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Chapter 1. Introduction  

 Attempting to predict the location and the initiation of elevated 

thunderstorms can be very challenging due to the uncertainty in of the mechanisms that 

release elevated instability (Moore et al., 2003). Excessive Precipitation with Elevated 

Convection (EPEC) is a parameter that was created in order to help predict where heavy 

rainfall associated with elevated convection will occur.  

 

1.1 Purpose      

The two most common severe threats that are associated with elevated 

thunderstorms are heavy rainfall, which can lead to flash flooding, and hail (Grant, 1995).  

Flash flooding is common during all seasons but is most common in the summer months 

(Maddox et al., 1979). Forecasting for thunderstorms that develop north of a surface front 

can be problematic due to the cool and stable conditions at the surface (Grant, 1995). 

The purpose for this research is to verify if EPEC can be used as a predictive 

parameter for heavy rainfall associated with elevated convection.  During 2014 to 2015 

the Program of Research on Elevated Convection with Intense Precipitation (PRECIP) 

project collected data for numerous heavy rainfall events in the Midwestern United States 

forecasting heavy rainfall events. This study was based upon past events collected during 

the PRECIP project. EPEC was critical for identifying where heavy rainfall might occur 

during 2014 and 2015.  
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1.2 Objectives  

Forecasting and warning for flash flooding presents a challenge especially when it 

can lead to damage, injury, and death. This study mainly focuses on verifying if EPEC 

can be effectively used as a predictive tool for forecasting flash flooding. To achieve the 

purpose previously mentioned, the following objectives are identified: 

 Create verification statistics on the EPEC metric 

 Analyze selected forecasts issued by PRECIP group, which included 

EPEC as a tool 

 Present best and worst cases for the EPEC parameter, and determine why 

they did (not) work well.   
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Chapter 2. Background Research 

 In order to complete the objectives of this research, an extensive literature review 

has been performed with the goal of understanding the various components of heavy 

rainfall and flash flooding.  

 

 2.1 Climatology of Elevated Convection 

Colman (1990) defined elevated thunderstorms as those that are isolated from surface 

diabatic effects and occur above frontal surfaces. Colman (1990) characterized cold 

sector thunderstorms as elevated and determined that they can still produce severe 

weather. He recorded over 1000 reports of elevated thunderstorms for 4 years during the 

months of April to September of 1978 to 1982. During his study he found a bimodal 

distribution of elevated thunderstorms with a primary maximum in April and a secondary 

maximum in September. Colman’s (1990) results showed that elevated thunderstorms 

occurred more in the Midwest region of the United States, with a maximum frequency in 

eastern Kansas (Figure 2.1). He suggested that this distribution is due to the annual 

distribution for convective instability and midlatitude cyclones over the conterminous 

United States.  
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Figure 2.1. The number of elevated thunderstorms identified over a 4-year period from September 

through August 1982 (Image and caption reproduced from Colman (1990).  

Colman’s (1990) research also showed a diurnal variation of elevated 

thunderstorms that was influenced by the travel time of the source air over the frontal 

surface. He found that elevated thunderstorms associated with warm and stationary fronts 

occur more frequently at 1200 UTC and those with cold fronts more frequent at 0000 

UTC. These times were due to the limitation of using soundings at 0000 UTC and 1200 

UTC. Colman’s (1990) climatology helped define common characteristics that are 

associated with elevated thunderstorms. These characteristics identified regions and time 

periods over which elevated thunderstorms could occur.   
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2.2 Heavy Rainfall Associated with Elevated 

Thunderstorms 

 

 
 During a period of 2 years between 1993 and 1995, Moore et al (1996) collected 

data on various heavy rainfall events in the Midwestern United States to provide more 

information on forecasting flash flood events. Many of the cases were the result of 

elevated thunderstorms, which were on the cold side of a west-east oriented surface 

boundary. Moore et al (1996) found that the majority of mesoscale convective systems 

(MCSs) contained elevated thunderstorms, which were a source of heavy rainfall in the 

central Midwest. The findings of where elevated thunderstorms formed were similar to 

Colman (1990) except that their seven cases formed in regions of elevated convective 

instability, which was not commonly found in Colman’s study.  

The Moore et al. (1996) composite results found that elevated thunderstorms 

associated with heavy rainfall events were influenced by low-level wind and moisture 

fields. They also found that the MCSs were about 200 km downstream of the low-level 

jet maxima and in the right entrance region of the 200 hPa upper-level jet.  Moore et al. 

(1996) also found MCSs were in a region depicted by a stable Lifted Index, slightly 

unstable Showalter Index and having a relatively high value of the K-index and elevated 

convective instability between 500 and 850 hPa.  

 Rochette and Moore(1996) studied an MCS that developed in the morning hours 

on 06 June 1993 across northern and central Missouri, which produced over 150 mm (6 

in.) of heavy rainfall. This MCS occurred in a cool, stable boundary layer just to the north 

of a surface warm front, which suggests that this storm was elevated. This event was one 
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of many that aided in the flooding in the Midwestern United States during the summer of 

1993. Rochette and Moore (1996) found that the event that occurred on 06 June 1993 

showed similarities with Maddox et al.’s (1979) research on frontal flash floods, such as 

the low-level jet (LLJ) upstream of the MCS initiation point.  Even though there were 

similarities with Maddox et al. (1979), one of the main differences was this event peaked 

during the late morning hours instead of the common overnight hours.  

 A few of the main features found with this elevated heavy rainfall event was that 

there was a surface front south of the event and an upper-level area of divergence over 

and north of the event. Rochette and Moore (1996) also found that there was abundant 

moisture in the low and middle troposphere near the event area. Their results also did not 

concur with Colman’s (1990) due to the fact that there was a significant amount of CAPE 

associated with this event, where as in the Colman (1990) cases, there was no CAPE 

present.  

 Moore et al. (2003) conducted a study that included twenty-one warm-season 

heavy rainfall events in the central United States that had developed north of a surface 

boundary.  Storm-relative composites were computed in order to reveal how the 

environmental conditions of warm-season heavy convective rainfall are associated with 

elevated thunderstorms. In order for a storm to have been a part of the study it had to 

meet specific criteria. Elevated thunderstorms must have produced up to 4 inches of rain 

in a 24 hour period and had to have been initiated or occurring within 4 hours either side 

of 0000 or 1200 UTC.  When analyzing these composites large scale patterns and certain 

processes were discovered with these events. A few of the results were consistent with 
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the heavy rain associated with fronts that was described by Maddox et al. (1979) and with 

Colman’s (1990) placement of the elevated thunderstorms.  

 Moore et al. (2003) found that elevated MCSs were to the north of an east-west-

oriented surface front within the cold sector. The MCS was also associated with a region 

of low-level moisture convergence, which was within the left exit region of the low-level 

jet (Figure 2.2). The elevated MCS was centered within a divergence maximum that was 

coupled with the entrance region of the upper-level jet. The main conclusions to the 

composite results of Moore et al. (2003), were that low-level winds, thermal and moisture 

fields, resultant advections and regions of forcing are important in determining where 

elevated thunderstorms will develop and maintain heavy rainfall.   

  



8 8 

 

 

Figure 2.2.  Schematic cross-sectional view taken parallel to the LLJ across the frontal zone. 
Dashed lines represent typical ue values, the large stippled arrow represents the ascending 
LLJ, the thin dotted oval represents the ageostrophic direct thermal circulation associated 
with the upper-level jet streak, and the thick dashed oval represents the direct thermal 
circulation associated with the low-level frontogenetical forcing. The area aloft enclosed by 
dotted lines indicates upper-level divergence; the area aloft enclosed by solid lines denotes 
location of upper-level jet streak. Note that in this cross section the horizontal distance 
between the MCS and the location of the upper-level jet maximum is not to scale (Image and 
caption reproduced from Moore et al. (2003)). 

 

McCoy (2014) created a method to help forecast heavy rainfall produced by 

elevated thunderstorms in a preferred region for such events in the United States. The 

study used composite analyses to evaluate the synoptic and mesoscale environments that 

are associated with heavy rainfall produced by elevated thunderstorms. McCoy found that 

certain parameters were more prominent indicators of heavy rainfall development over a 

low-level stable layer. The results of this study are similar to Moore et al. (2003). A few 

main ingredients that lead to the development of elevated thunderstorms included an 
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upper-level jet to the northeast of the event, which was associated with the right entrance 

region and divergence aloft. There was also sufficient environmental moisture apparent 

when looking at precipitable water values (McCoy, 2014). Precipitable water values were 

greater than 1.4 inches (3.6 cm) in all the composites, while higher values were advected 

into the approaching event, which increased to 1.6 inches (4.1 cm) by the time of the 

event.   

