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ABSTRACT 

 

The objective of this research was to develop a support system to facilitate 

appropriate decision making for construction, maintenance, and repair of earth slopes 

along transportation rights of way. The system was to be based on asset management 

principles to minimize life-cycle costs and maximize the life-cycle performance of 

geotechnical assets.  

In the area of geotechnical transportation infrastructure, there are few decision 

support systems and little data available to facilitate effective decision-making for 

maintenance and rehabilitation of highway embankments and slopes. Because of ongoing 

efforts to improve the required data collection and maintenance, this research focused on 

the development of appropriate analysis techniques. Through the use of decision tree 

modeling, two basic forms of analysis were developed to predict the outcomes of 

alternative stabilization methods. The first form is referred to as the “Single Point in 

Time” (SPIT) model that models only a single application of a repair method. In its 

current form, it does not model the potential costs of alternative stabilization methods 

over a consistent life-cycle. 



 xi 

 

The second form of model is referred to as the Specific Time Horizon (STH) 

model. This model was developed to account for the possibility of having to apply a 

specific repair technique multiple times over a specific time horizon. Both models 

allowed developing preliminary tools, referred as “break-even” diagrams, to illustrate one 

potential application of the techniques. 
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1 CHAPTER 1 – INTRODUCTION 

1.1 Background 

It is known that for any asset, the total life-cycle cost takes into account the cost 

of the asset and the cost of the maintenance throughout its life-cycle. In the same way, the 

life-cycle cost of an engineering infrastructure such as a building, bridge or road takes 

into account the construction cost and its maintenance cost. In the case of roads or 

highways, while the construction cost is established with an acceptable degree of 

accuracy during the design stage, the total maintenance cost throughout its life-cycle is 

uncertain. According to Jha (2003), maintenance and operation costs constitute a major 

portion of expenditures over a highway’s life and ought to be given due consideration. 

 Small routine maintenance costs of roads may include items such as re-painting, 

cleaning drainage channels and sign replacement. However, Departments of 

Transportation (DOTs) are additionally dealing with the repair of numerous erosional 

features and surficial slope failures that present significant hazards, including damage to 

or loss of pavement sections, loss or reduced effectiveness of guardrails and other safety 

measures, blocking of drainage channels, and potential damage to bridges and other 

structures due to loss of ground support or additional loads imposed by sliding soil and 

rock (Sanford Bernhardt and Loehr, 2001). According to the Transportation Research 

Board (TRB), the repair cost of these surficial slope failures exceeds the repair cost of 

major landslides with an annual estimate of over $100 million dollars (TRB, 1996). 

 Unfortunately, slope repair methods are often chosen based on tradition rather 

than on technical or economic reasons (Sanford Bernhardt and Loehr, 2001). There are 
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several methods available to repair and stabilize slopes. These methods or techniques 

may vary from simple replacement of the unstable material with a more “selected” 

material to the construction of an earth retaining structure. The initial cost and 

effectiveness of these methods may vary significantly as well as their life-cycle cost. 

Because of a limited budget, it is not rare for a decision maker to choose the apparent 

most economic alternative (lowest initial cost), despite the fact that it may be less 

reliable. The problem is that inexpensive solutions such as regrading the unstable slope 

material, tend to be recurrent activities that may also increase the life-cycle cost in the 

long term (Sanford Bernhardt et al. 2003). Therefore, infrastructure engineers and 

managers have to be aware of the economic consequences (on a life-cycle basis) of 

selecting a particular rehabilitation and construction alternative (Salem, 2003). The 

problem is that there are few decision support systems available. Little research has been 

performed to assist decision makers in deciding whether, when or how a slope failure 

should be repaired so that limited funds would be applied where the most benefits, on the 

life-cycle basis, will be gained (Sanford Bernhardt et al. 2003).  

1.2 Objective 

The objective of this research was to develop a support system to facilitate appropriate 

decision making for the construction, maintenance, and repair of earth slopes along 

transportation rights of way. The system was to be based on asset management principles 

to minimize life-cycle costs and maximize its life-cycle performance.  
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1.3 Scope 

The scope of this thesis includes identifying through literature review, the state of 

knowledge in the areas of decision support and slope stabilization repair. Based on this 

information, formal decision making was researched by modeling stabilization decisions 

through graphical and mathematical models known as decision trees. Numerous models 

were developed and evaluated. Description of the models and the results of various 

analyses are discussed in this thesis. 

1.4 Thesis Outline 

The thesis is organized in six chapters including the introduction. The literature review 

presented in Chapter 2 describes three well known geotechnical decision support systems 

developed by departments of transportation. The description of decision tree modeling is 

presented in Chapter 3.  In Chapter 4 various decision tree models are described and 

evaluated. This chapter also includes a preliminary decision user spreadsheet for the input 

of model values. Breakeven-line concepts are described in Chapter 5.  Two basic forms 

of decision tree models referred as the “Single Point in Time” (SPIT) model and the 

“Specific Time Horizon” (STH) model are introduced. Applications, advantages and 

limitations of both models are discussed in the chapter. Finally, Chapter 6 includes a 

summary of the thesis along with conclusions and recommendations for future study.  
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2 CHAPTER 2 – LITERATURE REVIEW 

2.1 Introduction 

As part of the study, a literature review was performed to find existing systems or 

methods that would address the problem of making effective decisions for managing 

geotechnical problems. The most well known support systems are briefly described and 

compared in this chapter.  

2.2 Existing Slope Decision Support Systems 

 In the area of geotechnical transportation infrastructure, there are few decision 

support systems and little data available to facilitate effective decision-making for 

maintenance and rehabilitation of highway embankments and slopes. Among others, 

probably the three best developed or most widely known systems are the (1) the ODOT 

Landslide & Rockfall Pilot Study-Final Report developed in May 2001 by the Oregon 

Department of Transportation (ODOT), (2) the Development of an Unstable Slope 

Management System developed by the Washington Department of Transportation 

(WSDOT) and (3) the Blue Ridge Parkway Landslide Rating System developed by the 

Eastern Federal Lands Highway Division (EFLHD) of the Federal Highway 

Administration (FHWA).  Each of these systems is described in the following sections. 

2.2.1 Oregon Department of Transportation System 

Between late 1999 and early 2001, the Oregon Department of Transportation 

(ODOT) developed a system to identify, inventory and rate all active landslides and 

rockfalls according to their level of hazard, along three major state highways in Oregon 

(Region 3). Among others, the main objective of the study was to develop a hazard 
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scoring system that would allow development of a process for prioritizing and selecting 

landslides and rockfall projects for the Statewide Transportation Improvement Plan 

(STIP). The prioritizing process was to take into account both safety hazards (risk) and 

economic impacts to be applied to the landslide and rockfall sites in the studied area.  

To make the prioritized landslide and rockfall list, the study considered, 

quantified, and combined several factors into a final scoring system. Hazard and 

economic impacts were included in the final selection process. Hazard rating was 

quantified taking into account physical and historical information. Five categories were 

considered for the hazard rating of each site. Each of the five categories would top 100 

points for a maximum of 500 points per site. It is important to mention that according to 

the study criteria, sites with higher hazard scores were not predicted to fail sooner, they 

were considered to pose a higher level of hazard or risk. The five categories considered 

for the hazard rating were the following: 

• Failure type/hazard (speed of failure) 

• Roadway impact (for landslides or rockfalls) 

• Annual maintenance frequency 

• Average daily traffic 

• Accident history 

After scoring the relative hazard of each site, the scores would then be multiplied 

by factors related to the annual maintenance costs (economic impacts) and highway 

importance to arrive at the Final STIP Score. The annual maintenance costs included the 

two economic impacts that were (1) the cost impact to ODOT maintenance forces and (2) 

the cost impact due to traffic delays. The cost impact to ODOT maintenance forces is 
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evaluated in Table 2-1 and a factor is determined based on a benefit/cost ratio. The 

second economic impact (potential traffic delays), was difficult to quantify and therefore 

was considered as a supplemental factor to be considered in the final selection process. 

The maintenance Benefit-Cost ratio is a 20-year maintenance cost divided by the 

repair cost (assumed as permanent repair). According to Table 2-1, factors ranged 

between 1.5 and 0.5. The highest factor 1.5 is applied when the cost of maintenance over 

a 20-year was twice the cost of fixing the failure. And the lowest factor 0.5 was applied 

when the 20-year maintenance cost was very small with respect to the repair cost.   

 

Table 2-1. Maintenance Benefit/Cost Factor 

 

20-Yr Maintenance Cost 
Repair Cost 

Maintenance Benefit-Cost 
Factor (MB/C) 

> 0.0 – 0.2 0.5 

≥ 0.2 – 0.4 0.75 

≥ 0.4 – 0.6 1 

≥ 0.6 – 0.8 1.06 

≥ 0.8 – 1.0 1.12 

≥ 1.0 – 1.2 1.18 

≥ 1.2 – 1.4 1.24 

≥ 1.4 – 1.6 1.3 

≥ 1.6 – 1.8 1.36 

≥ 1.8 – 2.0 1.42 

≥ 2.0 1.5 

 
 

The highway classification factor was the second multiplier to the Hazard score, 

taking into account the route importance. As shown in Table 2-2, the factors ranged 

between 1.0 and 1.2.  
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Table 2-2. Highway Importance Factor 

 

Highway Type Highway Factor 

District Highway 1.0 

Regional Highway 1.05 

Statewide Highway 1.1 

Interstate Highway 1.2 

 

The Final STIP Score was obtained by multiplying the hazard score by the two 

factors described above. The equation that summarizes this step of the process is as 

follows:  

(Hazard Score) x (MC20factor) x (Highwayfactor) = Final STIP Score   (2-1) 

 

Sites were then sorted by their Final STIP Score to produce the prioritized list. 

Project selection was made from this final list, taking into account the estimated repair 

costs and other non-scoring factors. The other non-scoring impacts that were taken into 

consideration in the final selection are the following:   

• Potential traffic delay costs 

• Emergency lifeline priority ranking 

• Existing culvert damage (possibly contributing to slope instability) 

• Environment impacts (fisheries, wetlands) 

• Impact to adjacent structures or private properties, and 

• Interagency funding opportunities. 

Although the ODOT pilot study was successfully completed, the scoring system 

and selection process developed was applied to only three state highways and only 100 

sites in Region 3. Several issues such as average daily traffic scoring, repair cost 
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uniformity and traffic delay cost, needed to be solved as this system expanded before it 

would be applied to the entire statewide highway system.  

2.2.2 Washington Department of Transportation 

The Washington Department of Transportation (WDOT) developed a landslides 

and slopes management system that was published in December of 1991 through a final 

report titled Development of an Unstable Slope Management System (USMS). The 

technical report is composed of two parts: a database and priority programs. The intent of 

the system was to provide the user with a systematic approach to manage the 

maintenance and repair of unstable slopes. 

The USMS was developed through questionnaires and conversations with 

WSDOT personnel concerning unstable slope maintenance. Throughout the 

questionnaires, personnel were asked to rate an item from 1 to 10. The value 10 

represented the most important, severe, or extreme case. For example, if the personnel 

considered that landslides, rockfall, and flows were all extremely important in a particular 

site, then they would assign each item a value of 10 or whichever value they felt 

appropriate. 

The data for this system was divided into two different categories: Temporary and 

Permanent. The permanent data was considered site information that would not, for 

practical purposes, change over time. Temporary data was considered information that 

may have varied each time the site failed.  

The priority programs were known as CLIPS programs. From the questionnaire 

information, CLIPS programs assigned various priority ratings to each site so that they 

could be compared in a methodical manner.  
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After the CLIPS programs were executed and the priorities were determined, 

weighted priorities and total priority were determined. The weighted priorities were 

calculated by a program known as the WEIGHT.PRG program that would multiply the 

temporary priority ratings and permanent priority ratings with appropriate weights. The 

weighting values for temporary and permanent factors are shown in Table 2-3.  

Table 2-3. Weights for temporary and permanent factors used in the WSDOT site rating system. 

 
  Temporary Weighted Factors: 

Factor            Weights 

1. Problem type       6 
2. Traffic impedance      5 
3. Lawsuit potential      1 
4. Pavement damage      3 
5. Structure type and damage     5 
6. Temp. Static & dynamic load     3 
7. Failure frequency      8 
8. Repair cost     15 
9. Failure size       2 
10. Failure water level    10 
11. Failure data       1 

             ------------ 
Weight Total     59 

  Permanent Weighted Factors: 

Factor            Weights 

1. ADT      12 
2. Road type     10 
3. Seismic       3 
4. Soil type and layers      4 
5. Rock joint-layers & loose & intact    4 
6. Economic       3 
7. Perm. Static & dynamic load     3 
8. Geographical hazard      2 

               ------------ 
Permanent Weight Total   41 
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Finally, the total priority rating for each site was calculated by adding the 

weighted priority ratings divided by 19 which was the total number of factors. The total 

priority rating was a number that theoretically ranged from 0 to 100, with 100 being the 

highest priority. The total priority of a failure site was considered independent of all other 

failure sites. 

2.2.3 Blue Ridge Parkway Landslide Rating System 

 Similar to the two systems described before, the Blue Ridge Parkway Landslide 

Rating System was developed to assist in the evaluation and prioritization of the 

landslides encountered along the Blue Ridge Parkway (unpublished FHWA - Eastern 

Federal Lands Highway Division documents). This evaluation and rating system is based 

on technical considerations without accounting for estimated landslide repair costs. 

According to the system’s description, the future programming will be assisted by a 

master spreadsheet that will summarize all landslide data including preliminary cost 

estimates. 

