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SURFACE TO SURFACE CHANGES OF VARIABLES AND APPLICATIONS

Kevin Brewster

Dr. Marius Mitrea, Thesis Supervisor

ABSTRACT

The present thesis addresses a number of basic problems in relation to integration

over surfaces in the Euclidean space, such as

• how the surface measure and unit normal changes under a smooth diffeomor-

phism

• how the integration process is affected by a surface to surface change of variables.

We provide precise answers to these and other related issues, and discuss a number

of applications, such as the invariance of Lebesgue and Sobolev spaces on surfaces.
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Chapter 1

Introduction

The main aim of this thesis can be heuristically described as follows. Consider a

sufficiently regular surface Σ ⊆ R
n and assume that a C∞-diffeomorphism F of the

ambient space R
n has been given. Set Σ̃ := F (Σ). Does it follow that Σ̃ is also a

regular surface, and if so, then how does the geometry of Σ̃ relate to that of Σ? A

concrete aspect of the latter issue is: how is ν̃, the unit normal to Σ̃, related to ν, the

unit normal to Σ?

Going futher, it is natural to ask how the integration process on Σ̃ is related to

that on Σ. More concretely, given a reasonable function f : Σ −→ R, what is the

relationship between the integral of this function on Σ and that of f ◦ F−1 on Σ̃?

In essence, we would like to generalize the celebrated Classical Change of Variables

Formula which gives the relationship of the integration process between open subsets

of R
n−1. The latter then becomes a particular case of our theory, corresponding to

the situation when the surfaces involved are flat.

We shall address all the aforementioned issues and, in fact, go on to consider finer

aspects of the intergration theories on Σ and Σ̃. Specifically, we shall identify how

the Lebesgue and Sobolev spaces transform under the surface-to-surface change of

variables
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Σ ∋ x 7→ F (x) ∈ Σ̃. (1.1)

The first order of business is to define the integral over a surface Σ. Recall that

if Σ ⊆ R
n is the graph of a C1 function φ : R

n−1 −→ R and if f : Σ −→ R is

measurable, then by definition

∫

Σ

f dσ :=

∫

Rn−1

f(x′, φ(x′))

√
1 + ‖∇φ(x′)‖2 dx′.

A set E ⊆ Σ is called measurable if {x′ ∈ R
n−1 : (x′, φ(x′)) ∈ E} is a Borel measurable

set in R
n−1. Moreover, a function f : Σ −→ R is measurable if f−1(I) is a measurable

set of Σ for all I ⊆ R such that I is an open interval.

In practical applications, it is often the case that Σ has a “nice” (local) parametriza-

tion. By this, we mean that for all x ∈ Σ there exists r > 0 such that Σ ∩ B(x, r) =

P (O) where

(i) O is an open subset of R
n−1;

(ii) P : O −→ R
n is injective;

(iii) P : O −→ R
n is a C1 map;

(iv) rank[DP (u)] = n− 1, for all u = (u1, . . . , un−1) ∈ O, where

(
D(P1, . . . , Pn)

D(u1, . . . , un−1)

)
(u) = DP (u)

is the Jacobian matrix of P .
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A basic issue is then finding a way of expressing this when a parametrization P

for Σ is available. In the three-dimensional setting, a classical formula to this effect

is

∫

Σ

f dσ =

∫

O

f ◦ P ‖∂1P × ∂2P‖ du1du2.

Efforts of extending this to more general situations run into two immediate difficulties.

First, generally speaking, surfaces can only be parametrized locally and typically lack

a global parametrization. We overcome this problem by making appeal to the so-

called Partition of Unity. Informally speaking, this allows us to piece together into a

global fashion, local results, which is a very useful feature.

The second difficulty is finding an appropriate substitute for the cross-poduct

∂1P × ∂2P when n 6= 3. When n = 3, it is well-known that, given any two vectors

v1, v2 ∈ R
3, one has

v1 × v2 = det




v11 v12 v13

v21 v22 v23

e1 e2 e3


 ,

where e1, e2, e3 is the standard orthonormal basis in R
3. In spite of the fact that

this seems an intrinsic three-diemsnional operation with vectors, here we are able to

generalize the concept of cross-product to Euclidean spaces of arbitrary dimension.

The key feature of our extension is the observation that, in R
n, the cross-product

should actually involve n−1 vectors (so that, when n = 3, we are back to considering

two vectors). More specifically, given (v1, v2, . . . , vn−1), n− 1 vectors in R
n, we define

their Cross Product in R
n as
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v1 × v2 × · · · × vn−1 = det




v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...
vn−1 1 vn−1 2 . . . vn−1 n

e1 e2 . . . en



,

where e1, e2, . . . , en are the vectors of the standard orthonormal basis in R
n. The

above, is to be understood as the vector which is obtained by formally expanding the

determinant with respect to the last line. Some of the properties of the cross product

which we establish are as follows:

1. 〈v1 × v2 × · · · × vn−1, vn〉 is the (oriented) volume of the parallelopiped spanned

by the vectors v1, . . . , vn in R
n.

2. The vector v1 × v2 × · · · × vn−1 is perpendicular to each of the vectors v1, . . . ,

vn−1;

3. If A is an n× n invertible matrix and v1, . . . , vn−1 are n− 1 vectors in R
n, then

Av1 × · · · × Avn−1 = (detA)(A−1)⊤(v1 × · · · × vn−1),

4. If R is a rotation of R
n about the origin, then

‖Rv1 × · · · × Rvn−1‖ = ‖v1 × · · · × vn−1‖.

Having introduced this new concept of multidimensional cross-product, it is nat-

ural to speculate that the following is true:
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Theorem 1. Assume that Σ ⊂ R
n is a surface that has a global canonical parametriza-

tion P : O → Σ →֒ R
n, where O is an open subset of R

n−1. Then for every absolutely

integrable function f : Σ −→ R, there holds

∫

Σ

f dσ =

∫

O

f ◦ P ‖∂1P × . . .× ∂n−1P‖ du1 . . . dun−1.

In Chapter 5, starting from the definition of integration on Σ and making use

of the properties of the cross product in R
n, we show that this is indeed the case.

It is worth mentioning that the above formula is a key ingredient in the proof of

many of the subsequent results we establish in this thesis. In particular, this plays a

paramount role in the generalization of the Classical Change of Variables Formula.

For practical applications, it is also of interest to derive a formula similar to the one

given above which makes no direct reference to the multi-dimensional cross product.

This is indeed possible, as we prove the following:

Theorem 2. Assume that Σ ⊂ R
n is a surface that has a global parametrization

P : O → Σ →֒ R
n, where O is an open subset of R

n−1. Then for every absolutely

integrable function f : Σ −→ R, there holds

∫

Σ

f dσ =

∫

O

(f ◦ P )




n∑

j=1

[
det

(
D(P1 . . . P̂j . . . Pn)

D(u1 . . . un−1)

)]2



1
2

du1 . . . dun−1,

where hat indicates omission.

Having successfully linked the integration process on Σ to the cross product on R
n,

we next aim to produce a formula for the unit normal on Σ. Specifically, we show:

5



Theorem 3. Assume that Σ ⊂ R
n is a surface which has a global canonical parametriza-

tion P : O → Σ →֒ R
n, where O is an open subset of R

n−1. If ν is the unit normal

to the surface Σ, then

ν ◦ P =
∂1P × ∂2P × . . .× ∂n−1P

‖∂1P × ∂2P × . . .× ∂n−1P‖
on O.

Again, for various practical considerations it is useful to derive a formula for ν

independent of the multidimensional cross product. That formula reads as follows:

Theorem 4. Assume that Σ ⊂ R
n is a surface which has a global canonical parametriza-

tion P : O → Σ →֒ R
n, where O is an open subset of R

n−1. If ν is the unit normal

to the surface Σ, then for every j ∈ {1, 2, . . . , n} there holds

νj ◦ P =
(−1)j+1 det(Aj)

(
n∑

k=1

[
det
(

D(P1...P̂j...Pn)

D(u1...un−1)

)]2) 1
2

,

where

Aj =




∂1P1 . . . ∂1Pj−1 ∂1Pj+1 . . . ∂1Pn

... . . .
...

... . . .
...

∂n−1P1 . . . ∂n−1Pj−1 ∂n−1Pj+1 . . . ∂n−1Pn




and P̂j means that Pj is omitted for 1 ≤ j ≤ n.

Granted the tools mentioned above, we are then well-positioned to start exploring

the relationship between the integration processes on Σ and Σ̃. At the same time,

another aspect we are concerned with is understanding how the geometries of Σ and

Σ̃ (manifested through their respective unit normals) are related. Below we list a
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number of motivational questions that we will consider. To set the stage, recall that

we are assuming that Σ is a nice surface in R
n and that

F : R
n −→ R

n C∞-diffeomorphism

is a diffeomorphism (i.e., F is of class C∞, F is bijective, and F−1 is of class C∞).

Question 1

Under the above hypotheses, does it follow that

Σ̃ = F (Σ)

is also a smooth surface in R
n ?

If the answer to this question is “yes”, then we may also consider:

Question 2

How does the unit normal ν̃ to Σ̃ relate to the unit normal ν to Σ ?

Question 3

How does the surface area element dσ̃ for Σ̃ relate to the surface area element dσ for

Σ ?

Question 4

How does the integration process on Σ̃ relate to the integration process on Σ ? (i.e.

is there a change of variables formula from Σ to Σ̃)

As mentioned above, the main tools needed to elucidate these issues are diligently

addressed by Theorems 1-4 above. Based on these, in Chapter 7 we then establish

7



the following:

Theorem 5. Let Σ = P (O) where P : O −→ R
n is a global parametrization of Σ.

Let F : R
n −→ R

n be a C∞-diffeomorphism. Then Σ̃ := F (Σ) is a smooth surface in

R
n.

Furthermore, if f : Σ̃ −→ R is an arbitrary absolutely integrable function, then

∫

Σ̃

f dσ̃ =

∫

Σ

(f ◦ F ) | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ.

A remarkable feature of the above surface-to-surface change of variables formula

is that the Classical Change of Variables Formula becomes a particular case of it.

Before proving that this is indeed the case, let us recall the actual statement of the

latter.

The Classical Change of Variables Formula. Let D ⊆ R
n be such that D is

open, and let f : R
n −→ R

n be an arbitrary absolutely integrable function. Consider

next a function g such that:

1. g : R
n −→ R

n is a C∞-diffeomorphism;

2. g(O) = D;

3. O ⊆ R
n, O open.

Then

∫

D

f(x) dx =

∫

O

f(g(y)) | det(Dg)(y)| dy.

8



In order to show this is a particular case of Theorem 5, we shall regard O as a flat

surface in R
n+1 by making the following identifications:

(i) Σ̃ := D × {0};

(ii) f̃(x, 0) := f(x), x ∈ D;

(iii) dσ̃ = dx1dx2 . . . dxn = dx.

Next, we define

1. Σ := O × {0};

2. F (x, xn+1) := (g(x), xn+1),

so that F : R
n+1 −→ R

n+1 becomes a C∞-diffeomorphism. Note that

(f̃ ◦ F )(x, 0) = f̃(F (x, 0)) = f̃(g(x), 0) = f(g(x))

and, given that the surface is flat,

dσ = dx1dx2 . . . dxn = dx.

Moreover, it can be shown that the following identities hold:

| det(DF )(x, xn+1)| = | det(Dg)(x)| ,

and

9



∥∥(((DF )(x, xn+1))
−1)⊤ν(x, xn+1)

∥∥ = 1.

Using the above substitutions and identities, it is a straightforward matter to show

that the Classical Change of Variables is simply a particular case of our formula in

Theorem 5.

Moving on, we produce an explicit formula for ν̃, the unit normal on Σ̃ which reads

as follows:

Theorem 6. Let Σ ⊆ R
n be a surface with unit normal ν and let F : R

n −→ R
n be

a C∞-diffeomorphism. Denote Σ̃ := F (Σ) and let ν̃ be the unit normal to Σ̃. Then

ν̃ =
(DF−1)⊤(ν ◦ F−1)

‖(DF−1)⊤(ν ◦ F−1)‖ on Σ̃.

In turn, having established a Surface-to-Surface Change of Variables Formula

along with a formula for the unit normal, in Chapter 11 we turn our attention to

showing the invariance of Lebesgue and Sobolev spaces defined on surfaces. Our first

result in this regard is the following:

Theorem 7. Assume that Σ ⊂ R
n is a C1 surface, O ⊂ R

n is an open neighborhood

of Σ, and F : O → R
n be an orientation preserving C1-diffeomorphism onto its image.

Set Σ̃ := F (Σ). Then for each 1 ≤ p <∞, the operator

T : Lp(Σ) −→ Lp(Σ̃)

defined by

10



T (f) := f ◦ F−1, f ∈ Lp(Σ),

is well-defined, linear, and bounded. In fact, T is an isomorphism.

Once this theorem is proved, we then define and establish basic formulas for the

tangential gradient of a function f : Σ −→ R. The definition of the tangential

gradient is as follows. Given a C1 surface Σ ⊂ R
n with unit normal ν, we define the

tangential gradient of a function f : Σ −→ R by

∇tanf := ∇f − 〈∇f, ν〉ν.

We can think of the tangential gradient coordinate-wise in the following manner:

(
∇tanf

)
j
=

n∑

k=1

νk∂τkj
f, 1 ≤ j ≤ n,

where we have set

∂τjk
f := (νj∂k − νk∂j)f, 1 ≤ j, k ≤ n.

As a consequence, there exist dimensional constants C1, C2 > 0 such that

C1‖∇tanf‖ ≤
∑

1≤j, k≤n

|∂τjk
f | ≤ C2‖∇tanf‖,

pointwise on Σ.

11



The next order of business is to define a Sobolev space of order one on Σ. We do

so as follows. Let 1 ≤ p <∞, and set

W 1,p(Σ) :=
{
f ∈ Lp(Σ) : (∇tanf)j ∈ Lp(Σ), 1 ≤ j ≤ n

}
.

This becomes a Banach space when equipped with the norm

‖f‖W 1,p(Σ) := ‖f‖Lp(Σ) +
n∑

j=1

‖(∇tanf)j‖Lp(Σ).

To make matters simpler in the calculations we will subsequently attempt, we will

need an equivalent norm to the one given above. We show that an equivalent norm

on W 1,p(Σ) is given by

‖f‖W 1,p(Σ) = ‖f‖Lp(Σ) +
∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ).

Before stating the main invariance result for Sobolev spaces, we define and discuss

the properties of the tensor product between two vectors in R
n. We define the tensor

product between a = (a1, . . . , an) ∈ R
n and b = (b1, . . . , bn) ∈ R

n to be

a⊗ b := (ajbk)1≤j,k≤n.

In other words, a ⊗ b is the n × n matrix whose jk-th entry is ajbk. Having defined

the tensor product, we then discuss properties of the tensor product. They are the

following:

12



(a⊗ b)⊤ = b⊗ a, ∀ a, b ∈ R
n,

and

〈a⊗ b, c〉 = 〈b, c〉 a, ∀ a, b, c ∈ R
n.

Also,

a⊗ b− b⊗ a = ab ⊗ b− b⊗ ab, where ab := a− 〈a, b〉b.

After establishing the above tools, we are finally ready to state and prove the

following theorem:

Theorem 8. Assume that Σ ⊂ R
n is a C1 surface, O ⊂ R

n is an open neighborhood

of Σ, and F : O → R
n be an orientation preserving C1-diffeomorphism onto its image.

Set Σ̃ := F (Σ). Then for each 1 ≤ p <∞, the operator

T : W 1,p(Σ) −→ W 1,p(Σ̃)

defined by

T (f) := f ◦ F−1, f ∈W 1,p(Σ),

is well-defined, linear, and bounded. In fact, T is an isomorphism.

13



In closing, we wish to mention that the proof of the above result is subtle and

makes essential use of Theorem 7, concerning the invariance of Lebesgue spaces under

a surface-to-surface change of variables, as well as properties of the tensor product of

vectors, as recalled above.
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Chapter 2

Properties of the Cross Product in
R
n

The first order of business is to define the cross product v1 × v2 × · · · × vn−1 of

n− 1 vectors v1,. . . ,vn−1 ∈ R
n. Below and elsewhere, e1, ..., en are the vectors of the

standard orthonormal basis of R
n.

