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Abstract 
 

Combining a group of classifiers and therefore improving the overall classification 

performance is a young and promising direction in Large Vocabulary Continuous Speech 

Recognition (LVCSR). Previous works on acoustic modeling of speech signals such as 

Random Forests (RFs) of Phonetic Decision Trees (PDTs) has produced significant 

improvements in word recognition accuracy. In this thesis, several new ensemble 

approaches are proposed for LVCSR and experimental evaluations have shown absolute 

accuracy gains up to 2.3% over the conventional PDT-based acoustic models in our 

telehealth conversational speech recognition task. 

Unlike the implicit PDT based states tying that has been used in most ASR systems 

as well as in the recent RFs based PDTs, this author considers that explicit PDT (EPDT) 

tying that allows Phoneme data Sharing (PS) may be superior in capturing pronunciation 

variations. The author adopted the idea of combining multiple acoustic models and 

applied this idea to the EPDT models. A combination of EPDT and the implicit PDT 

models has been investigated to reduce phone confusions that may be introduced by the 

EPDT model. A 1.3% absolute gain on word accuracy is observed in this experiment on 

the telehealth task. 

Data sampling is one of the primary ways to generate different classifiers for an 

ensemble classifier. In this thesis, Cross Validation (CV) based data sampling is proposed, 

and random sampling without replacement is used as a reference for comparison. With 

different datasets generated by data sampling, different PDTs and therefore different 
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Gaussian mixture models are generated, and the diversity of the multiple models helps 

improve recognition accuracy. When a 10-fold-CV is used, a 2.3% absolute gain in word 

recognition accuracy is obtained. Several experimental parameter settings and combining 

methods have been investigated in the experiments and the findings are discussed in this 

thesis.  

The word accuracy performance improvement achieved in this thesis work is 

significant and the techniques have been integrated in the telemedicine automatic 

captioning system developed by the SLIPL group of the University of Missouri –

Columbia.  



 

Chapter 1 

Statistical Speech Recognition 

1.1 General statistical speech recognition 
 

Speech is the most convenient everyday communication method among humans, 

and it is a very promising interface between computer and human. After a half century of 

evolution [1], Automatic Speech Recognition (ASR) systems nowadays are finding 

applications in everyday’s life. For example, automatic customer service system allows 

people to use voice to select a restaurant menu. Another example is our telemedicine 

automatic captioning project: ASR is helping people who have hearing loss to directly 

read a captioned message that a doctor’s speech conveys over a long distance. ASR is a 

very meaningful field and we are devoting our passion on enhancing the recognition 

accuracy, the decoding speed as well as the system functionality.  

Generally, we can simply describe speech recognition as a time series classification 

problem. It attempts to find an optimized word sequence that best match a speech 

utterance. The most successful method of speech recognition is based on Bayesian 

decision theory [2],  

1

( ) ( ) ( | )( | )
( ) ( ) ( | )

k

i

P x Cj P Cj P x CjP Cj x
P x P Ci P x Ci

=

∩
= =

∑
,    (1.1) 

where given a data sample x, we calculate the posterior probability of the class Cj, from 

the prior probabilities of , and the conditional probabilities of x given Ci, i = 

1, 2,…, k.  When we apply Bayes rule to our speech recognition problem, we can rewrite 

the decision problem as:  

kCCC ,,, 21 "
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( | ) ( )ˆ arg max ( | ) arg max arg max ( | ) ( )
( )W W W

p O W p W eW p W O p O W p W
p O

α β

eα β= = =  

(1.2) 

where  is the sequence of words (with unknown length n) in an 

utterance produced by the speaker which generates the acoustic feature vector 

sequence ; p(W), usually called the language model, is the a priori 

probability of the word sequence W, which is independent of the observation O; p(O) is 

the a priori probability of the observed speech utterance O, which is independent of all 

word sequence hypotheses, and so it can be ignored in the last line of formula (1.2); 

p(O|W) is the probability that the speaker produces the acoustic feature vector sequence 

O if W is the intended word sequence.  

nwwwW ,,, 21 "=

ToooO ,,, 21 "=

Statistical modeling for estimating p(W)  is called language modeling. It concerns 

the prior probability of a word sequence W in a sentence. The most commonly used 

language model is N-gram, which will be discussed in Section 1.3. 

Statistical modeling for estimating p(O|W) is called acoustic modeling. Here W is 

usually decomposed into sub words such as phonemes or syllables since they are more 

trainable from a finite amount of speech data. We use lexical trees to represent words by 

sub-words, usually phonemes. The most commonly used acoustic model is Hidden 

Markov Model (HMM) of Context-Dependent (CD) phones. We discuss the details of 

acoustic modeling in Section 1.4. 

In addition, the α  in ( )p W α is referred to as a language model scale factor, which 

is used to balance the scores of acoustic model and language model. The parameter eβ  is 

called word insertion penalty, which is used to control the length of the word hypothesis 
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sequence. These parameters are extremely important in controlling the performance of an 

ASR system and therefore should be tuned before the speech recognition system is 

deployed in real applications. 

Speech recognition engine works by using Viterbi algorithm [3] to search over a 

large hypothesis space, determining the best word sequence that has the highest 

probability of generating the speech utterance. This part will be discussed in section 1.6. 

 

1.2 Pre-processing of Speech 
 

Speech signals, which are waveforms sampled at a certain clock rate, are not 

suitable to be directly used in training acoustic models. Pre-processing is such a 

procedure that converts the original waveform of speech into the type of presentation that 

only contains necessary information for speech recognition. Typically, the speech sound 

waves are captured by a microphone and converted to electrical signals. Then Analog-to-

digital conversion samples speech signal at discrete time intervals (e.g. sampling 

rate=16k), which becomes the input to an ASR system.  The sampled data is used to 

generate feature vectors. This process is called feature analysis. Generally, a feature 

vector is computed per 10ms time, from an overlapped sliding window of 20 to 25 ms. 