 The system is comprised of two phases. In the first phase, Parkway district 

personnel (maintenance supervisors) compile an inventory list of all known areas of 

instability (including spur roads, interchange ramps or other facilities for which the 

Parkway is responsible). The information includes location, type of slope (cut or fill), 

slope material, climatic conditions, slide type (shallow failure, settlement, earth/rock 

flow, rockfall, etc.), history of instability and an estimate of the annual maintenance cost 

of each identified site. In the second phase, geotechnical personnel conduct a detailed 

inspection, a preliminary evaluation and a numerical rating of the known landslides listed 

on the inventory. The Parkway’s rating system is a matrix evaluation system which 
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assigns numerical values to several criteria in order to objectively evaluate the landslides. 

After assigning numerical values and compiling the totals, the slides are prioritized 

according to the numerical rating. Rating system criteria are tabulated in Table 2-4. A 

weighting factor ranging between 1.0 and 1.5 was assigned to each rating criteria to 

assign a relative degree of importance.  

 

Table 2-4. Blue Ridge Parkway landslide rating system matrix 

Category Points = 2 Points = 4 Points = 8 Points = 16 
Weighting 

Factor 

Soil Slide 
Surface 
slough 

(<3’ deep) 

Settlement or 
slow moving 
slide (years) 

Moderately 
moving slide 

(months) 

Rapidly 
moving slide 

(days) 
1.0 

Rock Slide – Volume of 
Rock 

Minimal 
(<1 cy) 

Minor 
(1-10 cy) 

Moderate 
(10-50 cy) 

Major 
(>50 cy) 

1.25 

Rock Slide – Width of 
Catchment Area 

> 25’ 25’-10’ 10’-5’ < 5’ 1.5 

Average Daily Traffic < 250’ 250 to 1000 1000 to 2500 > 2500 1.0 

Minimum Sight Distance > 500’ 500’-250’ 250’-100’ < 100’ 1.5 

Length of Parkway 
Impacted 

< 50’ 50’ to 100’ 100’ to 250’ > 250’ 1.0 

Width of Parkway 
Impacted 

None Shoulder One lane Both lanes 1.25 

Average Vehicle Risk 
<10% of the 

time 
10% to 30% 
of the time 

30% to 50% 
of the time 

> 50% of the 
time 

1.5 

Pavement Damage 
None to 

minor–not 
noticeable 

Moderate 
driver must 

slow 

Severe driver 
must stop 

Extreme–not 
transversible 

1.25 

Annual Maintenance 
Costs 

< $2500 
$2500 to 
$10,000 

$10,000 to 
$25,000 

> $25,000 1.0 
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2.2.4 Summary 

The life-cycle cost of engineering infrastructures (buildings, roads, bridges) takes 

into account the cost of construction and maintenance. In the case of roads, although the 

construction cost is established with an acceptable degree of accuracy during the design 

stage, the total maintenance cost throughout its life-cycle is uncertain. Departments of 

transportation (DOTs) are dealing with the repair of numerous erosional features and 

surficial slope failures that according to the Transportation Research Board (TRB) exceed 

the repair cost of major landslides with an annual estimate of over $100 million dollars. 

Unfortunately, slope repair methods are often chosen based on tradition rather 

than on technical or economic reasons (Sanford Bernhardt and Loehr, 2001). Little 

research has been performed to assist decision makers in deciding whether, when or how 

a slope failure should be repaired. Furthermore, there are few decision support systems 

and little data available to facilitate the effective decision making for highway 

maintenance and rehabilitation. A summary of the three best developed or most widely 

known systems (ODOT Landslide & Rockfall Pilot Study-Final Report, Development of 

an Unstable Slope Management System, and Blue Ridge Parkway Landslide Rating 

System) was discussed in this chapter. 
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3 CHAPTER 3 – DECISION ANALYSIS METHOD 

3.1 Introduction 

The inherent uncertainty of situations or complexity of some problems can make 

decisions difficult to make.  A decision analysis approach can help identify and handle 

important sources of uncertainty and provide effective methods to organize a complex 

problem through a structure that can be analyzed. According to Clemen (2001), the 

purpose of decision analysis is to help a decision maker think systematically about 

complex problems and to improve the quality of the resulting decisions. This chapter will 

focus on the general process of structuring and analyzing decisions. 

3.2 Structuring Decisions 

Decisions making is a key function of engineering and management that should 

account for technical and economic effects (Buck 1989). Some decisions are so simple to 

make that they do not require thinking of them in the process. Other decisions that are 

more complicated may require taking considerable time and effort within the process 

(Buck 1989). The criteria of complicated decisions are usually economic in character and 

they may normally involve several variables. Decision makers may resolve these 

complex economic problems by performing decision analysis. 

 One common way to solve complex problems through a systematic approach is by 

the use of influence diagrams or decision trees. Fortunately, innovations in computers and 

software offer friendly graphical interfaces that simplify the structuring process of these 

models. Influence diagrams and decision trees are graphical modeling tools for 

representing the basic structure of a decision (Clemen 2001). Influence diagrams allow 
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many aspects of a problem to be displayed in a compact and intuitive form while a 

decision tree provides an alternative image of a decision in which more details can be 

displayed (Clemen 2001). Decision trees, also known as event trees¸ allow representing 

complex networks of conditional probability problems (USACE, 1999). In general, 

decision trees are precise mathematical models that provide a visual representation of a 

decision situation.  

  According to Clemen (2001), a good decision is one that gives us the best 

outcome. In order to create alternatives and make a good decision, it is necessary to first 

identify and understand well the problem. The next step to approach the problem 

systematically would be to develop a model. Modeling is critical in decision analysis 

(Clemen 2001). Regardless of the model used, a decision analysis will not provide a 

solution but rather the information to make a good decision.  

Decision trees and not influence diagrams were used to model unstable slope 

solutions in the thesis. A description of the decision tree modeling used in the thesis is 

described below.  

3.3 Structuring a Decision Tree 

The decision tree modeling used in the thesis was heavily based on Clemen’s 

(2001) drawings which represented the alternatives as branches. These branches emanate 

from nodes flowing from left to right. It can be useful to think of the nodes as occurring 

in a time sequence. In this sense, beginning from the left side of the tree, the first thing to 

happen would be typically a decision followed maybe by another decision or a chance 

event in a chronological order.  
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In relation with the construction of the trees, square nodes represent the decisions 

to be made, circle nodes represent chance events and end nodes are represented by 

triangles. The branches that emanated from the square nodes corresponded to the 

available alternatives (choices) and the branches that emanated from circle nodes 

represented the possible outcomes of the uncertain events. A decision maker has no 

control of the chance events. The possible things that can happen in the resolution of an 

uncertain event are called outcomes (Clemen 2001). The numerical values of the 

outcomes are displayed at the end of the branches. These values were obtained through 

the decision analysis. They allowed identifying the optimum path through the tree that 

included the preferred alternative.  

 The tree models also display information near their branches and nodes. The 

computer software used for the thesis displays the name of the node near each node and 

the value of the tree at that node. The possible outcome branches that emanated from 

circle or chance nodes display the value (cost) of the outcome and the probability of the 

outcome to occur. Decision branches that emanate from the decision node display the 

label True or False identifying the preferred alternative. Finally at end nodes, the 

probability of the path and the value of the path are displayed.  

 Recalling from the previous chapter, slope repair decisions may involve both 

technical and economical aspects. The objective of the thesis modeling was measured 

only in monetary terms (minimize costs). The analysis therefore required to calculate 

each decision’s expected monetary value (EMV), which was displayed near the chance 

nodes. The EMV of each decision (alternative) was obtained by weight averaging the 
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outcome costs with respect to their probabilities of occurrence. If costs were modeled as 

negative values, the preferred alternative was identified as the least negative. 

 The example shown in Figure 3-1 depicts the terminology described above. The 

example was obtained from Palisade software which accompanies Clemen’s 2001 book: 

Making Hard Decisions. The name of the example is “Lottery”. The tree was developed 

to have one decision node from which two alternative branches emanate for whether to 

buy or not to buy a lottery ticket for the price of 2 (two) dollars. If the decision maker 

decides to buy the ticket, he must pay 2 dollars. There is no cost associated with the 

alternative to not buying a ticket. The cost value of 2 dollars is displayed in the tree 

model as negative 2 dollars because gains are normally expressed as positive values and 

losses or costs are expressed as negative values. If there is no gain or loss, then the value 

is zero (Clemen, 2001). 

 

1.0% 0
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-2 -1

99.0% 0
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TRUE 1

0 0

Lottery
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multiple outcomes 
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Tree 

Name

Decision Node:
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decision is to be 
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Path Probability of 
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Payoff of this 

specific path.

End Node

 

Figure 3-1. Decision tree example: “Lottery” (PrecisionTree–Palisade, 2000). 

If the decision maker decides to buy the ticket and the game is played, there are 

two possible outcomes that are shown emanating from the chance node: “Win” or 

“Lose”.  As displayed in Figure 3-1 and Figure 3-2, each outcome branch displays the 
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probability of occurrence and the value of its cost. The probability value shown on the 

branch “Win” indicates that there is a 1 percent chance of winning a prize of 100 dollars. 

And the value displayed on the outcome branch “Lose” indicates that there is a 99 

percent chance of not winning anything.  

1.0%

100
FALSE Outcome

-2 -1

99.0%
0

Buy Ticket

Win

Lose

Branch Name

Probability of 

this branch

Node Name

Expected Value 

at this node.

Value of this 

branch

 

Figure 3-2. Parts of outcomes branches. 

As shown in Figure 3-3, the preferred alternative, “Don’t buy” a lottery ticket, is 

identified buy the label “True” displayed on the outcome branch. 
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TRUE
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Branch Name
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Expected Value at 
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Figure 3-3. Parts of the alternative branches 

 

Calculations to establish the monetary value that justifies the solution of the 

example is shown in the next section.  
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3.4 Solving a Decision Tree 

The purpose of structuring a problem is to simplify finding a preferred alternative. 

An easy way of picking an alternative when the alternatives are risky, is choosing the 

highest expected value (EV) or the (EMV), when the consequences involve money. 

When using decision trees, the backward procedure to find the (EMV), is often called the 

“averaging out and folding back” procedure (Park and Sharp-Bette, 1990). The procedure 

consists of calculating all EV encountered at chance nodes starting from the right side of 

the tree and proceeding to the left side of the tree. As the tree is being folded back, and 

decision nodes are encountered, the preferred alternative is identified as the branch with 

the highest EV. 

 A double-risk dilemma example was taken from Clemen’s (2001) book to 

illustrate the averaging out and the folding back procedure. The situation is one in which 

a decision maker needs to choose between two risky alternatives. The decision maker has 

a lottery ticket that will let him participate in a game of chance with a 45 percent chance 

of winning 10 dollars and 55 percent chance of getting nothing. His friend has a ticket of 

a different lottery that has a 20 percent chance of winning 25 dollars and an 80 percent 

chance of getting nothing. The friend has offered to trade the tickets if the decision maker 

gives him one dollar. The question is: should the decision maker trade the tickets and 

play to win 25 dollars or should he keep his ticket with a better chance of winning only 

10 dollars?  

 Figure 3-4 shows the decision tree. Notice that the cost of the decision “Trade 

Ticket” is negative 1 dollar. At the end of each alternative branch path (at the end nodes) 

there are two values. The upper value, which represents the probability of the path, is 



 19 

calculated by multiplying all the chance probabilities along the path. The lower value is 

obtained by adding all the values (costs) of the branches along the path. In the case of the 

path “Trade Ticket–Win $25” the value 24 is the summation of the cost of the decision 

“Trade Ticket” (negative 1 dollar) and the payoff (positive 25 dollars) of the chance 

branch “Win $25”. 

 

45.0% 0.45

10 10

TRUE Chance

0 4.5

55.0% 0.55

0 0

Decision

4.5

20.0% 0

25 24

FALSE Chance

-1 4.0

80.0% 0

0 -1

Lottery

Keep Ticket

Trade Ticket

Win $10

Lose

Win $25

Lose

 

Figure 3-4. Double-risk dilemma (Clemen, 2001) 

 

In this example, the first step to solve the decision tree is to calculate the expected 

value of the alternative “Keep Ticket” and playing for 10 dollars. The expected value is 

obtained by calculating the weighted average of the possible outcomes of keeping the 

ticket.  

   ( ) ( ) ( )055.01045.0 +=TicketKeepEMV  

            5.4$=  

 This value can be interpreted as the average value obtained by playing the lottery 

many times. The value 4.5 dollars is displayed next to the chance node of the preferred 
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alternative. The next step is to calculate the expected value for the possible outcomes of 

the alternative “Trading Tickets". 

 

   ( ) ( ) ( )180.02420.0 −+=TicketTradeEMV  

             0.4$=  

  

Once the expected values are calculated, they will replace the chance nodes in the 

decision tree as shown in Figure 3-5. 

 

TRUE

0

Decision

4.5

FALSE
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Figure 3-5. Replacing chance nodes with the EMVs 

 

 Finally the decision maker will choose between the two alternatives depending of 

the highest expected value. In this case the preferred alternative is “Keep Ticket” and is 

labeled as “True” as shown in Figure 3-5.  
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3.5 Summary 

In this chapter the importance of performing decision analysis to improve the 

quality of resulting decisions was discussed emphasizing the importance of structuring 

complex problems so that they can be analyzed systematically. 