McCoy (2014) found the K-index was one of the best forecasting parameters for 

elevated instability. There were consistent K-index values greater than 35 throughout all 

the composites, which showed minimal spread in the magnitude or location. Despite 

MUCAPE being a well known instability parameter, McCoy’s composite results showed 

that MUCAPE has greater spread 6 to 12 hours prior to the event and increased to greater 

than the mean value (1500 Jkg
-1

) at the time of the event. These parameters were used to 

analyze two different cases with elevated thunderstorms with heavy rainfall in two 

different county warning areas (CWA’s).  

McCoy’s (2014) conclusions showed that there were unique patterns that aided in 

forecasting heavy rainfall production with elevated thunderstorms. A few of theses 

patterns showed a strong signal but great variability, which consisted of the upper-level 

jet streak to the northeast of the region and the low-level jet signal from the south-

southwest. The K-index (greater than 30) and precipitable water (greater than 1.6 inches) 

showed strong signals and small variability throughout McCoy’s (2014) composites. 

Figure 2.3 shows where an event should be when combining the K-index, precipitable 

water, and divergence.  
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Figure 2.3. Composite chart of typical location for an elevated thunderstorm, based on the K-
index (red; short, dashed oval), precipitable water (green; solid oval), and divergence (purple; 
thick, dashed oval).  

  

2.3 Flash Flood Forecasting 

Maddox et al. (1979) studied 150 events that were linked to intense convective 

precipitation that caused flash flooding in the central and eastern United States. These 

events were analyzed by using surface charts and standard level upper-air data. Maddox 

et al. (1979) identified three basic meteorological patterns that were associated with flash 

flooding in the central and eastern United States. These patterns were synoptic type 

events, frontal events, and meso-high events. Maddox et al. (1979) separated events in 

the western United States into their own category.  Even though there is large variability 
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that can be associated with the meteorological patterns and parameters of forecasting 

flash flood events, there are still a number of features that are common with each event.  

Maddox et al. (1979) found that meso-high and frontal events were mostly 

nocturnal. Another common characteristics that was observed heavy precipitation 

typically lasted less than 6 hours. They also found that the frontal events had a maximum 

occurrence during the month of July (Figure 2.4). Regardless of the type of flash flood 

event, Maddox et al. (1979) found the following common characteristics: 

 Heavy rainfall was produced by convective storms.  

 Surface dewpoint temperatures were very high. 

 Large moisture contents were present throughout a deep tropospheric 

layer. 

 Vertical wind shear was weak to moderate through the cloud depth. 

 

Figure 2.4. Monthly distribution of flash flood events studied (Image and caption reproduced 
from Maddox et al. (1979)).  
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Despite the complications that can occur when forecasting heavy rainfall events and flash 

flooding especially due to nocturnal nature of these events, Maddox et al. (1979) was still 

able to distinguish common characteristics and conditions for these events. 

Later, the Doswell et al. (1996) research on flash flooding examined forecasting 

the potential for it by using an ingredients-based methodology. This research suggests 

that many flash flood events share a few basic ingredients. A main ingredient for flash 

flooding is high precipitation rates (Doswell et al.1996). By lifting moist air to 

condensation the rising air must already have substantial water vapor content and a rapid 

ascent rate. Doswell et al. (1996) suggested that the there will be low precipitation 

efficiency while there is high water vapor content and/or vertical motion. Heavy 

precipitation may occur in a place where the proper hydrological ingredients reside, 

which in turn will cause flash flooding. Doswell et al. (1996) showed that the ingredients 

that are associated with flash flooding could be related with deep, moist convection. A 

few ingredients in order for deep, moist convection to occur has mostly to do with 

buoyancy. To produce buoyancy and deep convection the environmental lapse rate must 

be conditionally unstable, sufficient moisture should be available, and there must be a 

lifting mechanism to lift the parcel to the level of free convection (LFC) (Doswell et 

al.,1996).  They stated “an ingredients-based methodology is a logical choice for the 

application of scientific understanding to the forecasting task”. By using these critical 

ingredients and observations together, a forecaster can reduce their choices in making a 

forecast and can focus on the task at hand.  

Doswell et al. (1996) state that the anticipation of a possible flash flood event is 

critical in handling the situation properly in practice. The processes on various scales that 
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lead up to the flash flood event are described by Doswell et al. (1996) as large scale 

processes, mesoscale processes, storm-scale processes, and forecasting meteorological 

processes. They believe that if the synoptic and mesoscale processes present the right 

ingredients, then a flash flood event can occur.  In order for a forecaster to be able to 

determine whether ingredients, such as high precipitation rates and buoyancy exist for an 

event to produce heavy rainfall, the forecaster must be educated and trained on such 

events.  

Schumacher and Johnson (2006) believe that ingredients are necessary to identify 

forecasting flash flooding, but suggest that there are different challenges involved when 

forecasting rainfall associated with a strongly forced system. Schumacher and Johnson 

(2006) study focused on characteristics of flash floods, such as Doswell et al (1996), but 

concentrated on radar-indicated structures of systems and common patterns with MCSs. 

Schumacher and Johnson (2006) conducted a study that examined many features of 

extreme rain events in the United States over a 5-year period. They defined an extreme 

rain event when one or more of the stations reported 24-hour rainfall rate greater than the 

50-year occurrence, of which 184 events were considered extreme rain events after 

eliminating bad rainfall reports. One of the main foci of this study was to observe the 

variation of extreme rainfall monthly frequency distributions. It was found that many of 

these events were associated with the warm season especially in the Plains region of the 

United States; commonly in June and July (Figure 2.5). Events that were more frequent in 

March, August, and September were more to the northeast.   
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Figure 2.5. Shows the monthly frequency distribution of extreme rain events for 7 different 
regions (Image reproduced from Schumacher and Johnson, 2006).    
 

Many of Schumacher and Johnson (2006) results were similar to Maddox et al. 

(1979) results in identifying storm systems that produced heavy rainfall and flash 

flooding. These events occurred in the late afternoon and evening, which means that they 

peaked after dark and dissipated or moved out of the area in the early morning hours 

(Schumacher and Johnson, 2006).  One of the main patterns that Schumacher and 

Johnson (2006) found was during frontal events, where a convective line formed on the 

cool side of and parallel to a pre-existing slow moving synoptic boundary. Frontal events 

were found to occur more frequently during the warm season. Schumacher and Johnson 

(2006) study found that the majority of the extreme rain events were more frequent in the 
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month of July. A main conclusion noted by Schumacher and Johnson (2006) was 

approximately 90% of extreme rain events were associated with flash flooding.  

 

2.4 Elevated Severe Thunderstorms  

 Grant (1995) conducted a preliminary study on elevated thunderstorms by 

collecting upper-air soundings, surface data, and model gridded data for eleven cases 

from April 1992 to April 1994. He based the selection of severe thunderstorms off of the 

criteria from Colman (1990) to determine whether or not those storms were elevated. 

Thunderstorms that developed in the cold sector north of a surface front were found 

embedded in a layer above a significant and shallow frontal inversion (Grant, 1995).  

By looking at soundings in or near the area of these storms Grant (1995) found 

that the most unstable parcels frequently occurred near the 850-hPa level.  The soundings 

also showed strong warm air advection profiles above the 500-hPa level. Areas of 

strongest upward motion and destabilization occurred above the boundary layer, which 

had led to the initiation of severe thunderstorms. Stability indices are commonly used to 

help forecast severe thunderstorms and the degree of instability. Grant (1995) found that 

even though surface conditions were cool and stable, stability indices suggested that a 

marginal degree of instability was required to form a severe thunderstorm in the cold 

sector.  He also found that there were at least five severe thunderstorm reports near the 

location of the event at least 50 statute miles north of the boundary.   
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2.5 Indices 

 Doswell and Schultz (2006) discussed how diagnostic variables are used properly 

(and improperly) when severe-storm forecasting. Meteorologists refer to many diagnostic 

variables as forecast parameters. A few forecast parameters have been associated with 

aiding in forecasting severe convection and forecasts are being based on those variables. 

Doswell and Schultz (2006) suggest that diagnostic variables be used when assessing 

qualitatively the state of the atmosphere at the time of their calculation and are not useful 

for future weather. They do believe that some forecast parameters could be accurate for 

forecasting short periods that are close to their diagnosis. It is known to most 

meteorologists that a forecast parameter should not be the only data used for a forecast, 

especially for severe weather. Doswell and Schultz (2006) suggest that an ingredient 

based forecasting method, such as Doswell et al. (1996), is more beneficial in operational 

forecasting.  

