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ABSTRACT

Localization has been a very important and fundamental research topic in GPS,

radar, sonar, and especially in mobile communications and sensor networks over the

past few years. Localization of a signal source is often accomplished by using a

number of sensors that measure the radiated signal from the source, here we consider

the range based measurements, including time of arrival (TOA) and time difference of

arrival (TDOA). In such study, the object is far away or only the position information

is needed, and we refer this as point source localization. For some applications, e.g.,

robotics, spacecraft, and gaming, orientation information in addition to position is

also needed. Although an inertial measurement unit (IMU) can perform such task

once the initial state is available, it suffers from long-term performance deviation and

requires accurate calibration using additional devices. Here we consider joint position

and orientation estimation using the distance or AOA measurements between the fixed

sensors on the object and the anchors at fixed locations, and it is called rigid body

localization.

Our research has two manifolds:

First, for the point source localization, the original squared range least squares

(SR-LS) admits global and computationally efficient solution using generalized trust

region subproblems (GTRS) technique but with non-optimal accuracy, therefore we

add proper range weighting (SR-WLS) into it and investigate the resulting perfor-

mances of mean squared error (MSE) and bias. Its asymptotic efficiency is proven

theoretically and validated by simulations. The effects of range weighting on the

localization performance under different sensor number, noise correlation, and local-

xiii



ization geometry are examined. We also conduct similar range weighting for squared

range difference least squares (SRD-LS and SRD-WLS) under TDOA measurements.

In addition, the weighting technique is extended to the scenario where the sensor

positions are not exactly known. The resultant cost function has the same structure

as that without sensor position errors, thereby existing algebraic or exact solutions

to the squared measurements can still be used without requiring new optimization

method.

Second, for the rigid body localization, under distance measurements, the existing

method cancels the quadratic term of the sensor position in the squared distance mea-

surement equations, which may cause serious degradation. Our proposed estimators

are non-iterative and have two steps: preliminary and refinement. The preliminary

step provides a coarse estimate and the refinement step improves the first step esti-

mate to yield an accurate solution. When the rigid body is stationary, we are able to

locate the rigid body with accuracy higher than the solutions of comparable complex-

ity found in the literature. When the rigid body is moving, we introduce additional

Doppler shift measurements and develop an estimator that contains the additional

unknowns of angular and translational velocities. Simulations show that the proposed

estimators, in both stationary and moving cases, can approach the Cramer-Rao lower

bound (CRLB) performance under Gaussian noise over the small error region.

Under AOA measurements, we solve the 3D scenario that is seldom considered

before, through estimating its distances to landmarks and contrasting the landmark

positions in object local frame and the global frame. Furthermore, we extend it

to the scenario where there is more than one AOA sensor on-board, which either

increases the robustness and accuracy or decreases the minimum requirement on

xiv



number of landmarks. And the methods for 2D and 3D are designed respectively.

The simulations confirm the effectiveness of proposed methods.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Point Source Localization

Localization has been a very important and fundamental research topic in GPS, radar,

sonar, and especially in mobile communications and sensor networks over the past

few years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. When the object is far away or only the

position information is needed, we can consider the object as a point source and refer

this positioning task as point source localization in this dissertation. Localization

of a signal source is often accomplished by using a number of sensors that measure

the radiated signal from the source. The positioning parameters such as time of

arrival (TOA) or time difference of arrival (TDOA) are obtained from the received

signals. The relationship between the source location and the positioning parameters

is exploited next to determine where the source is.

1



Nearly all algebraic solutions use the approach of squaring the measurements

first, then introduce an auxiliary variable and define a constraint relating the extra

variable and the source position to obtain a location estimate. For example, [12] and

[13] derive closed-form solutions through subtracting the squared measurements to

eliminate the auxiliary variable. [14], on the other hand, ignores the constraint and

solves the squared measurement equation using linear least squares (LLS). [15] and

[16] express the source location in terms of the auxiliary variable and solution finding

reduces to determining the auxiliary variable that minimizes the corresponding cost

function. Although simple and computationally attractive, these solutions do not

reach the CRLB accuracy.

Recently, [17] utilizes the squared range least squares (SR-LS) cost function and

imposes the constraint explicitly during the minimization process to obtain a global

minimum solution through the generalized trust region subproblems (GTRS) tech-

nique [18]. Good localization accuracy, sometimes reaching the CRLB for uncorre-

lated Gaussian noise, has been reported over other competing methods. However,

[19] has shown that even for the fundamental case of uncorrelated Gaussian noise,

the approach of squaring the range (TOA) measurements to solve the localization

problem will not be able to yield the same performance as using the measurements

directly, e.g. from MLE, unless under some special and restricted localization geome-

tries. Indeed, the asymptotic localization error from SR-LS relative to the CRLB

could be unbounded for some configurations.

To compensate this degradation while remaining the computational advantage

from squared range cost function, we introduce range weighting into it. Fundamental

investigation of its resulting MSE is conducted and compared with CRLB, the bias

2



is also studied.

Similar study extends to the TDOA localization. We investigate the possible

performance loss by squaring the range difference measurements when solving for the

source location using least squares. The analysis shows that squared range difference

least squares (SRD-LS) is not able to reach the CRLB performance in general, and

the performance could be very worse in some cases. We would also introduce the

range weighting and verify its theoretical performance.

Until now, the weighting technique considered assumes the exact sensor positions

are known. In practice, the sensor positions are not known exactly, such as in a sensor

network in which the node positions are estimated by anchors. Sensor position errors

degrade the localization performance considerably [39], and its effect is not negligible

even if the number of sensors is large [40], therefore their statistics should be taken

into consideration in order to reach better performance [41, 42]. We would derive the

new weightings for the squared TOA and TDOA measurements when sensor position

errors are present.

1.1.2 Rigid Body Localization – Position and Orientation Es-
timation

In addition to position, many applications including robotics, spacecraft and gaming

[48, 49, 50, 51] requires both position and orientation information, and we refer this

positioning task as rigid body localization in this dissertation. This is also called

pose estimation in robotics community. An inertial measurement unit (IMU), such

as accelerometer and gyroscope, can provide the position and orientation information

when properly initialized, but it may suffer from long-term performance deviation

3



and requires accurate calibration using additional devices [52]. Using GPS for the

positioning task could be costly and involve complicated receivers and processings

[53], and it is limited to outdoor environments.

An alternative approach is to place a few sensors on the rigid body and use

distance or angle of arrival (AOA) measurements [53, 54, 55] with respect to a few

landmarks (simply called anchors) to determine the position and orientation. This is a

constrained nonlinear estimation problem, due to the rotation matrix belonging to the

special orthogonal (SO) group [62] and the measurement equation highly nonlinear

with the unknowns, making it very challenging to solve.

Under Distance Measurements

Different from the traditional sensor node localization using anchors [57], the rela-

tive locations of the sensors are known. A direct solution but rather complicated to

implement is the maximum likelihood estimator (MLE) that is obtained through an

iterative geometric descent approach, where the optimization is performed in the Rie-

mannian manifolds [54] to satisfy the SO group constraint. The estimator requires

good initial guesses for convergence to the correct solution. Under the noise free as-

sumption, [55] derives a solution by constructing a dynamic system that evolves on the

special Euclidean group SE (3) where local asymptotic stability can be maintained.

This method requires many numerical integrations to determine the evolving state

of the system and its performance under noisy measurements is not guaranteed. [53]

addresses the nonlinear estimation problem using the range-based localization tech-

nique. It converts the measurement equation to a linear form by taking the squares

and eliminating the quadratic unknown terms. Two main solutions were developed,

4



one is the constrained least squares (CLS) which is iterative and the other is the

simplified constrained least squares (SCLS) that is non-iterative. However, they are

not asymptotically efficient in general. One may consider using CLS or SCLS to ini-

tialize an iterative implementation of the MLE to reach a better solution. The MLE

is rather difficult to realize [54] since the SO group constraint must be imposed in

each iteration. We conduct this study and propose closed-form estimator to approach

the CRLB performance.

The scenario considered above assumes stationary object, while most rigid bodies

of interests are often not standstill, and obvious examples are UAVs and robots.

Indeed, many engineering applications [52, 63, 64, 65] are related to the localization

and tracking of a moving object. A moving rigid body has the additional parameters

of angular and translational velocities. If they are known, [66] has proposed a tracking

solution. They are, however, often not known without using IMU and we have not

come across any solution from the literature. The need to develop a localization

method for a moving rigid body with unknown velocities is evident. We propose the

use of additional Doppler measurements to obtain the motion parameter information,

and extend our method for stationary rigid body to this new problem.

Under AOA Measurements

The pose estimation using the AOA measurements with respect to known landmarks

has been studied much more extensively than that using distance measurements. [80]

makes use of representation of landmarks by complex numbers; [81] transforms the

measurement into linear system with constraint that can be solved by singular value

decomposition; [82, 83] use different pseudolinear equations and propose different bias
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compensation.

However, these studies only handle 2D scenario. Some examples in 3D scenario are

the flying aircraft and the robot on uneven ground. In 3D, the rotational degrees of

freedom increase to 3 and corresponding rotation matrix belongs to special orthogonal

group SO(3). To our best knowledge, few works provide the solution to this under

non-tracking scenario. [84] assumes the roll and pitch angles are coarsely known or

close to zero, which limits its applicability. And the simultaneous localization and

mapping (SLAM) using bearing only [85, 86, 87] normally handles it in tracking

scenario, and the initialization is needed for the operation of filter, e.g. extended

Kalman filter or particle filter. In our work, we consider the general 3D scenario and

propose the method that does not need initialization.

With single sensor on-board, the AOA measurement with respect to certain land-

mark may be unavailable due to the blockage in the line of sight (LOS) path, and the

number of landmarks may be not enough to uniquely recover the pose of the object

in changing environment. Therefore, we extend the study to the scenario where there

are multiple sensors on-board, which either increases the robustness and accuracy of

localization system or decreases the minimum requirement on number of landmarks.

1.2 Basics for Point Source Localization

The localization accuracy is related to the received waveforms, signal and noise band-

widths, signal-noise ratio (SNR) and observation time [34, 44, 45, 46, 47], and also

the localization approach. One approach is to directly estimate the position from the

received signal, which is called direct positioning [8]; it can have better performance
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when SNR is quite small, but is very time consuming since it often relies on grid

search. The alternative approach is to obtain positioning parameter first, such as

the TOA, TDOA, received signal strength (RSS), and AOA, and then perform local-

ization based on this positioning parameter. Such indirect positioning, or two-step

positioning, is much more popular in research. The performance of location estima-

tor can be evaluated in terms of computational efficiency, estimation accuracy and

robustness under different localization geometries.

Obtaining the source location from the range-based measurements is not an easy

task, since the measurement equation is nonlinear with respect to the unknowns.

Solving the source position directly from the measurements which contains the root

square operation of source position, such as by the MLE [89], requires an iterative

solution whose performance depends highly on initialization.

Most of researches square the measurements first, then introduce an auxiliary

variable and define a constraint relating the extra variable and the source position

to obtain a location estimate. For example, the well known two-stage estimator for

TDOA localization [2] contains usual unconstrained least squares in the first stage

and then correct the solution by considering the constraint in the second stage, and it

reaches CRLB performance when noise is sufficiently small; however, its thresholding

effect appears earlier compared to the MLE.

[17] utilizes existing GTRS technique to globally solve the SR-LS cost function

which can be formulated as quadratic minimization under one quadratic equality

constraint. The Lagrange multiplier method needs to solve all the roots in the equality

constraint and obtain corresponding solutions, and then pick up the solution resulting

in the minimum, while GTRS guarantees that the optimal solution corresponds to
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the largest real root whose lower bound is also specified. [17] also provides global

solution for SRD-LS cost function.

When the sensor positions have uncertainties, the sensor positions become nui-

sance variables and they need to be solved jointly with the source position. The

number of unknowns becomes large and it presents challenges to an iterative solu-

tion in reaching the global optimum and in maintaining the computational efficiency.

For example, [41] addressed the sensor position uncertainty by jointly estimating the

source and sensor positions through an iterative implementation of MLE. [42] handled

the situation by joint estimation as well using semidefinite programming (SDP). This

motivates the development of closed-form solutions for the localization problem and

it has been an active research area.

1.3 Basics for Rigid Body Localization – Position

and Orientation Estimation

The position and orientation of object reveal the translation and rotation between

body-fixed reference frame in object and global reference frame. The rotation ma-

trix and translation vector are nonlinearly related to the measurements and they are

strongly coupled. In addition, the rotation matrix must belong to the special orthog-

onal (SO) group [62], meaning that its elements must satisfy certain quadratic con-

straints in 2D and cubic constraints in 3D. Alternatively, rotation can be described by

different parameterizations [62], such as Euler angle, axis-angle representation, Gibbs

vector, modified Rodrigues parameters, and unit quaternion.

Inertial measurement unit is the most common device for joint position and ori-
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entation estimation. It obtains linear acceleration measurement from accelerometers

and angular velocity measurement from gyroscopes, and then performs the integration

based on known initial states. Therefore, the drift problem exists. In some applica-

tions, we are interested in the pose of the object with respect to local environment,

the IMU cannot be used since its measurement is always with respect to the inertial

reference frame.

Distance measurement can be also exploited for pose estimation [53, 54, 55]. Since

the distance measurement is independent of reference frame, multiple sensors on-

board are needed to disclose the orientation information of local frame. And the

sensor positions in this local reference frame should be known a priori. The difficulty

in estimation is that even we square the distance measurement, it contains quadratic

cross term of rotation matrix and translation while constraint on rotation matrix

should be guaranteed.

The pose estimation using AOA measurements is significantly different from that

using distance measurements. First, the AOA measurement is always conducted with

respect to certain reference frame, even only one sensor on-board is sufficient to dis-

close the orientation information of the object. Second, the distance measurement

requires either time synchronization between sensors and landmarks (anchors) or

round trip signal transmission while AOA measurement does not have such require-

ment. If the object position is known, this problem becomes attitude determination

using vector observation, which is directly related to orthogonal Procrustes problem

(OPP) [90, 91, 92].
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1.4 Contributions of the Research

This dissertation conducts the study of weighting technique for localization based

on squared measurement in the absence or presence of sensor position errors, and of

the algorithm for pose estimation using distance measurements (additional Doppler

measurements for moving object) or AOA measurements.

In Chapter 2, we show the approach of squaring the range measurements for

localization is able to provide the CRLB performance asymptotically regardless of the

geometry (except the source is very close to a sensor), when suitable range weightings

are introduced to the squared measurements before solving for the solution. The

efficiency of new SR-WLS solution is shown analytically through small noise analysis.

The asymptotic bias of the source location estimate from SR-WLS is found to be

larger than that of SR-LS. However, the bias is relatively insignificant compared to

variance.

Another advance in our study is that by introducing suitable weightings to the

squared range difference measurements before least squares minimization, denoted as

squared range difference weighted least squares (SRD-WLS), the performance loss will

be compensated for and the CRLB performance can be reached. This is again shown

analytically and supported by simulations. Different from the range measurement

case, the proposed SRD-WLS has smaller bias than SRD-LS when the number of

sensors is not near critical.

In Chapter 3, in the presence of sensor position errors, we derive the optimal

weighting for the SR-WLS and SRD-WLS cost functions. The benefits for this exten-

sion are threefold. First, a typical algorithm such as the MLE needs to jointly esti-

mate the source and sensor positions, while the proposed new cost function estimates
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the source position only. Obviously, the dimension reduction in optimization can

significantly reduces the computational complexity. Second, the new cost functions

have the same structure as those in [17], thereby existing algebraic or exact solutions

to the squared measurements can still be used without requiring new optimization

method. Third, the solutions of the new cost functions achieve asymptotically the

CRLB performance under Gaussian noise.

In Chapter 4, we propose closed-form solutions to the rigid body localization

problem where the rigid body can be stationary or moving. The aim is to achieve

better performance than the previous computationally attractive methods such as

SCLS and CLS while maintaining similar complexity. The proposed solutions use a

two-step approach. The first step obtains a preliminary solution by using the divide

and conquer (DAC) technique [67] that solves the individual sensor positions first

and then the rotation and translation parameters with the rotation matrix structure

imposed. The preliminary solution is reasonably accurate as supported by the theory

of the DAC approach, but not able to reach the optimum performance due to some

simplifications taken in arriving at a closed-form solution. The second step reformu-

lates the estimation problem in terms of the correction to the preliminary solution

for obtaining a better result. In the special case of 2D scenario, we can take the ad-

vantage of the simpler rotation matrix structure so that both processing steps can be

reformulated as two separate GTRS [18, 17] optimizations in which computationally

efficient closed-form solutions exist.

Finally, we proceed to solve the localization of a moving rigid body that includes

the additional unknowns of angular and translational velocities. In addition to dis-

tance measurements, we also make use of the Doppler measurements. A sequential

11



estimation is proposed, and the initial velocities are estimated based on available esti-

mation of position and orientations. For special 2D case, we first obtain from the mea-

surements the sensor positions and velocities pretending no knowledge among them

and then exploit their relative positions to directly estimate the unknown parameters.

We focus on the second step here and develop a closed-form solution through nuisance

variables and nonlinear transformations.

In Chapter 5, we study the pose estimation using AOA measurements instead.

For 3D case under one sensor that is seldom considered before, we can obtain the

anchor positions in local frame and compare with their positions in global frame to

obtain the pose, but it is quite difficult to directly obtain the anchor positions. Al-

though converting the AOA equations into the linear form of anchor position simplifies

the relationship, it causes the presence of two possible anchor positions, which pre-

vents solving certain optimization using semidefinite relaxation. Furthermore, even

we can obtain two optimal solutions simultaneously, we still need to pick up the best

solutions according to the original AOA measurements, e.g. through the residual

comparison. Our idea for determining the anchor position in local frame is to obtain

its distances to landmarks and then combine them with the measured unit vectors

pointing from sensor to anchors. And such distances can be obtained by exploiting

the law of cosine for the triangle consisting one sensor and two anchors.

For multiple sensors case, we directly solve the pose through proper parameteri-

zation of rotation matrix based on the abovementioned transformed linear equation

of anchor position. In 3D case, we use the unit quaternion parameterization and

therefore the rotation matrix and constraints are quadratic in quaternion variables,

which facilitates the use of semidefinite relaxation technique [57]; in 2D case, we use
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the rotation angle and propose the closed-form solution based on GTRS technique

[17, 18].

1.5 Content Organization

The rest chapters are organized as follows. Chapter 2 presents the investigation of

range weighting in squared measurements cost function and its resulting MSE and

bias. Chapter 3 extends the weighting study when there are sensor position errors.

Chapter 4 develops closed-form pose estimator for stationary and moving rigid body.

Chapter 5 develops estimator for rigid body pose under AOA measurements. Chapter

6 discusses the future work.
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Chapter 2

Range Weighting for Squared
Measurements Based Least
Squares

The existing SR-LS cost function solved by GTRS admits global solution but with

suboptimum performance; to maintain its computational advantage and improve the

accuracy, we propose to add range weighting and study its resultant MSE and bias.

And we are interested in the effects of range weighting on the localization performance

under different sensor number, noise correlation, and localization geometry. The range

weighting study will also be extended to the SRD-LS cost function under TDOA

measurements.