Two graphical and mathematical approaches have been described in this chapter; 

influence diagrams and decision trees. Considering that decision trees were used in the 

thesis, only this method was described in detail. Finally, a couple of examples were 

shown for better explanation of the structuring and algorithm aspect of the tree. The 

examples also showed how to calculate the expected monetary value, (EMV) that allows 

identifying the preferred decision.  
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4 CHAPTER 4 – DEVELOPMENT OF DECISION SUPPORT MODEL 

4.1 Introduction 

In the previous chapter it was mentioned that complex problems may be better 

approached through the analysis of decision models. In the area of engineering and 

management, the complexity of most problems is often related to the optimization of 

technical and economical aspects. The objective of this thesis was to develop a decision 

support framework to facilitate the effective programming of slope maintenance and 

repair decision. Therefore, economical and technical aspects were considered in the tree 

modeling. Since decision trees are supposed to mimic the problem as truthfully as 

possible, it was necessary to compare several tree models to confirm their accuracy with 

respect to the objective of the thesis.  

4.2 Initial Decision Models 

The basic structure of a decision tree that is related to a geotechnical transportation 

infrastructure problem may begin with an unstable slope issue. Two or more alternatives 

to stabilize the slope may emanate from an initial decision node as shown in Figure 4-1. 

In the tree models developed in this thesis, the costs associated with the alternatives were 

assumed to be the costs of stabilizing the slope by using a certain repair technique. These 

alternative costs were referred to in the thesis as the “initial cost” of the stabilization 

method. At the right end of the alternatives, as displayed in Figure 4-1, there are two 

chance nodes each of which has two outcomes. These outcomes are either “No Failure” 

or “Failure” representing all possible occurrences of a stabilized slope. Conceptually, a 

partial slope failure was considered as a failure although the consequence cost could have 
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varied. In Figure 4-1 tree values are displayed as variables. Tables showing the values 

and descriptions of the variables will be presented in a later section.   
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Figure 4-1.  A two branch unstable slope tree model 
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 The outcomes were associated with costs and probabilities of occurrence 

expressed in percentages. The probability of occurrence of each outcome was assumed to 

depend on the reliability of the stabilizing method. Finally, the costs of the methods were 

assumed to be related to their reliabilities (although not always true in the practice). 

Therefore in the tree models, a more expensive stabilizing method was assumed to be 

more reliable and therefore less likely to fail. 

 In the first tree models, the values of cost considered were estimated or assumed 

for easy analysis, to understand the behavior of the results and to make adjustments to the 

model itself. For example, the cost associated with the outcome of “Failure”, was 

assumed to be the average cost suggested in ODOT’s report for a 24 hour traffic delay 

(ODOT, 2001). The cost associated with the outcome “No Failure” was assumed to be 

zero. The initial cost for the stabilization method was obtained from ODOT’s suggested 

average cost for slope failure repair. And for the alternative “Don’t Stabilize” shown in 

Figure 4-1, the cost was assumed to be zero (or very little if considered that the slope can 

be only instrumented for monitoring). 

 In the decision trees, decision branches were ordered according to their initial 

costs. In the case of having three or more alternatives, the alternative with the lowest 

initial cost would be located above. The bottom alternative would always have the most 

expensive initial cost. Following this order, Figure 4-2 shows an example of a tree in 

which the upper method has the less expensive initial cost (zero).  

An intuitive estimate would show that in a tree model like the one shown in 

Figure 4-2 in which the cost of failing of all methods were to be the same (same outcome 
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cost and same probability of occurrence), then the alternative with the lowest initial cost 

would be the preferred alternative. 

According to the tree examples shown in Figure 4-2, the costs of no failure were 

considered zero, which may be unrealistic considering that many slope stability methods 

require maintenance cost or monitoring cost. In the case of failure, it was assumed that 

the alternative with the less expensive initial cost would have a more expensive 

maintenance cost. 

Complexity in the identification of the preferred alternative was based on the 

tradeoff that occurs between initial costs, the outcome cost and their probability of 

occurrence. The more expensive alternatives were assumed to have a less expensive 

outcome and a lower probability of occurrence.  
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Figure 4-2. Less expensive alternative is preferred when outcomes are similar. 
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Figure 4-3. Expensive alternative is preferred when probability of failure is very low. 
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 For early tree models (Figure 4-2 and Figure 4-3), the outcome costs of failure 

were considered to be the same for all stability methods ($603,819). The balance in the 

preference of the alternatives was obtained by increasing or decreasing the probabilities 

of failure. Figure 4-3 shows the results of a model in which the preference of the tree 

shown in Figure 4-2 is changed by increasing the probability of failure of the less 

expensive method and decreasing the probability of the most expensive method. The 

preferred and not preferred alternatives are identified in both Figure 4-2 and Figure 4-3 

with the labels “True” or “False” respectively. These preference labels are switched in 

both trees. It is noticed in the figures that at the end nodes (triangles), the values of the 

probabilities of failure are only displayed for the preferred alternative. This was a 

characteristic of the specific software.  

 By comparing Figure 4-2 and Figure 4-3 in more detail, it can be noticed that the 

probability of failure of the most expensive alternative “Stabilize” decreased from 10% to 

2% allowing this alternative to be preferred. The summaries of the final alternative cost 

were displayed next to their chance nodes of the models. These values show that by 

decreasing the probability of failure of the alternative “Stabilize” from 10% to 2%, the 

cost of the alternative decreased from $620,176 to $571,870 allowing this value to be 

slightly preferred over the value of the first alternative which was set constant at 

$573,628. 

 Varying the outcomes’ probabilities of failure would not always result in 

switching the model preference. In the case of a decision tree like the one shown in 

Figure 4-4 in which the outcome cost of the less expensive alternative is smaller that the 
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initial cost of the most expensive alternative, a balance would never be achieved nor 

would the preference switch regardless of the probabilities assumed for both alternatives. 

 The values assigned to the probabilities of failure were observed to significantly 

influence in the identification of the preferred alternative. It was therefore important to 

establish true probability values at some stage.  
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Figure 4-4. Tree model with cost values in which the alternatives can not be balanced 
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4.3 Decision Tree Variables 

4.3.1 Definition of Variables 

 The structure of the tree model and the values assigned to the branches were 

changed several times during the study. In early models, the values that were assigned to 

the trees depended in part on the structure of the tree and mostly on the desired results. 

Their influence on a preferred alternative was very important; therefore, in the models 

they were considered as variables. 

 In a simple tree model such as the one shown in Figure 4-1, each alternative had 

the following five variables: the initial cost, the probabilities of failure and no failure and 

the costs of failure and no failure. The model had two alternatives and ten variables. The 

number of variables in a simple two-alternative tree model was sometimes simplified by 

assuming that the cost of no failure (variable C) for both alternatives was the same. The 

same way the cost of failure (variable D) was also assumed to be the same for both 

alternatives.  Using the same value for two variables allowed decreasing the number of 

variables in the model from ten to eight. 

 The variables used in the model are listed in Table 4-1 which includes a 

description of the base values and the lower and upper bound value of each variable. 

Many of the values that appear in the table were obtained from ODOT’s database 

(ODOT, 2001). They were used as economic factors to score and prioritize the hazard 

sites. The notation assigned for each variable was changed and standardized in later tree 

models. Both early and later notations are shown in Table 4-2.   
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Table 4-1. Variable values 

Variables Description Base value Lower Bound Upper Bound

pf Probability of failure 20% 0% 100%

rf Probability of failure 10% 0% 100%

A Don't stabilize initial cost 0 0 0

B Stabilize initial cost 589,794 1,600 6,000,000

C No failure cost 0 0 0

D Failure cost 603,819 0 3,901,349

(1-pf) Probability of not failing 80% 0% 100%

(1-rf) Probability of not failing 90% 0% 100%  

 

 

Table 4-2. Comparison between new and old variable names 

 

Before After

Initial cost Method A (Don't Stabilize ) A A

Initial cost Method B B B

Initial cost Method C E C

Cost of Not Failure A D T

Cost of Not Failure B D U

Cost of Not Failure C D V

Cost of Failure A C X

Cost of Cost of C Y

Cost of Failure C C Z

Chance failure A pf P

Chance failure B qf Q

Chance failure C rf R

Chance no failure A (1-pf) (1-P)

Chance no failure B (1-qf) (1-Q)

Chance no failure C (1-rf) (1-R)

Description
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4.3.1.1 Variable Values 

 The values of the variable to be assigned for probabilities were  difficult to obtain 

from the literature. The difficulty was associated with the understanding of what is 

considered failure in engineering. According to the United Stated Army Corps of 

Engineers (USACE), failure may be a catastrophic or non catastrophic event. While a non 

catastrophic event may only require repair or maintenance to assure the usability of 

structure, a catastrophic event may be a total loss. Both concepts were used to assign the 

values of failures in later models.  

 One approach to obtain values for the probability variables is the use a statistical 

analysis in which risk and uncertainty (reliability) theory are included. However this 

approach was avoided because it was considered beyond the objective of the modeling. 

According to soil behavior theory, the probability of failure of a slope is not a constant 

value; rather it varies with time (short or long term stability). Time factor was not 

included in the early models but was emulated to some extent in later models as will be 

discussed later. To simplify the work in the thesis, the probability values were always 

assumed. 

 In general the variables’ lower and upper bounds shown in Table 4-1 defined a 

range in which the values were allowed to vary. In the case of the cost of stabilizing the 

slope (variable B), these bound values were obtained from ODOT’s smallest and largest 

value for “repair cost” (ODOT, 2001). The base value considered for this variable was 

the calculated arithmetic average of ODOT’s repair costs. The same considerations were 

applied to obtain the bounds and base value of the no failure cost (variable C); although 
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these values were obtained from the “24-hour delay” costs used for the site scoring in 

ODOT’s report.  

The variable’s ranges were used to perform sensitivity analyses on the model to 

observe their influence in the identification of the preferred alternative. For example the 

“24-hour delay” from ODOT’s data was observed to fit a log-normal distribution rather 

than a normal distribution. Although similar in magnitude, values obtained from a log-

normal distribution were also used to analyze the model. 

4.3.1.2 Three-Branch Decision Tree Variables 

 Decision analysis showed that a two-branched decision tree was capable of 

modeling many scenarios in which two alternatives were applicable. However, 

considering that a decision maker would have more than two alternatives available, later 

tree models included a third alternative branch as shown in Figure 4-5. This third 

alternative branch with its two outcomes (sub-branches) justified incorporating new 

variables and justified renaming the variables of the two-branch tree shown in Table 4-1. 

The new alternatives variables along with the renamed variables are shown in Table 4-2.  

Alphabetic representation (notation) of the initial costs lettered A, B and C used for a 

better tracking of the variables. The methods’ names were also generalized as methods A, 

B and C. The variables used for the failure of the methods were X, Y and Z. These 

variables replaced the variable C used in the decision tree shown in Figure 4-1. 
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Figure 4-5.  Three branch decision tree structure with revised variable names 
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 Incorporating three alternatives for the cost of failure allowed assigning three 

different values of failure for each alternative. The alphabetic representation of no failure 

was T, U and V. Similar to X, Y and Z, these variables replaced the variable D. Finally 

the new representation for the probabilities of failure were P, Q and R. It was assumed in 

the thesis that the possibility of failure and the possibility of no failure would always add 

to unity. The increase in the number of variables available in the model did not restrict 

the decision maker to consider the same value among homologous variables. 

 The advantages of incorporating a third alternative (with the most expensive 

initial cost) are discussed later. However towards the third alternative was dropped to 

keep the model simple. Two alternatives allowed understanding the behavior of the 

decision tree model and development of charts or “rules-of-thumbs” to facilitate decision 

making by personnel in the field.  

4.3.2 Decision Maker Input Spreadsheet 

 Variable values are different for every unstable slope site. For example, the cost 

of a stability method and/or the cost of failure (which include damages to the road 

structure, third party properties, etc.) will be different even between two slopes in the 

same area but located on opposite sides of a road. Furthermore, two slopes that have been 

stabilized with the same method may have a different probability of failure if exposed to 

different conditions such as loads and water content.  

 The large variability in variable values and costs suggest using a spreadsheet to 

assist decision tree users in establishing these values. During the thesis work, a 

spreadsheet form was developed to be used with Microsoft Excel®. The use of the 

spreadsheet requires a certain degree of project cost experience to input adequate values 
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for each alternative. For example, the items considered would be for example 

maintenance costs per year, slope reconstruction and damage costs of the road pavement 

and private property. 

 The user’s spreadsheet was a tool made to assist users to establish decision tree 

variable values. The example spreadsheet displayed in Figure 4-6 shows tables with input 

and output values. The input values are mostly costs that are estimated by the users’ 

experience and judgment. The output values are either calculated with the spreadsheet or 

are established from a database. The database values were obtained from the decision 

support systems described Chapter 2. 

 An example of the database value is shown in Table 4-3 in which the number of 

cars and trucks are pre-established according to the type of highway. These values were 

linked to the spreadsheet and could be updated by the user before using the spreadsheet. 