 Doswell and Schultz (2006) described that there are a few requirements that a 

proper forecast parameter should meet. One way to verify a forecast parameter is by 

using a contingency table and by choosing a threshold value for the parameter and 

verifying whether it is within that threshold or not. Once this is done, Doswell and 

Schultz (2006) suggest testing the skill of the parameter by comparing the accuracy of the 

anticipated forecast based on the forecast parameter against the accuracy of a standard 

forecast method, such as climatology. If the forecast parameter shows statistical skill 

when compared with the standard method, then Doswell and Schultz consider that 

forecast parameter to be possibly useful for future forecasts.  
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2.6 Forecast Verification  

Forecast verification can be defined as the process in which the predicted weather 

is compared to the actual weather, where the output of this data produces one or more 

scores or indices. These scores or indices are then compared to some standard, such as 

climatology, that is dependent on the type of verification that is needed. Verification 

methods can create objectivity, which eliminates the subjectivity verification that is 

sometimes created by meteorologists (Panofsky and Brier, 1968). In order to create this 

objectivity, a forecast verification must be clearly stated at the beginning of the 

verification process. This will be based on the purpose of the verification since not all 

verification methods are useful for every research type. Forecast verification, specifically 

statistics, help provide useful information in how well forecasts are performing and assist 

forecasters in identifying where blunders could be achieved (Jolliffe & Stephenson, 

2003).   

There are many different types of categories of forecast verification methods, 

which include verification measures. Jolliffe and Stephenson (2003) define a verification 

measure as any function of the forecasts, the observations, or their relationship and 

includes the probability of the observed event. Verification measures then consist of a 

subcategory called performance measures. The performance measures put a focus on the 

similarity between the forecast and observations, which can be collective or individual. 

Performance measures included hit rate and false alarm ratio (FAR). Hit rate is the 

proportion of occurrences that were correctly forecast,  

 

   𝐻 =
𝑎

𝑎+𝑐
      (1) 
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where H is the hit rate, a is the number of hits, and c is the number of misses. 

Hit rate is also known as probability of detection (POD), which can also be 

interpreted as a sample estimate of the probability of a forecasted event based on if the 

event was observed (Jolliffe & Stephenson, 2003). POD is very sensitive to hits while 

ignoring false alarms. POD answers the question of what fraction of the observed events 

was correctly forecasted. POD can range from 0 to 1, while a perfect score will have a 

score of a 1. 

False alarm ratio (FAR) is based on the proportion of forecast occurrence that was 

not followed by an actual occurrence. If the skill of the forecast is perfect, POD=1 and 

FAR=0. This statistical score is sensitive to false alarms but not misses. FAR answers the 

question of what fraction of the predicted events actually occurred.  FAR ranges from 0 

to 1, while a perfect score for FAR will be zero, 

    𝐹𝐴𝑅 =
𝑏

𝑎+𝑏
      (2) 

where FAR is the false alarm ratio, a is the number of hits and b is the number of false 

alarms. 

Another way to verify forecasts is to use a scoring measure. The most widely used 

performance measure is the critical success index (CSI), which can give a probability of a 

hit given that the event was either forecasted, or observed, or both.  CSI is used most 

often as a performance measure due to the fact that it can be calculated without the use of 

the frequency of correct rejections. This is also true for POD and FAR and is often used 

together because they share this similarity. When there is perfect skill CSI will have a 

maximum value of 1, while when there is no hits CSI is 0.  CSI measures a portion of 

forecasted events that were correctly predicted,   
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    𝐶𝑆𝐼 =
𝑏

𝑎+𝑏+𝑐
     (3) 

where CSI is the critical success index, a is the number of hits, b is the number of false 

alarms, and c is the number of misses. This score does not indicate skill and is sensitive 

to hits while penalizing both misses and false alarms.  

Table 2-1 is a contingency table, which states what each of the terms in POD, 

FAR, and CSI equations.  

Table 2-1: A two-way contingency table. 

Event 
Forecast   

Event 
observed     

    Yes No Total observed  

Yes  
 

a (hits) b (false alarms) a + b 
No 

 
c (misses) d (correct rejections) c + d 

Total   a + c b + d a + b + c + d = n 
 

The correlation coefficient measures the association between the forecast and 

observations independent of the mean and variance of the marginal distribution (Jolliffe 

& Stephenson, 2003).  The values of correlation coefficient ranges from -1 to +1, with +1 

being a perfect positive relationship and -1 being a perfect negative relationship.  
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Chapter 3. Methodology 

 

3.1 EPEC Calculation 

EPEC has been used as part of a research project called Program for Research on 

Elevated Convection with Intense Precipitation (PRECIP). EPEC involves three 

parameters: K-index (KINX), 250-hPa divergence (Div250), and precipitable water 

(PWAT) (Equation 4). K-index is unitless, precipitable water is in millimeters, and 

divergence is in s
-1

, which is scaled due to it being smaller than K-index and precipitable 

water. EPEC is unitless.   

 

 EPEC = KINX + PWAT + (Div250 x 100,000) (4) 

mm           s
-1

 

Units are neglected in the formation of EPEC. 

These three parameters were shown to have strong signal and low variability 

using interquartile range (IQR) through McCoy’s (2014) composites. McCoy’s 

composites also showed that the K-index (a proxy for instability) increased with time 

leading up to heavy rainfall with elevated convection. IQR plots of the K-index indicated 

that the K-index performs better at analyzing the increase of elevated instability. 

Precipitable water is the moisture variable, which behaved much like the K-index. The 

large IQR of 250-hPa divergence shown through McCoy’s composites was larger than for 

the K-index or precipitable water, but divergence was still the best of the proxy variables  
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Table 3-1. Values employed from McCoy (2014) to assemble the EPEC Index percentile values.  K-index 
(KINX) is unitless, precipitable water (PW) is in millimeters, and divergence (DIV) is the 250-hPa value 
scaled up by 105 with units of s-1. Even so, EPEC is treated as a unitless number.  Also the EPEC mean and 
standard deviation calculated directly from reanalysis of the probability distribution function of the 
original 60 EAX soundings in McCoy (2014).   

 KINX PW DIV EPEC 

25
th
 percentile 33 40 2 74 

50
th
 percentile 35 46 5 86 

75
th
 percentile 37 51 8 96 

     

1 SD below    83 

Mean    89 

1 SD Above    98 

 

 

for suggesting lift. Despite the large variability, 250-hPa divergence still showed strong 

signal for the events. 

EPEC threshold values are based upon the 25
th

, 50
th

, and 75
th

 percentiles from 

composite statistics, shown in Table 3-1. These numbers come from McCoy’s (2014) 

thesis for each of the three parameters used to calculate EPEC, and assumed a normal and 

even distribution about the 50
th

 percentile.  (This approach guided foprecast operations in 

late 2014 and 2015.)  Also included in Table 3-1 are the mean and standard deviation 

values from the sixty (60) Pleasant Hill (EAX) county warning area soundings studied by 

McCoy (2014), which are offered here in this way for the first time.  These latter values 

will be used later for a comparison to climatology.  
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Based upon this work, EPEC can only be employed reliably on the cold side of 

the Θe boundary, which has been associated with where the initiation of elevated 

convection occurs.                      

   

3.2 Event Selection 

The goal of this project is to verify if the parameter EPEC can be used as a 

predictive measure for forecasting heavy rainfall. In order to analyze how EPEC 

performs with forecasting heavy rainfall, events were collected from the PRECIP project 

dataset, which incorporates the states of Kansas, Missouri, Iowa, Nebraska, and 

Oklahoma (Figure 3.1).  Also, this period exists outside the timeframe of McCoy (2014). 

Events were chosen based on whether they met the deployment criteria set by the 

PRECIP team. Table 3-2 shows the events for which the PRECIP team deployed or 

recorded for future research. The latter group of events were missed events (did/could not 

deploy PRECIP personnel). 

   

3.3 Data 

Several datasets were employed to accomplish the subjective and objective 

verifications.  For subjective rankings, the precipitation field was used derived from the 

NEXRCOMP storm total precipitation (STP) product, which is on a 4 km grid. Then, 

both the North American Model (NAM) and Global Forecast System (GFS) were used to 

plot the EPEC index, which are plotted on a 80 km grid. This was not to discriminate or  
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Figure 3.1 Zoomed plot of study area (eastern Kansas and western Missouri) and several of the NWS 
WSR-88D Doppler radar sites in the region with range circles every 100 km: Topeka, Kansas (TWX); 
Pleasant Hill, Missouri (EAX); Springfield, Missouri (SGF); Tulsa, Oklahoma (KINX); Wichita, Kansas 
(KICT); and also St. Louis, MO (KLSX).  Red shading indicates regions where radars overlap at 100 km. 
(Image and caption reproduced from the PRECIP site).  