In the following, we shall first describe the localization scenario, the TOA and

TDOA measurements and the corresponding CRLBs. Section 2.2 introduces the

proposed range weighting version cost function SR-WLS, derives the MSE matrix

and bias of its location estimate, and shows that SR-WLS achieves asymptotically
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the CRLB performance. Section 2.3 conducts the same study for range weighting

version cost function SRD-WLS under TDOA measurements. Section 2.4 presents

the simulation results to compare the performance between SR-LS and SR-WLS, and

between SRD-LS and SRD-WLS, and Section 2.5 concludes this chapter.

2.1 Range Based Localization

2.1.1 Localization Scenario

The purpose of localization is to determine the source position using measurements

from a number of sensors. We shall consider two types of measurements, TOA and

TDOA, that are based on the ranges between the source and the sensors. We shall

use TOA and range, and TDOA and range difference interchangeably because they

differ from each other by a constant scaling factor only. The source position is uo and

the i -th sensor position is si, i = 1, 2, . . . , M , where M is the number of sensors. uo

and si are N × 1 vectors of Cartesian coordinates where N = 2 for 2D and N = 3

for 3D localization. The true distance between the source uo and the i -th sensor is

roi = ‖uo − si‖, and ‖ ∗ ‖ is the Euclidean norm.

For TOA localization, the true distance roi is corrupted by additive noise ni and

the measurements are

ri = roi + ni, i = 1, 2, . . . , M. (2.1)

In compact form,

r = ro + n (2.2)

where r = [r1 r2 · · · rM ]T and ro = [ro1 r
o
2 · · · roM ]T . The noise vector n = [n1 n2 · · · nM ]T
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is zero-mean Gaussian with covariance matrix Q. The average measurement noise

power is σ2 = tr(Q)/M . We are interested in estimating uo from r.

For TDOA localization, the true range difference of the source to the i -th and the

1st sensor is

roi1 = ‖uo − si‖ − ‖uo − s1‖, i = 2, 3, . . . , M, (2.3)

whose noisy version from measurement is

ri1 = roi1 + ni1. (2.4)

The 1st sensor is the reference to obtain the range difference. The vector form is

rd = rod + nd (2.5)

where rd = [r21 r31 · · · rM1]
T and rod = [ro21 r

o
31 · · · roM1]

T . The noise vector nd =

[n21 n31 · · · nM1]
T is zero-mean Gaussian with covariance matrix Qd. The average

measurement noise power is σ2
d = tr(Qd)/(M − 1). TDOA localization uses rd to

obtain the source position.
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For convenient purpose in later sections, we shall define some notations as follows:

ρi =
uo − si
‖uo − si‖

, i = 1, 2, . . . , M,

Γ = [ρ1 ρ2 · · · ρM ] ,

ρi1 = ρi − ρ1, i = 2, 3, . . . , M,

Γd = [ρ21 ρ31 · · · ρM1] ,

B = diag (ro) ,

Bd = diag (rod) + ro1I. (2.6)

ρi is the unit vector pointing from the i -th sensor to the source uo and ρi1 is the

difference between ρi and ρ1. B and Bd are diagonal matrices containing the ranges

of the source to different sensors. Furthermore, 1 is used to denote a vector of unity

and I is an identity matrix. diag(a) is a diagonal matrix formed by the elements in

a and the operator � is element-by-element multiplication.

2.1.2 CRLB

We shall use the CRLB [20] as a benchmark to examine the performance of a location

estimator. The CRLB is for unbiased estimator and the localization problem is non-

linear that could yield a biased solution. Hence we shall use the CRLB over small

error region only where the bias is negligible compared to variance. The CRLB of a

source location estimate for TOA positioning is [21]

CRLB = FIM(uo)−1 =
(
ΓQ−1ΓT

)−1
. (2.7)
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The CRLB for TDOA positioning is [22]

CRLB = FIM(uo)−1 =
(
ΓdQ

−1
d ΓT

d

)−1
. (2.8)

2.2 Weighted Squared Range Localization

2.2.1 Cost Function and Solution

The range least squares (R-LS) method finds uo by minimizing the cost function

fR-LS(u) =
M∑
i=1

(ri − ‖u− si‖)2 . (2.9)

Under Gaussian noise with Q = σ2I, R-LS gives the maximum likelihood estimate

and achieves the CRLB performance. The cost function fR-LS(u) is difficult to solve

due to the square root operation in the Euclidean distance. One has to rely on grid

search, or iterative numerical solution where performance could be highly dependent

on initializations.

As an alternative to simplify the solution finding, many closed-form efficient so-

lutions can be obtained by minimizing the SR-LS cost function

fSR-LS(u) =
M∑
i=1

(
r2i − ‖u− si‖2

)2
. (2.10)

In particular, [17] shows that the global minimum of this cost function can be effi-

ciently solved through the utilization of the GTRS technique [18].

However, the large-sample analysis performed in [19] finds that SR-LS has worse
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asymptotic localization accuracy than R-LS in general and there are localization

geometries for which the performance difference between them is unbounded.

We propose a new cost function fSR-WLS(u) based on fSR-LS(u) by introducing the

weighting factors 1/r2i

fSR-WLS(u) =
M∑
i=1

1

r2i

(
r2i − ‖u− si‖2

)2
. (2.11)

The rationale behind this new cost function is that when the noise relative to the

source range is small and u is close to uo such that ri = roi

(
1 + ni

roi

)
≈ roi ≈ ‖u− si‖,

we have

fSR-WLS(u) =
M∑
i=1

(
ri −

‖u− si‖2

ri

)2

≈
M∑
i=1

(ri − ‖u− si‖)2 (2.12)

which is the fR-LS(u) given in (2.9). Hence it is expected that the new squared range

weighted least squares (SR-WLS) cost function has similar performance as R-LS when

we are near the solution. SR-WLS will remain to enjoy the computational efficiency

as in SR-LS because no square root appears in the cost function.

Another reason for introducing the weights 1/r2i in the proposed cost function

(2.11) is that squaring the ranges will emphasize the TOA measurements from the

sensors that are farther away from the source. The SR-LS cost function (2.10) will

therefore yield a solution that puts more emphasis to the measurements from the

far than from the near sensors. To compensate this undesirable effect, we use the

weights inversely proportional to the square of the distances. The net effect is that it
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equalizes the contributions of measurements from far and near sensors when obtaining

the solution.

The aforementioned cost functions correspond to uncorrelated noise covariance

matrix Q = σ2I. It is natural to extend our investigation to the general case for

Gaussian noise with arbitrary non-singular covariance matrix Q = [Qij]. Let’s repre-

sent its inverse as Q−1 = [Qij], then we have

fR-LS(u) =
M∑
i,j=1

Qij (ri − ‖u− si‖) (rj − ‖u− sj‖) , (2.13)

fSR-LS(u) =
M∑
i,j=1

Qij

(
r2i − ‖u− si‖2

) (
r2j − ‖u− sj‖2

)
, (2.14)

and

fSR-WLS(u) =
M∑
i,j=1

Qij

rirj

(
r2i − ‖u− si‖2

) (
r2j − ‖u− sj‖2

)
, (2.15)

where (2.13) is the maximum likelihood cost function.

The analysis on the MSE and bias will be based on (2.14) and (2.15). We shall

show that SR-WLS can asymptotically achieve the CRLB performance, while SR-LS

cannot.

2.2.2 Analysis and Comparison with CRLB

We shall perform the small noise analysis of the solutions obtained from the SR-LS

and SR-WLS cost functions. The analysis is up to second order noise terms, and it

gives asymptotic performance when the SNR of the signal measurements to obtain
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TOA is high or the signal observation period is long.

Let û be the global minimum of f . Also, let us assume f is smooth around û such

that the derivatives of f at û exist up to third order. Obviously, the gradient of f at

û is zero. Using the Taylor series expansion around the true value uo,

0 =
∂f(u)

∂u

∣∣∣∣
u=û

≈ f ′ + F′′(û− uo) +
1

2


tr(F′′′1 M)

...

tr(F′′′NM)


where

f ′ =
∂f(u)

∂u

∣∣∣∣
u=uo

, F′′ =
∂2f(u)

∂u∂uT

∣∣∣∣
u=uo

, F′′′l =
∂

∂ul

∂2f(u)

∂u∂uT

∣∣∣∣
u=uo

, l = 1, 2, . . . , N,

ul is the l -th element of u, N is length of u and M = (û − uo)(û − uo)T . The

approximation comes from truncating the expansion up to the second order term.

Note that F′′ is symmetric. Rearranging gives

û− uo ≈ −F′′−1f ′ − 1

2
F′′−1


tr(F′′′1 M)

...

tr(F′′′NM)

 . (2.16)

To examine the MSE, we multiply (2.16) by its transpose and take expectation,

giving

E
[
(û− uo)(û− uo)T

]
≈ E

[
F′′−1f ′f ′

T
F′′−1

]
(2.17)

where the second term in (2.16) has been ignored. This is because the last term in
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(2.16) will contribute to the σ4 component in the MSE which is negligible for small

noise analysis. Since f ′ contains only noise, retaining up to σ2 term reduces (2.17) to

E
[
(û− uo)(û− uo)T

]
≈ F

′′−1
E
[
f ′f ′

T
]

F
′′−1

(2.18)

where F
′′

= limσ2→0 F′′. (2.18) is indeed the formula given in [23] to obtain the

asymptotic MSE as σ2 → 0. It is also the formula [19] used to perform large-sample

analysis of SR-LS.

The bias can be obtained by taking the expectation of (2.16),

E[û− uo] ≈ −E[F′′−1f ′]− 1

2
F
′′−1


tr(F

′′′
1 E[M])

...

tr(F
′′′
NE[M])

 (2.19)

where F
′′′
l = limσ2→0 F′′′l and we have made approximation in the last term to keep

up to second order noise components only. Note that E[M] is the MSE matrix.

The MSE and bias formulae (2.18) and (2.19) are accurate up to second order

noise terms and the approximations come from ignoring some higher order terms.

For simplicity two formulae are considered exact in the following analysis.

We shall evaluate the terms in (2.18) and (2.19) to obtain the MSE and bias.

In general, f ′ contains the 1st order, 2nd order, and higher order noise components.

F′′ contains a fixed term independent of noise, as well as 1st order, 2nd order, and

higher order noise terms. Evaluating (2.18) only needs the linear noise component of

f ′. However, obtaining the first term of (2.19) requires up to 2nd order noise portion

of f ′ and up to 1st order noise portion of F′′. Hence we retain only up to 2nd order
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noise terms of f ′ and up to 1st order noise terms of F′′.

We shall use small-o notation to provide more precise order of approximation in

the followings. In our representation, a(x) = o(b(x)) means limx→0 a(x)/b(x) = 0.

The analysis below concentrates on the MSE. The bias study is a little tedious

and the details are provided in Appendix A.

Asymptotic Performance of SR-LS

The first derivative of fSR-LS (u) in (2.14) is

∂fSR-LS (u)

∂u
= −4

M∑
i,j=1

Qij

(
r2i − ‖u− si‖2

)
(u− sj) (2.20)

where we have used the symmetric property that Qij = Qji. Then

f ′SR-LS = −4
M∑
i,j=1

Qij

(
2roini + n2

i

)
rojρj = −4[2KBn + K(n� n)] (2.21)

where

K = [k1 k2 · · · kM ] = ΓBQ−1 , ki =
M∑
j=1

Qijr
o
jρj . (2.22)

Therefore,

E[f ′SR-LSf
′T
SR-LS] = 64KBQBKT + o(σ2)11T . (2.23)

We continue by calculating the second derivative of fSR-LS (u) from (2.20),

∂2fSR-LS(u)

∂u∂uT
= −4

M∑
i,j=1

Qij

[
−2(u− si)(u− sj)

T + (r2i − ‖u− si‖2)I
]
. (2.24)
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Hence

F′′SR-LS = −4
M∑
i,j=1

Qij

[
−2(uo − si)(u

o − sj)
T + (2roini + n2

i )I
]

= 8
[
KBΓT − (nTBQ−11)I

]
+ o(‖n‖)I, (2.25)

whose asymptotic value as σ2 → 0 is

F
′′
SR-LS = 8KBΓT . (2.26)

Consequently, we obtain from (2.18) the asymptotic MSE matrix of SR-LS as

QSR-LS =
(
KBΓT

)−1
KBQBKT

(
KBΓT

)−1
. (2.27)

In general, (2.27) is not equal to the CRLB unless for a few special cases. One such

a case is when all roi ’s are equal such that B = bI, where b is positive constant. K

in (2.22) becomes K = bΓQ−1 and (2.27) reduces to QSR-LS =
(
ΓQ−1ΓT

)−1
, which

is the CRLB in (2.7).

The bias of the SR-LS solution is evaluated using (2.26), (2.27), (A.2) and (A.3)

into (2.19).

Asymptotic Performance of SR-WLS

The first derivative of fSR-WLS(u) is

∂fSR-WLS(u)

∂u
= −4

M∑
i,j=1

Qij

rirj

(
r2i − ‖u− si‖2

)
(u− sj). (2.28)
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From series expansion,

1

ri
=

1

roi

(
1 + ni

roi

) =
1

roi

(
1− ni

roi

)
+ o

(
ni
roi

)
. (2.29)

Using (2.29) in (2.28) gives

f ′SR-WLS = −4
M∑
i,j=1

Qij

roi

(
1− ni

roi
− nj
roj

)(
2roini + n2

i

)
ρj + o(‖n‖2)1

= −4
[
2ΓQ−1n− ΓQ−1B−1(n� n)− 2Γdiag(n)B−1Q−1n

]
+ o

(
‖n‖2

)
1.

(2.30)

Hence

E[f ′SR-WLSf
′T
SR-WLS] = 64ΓQ−1ΓT + o(σ2)11T . (2.31)

The second derivative of fSR-WLS(u) from (2.28) is

∂2fSR-WLS(u)

∂u∂uT
= −4

M∑
i,j=1

Qij

rirj

[
−2(u− si)(u− sj)

T + (r2i − ‖u− si‖2)I
]

(2.32)
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and therefore

F′′SR-WLS

=− 4
M∑
i,j=1

Qij

roi r
o
j

(
1− ni

roi
− nj
roj

+ o(‖n‖)
)[
−2roi r

o
jρiρ

T
j + (2roini + n2

i )I
]

= 8
[
ΓQ−1ΓT − (nTQ−1B−11)I− ΓB−1diag(n)Q−1ΓT − ΓQ−1diag(n)B−1ΓT

]
+ o(‖n‖)11T . (2.33)

Its asymptotic value as σ2 → 0 is

F
′′
SR-WLS = 8ΓQ−1ΓT . (2.34)

As a result, putting (2.31) and (2.34) into (2.18) gives the asymptotic MSE matrix

of SR-WLS as

QSR-WLS =
(
ΓQ−1ΓT

)−1
. (2.35)

QSR-WLS is exactly equal to the CRLB (2.7) for TOA localization and the solution of

the SR-WLS cost function is asymptotically efficient.

The bias of the SR-WLS solution is obtained by applying (2.34), (2.35), (A.5) and

(A.6) to (2.19).

2.2.3 Special Geometries

Under independent and identically distributed (i.i.d.) measurement noise such that

Q = σ2I, [19] lists four classes of special geometries to demonstrate that SR-LS is
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worse than R-LS in general. [19] also generates random geometries to illustrate the

distribution of the MSE ratio between the solutions from SR-LS and R-LS. Since the

proposed SR-WLS has the same asymptotic accuracy as R-LS up to the second order

noise term, we can essentially draw the same conclusion when comparing SR-LS with

SR-WLS.

In the situation where the source signal is not available or when there is an un-

known but constant time offset in the signals acquired, TOA cannot be used to locate

the source and TDOA will need to be applied instead. TDOA does not require the

source signal to be known since it can be obtained through cross-correlation. Fur-

thermore, the constant time offset is irrelevant because TDOA measures the time

differences. In fact, the performance of TDOA localization is the same as TOA posi-

tioning with an unknown common clock bias (time offset) [24]. We shall next examine

the localization performance using the squared range differences.

2.3 Weighted Squared Range Difference Localiza-

tion

2.3.1 Cost Function and Solution

For measurement noise with arbitrary non-singular covariance matrix Qd, the cost

function for range difference least squares (RD-LS) is

fRD-LS(u) =
M∑
i,j=2

Qdij (ri1 + ‖u− s1‖ − ‖u− si‖) (rj1 + ‖u− s1‖ − ‖u− sj‖) ,(2.36)
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where Qdij is the element in the (i − 1)-th row and (j − 1)-th column of Q−1d ,

i, j = 2, 3, . . . ,M . The RD-LS solution corresponds to the MLE and has the CRLB

performance when the noise is Gaussian. (2.36) is difficult to solve and quite often

the squared range difference least squares (SRD-LS) cost function is used instead,

fSRD-LS(u) =
M∑
i,j=2

Qdijpipj, (2.37)

where

pi = (ri1 + ‖u− s1‖)2 − ‖u− si‖2 .

fSRD-LS(u) can be obtained from fSR-LS(u) in (2.10) by replacing ri with ri1+‖u−s1‖.

The SRD-LS cost function used in [17] is a special case of (2.37) when the noise is

i.i.d. Generally speaking, the solution of SRD-LS is worse than that of RD-LS.

Motivated by the result that SR-WLS can asymptotically achieve the CRLB ac-

curacy, we propose to add weighting factor 1/(rirj) to the SRD-LS and generate the

squared range difference weighted least squares (SRD-WLS) cost function

fSRD-WLS(u) =
M∑
i,j=2

Qdij

rirj
pipj. (2.38)

The rationale for using the weighting 1/(rirj) is the same as for SR-WLS. In partic-

ular, the weights are used to compensate for the artificial effect of emphasizing more

the TDOA measurements from the far sensors than from the near sensors caused by

squaring the measurements. The ri in the weighting factor is approximated by

ri ≈ ri1 + ‖ũ− s1‖ (2.39)
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where ũ is from some initial source position estimate which will be elaborated later.

2.3.2 Analysis and Comparison with CRLB

We shall perform the small noise analysis of the solutions obtained from SRD-LS and

the proposed SRD-WLS.

Asymptotic Performance of SRD-LS

The first derivative of fSRD-LS is

∂fSRD-LS(u)

∂u
= 4

M∑
i,j=2

Qdijpi

(
sj − s1 + rj1

u− s1
‖u− s1‖

)
. (2.40)

Evaluating at the true source location gives

f ′SRD-LS = 4
M∑
i,j=2

Qdij(2r
o
ini1 + n2

i1)
(
−rojρj1 + ρ1nj1

)
= 4

[
−2KdBdnd + 2ρ1

(
nTdBdQ

−1
d nd

)
−Kd(nd � nd)

]
+ o

(
‖nd‖2

)
1 (2.41)

where

Kd = [kd2 kd3 · · · kdM ] = ΓdBdQ
−1
d , kdi =

M∑
j=2

Qdijr
o
jρj1 . (2.42)

Thus

E[f ′SRD−LSf ′TSRD−LS] = 64KdBdQdBdK
T
d + o(σ2

d)11T . (2.43)
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We continue by calculating second derivative of fSRD-LS(u) from (2.40),

∂2fSRD-LS(u)

∂u∂uT

= 4
M∑
i,j=2

Qdij

[
2

(
si − s1 + ri1

u− s1
‖u− s1‖

)(
sj − s1 + rj1

u− s1
‖u− s1‖

)T
+ pirj1X

]
(2.44)

where X = ∂
∂u

(
u−s1
‖u−s1‖

)T
. Retaining up to linear error terms gives

F′′SRD-LS

= 4
M∑
i,j=2

Qdij

[
2(−roiρi1 + ρ1ni1)(−rojρj1 + ρ1nj1)

T + (2roini1 + n2
i1)(r

o
j1 + nj1)X

o
]

= 8
{
KdBdΓ

T
d −

[
Kdndρ

T
1 + ρ1(Kdnd)

T − (nTdBdQ
−1
d rod)X

o
]}

+ o(‖nd‖)11T , (2.45)

where Xo = X|u=uo = (I− ρ1ρ
T
1 )/ro1. Its asymptotic value as σ2

d → 0 is

F
′′
SRD-LS = 8KdBdΓ

T
d . (2.46)

Finally, we obtain from (2.18), (2.43) and (2.46) that the asymptotic MSE matrix

of SRD-LS is

QSRD-LS =
(
KdBdΓ

T
d

)−1
KdBdQdBdK

T
d

(
KdBdΓ

T
d

)−1
. (2.47)

Generally speaking, (2.47) is larger than the CRLB. One exception is that all roi ’s, i =

2, 3, . . . , M , are equal. In such a case, Bd is proportional to an identity matrix and

putting in (2.42), (2.47) becomes the CRLB in (2.8) for TDOA localization. This
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special case corresponds to the localization geometry where all sensors, except the

first, are lying on a circle and the source is at the center.