 

Table 4-3. Average daily traffic values 

Highway type Cars Trucks

District 300            60              

Regional 800            160            

Statewide 8,000         1,600         

Interstate 15,000       3,000         

A
D

T
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Date: Highway type:

District 0

Location: Regional 0

Statewide 0

Slope ID : Interstate 1

Assumed:

Amount (Delay cost)/hr Passengers

ADT Cars 15,000 15.46 1.35

ADT Trucks 3,000 20.94 1.00

Stabilization Costs: Maintenance:

Initial Chances of

Cost Failure  %

Method  A 100,000 50% Method  A 90,000

Method  B 1,500,000 10% Method  B 40,000

Method  C 3,000,000 5% Method  C 20,000

Outcomes (consequences):

Reconstruction Pavement Properties Structural Total

Method  A 500,000 250,000 150,000 150,000 1,050,000

Method  B 200,000 150,000 70,000 70,000 490,000

Method  C 100,000 100,000 50,000 50,000 300,000

Delay Costs:

% Roadway

Closed

Method  A 7 25% 15,787,170

Method  B 3 10% 2,706,372

Method  C 1 5% 451,062

Maintenance

Delay days Delay Cost

 

 Figure 4-6. User’s input and output spreadsheet 
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Towards the bottom of the spreadsheet, the user must input the remaining values 

needed to calculate the delay costs according to ODOT’s formula. These estimated values 

are associated with the number of days and the percentage of roadway interruption 

caused by a failure outcome. 

 The spreadsheet has two sets of outputs (tables) displayed towards the bottom. 

The first set totals the outcome costs and the second set totals the delay costs. These 

values and the user’s estimated values for initial costs and maintenance costs for each 

method are connected to the variable values of the decision tree model.  

 

Table 4-4. Relationship between spreadsheet outputs and tree variables.  

 

Tree Variables Spreadsheet output Comment

A

B

C

T

U

V

X

Y

Z

P

Q

R

Stabilization initial cost

Maintenance

Outcomes + Delay costs

Chances of failure

Estimated by user

Estimated by user

Calculated

Estimated by user

 

 

Some problems were observed when linking the spreadsheet to the tree model in 

accord to Table 4-4. For example delay cost values calculated with ODOT’s formula 

were too large even for reasonable input values. So, some changes were made. More 

realistic values for outcomes X, Y and Z were calculated by adding the outcome output of 

the spreadsheet (first set of outputs) plus the 10% of the delay cost output (second set of 

outputs). This change in the spreadsheet was justified by considering that the traffic delay 
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costs are not possible to be paid through a slope stability budget. In other words, there is 

no realistic link between the economic impact produced by a slope failure and the cost of 

the repair method.  

 Another problem observed was the availability of software for all users. The 

spreadsheet was prepared in Excel® and therefore accessible to most users, but the 

decision tree model software was not. The spreadsheet form had the potential of being 

improved by linking it to another budget type spreadsheet in which construction or repair 

costs could be estimated by items more accurately. Unfortunately tree modeling was 

considered less feasible. To operate and/or customize a tree model it was required to use 

particular software such as Palisade. This limitation suggested developing another 

decision model (in a spreadsheet) so that it could be more accessible to all users. The 

development of this model will be mentioned later in the thesis.  

 Finally, the most important assumption in the spreadsheet was that costs such as 

maintenance, stability methods, chances of failure, and outcome costs in general, were 

compared in an annual cycle. In other words, the tree model compared the costs between 

the alternatives considering that stability method was expected to fail in one year. This 

important assumption will be handled in a different tree model later in the thesis. 

4.3.3 Time Value of Money Applied to Stability Costs 

 A decision maker could consider the costs of a stability alternative as an 

investment. One of the fundamental principles of investing is the time value of money. In 

general time value of money is an important concept in financial management where 

investment alternatives are to be compared in a time frame.  
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 In the activity of programming projects, engineers apply the concept of time value 

of money to compare alternative projects. The value of the future dollar (i.e. promised 

benefits) is converted to an equivalent value today by decreasing its numerical 

representation by an annual interest. Present value of money can also be compared in the 

future by compensating the market depreciation of money with an annual interest.  In the 

study the use of the concept time value of money was evaluated before being 

incorporated in the decision tree model, and is described in the following section. 

 If a decision tree would model future outcomes (maintenance, failure cost, etc.) 

for many years, these future costs would probably need to be numerically larger than 

present outcome values. For example, observing Table 4-5, if an annual maintenance cost 

of a thousand dollars ($1,000) in present time is compounded at an annual interest rate of 

4% during twenty years, the future cost would be $2,191. However the intrinsic value of 

a “maintenance cost” today will be the same as the value of a “maintenance cost” in the 

future; it will not be more expensive to maintain a slope in the future although the 

numerical representation of this cost would increase from 1,000 to 2,191. In the same 

manner, a “slope failure” today will have the same value cost of a “slope failure” in the 

future although the numerical representation will increase.  
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Table 4-5. Example of the time value of money.  

 

Input Data :

i  = 0.04 (Interest/period)

PV  = 1,000 (Present value)

Output :

FVA  = 30,969 (Future value / total cost)

Years = 20

PV FV Time Lapse

Period 1 1,000 1,040 1

Period 2 1,000 1,082 1

Period 3 1,000 1,125 1

Period 4 1,000 1,170 1

Period 5 1,000 1,217 1

Period 6 1,000 1,265 1

Period 7 1,000 1,316 1

Period 8 1,000 1,369 1

Period 9 1,000 1,423 1

Period 10 1,000 1,480 1

Period 11 1,000 1,539 1

Period 12 1,000 1,601 1

Period 13 1,000 1,665 1

Period 14 1,000 1,732 1

Period 15 1,000 1,801 1

Period 16 1,000 1,873 1

Period 17 1,000 1,948 1

Period 18 1,000 2,026 1

Period 19 1,000 2,107 1

Period 20 1,000 2,191 1

20,000 30,969 20
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 The time value of money is a useful concept to evaluate alternative projects. In 

order to evaluate the use of the time value of money concept in the model it seemed 

appropriate to establish similarities and differences between choosing a stability method 

and choosing a project. Projects (investments) are chosen by comparing their net benefits 

(the accumulated benefits of many years minus the initial costs and minus maintenance 

costs). Considering that interest is an economical fact, the numerical benefit values and 

the initial cost must be compared somewhere in time (future or present) with the 

assistance of the time value of money concept. In the case of choosing a stability method, 

there are no monetary benefits involved. However, the maintenance cost could be 

considered as a negative benefit. In this case, its numerical representation would be 

increased or decreased (future of present value) by an interest rate and then added to the 

initial cost forming numerically increased total cost for each alternative. These total costs 

would be used to compare the stability alternatives as the net benefits are used to 

compare projects. Given the mentioned reasoning, the time value of money concept 

would seem to be necessary to compare stability decisions. However the following 

example shows that in some cases, the use of the time value of money concept is not 

necessary to choose a stability method. 

 An important assumption made to model time was to consider the occurrence of 

one slope event (outcome) per year. As before, the outcome events were either failure or 

no failure. In the case of the no failure outcome, the end node was replaced by a new 

chance node from which two possible outcomes could occur; to fail or to not fail. These 

new outcomes were assumed to occur in the second year. Further extensions from no 

failure outcomes could be added each representing a different year event.  
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A different extension was considered to emanate from a failure outcome branch. 

Considering that after a failure event there is a slope stability problem again, the end node 

was replaced by a new decision node from which the same two alternatives (stability 

methods) considered in the first year were available again. By connecting the outcome 

branches through chance or decision nodes with either fresh outcomes or decision 

alternatives respectively, the decision tree could increase the number of branches to 

conform a large tree representing several years.  

A graphical display of the one and two year trees are shown in Figure 4-7 and 

Figure 4-8 respectively. 
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Figure 4-7. One year decision tree 
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Figure 4-8. Two year decision tree model 
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Year-1    Year-2     Year-3 

 

Figure 4-9. Three year decision tree model with two alternatives. 
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 Extensions of the tree from the end nodes can be added on and on. Unfortunately, 

the decision tree grows bushy very fast. The decision tree model shown in Figure 4-9 

shows a three year decision tree model with only two alternatives. In the thesis, five-year 

tree models were developed for 3 alternatives. In Figure 4-8 and in Figure 4-9, vertical 

lines were drawn for better observance of the year breaks. 

 Once the tree models were extended to include time, they were considered 

different trees. Although the one-year, two-year a three-year trees of the examples have 

the same alternatives and maybe the same variable values, they are different trees. 

Therefore the preferred alternative of a two-year tree may not be the preferred alternative 

of a three-year tree.  

 Considering the assumption of having one slope event per year, the years in a 

multiple year tree model were identified as the branches flowing from left to right 

between outcome events. Year zero or present time was considered as the moment when 

the initial cost decision was made. Table 4-6 shows the costs of alternatives A and B for 

one-year, two-year and three-year tree models. The zero-year column shows the value of 

the initial costs at a preset time. The values of the alternatives were calculated by using 

method and outcome costs that did not vary with time (constant costs).  

 

Table 4-6. Cost of alternatives for different years (constant variable values). 

0 1 2 3

Method A -50,000 -105,000 -172,500 -240,000

Method B -150,000 -175,000 -208,000 -244,450  
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Table 4-7. Alternative costs for each year considering the time value of money concept. 

0 1 2 3

Method A (TMV) -50,000 -115,500 -197,175 -287,018

Method B (TMV) -150,000 -192,500 -232,430 -280,945  

 

Similar to Table 4-6, Table 4-7 shows the costs of alternatives A and B for one-

year, two-year and three-year tree models. However costs considered for the method and 

outcomes were not constant. They increased numerically 10% each year according to the 

time value of money approach. A summary of these numerical values are displayed in 

Table 4-8. 

 

Table 4-8. Tree input variable values for the zero, one, two and three year models. 

Variables Description 0 yr 1st 2nd 3rd

A Method A (Don't Stabilize ) 50,000 55,000 60,500 66,550

B Method B 150,000 165,000 181,500 199,650

X Failure A 160,000 176,000 193,600 212,960

Y Failure B 160,000 176,000 193,600 212,960

T Not Failure A 20,000 22,000 24,200 26,620

U Not Failure B 10,000 11,000 12,100 13,310

P Failure chance A 25% 25% 25% 25%

Q Failure chance B 10% 10% 10% 10%

(1-P) Chance no failure A 75% 75% 75% 75%

(1-Q) Chance no failure B 90% 90% 90% 90%  

 

 The values displayed in Table 4-6 and Table 4-7 are plotted in Figure 4-10 as 

continued and discontinued lines respectively. The continuous lines are associated with 

the results of applying the constant variable values in the time assumption in the tree 

models while the discontinuous lines are associated with the results of increasing the 

variable values with the time value of money concept. The lines represent the cost of each 

alternative (method) in time. Both sets start at the same value cost for zero years. As time 
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increases in the plot, the cost values of alternatives (Methods A and B) are more alike in 

both assumptions. At approximately three years the costs of Methods A and B are equal 

for both assumptions. If the plotted lines were to be extended beyond three years, the 

alternative Method B would be preferred for both assumptions. 
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Figure 4-10. Comparison of alternative costs with and without the use of the 

Time Value of Money concept. 

  

 Table 4-8 shows that the cost of failure (variables X and Y) are the same for both 

methods (160,000). They were assumed to be the same considering that the cost of failure 

(structure, property, road damages and possible traffic delay costs) did not depend on the 

stability method. On the other hand, the costs of no failure (variables T and U) were not 

considered the same (20,000 and 10,000) because it was assumed that a more expensive 

stability method (larger initial cost) would require less maintenance cost.  
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Observing Figure 4-10, if the costs of failure would be assumed to be 

compensating the initial costs, then the interception of the alternative costs when 

considering the time value of money, would occur before the three year point. This 

information may distort the identification of the preferred alternative if the time 

interception is considered an important criterion in the identification of the preferred 

alternative. 

 It was assumed that the intrinsic cost of maintenance or the intrinsic cost of failure 

would not change with time. Therefore the intrinsic values used for these costs should not 

vary with time. In this sense, the time value of money concept may be omitted to identify 

the preferred alternative.  

 A difference between choosing a stability method and choosing a project is that 

when choosing a project, the money is available at the initial moment. The money needs 

to be invested in the project that may produce the largest benefits. In the case of the 

choosing of a stability method, the money for the entire investment is not totally available 

at the initial cost stage. According to annual budgets, the necessary amount of money for 

maintenance will be available later and will be the same in value regardless of its 

numerical representation in time. This may be another reason to not consider the time 

value of money as an important factor in choosing the preferred alternative. Furthermore, 

the time value of money concept was not used in the study for being considered as a 

refine factor that could be incorporated in the model after understanding its behavior. 

Furthermore, the time value of money concept was not used in the study for being 

considered as a refine factor that could be incorporated in the model after understanding 

its behavior. 
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4.4 Parametric Analysis Using Initial Models 

 According to Clemen (2001) decision analysis not only provides a structured way 

to think about decisions, but also more fundamentally provides a structure within which a 

decision maker can develop beliefs and feelings. Structuring and refining a decision 

model is an iterative process done in the decision-analysis cycle. A fundamental tool for 

the model development is the sensitivity analysis. 

 A sensitivity analysis illustrates how dependent the outcome of a model is to 

changes in one or more aspects of the model (i.e. model structure or variable values). If 

the sensitivity of a model to a variable is large enough to change the preference of a 

decision, then analysis helps to identify what matters and what does not matter. If a 

model is sensitive to a degree in which the preferred alternative will not continue being 

preferred, then the decision maker may want to reconsider more carefully those aspects in 

which the model is sensitive (Clemen 2001). 

 Once a model is developed, it is analyzed sensitively to identify its sensitive 

aspects. The identified aspects may be altered producing a new refined model. This 

model may again be analyzed sensitively producing another new model. This cycle, 

which could be repeated several times, is known as the decision-analysis cycle. 

According to Clemen, the ultimate objective of this cycle of modeling and analyzing is to 

arrive eventually a required decision model and to analyze it just enough to understand 

clearly which alternative should be chosen. 