 

rank the models because each event when initially forecasted by the PRECIP project used 

both models. 

For the objective verification work, The EPEC index was calculated using the 

initial Rapid Refresh (RAP) 130 and/or RAP 236. Only two events used the RAP 236 due 

to RAP 130 data not being available for 07 July 2014 and 17 July 2014. The RAP 236 

was also used for the synoptic analysis of the example of the worst and best case for 

EPEC.  The precipitation data used is called Precipitation NCEP/ EMC 4 km Gridded  
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Table 3-2: Table that shows the date and location of the 15 elevated convection events that the PRECIP 
team either deployed on or recorded for future analysis. Deployment events are bold. 

Date Location 

20140402 W MO 

20140511 SE NE 

20140604 S IA / N MO 

20140607 S KS 

20140710 S KS 

20140717 C OK 

20140807 C MO 

20140827 NW MO 

20150403 E MO 

20150605 NW MO 

20150611 E NE 

20150625 E IA 

20150708 C MO 

20150716 SW IA/NW MO 

20150730 C KS 
 

Data (GRIB) Stage IV data from the NCAR UCAR Earth Observing Laboratory site
1
. 

This Stage IV precipitation was downloaded and plotted with the EPEC index in order to 

verify if EPEC could aid in forecasting for heavy precipitation associated with elevated 

thunderstorms. Bi-linear interpolation was used in gempak, known as gdbiint, to convert 

the 4 km precipitation to a 13 km grid for the RAP 130. For the 2 events that used the 

RAP 236, the precipitation data was interpolated up to 40 km. 

 In order to estimate a climatological EPEC value, 60 years of precipitable water 

values were obtained for Topeka, KS, which is closest to the Pleasant Hill county 

warming area.  From these, mean, standard deviation, and percentile values were 

constructed. 

                                                           
1 Site from which Stage IV precipitation were downloaded: 
http://data.eol.ucar.edu/codiac/dss/id=21.093  

http://data.eol.ucar.edu/codiac/dss/id=21.093
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3.4 Verification 

The events in question were studied subjectively (ranking) and objectively (direct 

statistical comparison of EPEC to ensuing 6-hour precipitation).  Additionally, we have 

calculated EPEC for the original 60 soundings for the Pleasant Hill county warning area 

in order to create a statistical distribution that we can compare to climatology.  This will 

allow us to establish a baseline for EPEC performance. 

 

3.4.1 Subjective Event Rankings 

Once the events were analyzed, the initial analysis ranked them based on where 

the maximum storm total precipitation occurred, and the 30- to 36-hour lead-time 

forecasted EPEC values were based upon precipitation.  Ranking these events was the 

initial subjective approach to this research but produced some interesting results. This 

approach helped to assess how well EPEC would be as a predictive tool with heavy 

precipitation, as EPEC was used when the PRECIP project forecasted for heavy rainfall 

associated with elevated convection.  

The rankings were based on how well EPEC performed relative to where the 

maximum storm total precipitation occurred. The range of the rankings is from 0-3, in 

which 0 being the worst and 3 is where EPEC represented the event very well. Table 3-3 

shows the descriptions of what each ranking value represents. 
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Table 3-3. Table describing the rankings of events and associated to how EPEC forecasted for the heavy 
rainfall. 

Rankings Description 

0 Complete miss 

1 Marginal guidance 

2 Good/Useful forecast 

3 ‘Epic', highlights correct region 

 

3.4.2 Objective Event Verification 

 There were 21 cases that were recorded by the PRECIP team but needed further 

analysis to determine if the events truly occurred north of a boundary, over the cold 

sector. Comparing where the 6-hour precipitation occurred to where the archived surface 

front was analyzed by the Weather Prediction Center showed which cases were elevated. 

By performing this comparison, 6 cases were eliminated based on the position of the 

heavy rainfall relative to the analyzed surface front. Table 3-2 shows the 15 cases that 

were analyzed to be elevated based on precipitation and the surface front.  

 The correlation coefficient of EPEC and ensuing precipitation was calculated for 

each of the 15 elevated thunderstorms with heavy rainfall cases. Geographical pairs of 

RAP130 EPEC (on a 13-km grid) and the NCEP Stage IV precipitation data for the 

ensuing 6-hour period (interpolated from 4-km to the RAP 130 13-km grid) greater than 

0.5 inches (12.7 mm) were formed; these values were then run through a program called 

ProStat. The correlation coefficient determined whether there is a positive or negative 

relationship between EPEC and the precipitation.  

Additionally, EPEC was verified by calculating statistics using a small piece of 

FORTRAN code, which calculated the forecast verification statistics probability of 

detection (POD), false alarm ratio (FAR), and critical success index (CSI). Looking back 
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at Chapter 2, these verification methods were used because they are known as 

performance measures, which uses hits, misses and false alarms. These methods will help 

verify whether EPEC can be considered a forecast parameter that can be useful for future 

forecasts (Doswell and Schultz, 2006).  

 This code read through the precipitation file and EPEC file as a pair. Every 

precipitation value greater than 12.7 mm (0.5 inch) in 6 hours was selected. The 

FORTRAN code put a threshold on the EPEC, which will the 25
th

 percentile or 74 and 

the precipitation threshold is 12.7 mm (0.5 inches), the latter is a simple linear scaling of 

McCoy’s (2014) threshold of 50.8 mm (2 inches) in 24 hours. These values were then 

used to calculate POD, FAR, CSI and the bias. Then each forecast verification statistic 

was calculated inside the code and then printed out with each statistic value. 

 Analysis images were created for EPEC and the 6-hourly Stage IV data form 

NCEP through GEMPAK. EPEC is plotted for the beginning of the 6-hour time period 

over which the precipitation accumulates. The data used to calculate EPEC was from the 

RAP 130 or 236 models. An example of this format is shown in Figure 3.2.  
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Figure 3.2. Example of the image created using GEMPAK with RAP 130 EPEC values (dashed, blue) and 6-
hourly stage IV precipitation data (solid; every 0.5 inches [12.7 mm]).  

 

3.4.3 Test Against Climatology 

In an effort to assess further the utility of the EPEC tool as a forecast parameter 

for elevated heavy rainfall, it was compared to climatology, as alluded to in Doswell and 

Schultz (2006).  As such, climatological values for the K-index from the Plains states 

(DeRubertis, 2006) and average precipitable water values from Topeka, Kansas (Storm 

Prediction Center, 2016), were determined for the Midwestern region where McCoy 

(2014) derived her composites.  Coupled with the assumption that divergence on the 

average day is ~ 0, sufficient values exist in order to estimate a climatological EPEC 

value.   



29 29 

Two seasonal calculations were made: one for spring (March, April, and May), 

and one for summer (June, July, and August) following results in DeRubertis (2006).  For 

the K-index, DeRubertis (2006) provides a mean for the Plains region (Figure 3.3), as 

well as a first standard deviation.  For the precipitable water, the Storm Prediction Center 

(2016) data allows for calculation of corresponding mean and standard deviation values, 

which were completed though only for Topeka, KS, which is near the latitudinal 

midpoint of DeRubertis’(2006) Plains region.  With these values, we can also evaluate at 

the upper reaches of the normal atmospheric condition (i.e., normal rainfall situations). 

 

Figure 3.3. Region 2 represents where DeRubertis (2006) considers the Plains with associated 
radiosonde stations (Image reproduced from DeRubertis (2006).   
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3.5 Why the K-index? 

Of all of the variables tested, K-index had an excellent signal in its mean field, 

and one of the lowest interquartile ranges.  This result derives directly from the work of 

McCoy (2014). 

  Although it is true that the K-index is an empirical, non-derived parameter 

(Doswell and Schultz 2006), it has been used widely for decades, because of its rational 

physical underpinnings.  Increased low-level (850-hPa) temperatures and dew points 

tends to suggest decreasing static stability, and will also drive the K-index up.  Likewise, 

decreased upper-level (500-hPa) temperatures also suggest decreasing static stability, and 

will also produce higher values of K-index.  Meanwhile, a decreased dew point 

depression at 700 hPa suggests low- to mid-level moistening, which also serves to drive 

the K-index up.  Each of these changes demonstrates a moistening, destabilizing 

atmosphere, increasingly suitable to support convection.  This sound physical reasoning 

for the K-index has not changed since its introduction by George (1960). 
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Chapter 4: Results 

 In the chapter the examination of the results of the initial subjective ranking study 

and then proceed directly to the objective verification statistics. Afterwards, the cases 

where the EPEC values performed best, and worst are looked at.  