The bias of the SRD-LS solution is obtained using (2.46), (2.47), (A.8) and (A.9)

in (2.19).

Asymptotic Performance of SRD-WLS

The first derivative of fSRD-WLS is

∂fSRD-WLS(u)

∂u
= 4

M∑
i,j=2

Qdij

rirj
pi

(
sj − s1 + rj1

u− s1
‖u− s1‖

)
(2.48)

and ri is obtained from (2.39). Assuming ũ is relatively accurate and has small error

∆u = And, where A is a matrix determined by the algorithm to obtain ũ, the use

of Taylor series expansion gives ‖ũ − s1‖ = ‖uo − s1 + And‖ ≈ ro1 + αTnd, where

α = ATρ1. Therefore, ri ≈ roi1 + ni1 + ro1 +αTnd = roi + ni1 +αTnd and the error in

ri is ni1 +αTnd. Approximating 1/ri as
(
1− (ni1 +αTnd)/r

o
i

)
/roi gives

f ′SRD-WLS

=4
M∑
i,j=2

Qdij

roi r
o
j

(
1− ni1 +αTnd

roi
− nj1 +αTnd

roj
+ o(‖nd‖)

)
(2roini1 + n2

i1)
(
−rojρj1 + ρ1nj1

)
=4

M∑
i,j=2

Qdij

[
−2ρj1ni1 +

1

roi
ρj1n

2
i1 +

2

roj
ρjni1nj1 + 2

(
1

roi
+

1

roj

)
ρj1ni1α

Tnd

]
+ o(‖nd‖2)1

=4
[
− 2ΓdQ

−1
d nd + ΓdQ

−1
d B−1d (nd � nd) + 2(Γd + ρ11

T )diag(nd)B
−1
d Q−1d nd

+ 2Γd(Q
−1
d B−1d + B−1d Q−1d )ndα

Tnd

]
+ o(‖nd‖2)1. (2.49)
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Hence

E[f ′SRD-WLSf
′T
SRD-WLS] = 64ΓdQ

−1
d ΓT

d + o(σ2
d)11T . (2.50)

The second derivative of fSRD-WLS(u) from (2.48) is

∂2fSRD-WLS(u)

∂u∂uT

=4
M∑
i,j=2

Qdij

rirj

[
2

(
si − s1 + ri1

u− s1
‖u− s1‖

)(
sj − s1 + rj1

u− s1
‖u− s1‖

)T
+ pirj1X

]
(2.51)

and

F′′SRD-WLS

=4
M∑
i,j=2

Qdij

roi r
o
j

[
1− ni1

roi
− nj1

roj
−αTnd

(
1

roi
+

1

roj

)
+ o(‖nd‖)

]
×

[
2(−roiρi1 + ρ1ni1)(−rojρj1 + ρ1nj1)

T + (2roini1 + n2
i1)(r

o
j1 + nj1)X

o
]

=8
M∑
i,j=2

Qdij

roi r
o
j

{
roi r

o
jρi1ρ

T
j1 −

[
roiρi1nj1ρ

T
j + ρir

o
jρ

T
j1ni1 − roi roj1ni1Xo +αTnd(r

o
i + roj )ρi1ρ

T
j1

]}
+ o(‖nd‖)11T

=8
{

ΓdQ
−1
d ΓT

d −
[
ΓdQ

−1
d B−1d diag(nd)(Γd + ρ11

T )T + (Γd + ρ11
T )diag(nd)B

−1
d Q−1d ΓT

d

− (nTdQ−1d B−1d rod)X
o +

(
ΓdQ

−1
d (ΓdB

−1
d )T + ΓdB

−1
d Q−1d ΓT

d

)
αTnd

]}
+ o(‖nd‖)11T .

(2.52)
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Its asymptotic value as σ2
d → 0 is

F
′′
SRD-WLS = 8ΓdQ

−1
d ΓT

d . (2.53)

Consequently, putting (2.50) and (2.53) into (2.18) gives the asymptotic MSE matrix

of SRD-WLS as

QSRD-WLS =
(
ΓdQ

−1
d ΓT

d

)−1
. (2.54)

QSRD-WLS is exactly identical to the CRLB (2.8) for TDOA localization, meaning that

the solution from the SRD-WLS cost function is asymptotically efficient.

The bias of the SRD-WLS solution is evaluated by putting (2.53), (2.54), (A.11)

and (A.12) into (2.19).

The MSE performance of the proposed SRD-WLS cost function is independent of

the choice of reference sensor over the small noise region. This is because from the

relationship rij = ri1−rj1, using sensor j as reference instead of sensor 1 is equivalent

to applying a linear transformation to the TDOA data vector rd in (2.5) through

the pre-multiplication of an invertible (M − 1) × (M − 1) matrix. The same linear

transformation applies to the TDOA covariance matrix Qd and the gradient matrix

Γd. Since the transformation is linear and invertible, we will have the same MSE

matrix given in (2.54) for the source location estimate. It should be noted though

the bias could depend on the choice of the reference sensor because it is caused by

the non-linearity in the estimation.
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Figure 2.1: Special geometries for comparison of SRD-LS and SRD-WLS. (a) Case 1.
(b) Case 2. (c) Case 3.

2.3.3 Special Geometries

We have proven SRD-WLS achieves the CRLB accuracy under small noise condition

and has better estimation accuracy than SRD-LS. We would like to examine how

much performance gain the SRD-WLS can achieve compared to SRD-LS and how the

improvement varies with different geometries. For the sake of brevity, we consider 2D

localization with sensor number M = 4. In the following, we construct three classes

of special geometries and use the MSE matrices for SRD-LS and SRD-WLS in (2.47)

and (2.54) to compare their performance.

The special geometries are shown in Fig. 2.1:

Case 1: All the sensors except the first (reference) are located on a circle with

34



radius R and centered at uo, as shown in Fig. 2.1(a).

Case 2: The sensors are at s1 = [1 0]T , s2 = [−1 0]T , s3 = [p q]T , s4 = [−p − q]T ,

and the source uo is at the origin, as depicted in Fig. 2.1(b).

Case 3: The sensors are at s1 = [1 0]T , s2 = [−1 0]T , s3 = [−1 p]T , s4 = [1 p]T ,

and the source uo is at the origin, as illustrated in Fig. 2.1(c). The sensor (anchor)

arrangement in this form is quite common in sensor networks.

We shall look at the SRD-WLS performance relative to SRD-LS for uncorrelated

and correlated noise, using the ratio ∆ = tr(QSRD-LS)/tr(QSRD-WLS).

Uncorrelated Noise Qd = σ2
dI

The TDOA noise can be uncorrelated when the TDOAs are estimated one by one at

different times.

Case 1: In this case,

tr(QSRD-LS) = tr(QSRD-WLS) = σ2
dtr(
(
ΓdΓ

T
d

)−1
) (2.55)

and both SRD-LS and SRD-WLS achieve the CRLB performance and ∆ = 1. This

result can be explained by the fact that under small noise, the weighting factor 1/(rirj)

in the SRD-WLS cost function becomes a constant since ri ≈ roi = R. Therefore the

SRD-WLS cost function differs from the SRD-LS cost function by a constant scaling

factor only and hence they have the same performance.

Case 2: For this configuration,

∆ =

[(p2+q2)2+2(p2+q2)+3](p2+q2)
q2(p2+q2+2)2

2
3
p2+q2

q2

=
3

2

[
1− 2r2 + 1

(r2 + 2)2

]
(2.56)
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where r =
√
p2 + q2. When r = 1, ∆ becomes unity because the geometry is the

same as in Case 1. When r increases, however, ∆ tends to 3/2. In this special case,

SRD-WLS can provide up to 1.76 dB improvement over SRD-LS.

Case 3: In this situation,

∆ =

p4+8p2+6
9p2

2(p2+1)2

p2(2p2+3)

>
2p2 + 3

18
. (2.57)

This is a very interesting case because ∆ → ∞ as p → ∞. In other word, as s3 and

s4 move away from the source, SRD-WLS provides infinite performance gain over

SRD-LS. Note that tr(QSRD-WLS) is bounded for p ≥ 1,

tr(QSRD-WLS) = σ2
d

2(p2 + 1)2

p2(2p2 + 3)
< σ2

d

p2 + 1

p2
≤ 2σ2

d. (2.58)

It is because tr(QSRD-LS)→∞ as p→∞ that makes the performance improvement

infinite.

Correlated Noise Qd =
σ2
d

2

(
I + 11T

)
The TDOA noise is correlated with such a covariance matrix when the TDOAs are

estimated jointly and the signals received at the sensors have i.i.d. noise and identical

signal-to-noise ratio [2].

Case 1: In this case,

tr(QSRD-LS) = tr(QSRD-WLS) =
σ2
d

2
tr

([
Γd

(
I− 1

M
11T

)
ΓT
d

]−1)
. (2.59)

The reason that SRD-LS and SRD-WLS have the same performance as CRLB is the
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same as before. RD-LS, SRD-LS and SRD-WLS have identical performance under

small noise situation.

Case 2: In this scenario with p = 0,

∆ =

q2(|q|−1)2
[(|q|−1)2+2]2

+ 1

1
. (2.60)

It can be proved that 1 ≤ ∆ ≤ 2.23737 and the maximum 2.23737 is attained at

|q| = 3 +
√

6. For arbitrary p > 0, we have not proven the boundedness of ∆, but

from simulation and over the region −1000 ≤ p, q ≤ 1000 with a resolution of 1,

we find that 1 ≤ ∆ ≤ 2.237, which is quite similar to the result with p = 0. The

performance improvement is larger than the situation when the noise is uncorrelated.

Case 3: In this configuration,

∆ =

2p4−(p2+1)3/2−(3+p2)
√
p2+1+14p2+12

8p2

3p4+7p2+4
2p4+4p2

(2.61)

which indicates ∆→∞ as p→∞. Note that tr(QSRD-WLS) is bounded for p ≥ 1 at

the value when p = 1,

tr(QSRD-WLS) = σ2
d

3p4 + 7p2 + 4

2p4 + 4p2
≤ 7

3
σ2
d. (2.62)

The infinite performance gain is resulted from tr(QSRD-LS)→∞ as p increases.
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2.4 Simulations

In this section, we shall validate the theoretical study and examine the performance

differences in MSE and bias between SR-LS and SR-WLS, and between SRD-LS and

SRD-WLS. Since we focus on the solution accuracy of different cost functions and not

the methods of solving them, we use the Gauss-Newton method with the true source

location uo as the initial guess to obtain the numerical solutions. For SRD-WLS, we

use the solution from SRD-LS to do the initialization and to obtain r1 = ‖ũ− s1‖ in

(2.39) for the purpose of generating ri for the weighting. The corresponding error in

r1 is αTnd ≈ ρT1 (−F′′−1SRD-LSf
′
SRD-LS) ≈ ρT1

(
KdBdΓ

T
d

)−1
KdBdnd.

We consider two different localization scenarios to examine the influence from the

weighting factors. The first scenario fixes the source location and varies the sensor

positions to create a number of random geometries. In particular, the source is at

the origin and the sensors are randomly placed with uniform distributions in x and y

coordinates inside the unit circle. The second scenario varies the source location and

fixes the sensor positions for creating another set of random geometries. In particular,

the source is randomly placed with uniform distributions in x and y coordinates inside

the circle of radius 0.98 and the M sensors are allocated uniformly in the unit circle,

i.e., si =
[
cos 2π(i−1)

M
, sin 2π(i−1)

M

]T
.

In the simulation, the number of ensemble runs for each geometry is 1,200; the

noise covariance matrix is Q (or Qd) = σ2

1+a

(
I + a11T

)
with different nonnegative

value a.
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2.4.1 Comparison of SR-LS and SR-WLS

We use uncorrelated noise with covariance matrix Q = σ2I (a = 0) for the comparison

unless stated otherwise.

Average MSE and Bias

Fig. 2.2 shows the average MSE result for M = 5 over 4,000 randomly generated

geometries for the first scenario. SR-WLS has 1.14 dB improvement over SR-LS and

achieves the CRLB for σ2 less than 0.1. Beyond, the bias in SR-WLS dominates

performance, causing the MSE below the CRLB. SR-WLS has larger bias than SR-

LS as shown in Fig. 2.3, the difference is 9.20 dB for small noise. The increase in bias

may be justified to achieve smaller MSE because the bias is negligible compared to

the MSE. If we increase M to 10, the average MSE improvement of SR-WLS over SR-

LS increases to 1.21 dB, and the average bias difference rises to 19.05 dB. Although

the average improvement in MSE is not much, the improvement at some common

geometries is significant as will be shown in Fig. 2.7.

For the second scenario, the average results with 4,000 random geometries are

similar to those in Figs. 2.2 and 2.3. For M = 5, SR-WLS has 1.22 dB improvement

in average MSE at the expense of 21.10 dB increase in average bias. For M = 10,

SR-WLS has 1.28 dB improvement in average MSE and the increase in bias is 8.78

dB.

Distribution of MSE Ratio and Bias Ratio

We next examine the distributions of the theoretical MSE ratio and the bias ratio

between SR-LS and SR-WLS over different geometries for the first scenario. The
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Figure 2.2: Average MSE for SR-LS and SR-WLS in the first scenario, M = 5.
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Figure 2.3: Average bias for SR-LS and SR-WLS in the first scenario, M = 5.
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Figure 2.4: Empirical probability density functions of bias ratio between SR-LS and
SR-WLS with different sensor numbers M in the first scenario.

MSE ratio distribution for uncorrelated noise (a = 0) has been given in [19] and it

tends to concentrate around ∆ = 1.3225 for large enough sensor number. Here we

only show the bias ratio distribution obtained from 200,000 random geometries.

Fig. 2.4 shows the empirical probability density functions of the logarithmic bias

ratio δ = bias(SR-LS)/bias(SR-WLS) under 5 different sensor numbers. First, we

notice that log δ can be higher than 0, meaning that for some geometries SR-WLS can

have smaller bias. Second, the bias ratio tends to concentrate around log δ = −0.75,

i.e., δ = 0.18 with large enough sensor number M .

Comparison under Different Sensor Numbers M and Noise Correlations

We consider the sensor number ranging from 3 to 50 and the noise correlation factor

a varying from integer values of 0 to 5. Fig. 2.5 shows the average of the MSE ratio
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∆ = tr(QSR-LS)/tr(QSR-WLS) over 40,000 random geometries of the first scenario as

M increases. The minimum average ratio ∆ is 1.26, which occurs when M = 3 and

a = 0. For a = 0 and a = 1, the average ∆ keeps increasing before M = 10 and then

tends to a constant value with larger sensor number M . For a = 2, the average ∆

varies slightly at the beginning and then stabilizes. When a further increases, contrary

to that in a = 0 and a = 1, the average ∆ is much larger for small sensor number M

than the steady value for large M . It is also noticeable that the MSE improvement

from SR-WLS over SR-LS is more significant as the noise becomes more correlated.

For a = 5, the minimum average ∆ is 1.8.

Fig. 2.6 shows the corresponding results as in Fig. 2.5 for the average of the bias

ratio δ = bias(SR-LS)/bias(SR-WLS). The average δ is smaller than 0.6 in each curve

and SR-LS has smaller bias. For uncorrelated noise a = 0, the average δ decreases

before M = 8, increases between M = 8 and M = 20, and finally converges to 0.24.

From a = 1 to a = 5, each curve decreases with increasing sensor number M . We

also notice that larger a produces smaller average δ.

Special Case with Large MSE Ratio ∆

Fig. 2.7 shows the simulation result of the geometry from Special Case 4 in [19] with

p = 20, where the source is at (0, 0) and the sensors are at (1, 0), (1, p) and (−1, p).

This geometry is known to be bad for SR-LS. We can see that the MSE of SR-WLS

achieves the CRLB, and has more than 18 dB improvement over SR-LS for noise

power below –20 dB. In addition, the bias in SR-WLS is about 45 dB smaller than

that in SR-LS for noise power below –20 dB.
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Figure 2.5: Average of MSE ratio ∆ between SR-LS and SR-WLS with different
sensor numbers M and noise correlation factors a in the first scenario.
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Figure 2.6: Average of bias ratio δ between SR-LS and SR-WLS with different sensor
numbers M and noise correlation factors a in the first scenario.
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Figure 2.7: MSE and bias comparison of SR-LS and SR-WLS under Special Case 4
in [19] with p = 20.

2.4.2 Comparison of SRD-LS and SRD-WLS

We use the following particular setting unless stated otherwise. The noise covariance

matrix is Qd =
σ2
d

2
(I + 11T ), corresponding to the noise correlation factor a equal to

1. For the first scenario, the distances between the sensors and source uo are at least

0.1, i.e., all the sensors are uniformly distributed in the annulus which is inside the

unit circle and outside the circle with radius 0.1. The purpose is to avoid the bad

geometries where the sensors are too close to the source.

Average MSE and Bias

Fig. 2.8 shows the average MSE result for M = 5 over 4,000 random geometries

under the first scenario. The average MSE for SRD-WLS is 1.14 dB smaller than
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Figure 2.8: Average MSE for SRD-LS and SRD-WLS in the first scenario, M = 5.

that of SRD-LS and achieves the CRLB accuracy. Unlike SR-WLS, SRD-WLS does

not introduce obvious bias compared to SRD-LS as can be seen in Fig. 2.9. If we

increase M to 10, the average improvement is 1.43 dB in MSE and 1.08 dB in bias.

The SRD-WLS improvement at some common geometries is significant as will be

shown in Fig. 2.16.

The results for the second scenario averaged over 4,000 random geometries are

shown in Figs. 2.10–2.11. When M = 5, SRD-WLS has 3.96 dB improvement in

average MSE and 1.79 dB improvement in average bias. ForM = 10, the improvement

in MSE and bias increases to 5.93 dB and 6.62 dB.
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Figure 2.9: Average bias for SRD-LS and SRD-WLS in the first scenario, M = 5.

−50 −45 −40 −35 −30 −25 −20 −15 −10
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

10 log(σ2
d
)

10
 lo

g(
M

S
E

)

 

 

theory mseSRD−LS
CRLB
mseSRD−LS
mseSRD−WLS

Figure 2.10: Average MSE for SRD-LS and SRD-WLS in the second scenario, M = 5.
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Figure 2.11: Average bias for SRD-LS and SRD-WLS in the second scenario, M = 5.