Commonly used features are as follows:  

1 Linear Predictive Coefficient (LPC) – a speech sample at time t is approximated 

as a linear combination of the immediate past p speech samples, and the combination 

coefficients are assumed constant over each speech frame [4]. 
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2 Perceptual Linear Prediction (PLP) - a variation of linear prediction coefficients 

taking into account of human auditory perception model [5]. 

3 Mel Frequency Cepstral Coefficients (MFCC) - cepstrum is computed by first 

warping the energy spectrum according to the Mel frequency scale and then taking the 

cosine transform on the log energies in predefined subbands [6]. 

The above mentioned features are all considered to be short-term stationary 

features and can not cover the temporal dynamics in speech. It is a common practice to 

use the first-order and second-order time-derivatives of such static features to capture the 

time dynamic information [7]. 

The extracted features can be further transformed to improve ASR system 

performance. Such transformation algorithms include linear discriminant analysis (LDA 

or HLDA [8]), vocal tract length normalization (VTLN), independent component analysis 

(ICA) [9], principal components analysis (PCA) [2], etc. The goal of speech pre-

processing is to produce discriminative and robust features to close the gap between the 

performance of human listeners and that of ASR systems.  

 

1.3 Language Modeling 
 

Given a sequence of previously spoken words, what is the probability of the word 

that will be spoken next? Language Model (LM) is used to answer such a question. With 

LM we can reduce search space by predicating word sequence as well as improve 

recognition performance by providing syntax information. There are different proposals 

for LM, including Context-Free-Grammar (CFG) [10] which uses a set of knowledge 

based rules to define the prediction of words in sentences, and the widely used N-gram 
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model [11] which is much more successful in real tasks because of its simplicity and 

effectiveness.  In our telehealth task, we have incorporated N-gram LM and the details 

are discussed in the later part of this thesis.  

The probability of a certain word sequence W is denoted as p(W), which can be 

calculated in the following way: 

),,,()( 21 nwwwpWp "=  

),,,|(),|()|()( 121213121 −= nn wwwwpwwwpwwpwp ""  

∏
=

−=
n

i
ii wwwwp

1
121 ),,,|( "        (1.3) 

where is the probability that word will follow the previously 

presented word sub sequence . Here we assume the occurrence of a word 

only depends on n-1 previous words. Apparently this assumption is not always true but it 

is very simple. If we define a language model under the assumption that the occurrence of 

a word depends only on its previous two words or one word, we will get trigram language 

model or bi-gram language model, respectively.  

),,|( 121 −ii wwwwp " iw

121 ,, −iwww "

The most commonly used N-gram language model is N equals to 3, or trigram. 

When N equals to 4, the model complexity is largely increased compared with trigram 

and therefore it consumes a lot of computation as well as storage space. A trigram 

language model estimates word sequence probability in the following way: 

),,,()( 21 nwwwpWp "=  

)|(),|()|()( 12213121 −−= nnn wwwpwwwpwwpwp "  

∏
=

−−=
n

i
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3
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We use the maximum likelihood estimation (MLE) method to estimate the LM 

parameters. For trigrams, the parameters can be obtained as the following: 

)(
)(

)|(
12

12
12

−−

−−
−− =

ii

iii
iii wwC

wwwC
wwwp       (1.5) 

In the above equation, C is the count on the number of appearances of the word n-gram in 

a training corpus. 

Due to the sparseness of training data, smoothing techniques are needed to make 

language model more robust because some trigrams do not appear frequently enough to 

train a language model. The core issue of smoothing is to assign a nonzero probability to 

unobserved word strings. Backing-off model is one of the most commonly used 

smoothing techniques. The idea is to use low-order n-gram to approximate the 

probabilities of those uncommon words, for example: 

),,|(ˆ 11 −+− inii wwwp "  
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  (1.6) 

In this way, if the n-gram is seen in the training data, then the maximum likelihood 

estimated probability will be used (normally discounted). Otherwise, we back off to the 

smoothed lower-order model. 

 

1.4 Acoustic Modeling 
 

Acoustic model is used to characterize the acoustic-phonetic characteristics of 

speech signals.  Hidden Markov Model is able to capture the time dynamics of speech 

signals and therefore is widely used in acoustic modeling. 
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1.4.1 Hidden Markov Model (HMM) in speech recognition 
 

In order to capture time dynamics of speech signals, HMM is used to model speech 

signals by characterizing speech with a sequence of states and transitions between the 

states, and from which the acoustic score p(O|W) can be computed.  

In HMM, speech signal is generated by a Markov chain of hidden states, and each 

state is associated with a stationary distribution which is usually a Gaussian mixture 

density referred to as Gaussian Mixture Model (GMM). The transitions between states 

represent the non-stationary time-evolution in a speech signal.  

As Figure 1.1 shows an HMM with 5 states and fixed transitions, which is what we 

used in acoustic modeling of phoneme units for speech recognition [12]. This HMM 

includes 3 emitting states and 2 non-emitting states. Three emitting states (S1, S2, S3) can 

generate speech observations with Gaussian mixture densities. The transition from state i 

to state j is specified by the transition probability aij. The two non-emitting states (S0 and 

S4) are an entry state and an exit state. These two states do not generate any observation, 

both states are reached only once. The left-to-right topology of HMM is used to describe 

the temporal characteristics of speech signal, that is, the current state is only dependent 

on itself and its previous states, but not on future states. 
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Figure 1.1 An example of HMM for a phoneme model using Gaussian pdf in each 

emitting state. 