4.1. Rankings 

 The goal of this subjective analysis was to verify whether EPEC could predict 

where the heaviest rainfall occurred. Both the NAM and the GFS were examined for each 

event and ranked accordingly. Each model was used during the PRECIP project and a 

model of the day was chosen for each event based on how well the model performed 

through previous forecasts for which the lead forecaster had high confidence in.  

The initial approach to verify if EPEC can be a predictive parameter was to rank 

all 15 events archived by the PRECIP project in 2014 and 2015, while only being 

employed on the cold side of the Θe boundary. The events were ranked based on how 

well EPEC identified where the maximum storm total precipitation (STP) occurred. The 

first step was to use the North American Model (NAM) and/or the Global Forecast 

System (GFS) models to plot EPEC and the heavy rainfall. Radar composite storm total 

precipitation (STP) was plotted at the time where the maximum rainfall occurred for the 

event. The EPEC index was plotted for the model time prior to the occurrence of the 

maximum rainfall, which was often 36 hours into the run.  

 A numerical value of 0, 1, 2, or 3 was assigned subjectively to each event, with 0 

being the worst and 3 being the best. Table 3-3 shows the descriptions of what each 
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ranking value represents. These values were applied to each event based on how well 

EPEC captured where the heavy rainfall occurred.  

 There was one event that was ranked as a 0, while there was a total of eight events 

ranked as a 3. A total of 8 deployments occurred where the PRECIP team conducted 

observations in the field and the majority of these IOP’s were ranked as a 2 or a 3. EPEC 

was used during the PRECIP project to determine whether a deployment should occur 

and these rankings show that EPEC did perform quite well when a deployment occurred. 

Table 4-1 shows the distributions of the rankings of each event. The bold values indicate 

the examples of each of the rankings and will be discussed below.  
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Table 4-1: Table listing the 15 elevated events with the location of events and their associated rankings 
from the GFS and the NAM. Bold events are the associated examples of each ranking. 

Date Location IOP GFS-36hr NAM-36hr 

20140402 W MO 1 0 2 

20140510 N MO  0 1 

20140604 S IA / N MO 2 1 2 

20140607 S KS 3 3 1 

20140710 S KS  2 2 

20140717 C OK 4 3 2 

20140807 C MO  3 3 

20140827 NW MO  3 2 

20150403 E MO                  1 1 

20150605 NW MO 5  3  2 

20150611 E NE 6 2 2 

20150625 E IA 7 1 1 

20150708 C MO 8  3  3 

20150716 SW IA/NW MO  2 2 

20150730 C KS  2 2 

  

The following figures are examples of each set of the type of rankings, which are 

0, 1, 2, and 3. The focus of each plot is based on where the maximum amount of rainfall 

occurred with that event and where EPEC forecasted for the event.  

Figure 4.1 shows an event that occurred on 02 April 2014 in western Missouri. 

This event is also known as IOP 1, where a PRECIP team conducted observations in 

Ozark and Clinton, Missouri. This event was ranked as a 0 using the Global Forecast 

System (GFS). Rainfall totals in western Missouri were less than 2 inches for this event. 

Figure 4.1 shows that the majority of the rainfall occurred through central Missouri, 

while there are no EPEC contours to highlight any of the rainfall. IOP 1 was ranked as a 

0 based on EPEC not forecasting this rainfall event 36 hours prior to the actual 

occurrence. EPEC may have missed this event due to low precipitable water values.  
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Figure 4.1. Example ranking of a 0 on 02 April 2014 for an event that occurred in western Missouri with 
storm total precipitation (color-filled) and EPEC (solid brown) using the thinned GFS, 80-km model 
output. Scale on the left defines precipitation amounts.  

 The event of 25 June 2015 (Fig. 4.2) occurred in eastern and central Iowa. The 

PRECIP project went out on a deployment with this heavy rainfall event, which is known 

as IOP 7, and conducted observations in Iowa City and Bloomfield, Iowa. Heavy rainfall 

amounts between 76 and 178 mm (3 and 7 inches) occurred within parts of Iowa and 

Missouri. The EPEC index did highlight a portion of the heavy rainfall event but only the 

edge of the contours while the maximum values of EPEC were well off to the east in 

northeast Illinois. Despite EPEC highlighting part of the heavy rainfall, this event was 

ranked as a 1 using the GFS, due to the eastward displacement of the maximum EPEC 

contours.  
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Figure 4.2. Example ranking of a 1 on 25 June 2015 for an event that occurred in eastern and central 
Iowa; format as in Fig. 4.1.  

 The event that occurred on 16 July 2015 in northwestern Missouri is shown in 

Figure 4.3. During this event there were STP values from 3 to 8 inches that accumulated 

with this heavy rainfall event. The EPEC index highlighted this area of heavy rainfall 

with contour values greater than the 50
th

 percentile, which is an EPEC value of 86. A 

maximum EPEC value of 90 is present but is to the east of where the actual event 

occurred. Despite EPEC values highlighting the event with values greater than the 50
th

 

percentile, this event was ranked as a 2 due to the displaced EPEC maxima using the 

NAM 211.  
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Figure 4.3. Example ranking of a 2 on 16 July 2015 for an event that occurred in northwestern Missouri; 
format as in Fig. 4.1.  

 On 17 July 2014 a heavy rainfall event occurred in central Oklahoma, shown in 

Figure 4.4. STP values for this event were as high as 203 mm (8 inches) for the heavy 

rainfall occurrence. EPEC index contours highlight the entirety of the rainfall event with 

values greater than the 75
th

 percentile, which is an EPEC value of 98. Even though the 

maximum EPEC value of 110 is slightly to the northeast of the heavy rainfall this event 

was ranked as a 3. The orientation and shape of the EPEC contours shows the shape of 

where the heavy precipitation occurred. This reason why this event was ranked as a 3 is 

due EPEC highlighting the entirety of the event with values greater than the 75
th
 

percentile.  
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Figure 4.4. Example ranking of a 3 on 17 July 2014 for an event that occurred in central Oklahoma; 
format as in Fig. 4.1. 

 The initial analysis of this research was to rank the 15 heavy rainfall events 

associated with elevated convection according to how EPEC forecasted the rainfall 36 

hours prior to the event occurrence. This analysis was designed to show how well EPEC 

would do based on a subjective point system, and how EPEC was used during 2014 to 

2015 with the Program of Research on Elevated Convection with Intense Precipitation. 

Based on the rankings in Table 4-1, the majority of the events were higher ranked, while 

IOP’s were mostly 2 or 3’s. There was only a single event ranked as a 0 based on the 

GFS. These results showed that EPEC could help identify areas of heavy precipitation, 

while being employed on the cold side of the Θe boundary.  
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4.2. Statistical Analysis 

 These statistical analysis results were based on the 15 elevated cases that were 

verified to be north of a boundary and/or found in the cold sector. Each case was 

processed through PROSTAT and a FORTRAN program to produce these statistical 

values of correlation coefficient, probability of detection (POD), false alarm ratio (FAR), 

critical success index (CSI), and bias.  

The correlation coefficients for each of the 15 elevated thunderstorms with heavy 

rainfall cases are shown in Table 4-2.  In Table 4-2, there is a column that states the 

number of degrees of freedom associated with the 15 events. The number of degrees of 

freedom is the number of values of EPEC with 6-hour precipitation used for the 

calculations of the 3 statistics. A threshold of 30 degrees of freedom was placed on each 

of the events in order to exclude cases with low values. Only one event had a value less 

than 30.  This suggests that all the values in Table 4-2 are statistically significant. Nine 

cases show a probability matrix less than 0.05, while the correlation coefficient values 

associated show a positive (even if weak) positive relationship between EPEC and 

ensuing 6-hourly precipitation totals, suggesting that as precipitation increases so should 

EPEC.   
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Table 4-2: Events and associated values of correlation coefficient between 6-hour precipitation totals 
and EPEC, probability matrix, z-value matrix, and degrees of freedom. Bold numbers are the significant 
values discussed in Chapter 4 and the red italicized values are events that used the 40-km RUC.  