Definition 2.0.1. If v1 = (v11, ..., v1n), . . . , vn−1 = (vn−1 1, ..., vn−1 n) are n−1 vectors

in R
n then

v1 × v2 × · · · × vn−1 = det




v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...
vn−1 1 vn−1 2 . . . vn−1 n

e1 e2 . . . en



, (2.1)

where the determinant is understood as computed by formally expanding it with respect

to the last row, the result being a vector in R
n.

Below we summarize some of the main properties of the cross product.

Proposition 2.0.1. The cross product introduced in Definition 2.0.1 enjoys the fol-

lowing properties:

15



(i) 〈v1 × v2 × · · · × vn−1, vn〉 is the (oriented) volume of the parallelopiped spanned

by the vectors v1, . . . , vn in R
n.

(ii) The vector v1 × v2 × · · · × vn−1 is perpendicular to each of the vectors v1, . . . ,

vn−1;

(iii) If A is an n×n invertible matrix and v1, . . . , vn−1 are n− 1 vectors in R
n, then

Av1 × · · · × Avn−1 = (detA)(A−1)⊤(v1 × · · · × vn−1), (2.2)

where “⊤” stands for transposition of matrices.

(iv) If R is a rotation of R
n about the origin, then

‖Rv1 × · · · × Rvn−1‖ = ‖v1 × · · · × vn−1‖. (2.3)

Proof: From (2.1),

v1 × . . .× vn−1 =
n∑

j=1

(−1)j+1ej detAj (2.4)

where

Aj =




v11 . . . vj−1 vj+1 . . . v1n

... . . .
...

... . . .
...

vn−1 1 . . . vn−1 j−1 vn−1 j+1 . . . vn−1 n


 (2.5)

Then by (2.4) and (2.1),

16



〈v1 × . . .× vn−1, vn〉 =

[
n∑

j=1

(−1)j+1(detAj)ej

]
· vn =

n∑

j=1

(−1)j+1vnj detAj

= det




v11 . . . v1n

... . . .
...

vn−1 1 . . . vn−1 n

vn1 . . . vnn


 . (2.6)

As in (2.1), this determinant is to be expanded by the last row. Moreover, this

determinant is known to be the volume. This finishes (i) of (2.0.1).

For (ii), observe that for every fixed j ∈ {1, 2, . . . , n− 1}, we have by (2.6)

〈v1 × . . .× vn−1, vj〉 = det




v11 . . . v1n

...
...

vj1 . . . vjn

...
...

vn−1 1 . . . vn−1 n

vj1 . . . vjn




= 0,

since this is the determinant of a matrix which has two identical rows. The proof of

this statement can be found in the Appendix. Now, since generally speaking,

v⊥w ⇐⇒ 〈v, w〉 = 0 (2.7)

(i.e., two vectors are perpendicular if and only if their dot product is zero). This

finishes (ii) of Proposition 2.0.1.

Before proving (iii), we will make use of the following facts whose proofs can be

found in the Appendix. Let A be an n× n matrix and v, w ∈ R
n, then

〈
A⊤v, w

〉
= 〈v, Aw〉 , (2.8)

17



and

if 〈u,w〉 = 〈v, w〉 for all w ∈ R
n, thenu = v. (2.9)

Moreover, if B is an n× n matrix and λ ∈ R, then

λ 〈u, v〉 = 〈λu, v〉 = 〈u, λv〉 , (2.10)

detB = det(B⊤), (2.11)

and

det(AB) = detA · detB. (2.12)

In particular if B is an n× n invertible matrix, then

(B−1)⊤ = (B⊤)−1. (2.13)

Returning to the mainstream discussion, let vn ∈ R
n. Using (2.8) gives

〈
A⊤(Av1 × . . .× Avn−1), vn

〉
= 〈Av1 × . . .× Avn−1, Avn〉 .

By (2.6), we have

18



〈Av1 × . . .× Avn−1, Avn〉 = det




(Av1)1 . . . (Av1)n

...
...

(Avn)1 . . . (Avn)n




= det




n∑
i=1

a1iv1i . . .
n∑

i=1

aniv1i

...
...

n∑
i=1

a1ivni . . .
n∑

i=1

anivni




= det




n∑
i=1

v1ia1i . . .
n∑

i=1

v1iani

...
...

n∑
i=1

vnia1i . . .
n∑

i=1

vniani




= det







v11 . . . v1n

...
...

vn1 . . . vnn


 ·




a11 . . . an1
...

...
a1n . . . ann





 .(2.14)

Using (2.12), (2.11), (2.6),and (2.10) in (2.14) yield

det







v11 . . . v1n

...
...

vn1 . . . vnn


 ·




a11 . . . an1
...

...
a1n . . . ann





 = det




v11 . . . v1n

...
...

vn1 . . . vnn


 · det(A⊤)

= (detA) 〈v1 × . . .× vn−1, vn〉

= 〈(detA)(v1 × . . .× vn−1), vn〉 .

Hence,

〈
A⊤(Av1 × . . .× Avn−1), vn

〉
= 〈(detA)(v1 × . . .× vn−1), vn〉 for all vn ∈ R

n.(2.15)

Using (2.9) on (2.15), we have

A⊤(Av1 × . . .× Avn−1) = (detA)(v1 × . . .× vn−1) for all v1, . . . , vn−1 ∈ R
n.(2.16)
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Multiplying by (A⊤)−1 on both sides of (2.16) and using (2.13) gives

Av1 × . . .× Avn−1 = (detA)(A−1)⊤(v1 × . . .× vn−1).

This concludes (iii) of (2.0.1).

For (iv), let us make the following observation:

R : R
n −→ R

n is a rotation ⇐⇒





(1)∃ A, an n× n matrix, such that A−1 = A⊤,

(2)R(x) = A · x, ∀x ∈ R
n.

(2.17)

In other words, we will not distinguish between the rotation R itself and its associated

matrix A. We will also make use of the following facts that if λ ∈ R, v ∈ R
n, and A

is an invertible n× n matrix, then

‖λv‖ = |λ| ‖v‖ , (2.18)

and

det(A−1) =
1

detA
. (2.19)

Returning to the proof of (iv) we find, by (iii),

Rv1 × . . .×Rvn−1 = (detR)(R−1)⊤(v1 × . . .× vn−1).

Taking the norm and using (2.17) and (2.18) yields
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‖Rv1 × . . .×Rvn−1‖ = | detR| ‖R(v1 × . . .× vn−1)‖ . (2.20)

Claim 1 For every rotation R, one has

| detR| = 1. (2.21)

To prove Claim 1, we will apply the determinant to the identity R−1 = R⊤. This

gives det(R−1) = det(R⊤). Using (2.19) and (2.11), we have

1

detR = detR ⇒ 1 = (detR)2

⇒ detR = ±1

⇒ | detR| = 1.

This finishes Claim 1.

Claim 2 For every rotation R, one has

‖Ru‖ = ‖u‖ , ∀ u ∈ R
n. (2.22)

Note that both sides of the equation in Claim 2 are nonnegative numbers, thus

it is enough to show that ‖Ru‖2 = ‖u‖2. To this end, we write

‖Ru‖2 = 〈Ru,Ru〉 . (2.23)
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Using (2.8) and (2.17) in (2.23) we get

〈Ru,Ru〉 =
〈
R⊤Ru, u

〉
=
〈
R−1Ru, u

〉
= 〈u, u〉 = ‖u‖2 .

This finishes Claim 2.

We now return to the mainstream discussion. Using Claim 1 and Claim 2 in (2.20),

we get

‖Rv1 × . . .×Rvn−1‖ = ‖v1 × . . .× vn−1‖ .

This finishes (iv) of Proposition 2.0.1. The proof of this result is therefore completed.

2
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Chapter 3

Partition of Unity

Many of the results we prove in this thesis have a global nature although the proof

requires working at a local level, at least in a first stage. A convenient mathematical

tool that permits us to patch together local results is the Partition of Unity Theorem.

Heuristically, this means that the constant function 1 can be broken up in a number

of (smooth) bump functions whose supports have an a priori specified location.

To facilitate further considerations, here we state and prove (in a self-contained

fashion) a version of the Partition of Unity which suits our purposes.

Theorem 3.0.2. Let K ⊂ R
n be compact, K ⊂

J⋃
j=1

Uj where Uj is open for j ∈

{1, . . . , J}. Then there exists a finite collection of C∞ functions {ϕj}J
j=1 such that

1. For every 1 ≤ j ≤ J , supp(ϕj) is compact and contained in Uj;

2. For every 1 ≤ j ≤ J , 0 ≤ ϕj ≤ 1;

3.
J∑

j=1

ϕj(x) = 1, for every x ∈ K.

Before proceeding with the proof of Theorem 3.0.2, we state and prove the following

two lemmas which will be utilized in the proof.
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Lemma 3.0.3. If C is compact, and U is an open set such that C ⊂ U , then there

exists a compact set D such that C ⊂
◦

D ⊂ D ⊂ U .

Proof: Let V = U c ∩ BR(0), where R > 0 is large enough so that U ⊂ BR(0). Then

V is compact, so there exists a > 0 such that

a = dist(V,C) = infx∈ C

y∈V
|x− y|. (3.1)

Note that
⋃

x∈C

Ba
4
(x) is an open cover of the compact set C. Then by the Heine-

Borel Theorem, there exists J ⊆ C finite such that C ⊆ ⋃
x∈ J

Ba
4
(x). Let

D =
⋃

x∈ J

Ba
4
(x). (3.2)

Then D is compact, and C ⊂
◦

D ⊂ D ⊂ U . This completes the proof of

Lemma 3.0.3.

Lemma 3.0.4. If D is a compact set, and U is an open set such that D ⊂ U , then

there exists ψ ∈ C∞ such that ψ > 0 on D, and ψ = 0 outside some open set contained

in U .

Proof: Let

f(y) =

{
e
− 1

(y−1)2 · e−
1

(y+1)2 , y ∈ (−1, 1),

0, y /∈ (−1, 1).
(3.3)

Then f ∈ C∞(R), and f > 0 on (−1, 1). Let ǫ > 0. For each a = (a1, . . . , an) ∈ R
n,

let ga(x) := f
(

x1−a1

ǫ

)
× · · · × f

(
xn−an

ǫ

)
, where f is as defined in (3.3) and x ∈ R

n.

Then ga ∈ C∞(Rn), and
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{
ga > 0 on (a1 − ǫ, a1 + ǫ) × · · · × (an − ǫ, an + ǫ),

ga = 0 elsewhere.
(3.4)

Set α = dist(D,U) > 0. For every x ∈ D, Bα
4
(x) ⊂ U . Moreover, there exists

ǫ′ > 0 such that Oxl
= (xl

1 − ǫ′, xl
1 + ǫ′) × · · · × (xl

n − ǫ′, xl
n + ǫ′) ⊂ U for each

xl = (xl
1, x

l
2, . . . , x

l
n) ∈ D. Hence, D ⊂ ⋃

xl∈D

Oxl
. Since D is compact, we can extract

a finite subcover such that D ⊂
M⋃
l=1

Oxl
. Let

ψ(x) =
M∑

l=1

gxl
(x). (3.5)

Then ψ ∈ C∞, ψ > 0 on
M⋃
l=1

Oxl
, and ψ = 0 outside

M⋃
l=1

Oxl
. This proves

Lemma 3.0.4.

Now we are ready to give the Proof of Theorem 3.0.2.

Let C1 := K\
J⋃

j=2

Uj. Then C1 is compact, and C1 ⊂ U1. By Lemma 3.0.3, there exists

a compact set D1 such that C1 ⊂
◦

D1 ⊂ D1 ⊂ U1. Consequently K ⊂ D1 ∪
J⋃

j=2

Uj.

By induction, we can construct the sets D1, D2, . . . , DJ such that K ⊂
J⋃

j=1

◦

Dj, where

each Dj is compact and Dj ⊂ Uj for every 1 ≤ j ≤ J . Indeed, if K ⊂
◦

D1 ∪
◦

D2 ∪ . . .∪
◦

Dk ∪ Uk+1 ∪ . . . ∪ UJ , we let

Ck+1 := K\
[

k⋃

j=1

◦

Dj ∪
J⋃

j=k+2

Uj

]
. (3.6)

and by Lemma 3.0.3 we find Dk+1 with the desired properties.

We now define the functions ϕj by setting

ϕj(x) :=
ψj(x)

J∑
j=1

ψj(x)

. (3.7)
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Then ϕj ∈ C∞, supp ϕj ⊂ Uj, 0 ≤ ϕj ≤ 1 for every j ∈ {1, 2, . . . , J}, and if x ∈ K,

then x ∈
J⋃

j=1

◦

Dj and
J∑

j=1

ϕj(x) = 1. This completes the proof of Theorem 3.0.2. 2
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Chapter 4

Definition of Surfaces and Integrals
in Surfaces

Recall that if Σ ⊆ R
n is the graph of a C1 function φ : R

n−1 −→ R and if f : Σ −→ R

is measurable, then by definition

∫

Σ

f dσ :=

∫

Rn−1

f(x′, φ(x′))

√
1 + ‖∇φ(x′)‖2 dx′. (4.1)

Recall that a set E ⊆ Σ is called measurable if {x′ ∈ R
n−1 : (x′, φ(x′)) ∈ E} is a

Borel measurable set in R
n−1. Moreover, a function f : Σ −→ R is measurable if

f−1(I) is a measurable set of Σ for all I ⊆ R such that I is an open interval.

This set must be Borel measurable

Σ = graph of

R

R
n−1

(

)E

φ
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A few comments about (4.1) being a natural definition for integration are in order

here:

1. If Σ is flat, i.e. Σ = R
n−1 × {0}, then φ = 0 and (4.1) becomes the equality

between
∫
Σ
f dσ and

∫
Rn−1 f(x′, 0) dx′.

2. If Σ is the graph of φ : R −→ R, i.e. the length of a curve in R
2, then the length

of Σ is given by

length(Σa, b) =

∫ b

a

√
1 + (φ′(x))2 dx.

b R

R

φ:R          R

Σa,b
φ= graph of

a

This is in agreement with (4.1) when n = 2, and f = χΣa, b
. I.e.

∫
Σ
f dσ =

length(Σa, b) and
∫

Rn−1 f(x′, φ(x′))
√

1 + ‖∇φ(x′)‖2 dx′ =
∫ b

a

√
1 + (φ′(x))2 dx.

Let Σ be a C1 smooth surface in R
n. By definition, this means that locally, Σ has a

C1 parametrization. That is, for every x ∈ Σ there exists r > 0 such that
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Σ ∩B(x, r) = P (O) (4.2)

where

P : O −→ R
n is a C1 parametrization. (4.3)

By definition, the latter condition means that:

(i) O is an open subset of R
n−1;

(ii) P : O −→ R
n is injective;

(iii) P : O −→ R
n is a C1 map;

(iv) rank[DP (u)] = n− 1, for all u = (u1, . . . , un−1) ∈ O, (4.4)

where

(
D(P1, . . . , Pn)

D(u1, . . . , un−1)

)
(u) = DP (u) (4.5)

is the Jacobian matrix of P . It is useful to remark that the last condition above

means that for all u ∈ O, there exists j ∈ {1, 2, . . . , n} such that

det

(
D(P1, . . . , Pj−1, Pj+1, . . . , Pn)

D(u1, . . . , un−1)

)
(u) 6= 0, (4.6)

where P1, P2, . . . , Pn are the components of P . Or equivalently
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∇P1, . . . ,∇Pj−1,∇Pj+1, . . . ,∇Pn are n− 1 linearly independent vectors in R
n−1.(4.7)

When (4.7) holds with j = n at every u ∈ O, we shall refer to P as being a canonical

parametrization. When instead of (4.2) we have Σ = P (O), we shall refer to Σ as

having a global parametrization.

P(u)

u

R

O

n−1

Σ

R

Definition 4.0.2. If Σ ⊆ R
n is a surface which is locally given as the graph of C1

functions (in an appropriate system of coordinates), then we define

∫

Σ

f dσ :=
∑

j∈ J

∫

Σ

ψjf dσ

where {ψj}j∈ J
form a Partition of Unity with the property that (suppψj) ∩ Σ is con-

tained in the graph of a C1 function.
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Chapter 5

Applications of the Cross Product
to Parametrizations

Recall (4.1). We next turn our attention to deriving an alternative formula for the in-

tegral of a function on a surface, which emphasizes the role played by the parametriza-

tion of the surface.