 

In a hidden Markov model, the transition probability aij is defined by the following:  

))1(|)(( itsjtsPa rij =−==   (1.7) 

where s(t) is the state index at time t. For a N-state HMM, we have and  

for every i,j. For speech modeling, the output probability distribution of a HMM state can 

be modeled by a Gaussian Mixture Density (GMD) as below: 

0≥ija 1
1
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This is a mixture of  multivariate Gaussian Densities, where M is the number of 

Gaussians, mμ  and are the mean vector and covariance matrix for the m-th Gaussian 

component, d is the dimension of the feature vector, Cm is the weight of the m-th 

Gaussian component with the constraints Cm ≥ 0 and . 

m∑

1
1

=∑
=

M

m
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As we can see, each emission distribution symbolizes a sound event such as a 

phone state. The distribution must be discriminating enough to give the largest 

probability to the correct phone as well as robust enough to account for the variabilities in 

natural speech. Several methods have been used to train acoustic model parameters 

including state transition probabilities and the parameters of the emission probability 

densities at each state. Given {aij} and p(o|si), i =1~N, j = 1~N, the likelihood of an 

observation sequence O given word sequence W is calculated as: 

∑=
S

WSOpWOp )|,()|(   (1.9) 

where S = s1, s2, …, sT is the hidden Markov model state sequence that generates the 

observation vector sequence O = o1, o2, …, oT. The joint probability of O and the state 

sequence S given W is a product of the transition probabilities and the emitting 

probabilities 

∏
=

+
=

T

t
ssts ttt

aobWSOp
1

1
)()|,(    (1.10) 

Practically formula (1.9) can be approximately calculated as the joint probability of the 

observation vector sequence O with the most possible state sequence, i.e., 

)|,(max)|( WSOpWOp
S

= .  (1.11) 

In Large Vocabulary Continuous Speech Recognition [LVCSR] systems, it is more 

accurate to build a HMM for each word or syllable. However, this is a very expensive 

implementation. In our system and most LVCSR systems in the world, Context-

Dependent (CD) phonemes are used as the basic recognition units. HMMs are built for 

CD phone units and the model of a word string is concatenated from the CD phone units 

according to a dictionary lexical tree and LM.  
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1.5 Pronunciation dictionary and lexical tree 
 

A pronunciation dictionary defines the phoneme constituents for each word in the 

vocabulary. Fig. 1.2 gives some entries of a dictionary used in our Telehealth system. 

Here multiple pronunciations will be regarded as having an equal a priori probability. 

 

. 

. 

. 

OVERSEEING   ow v er s iy ih nx sil 

OVERSEEN   ow v er s iy n sil 

OVERSEER   ow v er s iy er sil 

OVERSEES   ow v er s iy z sil 

OVERSELL   ow v er s eh l sil 

OVERSENSITIVE   ow v er s eh n s ih t ih v sil 

OVERSENSITIVITY   ow v er s eh n s ah t ih v ih t iy sil 

OVERSHADOW   ow v er sh ae d ow sil 

OVERSHADOWED   ow v er sh ae d ow d sil 

OVERSHADOWING   ow v er sh ae d ow w ih nx sil 

OVERSHOOT   ow v er sh uw t sil 

OVERSIGHT   ow v er s ay t sil 

OVERSIMPLIFICATION ow v er s ih m p l ih f ih k ey sh ah n sil 

OVERSIMPLIFY   ow v er s ih m p l ax f ay sil 

OVERSIZE   ow v er s ay z sil 

OVERSIZED   ow v er s ay z d sil 

 10



 

OVERSLEPT   ow v er s l eh p t sil 

OVERSOLD   ow v er s ow l d sil 

OVERSPEND   ow v er s p eh n d sil 

OVERSPENDING   ow v er s p eh n d ih nx sil 

OVERSPENDS   ow v er s p eh n d z sil 

OVERSPENT   ow v er s p eh n t sil 

OVERSTAFFED   ow v er s t ae f t sil. 

. 

. 

Figure 1.2 Part of a sample dictionary 

Lexical tree is a type of prefix tree that organizes the large dictionary in a speech 

recognition engine is an efficient way. A fraction of a lexical tree corresponding to Figure 

1.2 is shown below in Fig 1.3: 
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Figure 1.3 Fraction of a lexical tree 

 

1.6 Viterbi Algorithm 
 

Viterbi algorithm [3], which is based on Dynamic Programming (DP) [14], is a 

very successful time-synchronous decoding algorithm.  DP is widely used as an 

optimization method to decompose a big problem into small sub problems.  

The speech decoding engine is consisted of chiefly two parts. The first part is 

Forward-extension. All possible paths are extended from time 0 to time T-1 where T is 

the number of acoustic feature vectors in a sentence. During the extension, path scores 

are accumulated by combining the acoustic score and the language score for all acoustic 

vectors up to the current frame, and at each time each path will record its best previous 
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word. Heuristic approaches as well as look-ahead methods can be used to prune the 

search paths to increase the decoding speed. In a real time task, we assume that if the 

silence length in a search path is longer than a fixed threshold or a filled pause appears, 

the search algorithm will backtrack to find the best partial path.  

 

1.7 Summery 
 

Speech recognition systems are usually organized as the block diagram in Fig 1.4. 