Distribution of MSE Ratio and Bias Ratio

The distributions of the theoretical MSE ratio and the bias ratio are generated from

200,000 random geometries from the first scenario. Fig. 2.12 shows the empirical

probability density functions of the MSE ratio ∆ = tr(QSRD-LS)/tr(QSRD-WLS) under

6 different sensor numbers. From M = 4 to M = 30, the distribution of ∆ becomes

more concentrated, and the probability that ∆ is near 1 or larger than 2.6 becomes

smaller. At M = 30, this distribution has mode near ∆ = 1.5 and ∆ > 1.5 has

higher probability than ∆ < 1.5. As M keeps increasing, the distribution of ∆ moves

toward right hand side. Hence it does not seem to have an upper limit of ∆ and we

can always have larger improvement in ∆ through increasing sensor number M .

Fig. 2.13 shows the empirical probability density functions of the logarithmic

bias ratio δ = bias(SRD-LS)/bias(SRD-WLS) under 5 different sensor numbers. For
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Figure 2.12: Empirical probability density functions of MSE ratio between SRD-LS
and SRD-WLS with different sensor numbers M in the first scenario.

M = 4, SRD-LS has slightly smaller bias. However, as M increases, the distributions

skew to the right and SRD-WLS gives smaller bias.

Comparison under Different Sensor Numbers M and Noise Correlations

We vary the sensor number M from 4 to 50 and noise correlation factor from integer

values of 0 to 5 in the first scenario and obtain the theoretical results from 4,000

random geometries. In Fig. 2.14, the minimum of the average of ∆ is 1.2, which

occurs when M = 4 and a = 0. For uncorrelated noise a = 0, the ∆ average increases

under small M and settles to 1.32. For the other a values, after M = 8 it keeps

increasing with larger sensor number M , indicating the MSE improvement of SRD-

WLS over SRD-LS can always strengthen as the number of sensors M increases.

Furthermore, larger a gives larger improvement.
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Figure 2.13: Empirical probability density functions of bias ratio between SRD-LS
and SRD-WLS with different sensor numbers M in the first scenario.
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Figure 2.14: Average of MSE ratio ∆ between SRD-LS and SRD-WLS with different
sensor numbers M and noise correlation factors a in the first scenario.
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Figure 2.15: Average of bias ratio δ between SRD-LS and SRD-WLS with different
sensor numbers M and noise correlation factors a in the first scenario.

Fig. 2.15 gives the average value of δ as the sensor number increases from 15 to

50. We do not give the result for M < 15 because δ can be bigger or smaller than 1

with nearly equal chances and its average value may not give proper indication about

the relative bias between SRD-LS and SRD-WLS. For uncorrelated noise a = 0, the

average value of δ is near 2 for the sensor numbers tested. For a between 1 and 5, it

is larger than 1.8 and tends to increase with larger sensor number.

Special Case with Large MSE Ratio ∆

Fig. 2.16 shows the simulation result of the Case 3 under correlated noise in Sub-

section 2.3.3 with p = 20. When the noise power is below 0.01, SRD-WLS offers

18.07 dB improvement in MSE over SRD-LS and achieves the CRLB performance.

The simulation uses the solution from SRD-LS to generate ri for the weighting of
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Figure 2.16: MSE and bias comparison of SRD-LS and SRD-WLS under Case 3 with
correlated noise, p = 20; where dashed line and � represent theoretical and simulated
bias of SRD-LS, and dotted line and × represent theoretical and simulated bias of
SRD-WLS.

SRD-WLS. Even though the SRD-LS solution is very inaccurate, SRD-WLS is able

to maintain good results when σ2
d is not larger than 0.01. At σ2

d = 0.1, the threshold-

ing effect in the SRD-LS solution occurs, which makes the performance of SRD-WLS

deviates quickly from the CRLB. If we use uo instead in SRD-WLS to obtain ri for

the weighting, we still have good performance at σ2
d = 0.1. The bias of SRD-WLS is

28.57 dB smaller than that of SRD-LS when noise level is below σ2
d = 0.01.

The average MSE improvements of SR-WLS and SRD-WLS are not obvious as

shown in Fig. 2 and Fig. 8 when the sensor number is small. However, under some

unfavorable geometries such as the ones used in Fig. 7 and in Fig. 16, significant

performance gains are observed. It is expected that SR-WLS and SRD-WLS will be

beneficial and offer considerable better results when the localization geometries are
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not favorable.

It should be noted that the proposed SR-WLS and SRD-WLS cost functions

require the measurement noise covariance matrix to be known, as in the case of

typical WLS, in order to reach the optimum CRLB performance.

2.5 Conclusion

In this chapter, we propose the introduction of range weighting factors to the SR-LS

and SRD-LS cost functions to improve their solution accuracy. The resulting cost

functions, called SR-WLS and SRD-WLS, maintain the attractive computational ef-

ficiency of SR-LS and SRD-LS to obtain global and closed-form solutions, while over-

coming the disadvantage of SR-LS and SRD-LS that have suboptimum performance

and yield very large localization errors under some geometries. The location MSE and

bias obtained from the solutions of SR-WLS and SRD-WLS are analyzed theoreti-

cally and they are contrasted with those from SR-LS and SRD-LS. We also elaborate

the performance differences between SR-LS and SR-WLS, and between SRD-LS and

SRD-WLS in terms of localization geometry, sensor number and noise correlation.

The proposed SR-WLS is shown to yield a solution reaching the CRLB accuracy un-

der Gaussian noise and has better MSE performance than SR-LS. However, SR-WLS

has larger bias compared to SR-LS. Nevertheless, the bias is relatively small and neg-

ligible compared to the MSE. If needed, the bias can be estimated and subtracted

from the location estimate of SR-WLS to reduce the bias. The proposed SRD-WLS is

also proved to be able to yield an efficient solution and has lower MSE than SRD-LS.

Unlike the case of range measurements, SRD-WLS has smaller solution bias than
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SRD-LS as well, when the number of sensors is not critical. In both SR-WLS and

SRD-WLS, the improvement over SR-LS and SRD-LS increases as the number of

sensors or the amount of noise correlation increases. The study illustrates the ad-

vantage of the proposed weighting in improving localization accuracy, especially for

range difference based localization.

The performance gain from range weighting factors in SR-WLS or SRD-WLS is

quite effective when the source is near or inside the sensors array such as in sensor

network applications. If the source is too close to a sensor, the source range could

be close to zero and adding a small constant to the range before forming the weight

may be needed to avoid numerical instability. The effect of weighting becomes less

significant when the source is far away from the sensors, since all the distances between

the source and sensors are close and SR-WLS and SRD-WLS will reduce back to SR-

LS and SRD-LS.
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Chapter 3

Weighting Technique in the
Presence of Sensor Position Errors

In practice, the sensor positions may not be exactly known, such as in a sensor network

in which the node positions are estimated by anchors. Sensor position errors degrade

the localization performance considerably [39, 40] and their statistics should be taken

into consideration in order to reach better performance [41, 42].

This chapter extends the study of Chapter 2 and derives the weightings when the

sensor position uncertainties are present. The resultant cost functions for TOA and

TDOA positionings are analyzed and the performance accuracy is shown to attain

the CRLB asymptotically under Gaussian noise.

The rest of this chapter is organized as follows. Section 3.1 introduces the scenarios

for TOA and TDOA localizations and provides the CRLBs of the source location es-

timate. Section 3.2 proposes the new cost function for TOA positioning and analyzes

its solution accuracy. Section 3.3 is for the new cost function of TDOA position-
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ing and its accuracy analysis. Section 3.4 gives the simulation results to verify the

performance of the proposed new cost functions and support the theoretical studies.

Section 3.5 concludes this chapter.

3.1 Localization Scenario and CRLB

3.1.1 Localization Scenario

Let us begin the source localization problem in 3D by having M sensors to collect

the range-based measurements from a source as shown in Fig. 3.1. The source

position to be estimated is represented by uo = [xo yo zo]T . The sensor positions

during acquisition are soi = [xoi y
o
i z

o
i ]
T , i = 1, 2, . . . , M . They are not known to a

location estimator and we only have the erroneous positions si = soi + nsi , where

nsi is the position error of sensor i. We collect the sensor positions in a vector as

s = so+ns, where so =
[
soT1 soT2 · · · soTM

]T
and ns =

[
nTs1 nTs2 · · · nTsM

]T
. In this study,

we consider ns is zero-mean Gaussian with known covariance Qs. The localization

problem has unknown parameters [uoT soT ]T .

We assume line-of-sight (LOS) propagation and sufficient SNR such that the ac-

quired TOAs and TDOAs can well be modelled by Gaussian distribution with covari-

ance matrix governed by their CRLBs. The localization accuracy is indirectly related

to the received waveforms, signal and noise bandwidths, SNR and observation time

through the covariance matrices of the TOAs and TDOAs [34, 44, 45, 46, 47].

The TOA and TDOA measurements are the same as that in Chapter 2, but we

need to use soi instead to represent the true sensor position. In both range and
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Figure 3.1: Localization scenario. Open circles are the true sensor positions and
closed circles are the available sensor positions.

range difference cases, the measurement noise and sensor position noise are assumed

independent for ease of illustration. The collection of the measurement and sensor

position noise is either [nT ,nTs ]T or [nTd ,n
T
s ]T .

3.1.2 CRLB

In the asymptotic region in which the estimation bias is small compared to variance,

the localization performance can be characterized by the CRLB. Utilizing the CRLB

analysis in [39] and taking further simplification, the CRLB for a source position

estimate in range localization is

CRLB(uo) =
[
Γ(Q + ATQsA)−1ΓT

]−1
, (3.1)
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where Γ = [ρ1 ρ2 · · · ρM ], A = −blkdiag(ρ1, ρ2, . . . , ρM), and blkdiag(?) is the

block diagonal matrix notation. The vector ρi = (uo− soi )/‖uo − soi‖, which is a unit

vector pointing from sensor i to the source.

For range difference localization, we have

CRLB(uo) =
[
Γd(Qd + AT

dQsAd)
−1ΓT

d

]−1
(3.2)

where Γd = [ρ21 ρ31 · · · ρM1], ρi1 = ρi − ρ1,

Ad =

 ρ11
T

−blkdiag(ρ2, ρ3, . . . , ρM)

 ,
and 1 is a length (M -1) vector of unity.

3.2 Squared Range Cost Function and Analysis

3.2.1 New SR-WLS Cost Function

We shall define the squared range weighted least-squares (SR-WLS) cost function to

obtain the source location estimate as

fSR-WLS(u) =
M∑
i,j=1

w̃ij(r
2
i − ‖u− si‖2)(r2j − ‖u− sj‖2). (3.3)

Note that the unknown of the cost function is u only and s is kept as the noisy sensor

positions. The objective is to find the weights w̃ij to improve as much accuracy as

possible since the cost function is constructed with the noisy sensor positions.

57



The residual squared range error at the true source location is

ei = r2i − ‖uo − si‖2

= (roi + ni)
2 − ‖uo − soi − nsi‖2

≈ 2roini + 2(uo − soi )
Tnsi

= 2roi
(
ni + ρTi nsi

)
.

The approximation comes from ignoring the second order noise terms and we have

used ρi to represent (uo − soi )/r
o
i . According to the WLS estimation theory [20], the

weights should be the elements of W = C−1, where C is the correlation matrix whose

(i, j)-th element is E[eiej]. Defining B = 2 diag(ro1, r
o
2, . . . , r

o
M),

W = [B(Q + ATQsA)B]−1 (3.4)

where A is defined below (3.1). W is not known since it depends on the true range

values and the true source and sensor positions. Let us construct the noisy version

of B from the measurements as B̃ = 2diag(r1, r2, . . . , rM) and that of A as Ã by

replacing ρi as ρ̃i = (ũ − si)/ri, where ũ is some estimate of uo. We choose the

weights w̃ij in (3.3) as the elements of

W̃ = [B̃(Q + ÃTQsÃ)B̃]−1 . (3.5)

We shall show from the first order analysis that although we use the noisy mea-

surement values to form the weights, the minimum of the cost function (3.3) is able

to reach the CRLB accuracy in the asymptotic region.
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3.2.2 MSE Analysis

We shall evaluate the MSE matrix of the minimum solution of (3.3) using the MSE

analysis technique in Chapter 2.

It is reasonable to assume the source location ũ used in forming W̃ is different

from the true source location by random noise. Hence the weights in (3.3) can be

expressed as w̃ij = wij + o(1), where wij is the (i, j)-th element of (3.4).

The first derivative from (3.3) is,

∂fSR-WLS(u)

∂u
= −4

M∑
i,j=1

w̃ij
(
r2i − ‖u− si‖2

)
(u− sj) . (3.6)

Expressing w̃ij in terms of wij and substituting ri = roi + ni and si = soi + nsi , we

arrive at after some algebraic manipulations,

f ′SR-WLS = −8
M∑
i,j=1

roiwijr
o
j (ni + ρTi nsi)ρj + o (‖n‖) 1

= −2ΓBWB(n−ATns) + o (‖n‖) 1 , (3.7)

where 1 represents a 3× 1 vector of unity. Hence using (3.4),

E[f ′SR-WLSf
′T
SR-WLS] ≈ 4ΓBWB(Q + ATQsA)BWBΓT

= 4Γ(Q + ATQsA)−1ΓT . (3.8)

For the second derivative,

∂2fSR-WLS(u)

∂u∂uT
= −4

M∑
i,j=1

w̃ij[−2(u− si)(u− sj)
T + (r2i − ‖u− si‖2)I] (3.9)
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where I is an identity matrix. Again, expressing the noisy qualities in terms of the

true values yields

F′′SR-WLS = 8
M∑
i,j=1

roiwijr
o
jρiρ

T
j + o(1)11T

= 2ΓBWBΓT + o(1)11T . (3.10)

Its constant component excluding noise is, after using (3.4),

F
′′
SR-WLS = 2Γ(Q + ATQsA)−1ΓT . (3.11)

Utilizing the MSE formula (2.17) gives immediately

QSR-WLS =
[
Γ(Q + ATQsA)−1ΓT

]−1
, (3.12)

which is exactly the CRLB in (3.1) for range localization in the presence of sensor

position errors. Thus the solution of the new SR-WLS cost function is asymptotically

efficient.
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3.3 Squared Range Difference Cost Function and

Analysis

3.3.1 New SRD-WLS Cost Function

Let pi = (ri1 + ‖u− s1‖)2 − ‖u − si‖2. The new squared range difference weighted

least-squares (SRD-WLS) cost function is

fSRD-WLS(u) =
M∑
i,j=2

w̃dijpipj, (3.13)

where the unknown is considered to be u only and w̃dij is the weights to be found to

improve performance.

Since ‖uo− s1‖ ≈ ro1 −ρT1 ns1 by the Taylor series expansion, the residual error at

the true source location is

(ri1 + ‖uo − s1‖)2 − ‖uo − si‖2 ≈ 2roi (ni1 − ρT1 ns1 + ρTi nsi) (3.14)

after putting ri1 = roi1 + ni1 and si = soi + nsi . Using the same argument as for the

range case, the ideal weightings are the elements of

Wd = [Bd(Qd + AT
dQsAd)Bd]

−1 (3.15)

where Bd = 2diag(ro2, r
o
3, . . . , r

o
M) and Ad is defined below (3.2). Let r̃1 = ‖ũ − s1‖

and ũ is an initial source location estimate. Also, let r̃i = ri1 + r̃1, i = 2, 3, . . . , M

and ρ̃i = (ũ− si)/r̃i. We shall define B̃d = 2diag(r̃2, r̃3, . . . , r̃M) and Ãd as Ad by

replacing ρi with ρ̃i. The weights w̃dij in (2.38) are the elements of

61



W̃d = [B̃d(Qd + ÃT
dQsÃd)B̃d]

−1 . (3.16)

3.3.2 MSE Analysis

Following the same procedure as in the range localization case, we have for the first

derivative,

f ′SRD-WLS = −2ΓdBdWdBd(nd −AT
d ns) + o (‖n‖) 1 (3.17)

and hence after using (3.15)

E[f ′SRD-WLSf
′T
SRD-WLS] ≈ 4Γd(Qd + AT

dQsAd)
−1ΓT

d . (3.18)

For the second derivative,

F
′′
SRD-WLS = 2Γd(Qd + AT

dQsAd)
−1ΓT

d . (3.19)

Putting them into (2.17) yields

QSRD-WLS =
[
Γd(Qd + AT

dQsAd)
−1ΓT

d

]−1
. (3.20)

QSRD-WLS is the CRLB expression (3.2) for range difference localization under

sensor position errors. As a result, the solution of the new SRD-WLS cost function

is also asymptotically efficient.

Generating the new weights w̃ij or w̃dij requires a coarse estimate of the source
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location ũ. It can be easily generated by using a localization algorithm, e.g. SR-WLS

in Chapter 2, by pretending the sensor position errors are absent.

3.4 Simulations

In this section, we shall validate the asymptotic efficient performance of the SR-

WLS and SRD-WLS cost functions that address sensor position errors, using one

specific geometry and 200 random geometries. The specific localization geometry

is taken from [39], where the true locations of the sensors are shown in Table 1

and the source is at uo = [700, 650, 550]T . The sensor position covariance is Qs =

σ2
sdiag(1, 2, 10, 40, 20, 3)⊗ I3, I3 is an identity matrix of size 3 and ⊗ is the Kronecker

product. For the random geometries, we use M = 10 sensors. The sensors and the

source are placed with independent, identically distributed (IID) uniform distribution

in each coordinate within a cube of length 1000. To avoid degenerate geometry that

yields poor performance, we maintain a minimum distance of 25 between the source

and a sensor. The sensor position covariance is Qs = σ2
sdiag(σ2

1, σ
2
2, . . . , σ

2
M) ⊗ I3,

where σi’s are created randomly with IID uniform distributions and are normalized

so that
∑M

1 σ2
i = 1. A new Qs is used for each random geometry.

Table 1: The true positions of sensors

sensor no. i 1 2 3 4 5 6

xoi 300 400 300 350 -100 200

yoi 100 150 500 200 -100 -300

zoi 150 100 200 100 -100 -200
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The GTRS solution [18] is used to solve for the SR-WLS cost function and the

exact solution in [17] for the SRD-WLS cost function. For reference purpose, we also

provide the results of the MLE that jointly estimates the source and sensor positions.

The MLE is implemented by the Gauss-Newton method, where the initialization of

each coordinate of the source is the true value added with independent zero-mean

Gaussian white noise with variance equal to two times the CRLB, and the initial-

izations of sensor positions are the erroneous sensor positions. We stop the iteration

once the parameter change in the current step is larger than that in the previous step.

The range measurement covariance matrix is Q = σ2I, and that of the range

difference measurement is Qd = σ2(I + 11T )/2 [2], where we fix the noise level at

σ2 = 10−3 . The performance index is mse =
∑L

l=1 ||u(l) − uo||2/L, where u(l) is the

estimate at ensemble l and L = 2000 is the number of ensemble runs.

Fig. 3.2 shows the results for the specific geometry in range localization. The

GTRS solution of the new cost function performs close to the MLE and attains

the CRLB accuracy. It provides about 5.5 dB improvement over the previous SR-

WLS cost function that does not take the sensor position errors into account when

σ2
s becomes significant. For the random geometry results shown in Fig. 3.3, the

observations are consistent and the improvement is about 4 dB.