Theorem 5.0.5. Assume that Σ ⊂ R
n is a surface that has a global canonical

parametrization P : O → Σ →֒ R
n, where O is an open subset of R

n−1. Then

for every absolutely integrable function f : Σ −→ R, there holds

∫

Σ

f dσ =

∫

O

f ◦ P ‖∂1P × . . .× ∂n−1P‖ du1 . . . dun−1. (5.1)

Proof: We divide the proof into several steps.

Step I:

Let us define P ′ : O −→ R
n−1, by

P ′(u) :=
(
P1(u), . . . , Pn−1(u)

)
, u ∈ O. (5.2)

We will prove (5.1) under the additional assumptions that P ′(O) ∈ R
n−1 is open, and
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P ′ : O −→ P ′(O) has a C1 inverse. (5.3)

We need a function φ such that P (u) = (x′, φ(x′)), so that we can think of Σ as the

graph of φ. In other words, we need

xj = Pj(u), 1 ≤ j ≤ n− 1, (5.4)

and

φ(x′) = Pn(u). (5.5)

Thus, condition (5.4) amounts to

P ′(u) = x′. (5.6)

Recalling that P ′ has a C1 inverse, (5.6) can be written as

u = (P ′)−1(x′). (5.7)

Using this and (5.5), we can take

φ(x′) := Pn((P ′)−1(x′)). (5.8)

Note that for φ chosen as above, we have

32



(x′, φ(x′)) = P (u), if u = (P ′)−1(x′). (5.9)

Indeed

P (u) =
(
P ′(u), Pn(u)

)
=
(
P ′((P ′)−1(x′)), Pn((P ′)−1(x′))

)
=
(
x′, φ(x′)

)
. (5.10)

Since Σ is globally the graph of φ, we can invoke (4.1) to write

∫

Σ

f dσ =

∫

Rn−1

f(x′, φ(x′))

√
1 + ‖∇φ(x′)‖2dx′.

In the second integral, make the change of variables

R
n−1 ∋ x′ = P ′(u), u ∈ O. (5.11)

Note that the corresponding Jacobian is

dx′ =

∣∣∣∣ det

(
D(P1 . . . Pn−1)

D(u1 . . . un−1)

)
(u)

∣∣∣∣ du1 . . . dun−1. (5.12)

This integral now becomes

∫

O

f
(
P ′(u), φ(P ′(u))

)√
1 + ‖(∇φ)(P ′(u))‖2 × (5.13)

×
∣∣∣∣ det

(
D(P1 . . . Pn−1)

D(u1 . . . un−1)

)
(u)

∣∣∣∣ du1 . . . dun−1.

Since φ(P ′(u)) = Pn

(
(P ′)−1(P ′(u))

)
= Pn(u), we have
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f
(
P ′(u), φ(P ′(u))

)
= f(P ′(u), Pn(u)) = f(P (u)) = (f ◦ P )(u). (5.14)

Hence, matters have been reduced to showing that

√
1 + ‖(∇φ)(P ′(u))‖2 ·

∣∣∣∣ det

(
D(P1 . . . Pn−1)

D(u1 . . . un−1)

)
(u)

∣∣∣∣

=

√
1 + ‖(∇φ)(P ′(u))‖2 · | det (DP ′)(u)|

= ‖(∂1P )(u) × . . .× (∂n−1P )(u)‖ . (5.15)

Taking the derivative of (5.8) and using the Chain Rule we get

∇φ(x′) = (Dφ)(x′) = D
(
Pn[(P ′)−1(x′)]

)
(5.16)

= (∇Pn)[(P ′)−1(x′)] ·D[(P ′)−1](x′)

= ∇Pn(u) ·D[(P ′)−1](x′).

Note that P ′ ◦ [(P ′)−1] = I, the identity function in R
n−1. Taking the derivative and

evaluating at x′ we obtain

D
(
P ′ ◦ [(P ′)−1]

)
(x′) = I(n−1)×(n−1) (5.17)

⇒ (DP ′)((P ′)−1(x′)) ·D[(P ′)−1](x′) = I(n−1)×(n−1).

Thus D[(P ′)−1](x′) = [(DP ′)(u)]−1. Hence, using this in (5.16) we arrive at

∇φ(x′) = ∇Pn(u) · [(DP ′)(u)]−1. (5.18)
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Taking the transpose of (5.18) gives

(∇φ(x′))⊤ = (∇Pn(u)[(DP ′)(u)]−1)⊤ = ([(DP ′)(u)]−1)⊤(∇Pn(u))⊤,

whose norm yields

‖∇φ(x′)‖ =
∥∥(∇φ(x′))⊤

∥∥ =
∥∥([(DP ′)(u)]−1)⊤(∇Pn(u))⊤

∥∥ (5.19)

=
∥∥([(DP ′)(u)]−1)⊤(∇Pn)(u)

∥∥ .

Hence, (5.19) implies

√
1 + ‖∇φ(x′)‖2 · | det (DP ′)(u)| (5.20)

=

√
1 + ‖([(DP ′)(u)]−1)⊤(∇Pn)(u)‖2 · | det(DP ′)(u)| .

Claim Consider v1, . . . , vn−1 ∈ R
n arbitrary vectors and arrange their components

vertically as columns in the n× (n− 1) matrix




v11 v21 . . . vn−1 1

v12 v22 . . . vn−1 2
...

... . . .
...

v1 n−1 v2 n−1 . . . vn−1 n−1

v1n v2n . . . vn−1 n



. (5.21)

Let M be the (n − 1) × (n − 1) matrix obtained by eliminating the last row in this

matrix. Also, let w be the last row in (5.21), viewed as a vector in R
n−1. Then, if M

is invertible, we have
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| detM |
√

1 + ‖M−1w‖2 = ‖v1 × . . .× vn−1‖ . (5.22)

Proof of Claim.

Set A :=

(
M−1 0
0 1

)
∈Mn×n. Then by (2.19), we have

| detA| =
∣∣ det(M−1)

∣∣ = | detM |−1 , (5.23)

where the determinant is found by expanding along the last row.

Letting A = (bjk)1≤j,k≤n−1, we find

Avj =




b11 . . . b1 n−1 0
... . . .

...
...

bn−1 1 . . . bn−1 n−1 0
0 . . . 0 1


 ·




vj1

vj2
...
vjn




=

(
n∑

k=1

b1kvjk,

n∑

k=1

b2kvjk, . . . ,

n∑

k=1

bjkvjk, . . . ,

n∑

k=1

bn−1 kvjk, vjn

)

= (0, . . . , 0, 1, 0, . . . , 0, vjn), (5.24)

where 1 represents the j-th place.

Thus,

Avj = (0, . . . , 0, 1, 0, . . . , 0, vjn) for 1 ≤ j ≤ n− 1. (5.25)

Recall that (2.2) is the following:

Av1 × · · · × Avn−1 = (detA)(A−1)⊤(v1 × · · · × vn−1).
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Multiplying by | detA|−1 = | detM | and A⊤ in (2.2), and then taking the norm yields

‖v1 × . . .× vn−1‖ = | detM |
∥∥A⊤(Av1 × . . .× Avn−1)

∥∥ . (5.26)

Notice,

Av1 × . . .× Avn−1 = det




1 0 . . . 0 v1n

...
... . . .

...
...

0 . . . 0 1 vn−1 n

e1 e2 . . . en−1 en




= det

(
I(n−1)×(n−1) w

e1 . . . en

)

= w1e1 + w2e2 + . . .+ wn−1en−1 + en, (5.27)

where (w1, w2, . . . , wn) = (v1n, v2n, . . . , vn−1 n) = w. So,

A⊤(Av1 × . . .× Avn−1)

=

(
(M−1)⊤ 0

0 1

)
·




w1




1
0
0
0
...
0




+ . . .+ wn−1




0
0
...
0
1
0




+ 1




0
0
0
...
0
1







= A⊤w1e1 + . . .+ A⊤wn−1en−1 + A⊤en

= w1A
⊤e1 + . . .+ wn−1A

⊤en−1 + A⊤en

=

(
n−1∑

j=1

wjA
⊤ej

)
+ A⊤en. (5.28)

Focusing on A⊤ej yields
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A⊤ej =




b11 . . . bn−1 1 0
... . . .

...
...

b1 n−1 . . . bn−1 n−1 0
0 . . . 0 1


 ·




0
...
0
1
0
...
0




(5.29)

=








b1j

...
bn−1 j

0


 if 1 ≤ j ≤ n− 1,




0
...
0
1


 if j = n.

Hence,

(
n−1∑

j=1

wjA
⊤ej

)
+ A⊤en =




n−1∑

j=1

wj




b1j

...
bn−1 j

0





+ en

=




w1b11
...

w1bn−1 1

0


+




w2b12
...

w2bn−1 2

0


+ . . .+




wn−1b1 n−1
...

wn−1bn−1 n−1

0


+




0
...
0
1




=

(
n−1∑

j=1

wjb1j,

n−1∑

j=1

wjb2j, . . . ,

n−1∑

j=1

wjbn−1 j, 1

)⊤

=

(
n−1∑

j=1

b1jwj,

n−1∑

j=1

b2jwj, . . . ,

n−1∑

j=1

bn−1 jwj, 1

)⊤

=

(
M−1w

1

)
. (5.30)

Thus,
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A⊤(Av1 × . . .× Avn−1) =

(
M−1w

1

)
. (5.31)

Taking the norm of (5.31) gives

∥∥A⊤(Av1 × . . .× Avn−1)
∥∥ =

√
1 + ‖M−1w‖2. (5.32)

Using (5.26) in (5.32) gives

‖v1 × . . .× vn−1‖ = | detM |
√

1 + ‖M−1w‖2. (5.33)

This finishes the proof of the Claim.

To continue, we specialize the Claim to the following situation:

Set

M := (DP ′)⊤ ∈M(n−1)×(n−1) (5.34)

and

w := ∇Pn ∈ R
n−1. (5.35)

Let v1, . . . , vn−1 ∈ R
n be such that

vj := ∂jP for 1 ≤ j ≤ n− 1, (5.36)
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then (vjn)1≤j≤n−1 = w.

Thus,

M =




∂1P1 . . . ∂n−1P1

∂1P2 . . . ∂n−1P2
... . . .

...
∂1Pn−1 . . . ∂n−1Pn−1


 =




v11 . . . vn−1 1

v12 . . . vn−1 2
... . . .

...
v1 n−1 . . . vn−1 n−1


 , (5.37)

Putting (5.20), (2.13), (5.34), (5.35), (2.11), (5.33), and (5.36) together, we get

√
1 + ‖∇φ(P ′(u))‖2 · | det[(DP ′)(u)]|

=

√
1 + ‖([(DP ′)(u)]−1)⊤(∇Pn)(u)‖2 · | det[(DP ′)(u)]|

=

√
1 + ‖([(DP ′)(u)]⊤)−1(∇Pn)(u)‖2 · | det[(DP ′)(u)]|

=

√
1 + ‖M−1w‖2 ·

∣∣ det (M⊤
)
|

=

√
1 + ‖M−1w‖2 · | detM |

= ‖v1 × . . .× vn−1‖

= ‖(∂1P )(u) × . . .× (∂n−1P )(u)‖ . (5.38)

In particular,

∫

Σ

f dσ =

∫

O

f ◦ P ‖∂1P × . . .× ∂n−1P‖ du, (5.39)

finishing the proof of Step I.

Step II:

For all j ∈ N define
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Oj :=

{
x ∈ O : dist (x, ∂O) >

1

j

}
∩B(0, j). (5.40)

Then Oj is open, bounded, and in particular

1. Oj ⊆ O, for all j ∈ N; (5.41)

2. Oj ⊆ Oj+1 ⊆ O, for all j ∈ N; (5.42)

3.
∞⋃

j=1

Oj = O.

Set

Σj := P (Oj). (5.43)

Then it follows from the above properties of the Oj’s that

1. Σj ⊆ Σ, for all j ∈ N;

2. Σj ⊆ Σj+1, for all j ∈ N; (5.44)

3.
∞⋃

j=1

Σj = Σ.

If

∫

Σj

f dσ =

∫

Oj

f ◦ P ‖∂1P × . . .× ∂n−1P‖ du, for every j ∈ N, (5.45)

then, by the Lebesgue Dominated Convergence Theorem and (5.45), we have

41



∫

Σ

f dσ =

∫

Σ

lim
j→∞

(fχΣj
) dσ = lim

j→∞

∫

Σ

(fχΣj
) dσ

= lim
j→∞

∫

Σj

f dσ

= lim
j→∞

∫

Oj

(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du

= lim
j→∞

∫

O

(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ (χOj
)du

=

∫

O

(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du. (5.46)

Above, the second and sixth equalities are by the Lebesgue Dominated Convergence

Theorem. (The reader may verify in the Appendix why the Lebesgue Dominated

Convergence Theorem applies in the above situation.) The third and fifth equalities

follow from properties of the indicator function.

This finishes the proof of Step II.

Step III:

We need to prove (5.45) for each fixed j. So, fix j ∈ N. Then,

det

(
D(P1 . . . Pn−1)

D(u1 . . . un−1)

)
(u) = det

(
DP ′

Du

)
(u) 6= 0, ∀u = (u1, . . . , un−1) ∈ O.(5.47)

The Inverse Function Theorem implies there exists Vu ⊆ O, an open neighborhood

of u, such that P ′(Vu) is open in R
n−1 and P ′

Vu
: Vu −→ P ′(Vu) has a C1-inverse.

Recall (5.41). Note that Oj is compact for all j ∈ N. It follows that we can find an

open cover of Oj for each j ∈ N. In other words, we have

Oj ⊆ O =
⋃

u∈O

Vu, (5.48)
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which implies there exists Ij ⊆ O, a finite set of points, such that

Oj ⊆
⋃

u∈ Ij

Vu. (5.49)

Hence, Oj ⊆
⋃

u∈ Ij

Vu and, thus,

Oj =
⋃

u∈ Ij

(Vu ∩ Oj), (5.50)

as one can check without difficulty. Let {ψu}u∈ Ij
be a finite Partition of Unity sub-

ordinated to {P (Vu ∩ Oj)}u∈ Ij
. I.e.,

1. supp(ψu) ⊆ P (Vu ∩ Oj) for all u ∈ Ij; (5.51)

2. 0 ≤ ψu ≤ 1 for all u ∈ Ij;

3.
∑

u∈Ij

ψu = 1. (5.52)

Next, write

∫

Σj

f dσ =

∫

Σj



∑

u∈Ij

ψu


 f dσ =

∑

u∈Ij

∫

Σj

ψuf dσ. (5.53)

To continue, we need the following fact whose proof is in the Appendix:

supp(AC) ⊆ supp(A) ∩ supp(C). (5.54)

Specializing (5.54) to ψuf and using (5.51), we have
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∑

u∈Ij

∫

Σj

ψuf dσ =
∑

u∈Ij

∫

P (Vu∩Oj)

ψuf dσ. (5.55)

For each u ∈ Ij, P (Vu ∩ Oj) is a surface with a global C1 parametrization, and

having the additional property that P ′ : Vu∩Oj −→ P ′(Vu∩Oj) is globally invertible,

with a C1 inverse. Hence, this is a setting in which the result in Step I applies.

Consequently, for all u ∈ Ij, by Step I,

∫

Σj

ψuf dσ =

∫

P (Vu∩Oj)

ψuf dσ =

∫

Vu∩Oj

(ψuf) ◦ P ‖∂1P × . . .× ∂n−1P‖ du.(5.56)

Summing up over u ∈ Ij then gives

∑

u∈Ij

∫

P (Vu∩Oj)

ψuf dσ =
∑

u∈Ij

∫

Vu∩Oj

(ψuf) ◦ P ‖∂1P × . . .× ∂n−1P‖ du. (5.57)

In order to proceed, we need the following facts whose proofs can be found in the

Appendix:

(AB) ◦ C = (A ◦ C)(B ◦ C), (5.58)

and if A,C are continuous functions, then

supp(A ◦ C) ⊆ C−1(supp(A)). (5.59)

Using (5.58) in (5.57) yields
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∑

u∈Ij

∫

Vu∩Oj

(ψuf) ◦ P ‖∂1P × . . .× ∂n−1P‖ du (5.60)

=
∑

u∈Ij

∫

Vu∩Oj

(ψu ◦ P )(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du.