The basic idea is training the models we discussed above with labeled speech corpus, and 

then using the trained model to find the best word sequences for the speech inputs. This 

diagram represents the basic framework of a typically ASR system. 
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Figure 1.4 Diagram of an automatic speech recognition system. 
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Chapter 2 

Explicit Phonetic Decision Tree Tying 
 

Speech recognition tasks can be categorized by different levels of difficulties. 

Conversational speech, which is characterized by wide variations in word pronunciations, 

is a very hard speech recognition task among all the others. Especially, the speaker-

independent conversational speech recognition tasks need to handle more pronunciation 

variations than speaker-dependent ones since different people use different ways to 

pronounce words. To successfully model conversational speech, handling the 

pronunciation variations plays the key role.  The following figure reveals the 3 processing 

levels in typical ASR tasks. 
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Figure 2.1 The three levels of speech recognition 

According to this three-level speech recognition framework, we can apply different 

methods to solve the speech variation problem at different levels. At the sentence level, 

we can use linguistic features of words to model prosody feature induced variations [15].  

At word level, the variations are normally modeled by a combination of multiple 

pronunciation word dictionary. The use of context-dependent acoustic models can be 

categorized to phoneme level [16]–[18]. The following is an example of multiple 

pronunciations for the word LETTER: 
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LETTER[a]:            L  EH T AXR 

LETTER[b]:            L  EH DX AXR 

  

Simply put, this method attempts to incorporate all possible pronunciations for 

every word. “Letter” has different pronunciations in different circumstances, and so, the 

two pronunciations are both valid. We normally add both of them to the lexicon tree to 

make sure that no matter which pronunciation is observed, we will have a good chance of 

getting the correct word “letter”. We refer this kind of solution as “explicit approach” in 

modeling speech variation. However, this approach is expensive and error prone, also it 

decreases the recognition speed, since a large lexicon tree means a large space in 

hypothesis search. Furthermore, introducing multiple pronunciations for each word will 

also add confusion, since the discrimination between acoustic features is not strong 

enough, and the confusion will affect both the training procedure and the decoding 

procedure. In many works only small improvements to word accuracy performance were 

observed [19].  

At HMM level, each state in HMM can be modeled by a Gaussian mixture density 

and it is robustly tied to the same state of several different CD-phonemes. The state tying 

is usually done by performing a data driven clustering or by combining knowledge and 

data in a Phonetic Decision Tree (PDT) based tying. Therefore, each state can handle 

some speech variations as well as maintaining a compact model. Implicit methods are 

believed to be a better solution than explicitly adding multiple pronunciation entries for 

each word in a lexicon. First, it is more balanced between modeling speech variations and 

avoiding confusion. Second, the implementation for decoding search is easier.  

 17



 

Many efforts have been made to improve PDT state tying in acoustic modeling, For 

example, k-step look-ahead and stochastic full look ahead is one approach that attempt to 

build globally optimized trees instead of the traditional locally optimized decision trees 

[20].  Robust PDT is proposed with a two-level segmental clustering that includes the 

basic PDT and the agglomerative clustering of rare acoustic phonetic events [21]. 

Furthermore, instead of using phoneme level data to build PDT, acoustic model could 

also be trained based on the syllable structure of speech [22].  

This chapter is organized as follows. First in section 2.1 we discuss the background 

of PDT clustering. In section 2.2 we talk about the proposed explicit PDT clustering that 

allows sharing data between different phones. Finally, we discuss how to enhance the 

performance of speech recognition by adopting ensemble methods for acoustic modeling.   

 

2.1 Phonetic Decision Tree background 
 

As discussed above, each phoneme is represented by Context-Dependent (CD) 

phone units because acoustic realization of a phoneme changes with the articulations of 

its neighboring phonemes.  The most common CD HMM model is triphone, which has a 

good balance between complexity and efficiency. Researchers argue that long Context-

Dependent phone units promise a better performance, but with a huge cost of increased 

model parameters. The consequence is compromising the training and decoding speed, 

the storage space, as well as the robustness of parameter estimation when training data is 

limited.  
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The target of PDT is to clustering triphone states. As we’ve just discussed, speech 

variations can be modeled by the clustered states also called tied states. Each clustered 

state is shared by several similar triphones. In this way each clustered state has more 

training data than individual triphones and is robust to handle pronunciation variations.  

Unlike pure data driven clustering models such as K-means, knowledge based PDT 

is much widely used in speech modeling due to its effectiveness for large data sets. The 

knowledge source we have is linguistic characteristic of the phonemes and their 

neighbors. For example: 

“Nasal"  { *+m,*+n,*+en,*+nx } 

“IVowel" { *+ih,*+iy } 

“OVowel" { *+ao,*+oy,*+aa } 

“Front"  { *+p,*+pd,*+b,*+m,*+f,*+v,*+w,*+wh,*+iy,*+ih,*+eh } 

For each triphone, we have two contexts, the left phone and the right phone. 

Questions that are used to split nodes in decision tree are generated accordingly. For 

example, we have two questions for Nasal clusters are represented as follows:  

“R_Nasal" { *+m,*+n,*+en,*+nx } 

“L_Nasal" { m+*,n+*,en+*,nx+* } 

 

where R_Nasal checks whether the right neighbor of the center phone is a nasal-type 

phone, and L_Nasal checks whether the left neighbor of the center phone is a nasal- type 

phone. 

The Decision Tree construction procedure is described in the following figure: 
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Figure 2.2 An example of decision tree construction 

 

At the beginning, the root node contains all the triphone data with the center phone 

“s”. The nodes are split to leaf nodes by using the knowledge we just discussed. The 

broad categorizations of phones such as vowel, nasal, etc are used to form the questions. 