Date IOP Corr Coef Prob Matrix 

z-value 

Matrix DOF 

2014040206 1 0.0427 0.6364 0.0427 123 

2014051018 -- -0.0554 0.7179 -0.0554 43 

2014060400 2 0.5326 0 0.5937 806 

2014060700 3 0.0230 0.5772 .0230 588 

2014071006 -- 0.0571 0.7644 0.0572 28 

2014071706 4 0.4194 0.0001 0.4469 79 

2014080700 -- 0.2313 0 0.2355 477 

2014082706 -- 0.2554 0.0111 0.2612 96 

2015040300 -- 0.0738 0.3012 0.0740 196 

2015060500 5 0.1192 0.0391 0.1198 298 

2015061112 6 0.2210 0 0.2247 383 

2015062500 7 0.4348 0 0.4658 261 

2015070812 8 0.5171 0 0.5724 462 

2015071606 -- 0.2503 0 0.2558 429 

2015073012 -- 0.1808 0.0072 0.1828 218 
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Figure 4.5. Scatter plot of EPEC values vs. ensuing 6-hour precipitation (mm) for all 15 cases. Threshold 
value for 6-hour accumulated precipitation is 12.7mm. The bold line is the mean (89) for EPEC. 

 
Figure 4.5 shows the correlation between the 6-hour accumulated precipitation 

and EPEC values for all 15 events. There seems to be an upslope trend with the events, 

where there are events with over 127 mm (5 inches) in 6 hours, with EPEC values greater 

than the mean (89). Figure 4.5 indicates that there are many events with low precipitation 

values and low-to-high EPEC values.  

All 15 events were analyzed and ran through the FORTRAN code, which 

produced statistical values for POD, FAR, CSI and the bias for each individual event. 

Table 4-2 shows the results the 15 events, which include the IOPs where the PRECIP 

project deployed.  
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Table 4-3: Each event and its associated probability of detection (POD), false alarm ratio (FAR), critical 
success index (CSI), and bias value. Bold values are the significant values for each statistic for associated 
events. 

Date IOP POD FAR CSI Bias 

2014040206 1 0 NAN 0 0 

2014051018 -- 0 NAN 0 0 

2014060400 2 0.710 0.164 0.623 0.850 

2014060700 3 0.361 0.255 0.321 0.485 

2014071006 -- 0.767 0.772 0.213 3.367 

2014071706 4 0.938 0.618 0.373 2.457 

2014080700 -- 0.871 0.677 0.308 2.695 

2014082706 -- 0.847 0.935 0.064 13.01 

2015040300 -- 0.096 0.604 0.084 0.242 

2015060500 5 0.409 0.749 0.184 1.637 

2015061112 6 0.748 0.744 0.235 2.932 

2015062500 7 0.392 0.772 0.168 1.719 

2015070812 8 0.991 0.634 0.365 2.709 

2015071606 -- 0.817 0.648 0.326 2.323 

2015073012 -- 0.936 0.767 0.229 4.018 

            

15 Cases   9 > 0.5 2 < 0.5 6 > 0.25   

 

 There were a total of 9 events that had a probability of detection (POD) value 

greater than 0.5. Based on Jolliffe & Stephenson (2003) a POD value close to 1 is 

considered to be a perfect score. This suggests that these 9 events were more correctly 

forecasted to some degree (shown bold in table 4-3). POD is highly sensitive to missed 

events rather than false alarms. EPEC did not accurately predict a portion of the events, 

those with a POD value with less that 0.5. There are two events where the POD score is 

zero, implying that EPEC did not forecast the heavy rainfall that occurred. These two 

events more than likely had EPEC values less than the 25
th

 percentile, which was the 

minimum threshold set in the FORTRAN code.  
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There were two events with a FAR value less than 0.5, which needs to be near 0 

to be considered a decent score (shown bold in Table 4-3). These scores show the fraction 

of events that actually occurred. Two events did not have a FAR score because the event 

was not correctly forecasted and/or had EPEC values less than the 25
th

 percentile. The 

other 11 events had a FAR score greater than 0.5, which implies that there are more false 

alarms with these events. This is due to FAR being more sensitive to false alarms while 

ignoring missed events. An example of a false alarm, a hit, and a miss is shown in Figure 

4.5.  
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Figure 4.6: Image showing what a false alarm, a miss, and a hit represents. 

There were 6 events with a CSI value greater than 0.25, which is statistically 

significant for these data (shown bold in Table 4-3). This suggests that these events had 

more than ¼ of the event correctly predicted while the other events are closer to zero and 

were less predicted than the others. The bias numbers closer to 1 means that there is less 

bias, while the numbers father away from 1 suggest the event was over-biased and the 

numbers closer to zero implies an under-biased event. The results of the bias show that 3 

out of 15 events were not over-forecasted, while 10 of the 15 were over-forecasted.  

 The statistical analysis between the EPEC index and the Stage IV precipitation 

data for all 15 events show that there is a positive linear relationship between the two 

values. There were 9 events with significant probability of detection, while only 2 events 
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had a false alarm ratio close to zero. This indicated that there are many false alarms 

produced when EPEC is used for forecasting heavy rainfall with elevated convection. 

This can also be seen based on the high bias numbers that show EPEC over-forecasting 

the most of the events.  

Clearly, the EPEC index overforecasts areas of heavy precipitation with elevated 

convection, when used on its own. Yet, the EPEC index is meant to assist with 

identifying regions of heavy rainfall associated with elevated convection. Despite EPEC 

over-forecasting events, the index can still point forecasters in right direction to where 

there could be a possibility of heavy rainfall. Guidelines for EPEC use are shared in 

Chapter 5.  

 

4.3 Comparison of EPEC to Climatology  
 

In addition to the basic statistical evaluation just presented, the typical EPEC 

values are now compared to calculated climatological values of EPEC.  Using mean K 

Index values for the Plains States (DeRubertis 2006), climatological precipitable water 

values for Topeka, Kansas (Storm Prediction Center 2016), and an assumed mean 

divergence at 250 mb of 0, average EPEC values can be estimated.  Additionally, using 

the first standard deviation above the mean for 1) K Index values for the Plains States 

(DeRubertis, 2006), and 2) precipitable water values for Topeka, Kansas (Storm 

Prediction Center, 2016), and assuming a positive divergence value at 250 mb of 5 x 10
-5

 

s
-1

, the first standard deviation above mean EPEC values can be estimated.   

Table 4-4 shows the mean climatological values of the components, and how they 

sum to EPEC values of 31.4 (60.7) for the spring (summer) seasons.  These values fall  
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Table 4-4. Mean values of precipitable water (PW; mm), K-index (KINX; unitless), and 250-hPa  
divergence (x10-5 s-1; DIV), and EPEC (unitless). These mean values are for the spring and summer seasons.  

 
PW KINX DIV EPEC 

Spring 17.0 14.4 0 31.4 

Summer 32.8 27.6 0 60.7 
 

Table 4-5. Values for the first standard deviation above the mean of precipitable water (PW; mm), K-
index (KINX; unitless), and 250-hPa  divergence (x10-5 s-1; DIV), and EPEC (unitless). These mean values 

are for the spring and summer seasons 

 
PW (1.5 S.D.) KINX (1.5 SD) DIV EPEC 

Spring  25.1 15.9 5 46 

Summer 41.7 29.1 5 75.8 

 

below the mean EPEC value (89) in the same setting, as well as the first standard 

deviation below the mean for EPEC value (81.5) in elevated heavy rain situations.  Table 

4-5 also features EPEC values calculated using the first standard deviation above the 

mean.  These values are larger, with 46 (75.8) for the spring (summer) season.  Even so, 

the best of them is still below the 25th percentile for EPEC value (81.5) in elevated heavy 

rain situations. This suggests that EPEC performs well in identifying heavy rain events in 

atmospheres that exceed climatology. 

 

4.4. Best and Worst Case 
 

In order to answer the question of how does EPEC indicate heavy rainfall; two 

cases are thoroughly analyzed. This analysis was conducted to present the best and worse 

case for the EPEC parameter and to determine why they did (not) work.  The analysis 

will cover what was previously forecasted by the PRECIP project, how the events were 

ranked, synoptic analysis, and a review of the statistical results.   
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4.4.1. 04 June 2014 
 

 The best case occurred on June 04, 2014, which is also known as IOP-2. This 

event when forecasted by the PRECIP project 48 hours prior to the start of the heavy 

rainfall event. The event was showing signatures from prior composite studies (McCoy, 

2014). The target area for heavy rainfall was to occur over the southern half of Iowa 

during the early morning hours. Based on McCoy’s (2014) composites the target area was 

narrowed down to southwest Iowa. Going forward 24 hours, PRECIP’s target area shifted 

slightly north. The heavy rainfall was to occur due to a warm front moving northeast 

from northern Missouri. Precipitable water values were in excess of 38.1 mm (1.50 

inches) in parts of Missouri. During this time the National Weather Service had issued 

flash flood watches for southern Iowa and northern Missouri. Soundings were also 

indicating significant elevated instability from KDSM (Des Moines, IA). Figure 4.6 

shows where the PRECIP project had forecasted for heavy rainfall and where the two 

vans were to setup to conduct balloon launches. A northern van would deploy to Stuart, 

IA, while a southern van would be in Bethany, MO. The teams were placed just to the 

north and south of where the heaviest rainfall was forecasted to be for Day 1 (June 04, 

2015). 
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Figure 4.7. Map of rainfall (inches) predicted to occur and the locations of the PRECIP teams deployment 
vans.  