Let us look a little closer at ψu ◦ P . From (5.59), (5.51), and the fact that P is a

bijection in this setting, we have

supp(ψu ◦ P ) ⊆ P−1(suppψu)

⊆ P−1
(
P (Vu ∩ Oj)

)

= Vu ∩ Oj

⊆ Oj. (5.61)

Utilizing (5.61), bringing the summation inside the integral on (5.60), and using (5.52)

give
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∑

u∈Ij

∫

Vu∩Oj

(ψu ◦ P )(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du

=

∫

Oj

∑

u∈Ij

[
(ψu ◦ P )(f ◦ P )

]
‖∂1P × . . .× ∂n−1P‖ du

=

∫

Oj



∑

u∈Ij

ψu ◦ P


 (f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du

=

∫

Oj





∑

u∈Ij

ψu


 ◦ P


 (f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du

=

∫

Oj

(1 ◦ P )(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du

=

∫

Oj

(f ◦ P ) ‖∂1P × . . .× ∂n−1P‖ du. (5.62)

This concludes the proof of Step III, and consequently the proof of Theorem (5.0.5).

2

Below we single out a useful special case of the previous theorem.

Corollary 5.0.6. Assume that Σ ⊆ R
n is a surface, x0 ∈ Σ, and let r0 > 0 be such

that P : O → Σ ∩ B(x0, r0) →֒ R
n, where O ⊆ R

n−1 is a local parametrization near

x0. Then,

∫

Σ∩B(x0, r0)

f dσ =

∫

O

f ◦ P ‖∂1P × . . .× ∂n−1P‖ du1 . . . dun−1, (5.63)

for every absolutely integrable function f : Σ −→ R with support contained in Σ ∩

B(x0, r0).

Proof. Use Theorem (5.0.5) with Σ replaced by Σ∩B(x0, r0) (which becomes a surface

with a global parametrization). 2
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For practical applications it is of interest to express the norm of the cross product

∂1P × . . .× ∂n−1P (appearing in the right-hand side of (5.63)) in a way which aviods

using the multi-dimensional cross product. The scope of the theorem below is to do

just that.

Theorem 5.0.7. Assume that Σ ⊂ R
n is a surface that has a global canonical

parametrization P : O → Σ →֒ R
n, where O is an open subset of R

n−1. Then

for every absolutely integrable function f : Σ −→ R, there holds

∫

Σ

f dσ =

∫

O

(f ◦ P )




n∑

j=1

[
det

(
D(P1 . . . P̂j . . . Pn)

D(u1 . . . un−1)

)]2



1
2

du1 . . . dun−1,(5.64)

where P̂j is omitted for 1 ≤ j ≤ n.

Proof. Observe that (2.1) implies

∂1P × . . .× ∂n−1P = det




∂1P1 ∂1P2 . . . ∂1Pn

∂2P1 ∂2P2 . . . ∂2Pn

...
... . . .

...
∂n−1P1 ∂n−1P2 . . . ∂n−1Pn

e1 e2 . . . en




=
n∑

j=1

(−1)j+1ej detAj, (5.65)

where as before

Aj =




∂1P1 . . . ∂1Pj−1 ∂1Pj+1 . . . ∂1Pn

... . . .
...

... . . .
...

∂n−1P1 . . . ∂n−1Pj−1 ∂n−1Pj+1 . . . ∂n−1Pn


 . (5.66)
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So,

∂1P × . . .× ∂n−1P =
n∑

j=1

(−1)j+1ej detAj

=
(
(−1)2 detA1, (−1)3 detA2, . . . , (−1)n+1 detAn

)
,

and, hence,

‖∂1P × . . .× ∂n−1P‖ =
(
[(−1)2 detA1]

2 + [(−1)3 detA2]
2 + . . .+ [(−1)n+1 detAn]2

) 1
2

=
(
[detA1]

2 + [detA2]
2 + . . .+ [detAn]2

) 1
2

=

(
n∑

j=1

[ detAj]
2

) 1
2

. (5.67)

Next, we expand the last expression above as





 det




∂1P2 . . . ∂1Pn

... . . .
...

∂n−1P2 . . . ∂n−1Pn







2

+ . . .+


 det




∂1P1 . . . ∂1Pn−1
... . . .

...
∂n−1P1 . . . ∂n−1Pn−1







2


1
2

=




n∑

j=1

[
det

(
D(P1 . . . P̂j . . . Pn)

D(u1 . . . un−1)

)]2



1
2

. (5.68)

This finishes the proof of Theorem (5.0.7). 2

A few comments are in order here:

1.
∫
Σ
f dσ is independent of the cross product;

2. P does not necessarily have to be the canonical parametrization.
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Moving on, we now discuss how the unit normal to the surface can be expressed

in terms of a parametrization.

Theorem 5.0.8. Assume that Σ ⊂ R
n is a surface which has a global canonical

parametrization P : O → Σ →֒ R
n, where O is an open subset of R

n−1. If ν is the

unit normal to the surface Σ, then

ν ◦ P =
∂1P × ∂2P × . . .× ∂n−1P

‖∂1P × ∂2P × . . .× ∂n−1P‖
on O. (5.69)

Proof: Since P : O −→ R
n is a parametrization of the surface Σ, we can deduce

that (∂1P )(u), . . . , (∂n−1P )(u) are tangent vectors to Σ at the point P (u) ∈ Σ, for

every u ∈ O. Furthermore, by (4.7), these tangent vectors are linearly independent.

Hence ∂1P (u), . . . , ∂n−1P (u) form a basis for the tangent plane to Σ at P (u). By (ii)

in (2.0.1), ∂1P (u) × . . . × ∂n−1P (u) is perpendicular on the tangent plance for Σ at

P (u). Hence, ν(P (u)), i.e. the unit normal to Σ at P (u) is given by

ν(P (u)) =
∂1P (u) × . . .× ∂n−1P (u)

‖∂1P (u) × . . .× ∂n−1P (u)‖ for every u ∈ O.

This finishes the proof of (5.69). 2

As we have done for Theorem (5.0.7) above, we would like to express the unit

normal ν to the surface Σ which avoids using the multi-dimensional cross product.

We do so in the corollary below.

Corollary 5.0.9. Assume that Σ ⊂ R
n is a surface which has a global canonical

parametrization P : O → Σ →֒ R
n, where O is an open subset of R

n−1. If ν is the

unit normal to the surface Σ, then for every j ∈ {1, 2, . . . , n} there holds
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νj ◦ P =
(−1)j+1 det(Aj)

(
n∑

k=1

[
det
(

D(P1...P̂j...Pn)

D(u1...un−1)

)]2) 1
2

, (5.70)

where

Aj =




∂1P1 . . . ∂1Pj−1 ∂1Pj+1 . . . ∂1Pn

... . . .
...

... . . .
...

∂n−1P1 . . . ∂n−1Pj−1 ∂n−1Pj+1 . . . ∂n−1Pn




and P̂j is omitted for 1 ≤ j ≤ n.

Proof: Use (5.69) with the numerator replaced by (5.65) and the denominator replaced

by (5.68). Since we are only concerned with the j-th component of ν, (5.65) becomes

(−1)j+1 det(Aj). 2

Σ

R

u

P(u)

ν (P(u))

R

O

n−1
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Chapter 6

Motivational Questions

In (5.1) above, dσ stands for the surface area element (sometimes denoted dS).

Consider next

F : R
n −→ R

n C∞-diffeomorphism (6.1)

i.e., F is of class C∞, F is bijective, and F−1 is of class C∞.

The basic issues which this project is addressing are as follows:

Question 1

Under the above hypotheses, does it follow that

Σ̃ = F (Σ) (6.2)

is also a smooth surface in R
n ?

If the answer to this question is “yes”, then we may also consider:

Question 2

How does the unit normal ν̃ to Σ̃ relate to the unit normal ν to Σ ?

Question 3
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How does the surface area element dσ̃ for Σ̃ relate to the surface area element dσ for

Σ ?

Question 4

How does the integration process on Σ̃ relate to the integration process on Σ ? (i.e.

is there a change of variables formula from Σ to Σ̃)
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Chapter 7

Surface to Surface Change of
Variables

Question 4 is the main source of motivation for the subsequent work.

Theorem 7.0.10. Let Σ = P (O) where P : O −→ R
n is a global parametrization

of Σ. Let F : R
n −→ R

n, a C∞-diffeomorphism, be such that F (Σ) = Σ̃, and let

f : Σ̃ −→ R be an arbitrary absolutely integrable function. Then

∫

Σ̃

f dσ̃ =

∫

Σ

(f ◦ F ) | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ. (7.1)

Proof: The key ingredient for Question 4 is that we need a parametrization for Σ̃.

Specifically, the parametrization we are looking for is the following:

Claim

F ◦ P : O −→ R
n is a parametriztion for Σ̃. (7.2)

To show F ◦ P is a parametrization we need to verify:

(i) O is an open subset of R
n−1;

(ii) F ◦ P : O −→ R
n is injective;
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(iii) F ◦ P : O −→ R
n is a C1 map;

(iv) rank [D(F ◦ P )(u)] = n− 1, for all u = (u1, . . . , un−1) ∈ O, where

(
DF (P1, . . . , Pn)

D(u1, . . . , un−1)

)
(u) = D(F ◦ P )(u).

Note that O ⊆ R
n−1 is open by assumption. Since F is a diffeomorphism and P is

injective, then F ◦P is injective. Also, F is a C∞ map and P is a C1 map, thus F ◦P

is a C1 map. Hence, (i-iii) above have been verified. To show (iv), we will make use

of the following definitions from Linear Algebra.

Let A be a n×m matrix, then

• row-rank of A := the maximal number of linearly independent rows of A;

• column-rank of A := the maximal number of linearly independent columns of

A.

From these definitions, one can deduce the following Theorems:

1. row-rank of A = column-rank of A

= a number, from now on referred to as rank(A);

2. rank(A) = rank(A⊤);

3. If B ∈Mm× l with rank(B) = m, then rank(AB) = rank(A);

4. If C ∈Ml×n with rank(C) = n, then rank(CA) = rank(A); (7.3)

5. If A ∈Mn×n is an invertible matrix, then rank(A) = n. (7.4)
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Returning to the verification of (iv), we have by the Chain Rule

D(F ◦ P )(u) = (DF )(P (u)) ·DP (u).

Hence,

rank[D(F ◦ P )(u)] = rank[(DF )(P (u)) ·DP (u)]. (7.5)

Since F is a C∞-diffeomorphism, then (DF )(P (u)) is an invertibe n × n matrix.

Thus, (7.4) implies that the rank[(DF )(P (u))] = n. In addition, we note that (4.4)

implies that the rank (DP (u)) = n − 1. What we have shown thus far is that the

matrices (DF )(P (u)) and DP (u) fit the hypothesis for (7.3). Making use of (7.3) in

(7.5) yields

rank[D(F ◦ P )(u)] = rank[(DF )(P (u)) ·DP (u)]

= rank[DP (u)]

= n− 1.

This finishes (iv) and consequently the proof of the Claim.

Having established a parametrization for Σ̃, we now focus on (DF ) ◦ P . Set

A := (DF ) ◦ P. (7.6)

In particular, A is a n × n matrix-valued function defined in O. Note that, by the

Chain Rule, for every i, j ∈ {1, . . . , n},
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∂j(Fi ◦ P ) =
n∑

k=1

[(∂kFi) ◦ P ]∂jPk (7.7)

= the j-th component of A ∂jP,

where A is the n× n matrix from (7.6) and ∂jP is a vector in R
n. Thus,

∂j(F ◦ P ) = A∂jP, ∀j ∈ {1, . . . , n} . (7.8)

Recall formula (2.2); taking the norm and using (2.18) gives

‖Av1 × . . .× Avn−1‖ = |detA|
∥∥(A−1)⊤(v1 × . . .× vn−1

∥∥ . (7.9)

Then we can write for any absolutely integrable function

f : Σ̃ −→ R

the following sequence of identities:

∫

Σ̃

f dσ̃ =

∫

O

f ◦ (F ◦ P ) ‖∂1(F ◦ P ) × . . .× ∂n−1(F ◦ P )‖ dx1 . . . dxn−1

=

∫

O

(f ◦ F ) ◦ P ‖A∂1P × A∂2P × . . .× A∂n−1P‖ dx1 . . . dxn−1(7.10)

=

∫

O

(f ◦ F ) ◦ P | detA|
∥∥(A−1)⊤(∂P1 × . . .× ∂n−1P )

∥∥ dx1 . . . dxn−1,

where A is as in (7.6). Replacing A with its actual formula then gives

∫

Σ̃

f dσ̃ =

∫

O

(f ◦ F ) ◦ P | det[(DF ) ◦ P ]| ×

×
∥∥[((DF )−1)⊤ ◦ P ](∂1P × . . .× ∂n−1P )

∥∥ dx1 . . . dxn−1.(7.11)
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Next, write

[((DF )−1)⊤ ◦ P ](∂1P × . . .× ∂n−1P )

= [((DF )−1)⊤ ◦ P ]

(
∂1P × . . .× ∂n−1P

‖∂1P × . . .× ∂n−1P‖

)
‖∂1P × . . .× ∂n−1P‖(7.12)

and recall formula (5.69). Together, these give

[((DF )−1)⊤ ◦ P ](∂1P × . . .× ∂n−1P )

= [((DF )−1)⊤ ◦ P ](ν ◦ P ) ‖∂1P × . . .× ∂n−1P‖ . (7.13)

Replacing (7.13) back in (7.11) gives

∫

Σ̃

f dσ̃ =

∫

O

(f ◦ F ) ◦ P |[ det(DF )] ◦ P |
∥∥[((DF )−1)⊤ ◦ P ](ν ◦ P )

∥∥ ·

· ‖∂1P × . . .× ∂n−1P‖ dx1 . . . dxn−1. (7.14)

Finally, by (5.1) applied to the function (f ◦F ) | det(DF )| ‖(DF−1)⊤ν‖ in place of f ,

we can write (7.14) as

∫

Σ̃

dσ̃ =

∫

Σ

(f ◦ F ) | det(DF )| ‖((DF )−1)⊤ν‖ dσ. (7.15)

This finishes the proof of Theorem (7.0.10). 2

A few comments are in order here.
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Corollary 7.0.11. With the usual assumptions and notational inventions, one has:

∫

Σ̃

f dσ̃ =

∫

Σ

(f ◦ F ) | det(DF )|
∥∥[(DF−1)⊤ ◦ F ]ν

∥∥ dσ. (7.16)

Proof: By the Inverse Function Theorem,

(DF )−1 = (DF−1) ◦ F. (7.17)

So, (7.1) can be also written as (7.16). 2

Remark

The above considerations are local in nature (i.e., it was assumed that the surface Σ

has a global parametriztion P ). In general, once formulas (7.1) and (7.16) have been

established, one can then use a Partition of Unity to“glue” together these local

remarks. We do so in the following section.

Remark

Remarkable particular cases are obtained in the following cases:

1. F is a rotation in R
n;

2. F is a translation in R
n.

Let us consider these cases in more detail.

Consider F : R
n −→ R

n as a rotation in R
n. Then by (2.17) we may regard F as

an n× n unitary matrix R. Let Σ be a surface in R
n and define

F (x) := Rx, for x ∈ R
n. (7.18)
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With this definition, one can immediately deduce that

(f ◦ F )(x) = f(F (x)) = f(Rx). (7.19)

Since F is a rotation, then F is a C∞ diffeomorphism. Thus, it is meaningful to

discuss F−1. The formula for F−1 is as follows:

F−1(x) = R−1x = R⊤x. (7.20)

By definition Σ̃ := F (Σ). Using (7.18), we have

Σ̃ = F (Σ) = the rotated version of Σ by R

= R(Σ). (7.21)

Letting R = (rij)1≤i, j≤n and x = (xi)1≤i≤n, we have

Rx =




r11 . . . r1n

...
...

rn1 . . . rnn


 ·




x1
...
xn


 =

(
n∑

i=1

r1ixi, . . . ,
n∑

i=1

rnixi

)
. (7.22)

Taking the derivative of (7.18) and using (7.22) yield

(DF )(x) = D(Rx) =




∂1

(
n∑

i=1

r1ixi

)
. . . ∂n

(
n∑

i=1

r1ixi

)

...
...