The questions ask if the triphones’ left context belongs to this category or if the 

triphones’ right context belongs to this category. The criterion for question selection is 

based on the likelihood gain. The question that produced the maximum likelihood gain 

locally will be used to split the node and two children nodes will be obtained. The 

likelihood gain is defined as:  
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left right parentL L L LΔ = + −   (2.1) 

where the data distribution at each node is modeled by a Gaussian density. The same 

procedure is recursively applied to each node until it is stopped by some termination 

thresholds. Two threshold criteria are used: one is minimum data count, and the other is 

minimum of the likelihood gain. The data count threshold is used because the leaf nodes 

should have enough data; otherwise it will not be possible to reliably estimate model 

parameters for each clustered state. 

This is the knowledge driven approach, because we cluster the triphones according 

to the linguistic contexts. However, data verification is also used to decide which 

question should be applied in each node. So the PDT approach is believed to have a 

better performance than pure data driven clustering such as K-means, and therefore it is 

widely used in ASR systems. Another advantage of PDT is that it can play the 

classification role. Many triphones may not appear in training data, but they still can be 

tied to a clustered state according to its linguistic properties.  

 

 

2.2 Explicit PDT tying 
 

Generally speaking, PDT is able to model pronunciation variations if we have 

enough training data [23]. However, training data are still very precious and expensive to 

obtain. What if we have a small amount of training data? Let’s look at the following 

special case: 
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LETTER[a]:            L  EH T AXR 

LETTER[b]:            L  EH DX AXR 

LADDER[a]:            L AA D AXR 

 

When we observe the pronunciation pattern [b] for the word LETTER the triphone EH-T-

AXR will have a very low likelihood score than EH-DX-AXR and therefore the correct 

hypothesis might not survive in the decoding search and an error word hypothesis, i.e. 

ladder, will be generated. This is a very common situation and is the key issue that we 

need to consider. It is believed that CD-phone modeling is able to model this kind of 

pronunciation variations, if training data are enough. In [23], the authors also argue that 

under the condition of very limited training data, the triphone acoustic model would not 

be robust enough to model pronunciation variations. It is a big challenge that with very 

limited data, how do we robustly model the pronunciation variations so as to increase the 

word recognition accuracy of ASR systems? 

Since we have already used some linguistic knowledge in triphone clustering in 

decision trees, what if we use similar knowledge again to perform clustering on the center 

phone? This Phoneme Tying (PT) approach can explicitly force the data sharing between 

center phonemes that have similar characteristics, and data sharing is expected to enhance 

the pronunciation variation modeling especially in limited training data. Look at the 

following example in Figure 2.3. 
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Figure 2.3 Explicit decision tree triphone tying 

 

In this example we can see that the tri-phone eh-t+ax is supplemented by some 

training data that belongs to the center phoneme d. Therefore it may enhance the model to 

solve the insufficient data as well as the variation problems. Unfortunately this approach 

also introduces confusion between the phoneme t and the phoneme dx. The consequences 

could be that the discrimination between the phoneme t and phoneme dx is decreased.    

In the traditional PDT clustering, we build each tree for each state of each phoneme. 

Suppose we have k phonemes and n emitting states in HMM, then we will have k*n 

independent decision trees. This can be considered as the extreme case of the Explicit 

PDT (EPDT). Due to center Phoneme data Sharing (PS), a minimum of n, and a 

maximum of k*n trees can be built depending on the top-down clustering strategy. 
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We conducted experiments on several selected center phone clustering strategies in 

EPDT and found that in some types of clusterings, the EPDT will generate improved 

recognition results. Detailed experiments are presented in chapter 4. 

Table 2.1 One example of a state clustering in EPDT in our telehealth task 

State ST_21_40 

ae+z hh-ae+z r-ae+z r-ae+dh g-eh+dh w-eh+dh r-eh+z s-eh+z wh-

eh+dh hh-eh+z 

 

We also tested EPDT on another extreme case, which put all the phoneme data 

together and only built a Single Tree (SingleTree) for each state. This approach was 

originally proposed in [24]. In that research, a very positive gain in recognition accuracy 

was reported on the SwitchBoard task [25] in comparison with the baseline decision tree 

tying.  

Unfortunately the performance gain of the single-tree method is marginal in our 

telehealth ASR task. Here is a possible explanation: by using the single-tree approach, we 

benefited from modeling pronunciation variations, but we also suffered from the 

confusions that are introduced by sharing phoneme data. Comparing with the speaker 

independent SwitchBoard task, our telehealth task is speaker dependent, and thus less 

pronunciation variations may be present. Therefore, the performance loss may be due to a 

larger confusion error than gains in pronunciation variation modeling.   

How to solve this problem? We adopt the ensemble approach and discuss it in the 

next section. 
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2.3  Ensemble Classifier based on Explicit PDT tying 
 

As we’ve just discussed, single tree explicit PDT tying is not suitable in our task 

since it introduces more confusion than benefiting from modeling pronunciation 

variations. How to decrease the confusion as well as to maintain the pronunciation 

variation modeling that we may accomplish? Here we adopt the ensemble method that is 

potentially capable of maintaining the gain from pronunciation variation modeling but 

also decreasing the confusion.  

Simply put, the ensemble approach allows each triphone to be tied not only to one 

state cluster, but also tied to multiple state clusters that are generated in different ways. 

Look at the following example: 

   

Figure 2.4 Triphone tying example 

In this example, Triphone eh-t+axr is now tied to two state clusters. Here we 

combined the baseline model that has N*3 trees for each state along with the SingleTree 
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model that has 3 trees. In the decoding stage, we compute the likelihood score from each 

model and combine them using an average combining method. Some of the other 

combiner methods will be discussed in chapter 3. 