 There are many sensitivity analysis procedures for decision analysis. In the 

following sections a few tools for performing sensitivity analysis will be presented. 
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4.4.1 One-Way Sensitivity Analysis 

 A one-way sensitivity analysis can be defined as an analysis performed to a 

decision model in which the impact of changing the value of one variable is observed. 

The objective of performing this analysis is to identify which variables are the ones that 

matters in a model. It is important to mention that the sensitivity of a model to a variable 

will also depend on the range of values of this variable. If the range of values of a 

variable to which the model is sensitive changes, then the model may no longer be 

sensitive to that variable. Identifying the variables and values to which the model is 

sensitive, may suggest to the decision maker to think more carefully about the uncertainty 

associated with the values of these variables. 

 The one-way sensitivity analysis procedure is simple and associated with the 

range of values (values between the lower and upper bounds) given to each variable. In 

the thesis, the analysis was done by keeping all the variable values of a model constant 

(base values), while the values of one variable varied throughout its given range. The tree 

output or expected value was recorded for each assumed input variable value during the 

analysis. This procedure was repeated for each variable. The variables that produced the 

largest changes in the model’s expected value were identified as the sensitive or critical 

variables. 

 In the thesis, several one-way sensitivity analyses were performed to the early 

decision models. Using ODOT’s report data to provide a range for the variables, the 

following are examples of a one-way sensitivity analysis performed to a three year 

decision tree model. 
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  The three decision tree shown in Figure 4-11 was developed considering the 

variables and variable ranges shown in Table 4-9.  The one-way sensitivity analysis was 

performed using the software DecisionTools from Palisade Corporation which is an Add-

In for Microsoft ® Excel ®. For the base values considered in the example, the preferred 

alternative was Method A with an expected value of 1’205,487. The expected value of 

Method B was slightly larger than Method A’s and the expected value of Method C was 

more than twice the expected value of Method A. In order to make Method C preferred, 

its variables values (cost values and chances of failure) had to be smaller. When 

performing the sensitivity analysis, the value of only one variable can be changed at a 

time. The other variables remain at their base values.  

 For example a sensitivity analysis was performed the variable probability of 

failure (R=0.5) of Method C. When the values of this variable was changed allowing it to 

vary only within the range shown in Table 4-9, (R∈[0,1]), the tree’s preferred alternative 

did not change. Method A continues being the preferred alternative. Therefore the tree 

was not sensitive or not sensitive enough to the probability of failure of Method C.  

 The result of the one-way sensitivity analysis performed to the chance of failure 

of Method C (variable R) is illustrated in Figure 4-12. The horizontal line is interpreted as 

a constant output. While the variable R varies along its range in the abscissa axis, the 

expected value shown in the ordinate axis remains constant. The constant expected value 

of the tree (negative 1’205,487) continues being the expected value of the preferred 

alternative, Method A. 
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Table 4-9. Variable values considered in the one-way sensitivity analysis performed to a three branch 

decision tree. The variable values and ranges are based on ODOT’s report 

 

Variables Base Value Lower Bound Higher Bound

A Method A (Don't Stabilize ) 100,000 50,000 400,000

B Method B 1,500,000 750,000 6,000,000

C Method C 3,000,000 1,500,000 12,000,000

X Failure A 2,628,717 1,314,359 10,514,868

Y Failure B 760,637 380,319 3,042,549

Z Failure C 345,106 172,553 1,380,425

T Not Failure A 90,000 0 180,000

U Not Failure B 40,000 0 80,000

V Not Failure C 20,000 0 40,000

P Chance failure A 40% 0% 100%

Q Chance failure B 10% 0% 100%

R Chance failure C 5% 0% 100%

(1-P) Chance no failure A 60% 0% 100%

(1-Q) Chance no failure B 90% 0% 100%

(1-R) Chance no failure C 95% 0% 100%

Description
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Figure 4-11.  A three branch decision tree to which a one-way sensitivity analysis was performed. 
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The results of the one-way sensitivity analysis performed to the variable chance of 

failure of Method A (variable P) was found to be different than to Method C. Considering 

that Method A was the preferred alternative, the expected value of the tree was the same 

as the expected value of the alternative. Therefore changing the value of any variable of 

this alternative may change the expected value of the alternative and the expected value 

of the tree. 

 Figure 4-11 shows the base value of Method A’s chance of failure (P) was set at 

40% and that the range of the variable was P∈  [0, 1]. Figure 4-13 shows a linear relation 

between the input variable chance of failure and the output variable tree expected value 

for chance values below 60% (approximately). For chance values above 60% the 

expected value was constant and equal to 1’612,064. 

 The shift of the linear function to a constant function showed that the tree 

expected value did not depend on Method A’s chance of failure when its values were 

above 60%. For chances of failure larger that 60% Method A’s expected value exceeded 

Method B’s expected value (1’612,064). For this range, Method B was the preferred 

alternative. 

As shown in Figure 4-13, the number of segments (10) that was considered to 

perform the sensitivity analysis did not allow precision to determine the exact probability 

of failure that switched the tree preference. Unfortunately there was a tradeoff between 

computing time and accuracy. As will be shown in a further section, the exact value can 

also be determined mathematically and not only graphically. 

   



 54 

-2,000,000

-1,600,000

-1,200,000

-800,000

-400,000

0

0 0.2 0.4 0.6 0.8 1

Failure chance Method C (variable R)

T
re

e 
E

x
p

ec
te

d
 V

al
u

e 
  

  
.

 

Figure 4-12. One-way sensitivity analysis on Method C’s chances of failure. 
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Figure 4-13. One-way sensitivity analysis on Method’s A chances of failure. 
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Another one-way sensitivity analysis plot for the same decision tree example but 

for a different alternative is shown in Figure 4-14. The alternative analyzed was Method 

B and the variable was the initial cost or variable B. In the example, the base value of 

Method B’s initial cost (variable B) was 1’500,000 and the lower and upper bound of the 

range were 750,000 and 6’000,000 respectively. 

 As mentioned, Method B was not the preferred alternative but its expected value 

(1’612,064) was not far from Method A’s expected value (1’205,487). For Method B to 

be the preferred alternative, its partial costs (initial and failure) needed to be smaller or its 

probability of failure needed to be smaller. The variation of Method B’s initial cost is 

plotted and shown in the abscissa-axis of the graph shown in Figure 4-14. These values 

were plotted negative because costs are considered negative values in the model. It was 

observed in Figure 4-14, that the tree’s expected value was constant at 1’205,487 for 

values of initial cost B grater than 1’275,000 (B value was rounded considering the 

tolerance when setting the software). For initial cost values B smaller than 1’275,000 the 

tree’s expected value decreases linearly with the initial cost of B. The switch from 

constant to linear was understood to be similar to the previous analysis. For initial costs B 

greater than 1’275,000, the expected value was 1’205,487 established by Method A’s 

expected value. For initial costs B less than 1’275,000, the tree expected value decreased 

with Method B’s expected value for being this alternative now the preferred alternative. 
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Figure 4-14. One-way sensitivity analysis on Method B’s initial cost. 
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4.4.1.1 Tornado Diagrams 

 There is a variety of graphical sensitivity analysis techniques. One technique is 

known as the tornado diagram. According to Clemen (2001) tornado diagrams were 

presented and named by Howard (1988). Tornado diagrams allow comparison the impact 

of several different variables on the tree expected value simultaneously.  

 Figure 4-15 shows a tornado diagram that corresponds to the decision tree 

example shown in Figure 4-11. The lengths of the bars represent the degree of the 

model’s sensitivity to the variables. Normally the graph layout locates the longest bar 

(most sensitive variable) at the top. However considering that the decision analysis is 

optimizing negative values, the plot layout shown in Figure 4-15 is inverted. 

 Tornado diagrams were used extensively in this thesis. The plots were used to 

confirm the one-way sensitivity analysis results and to visually observe and compare the 

degree of sensitivity of the model to all variables. 

 In tornado diagrams, the degree of sensitivity of a model to a variable is displayed 

in percentage. The bar values are the tree expected values for the upper and lower bounds 

of the variable range. For example, according to the plot shown in Figure 4-15, the bar 

that represented the Chance of Failure A extends between -84% and 33% which were the 

tree expected values when the value of the Chance of Failure A was assumed to be zero 

and unity respectively. 
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Figure 4-15. One-way sensitivity analysis tornado diagram. 
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The graphical results of the most sensitive variables were always confirmed 

analytically in the study. The expression to calculate the extreme values of a sensitive 

variable is displayed in Equation 4-1. In this equation, the term “expected value at base” 

is the original tree expected value or the tree expected value obtained when the variable 

analyzed is at its base value. The term “expected value at new input” is the tree’s 

expected value for the analyzed variable value which is different than its base value. 

 

( )
baseatvalueected

baseatvalueectedinputnewatvalueected
valueExtreme

exp

expexp100 −×
=   

Equation 4-1 

 Figure 4-16 and Figure 4-17 show the tree’s expected value for chances of failure 

A different than its base value 40%. For a chance of failure of zero, Figure 4-16 shows a 

tree expected value of -190,000 and for a chance of failure of unity, Figure 4-17 shows a 

tree expected value of -1’612,064. 

 If the values -84.24% and 33.73% were to be confirmed, then the expected values 

at the new input and at the base value are to be inserted in Error! Reference source not 

found. as follows. 

 

( )
487,205'1

487,205'1000,190100
8424.0

−

+−×
=−  

 and 

( )
487,205'1

487,205'1064,612'1100
3373.0

−

+−×
=−  
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Figure 4-16.  Decision analysis considering a 0.0% chance of failure of Method A. 
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Figure 4-17. Decision analysis considering 100% chance of failure of Method A. 
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4.4.2 Two-Way Sensitivity Analysis 

 One-way sensitivity analysis layouts in general, provided considerable 

information about the influence of variable values in the model. Although tornado 

diagrams allow comparing the impact of several variables at once, they are limited to 

analyze the impact of the change in value of one variable at a time. 

 A two-way sensitivity analysis is a graphical technique that allows exploring the 

impact of more than one variable at a time. For example, it could allow analyzing the 

joint impact of the two most critical variables of the model as determined by the tornado 

diagram. 

4.4.2.1 Volumetric or 3-D Graphs   

 The two-way sensitivity layouts are plots that show surface functions defined by 

three variables in a 3-D space (octant). By default, DecisionTools® software displays the 

tree expected value on the vertical axis leaving the other two horizontal axes to define the 

bottom plane of the octant.   

 All the two-way sensitivity analyses results that were performed in the study 

showed agreement with the one-way sensitivity analysis results. For example, the 

projection of the horizontal surface shown in Figure 4-18 to the wall of the octant or to 

the plane defined by the variables failure C and the expected value is a horizontal line. 

This line is similar to the line shown in Figure 4-12 between axes failure C and the 

expected value. Notice that in Figure 4-18, the surface function crosses the expected 

value at a constant value equal to 1’205,487 which is the same value in which the 

constant line of Figure 4-12 crosses this variable. 
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Figure 4-18.  A two-way sensitivity analysis result. This is plot shows the 3-D image 

of the one-way sensitivity analysis result shown in Figure 4-12. 
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 The one-way sensitivity analysis results displayed in Figure 4-13 shows a linear 

function adjacent to a constant function between variables failure A and the expected 

value. As mentioned before the inaccuracy to define an exact point of intersection 

between the two functions is due to the tolerance of the software settings. The 

corresponding results in a two-way sensitivity analysis are shown in Figure 4-19. In this 

figure, when failure A is equal to zero, the intersection of the surface function with the 

plane defined by failure C and the expected value is a horizontal line. In Figure 4-13, this 

horizontal line is projected as a point in the quadrant failure A versus expected value. In 

both quadrant and octant, the magnitude of the expected value is -190,000. Additionally, 

the horizontal surface of Figure 4-19 is projected in Figure 4-13 as a horizontal line. In 

both figures, the magnitude of the expected value is 1’612,064. 
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Figure 4-19. This is a two-way sensitivity analysis results related to the 

one-way sensitivity analysis result shown in Figure 4-13. 
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 The understanding of how the 3-D plots were projected to 2-D planes was 

considered important in the thesis. For example, Figure 4-20 shows a 3-D space (octant) 

in which two surfaces P and Q intersect forming a line m-n. The three spatial axis of this 

particular octant could be defined by any three variables such as failure B, the expected 

value and any third variable from the model. According to Figure 4-20, depending on the 

variable chosen for the third axis and the sensitivity of the model to this variable, the 

intersection line m-n may dip as the third variable increases its value. 

 If a vertical plane R parallel to the plane defined by axis failure B and axis 

expected value were to cut planes P and Q, it would define an intersection line (lines a-b 

and b-c) with each surface P and Q. The projection of these lines to the plane defined by 

axis failure B and axis expected value would be lines shown in the one-way sensitivity 

analysis results. 

 

 

Figure 4-20. Plot that assist to conceptualize the two-way sensitivity analysis layouts. 
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 Assuming that line m-n may be dipping depending on the third variable value, the 

larger the value of the third variable in which plane R may cross, the smaller the 

magnitude of the projection of point b to the expected value axis. In a one-way sensitivity 

analysis, it is assumed that plane R crossed the third variable axis at its base value. When 

plane R crosses a third variable at any value different than its base value, the projection 

of lines a-b, b-c will shift in the Failure B versus Expected Value plane. 