∂1

(
n∑

i=1

rnixi

)
. . . ∂n

(
n∑

i=1

rnixi

)




=




r11 . . . r1n

...
...

rn1 . . . rnn




= R. (7.23)
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Hence, taking the determinant and the absolute value of (7.23) and using (2.21) give

| det(DF )(x)| = | det(R)| = 1. (7.24)

Taking the transpose of (7.17) and using (7.23), we have

(
[(DF−1) ◦ F ](x)

)⊤
=
(
[(DF )(x)]−1

)⊤
= (R−1)⊤ = R. (7.25)

Finally, by (2.22), we have

‖Rν‖ = ‖ν‖ = 1. (7.26)

Putting (7.19), (7.21), (7.24), and (7.26) in (7.16) we can write

∫

Σ

f(Rx) dσ(x) =

∫

R(Σ)

f dσR(Σ), (7.27)

where dσR(Σ) represents the surface measure on R(Σ), i.e. the rotated version of Σ

by R. In particular, if Σ is a sphere centered at 0, then

∫

Σ

f(Rx) dσ(x) =

∫

Σ

f dσ. (7.28)

This finishes the case when F is a rotation.

Consider F : R
n −→ R

n as a translation in R
n. Recall

∫

Rn

f(x+ y) dy =

∫

Rn

f(y)dy, ∀x ∈ R
n.
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We would like to know what happens if we have a general surface in place of R
n. This

statement gives rise to the following work. Given Σ, a surface in R
n and x ∈ R

n,

define x+ Σ = {x+ y : y ∈ Σ}. Then for any x ∈ R
n and any absolutely integrable

function f : x+ Σ −→ R, we have

∫

Σ

f(x+ y) dσ(y) =

∫

x+Σ

f(z) dσx(z), (7.29)

where σx is the surface measure of x+ Σ.

Proof of (7.29): Fix x and assume f : x+ Σ −→ R is absolutely integrable. Choose

F (y) := x+ y for all y ∈ R
n. (7.30)

This definition for F implies that F is a C∞ diffeomorphism of R
n. Moreover

(f ◦ F )(y) = f(F (y)) = f(x+ y). (7.31)

By definition Σ̃ := F (Σ), thus by (7.30)

Σ̃ = x+ Σ. (7.32)

Taking the derivative of (7.30), we have (DF )(y) = In×n which implies

| det(DF )| = 1. (7.33)
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Since F is a C∞ diffeomorphism, it is meaningful to discuss F−1. One can easily

deduce the following formula: F−1(y) = y − x. Hence, by the Inverse Function

Theorem

(
[(DF−1) ◦ F ](y)

)⊤
=
(
[(DF )(y)]−1

)⊤
=
(
(In×n)−1

)⊤
= In×n. (7.34)

Thus,

‖In×n ν‖ = ‖ν‖ = 1. (7.35)

Putting (7.31), (7.32), (7.33), and (7.35) in (7.16) give the desired result. 2
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Chapter 8

Proof of (7.1) for Surfaces That Do
Not Have a Global Parametrization
(i.e., Σ a compact set.)

Step 1

For all x ∈ Σ, choose Rx > 0 such that

Σ ∩B(x,Rx) = Px(Ox) (8.1)

where Px : Ox −→ R
n is a parametrization satisfying:

1. Ox ∈ R
n−1 is open;

2. Px : Ox −→ R
n is a C1 map;

3. Px : Ox −→ R
n is injective;

4. rank[DPx(u)] = n− 1, for all u = (u1, . . . , un−1) ∈ Ox, where

(
D(Px1 , . . . , Pxn

)

D(u1, . . . , un−1)

)
(u) = DPx(u).
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Step 2

Note that Σ ⊆ ⋃
x∈Σ

B(x,Rx), and since Σ is compact, there exists x1, . . . , xJ ∈ Σ

such that

Σ ⊆
J⋃

j=1

B(xj, Rxj
). (8.2)

Invoking Theorem (3.0.2) gives there exists {φj}J

j=1 ∈ C∞(Rn), φj : R
n −→ R, such

that

1. supp(φj) is a compact subset of B(xj, Rxj
) for all j ∈ {1, . . . , J} ; (8.3)

2. 0 ≤ φj ≤ 1 for all j ∈ {1, . . . , J} ;

3.
J∑

j=1

φj(x) = 1 for all x ∈ Σ. (8.4)

Step 3

Let F : R
n −→ R

n be such that F is a C∞-diffeomorphism. Set Σ̃ = F (Σ) and

let f : Σ̃ −→ R be an arbitrary absolutely integrable function. With {φj}J

j=1 as in

Step 2, define φ̃j : R
n −→ R such that

φ̃j := φj ◦ F−1. (8.5)

Notice, for all y ∈ Σ̃, there exists x ∈ Σ such that F (x) = y. Using this fact, (8.5),

and (8.4) give

J∑

j=1

φ̃j(y) =
J∑

j=1

φ̃j(F (x)) =
J∑

j=1

φj(x) = 1.
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Thus,

J∑

j=1

φ̃j = 1 on Σ̃. (8.6)

For each j ∈ {1, . . . , J}, consider the function

φ̃jf : Σ̃ −→ R

Claim

∫

Σ̃

φ̃jf dσ̃ =

∫

Σ

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ. (8.7)

To prove this Claim, we will make use of the following facts (already used earlier

in a different context), and whose proofs can be found in the Appendix:

(AB) ◦ C = (A ◦ C)(B ◦ C),

supp(AC) ⊆ supp(A) ∩ supp(C).

supp(A ◦ C) ⊆ C−1(supp(A)),

and (if F is injective), then

65



F (A) ∩ F (B) = F (A ∩B). (8.8)

Returning to the proof of the Claim, we find by (5.58) and (8.5)

supp [(φ̃jf) ◦ F ] = supp [(φ̃j ◦ F )(f ◦ F )] = supp [φj(f ◦ F )].

Thus, by (5.54) and (8.3)

supp [φj(f ◦ F )] ⊆ suppφj ∩ supp (f ◦ F ) ⊆ suppφj ⊆ B(xj, Rxj
).

Hence,

supp [(φ̃jf) ◦ F ] ⊆ B(xj, Rxj
). (8.9)

Utilizing (8.9) in the Claim yields

∫

Σ

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ

=

∫

Σ∩B(xj ,Rxj
)

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ (8.10)

and recalling (8.1) gives

∫

Σ∩B(xj ,Rxj
)

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ

=

∫

Pxj
(Oxj

)

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ.

66



Thus, (7.1) applies to Σ ∩B(xj, Rxj
) providing

∫

Σ∩B(xj ,Rxj
)

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ =

∫

F (Σ∩B(xj ,Rxj
))

(φ̃jf) dσ̃.(8.11)

By (5.54), (8.5), and recalling f : Σ̃ −→ R, we have

supp(φ̃f) ⊆ supp φ̃j ∩ suppf ⊆ supp(φj ◦ F−1) ∩ Σ̃.

Using (5.59), (8.3), and (8.8) give

supp(φj ◦ F−1) ∩ Σ̃ ⊆ F (suppφj) ∩ F (Σ)

⊆ F (B(xj, Rxj
)) ∩ F (Σ)

= F (Σ ∩B(xj, Rxj
)).

Thus,

supp(φ̃jf) ⊆ F (Σ ∩B(xj, Rxj
)) ⊆ Σ̃, (8.12)

and

∫

F (Σ∩B(xj ,Rxj
))

(φ̃jf) dσ̃ =

∫

Σ̃

φ̃jf dσ̃. (8.13)

Putting (8.10), (8.11), and (8.13) together gives
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∫

Σ

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ =

∫

Σ̃

φ̃jf dσ̃

which finishes the Claim.

Having established the Claim for every j ∈ {1, . . . , J}, let us sum up formulas

like the Claim over all j’s and obtain

J∑

j=1

(∫

Σ̃

φ̃jf dσ̃

)
=

J∑

j=1

(∫

Σ

(φ̃jf) ◦ F | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ
)
.

Hence, bringing the sums inside the integrals and using (8.6) on

J∑

j=1

(φ̃jf) =

(
J∑

j=1

φ̃j

)
f = f on Σ̃, (8.14)

and noting that

J∑

j=1

[
(φ̃jf) ◦ F | det(DF )|

∥∥((DF )−1)⊤ν
∥∥
]

=

=
J∑

j=1

[
(φ̃j ◦ F )(f ◦ F ) | det(DF )|

∥∥((DF )−1)⊤ν
∥∥
]

=

(
J∑

j=1

φj

)
(f ◦ F ) | det(DF )|

∥∥((DF )−1)⊤ν
∥∥

= (f ◦ F ) | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ on Σ, (8.15)

we obtain

∫

Σ̃

f dσ̃ =

∫

Σ

(f ◦ F ) | det(DF )|
∥∥((DF )−1)⊤ν

∥∥ dσ

which is (7.1) in full generality! 2
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Chapter 9

Formula for the Unit Normal

The goal of this section is to explain how the unit normal to a surface changes as

the surface Σ is mapped by a diffeomorphism into another surface Σ̃. Recall formula

(2.2):

Av1 × . . .× Avn = | detA| (A−1)⊤(v1 × . . .× vn−1). (9.1)

Consider next Question 2.

Theorem 9.0.12. Let Σ ⊆ R
n be a surface with unit normal ν and let F : R

n −→ R
n

be a C∞-diffeomorphism. Denote Σ̃ := F (Σ) and let ν̃ be the unit normal to Σ̃. Then

ν̃ =
(DF−1)⊤(ν ◦ F−1)

‖(DF−1)⊤(ν ◦ F−1)‖ on Σ̃. (9.2)

Proof: Given that ν and ν̃ are defined locally. There is no loss of generality in

assuming that Σ has a global parametrization P . Thus, Σ̃ has F ◦ P as a global

parametrization. Therefore, granted (7.2), formula (5.69) gives

69



ν̃ ◦ (F ◦ P ) =
∂1(F ◦ P ) × . . .× ∂n−1(F ◦ P )

‖∂1(F ◦ P ) × . . .× ∂n−1(F ◦ P )‖ (9.3)

=
A∂1P × . . .× A∂n−1P

‖A∂1P × . . .× A∂n−1P‖

=
| detA| (A−1)⊤(∂1P × . . .× ∂n−1P )

| detA| ‖(A−1)⊤(∂1P × . . .× ∂n−1P )‖

=
(A−1)⊤

(
∂1P×...×∂n−1P

‖∂1P×...×∂n−1P‖

)

∥∥∥(A−1)⊤
(

∂1P×...×∂n−1P

‖∂1P×...×∂n−1P‖

)∥∥∥

=
[((DF )−1)⊤ ◦ P ](ν ◦ P )

‖[((DF )−1)⊤ ◦ P ](ν ◦ P )‖ on O.

“Dropping” P in (9.3) gives

ν̃ ◦ F =
((DF )−1)⊤ν

‖((DF )−1)⊤ν‖ on Σ. (9.4)

Composing with F−1 on the right and recalling (7.17), allows us to re-write (9.4) in

the form of (9.2). This finishes Theorem (9.0.12). 2
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Chapter 10

Relationship with the Classical
Change of Variables Formula

Let D ⊆ R
n be such that D is open, and let f : D −→ R be an arbitrary absolutely

integrable function. We want to make a change of variables, say x = g(y) where:

1. g : R
n −→ R

n is a C∞-diffeomorphism;

2. g(O) = D;

3. O ⊆ R
n, O open.

The Classical Change of Variables yields:

∫

D

f(x) dx =

∫

O

f(g(y)) | det(Dg)(y)| dy. (10.1)

Our goal is to show (10.1) is a particular case of (7.1). In order to do this, we

regard O as a flat surface in R
n+1. Let F : R

n+1 −→ R
n+1 and define

F (x, xn+1) := (g(x), xn+1). (10.2)

Moreover, define
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Σ := O × {0} (10.3)

and

Σ̃ := F (Σ) = {F (x, xn+1) : (x, xn+1) ∈ Σ}

= {(g(x), xn+1) : x ∈ O and xn+1 = 0} = D × {0} . (10.4)

Let f̃ : Σ̃ −→ R and define

f̃(x, 0) := f(x), x ∈ R
n. (10.5)

From (7.1), we know

∫

Σ̃

f̃(x, xn+1) dσ̃ =

∫

Σ

(f̃ ◦ F )(x, xn+1) | det(DF )(x, xn+1)| ×

×
∥∥(((DF )(x, xn+1))

−1)⊤ν(x, xn+1)
∥∥ dσ. (10.6)

Summarizing what we have thus far gives:

1. Σ̃ = D × {0} ;

2. f̃(x, 0) = f(x);

3. dσ̃ = dx1dx2 . . . dxn = dx (10.7)

and
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1. Σ = O × {0} ;

2. (f̃ ◦ F )(x, 0) = f̃(F (x, 0)) = f̃(g(x), 0) = f(g(x)); (10.8)

3. dσ = dx1dx2 . . . dxn = dx. (10.9)

Claim 1

| det(DF )(x, xn+1)| = | det(Dg)(x)| . (10.10)

Recall

F (x, xn+1) = (g(x), xn+1) = (g1(x), g2(x), . . . , gn(x), xn+1); (10.11)

thus,

(DF )(x, xn+1) =




∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g1(x)
∂xn+1

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn

∂g2(x)
∂xn+1

...
... . . .

...
...

∂gn(x)
∂x1

∂gn(x)
∂x2

. . . ∂gn(x)
∂xn

∂gn(x)
∂xn+1

∂xn+1

∂x1

∂xn+1

∂x2
. . . ∂xn+1

∂xn

∂xn+1

∂xn+1




=




∂1g1(x) ∂2g1(x) . . . ∂ng1(x) 0
∂1g2(x) ∂2g2(x) . . . ∂ng2(x) 0

...
... . . .

...
...

∂1gn(x) ∂2gn(x) . . . ∂ngn(x) 0
0 0 . . . 0 1




=

(
Dg(x) 0

0 1

)
. (10.12)
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Hence,

det(DF )(x, xn+1) = det

(
Dg(x) 0

0 1

)
= det(Dg)(x),

by expanding the determinant with respect to the last row, and

| det(DF )(x, xn+1)| = | det(Dg)(x)| .

This proves Claim 1.

Claim 2

∥∥(((DF )(x, xn+1))
−1)⊤ν(x, xn+1)

∥∥ = 1. (10.13)

From (10.12),

(DF )(x, xn+1) =

(
Dg(x) 0

0 1

)
.

Note also that

(DF )(x, xn+1) · ((DF )(x, xn+1))
−1 = I(n+1)×(n+1).

Thus,

(
Dg(x) 0

0 1

)
·
(
Dg(x) 0

0 1

)−1

= I(n+1)×(n+1).
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Hence,

((DF )(x, xn+1))
−1 =

(
Dg(x) 0

0 1

)−1

=

(
(Dg(x))−1 0

0 1

)
(10.14)

(the proof of this step can be found in the Appendix) and

(((DF )(x, xn+1))
−1)⊤ =

(
(Dg(x))−1 0

0 1

)⊤

=

(
((Dg(x))−1)⊤ 0

0 1

)
.(10.15)

In this context

ν(x, xn+1) = (0, 0, . . . , 0, 1), (10.16)

therefore,

(((DF )(x, xn+1))
−1)⊤ · ν(x, xn+1) =

(
((Dg(x))−1)⊤ 0

0 1

)
·




0
0
...
0
1




= (0, 0, . . . , 1).

Hence,

∥∥(((DF )(x, xn+1))
−1)⊤ · ν(x, xn+1)

∥∥ = ‖0, 0, . . . , 0, 1‖ = 1;

this proves Claim 2.

Putting (10.4), (10.5), (10.7), (10.3), (10.8), (10.10), (10.13), (10.9)

into (10.6) give
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∫

D×{0}

f(x) dx =

∫

O×{0}

f(g(x)) · | detDg(x)| · 1 dx.

Dropping (×{0}) gives (10.1) as desired.
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Chapter 11

Invariance of Lebesgue and
Sobolev Spaces on Surfaces

In this section, the goal is to analyze how Lebesgue and Sobolev spaces defined on

surfaces in R
n transform under the operator of composition with a smooth diffeomor-

phism. Our first result in this regard is the following.

Theorem 11.0.13. Assume that Σ ⊂ R
n is a C1 surface, O ⊂ R

n is an open

neighborhood of Σ, and F : O → R
n be an orientation preserving C1-diffeomorphism

onto its image. Set Σ̃ := F (Σ). Then for each 1 ≤ p <∞, the operator

T : Lp(Σ) −→ Lp(Σ̃) (11.1)

defined by

T (f) := f ◦ F−1, f ∈ Lp(Σ), (11.2)

is well-defined, linear, and bounded. In fact, T is an isomorphism.