It is noted that the combining method of tying triphone models across different 

trees follows the method of [27], where random forests were used to generate an 

ensemble of acoustic models. In the current work, different models are generated by 

applying explicit knowledge in EPDTs as well as by the baseline models, rather than 

random sampling of questions in phone specific PDTs. 

By applying this idea, we could maintain the purity of baseline model also provide 

a solution to the problem of pronunciation variation across phoneme. As the result, the 

model robustness is improved and performance gain is shown in the experiment. Detailed 

experiment results can be found in chapter 4.  

 

2.4    Hierarchical Ensemble Classifier based on different mixture size 
 

The previously discussed method of combining EPDT model and baseline PDT 

model as an ensemble classifier can be viewed as a hierarchical ensemble approach.  The 

baseline PDT model has no sharing in center phones. The 6-tree EPDT model has some 

sharing in center phones and the 3-tree EPDT model has more sharing than the baseline 

PDT model and the 6-tree EPDT model since it allows data sharing between any two 

center phones. It is believed that hierarchical ensemble classifier has the potential ability 

to improve classification performance. This ability is shown in [33] on a handwriting 

recognition task. 

 26



 

Mixture size is an important parameter in GMD. A small mixture sized model 

requires small amount of training data and is normally inaccurate. A large mixture sized 

model is accurate but requires a lot of training data to be reliable.  Here mixture size is a 

very good parameter to generate a hierarchical ensemble classifier. We simply train 

GMD models with different mixture sizes and combine their output scores together with 

LM scores to calculate the word hypothesis. We anticipate that this method can improve 

the word accuracy in our telehealth ASR task.  Detailed experimental results are 

discussed in chapter 4. 
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Chapter 3 

Data Sampling in Ensemble Acoustic Modeling 
 

Although compromised in computation speed, combining multiple classifiers is 

widely observed to produce improved classification accuracy in many tasks. 

In order to obtain an ensemble classifier, first, we need to decide the base classifier. 

(In speech recognition, Gaussian Mixture Density is a dominating model for acoustic 

modeling); second, we need to decide the methods for producing a classifier ensemble, 

such as feature sampling used in Random Forest [27] or data sampling; third, we need to 

decide how to combine the outputs from different classifiers. 

In this chapter, we continue investigation on ensemble method for speech modeling. 

In section 3.1 we discuss the background of ensemble approach used in speech 

recognition. In section 3.2 we propose a Cross Validation (CV) based data sampling 

method that generates very good results. We also implemented a data sampling method of 

random sampling without replacement as reference. Model combining methods will be 

discussed in section 3.5.  

 

3.1 Ensemble classifier for acoustic score combination 
 

Ensemble method is a very promising direction that is under active investigation in 

many machine learning applications. In the speech recognition field, the classifier 

combining approach named ROVER is very successful in reducing word error rates [26]. 

 28



 

Combining at the system output hypothesis, ROVER uses several speech recognition 

systems to perform speech decoding simultaneously, and combining their outputs through 

alignment of word hypothesis. Finally the ROVER will generate the best word sequence 

through a majority voting procedure.  ROVER enhanced the word accuracy performance 

but also introduced the system complexity and the computation cost, and compromised 

decoding speed, which is a key factor of system performance in online tasks. 

 

 

Figure 3.1 ROVOR framework 

Unlike ROVER, our ensemble method is combining a set of acoustic models. This 

idea is the following: several acoustic models are used to compute the likelihood scores 

for the same speech utterance and the scores are combined for each speech frame at the 

acoustic method level; the acoustic scores are then integrated along with language model 

scores to generate the most possible word hypotheses. It is a simple and low cost 

implementation which, amazingly, gives us very good results.  
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Figure 3.2 Ensemble framework in telehealth system 

 

This ensemble modeling frame work was first introduced in our telehealth task as 

the Random Forest (RF) approach [27]. RF was used to train a set of PDTs for each 

speech unit and obtain multiple acoustic models accordingly by random sampling on 

decision tree questions, where the questions are also called features in the decision tree 

literature. Different combining methods such as arithmetic average, N-best average and 

weighted average were used to generate the combined score. The combining weights can 

also be obtained via maximum likelihood estimation or confidence measuring. The RF 

PDTs based ensemble classifier has been shown very successful in our task.  
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3.2 Sampling training data to generate an ensemble of acoustic model  
 

The ensemble acoustic model training procedure consists of the following 4 steps. 

 

Figure 3.3 Sampling data in generating ensemble classifiers 
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In step1 we train a set of basic untied triphone models for every triphones by 

extending from monophone models. We apply all the training data in this step since it 

produces stable monophone models. In step2 we use PDT to do the state clustering where 

several triphones will be tied to one state cluster. Therefore we can decrease the 

parameters from the individual triphone models as well as increase the model robustness. 

In step3, we train Gaussian mixture density instead of single Gaussian density for each 

state cluster, which is already discussed in chapter 1. In step 4 we tie each triphone to k 

state clusters that are generated by k PDTs trained from k sampled datasets. 

Some of the triphones may not appear in the training data, which are called unseen 

triphones. In general, there will be more unseen triphones in a sampled dataset because a 

sampled dataset is a subset of the full training data set. However, due to the classification 

capability of the decision tree method, we are able to assign tied states to the unseen 

triphones in each tree, and therefore for each triphone state, no matter it is present or 

absent in a sampled dataset, we are able to tie it to k state clusters as described in the step 

4 above.  