For range difference localization, the results for the specific geometry are depicted

in Fig. 3.4. The new cost function yields the CRLB accuracy and matches the MLE

performance. We would like to point out that the MLE experiences the thresholding

effect at around σ2
s = 10−0.2, which is caused by the sensitivity of initialization and

by the large number of unknowns to be found. On the other hand, the solution

from the new SRD-WLS cost function is relatively stable and provides about 4 dB
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Figure 3.2: Range (TOA) localization performance of SR-WLS considering sensor
position errors, under the specific geometry in Table 1.
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Figure 3.3: Range (TOA) localization performance of SR-WLS considering sensor
position errors, under the 200 random geometries.
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Figure 3.4: Range difference (TDOA) localization performance of SRD-WLS consid-
ering sensor position errors, under the specific geometry in Table 1.

improvement over previous SRD-WLS that ignores the sensor position errors. The

observations are similar for the random geometry results shown in Fig. 3.5, and the

new cost function has about 2.5 dB improvement.

3.5 Conclusion

Proper weightings must be used in the squared range and squared range difference cost

functions to compensate for the effect of squaring. The weights derived in Chapter

2 is not adequate when the sensor positions contain errors. In this chapter, we

generalize the study and develop the new weights that take the sensor position errors

into account to improve performance. We show from the first order analysis under

Gaussian noise that although the weights are constructed from the measurements that
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Figure 3.5: Range difference (TDOA) localization performance of SRD-WLS consid-
ering sensor position errors, under the 200 random geometries.

are noisy, the performance of the source location solution closely follows the CRLB

asymptotically. The new cost functions enable the application and development of

algebraic solutions, and improve the computational efficiency relative to the iterative

MLE.
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Chapter 4

Estimation of Rigid Body Position
and Orientation

We start to handle the estimation of orientation in addition to position. Obtaining the

position and orientation of a rigid body is an important subject for many applications

in robotics, automobiles, spacecraft, underwater vehicles, gaming and many others

[48, 49, 50, 51]. In this chapter, we discuss the estimation algorithm under distance

measurements (additional Doppler measurements for moving rigid body). Similar

study under AOA measurements will be discussed in next chapter.

This chapter is organized as follows. Section 4.1 provides the scenario for the rigid

body localization problem. Section 4.2 describes the proposed method for locating a

stationary rigid body. Section 4.3 presents an additional solution for the localization

problem in the 2D space. Section 4.4 focuses on moving rigid body localization.

Section 4.5 elaborates on the expected performance of the proposed methods and

examines computational complexity. Section 4.6 supports the performance of the
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proposed solutions by simulations. Section 4.7 presents alternative method for moving

rigid body in 2D case. Section 4.8 concludes the chapter.

In this chapter, vec(A) is a column vector by stacking the columns of A, det(A)

is the determinant. The symbol � represents the Hadamard product and ⊗ the

Kronecker product. We have the matrix vectorization formula that [70]

vec(XYZ) = (ZT ⊗X)vec(Y) . (4.1)

4.1 Scenario

Fig. 4.1 illustrates the localization scenario. The rigid body we would like to locate

has N sensors mounted whose positions at the local reference frame B are ci ∈ RK ,

where i = 1, 2, . . . , N and K is the dimension of localization. The reference frame

here refers to a set of oriented orthonormal vectors at a certain position. B has the

orientation represented by the rotation matrix R ∈ RK×K and the origin denoted

by the position vector t ∈ RK with respect to the inertial reference frame I. The

rotation matrix must belong to the special orthogonal group SO(K) = {R ∈ RK×K :

RTR = I, det(R) = 1} [62].1

In I the position of the i-th sensor is [53]

si = Rci + t . (4.2)

We shall determine R and t using M anchors whose positions are exactly known

1Note that the condition RTR = I alone is not sufficient since det(R) can be +1 or -1, and the
case of det(R) = −1 yields a reflection matrix that is not able to describe the rigid transformation.
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Figure 4.1: An illustration for rigid body localization, shown in 2D for ease of illus-
tration. (a) The known sensor position ci in the local reference frame B; (b) The
unknown sensor position si in the inertial reference frame I that is related to ci by
(4.2) through the rotation and translation between the two reference frames.

at am ∈ RK in I, m = 1, 2, . . . ,M . The anchors provide the distance measurements

to the sensors which are modelled as [53]

rmi = romi + nmi (4.3a)

= ‖am − si‖+ nmi (4.3b)

= ‖am −Rci − t‖+ nmi (4.3c)

where romi = ‖am − si‖ and nmi is the additive noise. The collection of all measure-

ments together forms the vector r = ro + n. The noise vector n follows zero-mean

Gaussian distribution with covariance matrix Qn.

For a moving rigid body, the velocity of the individual sensor in the inertial frame

is ṡi, while the motion of the entire rigid body is characterized by the angular velocity
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ω and translational velocity ṫ. Applying the time derivative of si in (4.2) gives the

relation

ṡi = [ω]×Rci + ṫ . (4.4)

[∗]× is the cross product operator matrix [62] that maps the vector ω to a skew-

symmetric matrix.2

The Doppler measurements from the motion of a rigid body are [71]

ṙmi =
(si − am)T

romi
ṡi + ṅmi . (4.5)

We use the terms Doppler shift and range rate interchangeably because they differ

only by a scaling factor of the propagation speed divided by the carrier frequency.

The Doppler measurement vector is ṙ = ṙo + ṅ and the Doppler noise vector ṅ is

zero-mean Gaussian with covariance Qṅ. Together with the distance measurement

noise, [nT , ṅT ]T follows a zero-mean Gaussian distribution with covariance matrix Q.

The problem can be stated as follows. Given the distance measurements rmi and

the relative sensor positions in the local frame B, obtain the rotation matrix R and

the position vector t of the rigid body as observed in the inertial reference frame I.

If the rigid body is moving, estimate the angular and translational velocities as well

through the additional Doppler measurements.

2It is equal to (4.35) in 3D or (4.36) in 2D.
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4.2 Stationary Rigid Body Localization

The positioning solution for stationary rigid body developed in this section is general

and is applicable to both 2D and 3D cases.

4.2.1 Step-1: Preliminary Solution

Rather than obtaining R and t directly from the measurements, we resort to the

DAC approach proposed by Abel [67]. The idea is to use the sensor positions in

I as the intermediate variables to obtain the rotation and translation parameters.

Essentially, we first separate the distance measurements to N non-overlapping sets,

each containing the measurements from the anchors to the same sensor. The sensor

positions are solved independently from each measurement set. Next, we impose the

model (4.2) between si and ci to determine the rotation matrix and translation vector.

The estimation of a sensor position using distance measurements from a number

of anchors is a well known TOA localization problem and the amount of solutions

available in the literature is abundant, such as the closed-form two-stage method [2]

[39] and the GTRS solution [17]. The two-stage method has a lower noise threshold

than the GTRS method but it is much more computationally efficient. Solving the

sensor positions individually requires at least K + 1 distance measurements for each

sensor to ensure a unique solution. We shall denote the estimated sensor positions as

ŝi.

Determining the rotation and translation relationship between two sets of data

points at different coordinates, ŝi and ci in our case, is a typical problem in pattern

analysis [72, 73] or general Procrustes analysis. It can be formulated as a least squares
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minimization problem as

min
R,t

N∑
i=1

[ŝi − (Rci + t)]TWi[ŝi − (Rci + t)]

s.t. R ∈ SO(K) (4.6)

where the optimal weighting Wi is the inverse of the covariance of ŝi. This opti-

mization in general does not admit a closed-form solution except for the 2D case.

Alternatively, we consider the non-negative scalar weighting

min
R,t

J =
N∑
i=1

wi‖ŝi − (Rci + t)‖2

s.t. R ∈ SO(K) (4.7)

which corresponds to the weighting matrix of the form Wi = wiI.

Let us denote the weighted average values

s̄ =
N∑
i=1

wiŝi/
N∑
i=1

wi, c̄ =
N∑
i=1

wici/
N∑
i=1

wi .

By setting to zero the derivative of J with respect to t, we obtain the solution of t as

t = s̄−Rc̄ . (4.8)
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We shall denote s̃i = ŝi − s̄ and c̃i = ci − c̄. Putting (4.8) back to J gives

J =
N∑
i=1

wi‖s̃i −Rc̃i‖2

= −2
N∑
i=1

wis̃
T
i Rc̃i +K

= −2 tr(R
N∑
i=1

wic̃is̃
T
i ) +K (4.9)

whereK =
∑N

i=1wi(||s̃i||2+||c̃i||2) is a constant independent of R. Note that RTR = I

has been used. Minimizing J is equivalent to maximizing tr(R
∑N

i=1wic̃is̃
T
i ). Let the

SVD of
∑N

i=1wic̃is̃
T
i be UΣVT , then the optimal solution is [73]

R = Vdiag([1T , det(VUT )]T )UT , (4.10)

where the length of 1 is K−1, and the value det(VUT ) ensures the resulting rotation

matrix fulfills det(R) = 1. Putting (4.10) back to (4.8) gives the solution for the

translation vector. We shall denote the solution from step-1 as (R̂, t̂).

4.2.2 Step-2: Refinement

We square both sides of distance equation (4.3b), ignore the second order noise term

and substitute (4.2) to obtain [53]

r2mi = (‖am − si‖+ nmi)
2 (4.11a)

≈ ‖am‖2 − 2aTmsi + ‖si‖2 + vmi (4.11b)

= ‖am‖2 − 2aTm(Rci + t) + ‖ci‖2 + 2tTRci + ‖t‖2 + vmi (4.11c)
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where vmi = 2rominmi. The collection of vmi gives the composite noise vector v for

the squared range values, which has a covariance matrix Qv = 4 diag(ro)Qndiag(ro)

that is dependent on the true ranges. For implementation purpose, we replace the

true range values by the measurements. Simulations show that the performance

degradation is negligible, especially when the rigid body is far from the anchors.

Obtaining R and t directly from the squared measurements r2mi in (4.11c) is diffi-

cult because it contains the nonlinear terms tTR and ‖t‖2. We handle this challenge

by expressing (4.11c) in terms of the correction to the step-1 solution (R̂, t̂) and

solving for the correction instead.

We can always decompose the translation vector as t = t̂ + ∆t. Under the

assumption that the correction is not much such that ‖∆t‖/‖t̂‖ is small enough to

be neglected,

‖t‖2 ≈ ‖t̂‖2 + 2t̂T∆t . (4.12)

In addition,

tTR ≈ t̂TR + ∆tT R̂ (4.13)

where ∆tTR ≈ ∆tT R̂ has been used, which is valid when we ignore the second order

correction between R and t to the step-1 solution.

Using linear approximations (4.12) and (4.13) in (4.11c) yields

r2mi − (‖t̂− am‖2 + ‖ci‖2)

= 2(t̂− am)TRci + 2(R̂ci + t̂− am)T∆t + vmi. (4.14)
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The refinement will be based on this equation. We should emphasize that R above

needs to satisfy the SO(K) constraint.

It is tempted to use the same additive correction to decompose R as for t. Such a

decomposition is unfavorable since it is R that needs to satisfy the SO(K) constraint,

rather than the additive correction. Here the rotation matrix R is expressed in

multiplicative form as

R = R̂Rδ , (4.15)

where Rδ is the corrective rotation matrix applied to R̂. The factorization is unique

since Rδ is equal to R̂TR when premultiplying (4.15) by R̂T .

Rδ is represented by the Euler angles roll φ, pitch θ, and yaw ψ with sequence

(1, 2, 3) [62]. Note that these Euler angles are close to zero when the preliminary

solution is not far from the optimum. Using the approximation that cos x ≈ 1 and

sinx ≈ x for small x, we have for the 3D scenario [62]

Rδ =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ

cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ

 (4.16a)

≈


1 ψ −θ

−ψ 1 φ

θ −φ 1

 (4.16b)

where cx = cosx and sx = sinx.

In terms of the Euler angle vector β = [φ, θ, ψ]T , the vectorization of (4.16b) is

vec(Rδ) = γ + Lβ (4.17)
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where γ and L are defined in Appendix B.3. For the 2D scenario, Rδ is a 2 × 2

matrix given by (4.16a) after removing the middle column and the middle row. The

vectorized form (4.17) remains valid with different definitions of γ, L and β.

Using multiplicative correction (4.15) and the vectorization formula, collecting

refinement equation (4.14) for all the measurements in a column gives

d̆−H1γ = H1Lβ + F2∆t + v , (4.18)

where d̆ is a vector whose elements are the left hand side of (4.14). The rows of the

matrix H1 and F2 are 2[cTi ⊗ ((t̂−am)T R̂)] and 2(R̂ci+ t̂−am)T , respectively. (4.18)

is a linear equation in the unknowns β and ∆t, whose WLS solution is

 β̂
∆t̂

 =
(
HTQ−1v H

)−1
HTQ−1v (d̆−H1γ) , (4.19)

where H = [H1L F2] and Qv is defined below (4.11c).

After obtaining the Euler angles, we use them to construct the original Rδ as

defined in (4.16a) without using the small angle approximation and obtain the final

estimate of R from (4.15). Since both R̂ and the original Rδ are in SO(K), the

resulting solution for R will satisfy the SO(K) constraint. Adding ∆t̂ to t̂ yields the

refined position vector.

The refinement solution developed here assumes the preliminary solution from

step-1 is not far from the optimum. Simulations validate that the accuracy of the

preliminary solution is sufficient to initiate the refinement procedure for producing

a final solution approaching the CRLB accuracy. If the preliminary solution is less
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accurate, the refinement step can be repeated one more time by updating R̂ and t̂.

Note that the proposed step-2 refinement solution is not tied to the step-1 solution.

Other initial solutions, such as the SCLS and CLS from [53] can be used instead.

Nevertheless, the more accurate the initial solution, the better will be the refined

solution.

4.3 2D Case

Here we discuss the special case where there is only one rotational degree of freedom

for the rigid body. In such a case, the rotational axis is perpendicular to a certain

plane. To facilitate the algorithm description, we consider the anchors and sensors are

on the x-y plane. Otherwise, we can augment the rotation matrix as block diagonal

with blocks R and 1 and add the third dimension into the translation vector t to

make the proposed method applicable.

We shall obtain the unknowns R and t directly from the measurements without

first solving the intermediate variables si. One advantage of not using the intermediate

variables is that the algorithm can tolerate a larger noise level before the thresholding

effect, due to the nature of the nonlinear estimation problem, occurs [74]. In addition,

we only need a minimum of 2 distance measurements for each sensor as will be clear

later.

When we represent R ∈ R2×2 in four variables [53], there will be four constraints

from SO(2) on the elements: three from RTR = I and one from det(R) = 1. Instead,

78



we express the rotation matrix as

R =

cos θ − sin θ

sin θ cos θ

 (4.20)

where θ is the rotation angle of the local frame B with respect to the inertial frame I

and it is counted in the counter-clockwise direction (see Fig. 4.1). This representation

limits R to be in SO(2) automatically. Through such representation, the step-1 and

step-2 solutions can be obtained efficiently using the GTRS optimization technique.

4.3.1 Step-1

We shall begin with the squared range equation (4.11b). Stacking (4.11b) over the

available measurements for sensor i gives the vector form

di = −2AT si + ‖si‖21 + vi (4.21)

where di is a vector with elements r2mi − ‖am‖2 and A is a matrix with columns

am. Let the covariance matrix of vi be Qi, which is the i-th diagonal block of Qv

defined below (4.11c). We can express ‖si‖2 in terms of si in a WLS manner using

the weighting matrix Q−1i as

‖si‖2 = (1TQ−1i 1)−11TQ−1i (di + 2AT si) (4.22)
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Putting it back to (4.21) and substituting (4.2) as well give

Tidi = −2TiA
T si + vi (4.23a)

= −2TiA
TRci − 2TiA

T t + vi (4.23b)

where Ti = I− 11TQ−1i /(1TQ−1i 1). (4.23b) is valid as long as there are at least two

measurements for each sensor so that Ti is not zero.

Obtaining θ directly from (4.23b) could be complicated since it appears as non-

linear functions cos θ and sin θ inside R. Note that optimizing over θ is equivalent

to optimizing over y = [cos θ sin θ]T with the constraint ‖y‖2 = 1. Such an indirect

approach will enable us to obtain a closed-form solution.

The vectorization of R can be expressed in terms of y as

vec(R) = Γy (4.24)

where Γ is a 4× 2 sparse matrix with the (1, 1), (2, 2) and (4, 1) elements equal to 1

and (3, 2) element −1. Using the vectorization formula (4.1) in the first term on the

right of (4.23b) yields

Tidi = −2(cTi ⊗TiA
T )Γy − 2TiA

T t + vi (4.25)

which is linear in the unknowns y and t. Since they are common in all of the N

sensors, stacking above equation over i forms the vector equation

d̄ = E1y + E2t + v (4.26)
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where d̄ is the concatenation of the subvectors Tidi, and E1 and E2 are matrices

formed by stacking the blocks −2(cTi ⊗TiA
T )Γ and −2TiA

T .

The translation parameter t is unconstrained. The WLS solution for t in terms

of y is

t =
(
ET

2 Q−1v E2

)−1
ET

2 Q−1v (d̄− E1y) (4.27)

where the weighting matrix is Q−1v [20]. Let P = I − E2

(
ET

2 Q−1v E2

)−1
ET

2 Q−1v .

Putting the estimated t (4.27) back to (4.26) yields

Pd̄ = PE1y + v. (4.28)

We now need to solve the constrained optimization problem for y:

min
y

(Pd̄−PE1y)TQ−1v (Pd̄−PE1y)

= (d̄− E1y)TQ−1v P(d̄− E1y)

s.t. ‖y‖2 = 1, (4.29)

where we have used PTQ−1v P = Q−1v P.

This quadratic optimization problem with a quadratic equality constraint can

be solved by GTRS [17, 18] efficiently to obtain the global minimum solution. In

particular, the solution is

y(λ) = (ET
1 Q−1v PE1 + λI2)

−1ET
1 Q−1v Pd̄ (4.30)
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and λ is the largest real root of

ϕ(λ) = ‖y(λ)‖2 − 1 (4.31)

λ ∈
(
−λmin(ET

1 Q−1v PE1),∞
)

where λmin(∗) is the smallest eigenvalue of (∗). The smallest eigenvalue is straight-

forward to obtain since the matrix ET
1 Q−1v PE1 has a size of 2 only.

The numerator of ϕ(λ) is quartic in λ and the root finding is straightforward to

implement. Once we obtain the solution y (and hence θ), t is immediately available

from (4.27).

Rather than using the above procedure of expressing t in terms of y and solving y

through (4.29), an alternative is to obtain them together by considering ξ = [yT , tT ]T

as a single unknown in (4.26) through the minimization of (d̄ − Eξ)TQ−1v (d̄ − Eξ)

s.t. ξTPξ = 1 using GTRS, where E = [E1,E2] and P = diag(I2,O2). Solving them

together can reduce computation if M and N are large. It can be shown analytically

that both procedures will give the same solution of y and t.

4.3.2 Step-2

With the solution R̂ and t̂ from step-1, applying the vectorization formula (4.1) and

vec(R) in (4.24) to the first term on the right of the refinement equation (4.14) gives

r2mi − (‖t̂− am‖2 + ‖t̂‖2) ≈ fTmi,1y + fTmi,2∆t + vmi (4.32)
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where

fTmi,1 = 2[cTi ⊗ (t̂− am)T ]Γ

fTmi,2 = 2(R̂ci + t̂− am)T . (4.33)

Collecting the equations for all distance measurements into a single column forms

d̆ = F1y + F2∆t + v (4.34)

where d̆, F1 and F2 are the vector and matrices by collecting the elements on the left

side and the rows fTmi,1 and fTmi,2. (4.34) has the same structure as (4.26) in step-1

and the same procedure by using GTRS applies to the refinement as well to obtain

the final estimates of y and ∆t. Adding the estimate ∆t to t̂ yields the improved

solution for t.