Proof: To show T is well-defined and bounded, we need to show that there exists

c ∈ R such that ‖Tf‖Lp(Σ̃) ≤ c ‖f‖Lp(Σ) ∀f ∈ Lp(Σ). Let f ∈ Lp(Σ). Then f is

measurable and
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‖f‖Lp(Σ) =

(∫

Σ

|f |p dσ
) 1

p

<∞. (11.3)

By (7.16), written for |f |p ◦ F−1 in place of f , we have

∫

Σ̃

(|f |p ◦ F−1) dσ̃ =

∫

Σ

(|f |p ◦ F−1 ◦ F ) | det(DF )|
∥∥[(DF−1)⊤ ◦ F ]ν

∥∥ dσ

=

∫

Σ

|f |p | det(DF )|
∥∥[(DF−1)⊤ ◦ F ]ν

∥∥ dσ. (11.4)

Furthermore, by (5.58),

∫

Σ̃

(|f |p ◦ F−1) dσ̃ =

∫

Σ̃

∣∣f ◦ F−1
∣∣p dσ. (11.5)

Let us make use of the following facts whose proofs can be found in the Appendix.

Given an n× n invertible matrix A = (ajk)1≤j,k≤n and x ∈ R
n, then

| det(A)| ≤ n!

(
max

1≤j,k≤n
|ajk|

)n

, (11.6)

and

‖Ax‖ ≤ n
3
2

(
max

1≤j,k≤n
|ajk|

)
‖x‖ . (11.7)

Utilizing (11.6) and (11.7) in (11.4), we have
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∫

Σ

|f |p | det(DF )|
∥∥[(DF−1)⊤ ◦ F ]ν

∥∥ dσ (11.8)

≤
∫

Σ

|f |p n!
(

max
1≤j,k≤n

‖∂jFk‖L∞

)n

n
3
2

(
max

1≤j,k≤n

∥∥[∂jF
−1
k ]⊤ ◦ F

∥∥
L∞

)
‖ν‖ dσ

= c′
∫

Σ

|f |p dσ.

where in the above calculation we have used the fact that ‖ν‖ = 1 and have defined

c′ := n
3
2n!
(

max
1≤j,k≤n

‖∂jFk‖L∞

)n

·
(

max
1≤j,k≤n

∥∥[∂jF
−1
k ]⊤ ◦ F

∥∥
L∞

)
.

Combining (11.5) and (11.8) give

∫

Σ̃

∣∣f ◦ F−1
∣∣p dσ̃ ≤ c′

∫

Σ

|f |p dσ. (11.9)

Thus, raising both sides of the equation to the 1
p

power in (11.9) and using (11.3)

yields

(∫

Σ̃

∣∣f ◦ F−1
∣∣p dσ̃

) 1
p

≤ c

(∫

Σ

|f |p dσ
) 1

p

<∞, (11.10)

where c := (c′)
1
p . Hence, T is well-defined and bounded.

To show T is linear, we need to verify that

1. T (f + g) = Tf + Tg ∀f, g ∈ Lp(Σ);
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2. T (λf) = λ(Tf) ∀f ∈ Lp(Σ), c ∈ R.

Let f, g ∈ Lp(Σ), then

T (f + g) = (f + g) ◦ F−1 = (f ◦ F−1) + (g ◦ F−1) = Tf + Tg,

and

T (λf) = λf ◦ F−1 = λ(f ◦ F−1) = λ(Tf).

To show T is an isomorphism, we need to show that ∃R : Lp(Σ̃) −→ Lp(Σ) such

that T (Rf) = R(Tf) = f . Defining Rf := f ◦F satisfies the above condition. (Note

that R is well-defined since it is of the same type as T itself, but with F, Σ, and Σ̃

replaced by F−1, Σ̃ and Σ). 2

Given a C1 surface Σ ⊂ R
n with unit normal ν, define the tangential gradient of

a function f : Σ → R by

∇tanf := ∇f − 〈∇f, ν〉ν. (11.11)

Thus, coordinate-wise,

(
∇tanf

)
j
= ∂jf −

n∑

k=1

(∂kf)νkνj, 1 ≤ j ≤ n, (11.12)

or
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(
∇tanf

)
j
=

n∑

k=1

νk∂τkj
f, 1 ≤ j ≤ n, (11.13)

where we have set

∂τjk
f := (νj∂k − νk∂j)f, 1 ≤ j, k ≤ n. (11.14)

Let us verify that (11.13) holds by using the definition of ∂τkj
f ,

(∇tanf)j = ν1(ν1∂j − νj∂1)f + . . .+ νj(νj∂j − νj∂j)f + . . .+ νn(νn∂j − νj∂n)f

= ν2
1∂jf − ν1νj∂1f + . . .+ ν2

j ∂jf − νjνj∂jf + . . .+ ν2
n∂jf − νnνj∂nf

= ∂jf(ν2
1 + . . .+ ν2

n) − νj(ν1∂1f + . . .+ νn∂nf)

= ∂jf‖ν‖2 − νj 〈∇f, ν〉

= ∂jf − 〈∇f, ν〉 νj

= ∂jf −
n∑

k=1

[(∂kf)νk]νj.

This calculation concludes the verification of (11.13). We shall refer to these as being

tangential derivatives on Σ.

It follows that

νj

(
∇tanf

)
k
− νk

(
∇tanf

)
j
= ∂τjk

f, 1 ≤ j, k ≤ n. (11.15)

As a consequence, there exist dimensional constants C1, C2 > 0 such that
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C1‖∇tanf‖ ≤
∑

1≤j, k≤n

|∂τjk
f | ≤ C2‖∇tanf‖, (11.16)

pointwise on Σ. Let us show that (11.16) holds. First, we need to check that there

exists a constant C0 > 0 such that ‖∇tanf‖ ≤ C0

∑
1≤j, k≤n

∣∣∂τjk
f
∣∣. In order to show

this, we will make use of the fact that all norms are equivalent and use (11.13). That

is

‖∇tanf‖2 ≤ C0‖∇tanf‖1 = C0

n∑

j=1

|(∇tanf)j|

= C0

n∑

j=1

∣∣∣∣∣

n∑

k=1

νk∂τkj
f

∣∣∣∣∣

≤ C0

∑

1≤j, k≤n

∣∣νk∂τkj
f
∣∣

≤ C0

∑

1≤j, k≤n

∣∣∂τkj
f
∣∣ ,

for some C0 > 0. Letting C1 := 1
C0

gives the first inequality in (11.16). To show the

second inequality of (11.16), we will use (11.15) for fixed j ∈ {1, 2, . . . , n}. Doing so,

we have

n∑

k=1

∣∣∂τjk
f
∣∣ ≤ |(∇tanf)j|

(
|ν1| + . . .+ |νn|

)
+ |νj|

(
|(∇tanf)1| + . . .+ |(∇tanf)n|

)

=
n∑

k=1

(
|(∇tanf)j| |νk| + |νj| |(∇tanf)k|

)
. (11.17)

Summing over all j ∈ {1, 2, . . . , n} in (11.17) and using eqivalence of norms again

yields
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∑

1≤j, k≤n

∣∣∂τjk
f
∣∣ ≤

n∑

j=1

(
n∑

k=1

(
|(∇tanf)j| |νk| + |νj| |(∇tanf)k|

))

≤ 2
(
|ν1| + . . .+ |νn|

)(
|(∇tanf)1| + . . .+ |(∇tanf)n|

)

= 2‖ν‖2‖∇tanf‖1

≤ C2‖∇tanf‖2,

where C2 := 2C for some C > 0. This concludes the verification of (11.16).

Next, if 1 ≤ p <∞, we define a Sobolev space of order one on Σ by setting

W 1,p(Σ) :=
{
f ∈ Lp(Σ) : (∇tanf)j ∈ Lp(Σ), 1 ≤ j ≤ n

}
. (11.18)

This becomes a Banach space when equipped with the norm

‖f‖W 1,p(Σ) := ‖f‖Lp(Σ) +
n∑

j=1

‖(∇tanf)j‖Lp(Σ). (11.19)

Claim An equivalent norm on W 1,p(Σ) is given by

‖f‖W 1,p(Σ) = ‖f‖Lp(Σ) +
∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ). (11.20)

Proof of Claim. In order to prove this claim we will show

‖f‖Lp(Σ) ≤ C1

(
‖f‖Lp(Σ) +

∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ)

)
, (11.21)

and
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n∑

j=1

‖(∇tanf)j‖Lp(Σ) ≤ C2

(
‖f‖Lp(Σ) +

∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ)

)
, (11.22)

where C1, C2 > 0. After we have done this, we must also show that (11.20) is bounded

by (11.19). Specifically, we must show

‖f‖Lp(Σ) ≤ C3

(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)
, (11.23)

and

∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ) ≤ C4

(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)
, (11.24)

where C3, C4 > 0.

To show (11.21) holds, observe that clearly

‖f‖Lp(Σ) ≤ ‖f‖Lp(Σ) +
∑

1≤j, k≤n

‖∂τjk
f‖Lp(Σ).

Taking C1 := 1 gives (11.21) as desired.

To show (11.22) holds, we will make use of the following facts:

|(∇tanf)j| ≤ ‖∇tanf‖ for all j ∈ {1, 2, . . . , n} . (11.25)

and if ai ≥ 0, 0 < p <∞, then

(a1 + a2 + . . .+ an)p ≤ Cn,p(a
p
1 + ap

2 + . . .+ ap
n), (11.26)
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where Cn,p > 0 is a constant that depends on n and p. (The proof of this fact can be

found in the Appendix.) Making use of (11.25) and (11.16) in (11.22), we arrive at

n∑

j=1

‖(∇tanf)j‖Lp(Σ) =
n∑

j=1

(∫

Σ

|(∇tanf)j|p dσ
) 1

p

≤
n∑

j=1

(∫

Σ

‖∇tanf‖p dσ

) 1
p

≤
n∑

j=1

(∫

Σ

Cp

(
∑

1≤k, l≤n

| ∂τkl
f |
)p

dσ

) 1
p

, (11.27)

where Cp :=
(

1
c1

)p

for some c1 > 0. Specializing (11.26) to
∑

1≤k, l≤n

| ∂τkl
f |, we have

n∑

j=1

‖(∇tanf)j‖Lp(Σ) ≤
n∑

j=1

(∫

Σ

Cn,p

(
∑

1≤k, l≤n

| ∂τkl
f |p
)
dσ

) 1
p

= n

(∫

Σ

Cn,p

(
∑

1≤k, l≤n

| ∂τkl
f |p
)
dσ

) 1
p

= C0

(
∑

1≤k, l≤n

∫

Σ

| ∂τkl
f |p dσ

) 1
p

, (11.28)

where Cn,p := c2Cp for some c2 > 0, and C0 := n(Cn,p)
1
p . Using (11.26) again with

∑
1≤k, l≤n

∫
Σ
| ∂τkl

f |p dσ gives

n∑

j=1

‖(∇tanf)j‖Lp(Σ) ≤ C2

∑

1≤k, l≤n

(∫

Σ

| ∂τkl
f |p dσ

) 1
p

= C2

∑

1≤k, l≤n

‖∂τkl
f‖Lp(Σ)

≤ C2

(
‖f‖Lp(Σ) +

∑

1≤k, l≤n

‖∂τkl
f‖Lp(Σ)

)
, (11.29)
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where C2 := c3C0 for some c3 > 0. Combining the constants, we see that C2 = n c3
c1
c

1
p

2 .

To show (11.23) holds, observe that clearly

‖f‖Lp(Σ) ≤ ‖f‖Lp(Σ) +
∑

1≤j, k≤n

‖(∇tanf)j‖Lp(Σ).

Taking C3 := 1 gives (11.23) as desired.

To show (11.24), observe that from (11.16) we have

∑

1≤j, k≤n

‖ ∂τjk
f‖Lp(Σ) =

∑

1≤j, k≤n

(∫

Σ

∣∣ ∂τjk
f
∣∣p dσ

) 1
p

≤
∑

1≤j, k≤n

(∫

Σ

(
∑

1≤j, k≤n

∣∣ ∂τjk
f
∣∣
)p

dσ

) 1
p

≤ C0

∑

1≤j, k≤n

(∫

Σ

‖(∇tanf)‖p
2 dσ

) 1
p

= C1

(∫

Σ

‖(∇tanf)‖p
2 dσ

) 1
p

, (11.30)

where C1 := C0n
2 for some C0 > 0. Using the fact that all norms are equivalent, we

arrive at

∑

1≤j, k≤n

‖ ∂τjk
f‖Lp(Σ) ≤ C2

(∫

Σ

‖(∇tanf)‖p
1 dσ

) 1
p

= C2

(∫

Σ

(
n∑

j=1

|(∇tanf)j|
)p

dσ

) 1
p

, (11.31)

where C2 := C1c for some c > 0. Using (11.26) in (11.31) yields
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∑

1≤j, k≤n

‖ ∂τjk
f‖Lp(Σ) ≤ C3

(
n∑

j=1

∫

Σ

|(∇tanf)j|p dσ
) 1

p

,

where C3 := C2a
1
p for some a > 0. Utilizing (11.26) again gives

∑

1≤j, k≤n

‖ ∂τjk
f‖Lp(Σ) ≤ C4

n∑

j=1

(∫

Σ

|(∇tanf)j|p dσ
) 1

p

= C4

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

≤ C4

(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)
, (11.32)

where C4 := C3b for some b > 0. Combining the constants, we see that C4 =

n2C0cba
1
p . This finishes the proof of the Claim.

Before stating our main invariance result for Sobolev spaces, we digress for the

purpose of briefly discussing the tensor product of two vectors in R
n. Specifically, if

a = (a1, ..., an) ∈ R
n and b = (b1, ..., bn) ∈ R

n are given, then we set

a⊗ b := (ajbk)1≤j,k≤n. (11.33)

That is, a ⊗ b is the n × n matrix whose jk-entry is ajbk. Some of the most basic

properties of this operation are summarized in the proposition below.

Proposition 11.0.14. One has:

(a⊗ b)⊤ = b⊗ a, ∀ a, b ∈ R
n, (11.34)
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and

〈a⊗ b, c〉 = 〈b, c〉 a, ∀ a, b, c ∈ R
n. (11.35)

Also,

a⊗ b− b⊗ a = ab ⊗ b− b⊗ ab, where ab := a− 〈a, b〉b. (11.36)

Proof. As far as (11.34) is concerned, we have

(a⊗ b) =




a1b1 . . . a1bn
...

...
anb1 . . . anbn


 , (11.37)

and, hence,

(a⊗ b)⊤ =




a1b1 . . . anb1
...

...
a1bn . . . anbn


 =




b1a1 . . . b1an

...
...

bna1 . . . nnan


 (11.38)

= b⊗ a,

as desired. Next, write

〈a⊗ b, c〉 =




a1b1 . . . a1bn
...

...
anb1 . . . anbn


 ·




c1
...
cn


 =

(
n∑

j=1

a1bjcj,
n∑

j=1

a2bjcj, . . . ,
n∑

j=1

anbjcj

)

=

(
n∑

j=1

bjcja1,

n∑

j=1

bjcja2, . . . ,

n∑

j=1

bjcjan

)
= (〈b, c〉 a1, 〈b, c〉 a2, . . . , 〈b, c〉 an)

= 〈b, c〉 a, (11.39)
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which proves (11.35).

For the proof of (11.36), note that

a⊗ b− b⊗ a =




a1b1 . . . a1bn
...

...
anb1 . . . anbn


−




b1a1 . . . b1an

...
...

bna1 . . . bnan




=




0 . . . a1bn − b1an

...
...

anb1 − bna1 . . . 0


 . (11.40)

Also,

(a− 〈a, b〉 b) ⊗ b =

[
(a1, a2, . . . , an) −

(
n∑

i=1

aibib1,

n∑

i=1

aibib2, . . . ,

n∑

i=1

aibibn

)]
⊗ b

=

(
a1 −

n∑

i=1

aibib1, a2 −
n∑

i=1

aibib2, . . . , an −
n∑

i=1

aibibn

)
⊗ b

=




c1b1 . . . c1bn
...