 As an example, Figure 4-21 shows the two-way sensitivity analysis results 

between variables Method A, Method B and the tree expected value. If a plane parallel to 

Method B and expected value were to cut Method A’s axis at its base value the projection 

of the intersection lines would be the same as the lines shown in Figure 4-14. However if 

the intersection plane cuts Method A’s axis at a value different than the base value, the 

intersection lines would be shifted vertically. 
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Figure 4-21. A two-way sensitivity analysis result showing the variation of functions defined by the 

expected value and Method B for different values of Method A costs. 
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4.4.2.2 Break-even Line Concepts 

 Two-way sensitivity analysis can also be used to develop the so-called break-even 

relations plots. Break-even plots show graphically the values required by two variables to 

make two decisions equal when fixing the values of the other variables to their base 

values. 

 Although break-even plots are developed applying two-way sensitivity analysis 

concepts, their layouts are 2-D plots. The most important components of the plots are the 

break-even lines which are lines that separate the 2-D space into regions in which a 

certain method is preferred over the others. As shown in Figure 4-22, depending on the 

values of the two variables that are chosen as axes, there will be regions of points in 

which a certain method is preferred.  

 

 

 

 

 

 

 

 

 

Figure 4-22. An example of a break-even line plot with three regions. 
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 One of the applications of the break-even lines in the thesis was to identify the 

value range of a variable (such as initial cost) that made a method preferred. An example 

of an analysis performed in the study is shown in Figure 4-23. The plot shows a break-

even line that separated all possible combinations of Method A and B initial costs 

(variable A and B) into two regions. In the plot, all point values above the break-even line 

made Method A preferred over Method B and all point values under the break-even line 

made Method B preferred. 

 In Figure 4-23, the three decision trees shown below the plot are the same tree 

shown in Figure 4-11. These trees were analyzed to identify the preferred method when 

considering initial costs values above and under the break-even line. As before, the 

preferred decision in each tree is identified with the label “True”. In this example, the 

initial cost of Method C was chosen to assure that this method was not preferred. 

However, if Method C’s initial cost were smaller or if the initial cost range of Method A 

and B would be extended in the plot, there would be a third region in which Method C 

would be the preferred decision as shown in Figure 4-22.  

 Points that fall on a break-even line or close to it make the methods’ expected 

values equal or very similar. In these cases, from a financial point of view, there is not 

much difference between choosing one decision or another. This is where a decision 

maker must apply subjective judgment to make the decision. The decision maker must 

consider for example that there is uncertainty involved with the values of some variables 

such as the possibility of failure, where there is a risk issue related to the chance of failure 

with time and there is a financial issue related to the money available at the moment and 

the accumulated maintenance cost. 
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Figure 4-23. Coordinate pair’s values of a break-even plot that makes one method 

preferred over the other. 
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4.5 Summary 

Decision tree models used in the thesis and the analysis performed on then were 

described in this chapter. Geotechnical transportation infrastructure problems were 

modeled by trees that had two and three alternatives. Several examples were described in 

the chapter showing that the values of variables, such as the probability of failure, were 

recognized to be important in the identification of the preferred alternative. Considering 

that not all the variable values were available from the literature, a way of estimating 

them was described through the use of a spreadsheet form.  However it was mentioned 

that the use of the spreadsheet still required a certain degree of project cost experience for 

adequate input values. 

It was assumed that the intrinsic cost of maintenance or the intrinsic cost of failure 

would not change with time. In this sense, the time value of money concept was omitted 

to identify the preferred alternative. To model time, it was assumed that an outcome event 

would occur each year so by connecting the outcome branches to new outcomes or 

decision alternatives, the decision tree could represent several years. 

Sensitivity analyses that allowed identifying the important variables were 

performed on several tree models. These analyses were described to help decision makers 

to think more carefully about the values assumed for sensitive variables. The chapter 

included description and examples of one and two-way sensitivity analyses. Sensitivity 

analysis allowed developing the so-called break-even relations plots which showed 

graphically the possible variation of the variable values within a preferred alternative.  
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5 CHAPTER 5  – APPLICATION OF DECISION TREES 

5.1 Introduction 

 According to Clemen (2001), decision models are mathematical and graphical in 

nature. The mathematical representation of a model can be subjected to analysis to 

identify the preferred alternative and to identify the range of variable values that make a 

decision preferred over another. 

 In the present chapter, the mathematical representation of decisions will be 

shown. In this study, these representations allowed to develop break-even lines that 

graphically identified the variables’ ranges that made decisions preferred. The variation 

of break-even lines and its behavior for different combinations of variables will be 

discussed in this chapter. 

5.2 Break-even Line Equations 

 The break-even line between two variables can be defined as the geometrical 

locus of the points that make two decisions equal. The equation of a decision is that 

which defines its expected value. As mentioned in Chapter 2, the expected value of a 

stability decision is calculated by adding the initial cost to the outcome costs which are 

previously averaged according to their probabilities of occurrence.  

 The expected value expression shown in Equation 5-1 was developed considering 

the three branch decision tree structure shown in Figure 5-2 and the variable definitions 

shown in Table 5-1. 

   ( ) XPTPAEVA ⋅+⋅−+= 1  

Equation 5-1 
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 or 

   ( ) ( ) ( )XAPTAPEVA +⋅++⋅−= 1  

Equation 5-2 

 

 Although mathematically, the two alternative expressions for Equation 5-1 and 

Equation 5-2 are the same, the first option is straight forward in terms of the definition of 

expected values. The second alternative can be derived mathematically from the first 

alternative or can be obtained with the path values shown at the end nodes of the tree in 

Figure 5-2. As mentioned before the path values are the sum of the variables through the 

path. Therefore the expected value of a decision for a brief decision tree (one year) can 

also be calculated by weighting the path values of the decision according to the 

possibility of the path. 

 In a two-way sensitivity analysis, the points that define a break-even line are 

calculated by equating two expected value equations. In a one-way sensitivity analysis, 

equating two expected values equations allows obtaining graphically the break-point in 

which the preferred alternative ceases to be preferred. An example of a one-way 

sensitivity analysis breakeven point is shown in Figure 5-1. The limitation of software 

accuracy locates the break-even point between 55 and 60 percent chance of failure (the 

exact possibility of failure can be calculated with the expected value equation).  
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Figure 5-1. One-way sensitivity analysis on Method’s A chance of failure. 
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As mentioned in the previous chapter, the tree’s expected value is always the 

preferred alternative expected value. In the example shown in Figure 5-1, for 

probabilities of failure P below the break-even point, the expected value of the tree is 

dictated by the expected value of Method A. For large probabilities of failure P (pass the 

break-even point), the expected value of tree is dictated by the expected value of Method 

B which remains as a constant in the plot. In the study, the task was therefore to find the 

value of the possibility P that equaled the expected value of Method A with the expected 

value of Method B. Considering that the expected value of Method B is $1’612,064, the 

calculations to find possibility P in the study were as follows. 

 

    ( ) XPTPAEVA ⋅+⋅−+= 1  

         ( ) 717,628'2000,901000,100064,612'1 ⋅+⋅−+= PP  

       ∴     56.0=P  

 

 Where according to Table 4-9, the base value of the other variables of Method A are: 

  A = $100,000 

  T = $90,000 

  X = $2’628,717 

 Break-even points are dependent on one variable while break-even lines are 

dependent on two variables at a time. In both cases the values of the other variables 

normally remain fixed at their base values.  

 Although two-way sensitivity analysis, through break-even lines, revealed more 

information than the one-way sensitivity analysis, it was still limited to the variation of 
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only two variables and to the assumption of the values of the remaining variables. In this 

study, an option to avoid this limitation was to develop a family of break-even lines. This 

property of the break-even lines was possible due to the linear characteristic of the 

expected value equations.  
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Figure 5-2. The path values and the expected values of a three-branch decision tree.  
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Table 5-1. Description of the variables of a three-branch decision tree.  

Variables Description

A Method A (Don't Stabilize )

B Method B

C Method C

X Failure A

Y Failure B

Z Failure C

T Not Failure A

U Not Failure B

V Not Failure C

P Failure chance A

Q Failure chance B

R Failure chance C

(1-P) Chance no failure A

(1-Q) Chance no failure B

(1-R) Chance no failure C  

 

 An example of a break-even family could be developed from the basic slope 

repair decision tree shown in Figure 5-3. If the values of variables of failure (C), not 

failure (D) and probabilities of failure (pf) were assumed to be $75,000, $0 and 20% 

respectively, then the break-even line found by equating both decisions’ expected values 

would be: 

  ( ) CpDpAB ff ⋅+⋅−+= 1  

  ( ) 000,75$20.0080.0 ⋅+⋅+= AB  

    ∴ 000,15$+= AB        

Equation 5-3 

 As shown in Equation 5-2, the relation between variables A and B is linear; 

therefore its graphical representation will be a straight line in a A versus B plot as shown 

in Figure 5-4. Two examples of break-even line family plots are shown in Figure 5-5 and 
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in Figure 5-6. While Figure 5-5 shows the shifting of the break-even line when varying 

the value of failure C, Figure 5-6 shows the shifting when varying the value of the 

possibility of failure pf.  

 

(1-pf)

D

A

pf

C

B

Stabilize Slope?

Risky Repair

Safe Repair

No Failure

Failure

 

Figure 5-3. Example of a simple decision tree modeling the slope repair problem. 
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Figure 5-4. Break-even relation for simple decision tree of Figure 5-3 for C=$75,000, D=$0, and 

pf=20% 
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Figure 5-5. Family of break-even lines for different assumed values of C. 
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Figure 5-6. Family of break-even lines for different assumed values of pf. 
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5.3 Decision Models for Slope Repair Problem 

 Several different decision tree models were developed and evaluated during the 

study. Differences among them were related with the number of decisions available, 

variable values and their representation (e.g. variable C was used to represent the cost of 

failure in the early models and was also used to represent the initial cost of Method C in 

later models), and the number of sub-branches. Of these models, two types were found to 

be best suited to model the slope repair problem. The first model referred in the study as 

“Single Point in Time” or SPIT model was used to represent alternative decisions without 

taking into account time. The second model referred as “Specific Time Horizon” or STH 

allowed modeling the possible change in decision preference with time. The specifics of 

both model types are described in more detail in the following sections.  

5.3.1 Basic “Single Point in Time” Model 

 An example of a “Single Point in Time” or SPIT model is shown in Figure 5-7. In 

this model, the possibility of failure of Method A is denoted pf and the possibility of 

failure of Method B is denoted rf. The costs of no failure are denoted C and D 

respectively and they are assumed to be the same for both alternatives. 

 Although simple in aspect, the decision model shown in Figure 5-7 allows 

covering many stability situations by assigning the appropriate values to the decision 

variables. The model allows more than two alternatives to be analyzed by comparing two 

decisions at a time. In this sense, adding complexity to the model does not warrant more 

accurate results. In fact keeping the model simple may allow deriving expressions to 

develop break-even lines and to develop broad generalization (e.g. rules-of-thumb) as 
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shown in Figure 5-5 and Figure 5-6 that would assist field personnel in making effective 

decisions.    
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Figure 5-7. Basic “Single Point in Time” model representing the slope repair problem. 

 

 The break-even line equation for the tree shown in Figure 5-7 can be developed 

by equating the decisions’ expected values expressions. 

 

 ( ) ( ) ( ) ( )CApDApCpDpAEV ffffA +⋅++⋅−=⋅+⋅−+= 11   

Equation 5-4  

 

 ( ) ( ) ( ) ( )CBrDBrCrDrBEV ffffB +⋅++⋅−=⋅+⋅−+= 11    

Equation 5-5 
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 Break-even lines for the decision tree shown in Figure 5-7 can be developed 

between any pair of variables by simply equating their expected values expressions. In  

 CrBCpA ff +=+        

Equation 5-6 

 

Rearranging and isolating variable pf in terms of rf leads to the following expression: 

 
( )

ff r
C

AB
p +

−
=        

Equation 5-7 

which allows calculating the probabilities of failure required to make the decision’s 

expected values equal. According to this expression, the probabilities pf and rf are related 

through a linear function. This linear function has the form:  

xmby ⋅+=  

where  

y = pf  

b = (B-A)/C, which is the y-intercept of the function 

m = slope of the linear function which is equal to unity, and 

x = rf 

 

As shown in Figure 5-8, the break-even lines develop with Equation 5-6 will 

divide an rf versus pf plot in an upper and bottom region. The value of the pair 

coordinates above the line will make Method B preferred, while values of the pair 

coordinates below the line will make Method A preferred. 
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Considering that the y-intercept of Equation 5-6 is related to the dimensionless 

ratio of the relative initial costs (B-A) to the cost of failure C, several parallel lines can be 

developed when assuming different costs. Parallel lines, also known in the study as 

family lines are presented in Figure 5-8 for values of (B-A)/C between 0 and 1 and 

probabilities of failure between 0 and 100%. 

When the initial costs A and B of both alternative methods are the same, the y-

intercept term (B-A)/C=0.0. In this case, Equation 5-6 is reduced to pf = rf defining a 1:1 

break-even line and simplifying the identification of the preferred alternative to the one 

with the smallest probability of failure (as intuitively obvious). When (B-A)/C=1.0, the 

initial cost of Method B is larger that Method A by a value equal to the cost of failure C. 

In this case Method A will be preferred regardless of the probabilities of failure pf and rf. 

This condition is represented by a point located at pf =1, rf =0 as shown in Figure 5-8. The 

convenience of Equation 5-7 is that between these two extremes, the preferred alternative 

will depend on the values of the probabilities of failure and the relative initial cost to 

failure cost ratio (B-A)/C. 
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Figure 5-8. Break-even lines for Basic SPIT Model in terms of pf and rf. 
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From Equation 5-7 and Figure 5-8, it can be noticed that as the relative initial cost 

to failure ratio (B-A)/C increases, the region of pair coordinates that make Method A 

preferred increases. This suggests that methods with low initial costs are preferred when 

the cost of failure is relatively small with respect to the initial cost. 