When we sample training data in step2 and step3, both steps will generate 

variations in the models. Similar to sampling questions in RF, sampling data in step2 will 

generate different decision tree structures. It remains a question as to which method will 

produce better performance. We will evaluate the difference between feature sampling 

and data sampling in step2 in chapter4. Also data sampling will have influence on step3. 

Detailed experimental results will be presented in chapter 4.  

 

3.3 Cross-Validation Sampling  
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In general cases of classifier design, we have a training data set to train models, we 

use the validation data set to tune some parameters in the model, and we use the testing 

data to evaluate the performance of the models. However, in some cases training data are 

small and therefore very precious, in such a case we combine the validation data with the 

training data and use cross validation approach to tune the parameters. 

Let D to be a training set, and kD be a subset for K-fold Cross-Validation (CV). 

That is, 

1

K

k
k

D D
=

=∪          (3.1) 

i jD D φ=∩     and       i ≠ j

For each i, we use  as training data, and useiD D− iD as the validation data. We can 

do this K times for a K-fold CV and obtain the tuned parameters by averaging. Figure 3.4 

shows an example for k=5 and i=5. 

 

Figure 3.4 5-fold Cross Validation 

CV based sampling is a special case of data sampling. The characteristic of CV 

based sampling is that in CV based sampling, all the data will be used exactly K-1 times 

in model training. It is believed here that training data should be treated with equal 

importance and bootstrap sampling with replacement or random sampling without 
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replacement may produce bias. Detailed experiments on CV based data sampling will be 

presented in chapter 4. 

3.4 Random Sampling  
 

Random sampling is a very common and simple method. We choose random 

sampling without replacement as our reference to the proposed CV based sampling. Here 

is the procedure: 

Step 0. Clean subset Xi 

Step 1. Random select a data sample from training data set X. 

Step 2. Pull the data sample from the training data and place it into Xi.  

Step 3. Repeat the steps 1 and 2 until data in X is less than 10%. 

Step 4. Repeat until we obtain a group of datasets (X1, X2, X3,…. Xk) 

Here, the 10% in step 3 is a parameter that could be set to different values. We 

choose 10% because we would like to compare it to our 10-fold CV model. In the current 

task the unit of data sampling is sentence. Details of experiments will be presented in 

chapter 4. 

 

3.5 Combiner design  
 

As we discussed at the beginning of this chapter, in speech decoding stage we need to 

combine the acoustic scores from the multiple acoustic models. Linear combination or 

nonlinear combination such as Bayesian Belief Network can be used [28]. For simplicity, 
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we just consider linear combination. Suppose we have a feature vector tx , the likelihood 

of it belongs to a specific ensemble tied state in a HMM is: lH

1
( | ) ( | )

k

K

t l lk t l k
k

P x H w p x M
=

= ∑

1lk = lkw

       (3.2) 

where K is the number of models,  is a Gaussian mixture density score from 

kth acoustic model. We need to estimate the weights that satisfy the constraint of 

 and > 0. 

( | )
kt l kp x M

lkw

1

K

k

w
=
∑

Therefore for a simple average the weights could be defined as
1

lkw
K

= .  

Here we sort the K  likelihood score into a max-to-min order, and we 

have several special cases defined as the following: 

( | )
kt l kp x M

MAX: . We just choose the maximum score that the K 

models give. 

(1,0,0,.....0)
lk Kw =

m-best: 
1 1 1( , , ,.....0,0)

lk Kw
m m m

= . We select the first m-best scores and average 

them. 

m-Trimmed-Average: 
1 1 1(0,0..., , , ,.....0,0)

lk Kw
m m m

= . We throw away the best 

few and the worst few scores and average the rest. This is supposed to be more stable 

since it excludes the outliers. 

Median: It is a special case of m-Trimmed -Average, when m is equal to 1. 
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The above strategies are easy to implement since the weights are fixed. It is 

believed that weights could be set to be specific to each base classifier and each state. 

Maximum likelihood based weights estimation is one approach to generate such weights 

from training data, which was described in [27]. This method is adopted here and 

provided below for completeness. 

In the training stage, we assume a set of i.i.d observations  

corresponding to a state  in HMM. The likelihood function is 

1 2 3( , , ,... )TX x x x x=

kH

11
11

( | ,..., ) ( ( | ))
k

T K

l l k lk t l k
kt

L X w w w p x M
==

= ∑∏ k
      (3.3) 

 We therefore has Maximum Likelihood Estimation (MLE) of 

l l
11

11

( ,..., ) arg max{ ( ( | ))}l l kk k

T K

lk t l k
w kt

w w w p x M
==

= ∑∏      (3.4) 

In our task, Log likelihood score are used, and therefore we have 

l l
11

1 1
( ,..., ) arg max{ log( ( | ))}l l kk k

T K

lk t l k
w t k

w w w p x M
= =

= ∑ ∑     (3.5) 

Since there is no analytical solution for this, we use the Expectation-Maximization 

(EM) algorithm to iteratively compute the weights. The estimation function is derived as 

1

1

1

( | )1

( | )

k

j

rT
lk t l kr

lk K
rt
lj t l j

j

w p x M
w

T w p x M

+

=

=

= ∑
∑

      (3.6) 

Detailed experiment results will be presented in chapter 4.  
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Chapter 4 

Experiments and Analysis 
 

4.1 Experiment Setup on Telemedicine Automatic Captioning System 
 

Experiments are performed on the Telemedicine automatic captioning system 

developed in the Spoken Language and Information Processing Laboratory (SLIPL) at 

the university of Missouri-Columbia. Please refer to [29] for a detailed description of this 

task and system. The block diagram of this system is shown in figure 4.1: 