4.4 Moving Rigid Body Localization

We have so far considered the rigid body is stationary. There are many occasions in

practice that the rigid body has motion, for example, a vehicle moving on the ground

or an aircraft flying in the air. Simply pretending a moving rigid body is stationary

will lead to poor localization performance. Assuming the angular and translational

velocities are known may not be reasonable. We shall extend the study to localize a

moving rigid body by estimating R, t, ω and ṫ using both the distance and Doppler

measurements.
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In the sensor velocity model (4.4), the matrix [ω]× is [62]

[ω]× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.35)

for the 3D case and

[ω]× =

0 −ω

ω 0

 (4.36)

for the 2D case. The vectorized form of [ω]× that packs the angular velocity compo-

nents in a vector is

vec([ω]×) = Φω (4.37)

where

Φ =


0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0

0 1 0 −1 0 0 0 0 0


T

, (4.38)

ω = [ω1, ω2, ω3]
T

in the 3D case and

Φ = [0, 1, −1, 0]T , ω = ω (4.39)

in the 2D case.

Rather than using Doppler equation (4.5) directly, we multiply it and the distance
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equation (4.3a) to obtain

rmiṙmi = sTi ṡi − aTmṡi + ṙminmi + rmiṅmi (4.40)

where the second order noise term nmiṅmi is neglected.

It is straightforward to verify cTi RT [ω]×Rci = 0 since [ω]× is skew-symmetric.

Substituting si in (4.2) and ṡi in (4.4) relates (4.40) to the unknowns to be found:

rmiṙmi = (t− am)T [ω]×Rci + (Rci + t− am)T ṫ + ṙminmi + rmiṅmi . (4.41)

The unknowns appear coupled with each other. The first term on the right contains

the products of three unknowns and the second two. We shall follow the two steps

approach to obtain a solution, where the first step provides a coarse preliminary

solution and the second uses the preliminary solution to yield the final solution.

4.4.1 Step-1

Using the processing described in Section 4.2 or 4.3, we are able to obtain an estimate

of the rotation matrix and translation vector, which is denoted as (R̂, t̂). Approx-

imating R and t by the estimates (R̂, t̂) gives a linear equation in ω and ṫ from

(4.41),

rmiṙmi = [(R̂ci)
T ⊗ (t̂− am)T ]Φω + (R̂ci + t̂− am)T ṫ + ṙminmi + rmiṅmi , (4.42)

where [ω]× is expressed in the vectorized form (4.37) after applying the vectorization

formula. (4.42) is linear in ω and ṫ. Applying the WLS minimization over the
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available measurements yields their estimates ω̂ and ˆ̇t, where the weighting matrix is

[20]

(
[diag(ṙ)T, diag(r)T]TQ[diag(ṙ), diag(r)]

)−1
. (4.43)

Using both the distance and Doppler measurements will give more accurate sensor

position estimates than using distances only as in Section 4.2.1 and hence better

(R̂, t̂). The closed-form estimator from [71] that was developed for joint position and

velocity estimation using TDOAs and FDOAs can be modified for this purpose. We

summarize the major steps in Appendix B.4. The readers are referred to [71] for

additional details.

4.4.2 Step-2

The solution from step-1, (R̂, t̂, ω̂, ˆ̇t), will not reach the optimum performance since

we do not consider R and t as unknowns when solving ω and ṫ. We shall determine the

amount of correction for the step-1 preliminary solution to obtain the final solution.

Putting rotation matrix multiplicative correction (4.15), t = t̂+∆t, ω = ω̂+∆ω,

and ṫ = ˆ̇t + ∆ṫ, (4.41) becomes

rmiṙmi − t̂T ˆ̇t + aTm
ˆ̇t

= (t̂T [ω̂]× − aTm[ω̂]× + ˆ̇tT )R̂Rδci + ([ω̂]×R̂ci + ˆ̇t)T∆t

+ [(R̂ci)
T ⊗ (t̂− am)T ]Φ∆ω + (R̂ci + t̂− am)T∆ṫ + ṙminmi + rmiṅmi (4.44)

where the second and third order correction terms have been ignored. Note that
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this corresponds to setting Rδ to identity when multiplied with the other correction

terms. Using the vectorization formula (4.1) and vec(Rδ) in (4.17), the first term on

the right of (4.44) becomes

(t̂T [ω̂]× − aTm[ω̂]× + ˆ̇tT )R̂Rδci

= [cTi ⊗ (t̂T [ω̂]× − aTm[ω̂]× + ˆ̇tT )R̂](γ + Lβ). (4.45)

Now (4.44) is linear in the amount of corrections β, ∆t, ∆ω and ∆ṫ.

Eq. (4.18) provides the distance equations in terms of the amounts of corrections

for R and t. To make use of both distance and Doppler measurements, we stack (4.18)

and (4.44) together to form a matrix equation. Applying the WLS minimization with

the weighting [20]

(KRKT )−1, K =

2diag(r) O

diag(ṙ) diag(r)

 (4.46)

yields the solution of the correction terms. Adding them to the step-1 preliminary

solution gives the final estimate of the unknowns.

In the specific case of 2D, we can use the vectorized representation (4.24) instead

and the first term on the right of (4.44) is expressed as

(t̂T [ω̂]× − aTm[ω̂]× + ˆ̇tT )Rci

= [cTi ⊗ (t̂T [ω̂]× − aTm[ω̂]× + ˆ̇tT )]Γy . (4.47)

Applying GTRS with the constraint ‖y‖2 = 1 will solve the WLS optimization prob-

lem from the distance refinement equation (4.34) and the Doppler refinement equation

(4.44) for θ and the corrections.
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4.5 Performance

4.5.1 Accuracy

The estimation performance is limited by the CRLB over the small error region where

the estimation bias is negligible compared to the variance. Strictly speaking the CRLB

is for an unbiased estimator only. Localization is a nonlinear estimation problem that

often leads to a biased estimator. However, the CRLB has been used extensively in

the literature as a reference for the localization performance, due to its simplicity of

computation and good prediction on the performance limit over the small error region

[20]. Under the distance measurement model (4.3a) and the SO(K) constraint on R,

the CRLBs for R and t of a stationary rigid body have been evaluated in [53]. The

CRLBs for θ and t in the 2D case is provided in Appendix B.1. For a moving rigid

body, the CRLBs for the unknown parameters are derived in Appendix B.2. In the

simulation study of Section 4.6, we shall use the CRLB as a reference for performance

evaluations of the proposed solutions. To supplement and support the simulations

presented in the next section, we illustrate below some rationale and insight about

the performance of the proposed methods.

Let us begin with the stationary rigid body localization algorithm in Section 4.2.

The first step uses DAC to obtain a preliminary solution and the second estimates

the correction to the step-1 solution. The DAC approach solves first the sensor

positions and then the rotation and translation variables. Without considering the

position relationship (4.2) among different sensors, many localization algorithms from

the literature [21, 39, 75] can provide sensor position estimates that attain the CRLB

accuracy. It can be shown directly through the theory of DAC [67] that when the
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measurements corresponding to different sensors are independent, setting the weight-

ing factor Wi in optimization (4.6) to the Fisher information matrix (inverse of the

CRLB matrix) for si will yield a solution of the rotation and translation parameters

reaching the CRLB. Unfortunately such a setting does not lead to a simple closed-

form solution (except for the 2D case). We therefore set Wi to a scalar weighting.

Such setting results in suboptimum performance but enables a simple and reasonably

accurate solution. This is in contrast to the approach in [53] by eliminating the ‖si‖2

terms of (4.11b), which seems to be more significant in contributing to the loss in

accuracy.

In the step-2 refinement, we reformulate the squared range equation (4.11c) in

terms of the corrections to the unknowns with respect to the step-1 solution. It has

been demonstrated in Chapter 2 that with inverse range weighting, the squared range

equation approximates to the original range equation when the measurement noise

is small. The resulting refinement equation (4.18) embeds the SO(K) constraint

through the multiplicative correction representation (4.15). It follows a linear model

and the corresponding WLS solution (4.19), which is the same as the minimum vari-

ance unbiased (MVU) estimator, can reach the CRLB accuracy [20]. Consequently,

we would expect the step-2 solution would be able to approach the CRLB perfor-

mance over the small error region, provided that the amounts of correction relative to

the actual values are not large so that (4.18) is reasonably accurate although ignoring

the second order corrections.

We next turn to the solution for the specific case of 2D presented in Section 4.3.

This solution remains to use the two steps approach but the solution in each step

uses the GTRS optimization. The solution here is expected to tolerate larger amount
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of noise before the thresholding effect occurs since the step-1 solution is obtained

directly from the measurement equations without using the intermediate variables si.

Another interesting property is that it solves the rotation matrix directly in step-2

and does not require the correction angle formulation for the rotation matrix. As a

result, the step-2 processing can accommodate larger amount of rotation correction.

For the moving rigid body localization elaborated in Section 4.4, the solution

framework is similar to what we did before in using two steps. The Doppler mea-

surement from (4.5) is exploited using the transformed equation (4.40). Previous

studies [71] showed that such a transformed equation provides nearly the same in-

formation as the original under small noise condition. The transformed equation is

used in estimating the initial estimates of the angular and translational velocities in

step-1 and their correction amounts in step-2. The refinement equations (4.18) and

(4.44) for step-2 both follow linear models with respect to the correction terms. The

resulting WLS solution (equivalent to the MVU estimator) will provide the CRLB

accuracy [20] under the models. Consequently, it is expected the performance of the

final solution will not deviate too much from the CRLB over small error region when

the amount of corrections relative to the true values are not significant so that the

second and higher order correction terms can be neglected in (4.18) and (4.44).

4.5.2 Computational Complexity

We shall examine the computational complexity of the proposed methods for station-

ary rigid body case and compare it with SCLS and CLS. The complexity is shown in

big O expressions in terms of the number of anchors M , the number of sensors N and

the localization dimension K (2 or 3), with the diagonal structure of Qv exploited.
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Note that the expressions illustrate the asymptotic complexity that is valid when M

and N are sufficiently large.

For the proposed method in Section 4.2, step-1 requires O(K2MN) flops to es-

timate the sensor positions and O(K3) flops for an SVD to obtain the preliminary

solution. Step-2 takes O(MN) flops to form the refinement equations and apply the

WLS processing to generate the final solution.

For the algorithm of 2D localization in Section 4.3, in each step, forming the

equations for optimization or GTRS computation when jointly estimating y and t

takes about O(MN) flops.

For reference purpose, we estimate that the complexity of SCLS isO(MN max(M,N))

flops + O(K3) flops, where O(K3) is for SVD. It is O(M3N3) flops + O(K2MN)L

flops for CLS, where L is the number of iterations. It is clear when M and N are

sufficiently large, the proposed algorithms have lower complexity. If M and N are

not large, the proposed algorithms have similar complexity with SCLS and CLS, as

illustrated in the simulations.

4.6 Simulations

We shall evaluate the performance of the proposed solutions for localization in 3D

and 2D, using a number of geometries with randomly generated anchor positions.

The CRLB is served here as a performance reference. We also include the results

using the closed-form SCLS and the iterative CLS solution from [53] for comparison

(please refer to Appendix B.5 for some details of our implementations of SCLS and

CLS).
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There are M = 6 anchors and they are placed at uniformly distributed i.i.d.

coordinates in a cube (3D case) or a square (2D case) having a length of 100 units

centered at the origin in the inertial reference frame I. To avoid degenerate geometry

that yields poor performance, the separation between two anchors is at least 15 units.

We generate G = 200 realizations of anchor configurations and the results reported

are the averages over them. The number of ensemble runs is L = 1000 for a given

anchor geometry. Each sensor is able to acquire the measurements from all anchors.

The rigid body settings and sensor configurations will be specified later. The true

distance and Doppler values in the weighting matrices of the proposed algorithms are

replaced by the noisy measurements throughout the simulations.

The root mean squared error (RMSE) of a parameter estimate (∗) is computed

using

RMSE(∗) =

√√√√ 1

LG

G∑
g=1

L∑
l=1

‖(∗̂)(g,l) − (∗)‖2 (4.48)

where (∗̂)(g,l) is the estimation for (∗) at the l -th ensemble run for the g-th anchor

configuration. The norm is Euclidean when (∗) is a vector and Frobenius when (∗) is

a matrix. Similarly, the estimation bias of (∗) is calculated by

bias(∗) =

√√√√ 1

G

G∑
g=1

∥∥∥∥∥ 1

L

L∑
l=1

(∗̂)(g,l) − (∗)

∥∥∥∥∥
2

. (4.49)
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4.6.1 Stationary Rigid Body

The distance measurement noise is uncorrelated. Often the sensor array is small and

far away from the anchors. We therefore set the noise powers of distances from a given

anchor to all the sensors to be the same, but different for different anchors to exercise

better the algorithm performance. The noise standard deviations σmi,m = 1, 2, . . . , 6,

for the six anchors are σ
6
[1, 2, 3, 4, 5, 6].

3D Case

We first evaluate the performance of the solution presented in Section 4.2 using a 3D

localization scenario. The performance of the method for the 2D scenario is similar.

The positions of the rigid body sensors are

C = 3


0.5 1.5 1.5 0.5 1

0 0 1.5 1.5 1

0 0 0 0 1


in B, where each column is the sensor position ci. It is the rectangle based pyramid

used in [53]. The orientation of the rigid body is set as follows: the two reference

frames coincide at the beginning, then the rigid body rotates 20 deg, −25 deg, and

10 deg with respect to x, y, z axes of I in sequence. The translation vector is

t = [100 100 50]T . In the proposed method, the two-stage estimator [39] is used to

obtain ŝi estimates in step-1 and the scalar weighting factors wi is set to unity.

Fig. 4.2 shows the RMSE of the rotation matrix R estimate, where the solid

line is the root CRLB. The proposed step-1 preliminary solution (shown by cross-

symbol), is suboptimum as expected. However, the step-2 solution (circle-symbol) is
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Figure 4.2: Performance for rotation matrix R estimation in the 3D case, averaged
over 200 realizations of anchor positions.

able to reach the CRLB performance when the measurement noise deviation σ is not

larger than 10−0.5 (0.32). Compared to SCLS (triangle-symbol), the step-1 solution

is better. The iterative CLS (rectangle-symbol) can only achieve similar performance

as the proposed step-1 solution, even though it requires more computation. The

proposed step-2 solution provides about 3 dB reduction in RMSE over the iterative

CLS solution in the small error region.

Fig. 4.3 gives the RMSE performance of the translation vector t estimate. The

observations are similar to those in Fig. 4.2. It is interesting to see that the step-

1 solution gives better accuracy than CLS. The step-2 solution has about 3.3 dB

improvement over CLS.

Figs. 4.4–4.5 are the results for estimation bias. We observe consistent behaviors

in both rotation and translation that the proposed step-2 solution yields the smallest
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Figure 4.3: Performance for position t estimation in the 3D case, averaged over 200
realizations of anchor positions.

bias and the SCLS has the largest, while the proposed step-1 and the iterative CLS

solution have comparable results.

Fig. 4.6 illustrates the computation times (millisecond) for the different solu-

tions obtained from MATLAB implementations. The step-1 solution takes slightly

larger computation than the SCLS method. The proposed step-2 solution requires the

largest computation. It is the price we pay for achieving better results approaching

the CRLB. The complexity of CLS rises quickly if the noise deviation σ is larger than

10−0.5 (0.32), due to larger number of iterations needed.
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Figure 4.4: Bias for rotation matrix R estimation in the 3D case, averaged over 200
realizations of anchor positions.
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Figure 4.5: Bias for position t estimation in the 3D case, averaged over 200 realizations
of anchor positions.
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Figure 4.6: Computation time (millisecond) in each Monte-Carlo run in the 3D case,
averaged over 200 realizations of anchor positions.

2D Case

We next examine the proposed algorithm in Section 4.3, which is for the special

situation where the localization is in 2D. The sensor geometry is a square given by

C = 5

0 1 1 0

0 0 1 1


in the local reference frame B. The rigid body has orientation θ = 20 deg and trans-

lation t = [100 100]T with respect to I.

Fig. 4.7 gives the RMSE for the orientation angle θ and Fig. 4.8 for the translation

t. The behaviors of the different methods are similar for both parameters. The

proposed step-1 solution provides 1.8 dB RMSE improvement in θ and 1.2 dB in t
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Figure 4.7: Performance for orientation θ (deg) estimation in the 2D case, averaged
over 200 realizations of anchor positions.

over the SCLS solution. The CLS method can only give comparable performance

with the step-1 solution. The step-2 solution has 7.1 dB and 2.6 dB improvements

for θ and t compared to the CLS solution, and it approaches the CRLB performance

until the noise deviation σ is larger than 10.

The estimation bias results are shown in Figs. 4.9–4.10. It appears the method

with less RMSE also has less bias. The proposed step-2 solution outperforms the

others.

Fig. 4.11 illustrates the computation times for the estimation methods. The step-

1 preliminary solution has similar computation time as SCLS. Unlike the method

in Section 4.3, the step-2 final solution only takes slightly larger complexity. The

complexity of the proposed solutions is relatively stable irrespective of the noise devi-

ations. This is not the case for the iterative CLS method due to its iterative nature.
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Figure 4.8: Performance for position t estimation in the 2D case, averaged over 200
realizations of anchor positions.
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Figure 4.9: Bias for orientation θ (deg) estimation in the 2D case, averaged over 200
realizations of anchor positions.
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Figure 4.10: Bias for position t estimation in the 2D case, averaged over 200 realiza-
tions of anchor positions.

The complexity of CLS is about double of the proposed solutions and this ratio rises

to more than 5 times at noise deviation σ = 10.

4.6.2 Moving Rigid Body

We use the same geometry settings as in the 3D stationary rigid body localiza-

tion. The angular velocity is ω = [0.1, 0.2, 0.3]T rad/s and translational velocity

is ṫ = [1, 1, 1]T . The Doppler measurement noise is uncorrelated with the distance

measurement noise and its covariance is Qṅ = 0.1Qn = 0.1σ2I.

The results are generated using the algorithm given in Section 4.4. The initial

solution (R̂, t̂) needed in step-1 is obtained using both the distance and Doppler

measurements. In particular, we apply the method in Appendix B.4 to obtain the
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Figure 4.11: Computation time (millisecond) in each Monte-Carlo run in the 2D case,
averaged over 200 realizations of anchor positions.

sensor position estimates and then (4.8) and (4.10) to form (R̂, t̂).

Figs. 4.12–4.15 illustrate the estimation performance of RMSE and bias for R, t,

ω and ṫ. The step-1 solutions are far from the CRLBs, especially for R. The proposed

step-2 solutions are able to reach the optimum performance before the noise deviation

σ is larger than 0.1. The bias is relatively small compared to RMSE when the noise

level is small.