Intuitively, it is expected that a method with low initial cost may have a large probability 

of failure. If this method would be chosen recurrently after failure, the accumulated cost 

in time of this method may exceed the cost of a more expensive method. To perform 

analysis to observe this case is a notable limitation to the SPIT model and one that needs 

to be addressed before the model can be implemented. Possible methods for addressing 

this limitation were presented subsequently in this study.  

5.3.1.1 Break-even Relations for Basic Spit Model in Terms of B-A and C 

As mentioned before, break-even relations can be arranged between any two 

variables of the Equation 5-6 in the basic SPIT model. One of the useful break-even 

relations is to develop break-even lines in a relative initial costs (B-A) versus failure cost 

C space. Rearranging Equation 6 produces the following expression 

( ) ( ) CrpAB ff ⋅−=−  

or 

 
( )

( )AB
rp

C
ff

−⋅
−

=
1

 

Equation 5-8 

Where according to the linear form 

 y = C 
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 m = 
( )

ff
rp −

1
 slope of the break-even lines.  

 b = 0,  which is the y-intercept for all break-even lines, and 

 x = ( )AB −  

 

The break-even lines developed using this relation for a range in possible relative 

initial costs (B-A) and failure costs C are presented in Figure 5-9. In this figure, pair 

coordinate that fall above the break-even lines indicate that Method B is preferable while 

pair coordinates that fall below the break-even lines indicate that Method A is preferable. 

The extremes of the break-even lines occur for (pf - rf) = 0.0 and (pf - rf) = 1.0. As the 

term (pf - rf) approaches the value zero, the slope of the break-even lines increases and 

approaches infinity which defines a vertical line that runs along the y-axis as shown in 

Figure 5-9. For (pf - rf) = 1.0, it is necessary that pf = 1.0 and rf = 0.0. In this case the 

break-even line will be a 1:1 line indicating that Method A is only preferable if the costs 

of failure C are less than the additional cost of selecting Method B over Method A. 

Break-even lines for intermediate values of (pf - rf) fall between these two extreme slopes. 

For a given set of input variables (A, B, C, pf and rf, with D assumed negligible), 

the break-even lines presented in both Figure 5-8 and Figure 5-9 will produce identical 

results and therefore can be used interchangeable. However Figure 5-8 can have a more 

general application though it covers a complete range of possible input variables while 

Figure 5-9 may be graphically restricted to some range of relative initial costs (B-A) and 

failure costs C. 
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Figure 5-9. Break-even lines for Basic SPIT Model in terms of (B-A) and C. 
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5.3.1.2 Application of the Basic SPIT Model 

For any value assumed for variables A, B, C, pf and rf, the application of the basic 

SPIT model is relatively straight forward. The preferred alternative is established by 

substituting the assumed values in Equation 5-6 or in Equation 5-7 to develop the break-

even lines and compare graphically what values of the variables that configure Figure 5-8 

and Figure 5-9 make one alternative preferred over the other. The following case study 

made with data from the Oregon Department of Transportation report shows the 

applicability of the basic model. 

In this case study, the decision maker has to choose between stabilizing an 

unstable slope using a hypothetical risky stabilization technique assigned as Method A in 

the model or using a “tried and true” technique assigned as Method B. As considered 

before, the initial cost of Method A is assumed to be less expensive than Method B. In 

this case the initial cost of the risky Method A is assumed to be $350,000, while the cost 

of the “tried and true” Method B is assumed to be the average cost of all stabilizations in 

ODOT database or $589,794. While the probability of failure pf of the risky method is 

assumed to be 30%, the probability of the tried and true method rf is assumed to be zero 

to reflect the belief that the method is certain to stabilize the slope. According to the 

model, the cost of failure C is assumed to be the same for both methods and was taken to 

be the average of the 24-hour traffic delay costs for all cases in the ODOT database, or 

$603.819.  

Considering these variables, the ratio of the relative initial costs to the failure cost 

is found to be 

( ) ( )
4.0

819,603$

000,350$794,589$
=

−
=

−

C

AB
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Figure 5-10. Application of basic SPIT model using input from ODOT database. 
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Figure 5-11. Application of basic SPIT model using input from ODOT database. 
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which is the y-intercept of one of the break-even lines plotted in Figure 5-8. Figure 5-10 

shows that the probability point defined by the pair coordinates (pf = 0.3 and rf = 0.0) lies 

below the appropriate break-even line. This indicates that for these probabilities, the risky 

stabilization technique Method A is preferred. 

 According to Figure 5-10, the same decision would be preferred if the probability 

of failure of the risky Method A would be 40%. Considering that there is always a certain 

degree of uncertainty in the variable values, this information would give some comfort to 

the decision maker. If the values of the probabilities pf and rf would fall closer to the 

break-even line, the decision maker may consider a more rigorous evaluation of the 

parameters pf and rf instead of assuming values. 

 A similar calculation can be performed with the use of Figure 5-9 to establish the 

appropriate ranges of relative initial costs of stabilization. The results of this calculation 

would remain the same. In this case Figure 5-11 shows the appropriate pair coordinates 

point for (B-A)=$239,794 and C=$603,819. The break-even line for (pf - rf)=0.3 lies 

between (pf - rf)=0.2 and 0.4. Notice in Figure 5-11 that the appropriate break-even line 

crosses the ordinate level C=$603,819 at a point which abscissa (B-A) is approximately 

$175,000. This suggests that for C=$603,819, Method A would continue being preferred 

for relative initial costs as low as $175,000. Again this provides the decision maker 

important information regarding the need of additional refinement of the input variable 

values. 

 It is important to note that the identification of the preferred alternative with the 

SPIT model or any other model does not imply the success of the slope when played out 

in reality. The recommended decision is a merely a mathematical or statistical preference. 
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In this sense, after many applications, the costs of applying the recommended techniques 

will be less than the costs of applying alternative methods, which is beneficial from a 

broad, “organizational” perspective. 

5.3.1.3 Limitation of the Basic SPIT Model 

The SPIT model presented and analyzed in the examples had two primary 

assumptions. The first assumption was that the cost of no failure D was zero or 

negligible. This assumption made the calculations very easy, however considering that 

the cost of no failure may involve maintenance costs such as mowing, etc. its negligibility 

may not always be likely. In the case that this component may be significant, the basic 

SPIT model must be modified to incorporate such costs in addition to the initial costs and 

failure costs. These cases are believed to be relatively rare and therefore this limitation 

not believed to be significant. 

The second and more significant limitation is associated with assumption of 

having both alternatives the same failure cost. This assumption limits the model to 

analyze the alternatives for a “one-time repair”. The model is not able to compare the 

costs of repeated repairs limiting the possibility of making decisions over some finite 

time horizon. The decision maker may not be able to compare the accumulated costs of 

frequent risky repairs with the accumulated costs of a more expensive but less frequent 

stability method. Therefore the SPIT model, as presented, needs to be modified to be able 

to consider the life-cycle costs of stability methods. The Specific Time Horizon, or STH 

model described in the next section presents an approach to compare life-cycle costs of 

stability methods. Although some modifications could have been incorporated to the 

SPIT model, they were not considered in this study. 
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5.3.2 Basic “Specific Time Horizon” Model 

Although similar in logic to the SPIT model, the Specific Time Horizon, or STH 

decision tree model was developed to account for the possibility of having to apply a 

specific repair technique multiple times over a specific time horizon. The basic 

assumption, regardless of the stability method, is to consider year cycles in which a 

failure will occur and a stability decision is to be made each year. The justification of this 

assumption relies in considering that although it is possible for more than one failure to 

occur in a year, experience with nuisance slides suggests that having multiple failures per 

year at given site is rare. The assumption of having multiple failures per year can be 

incorporated in the model if considered important for the decision maker. 

In this study, two variations of the STH model were developed and evaluated. 

Although both forms differ only slightly, their mathematical representation and their 

results were found to be different. 

5.3.2.1 Three-method STH Model 

The first form of the STH model is referred as the “Three Method STH” model, 

which can be used to simultaneously evaluate three alternatives of stability methods over 

a specified time horizon. Figure 5-12 shows a Three-Method STH decision tree model for 

a time horizon of two years. The root of the tree model is identical to the one-year tree 

model shown in Figure 5-2. The variables of the SPIT model were renamed or redefined 

to account for a third alternative. The definitions of these variables are shown in Table 

5-1.  
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Figure 5-12. Three-method “Specific Time Horizon” model for two year time horizon. 
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Tree nodes flow from left to right, starting from the decision node “Unstable 

Slope” and continuing to the three alternatives Methods A, B and C. Each alternative is 

initially associated with a chance node from which two possible outcomes are presented 

as “No Failure” and “Failure”. At this level of the tree, the cycle of the first year is 

completed though, in a year, an unstable slope is assumed to either fail or not fail. In this 

model, the probability of failure for each method will now be an “annual” probability of 

failure since each chance node now represents the possibility of having a failure within 

the year. 

The branches that emanate beyond the outcome end nodes of the first year will 

represent the events of the second year. In this second year level, depending on whether 

the outcome of the first year is a failure or not, additional decisions or/and chance nodes 

are added. In cases of no failure at the end of the first year, the model adds chance nodes 

and chance branches to model the possibility of failure or no failure in the second year. In 

cases where failure has occurred in the first year, the model adds a decision node from 

where the branches with the same alternatives available in the first year are again 

available in the second year. It is assumed that the decision maker will choose a stability 

decision that may or may not be the same chosen in the first year. The variable values are 

assumed to remain constant throughout the specified time horizon. 

Additional levels can be added to the decision model to represent additional years 

within the time horizon of interest. However, as years are added to the tree, the number of 

branches grows geometrically fast. After five years the outcome branches are so 

numerous that they are difficult to keep track manually. The computational effort 

required to evaluate the model also increases as years are added. For a five-year event 
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tree, the computational time is on the order of 20 minutes when running Palisade’s 

decision tree software. The dramatic increase in tree size limited the development of 

graphical modeling and analysis to time horizons of up to 5 years.  

5.3.2.2 Break-even Relations for Three-method STH Model in Terms of pf and rf 

 The three-method STH model was developed to identify the lowest accumulated 

cost among three alternatives for an assumed time horizon. In the case of time horizons of 

many years, tree modeling was very laborious and calculations were long. One option to 

simplify theses calculations during the study was to artificially increase the probability of 

failure of the third alternative so that in effect, the three-method model would become a 

“two-method” model. Doing this, break-even relations would be similar to those shown 

for the basic SPIT model shown in Figure 5-10 for time horizons of up to five years. 

Figure 5-13 shows the specific break even relations for a five year time horizon. The 

break-even lines of the figure were developed for relative initial costs to consequence 

ratios, (B-A)/X, of 0.1, 0.5 and 0.9 which were calculated considering B = X = $600,000. 

During the study, the results obtained using different assumed values for B and X, 

evidenced that the break-even relations are not sensitive to the assumed values. However 

additional evaluation may be needed to confirm where these relations can used for broad 

ranges in costs. In this case, it would be necessary to develop new sets of break-even 

relations that can be applied over different cost ranges. 

 The differences between the three-method STH model break-even lines and the 

basic SPIT model break-even lines are observed by comparing Figure 5-13 and Figure 

5-10. The break-even lines for the three-method STH model are not parallel and do not 

increase proportionally with the increase of relative initial cost to consequence ratio. 
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Furthermore, the break-even lines determined for the three-method STH model are 

slightly non-linear. This non-linear behavior can be explained by observing the equation 

that defines the break-even lines of each model. Equation 5-3, Equation 5-4, Equation 5-5 

and Equation 5-6 show that in the case of the basic SPIT model, its break-even lines are 

linear because they are developed by equating linear expressions. These linear 

expressions are the expected values of each alternative that is the summation of first order 

terms. By definition break-even lines are developed by equating the expected value of 

two alternatives therefore although the three-method STH model has three alternatives, 

the break-even line equations will be developed by equation only two alternatives at a 

time. Only the variables of the two alternatives will be involved in the break-even line 

equation and only the variables of the two alternatives will represent the plot axes. As 

years are added to the tree, probabilities of occurrence are added along each path. As 

observed in Equation 5-3 or Equation 5-4, when developing the expression of an 

expected value, the probabilities of occurrence (failure or not failure) are multiplying the 

values of the end nodes or the values of the paths. Doing this, the expected value is the 

weighted average, according to the probabilities of occurrence of each path, of the 

possible outcomes (failure or no failure). But when more years are added and therefore 

more probabilities are added along the paths, when folding back the branches to calculate 

the expected value, recent probabilities will multiply the later year probabilities. When 

this occurs, the equations to calculate the expected values will have terms in which the 

factor “probability of failure” will be in the same order as the number of years. 

Breakeven lines relations will therefore be exponential expressions and not linear as the 

SPIT models. The more years the tree has, the larger the order of the expression.  
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Figure 5-13. Break-even lines determined using the three-method STH model for a five year  

time horizon with B-X=$600,000 
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5.3.2.3 Constant-method STH Model 

 The constant-method STH model represents a simplification of the three-method 

STH model. The simplification of this model consists in assuming that the same 

alternative method will be adopted after every failure throughout the specified time 

horizon instead of permitting to chose a different method as modeled in the three-method 

STH models.  