...
cnb1 . . . cnbn


 (11.41)

where

cj := aj −
n∑

i=1

aibibj ∀j ∈ {1, 2, . . . , n} . (11.42)

Using the same argument given above, we find

b⊗ (a− 〈a, b〉 b) =




b1c1 . . . b1cn
...

...
bnc1 . . . bncn


 . (11.43)

Thus,
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[(a− 〈a, b〉 b) ⊗ b] − [b⊗ (a− 〈a, b〉 b)] =




c1b1 . . . c1bn
...

...
cnb1 . . . cnbn


−




b1c1 . . . b1cn
...

...
bnc1 . . . bncn




=




0 . . . c1bn − b1cn
...

...
cnb1 − bnc1 . . . 0


 . (11.44)

For the goal we have in mind, it is enough to show that ajbk − bjak = cjbk − bjck for

all j ∈ {1, 2, . . . , n}. From (11.42) we have

cjbk − bjck =

(
aj −

n∑

i=1

aibibj

)
bk − bj

(
ak −

n∑

i=1

aibibk

)

= ajbk − bjak −
n∑

i=1

aibibjbk +
n∑

i=1

aibibjbk

= ajbk − bjak. (11.45)

Thus, (11.44) can be rewritten as




0 . . . c1bn − b1cn
...

...
cnb1 − bnc1 . . . 0


 =




0 . . . a1bn − b1an

...
...

anb1 − bna1 . . . 0


 .(11.46)

Thus, (11.40) and (11.46) are identical. This finishes Proposition (11.0.14). 2

After this preamble, we are ready to state and prove the following theorem:

Theorem 11.0.15. Assume that Σ ⊂ R
n is a C1 surface, O ⊂ R

n is an open

neighborhood of Σ, and F : O → R
n be an orientation preserving C1-diffeomorphism

onto its image. Set Σ̃ := F (Σ). Then for each 1 ≤ p <∞, the operator

T : W 1,p(Σ) −→ W 1,p(Σ̃) (11.47)
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defined by

T (f) := f ◦ F−1, f ∈ W 1,p(Σ), (11.48)

is well-defined, linear, and bounded. In fact, T is an isomorphism.

Proof. To show T is well-defined and bounded, we need to show that there exists

c ∈ R such that ‖Tf‖W 1,p(Σ̃) ≤ ‖f‖W 1,p(Σ) for all f ∈ W 1,p(Σ).

Fix f ∈ W 1,p(Σ). By (11.20), we have

‖T (f)‖W 1,p(Σ̃) ≈ ‖T (f)‖Lp(Σ̃) +
∑

1≤j, k≤n

‖∂τ̃jk
(Tf)‖Lp(Σ̃)

≈ ‖f ◦ F−1‖Lp(Σ̃) +
∑

1≤j, k≤n

‖∂τ̃jk
(Tf)‖Lp(Σ̃). (11.49)

Using Theorem (11.0.13) and (11.23) in (11.49) yields

‖f ◦ F−1‖Lp(Σ̃) ≤ C1‖f‖Lp(Σ)

≤ C1‖f‖W 1,p(Σ)

= C1

(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)
. (11.50)

The next order of business is to get an upper bound for
∑

1≤j, k≤n

‖∂τ̃jk
(Tf)‖Lp(Σ̃).

For each j, k ∈ {1, . . . , n}, denote by ∂τ̃jk
the tangential derivative on Σ̃ given by

ν̃j∂k − ν̃k∂j, we have
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∂τ̃jk
(f ◦ F−1) = ν̃j∂k(f ◦ F−1) − ν̃k∂j(f ◦ F−1)

= ν̃j

n∑

ℓ=1

(
(∂ℓf) ◦ F−1

)
∂kF

−1
ℓ − ν̃k

n∑

r=1

(
(∂rf) ◦ F−1

)
∂jF

−1
r .(11.51)

Employing Theorem 9.0.12 we further write

ν̃j

n∑

ℓ=1

(
(∂ℓf) ◦ F−1

)
∂kF

−1
ℓ

=

(
(DF−1)⊤(ν ◦ F−1)

)
j

n∑
ℓ=1

(
(∇f) ◦ F−1

)
ℓ
(DF−1)ℓk

‖(DF−1)⊤(ν ◦ F−1)‖ . (11.52)

In order to proceed, we will use the fact that the jk-th entry of the product of three

matrices is as follows:

[(aαβ)α, β(bγδ)γ, δ(cηζ)η, ζ ]jk =
n∑

i, l=1

ajibilclk. (11.53)

Letting

1. (DF−1)⊤ =: A = (aαβ)1≤α, β≤n;

2. (ν ◦ F−1) =: v = (vi)1≤i≤n;

3. ((∇f) ◦ F−1) =: w = (wi)1≤i≤n;

4. DF−1 =: B = (bγδ)1≤γ, δ≤n;

the numerator of (11.52) can be written in the form
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(Av)j

(
n∑

l=1

wlblk

)
=

(
n∑

q=1

ajqvq

)(
n∑

l=1

wlblk

)

=
n∑

q, l=1

ajqvqwlblk

=
n∑

q, l=1

ajq(v ⊗ w)qlblk. (11.54)

Using (11.53) in (11.54), we have

n∑

q, l=1

ajq(v ⊗ w)qlblk = [A(v ⊗ w)B]jk

=
[
(DF−1)⊤

(
(ν ◦ F−1) ⊗ ((∇f) ◦ F−1)

)
(DF−1)

]
jk
.(11.55)

Putting the numerator of (11.52), (11.54) and (11.55) together we see

(
(DF−1)⊤(ν ◦ F−1)

)
j

n∑

ℓ=1

(
(∇f) ◦ F−1

)
ℓ
(DF−1)ℓk

=
[
(DF−1)⊤

(
(ν ◦ F−1) ⊗ (∇f ◦ F−1)

)
(DF−1)

]
jk
. (11.56)

Using (11.56) in (11.52) gives

ν̃j

n∑

ℓ=1

(
(∂ℓf) ◦ F−1

)
∂kF

−1
ℓ =

[
(DF−1)⊤

(
(ν ◦ F−1) ⊗ (∇f ◦ F−1)

)
(DF−1)

]
jk

‖(DF−1)⊤(ν ◦ F−1)‖ .(11.57)

Recall that given matrices A,B, and C, (ABC)⊤ = C⊤B⊤A⊤. Also, the jk-th entry

of A⊤ is the kj-th entry of A. Using these facts along with (11.34), we can write

[
(DF−1)⊤

(
(ν ◦ F−1) ⊗ (∇f ◦ F−1)

)
(DF−1)

]
jk

=
[
(DF−1)⊤

(
(∇f ◦ F−1) ⊗ (ν ◦ F−1)

)
(DF−1)

]
kj
. (11.58)
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Thus, based on (11.51) and (11.58),

∂τ̃jk
(f ◦ F−1) =

[
(DF−1)⊤

(
(∇f ◦ F−1) ⊗ (ν ◦ F−1)

)
(DF−1)

]
kj

‖(DF−1)⊤(ν ◦ F−1)‖

−
[
(DF−1)⊤

(
(∇f ◦ F−1) ⊗ (ν ◦ F−1)

)
(DF−1)

]
jk

‖(DF−1)⊤(ν ◦ F−1)‖ . (11.59)

Using the same reasoning as in (11.58), this further gives

∂τ̃jk
(f ◦ F−1)

=

[
(DF−1)⊤

(
(∇f ◦ F−1) ⊗ (ν ◦ F−1)

)
−
(
(ν ◦ F−1) ⊗ (∇f ◦ F−1)

)
(DF−1)

]
kj

‖(DF−1)⊤(ν ◦ F−1)‖

=

[
(DF−1)⊤

(
a⊗ b− b⊗ a

)
(DF−1)

]
kj

‖(DF−1)⊤(ν ◦ F−1)‖ , (11.60)

where

a := ∇f ◦ F−1 and b := ν ◦ F−1. (11.61)

From this and (11.36) we may finally conclude that, for every j, k,

∂τ̃jk
(f ◦ F−1) =

[
(DF−1)⊤

[(
∇tanf ⊗ ν − ν ⊗∇tanf

)
◦ F−1

]
(DF−1)

]
kj

‖(DF−1)⊤(ν ◦ F−1)‖ . (11.62)

In order to proceed, we will again use the fact that the kj-th entry of the product of

three matrices is as follows:

[(aαβ)α, β(bγδ)γ, δ(cηζ)η, ζ ]kj
=

n∑

i, l=1

akibilclj. (11.63)
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Let us denote (DF−1)⊤ =: A = (aαβ)α, β. Using (11.63) in the numerator of (11.62),

we have

[
A
(
(∇tanf ⊗ ν) ◦ F−1

)
A⊤
]

kj
−
[
A
(
(ν ⊗∇tanf) ◦ F−1

)
A⊤
]

kj

=
n∑

i, l=1

aki

(
(∇tanf)i ◦ F−1

)
(νl ◦ F−1)ajl

−
n∑

i, l=1

aki(νi ◦ F−1)
(
(∇tanf)l ◦ F−1

)
ajl. (11.64)

Taking the absolute value of (11.62) and using the Triangle Inequality, (11.64) and

(11.25) yield

∣∣∂τ̃jk
(f ◦ F−1)

∣∣ ≤
n∑

i, l=1

| aki|
∣∣(∇tanf)i ◦ F−1

∣∣ ∣∣ νl ◦ F−1
∣∣ | ajl|

+
n∑

i, l=1

| aki|
∣∣ νi ◦ F−1

∣∣ ∣∣(∇tanf)l ◦ F−1
∣∣ | ajl|

≤
n∑

i, l=1

∣∣∣∣ max
1≤i, l≤n

ail

∣∣∣∣ ‖(∇tanf) ◦ F−1‖‖ν ◦ F−1‖
∣∣∣∣ max

1≤i, l≤n
ail

∣∣∣∣

+
n∑

i, l=1

∣∣∣∣ max
1≤i, l≤n

ail

∣∣∣∣ ‖ν ◦ F−1‖‖(∇tanf) ◦ F−1‖
∣∣∣∣ max

1≤i, l≤n
ail

∣∣∣∣

≤ 2
n∑

i, l=1

(
max

1≤i, l≤n
|ai,l|

)2

‖(∇tanf) ◦ F−1‖

= C2‖(∇tanf) ◦ F−1‖, (11.65)

where C2 := 2n2 (max1≤i, l≤n |ai, l|)2. In summary, we have

|∂τ̃jk
(f ◦ F−1)| ≤ C ‖(∇tanf

)
◦ F−1‖, (11.66)
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pointwise on Σ̃, where C = C(Σ, F, n) > 0 is a constant which depends only on F ,

Σ, and n.

With this in hand, we return to the mainstream discussion of finding an upper

bound for
∑

1≤j, k≤n

‖∂τ̃jk
(Tf)‖Lp(Σ̃). Using (11.66), we now deduce that

‖∂τ̃jk
(f ◦ F−1)‖Lp(Σ̃) =

(∫

Σ̃

∣∣∂τ̃jk
(f ◦ F−1)

∣∣p dσ̃
) 1

p

≤ C0

(∫

Σ̃

‖(∇tanf) ◦ F−1‖p dσ̃

) 1
p

= C0



∫

Σ̃

(
n∑

j=1

[
(∇tanf ◦ F−1)j

]2
) p

2

dσ̃




1
p

,

where C0 > 0. Using (11.26) and interchanging the summation and integral yields

‖∂τ̃jk
(f ◦ F−1)‖Lp(Σ̃) ≤ C1

(∫

Σ̃

n∑

j=1

[
(∇tanf ◦ F−1)j

]p
dσ̃

) 1
p

= C1

(
n∑

j=1

∫

Σ̃

[
(∇tanf ◦ F−1)j

]p
dσ̃

) 1
p

,

where C1 > 0. Utilizing (11.26) again gives

‖∂τ̃jk
(f ◦ F−1)‖Lp(Σ̃) ≤ C2

n∑

j=1

(∫

Σ̃

[
(∇tanf ◦ F−1)j

]p
dσ̃

) 1
p

= C2

n∑

j=1

‖(∇tanf ◦ F−1)j‖Lp(Σ̃),

where C2 > 0. The key step now is to use Theorem (11.0.13) in order to obtain

‖∂τ̃jk
(f ◦ F−1)‖Lp(Σ̃) ≤ C3

n∑

j=1

‖(∇tanf)j‖Lp(Σ), (11.67)
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for some constant C3 := C(Σ, F ) > 0 which depends only on F and Σ. Hence, using

(11.67), we finally have

∑

1≤j, k≤n

‖∂τ̃jk
(Tf)‖Lp(Σ̃) ≤

∑

1≤j, k≤n

(
C3

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)

= C4

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

≤ C4

(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)
, (11.68)

where C4 := n2C3 > 0.

Based on (11.50), (11.68) and Theorem 11.0.13, we may now deduce that

‖f ◦ F−1‖W 1,p(Σ̃) ≈ ‖f ◦ F−1‖Lp(Σ̃) +
n∑

j,k=1

‖∂τ̃jk
(f ◦ F−1)‖Lp(Σ̃)

≤ C
(
‖f‖Lp(Σ) +

n∑

j=1

‖(∇tanf)j‖Lp(Σ)

)

= C‖f‖W 1,p(Σ), (11.69)

where the constant C := C1 + C4 = C(Σ, F, n) > 0 depends only on F , Σ, and n. In

other words,

‖T (f)‖W 1,p(Σ̃) ≤ C‖f‖W 1,p(Σ), (11.70)

with C independent of f . This shows that the operator T in (11.47)-(11.48) is well-

defined and bounded. That T is linear, is already contained in Theorem 11.0.13. Much

as there, the inverse of T in (11.47)-(11.48) is given by the operator of composition

with F , so T in (11.47)-(11.48) is in fact an isomorphism. 2
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Appendix A

Function Theory

1. (5.58) is as follows: (AB) ◦ C = (A ◦ C)(B ◦ C).

Proof:

[(AB) ◦ C](x) = (AB)(C(x)) = A(C(x)) ·B(C(x)) = [(A ◦ C)(x)][(B ◦ C)(x)].

This is true for all x; thus dropping x will give the desired result. 2

2. We will need to prove certain critera about the suppport of a function. In order

to do these proofs, we will make use of the following proof:

x /∈ supp(A) ⇐⇒ ∃ r > 0 such that A = 0 on B(x, r). (1.1)

Proof:

By definition the support of a function A is as follows:

supp(A) = {x : A(x) 6= 0};
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specifically, note that supp(A) is a closed set.

“ ⇒ ”

Assume x0 /∈ supp(A).

This implies there exists r > 0 such that B(x0, r) ∩ {x : A(x) 6= 0} = ∅.

Thus, B(x0, r) ∩ {x : A(x) 6= 0} = ∅. Hence A = 0 on B(x0, r).

“ ⇐ ”

Assume there exists r > 0 such that A = 0 on B(x, r).

This implies B(x, r) ∩ {x : A(x) 6= 0} = ∅. Thus, B(x, r)∩ supp(A) = ∅.

Hence, x /∈ supp(A). 2

3. (5.54) is as follows: supp(AB) ⊆ supp(A) ∩ supp(B).

Proof:

I will prove the contrapositive for this proof; that is, if x /∈ supp(A)∩ supp(B),

then x /∈ supp(AB). So,

x /∈ supp(A) ∩ supp(B) ⇒ x ∈ (supp(A) ∩ supp(B))c

⇒ x ∈ (supp(A))c ∪ (supp(B))c

⇒ x /∈ supp(A) or x /∈ supp(B).

Case 1: x /∈ supp(A)

Since supp(A) is a closed set, then ∃ r > 0 such that B(x, r)∩ supp(A) = ∅.
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Thus, A = 0 on B(x, r) which implies A ·B = 0 on B(x, r).

Hence, (1.1) implies x /∈ supp(AB).

Case 2: x /∈ suppB

Follow pf. of Case 1 with A interchanged with B.

Both cases yield the same result, thus proving (5.54). 2

4. (5.59) is as follows: ifA,C are continuous, then supp(A◦C) ⊆ C−1(supp(A)).

Proof: Recall that the definiton of the support of function f is as follows:

suppf := {x : f(x) 6= 0}.

We shall establish the contrapositive for this proof. That is

C−1
(
(supp(A))c

)
⊆
(
supp(A ◦ C)

)c

.