For the 2D case, the step-2 refinement solution also provides performance close to

the CRLB over the small noise region.
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Figure 4.12: RMSE and bias performance of the rotation matrix R estimation for a
moving rigid body in the 3D case, averaged over 200 realizations of anchor positions.
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Figure 4.13: RMSE and bias performance of the position t estimation for a moving
rigid body in the 3D case, averaged over 200 realizations of anchor positions.
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Figure 4.14: RMSE and bias performance of angular velocity ω estimation for a
moving rigid body in the 3D case, averaged over 200 realizations of anchor positions.
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Figure 4.15: RMSE and bias performance of translational velocity ṫ estimation for a
moving rigid body in the 3D case, averaged over 200 realizations of anchor positions.

103



4.7 Alternative Method for Moving Rigid Body in

2D Case

For moving rigid body, the solution from Section 4.4 uses sequential estimation and

refinement technique and is computationally demanding when the number of sensors

is large. In this section, we try to directly obtain all the unknowns through estimated

sensor positions and velocities for special 2D case.

4.7.1 New Method

Obtaining the unknown parameters directly from the measurements by putting (4.2)

and (4.4) into (4.3) and (4.5) is difficult due to the highly nonlinear relationships and

the coupling of the unknowns. We shall resort to the DAC approach by first obtaining

(si, ṡi) from the measurements and next estimating the unknowns using them. Here

we focus on the latter step here.

Utilizing Initial Estimate

Let (ŝi, ˆ̇si) be the solution from the first step with (nsi ,nṡi) the estimation noise.

From (4.2) we have [70]

ŝi = Rci + t + nsi = (cTi ⊗ I)Γ

cos θ

sin θ

+ t + nsi (4.50)
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Similarly, from (4.4)

ˆ̇si = [ω]×Rci + ṫ + nṡi = (cTi ⊗

0 −1

1 0

)Γ

ω cos θ

ω sin θ

+ ṫ + nṡi . (4.51)

Stacking (4.50) and (4.51) over i from 1 to N yields

d = E1



cos θ

sin θ

ω cos θ

ω sin θ


+ E2

t

ṫ

+ ns (4.52)

where

E1 =



(cT1 ⊗ I)Γ O

O (cT1 ⊗

0 −1

1 0

)Γ

...
...

(cTN ⊗ I)Γ O

O (cTN ⊗

0 −1

1 0

)Γ



,E2 = 1⊗ I (4.53)

and in E2 the sizes of 1 and I are N and 4 respectively. ns is resulted from the esti-

mation error of the first step and it can well be approximated as zero-mean Gaussian

noise over the small error region. The covariance matrix is dented by Qns , which

is block diagonal with individual block for each sensor since the measurements from

different sensors are independent.

Although θ and ω are unconstrained, they are embedded in cos θ, sin θ, ω cos θ and
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ω sin θ. We propose to solve x = [cos θ, sin θ, ω cos θ, ω sin θ]T instead by imposing two

quadratic constraints

x21 + x22 = 1 (4.54)

x1x4 = x2x3 . (4.55)

It can be shown that the weighted linear least squares [20] solution to (4.52) with the

two quadratic constraints will yield the optimum accuracy as solving (θ, ω) directly

from (4.52). This constrained optimization problem remains challenging to solve. We

shall propose a computationally attractive closed-form solution to the problem.

Closed-form Solution

There are two sets of variables to be solved, x and [tT , ṫT ]T , both appear linear in

(4.52) with constraints on the former only. In term of x, the weighted least squares

(WLS) solution for [tT , ṫT ]T with weighting Q−1ns
is [20]

t̂

ˆ̇t

 =
(
ET

2 Q−1ns
E2

)−1
ET

2 Q−1ns
(d− E1x) . (4.56)

Putting it into (4.52) results in a linear equation with unknown x only,

h1 = G1x + ns (4.57)

where P = I− E2

(
ET

2 Q−1ns
E2

)−1
ET

2 Q−1ns
, h1 = Pd and G1 = PE1.

We shall use the two-stage approach to solve for x from (4.57) under constraints
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(4.54) and (4.55). The first stage ignores the constraints to obtain x. The second

stage utilizes the constraints to construct another minimization process to improve

the estimate. Once it is found, [tT , ṫT ]T is immediately available from (4.56).

1) Stage-1

We omit the constraints and the resulting unconstrained WLS solution is

x̂ = (GT
1 W1G1)

−1GT
1 W1h1 (4.58)

where W1 = Q−1ns
. Let us denote the estimation error as ∆x. The covariance matrix

of the estimate is cov(x̂) = (GT
1 W1G1)

−1.

2) Stage-2

We shall correct the stage-1 solution by taking the two constraints into account.

Different from the traditional two-stage method for TDOA or TOA positioning that

involves the quadratic constraint from squared variables [2, 39, 71], we will need to

consider the cross-variable constraint (4.55).

It is more convenient to express these two constraints into different forms. Multi-

plying both sides of (4.55) by x2 and substituting (4.54) for x22 give

x3 = (x1x3 + x2x4)x1. (4.59)

Similarly, multiplying both sides of (4.55) by x1 and using (4.54) yield

x4 = (x1x3 + x2x4)x2. (4.60)

We shall choose the parameter vector as ζ = [ω cos θ, ω sin θ]T . The two elements
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have straightforward mapping with the two unknowns θ and ω, and they are simply

the last two elements of x, i.e. ζ = [x3, x4]
T .

To utilize the constraint (4.59), we express the right side in terms of the elements

of x̂ and obtain, after ignoring the second and third order errors,

x3 = (x̂1x̂3 + x̂2x̂4)x̂1 − (2x̂1x̂3 + x̂2x̂4)∆x1

− x̂1x̂4∆x2 − x̂21∆x3 − x̂1x̂2∆x4 . (4.61)

Applying the same process gives the corresponding expression for (4.60).

We can now construct the matrix equation for stage-2 as

B2∆x = h2 −G2ζ (4.62)

where

B2 =



0 0 1 0

2x̂1x̂3 + x̂2x̂4 x̂1x̂4 x̂21 x̂1x̂2

0 0 0 1

x̂2x̂3 2x̂2x̂4 + x̂1x̂3 x̂1x̂2 x̂22


,

h2 =



x̂3

(x̂1x̂3 + x̂2x̂4)x̂1

x̂4

(x̂1x̂3 + x̂2x̂4)x̂2


, G2 =



1 0

1 0

0 1

0 1


. (4.63)

The WLS solution for ζ is

ζ̂ = (GT
2 W2G2)

−1GT
2 W2h2 (4.64)

108



where the weighting matrix is from the covariance of x̂:

W2 = [B2(G
T
1 W1G1)

−1BT
2 ]−1

= B−T2 (GT
1 W1G1)B

−1
2 . (4.65)

Finally, we can recover the estimates for θ and ω by

ω̂ = ‖ζ̂‖sgn(x̂1x̂3 + x̂2x̂4) (4.66)

θ̂ = arctan2(ζ̂2/ω̂, ζ̂1/ω̂) (4.67)

where arctan2 is the four-quadrant inverse tangent function. Updating x and putting

it into (4.56) give the estimates for the position t and translational velocity ṫ. The

final estimates of the sensor positions and velocities can now be obtained using (4.2)

and (4.4).

4.7.2 Simulations

There are M = 6 anchors placed uniformly on the circle with am = 25[cos 2π
M

(m −

1), sin 2π
M

(m−1)]T . Each sensor is able to acquire the measurements from all anchors.

Other setting is the quite similar to that in Section 4.6. The sensor geometry is a

square given by

C = 5

0 1 1 0

0 0 1 1


in the local reference frame, where C consists of ci’s. The rigid network has orien-

tation θ = 20 deg and position t = [100 100]T with respect to the global coordinate
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Figure 4.16: Performance for orientation θ (deg, upper curves) and angular velocity
ω (lower curves) estimations.

frame. The angular velocity is ω = 0.3 rad/s and translational velocity is ṫ = [1, 1]T .

The covariance matrix of the distance measurement is Qn = σ2I. The range rate

measurement noise is uncorrelated with the distance measurement noise and its co-

variance matrix is Qṅ = 0.1Qn. The number of ensemble runs is L = 2000.

Accuracy Comparison

Fig. 4.16 shows the results of the orientation angle (upper curves) and angular velocity

(lower curves) using the proposed method and the previous method from Section 4.4.

The proposed method reaches the CRLB performance over small error region as in

the previous method, and it deviates from the bound a bit earlier as the noise level

increases. We have similar observations for the position and translational velocity

estimates as shown in Fig. 4.17.
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Figure 4.17: Performance for position t (upper curves) and translational velocity ṫ
(lower curves) estimations.

Fig. 4.18 illustrates the performance in terms of the sensor position and velocity

estimates. When we exploit the known relative sensor locations, the accuracy is

much better than without (the initial estimate) in both positions and velocities. We

generated the CRLB for comparison using the CRLB of the four parameters through

the relationships (4.2) and (4.4) [20]. The proposed algorithm achieves the optimum

performance when the noise level is not significant and it is only worse than previous

method if the noise level is high.

Computational Time Comparison

Although the accuracy of the proposed method is not as good as that of Section 4.4

at large noise level, it has the benefit of lower computational complexity. Fig. 4.19

illustrates the computational times (millisecond) of each ensemble run obtained from
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Figure 4.18: Performance for sensor positions (upper curves) and velocities (lower
curves) estimations.

MATLAB implementation of two methods, when the number of anchors M varies

from 3 to 18 with a step of 3. The computational advantage of proposed method

is obvious when the number of anchors is large. The proposed method is a good

alternative when the noise power is not significant.

4.8 Conclusion

This chapter develops methods to locate a rigid body using a number of on-board

sensors through the distance measurements with respect to a number of anchors if it

is stationary, and the Doppler as well if it is moving. The proposed method consists

of an initial step and a refinement step. The initial step provides a suboptimum

preliminary solution using the DAC approach and the refinement step estimates the
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Figure 4.19: Computational times vs anchor number M .

corrections to the preliminary solution using the Euler angles formulation to achieve

better estimation accuracy. Both steps involve only closed-form solution evaluations

and are not iterative. We have also shown that the problem can be solved using

2 GTRS optimizations for the special case of 2D localization. For the stationary

rigid body localization, we are able to advance the previous works and provide more

accurate solutions with comparable complexity.

For the moving rigid body localization, we have developed closed-form solutions

for obtaining not only the rotation matrix and translation vector but also the angular

and translational velocities. In addition, a new estimator for locating a moving rigid

sensor network in 2D is presented. The proposed estimator uses the DAC approach

where initial sensor positions and velocities are estimated from the measurements first

and the unknowns are obtained next using them by utilizing the relative positions of
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the sensors. We have developed a computationally attractive closed-form solution for

the second step that involves two quadratic constraints. It requires less computation

than the previous solution, with the tradeoff that the performance deviates from the

optimum at a lower noise level.
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Chapter 5

Estimation of Position and
Orientation Using AOA
Measurements

We continue to study the pose estimation using AOA measurements with respect to

landmarks instead of distance measurements discussed in Chapter 4. We solve the 3D

scenario that is seldom considered before, and extend the study to the scenario where

there is more than one AOA sensor on-board, which either increases the robustness

and accuracy or decreases the minimum requirement on number of landmarks.

This chapter is organized as follows. Section 5.1 provides the scenario for pose

estimation using AOA measurements. Section 5.2 proposes the method for single

sensor case in 3D. Section 5.3 extends the study to multiple sensors on-board and

provides solutions for 3D and 2D respectively. Section 5.4 supports the performance

of the proposed solutions by simulations. Section 5.5 concludes the chapter.
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5.1 Scenario

The object would self-determine its position and orientation in the surrounding envi-

ronment based on the AOA measurements with respect to known landmarks. Viewed

in local reference frame B, the position of m-th landmark is

aBm = Ram + t (5.1)

where R and t are the rotation matrix and translation for the coordinate transform

between B and global frame I (notice that the definition of R and t here is different

from that in Chapter 4 for convenience). Then we can model the azimuth angle

measurement

θmi = atan2(aBmy − ciy, aBmx − ciy) + nθmi
(5.2)

and, if in 3D, the elevation angle measurement

φmi = arcsin

(
aBmz − ciz
romi

)
+ nφmi

(5.3)

where subscripts x, y, z represent corresponding coordinate component, and nθmi
and

nφmi
are the additive noise. n = [nθ11 nφ11 · · · nθM1

nφM1
· · · nθ1N nφ1N · · ·nθMN

nφMN
]T

is the noise vector that follows zero-mean Gaussian distribution with covariance ma-

trix Qn. And the subscript ”i” will be dropped when there is only one sensor on

board.

The self-localization aims at determining R and t using the AOA measurements.

Once they are obtained, it is straightforward to obtain the position and orientation

observed in I: RT and −RT t. The CRLB for this problem is straightforward to
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derive following [53] and Appendix B.1.

To facilitate the algorithm development, we transform (5.2) and (5.3) without

noise to obtain the linear equation of aBm (i.e. R and t)

[sin θomi, − cos θomi](a
B
m − ci) = 0 (5.4)

in 2D and

[sin θomi, − cos θomi, 0](aBm − ci) = 0 (5.5a)

[sinφomi cos θomi, sinφomi sin θ
o
mi, − cosφomi](a

B
m − ci) = 0 (5.5b)

in 3D [88]. Notice that when there is only one sensor, even the term aBm − ci above

becomes −(aBm−ci), the equation still holds. In other word, if aBm is the solution, so is

2c1−aBm. This is because we treat the four-quadrant atan2 function as two-quadrant

arctan function to obtain above linear equations, creating the ambiguous reflection

of original landmarks across the sensor. Obviously, the ambiguity of aBm implies the

ambiguity of (R, t). We will handle this ambiguity later.

Once initial solutions (R̂, t̂) are obtained, we can perform the corrections for

them using the weighted least squares (WLS) based on (5.4), or (5.5a) and (5.5b)

and achieve CRLB performance.

5.2 Single Sensor in 3D

According to Section 4.2, we can obtain the anchor position aBm in B, and then

compare it with am in I to obtain the position and orientation of object. However,
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directly solving aBm from (5.5a) and (5.5b) is very difficult due to the presence of two

solutions. For example, we can perform the minimization

min
∑
m

|[sin θm, − cos θm, 0](aBm − c1)|

+|[sinφm cos θm, sinφm sin θm, − cosφm](aBm − c1)|

s.t. ‖aBi − aBj ‖2 = ‖ai − aj‖2, (5.6)

and use semidefinite relaxation technique to handle the quadratic distance constraint

[57]. But convex optimization toolbox CVX using default setting always returns the

solution close to c1 that is the analytic center of two optimal solutions aBm and 2c1−aBm.

And similar problem still happens if we add the constraint on the sign of aBmy − c1y

according to the measurement θmi. Furthermore, even we can obtain two optimal

solutions simultaneously, we still need to pick up the better solution according to the

original AOA measurements, e.g. through the residual comparison.

Alternatively, we propose to obtain the anchor position aBm in indirect way. The

idea is to obtain the distance rm between the sensor and the m-th anchor and then

combine it with the measured unit vector ρm = [cosφm cos θm, cosφm sin θm, sinφm]T

pointing from the sensor to the m-th anchor, then âBm = rmρm + c1.

To solve rm, we can exploit the relationship between rm’s utilizing the law of

cosine for the triangle consisting of i-th anchor, j-th anchor and sensor

ro2i + ro2j − 2roi r
o
j cosαoij = d2ij (5.7)

where cosαoij = ρoTi ρ
o
j/‖ρoi‖‖ρoj‖ = ρoTi ρ

o
j and dij = ‖aBi − aBj ‖ = ‖ai − aj‖. Denote
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(i, j) the pair of anchors used in this triangle. Since utilizing all
(
M
2

)
triangles causes

redundancy, we only use part of the pairs. We first choose four anchors that are

not coplanar, and therefore have
(
4
2

)
= 6 related triangles; each remaining anchor

can form 4 triangles with previously chosen four anchors. So in total, we only use

6 + 4(M − 4) = 4M − 10 triangles. Denote the set of all the anchor pairs chosen as

N .

Therefore, we propose the following minimization problem

min
r′is

∑
(i,j)∈N

|r2i + r2j − 2rirj cosαij − d2ij|

s.t. ri > 0, ri + rj > dij, −dij < ri − rj < dij, (5.8)

where we utilize triangle inequality. By denoting r = [r1 r2 · · · rM ]T and expressing

quadratic term of ri by element of X = rrT , this optimization can be solved through

relaxing X = rrT to convex constraint X � rrT [57]. Then we can construct anchor

position âBm and finally obtain the position and orientation of object.

5.3 Multiple Sensors

When there is only one sensor, some landmarks may be unobservable due to blockage,

while more sensors mean more opportunities to observe enough landmarks. In addi-

tion, putting more sensors also relaxes the minimum requirement on the number of

landmarks: specifically, in 3D case it requires at least 4 landmarks under one sensor

but at least 3 landmarks under multiple sensors; in 2D case it requires at least 3

landmarks under one sensor but at least 2 landmarks under multiple sensors.
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Without loss of generality, we assume all the sensors have the same orientation;

otherwise, if the relative orientation between sensors is known a priori, our method

can be easily modified. In addition, we consider very general scenario and do not

require: every sensor can observe more than one landmark or obtain both azimuth

angle and elevation angle, or every landmark can be observed by more than two

sensors.

5.3.1 3D Case

Unlike single sensor case, directly solving anchor position aBm by the optimization

similar to (5.6) using semidefinite relaxation is feasible, however, the resultant number

of unknowns is 3M +M(M + 1)/2 = O(M2). The method with constant number of

unknowns is much more preferred, which can be achieved by directly solving R and

t.

Proper parameterization of R is needed. Due to the complexity in solving the

optimization problem, we prefer the order for R representation or the constraint is not

more than 2 in terms of parameterization variables, i.e., either in linear or quadratic

form. After excluding the parameterizations by Euler angle, axis-angle representation,

Gibbs vector (also called Rodrigues parameters) or modified Rodrigues parameters

(MRP), we choose unit quaternion representation [62]. The unit quaternion uses unit

vector q = [q0 q1 q2 q3]
T = [q0 qTv ]T to represent the rotation matrix

R = (q20 − ‖qv‖2)I + 2qvq
T
v + 2q0[qv]

× (5.9)

where [qv]
× is a skew-symmetric matrix formed by qv. Obviously, R is quadratic in
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q and unit vector constraint ‖q‖2 = 1 is also quadratic.

Remark: q and −q result in the same rotation matrix R, but we can set 0 ≤ q0

to avoid the ambiguity.

Denote Y = qqT , R can be expressed linearly by the element of Y (denote

R = f(Y)), and ‖q‖2 = 1 becomes tr(Y) = 1. Based on (5.5a) and (5.5b), we solve

following convex optimization

min
q,Y,t

∑
m,i

|[sin θmi, − cos θmi, 0](f(Y)am + t− ci)|

+|[sinφmi cos θmi, sinφmi sin θmi, − cosφmi](f(Y)am + t− ci)|

s.t. 0 ≤ q0 ≤ 1 ,−1 ≤ q1, q2, q3 ≤ 1, Y � qqT , tr(Y) = 1. (5.10)

Remark: Since R does not contain any linear term of q, putting q into optimiza-

tion can not improve the accuracy. Alternatively, we can handle the optimization

without q under Y � O. And for i 6= j, |qiqj| ≤ 1
2
(q2i + q2j ) ≤ 1

2
‖q‖2 = 1

2
, we have

−1
2
≤ Yi,j ≤ 1

2
.