 
Looking at Figure 4.7 the most significant precipitation occurred to south of 

where the PRECIP project had forecasted, which was between the two sounding locations 

where the PRECIP teams were deployed. A significant MCS developed over the cold air 

just to the north of a warm frontal boundary. Based on the surface analysis (Figure 4.8) 

from the Weather Prediction Center the rainfall that occurred in Iowa and part of northern 

Missouri was to the north of the warm front, which is in the cold sector and indicates that 

this was an elevated event associated with heavy rainfall.  

This event was prior to when EPEC was created and the index was therefore not 

used in PRECIP’s early forecasts in 2014. Despite this setback EPEC was able to be 

reproduced and plotted for this event. EPEC contours 24 hours prior to this event 
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highlighted heavy precipitation shown in Figure 4.7 with values greater than 74 (25
th
 

percentile). The red dashed lines indicate EPEC values greater than the 25
th

 percentile 

(74), while the green solid lines represents the 6-hour precipitation in millimeters with 

values greater than 12.7 mm (1.50 inches). EPEC highlights the majority of the heavy 

rainfall, while there is only one false alarm. Figure 4.7 shows that EPEC did miss part of 

the rainfall in central Missouri.  
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Figure 4.8. 6-hour accumulated precipitation  (solid green, every 12.7mm) ending at 0600 UTC while 
EPEC values are in dashed blue at 0000 UTC (contoured in 25th, 50th, and 75th percentiles). 

 

Figure 4.9. Surface analysis at 0000 UTC on 04 June 2014 from the Weather Prediction Center.  
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When the subjective rankings were completed IOP 2 was ranked as a 1 using the 

GFS211 and a 2 using the NAM 211, which is based on where EPEC predicted where the 

heavy rainfall happened 36 hours prior to the actual occurrence. Figure 4.9 shows storm 

total precipitation at the time of the maximum rainfall occurrence with the 36-hour 

forecasted EPEC index using the GFS 211, while Figure 4.10 shows the same event using 

the NAM 211. The GFS 211 displaced maximum values of EPEC off to the east in 

northern Illinois of the actual event, while the NAM 211 shifted the maximum slightly to 

the northeast of the event. EPEC still did not highlight the entirety of this event 36 hours 

prior to the event. However, when EPEC was plotted 6 hours prior to the actual 

occurrence of the heavy rainfall event (figure 4.7), EPEC did highlight the entirety of the 

rainfall. The results underscore 1) the utility of the EPEC value, and 2) that EPEC is 

prone to error to the extent that parent model solutions are prone to error, like any other 

parameter, derived (CAPE) or empirical (K-index).  
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Figure 4.10. Storm total precipitation at the time of the maximum rainfall occurrence with the 36-hour 
forecasted EPEC index using the GFS 211; format as in Fig. 4.1. 

 
 

 

Figure 4.11. Storm total precipitation at the time of the maximum rainfall occurrence with the 36-hour 
forecasted EPEC index using the NAM211; format as in Fig. 4.1.  
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The 250-hPa analysis for 04 June 2014 (IOP 2) was analyzed at 0000 UTC, which 

is the same time that EPEC was plotted with 6-hour precipitation (Figure 4.11). There is a 

small trough located in the northwest part of the CONUS while a secondary trough has 

also formed off the west coast. The heavy rainfall event occurred in the right entrance 

region of the jet streak that is located in across Michigan, Wisconsin, and parts of 

Minnesota and Iowa. According to Lackmann (2011), this area lies within the right 

entrance region of an upper-level jet streak is associated with ascent and forcing that is 

provided by a cyclonic vorticity advection that increases with height. Plotting divergence 

with the height field shows that there is a large area of divergence where the heavy 

rainfall event occurred in Iowa. Ninomiya (1971) suggested that strong divergence near 

the upper-troposphere in the close-to-the-storm region can be recognized by the 

significant upward transport of mass and latent heat release during condensation.  

 At 500 hPa, the same two troughs at 250 hPa can be seen still in the northeast and 

the west coast of the CONUS (Figure 4.12). A few shortwaves can be seen in the height 

pattern in northern Missouri, which initiated an area of circulation in southern Iowa and 

northern Missouri. These shortwaves can be attributed to areas of instability in the 

atmosphere.  

 The surface analysis at 0000 UTC 04 June 2014 shows that a low pressure system 

is located in eastern Colorado. This low pressure will be bringing in moisture in from the 

Gulf into the area of the event. Plotting Θe over the mean sea-level pressure will help 

identify where there are frontal boundaries and where the cold sector is located, which 

helps verify if the rainfall that occurred was associated with elevated convection. 

Looking at 950-hPa Θe, there is a weak boundary that extends from central Nebraska into 
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the southwest corner of Iowa (Figure 4.13). By looking at Θe it can be seen that the heavy 

rainfall event did occur on the cold side of the boundary, which is where the lower Θe 

values are located.  

 Figure 4.14 shows K-index values and precipitable water (inches) values at 0000 

UTC on 04 June 2014. K-index values range from 25 to 40 near the region of where the 

heavy precipitation occurred. K-index values greater than 30 are considered to have a 

strong signal and small variability when associated heavy rainfall producing elevated 

thunderstorms (McCoy, 2014). Also precipitable water values were between 38.1 to 44.5 

mm  (1.50 to1.75 inches) near the event. This event did have flash flood watches issued 

by the National Weather Service in southern Iowa and northern Missouri.  
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Figure 4.12. 250-hPa geopotential heights (every 120 gpm, solid black), 250-hPa winds in knots (every 
20 knots, solid blue, shaded above 80 knots), and 250-hPa divergence (shaded every 1 s-1) at 0000 UTC 
on 04 June 2014. 

 

Figure 4.13. 500-hPa geopotential heights (every 60 gpm; solid black) and 500-hPa absolute vorticity 
(dashed brown interval 3 10-5 s-1, shaded above 9 X 10-5 s-1) at 0000 UTC 04 June 2014.   
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Figure 4.14: Mean sea level pressure (solid black; every 4 hPa) and 950-hPa Θe (solid green; every 2K) 
0000 UTC 04 June 2014.  

 

Figure 4.15: Precipitable water in inches (solid blue, interval 0.25 inches) and K-index (dashed blue, 
every 5) at 0000 UTC on 04 June 2014.  
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Taking a look back at Table 4-1 shows the correlation coefficient for 04 June 

2014 has a value of 0.656, while the probability matrix has a value of zero. These values 

indicate that there is a strong linear relationship between the 6-hour precipitation and the 

forecasted EPEC. This event also had 220 degrees of freedom, which is the highest out of 

all the events. IOP 2 was also the case where POD, FAR, CSI and bias showed statistical 

significance (Table 4-2). With values of POD being 0.764 and FAR being 0.138, which 

indicates that EPEC was able to correctly forecast the majority of observed heavy 

precipitation.  

 The event on 04 June 2014 was considered to be one of the best cases for the 

EPEC parameter. The subjective analysis showed that this event was ranked as a 1 for the 

GFS 211 and a 2 for the NAM 211. Despite this low ranking, the statistical results 

indicated the opposite. Values of high probability of detection, low false alarm ratio, and 

an extremely positive correlation coefficient were calculated for this event. These 

statistical results indicate significant values for this elevated thunderstorm case.  

 

4.4.2. 10-11 May 2014  
 

  An event that occurred on 11 May 2014 was initially forecasted by the 

PRECIP team 48 hours prior to the actual occurrence. McCoy’s composites were 

suggesting an event to occur in parts of Kansas. A divergence maximum was positioned 

over a location of maximum convergence in southeastern Kansas. As the jet streak 

increased across northeastern Kansas so did the divergence maximum near northwestern 

Missouri. There was plenty of moisture present with precipitable water values exceeding 
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1.50 inches. The PRECIP team expected significant elevated convection, but the event 

was a little too far north of the study area at the time.  