Let x0 ∈ C−1
(
(supp(A))c

)
. Then C(x0) /∈ suppA.

This implies there exists r0 > 0 such that A = 0 on B(C(x0), r0).

Since C is a continuous function, there exists r > 0 such that x ∈ B(x0, r) ⇒

C(x) ∈ B(C(x0), r0). Thus (A◦C)(x) = A(C(x)) = 0 if x ∈ B(x0, r). By (1.1),

we have x /∈ supp(A ◦ C) for all x ∈ B(x0, r). Hence, x0 /∈ supp(A ◦ C). 2

5. (8.8) is as follows: If F is injective, then F (A) ∩ F (B) = F (A ∩B).
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Proof: We will use double inclusion for this proof.

“⊆”

Let y ∈ F (A) ∩ F (B).

Then there exists x ∈ A such that F (x) = y and there exists x′ ∈ B such

that F (x′) = y. Since F is injective and F (x) = F (x′), then x = x′. Thus,

x ∈ A ∩B. Hence, F (x) = y ∈ F (A ∩B).

“⊇”

Let y ∈ F (A ∩B).

Then there exists x ∈ A∩B such that F (x) = y. Thus, x ∈ A and x ∈ B. This

implies F (x) ∈ F (A) and F (x) ∈ F (B). Hence, y ∈ F (A) ∩ F (B). 2

6. Justification as to why the Lebesgue Dominated Convergence Theorem applies

to (5.46).

Proof:

For j ∈ N, write

∫

Σj

f dσ =

∫

Σ

(fχΣj
) dσ,

where fχΣj
is the sequence of functions to which we will apply the Lebesgue

Dominated Convergence Theorem. In order to do this, we need

(a) (fχΣj
)(x) → f(x) as j → ∞, for σ-a.e. x ∈ Σ;

(b)
∣∣(fχΣj

)(x)
∣∣ ≤ |f(x)|, for all j ∈ N, σ-a.e. x ∈ Σ.
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To show (a), let x ∈ Σ. Then there exists jx ∈ N such that x ∈ Σjx
. Using

(5.44), we have x ∈ Σj for all j ≥ jx. This implies (fχΣj
)(x) = f(x)χΣj

(x) =

f(x), for all j ≥ jx. Hence (a) has been verified.

To show (b), note that
∣∣(fχΣj

)(x)
∣∣ = |f(x)|

∣∣χΣj
(x)
∣∣. Furthermore, note that

∣∣χΣj
(x)
∣∣ =

{
0 if x /∈ Σj

1 if x ∈ Σj
.

Thus,
∣∣χΣj

(x)
∣∣ ≤ 1 for all x ∈ Σj. Hence,

∣∣(fχΣj
)(x)

∣∣ ≤ |f(x)| for all x ∈ Σ.

Note that the same proof applies with Σ, f , and (5.44) replaced by O, f ◦ P ,

and (5.42). 2

7. (11.26) is as follows: If ai ≥ 0, and 0 < p <∞, then

(a1 + a2 + . . .+ an)p ≤ Cn,p(a
p
1 + ap

2 + . . .+ ap
n),

where Cn,p > 0 is a constant that depends on n and p.

Proof:

We will use Math Induction on n. Fix p ∈ (0,∞). For n = 1, we have ap
1 ≤ ap

1.

Therefore, taking Cn,p := 1, we find the statement is true for n = 1. Let us

assume the statement is true for the n-th term. We need to verify that the

statement is true for the (n+1)-th term. That is, we need to verify that

(a1 + a2 + . . .+ an+1)
p ≤ Cn,p(a

p
1 + ap

2 + . . .+ ap
n+1). (1.2)
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Before we verify (1.2), it is to our advantage to show the statement holds when

n = 2. Specifically for a1, a2 > 0, we need to show that

(a1 + a2)
p ≤ Cn,p(a

p
1 + ap

2). (1.3)

Let us define x := a1

a2
> 0. Dividing (1.3) by a2 we now need to verify (1+x)p ≤

Cn,p(x
p + 1), or equivalently

(1 + x)p

1 + xp
≤ Cn,p.

To this end, let us consider the function

f(x) =
(1 + x)p

1 + xp
x ∈ [0,∞).

It suffices to show f is bounded on the interval [0,∞). Clearly, f is continuous

on [0,∞), and note that lim
x→∞

f(x) = 1. This implies for all ǫ > 0 there exists

r > 0 such that |f(x) − 1| < ǫ if x > r. Take ǫ = 1
2

and denote by r0 the

corresponding r. Hence, |f(x) − 1| < 1
2

if x ∈ (r0,∞). That is, f(x) ∈ (1
2
, 3

2
)

if x ∈ (r0,∞). In other words f is bounded on (r0,∞). Notice that the

complement of (r0,∞) (restricted to the non-negative numbers) is [0, r0]. In

particular this is a compact set. Recall that f is continuous on [0,∞). Thus,

it is continuous on this compact set. Hence, the Boundedness Theorem implies
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f is bounded on [0, r0]. Putting everything together we have shown that f is

bounded on [0,∞), and consequently we have shown (1.3) holds.

Returning to the mainstream discussion of verifying (1.2), write

(a1 + . . .+ an+1)
p =

(
(a1 + . . .+ an) + an+1

)p

. (1.4)

Using (1.3) and the induction hypothesis in (1.4) yields

(a1 + . . .+ an+1)
p ≤ Cn,p(a1 + . . .+ an)p + Cn,pa

p
n+1

≤ Cn,p(a
p
1 + . . .+ ap

n) + Cn,pa
p
n+1

= Cn,p(a
p
1 + . . .+ ap

n + ap
n+1).

This finishes the proof. 2
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Appendix B

Linear Algebra Proofs

The following are facts from Linear Algebra whose proofs will be left to the

reader.

Let A be an n× n matrix, u, v ∈ R
n, and λ ∈ R. Then

(a) A(λv) = λ(Av);

(b) ‖λv‖ = |λ| ‖v‖;

(c) det(A) = det(A⊤);

(d) det(AB) =det(A)det(B);

(e) det(A−1) =
(
det(A)

)−1

;

(f) λ 〈u, v〉 = 〈λu, v〉 = 〈u, λv〉.

8. Let A,B be n× n invertible matrices with the property that

A ·B = In×n. (2.1)

Then, B = A−1.
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Proof:

Taking the determinant on both sides of (2.1) yields: det(AB) = det(I) = 1.

This implies det(A)·det(B) = 1. Thus, det(A) 6= 0. Hence, A is invertible (i.e.

A−1 exists). Multiplying (2.1) by A−1 on the left yields:

A−1(AB) = A−1I ⇒ (A−1A)B = A−1 ⇒ B = A−1.

2

9. Let A =

(
A 0
0 1

)
∈M(n+1)×(n+1) where A is a n× n invertible matrix.

Then, A
−1 =

(
A−1 0
0 1

)
.

Proof:

Denote

A = (aij)1≤i,j≤n,

A−1 = (bij)1≤i,j≤n,

In×n = (δij) where δij =

{
1 if i = j,

0 if i 6= j.
(2.2)

Since A is an invertible n×n matrix, In×n = A ·A−1. Specifically, the ijth entry

of In×n will match the ijth entry of A · A−1. That is

δij =
n∑

k=1

aik · bkj ∀i, j ∈ {1, . . . , n} . (2.3)
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We must show that

(
A 0
0 1

)
·
(
A−1 0
0 1

)
= I(n+1)×(n+1).

So,

(
A 0
0 1

)
·
(
A−1 0
0 1

)
=

=




a11 a12 . . . a1n 0
a21 a22 . . . a2n 0
...

... . . .
...

...
an1 an2 . . . ann 0
0 0 . . . 0 1




·




b11 b12 . . . b1n 0
b21 b22 . . . b2n 0
...

... . . .
...

...
bn1 bn2 . . . bnn 0
0 0 . . . 0 1




=




n∑
k=1

a1kbk1

n∑
k=1

a1kbk2 . . .
n∑

k=1

a1kbkn 0

n∑
k=1

a2kbk1

n∑
k=1

a2kbk2 . . .
n∑

k=1

a2kbkn 0

...
... . . .

...
...

n∑
k=1

ankbk1

n∑
k=1

ankbk2 . . .
n∑

k=1

ankbkn 0

0 0 . . . 0 1




=




δ11 δ12 . . . δ1n 0
δ21 δ22 . . . δ2n 0
...

... . . .
...

...
δn1 δn2 . . . δnn 0
0 0 . . . 0 1



. (2.4)

Utilizing (2.2) in (2.4) gives

(
A 0
0 1

)
·
(
A−1 0
0 1

)
=




1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




= I(n+1)×(n+1).

By (2.1),

(
A−1 0
0 1

)
= A

−1. 2
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10. Given an n× n invertible matrix A = (ajk)1≤j,k≤n, then

| det(A)| ≤ n!

(
max

1≤j,k≤n
|ajk|

)n

.

Proof:

Recall that if A = (ajk)1≤j,k≤n, then

detA =
∑

σ∈Sn

(−1)signσa1 σ(1)a2 σ(2) . . . an σ(n), (2.5)

where Sn = the group of permutations of the set {1, 2, . . . , n}, and (sign σ) is

the sign of σ (i.e., the number of transpositions in σ). Taking the absolute value

of (2.5) and using the Triangle Inequality gives

| detA| ≤
∑

σ∈Sn

∣∣∣(−1)signσ
∣∣∣
∣∣a1σ(1)

∣∣ ∣∣a2σ(2)

∣∣ . . .
∣∣anσ(n)

∣∣

≤
∑

σ∈Sn

(
max

1≤j,k≤n
|ajk|

)(
max

1≤j,k≤n
|ajk|

)
. . .

(
max

1≤j,k≤n
|ajk|

)

= n!

(
max

1≤j,k≤n
|ajk|

)n

.

This concludes the proof. 2

11. Given an n× n invertible matrix A = (ajk)1≤j,k≤n and x ∈ R
n, then
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‖Ax‖2 ≤ n
3
2

(
max

1≤j,k≤n
|ajk|

)
‖x‖2 .

Proof:

Recall that for x = (x1, x2, . . . , xn) ∈ R
n, and p ∈ [1,∞) we have

‖x‖p = (xp
1 + xp

2 + . . .+ xp
n)

1
p .

Let A =




a11 . . . a1n

...
...

an1 . . . ann


, and v = (v1, . . . , vn). Then,

Ax =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann


 ·




x1

x2
...
xn




=

(
n∑

k=1

a1kxk,
n∑

k=1

a2kxk, . . . ,
n∑

k=1

ankxk

)
. (2.6)

Taking the 2-norm of (2.6) gives

‖Ax‖2 =



[

n∑

k=1

a1kxk

]2

+

[
n∑

k=1

a2kxk

]2

+ . . .+

[
n∑

k=1

ankxk

]2



1
2

≤



[

n∑

k=1

(
max

1≤j,k≤n
|ajk|

)
|xk|
]2

+ . . .+

[
n∑

k=1

(
max

1≤j,k≤n
|ajk|

)
|xk|
]2



1
2

=


n

[(
max

1≤j,k≤n
|ajk|

) n∑

k=1

|xk|
]2



1
2

=
√
n

(
max

1≤j, k≤n
|ajk|

) n∑

k=1

|xk| . (2.7)
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Note that |xk| above has the following property:

|xk| ≤ ‖x‖2 , ∀k ∈ {1, 2, . . . , n} . (2.8)

Using (2.8) in (2.7) yields

‖Ax‖2 ≤ √
n

(
max

1≤j, k≤n
|ajk|

) n∑

k=1

‖x‖2

= n
3
2

(
max

1≤j,k≤n
|ajk|

)
‖x‖2 .

This finishes the proof. 2

12. Assume A =




a11 . . . a1n

...
...

an1 . . . ann


 has two identical rows. Then det(A) = 0.

Proof:

Assume the j-th row is identical to the k-th row; that is

A =




a11 . . . a1n

...
...

aj1 . . . ajn

aj1 . . . ajn

...
...

an1 . . . ann




.

Subtracting the j-th row from the k-th row yields a matrix with the same deter-

minant as A and the k-th row equal to the zero vector in R
n; that is
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


a11 . . . a1n

...
...

aj1 . . . ajn

0 . . . 0
...

...
an1 . . . ann




.

Expanding along the k-th row gives the desired result. 2

13. Let A,B be n× n matrices, then

(AB)⊤ = B⊤A⊤. (2.9)

Proof:

Let A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n. Then

AB =




n∑
i=1

a1ibi1 . . .
n∑

i=1

a1ibin

...
...

n∑
i=1

anibi1 . . .
n∑

i=1

anibin



,

and
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(AB)⊤ =




n∑
i=1

a1ibi1 . . .
n∑

i=1

anibi1

...
...

n∑
i=1

a1ibin . . .
n∑

i=1

anibin




=




n∑
i=1

bi1a1i . . .
n∑

i=1

bi1ani

...
...

n∑
i=1

bina1i . . .
n∑

i=1

binani




=




b11 b21 . . . bn1

b12 b22 . . . bn2
...

...
...

b1n b2n . . . bnn


 ·




a11 a21 . . . an1

a12 a22 . . . an2
...

...
...

a1n a2n . . . ann




= B⊤A⊤.

This concludes the proof. 2

14. Assume A is an n× n invertible matrix, then

(A−1)⊤ = (A⊤)−1.

Proof:

We need to show (A−1)⊤A⊤ = In×n and A⊤(A−1)⊤ = In×n. Using (2.9) yields

(A−1)⊤A⊤ = (AA−1)⊤ = (In×n)⊤ = In×n.

The same argument shows A⊤(A−1)⊤ = In×n. 2

15. Let A be an n× n matrix and v, w ∈ R
n, then

〈
A⊤v, w

〉
= 〈v, Aw〉 . (2.10)
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Proof:

Let A = (ajk)1≤j,k≤n, then A⊤ = (akj)1≤j,k≤n.

Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn). So,

A⊤v =




a11 . . . an1
...

...
a1n . . . ann


 ·




v1
...
vn


 =

(
n∑

i=1

ai1vi,

n∑

i=1

ai2vi, . . . ,

n∑

i=1

ainvi

)
.

Thus,

〈
A⊤v, w

〉
=

(
n∑

i=1

ai1vi, . . . ,
n∑

i=1

ainvi

)
· (w1, . . . , wn)

=
n∑

i=1

ai1viw1 +
n∑

i=1

ai2viw2 + . . .+
n∑

i=1

ainviwn

=
n∑

i=1

viai1w1 +
n∑

i=1

viai2w2 + . . .+
n∑

i=1

viainwn

= (v1a11w1 + . . .+ vnan1w1) + (v1a12w2 + . . .+ vnan2w2) + . . .

+ (v1a1nwn + . . .+ vnannwn)

= (v1a11w1 + v1a12w2 + . . .+ v1a1nwn)

+ (v2a21w1 + v2a22w2 + . . .+ v2a2nwn) + . . .

+ (vnan1w1 + vnan2w2 + . . .+ vnannwn)

=
n∑

i=1

v1a1iwi +
n∑

i=1

v2a2iwi + . . .+
n∑

i=1

vnaniwi

= (v1, v2, . . . , vn) ·
(

n∑

i=1

a1iwi,
n∑

i=1

a2iwi, . . . ,
n∑

i=1

aniwi

)
. (2.11)
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Focusing on

(
n∑

i=1

a1iwi,
n∑

i=1

a2iwi, . . . ,
n∑

i=1

aniwi

)
gives

(
n∑

i=1

a1iwi,
n∑

i=1

a2iwi, . . . ,
n∑

i=1

aniwi

)
=




a11 . . . a1n

...
...

an1 . . . ann


 ·




w1
...
wn




= Aw. (2.12)

Putting (2.11) and (2.12) together, we find

〈
A⊤v, w

〉
= 〈v, Aw〉 .

This finishes the proof. 2

16. If u, v ∈ R
n are such that 〈u,w〉 = 〈v, w〉 for all w ∈ R

n, then u = v.

Proof:

〈u,w〉 = 〈v, w〉 implies 〈u− v, w〉 = 0 for all w ∈ R
n. Since this expression is

true for all w ∈ R
n, let w = u − v. In doing so we obtain 〈u− v, u− v〉 = 0.

This implies ‖u− v‖2 = 0. Thus ui − vi = 0 for all i ∈ {1, 2, . . . , n}. Hence

u = v. 2
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