Once we obtain the estimation of Y, R̂ can be easily constructed by (5.9). Notice

due to omission of nonconvex constraint rank Y = 1, R̂ from Y may not exactly

satisfy the rotation matrix requirement. Therefore we can choose the nearest rotation

matrix to R̂ by

min
R∈SO(3)

‖R− R̂‖2F (5.11)

which can be solved by orthogonal Procrustes problem technique in closed-form [73]:

let the SVD of R̂ be UΣVT , the optimal solution is Udiag([1, 1, det(UVT )]T )VT .
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5.3.2 2D Case

Using orientation θ to parameterize rotation matrix and vectorizing it as in (4.24),

(5.4) becomes

[sin θomi, − cos θomi][(a
T
m ⊗ I)Γy + t− ci] = 0. (5.12)

Stacking above equation but with noisy measurement θmi results in

d = E1y + E2t + residual. (5.13)

The following constrained least squares

min
y, t
‖W− 1

2 (E1y + E2t− d)‖2

s.t. ‖y‖2 = 1, (5.14)

where W is the covariance matrix of the residual in (5.13), belongs to quadratic

optimization problem with a quadratic equality constraint, and therefore can be solved

by GTRS [17, 18] efficiently to obtain the global minimum solution. Since W depends

on unknown y and t, we can first perform the minimization without weighting, and

then construct W utilizing the obtained y and t, and finally perform again the

minimization with the weighting.

5.4 Simulations

We shall evaluate the performance of the proposed solutions. M landmarks are placed

uniformly on the same plane as am = 100[cos m−1
M

2π, sin m−1
M

2π, 0]T . To facilitate the
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Figure 5.1: 3D single sensor case, performance for position (upper curves) and orien-
tation (lower curves) estimations.

demonstration, we set the same orientation for B and I. The translation and sensor

positions will be specified later. The number of ensemble runs is L = 1000. The AOA

measurement noise is Gaussian i.i.d. with power σ2 (deg2). The definition of MSE is

the same as in Chapter 4 Simulations.

5.4.1 3D Single Sensor

We choose M = 4 anchors forming a square, the sensor is at the origin of B and

the translation t = [0, 0 ,−100]T . Fig. 5.1 shows the result for estimating position

t (upper curves) and orientation R (lower curves). The proposed solution has less

than 1.5 dB deviation from the CRLB and the further refinement achieves the CRLB

performance.
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Figure 5.2: 3D multiple sensors case, performance for position (upper curves) and
orientation (lower curves) estimations.

5.4.2 Multiple Sensors

3D Case

We choose M = 3 anchors forming a equilateral triangle, two sensors are at the origin

and [0 , 0 , 20]T in B, and the translation is t = [0, 0 ,−30]T .

In Fig. 5.2, the proposed solution has significant deviation from the CRLB, but the

refinement gives CRLB performance over small error region. Maybe the semidefinite

relaxation Y � qqT is not tight enough here and some technique taking into account

rank Y = 1 is needed for better performance.
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Figure 5.3: 2D multiple sensors case, performance for position (upper curves) and
orientation (lower curves, in deg) estimations.

2D Case

We choose M = 2 anchors, two sensors are at the origin and [0 , 20]T in B and the

translation t = [0, −50]T . As shown in Fig. 5.3, the proposed closed-form solution

achieves the CRLB performance over small error region, which confirms its advantages

in accuracy and computation.

5.5 Conclusion

Based on AOA measurements with respect to landmarks, a general scenario for object

self-localization was considered, where the localization can be in 3D or 2D, and the

number of sensors on-board can be one or more. Different methods were proposed
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respectively and the refinement was conducted. The simulations demonstrate the

effectiveness of algorithms.
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Chapter 6

Future Work

Compared to the point source localization in Chapters 2–3, the rigid body localization,

position and orientation estimation studied in Chapters 4–5, is much more complex

and challenging, and fewer research has been conducted. We will discus some possible

extensions of this work mainly focusing on algorithm development.

For stationary rigid body localization in Chapter 4, both [53] and our proposed

method in Section 4.2 require that each sensor can connect to multiple anchors, such

requirement may not be satisfied when blockage occurs. It is necessary to develop

the algorithm that does not impose additional restriction once the measurements are

sufficient to recover the pose of rigid body, which would lower the requirement on the

number of available measurements and enhance the localization system applicability.

Another issue is that distance measurement requires clock synchronization be-

tween anchor and sensor, which needs complex clock synchronization protocol and

repeated synchronization query. Therefore it is practical to consider the localization

under TDOA measurements that does not require clock synchronization. Although
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our proposed method in Section 4.2 can be directly applied to this scenario, it is nec-

essary to develop the method that imposes less restriction on the number of available

measurements at each sensor, and to propose specific method for much simpler 2D

case.

For the pose estimation using AOA measurements in Section 5, due to the use

of semidefinite relaxation in 3D case, it is important to investigate the algorithm

performance loss with respect to CRLB over different geometric configurations of

anchors and sensors, and study when the algorithm performs well. In addition, we

shall explore much more computationally efficient or even closed-form solution for 3D

single sensor case and improve the accuracy for 3D multiple sensors case.
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Appendix A

Appendix for Chapter 2

In this Appendix, we will provide the bias analysis formulas for SR-LS and SR-WLS,

and for SRD-LS and SRD-WLS.

A.1 Bias of SR-LS

When the noise is small, we have from (2.25) using the Neumann expansion [25]

F′′−1SR-LS =
{

8KBΓT
[
I−

(
KBΓT

)−1
(nTBQ−11)

]
+ o(‖n‖)I

}−1
=

1

8

(
KBΓT

)−1 [
I +

(
KBΓT

)−1 (
nTBQ−11

)]
+ o(‖n‖)11T . (A.1)

Using (2.21) and maintaining up to second order noise term,

E[F′′−1SR-LSf
′
SR-LS] = −1

2

(
KBΓT

)−1 [
Kq + 2

(
KBΓT

)−1
KBQBQ−11

]
(A.2)
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where q = [Q11 Q22 · · · QMM ]T .

In the second bias component, F
′′
SR-LS and E[M] = QSR-LS are given in (2.26) and

(2.27). From (2.24),

F′′′l,SR-LS = 8
[
el1

TKT + K1eTl + (eTl K1)I
]

(A.3)

where column vector el has 1 in l -th row and 0 in other rows. Notice that (A.3)

doesn’t contain noise and F
′′′
l,SR-LS = F′′′l,SR-LS .

Putting (2.26), (2.27), (A.2) and (A.3) into (2.19) gives the bias of SR-LS.

A.2 Bias of SR-WLS

Starting from (2.33),

F′′−1SR-WLS =
1

8

(
ΓQ−1ΓT

)−1 {
I +

[
(nTQ−1B−11)I + ΓB−1diag(n)Q−1ΓT

+ ΓQ−1diag(n)B−1ΓT
] (

ΓQ−1ΓT
)−1 }

+ o(‖n‖)11T . (A.4)

f ′SR-WLS is given in (2.30). Hence up to second order noise terms

E[F′′−1SR-WLSf
′
SR-WLS] = −

(
ΓQ−1ΓT

)−1×[
−1

2
ΓQ−1B−1q− ΓB−11 +

(
ΓQ−1ΓT

)−1
ΓQ−1B−11 + ΓB−1a + ΓQ−1b

]
(A.5)

where the column vector a = [ai], i = 1, 2, . . . ,M , and ai = eTi Q−1ΓT
(
ΓQ−1ΓT

)−1
Γei;

similarly, the column vector b = [bi], i = 1, 2, . . . ,M , and bi = eTi B−1ΓT
(
ΓQ−1ΓT

)−1
Γei.
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F
′′
SR-WLS and QSR-WLS are in (2.34) and (2.35). From (2.32),

F
′′′
l,SR-WLS = 8

[
el(ΓQ−1B−11)T + ΓQ−1B−11eTl + (eTl ΓQ−1B−11)I

]
. (A.6)

As a result, we can obtain the bias of SR-WLS from (2.19).

A.3 Bias of SRD-LS

According to (2.45),

F′′−1SRD-LS =
1

8

(
KdBdΓ

T
d

)−1×{
I +

[
Kdndρ

T
1 + ρ1(Kdnd)

T − (nTdBdQ
−1
d rod)X

o
] (

KdBdΓ
T
d

)−1}
+ o(‖nd‖)11T .

(A.7)

Using f ′SRD-LS in (2.41) and keeping up to second noise terms

E[F′′−1SRD-LSf
′
SRD-LS]

=
1

2

(
KdBdΓ

T
d

)−1 [
2ρ11

TBd1−Kdqd − 2ΓdB
2
dK

T
d

(
KdBdΓ

T
d

)−1
ρ1

− 2ρ1tr(BdΓ
T
d

(
KdBdΓ

T
d

)−1
KdBd) + 2Xo

(
KdBdΓ

T
d

)−1
KdBdQdBdQ

−1
d rod

]
(A.8)

where qd = [Qd22 Qd33 · · · QdMM ]T .

F
′′
SRD-LS and QSRD-LS are in (2.46) and (2.47). From (2.44),

F
′′′
l,SRD-LS = −8

[
cl(Kdr

o
d)
T + (Kdr

o
d)c

T
l + (eTl Kdr

o
d)X

o
]

(A.9)
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where cl = ∂
∂ul

u−s1
‖u−s1‖

∣∣∣
u=uo

= Xoel. The bias for SRD-LS as shown in (2.19) can be

evaluated.

A.4 Bias of SRD-WLS

From (2.52) and under small noise assumption,

F′′−1SRD-WLS

=
1

8
(ΓdQ

−1
d ΓT

d )−1
{

I +
[
ΓdQ

−1
d B−1d diag(nd)(Γd + ρ11

T )T

+ (Γd + ρ11
T )B−1d diag(nd)Q

−1
d ΓT

d − (nTdQ−1d B−1d rod)X
o

+
(
ΓdQ

−1
d (ΓdB

−1
d )T + ΓdB

−1
d Q−1d ΓT

d

)
αTnd

]
(ΓdQ

−1
d ΓT

d )−1
}

+ o(‖nd‖)11T .

(A.10)

Using f ′SRD-WLS given in (2.49) and keeping up to second order noise terms

E[F′′−1SRD-WLSf
′
SRD-WLS] =

1

2

(
ΓdQ

−1
d ΓT

d

)−1×{
ΓdQ

−1
d B−1d qd + 2(Γd + ρ11

T )B−1d 1 + 2Γd(Q
−1
d B−1d + B−1d Q−1d )Qdα

− 2ΓdQ
−1
d B−1d g − 2(Γd + ρ11

T )B−1d h + 2Xo(ΓdQ
−1
d ΓT

d )−1ΓdQ
−1
d B−1d rod

− 2
[
ΓdQ

−1
d (ΓdB

−1
d )T + ΓdB

−1
d Q−1d ΓT

d

]
(ΓdQ

−1
d ΓT

d )−1Γdα
}

(A.11)

where column vector g = [gi], i = 1, . . . ,M−1, and gi = eTi (Γd+ρ11
T )T

(
ΓdQ

−1
d ΓT

d

)−1
Γdei;

similarly, column vector h = [hi], i = 1, . . . ,M−1, and hi = eTi Q−1d ΓT
d

(
ΓdQ

−1
d ΓT

d

)−1
Γdei.
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F
′′
SRD-WLS and QSRD-WLS are in (2.53) and (2.54). Using (2.51),

F
′′′
l,SRD-WLS = −8

[
cl(ΓdQ

−1
d B−1d rod)

T + (ΓdQ
−1
d B−1d rod)c

T
l + (eTl ΓdQ

−1
d B−1d rod)X

o
]
.

(A.12)

The bias of SRD-WLS can now be found from (2.19).
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Appendix B

Appendix for Chapter 4

B.1 CRLB for 2D Stationary Rigid Body Local-

ization: Parameterization of Rotation Matrix

R by Rotation Angle θ

In the 2D stationary rigid body localization algorithm presented in Section 4.3, the

unknown vector is [θ, tT ]T since we use θ to parameterize the rotation matrix R. The

derivatives are

∂romi
∂θ

=
1

romi
(am − t)T

 sin θ cos θ

− cos θ sin θ

 ci (B.1)

and

∂romi
∂t

=
Rci + t− am

romi
. (B.2)
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Stacking the rows
∂romi

∂[θ, tT ]
from different measurements gives the matrix J. The Fisher

information matrix (FIM) is

FIM = JTQ−1n J (B.3)

whose inverse is the CRLB [20], where Qn is the covariance matrix of the distance

measurement noise.

B.2 CRLB for Moving Rigid Body Localization

B.2.1 2D Case

The unknown parameter vector is [θ, tT , ω, ṫT ]T . Since the distance equation does

not contain ω and ṫ, we have

∂romi
∂ω

= 0,
∂romi
∂ṫ

= 0.

Using the derivatives
∂romi

∂θ
and

∂romi

∂t
derived in Appendix B.1, we can stack the rows

∂romi

∂[θ, tT , ω, ṫT ]
to form the gradient matrix Jro for the distance measurements.
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For the Doppler measurements, we have from (4.5),

∂ṙomi
∂θ

= − 1

romi
(tT [ω]× − aTm[ω]× + ṫT )

 sin θ cos θ

− cos θ sin θ

 ci −
ṙomi
romi

∂romi
∂θ

,

∂ṙomi
∂t

=
1

romi
([ω]×Rci + ṫ)− ṙomi

romi

∂romi
∂t

,

∂ṙomi
∂ω

=
1

romi
ΦT [(Rci)⊗ (t− am)] ,

∂ṙomi
∂ṫ

=
1

romi
(Rci + t− am) , (B.4)

where
∂romi

∂θ
and

∂romi

∂t
are given in Appendix B.1 and Φ is defined in (4.39). Stacking

the derivatives
∂ṙomi

∂[θ, tT , ω, ṫT ]
forms the gradient matrix Jṙo . The resulting FIM is

FIM =

Jro

Jṙo


T

Q−1

Jro

Jṙo

 , (B.5)

whose inverse is the CRLB.

B.2.2 3D Case

We shall first evaluate the FIM of the unknown parameter vector ζ = [qT , tT , ωT , ṫT ]T

without having the SO(3) constraint, where q = vec(R). The gradients
∂ṙomi

∂t
,
∂ṙomi

∂ω

and
∂ṙomi

∂ṫ
are the same as those in the 2D case, where Φ is given in (4.38). From (4.5),

∂ṙomi
∂q

=
1

romi
[ci ⊗ ([ω]×am − [ω]×t + ṫ)]− ṙomi

romi

∂romi
∂q

(B.6)

136



where
∂romi

∂q
= 1

romi
ci ⊗ (Rci + t− am). We can now form Jro and Jṙo , and obtain the

FIM using (B.5).

The constrained CRLB by imposing R to SO(3) is obtained by the FIM together

with the gradient matrix of the constraints with respect to ζ, the readers are referred

to [53] for details (note that [53] omits the constraint det(R) = 1 on the rotation

matrix which could result in a bound that is higher than the actual. Imposing the

constraint RTR = I is not sufficient since it implies not only det(R) = 1 representing

rotation but also det(R) = −1 representing reflection).

B.3 Definition of γ and L for Multiplicative Cor-

rective Rotation Matrix

In general 3D case, γ is a 9 × 1 sparse vector with value 1 for the 1st, 5th and 9th

elements and 0 otherwise, and L is a 9×3 sparse matrix with the (3, 2), (4, 3) and (8,

1) elements equal to 1, (2, 3), (6, 1) and (7, 2) elements equal to −1 and 0 otherwise.

We would like to point out that we cannot choose the Euler angle sequence

(3, 1, 3) (rotates with respect to z, x, z axes in sequence) to represent Rδ. Such a

choice will cause the matrix HTQ−1v H to be singular and cannot be inverted.

In 2D case, β = θ, γ = [1, 0, 0, 1]T and L = [0, 1,−1, 0]T .
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B.4 The Two-Stage Method for Localization Us-

ing TOA and Doppler Measurements

We shall obtain the position and velocity of each sensor individually. Following [71],

the nonlinearly transformed measurement equations for i-th sensor are

εt,m = r2mi − ‖am‖2 − (−2aTmsi + ‖si‖2) ≈ 2rominmi (B.7)

εf,m = rmiṙmi − (sTi ṡi − aTmṡi) ≈ ṙominmi + romiṅmi (B.8)

for m = 1, 2 , . . . , M . We solve for the unknowns θ1 = [sTi , ‖si‖2, ṡTi , sTi ṡi]
T from the

matrix equation constructed from (B.7) and (B.8),

ε1 =

εt
εf

 = h1 −G1θ1 (B.9)

where

h1 =



r21i − ‖a1‖2
...

r2Mi − ‖aM‖2

r1iṙ1i
...

rMiṙMi


, G1 =



−2aT1 1 0T 0

...

−2aTM 1 0T 0

0T 0 −aT1 1

...

0T 0 −aTM 1


. (B.10)

In G1, 0 is a 3× 1 vector of zeros. The solution is

θ̂1 = (GT
1 W1G1)

−1GT
1 W1h1 (B.11)
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where W1 = (E[ε1ε
T
1 ])−1. E[ε1ε

T
1 ] are defined by the correlations E[εt,kεt,l] = 4rokir

o
li×

E[nkinli], E[εf,kεf,l] = ṙokiṙ
o
liE[nkinli] + rokir

o
liE[ṅkiṅli] + ṙokir

o
liE[nkiṅli] + rokiṙ

o
liE[ṅkinli]

and E[εt,kεf,l] = 2rokiṙ
o
liE[nkinli] + 2rokir

o
liE[nkiṅli], where the noise correlation values

can be obtained from the elements of Q.

From the elements of θ̂1 and their ideal relations, we can construct the matrix

equation

ε2 = h2 −G2θ2 (B.12)

where

h2 =



θ̂1(1 : 3)� θ̂1(1 : 3)

θ̂1(4)

θ̂1(1 : 3)� θ̂1(5 : 7)

θ̂1(8)


, G2 =



I O

1T 0T

O I

0T 1T


,

θ2 =

si � si

si � ṡi

 (B.13)

where θ̂1(k : l) denotes a subvector by collecting the k-th to the l-th elements of θ̂1

and θ̂1(k) is its k-th element. In G2, I and O are size 3 identity and zero matrices,

and 1 and 0 are length 3 vectors of unity and zero. The solution of θ2 is

θ̂2 = (GT
2 W2G2)

−1GT
2 W2h2 (B.14)

where

W2 = [X(GT
1 W1G1)

−1XT ]−1 . (B.15)

X is defined by the 2× 2 block form with the blocks X11 = diag([2sTi , 1]T ), X12 = O,
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X21 = diag([ṡTi , 0]T ), and X22 = diag([sTi , 1]T ).

The position and velocity estimate of i-th sensor is

ŝi = diag(sgn(θ̂1(1 : 3)))

[√
θ̂2(1),

√
θ̂2(2),

√
θ̂2(3)

]T
ˆ̇si = θ̂2(4 : 6)./ŝi . (B.16)

where sgn(∗) is signum function and ./ is element-wise division.

B.5 Implementation Details for SCLS and CLS

For the implementation of SCLS, we use the solution from (25) instead of (24) from

[53]. The anchor positions are randomly assigned in our simulation. As a result,

degenerate anchor topology may occur which leads to worse result using (24). We

impose det(R) = 1 when adopting orthogonal Procrustes problem technique.

For the implementation of CLS, we initialize it with the proposed step-1 solution

instead of SCLS since the former gives better accuracy. The iteration of CLS stops

when the relative gradient magnitude is less than 10−10 [76] or when the maximum

number of iterations, set to 50, is reached.
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