 Results of evaluating several three-method STH models showed that the preferred 

path would have the tendency of considering the same stability alternative after each 

failure along the time horizon due to less accumulated cost. In this sense, it is believed 

that the constant-method STH model can serve as a reasonable approximation to the more 

rigorous three-method STH model. Unfortunately, in cases where the difference between 

the initial costs of two alternatives is small with respect to the accumulation of many 

years of consequence costs, this simplification may restrict somewhat the accuracy of the 

model. 

 Figure 5-14 shows one alternative of a constant-method STH model for a two 

year time horizon. Considering that all alternatives will have the same structure, the 

graph of this branch can be used to represent any alternative just by substituting the 

respective variables. In the case of the mathematical representation of this branch, the 

preferred alternative can be identified by comparing the expected value of the same 

equation structure with different variables and values. In fact the break-even relation can 

be established mathematically by identifying the values of the variables of interest that 

would make the difference between the equations of two alternatives equal to zero. 
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Figure 5-14. Method A branch of constant-method “Specific Time Horizon” model for 

two year time horizon. 
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 An important advantage of the constant-method STH model is that adding 

additional year levels does not increase the size of the model as dramatically as the three-

method STH model. This slower increase in model size reduces the computational effort 

required to analyze cases with large time horizons. But the most important advantage of 

the constant-method STH model is that this simplified form permits analytical algorithms 

that can be developed in Microsoft Excel® for time horizons over 20 years with little or 

reasonable effort. Algorithms for 20 years were developed and used during the study. For 

example the equation shown in Equation 5-9 for a five year tree to be prepared in a 

spreadsheet would be: 

 

( ) ( )[ ] ( ) ( ) ( )[ ]∑∑
=

=

−
=

=

−
+−++−−+−++−

2

1

1

0

1141
j

j

jjn
j

j

jjn
XjnjTAnPPXjnjTnAPP  

   

( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ]+−++−−+−++−− ∑∑
=

=

−
=

=

−−
3

2

3

2

314216
j

j

jjn
j

j

jjnjn
XjnjTAnPPXjnjTAnPPP

 

( ) ( ) ( )[ ]∑
=

=

−
−++−−

nj

j

jjn
XjnjTAnPP

4

41  

Equation 5-9 

 

where n is the number of years (in this case n=5), j is a counter and the remaining 

variables are described in Table 5-1. The mathematical model can be used to compare 

any number of possible stabilization models just by changing the branch variables. 



 101 

5.3.2.4 Break-even Relations for Constant-method STH Model in Terms of P and R 

 Considering that the constant-method STH model is simple to express 

mathematically, break even relations were developed for time horizons of both 5 and 20 

years. Figure 5-15 and Figure 5-16 show the break even relation for probability variables 

rf and pf and for 5 and 20 years, respectively. The computation of these relations were 

again made assuming that B=X= $600,000 and therefore applicable to cases were costs 

are reasonably close to these values. However, according to preliminary evaluations 

performed to different values of B and X, break-even relations provide reasonable results 

over different input costs. 

 

5.3.2.5 Comparison of Break-even Lines for Alternative STH Models 

 During this study, it was of interest to compare the break-even lines determined 

with STH models in order to observe the influence of the different assumptions. The 

graphical differences are shown in Figure 5-17 and in Figure 5-18. Break-even lines 

determined using the three-method and the constant-method STH models for a time 

horizon of 5 years are shown in Figure 5-17. Note that the break-even lines for the three-

method STH model were determined assuming high costs for alternative Method C and 

therefore the model would in fact be representative of a “two-method” STH model. In the 

figure, the heavy lines are used to represent the break-even lines determined using the 

three-method STH model while the light lines are used to represent the break-even lines 

determined using the constant-method STH model. Dashed lines are used to differentiate 

the different relative cost to consequence ratios. 
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Figure 5-15. Break-even lines determined using the constant-method STH model for a five 

year time horizon with B=X=$600,00. 
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Figure 5-16. Break-even lines determined using the constant-method STH method for a twenty 

year time horizon with B=X=$600,000. 
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 According to Figure 5-17, the break-even lines determined with both models are 

very similar for low values of relative cost to consequence ratio. However as the ratio 

increases the difference between the break-even lines tend to increase. The break-even 

lines for the three-method STH model are consistently below those of the constant 

method probably indicating some preference towards Method A (smaller initial cost) for 

the constant-method model. This could also suggest that by switching alternatives during 

the specified time horizon, a lower total cost can be achieved. However considering the 

precision in input data, for practical purposes, the results determined using the three-

method and constant method can be considered identical. 

 Figure 5-18 compares break-even lines determined using the constant-method 

STH model for time horizons of 5 and 20 years . The heavy lines in this figure are used to 

represent the 20 year time horizon while light lines are used to represent the time horizon 

of 5 years. The dashed lines are used to differentiate the relative cost to consequence 

ratios. For ratios values of 0.1, the break-even lines are similar. However as the ratio 

increases the break-even lines become less similar. Again as observed in Figure 5-17, 

when the consequence cost (X) is large with respect to the differences between the initial 

costs of the alternatives, the assumptions considered of each method seems to be less 

important. The slope of the line also seems to defer for the two time horizon. For low 

probabilities of failure, the break-even lines are relatively different. As the probability of 

failure increases for both methods, the break-even lines get closer. These differences in 

break-even line slopes increase as time horizon increases. It is also noted that the break-

even lines for a 20 year time horizon are consistently lower than for  
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Figure 5-17. Comparison of break-even lines determined for a time horizon of 5 years using 

the three-method and constant-method STH models. 
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Figure 5-18. Comparison of break-even lines determined for time horizons of 5 and 20 years 

using the constant-method STH model. 
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those of 5 year time horizon. These observations suggest that the duration of the time 

horizon is important, particularly for small probabilities of failure. They also suggest that 

for short time horizon,  there is some preference for alternative Method  A (the less costly 

but more risky method), while for longer time horizons, more preference should be give 

for alternative Method B (more costly, less risky method). 

 

5.3.2.6 Application of the STH Models 

 The application of the STH models is simple and relatively straightforward. 

Variable values are inputted to the numerical models which are implemented in Microsoft 

Excel® and commercially available “add ins”. Using these models give the decision 

maker the advantage of not needing to make further assumptions (other that those 

involved in the model) or interpolations. In this sense, the approaches require the 

availability of the numerical models and in some scenarios may require significant 

personal and computational effort. For cases where the decision is deemed critical 

involving significant cost the “direct application” approach and significant effort to 

determine the model variable values are recommended. For more common applications, 

the break-even graphs presented above or similar ones can be applied. The results 

(decisions) obtained using this approach are generally consistent (particularly with the 

precision that can be expected of the input parameters) with those obtained using the 

direct application. The advantage lies on the simplicity and quickness of the use of the 

graphs. To illustrate the application of the break-even graphs, two hypothetical examples 

are presented using the Oregon Department of Transportation database. 
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 As an application of the SPIT model, the first example assumes the initial cost of 

the “risky” stabilization Method A to be $350,000 while the initial cost of the “tired and 

true” stabilization Method B is again assumed to be the average cost of all stabilizations 

in the ODOT database, or $589,794. The probability of failure for Method A (pf) is 

assumed to be 30% while the probability of failure of Method B (rf) is assumed to be zero 

since the method is considered to be a “certain” stabilization. The cost (consequence) of 

failure (X) is assumed to be equal for both alternatives and was taken from the average 

24-hour traffic delay cost for all cases in the ODOT database, or $603,819 (the SPIT 

model could have assumed the cost of failure to be different for both alternatives). Based 

on these values, the relative cost to consequence ratio (B-A)/X is again equal to 0.4. To 

determine an appropriate decision, the break-even developed for (B-A)/X equal to 0.5 

would be a reasonable approximation. 

 Figure 5-19 shows the probability point pf=0.3 and rf=0.0 plotted in the constant-

method STH model break-even graph previously shown as Figure 17. In Figure 5-19, the 

probability point is located above the break-even line that corresponds to (B-A)/X=0.5 

for both 5 year and 20 year time horizons, indicating that for both time horizons, the 

“tried and true” Method B is preferred. This conclusion disagrees with the SPIT model 

example shown before where Method A was shown to be preferred. The difference lies 

on the more accurate accounting for the fact that multiple failures may occur if the risky 

stabilization method is implemented which in the long term increases the life-cycle cost 

of stabilization for the risky approach. Finally, the same conclusion would be drawn by 

considering a break-even line for (B-A)/x=0.4 or by using the break-even lines 

determined from the three-method STH model. 
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Figure 5-19. Application of constant-method STH model for two example problems based on 

input from ODOT database. 
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 The second example is similar to the first with the variation of the probability of 

failure values. To assume that the probability of failure of Method A is 10% (i.e. pf=0.1) 

and the probability of failure of Method B is 4% (i.e. rf=0.05) might be more typical of 

what to expect for most common applied stability method. This probability point is also 

shown in Figure 5-19. It is to notice in the figure that the probability point lies above the 

appropriate break-even lines determined using the constant-method STH model for a 20 

year time horizon meaning the Method B is preferred. However for a 5-year time horizon, 

the preferred alternative is Method A. In cases like this, judgment is required by the 

decision maker to select the appropriate decision. The decision maker must consider 

other issues such as budget availability for slope repair, political considerations, among 

others, that might make one of the methods preferred over the other. In general, the 

decision maker must keep in mind that in these cases the conditions are generally close to 

the break-even line, which implies that the overall outcome (from an average point of 

view) is likely to be similar regardless of the final judgment. 

 

5.3.2.7 Limitation of the STH Models 

 The primary limitation of the SPIT model is that it does not quantify the potential 

life-cycle costs of alternative stabilizations methods over a specified time horizon. The 

STH model overcomes this limitation allowing more realistic decisions for the most 

common slope stabilization scenarios. The development and simplification of the STH 

model equation may require a little more effort then the SPIT model, however the tools 

they offer such as the break-even charts are essentially identical to use. 
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 The most significant limitation of the STH is the assumption of constant variable 

values throughout the specified time horizon. Values such as probability of failure are 

expected to change over time (either increasing or decreasing depending on the type of 

soil or stabilization method). A less significant limitation of the STH model is the 

assumption of having a maximum of one failure per year. Changes in the model to 

include such considerations to the current model are suggested prior to the evaluation of 

their significance in the results. 

 

5.4 Summary 

The chapter describes in more detail breakeven-line concepts and equations that were 

previously mentioned in Chapter 4. Two basic forms of decision tree models that referred 

“Single Point in Time” (SPIT) model and the “Specific Time Horizon” (STH) model 

were introduced. For both models, breakeven-lines plots were presented and preference 

regions were described. Finally, the applications, advantages and limitations of both 

models were discussed in the chapter.  
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6 CHAPTER 6 – SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

Proposed in this thesis is a decision support framework based on asset management 

principles to support slope maintenance from an economical point of view. During the 

study, very few decision support systems and little data were found available that could 

facilitate effective decision-making for maintenance and rehabilitation of highway 

embankments and slopes. Among the few systems available, the systems developed by 

the Federal Highway Administration, the Oregon DOT, and the Washington Department 

of Transportation were described and compared in the thesis.  

The general process of structuring and analyzing decisions to solve complex 

problems was described in the thesis. Formal decision analysis was performed by using 

decision trees. This modeling allowed graphical comparison of the different stabilization 

alternatives by considering their costs, consequences and reliability.  

Numerous trial models were developed, compared and evaluated. Analyses of tree 

models included performing sensitivity analysis and break-even line concepts. These 

analyses allowed developing charts to assist decision makers in selecting the preferred 

slope stability method. A spreadsheet was also developed to assist decision tree users in 

establishing the values of the tree variables. 

Two basic forms of decision tree models referred as “Single Point in Time” (SPIT) 

model and the “Specific Time Horizon” (STH) model were introduced. For both models, 

breakeven-line plots were presented and preference regions were described. Finally, the 

applications, advantages and limitations of both models were discussed. 
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6.2 Conclusions 

The following conclusions were drawn based on the literature review and the results of 

analyses performed on decision tree models: 

1. In the area of geotechnical transportation infrastructure, there are few decision 

support systems and little data available to facilitate the effective decision-making 

for maintenance and rehabilitation of highway embankments and slopes.  

2. Using decision tree modeling has proven to be an effective method to model slope 

repair problems. 

3. Under certain conditions when applying time modeling models, the repeated 

selection of the less costly but more risky stability technique is more cost 

effective in the medium term (between 5 and 10 years) than the repeated election 

of most costly but less risky decision.  

4. The models that were analyzed still have some limitations that impede their 

practical applicability. However they provide the foundation to create more 

effective and practical models.  

6.3 Recommendations 

Seeking to develop a geotechnical asset management system through the enhancement of 

the models shown in this thesis, the following recommendations are presented:  

1. Considering the lack of data, it would be optimum to develop a data collection 

system that could be linked to the decision tree model input or could be used 

through tables and charts as information for the judgment of the model users. 

2. Temporary variability in the variable values should be included in the STH 

models. The variability of variables such as initial costs and consequence cost 
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could be calculated with the use of the time value of money concepts. However 

the probability of the slope failure variable will be more complicated considering 

that this variable could vary singularly for different slopes 

3. It is necessary to perform modifications for the SPIT model so that it could 

include life-cycle costs similar to the STH models. Considering that SPIT models 

are less complex and required less computational effort than SHT models, this 

modification would be advantageous. 

4. More studies need to be done to improve the user data input spreadsheet or some 

other type of input system. This will allow obtaining decisions that are standard 

with less user involvement or judgment. 
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