 The 24-hour forecast for this event did not change dramatically but the location 

did change. The GFS and NAM forecasted for a warm front to move through Missouri 

and eastern Kansas on 10 May and the front would be slowing down around 0000 UTC in 

northern Missouri and southern Iowa. The best moisture pooling was located in 

northwestern Missouri. K-index exceeded the composite threshold (McCoy, 2014), while 

precipitable water values were above normal by ~ 125%. The PRECIP team was 

anticipating elevated convection, but precipitation was likely to form south of the warm 

front and they were not expecting heavy rainfall across the study area. WPC’s surface 

analysis at 1800 UTC (Fig. 4.16) shows a warm front was analyzed in northern Missouri, 

which is south of where the precipitation actually occurred. Comparing Figure 4.15 and 

Figure 4.16 shows that the rainfall did occur north of the warm front indicating that this 

event is associated with elevated convection. In Figure 4.15 EPEC is not present for this 

event, this is possibly due to EPEC being less than the 25
th

 percentile (74).  
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Figure 4.16. 6-hour accumulated precipitation  (solid green, every 12.7mm) ending at 0000 UTC while 
EPEC values are in dashed blue at 1800 UTC (contoured in 25th, 50th, and 75th percentiles).  

 
Figure 4.17. Surface analysis at 1800 UTC on 10 May 2014 from the Weather Prediction Center.  
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 The event on 10-11 May 2014 was ranked as a 1 for the NAM and a 0 for the 

GFS (Table 4-2), due to EPEC being displaced. Figure 4.17 shows the NAM 211 forecast 

for EPEC, which was slightly displaced to the southwest of the event, while the 

maximum EPEC value was greater than the 25
th
 percentile. Figure 18 shows the GFS 211 

forecast for EPEC, which only highlighted a small area to the east of the event. 
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Figure 4.18. Storm total precipitation at the time of the maximum rainfall occurrence with the 36-hour 
forecasted EPEC index using the GFS 211; format as in Fig. 4.1. 

 

 
Figure 4.19. Storm total precipitation at the time of the maximum rainfall occurrence with the 36-hour 
forecasted EPEC index using the GFS 211; format as in Fig. 4.1. 
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 The 250-hPa analysis (Fig. 19) for 10 May 2014 at 1800 UTC shows a short ridge 

to the east of Missouri. The polar upper-level jet streak, around 80 knots, resides over the 

middle CONUS, with a maximum of 100 knots in northeastern Missouri. There is a small 

area of divergence in northern Missouri and parts of Missouri.  

 The 500-hPa heights and vorticity analysis (Fig.4.20) show a series of shortwaves 

across the CONUS, in which a few areas of circulation have formed. An area of 

circulation is near the region of heavy rainfall event that occurred in northern Missouri. 

These areas of circulation will help aid in instability and lift. 

 A weak low pressure is located in South Dakota at 1800 UTC on 10 May 2014. 

The boundary across mid-Missouri extends into southeastern Kansas (Fig. 4.21). This 

boundary was analyzed as a warm front by the WPC (Fig. 4.16). The precipitation that 

occurred was north of this boundary where the colder e values reside.  

 Figure 4.22 shows K-index and precipitable water analyzed at 1800 UTC on 10 

May 2014. K-index values in northern Missouri were between 25 and 30, while 

precipitable water values were greater 25.4 mm (1 inch). McCoy’s composites suggest 

that these values are significant for heavy rainfall events (McCoy, 2014).  
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Figure 4.20. 250-hPa geopotential heights (every 120 gpm, solid black), 250-hPa winds in knots (every 
20 knots, solid blue, shaded above 80 knots), and 250-hPa divergence (shaded every 1 s-1) at 1800 UTC 
on 10 May 2015.  

 
Figure 4.21. 500-hPa geopotential heights (every 60 gpm; solid black) and 500-hPa absolute vorticity 
(dashed brown interval 3 X 10-5 s-1, shaded above 9 X 10-5 s-1) at 1800 UTC on 10 May 2014.  
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Figure 4.22. Mean sea level pressure (solid black; every 4 hPa) and 950-hPa Θe (solid green; every 2K) at 
1800 UTC on 10 May 2014.  

 
Figure 4.23. Precipitable water in inches (solid blue, interval 0.25 inches) and K-index (dashed blue, 
every 5) at 1800 UTC on 10 May 2014.  
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This event had a correlation coefficient value that was negative, which was 

0.0554 (Table 4-2). This value suggests that there is a slight negative linear relationship 

to the observed 6-hour precipitation and EPEC. The probability of detection for this event 

was 0 along with the other CSI and bias (Table 4-3). The reason for this was due to EPEC 

not correctly forecasting this event (Fig. 4.15).  
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Chapter 5. Conclusions 
  

 The main objective of this study was to verify if EPEC is a useful predictive 

parameter for forecasting for flash flooding. This verification was done subjectively by 

ranking 15 heavy rainfall events and then calculating statistics on the EPEC metric.  

 Once the events were verified to be associated with elevated convection by 

comparing the surface analysis field with the actual rainfall occurrence, the 15 events 

were ranked. The events were ranked on how EPEC forecasted the storm-total 

precipitation 36-hours prior to maximum rainfall. The results showed that the majority of 

the events were ranked as a 2 or 3 (on a scale of 0-3) as were the deployments that the 

Program for Research on Elevated Convection with Intense Precipitation project 

conducted sounding operations. The PRECIP team generally forecasted extremely heavy 

rainfall for many of the events. The events that occurred from May through July did have 

flash flooding associated with them for which the National Weather Service did issued 

flash flood watches and/or warnings.  

 Statistical analysis showed that all but 1 of the 15 events had a positive linear 

relationship between the EPEC index and the 6-hour Stage IV precipitation data. 9 events 

had a statistically significant probability of detection value greater than 0.5, while only 2 

events had a false alarm ratio less than 0.5. We may thus conclude that even though 

EPEC is able to correctly forecast observed events, the parameter also over-forecasts the 

events. This is confirmed in the high bias numbers in Table 4-3.  

 The best (worst) cases for the EPEC parameter were analyzed in order to show 

how EPEC did (not) work for each event. The best case occurred on 04 June 2014 and 

was initially ranked low for the NAM 211 and GFS 211 but once statistical analysis was 
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ran on this event it showed great statistical significance for POD, FAR, and the 

correlation coefficient. This event did have flash flooding associated with it and Fig. 4.7 

shows that EPEC was able to highlight the majority of the heavy rainfall that occurred 6 

hours prior to the event with values greater 84, which is the 50
th

 percentile. The worst 

case was quite the opposite in the rankings and statistical analysis. The event on 10-11 

May 2014 was initially ranked as a 0 for the NAM 211 and a 1 for the GFS 211 but 

statistical analysis showed a negative correlation coefficient suggesting a negative linear 

relationship between EPEC and the 6-hour Stage IV precipitation. There were no 

statistical values for POD, FAR, CSI due there not being an EPEC value greater than 74. 

This is can be seen in Fig. 4.15.  

 As a part of Chapter 4, guidelines were promised regarding the proper 

employment of the EPEC tool.  In keeping with previous work (i.e. McCoy 2014), the 

focus of EPEC is on the cold side of a thermal boundary.  As background, the reliable 

ingredients for heavy rainfall from elevated convection are highlighted in Fig. 2.3, 

including: 

 

 A thermal boundary (often a stationary front) 

 A jet streak northeast of the heavy rainfall location 

 Significant moisture in the deep troposphere to the north of the surface front. 

 

Additionally, the EPEC index has shown that there is a positive relationship with 

heavy precipitation. When EPEC is employed on the cold side of the Θe, it can help 

predict heavy rainfall associated with elevated convection. This parameter is not 
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meant to be used on its own but is meant to aide the forecaster in pinpointing an 

area of possible heavy rainfall with elevated convection that could lead to flash 

flooding.  

 

5.1. Future Work 
  

Although our anecdotal experience, and the quantitative results presented here, 

show utility in the EPEC tool, it can be refined and revised.  Possible advances include: 

1) Developing a more robust statistical description of the EPEC value (mean 

and IQR) from the original NARR sounding dataset of McCoy (2014).  It 

is unlikely that the values will change much, but a stronger statistical 

foundation will emerge. 

2) Employing a more equivalent 6-hr precipitation accumulation threshold to 

McCoy’s (2014) 50 mm / 24 hr.  Instead of the linear ration used here of 

12.7 mm / 6 hr, an exponential ratio 27 mm / 6 hr can be used, which is 

more befitting the convective precipitation under study here. 

3) Replacing the K Index with the most unstable convective available 

potential energy (MUCAPE) as the instability component of EPEC.  

While the K Index is more generic and available in most “off the rack” 

software, it is linked to the precipitable water, and so is not thought of so 

much as an instability metric. 

 

Of course, other changes could also be made, but these presented above are the ones that 

seem to have the best potential for a significant and rapid response. 
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