truckload shipments and demand 

significantly affects the ability to consolidate enough shipments within a given time 

frame without excessive waiting time. For example, some time periods will require more 

vehicles than others due to demand spikes or seasonality. Likewise, less-than-truckload 

shipment composition and properties also behave randomly, which affects the potential to 

fully utilize consolidated truckloads. Sometimes, shipments will include higher 

proportions of denser items that reach a truck’s weight capacity, while other times truck 

volume limits may be met before the weight limit. In our particular case, we are also 

using a simple, but rough approximation of shipment size from a conversion of class and 

weight.  It is important to note that the estimations were not compared to real products to 

determine if they misrepresent actual shipment sizes.  

 Without directly addressing all of these important issues within the mathematical 

model, we believe we can still develop a model and solution procedure that can be 

implemented successful for many cases, including the case example. Although it is 

certain that the optimal design of the propose hub network model will not always operate 
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optimally at all points throughout the life of the network and the optimal solution and 

cost savings values will not be realized on a constant basis, the value of our specialized 

formulation and solution methodology will be in determining the most beneficial set of 

lanes and hubs can result in transportation cost savings through shipment consolidation.  

 In research and industry, it has been described that logistics decisions can most 

often be classified according to the scope of the decision. The first type of decision is the 

strategic decision, which typically involves a planning horizon measuring in years. Such 

decisions include logistics network design and procurement of costly resources (facility 

location, facility layout, fleet sizing). These decisions are often based on forecasts and 

estimated data. The second type of decision is the tactical decision, with the planning 

horizon shortened to a matter of months. These decisions typically include production 

and distribution planning (order picking methods, material handling systems, certain 

consolidation strategies). The last classification of logistics decisions is the operational 

decision, measured on a daily basis or even in real time. These decisions include vehicle 

dispatching or order picking, and typically require detailed input data [13]. 

 The proposed models are intended to be considered by the company on a strategic 

level. In particular, the model proposed is tailored to cases in which it is relatively 

unknown whether the existing less-than-truckload network provides ample shipment 

volumes to ensure regular and frequent consolidated truckload service. While many of 

the previous hub network models are very good tools for consolidation network 

decisions, they are more realistic in cases when shipment volumes will fully utilize 

truckload capacity, which justifies the included discount factor.  
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 The results of the example case exhibited the value of the proposed methods to 

identify areas for logistics and transportation cost savings through less-than-truckload 

consolidation. In total, eight consolidation scenarios were identified to save transportation 

costs when compared to previous less-than-truckload transportation. The specialized 

methods of solving each hub-to-hub route separately also provide the opportunity for 

sensitivity analysis with respect to important regional less-than-truckload and truckload 

cost parameters.  

 Reviewing the percent savings of each scenario reveals that the most significant 

scenarios with respect to absolute savings also carry high percent savings, as large as 20 

percent. From a practical perspective, these results are very reasonable and encouraging. 

Although issues like seasonality, stochasticity, and the fixed and operating costs of 

consolidation affect the true savings that would result from a shipment consolidation 

policy, high percent savings support the conclusion that the model identifies significant 

areas for cost savings through consolidation. 

 Other issues also affect the extent to which the solutions to these proposed models 

will perform over time. As markets and demand change, the configuration of the 

consolidation network should change as well. When using the underlying model, 

assuming purely one-way, two-hub arcs for consolidation, the opportunity exists to add or 

subtract specific consolidation scenarios from the existing network. Assuming drastic 

changes to demand would not go unnoticed, the network can be altered or the model can 

be reevaluated with updated data at any time.  
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6.2 Extensions 

 

 Many extensions to the models and methods presented in this work are possible, 

with varying levels of complexity and practicality.  

 The first area for extension is the inclusion of a cost term for customer 

dissatisfaction or inventory holding, which would penalize excess waiting time for 

shipment consolidation. Although the proposed formulations do not include time-based 

components, the service level n is a measure of how often consolidated truckloads service 

each hub. Thus, this parameter implicitly describes the service level for consolidation 

routes because as n increases, more frequent service is being performed, which would 

decrease the waiting time of shipments, customer satisfaction level, and inventory 

holding costs. However, the exact relation between the service level parameter and these 

effects is not defined explicitly through any mathematical function. By defining a cost for 

each flow path that is proportional to the value of n, such costs would add practicality to 

the solutions found and potentially prove prior solutions to be infeasible. In this way, the 

cost component for excess waiting time could also reflect inventory holding costs.  

 Another important area for model extension is the inclusion within both the base 

model and the specialized solution methodology for multiple capacity constraints.  Due to 

government regulations and vehicle capabilities, the vehicles used in freight 

transportation have weight restrictions as well as the physical space constraints of a 

trailer. Therefore, the models proposed in this research should include mathematical 

constraints on both volume and weight. While the example case supported the 
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assumption of just one volume-based constraint, a generalized model should include both 

constraints to be considered complete.  

In the majority of current literature, weight is assumed the most determining 

factor in consolidating shipments into one truck. Less often volume is used. Because the 

proper data was supplied, it is possible to use weight as the determining factor if we 

assume that weight capacity is met before volume. However, we have also been supplied 

class information for each shipment, which makes it possible to compute an 

approximation of shipment volume as well.  

 The next area for extension is the use of stochastic functions to describe shipment 

composition within each origin-to-destination flow path. In current research, including 

the proposed models, shipment flow quantities are deterministic. In fact, the proposed 

models used aggregated data over the course of more than one year. In doing this, 

seasonality and the intermittent and stochastic nature of less-than-truckload demand was 

ignored. With shipment sizes and arrivals represented probabilistically, the model could 

better describe the process of consolidating multiple sources of shipments with varying 

size and quantity. By identifying periods of time that do not sufficiently utilize vehicle 

capacity (which less efficiently shares transportation cost), there is the ability to 

determine which time periods will effectively use consolidate shipments and which time 

periods should not employ these methods. Such stochastic models could be solved in 

terms of minimizing total cost while also probabilistically satisfying a defined service 

level. 

 The inclusion of other consolidation strategies with respect to underlying hub-

and-spoke design is another opportunity. The proposed model assumes a traditional hub-
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and-spoke design with a defined local service region, which was set in the example case 

to 50 miles. Other research has used both defined and unlimited hub service regions. 

There are clear opportunities to employ both multiple-assignment policies (routing a flow 

path from origin to destination through more than two hubs) and the expansion of hub 

regions to include both local pickup and delivery and further LTL services. Although the 

models propose (assuming a simple hub-and-spoke design) are adequate in identifying 

clear opportunities for consolidation, extensions to the model may identify much less 

obvious configurations that would allow for very high vehicle utilization, thus, sharing 

the cost of transportation among larger quantities of shipments. This would potentially 

greatly increase the level of cost savings achieved.  

 Unfortunately, a multiple hub assignment policy would require the elaboration of 

the first model proposed in this research, which was very complex in its structure. The 

use of model decomposition such as the specialized methodology proposed may be 

infeasible as a tool because of the many interactions that various origin-destination flow 

paths would likely have within an optimal configuration. For the addition of less-than-

truckload transportation service at each hub, considerably more node-to-node distances 

and cost parameters would need to be defined. However, a specialized methodology 

similar to the one proposed in this research could also solve such a problem. 

 Finally, the opportunity exists to apply vehicle routing algorithms or 

approximations to local pickup and delivery functions within the solution methodology or 

after local two-hub solutions have been integrated. It may also be beneficial to reward the 

assignment of nodes to hubs according to how close they are to one another. 
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