 

Figure 4.1 The block diagram of Automatic Captioning System for Telemedicine  
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Speaker dependent acoustic models are trained for 5 speakers Dr. 1-Dr. 5. A 

summary of the data set is provided in Table 4.1. The training and test datasets are 

extracted speech data from healthcare providers’ conversation with clients in mock 

Telemedicine interviews. Original speech features consist of 39 components including 13 

MFCCs and their first and second order time derivatives. Feature analysis is made at a 10 

ms frame rate with 20 ms window size. Gaussian mixture density based Hidden Markov 

Models (GMD-HMM) are used for within-word triphone modeling, and the baseline 

GMM contained 16 Gaussian components. The task vocabulary is of the size 46k, with 

3.07% of vocabulary word being medical terms. Language models are word-class 

mixture trigram language models with Forward Weight Adjustment [30]. The decoding 

engine is based on TigerEngine 1.1 [31]. This decoding platform performs large 

vocabulary continuous speech recognition based on one-pass time synchronous Viterbi 

algorithm, with novel Order-Preserving LM Context pre-computing (OPCP) that reduced 

LM look up time. 

 

 

Table 4.1 Datasets used: speech (min.)/text (no. of words). 

 Training set Test set 

Dr. 1 210/35,348 29.8/5085 

Dr. 2 200/39,398 14.3/2759 

Dr. 3 145/28,700 19.3/3248 

Dr. 4 180/39,148 27.8/6421 

Dr. 5 250/44,967 12.1/3988 
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4.2 Experimental results for phoneme sharing explicit PDT tying 
 

Experiments were conducted on the Telemedicine automatic captioning system to 

evaluate the performance of the explicit PDT tying method described in chapter 2. The 

acoustic models were obtained by implementing the explicit PDT tying together with the 

HTK toolkit [13].   

 

Table 4.2 Word accuracy obtained from EPDT tying 1 

Dr.1 Data (2630 words)1 Accuracy 

Baseline 50*3 trees 78.37% 

Clustering (ae, eh, ey) 78.75% 

Clustering (aw, ax) 78.67% 

Clustering (ax, eh) 78.63% 

Clustering (oh, om) 78.82% 

Clustering (m, n) 78.48% 

Clustering (t, k) 78.39% 

   

 

 

                                                 

1 This dataset is a subset of the Dr.1’s dataset, where the full set has 3248 words. 
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Table 4.3 Word accuracy obtained from EPDT tying 2 

Dr.1 Data (2630 words) 

Clustering friction phones 

Accuracy 

Baseline 50*3 trees 78.37% 

Clustering (s , sh) 78.10% 

Clustering (s , th) 77.72% 

Clustering (b , p) 76.39% 

Clustering (g , k) 78.37% 

Clustering (sh , z) 78.37% 

Clustering (f , v) 78.37% 

 

 

 

From table 4.2 we can see that explicitly performing clustering increased the word 

accuracy by up to 0.4% absolute gain. It is very interesting that most of the improvements 

are on vowels and not on consonants. This is also consistent with the findings in [32] 

where phone substitution modeling was used in continuous speech recognition on TIMIT 

data. From table 4.3 we see that some of the knowledge we put into explicit clustering 

decreased the accuracy and the negative results are mostly on consonants. These results 

may lend to the following conclusions: 
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1  Consonants are not suitable for explicit tying. This may be due to the wide 

diversity that the different consonants have, and the confusions introduced by consonant 

clustering may be more than the benefits from pronunciation variations it solves.  

2 Vowels are better choices for explicit tying because vowels are more stable. 

3 We also observe that in some clustering cases, word accuracy did not change at 

all. That happens when the decision tree splits the different phoneme data at the top levels, 

and therefore the training data from different center phones never mix up and the 

resulting model is exactly the same as the baseline model. This indicates that although 

some phones are labeled alike based on the linguistic knowledge source, in 

conversational speech data they are still quite different. 

In Table 4.4 we evaluated the extreme case of explicit PDT tying. We put the entire 

center phone data in the training set to generate 3 Single-Tree PDTs model (3-tree model) 

according to 3 emitting states of triphone HMMs. We further separate the consonants and 

vowels to 6-tree model because we do not want data sharing between them.   
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Table 4.4 Word accuracy obtained from the extreme case of EPDT tying 

Dr.2 Data (5085 

words) 

Dr.1 

(3248) 

Dr.2 

(5085) 

Dr.3 

(3988) 

Dr.4 

(2759) 

Dr.5 

(6421) 

Average2

Baseline  

50*3 

trees 

Accuracy 
 

77.43% 81.26% 82.57% 74.01% 78.71% 79.23% 

Model size 1104 2076 1735 1479 1412 1591 

3-Tree  

Model 

 

Accuracy 75.55% 80.37% 83.95% 73.36% 78.20% 78.76% 

Model size 1077 2045 1717 1461 1386 1566 

6-Tree 

Model 

 

Accuracy 76.57% 81.71% 83.27% 74.63% 78.20% 79.26% 

Model size 1064 2035 1708 1436 1386 1556 

 

 

It is obvious that in our task, the extreme case in explicit PDT tying did not 

generate good results in comparison with the 1.8% absolute word accuracy improvement 

in [24]. This may be due to the fact that our task is speaker dependent therefore less 

pronunciation variations appeared in the speech data.  

We also include the baseline and the EPDT model sizes in number of tied states in 

Table 4.4, where the EPDTs used the same decision tree construction thresholds in 

likelihood gain and data count as the baseline. The sizes for the two extreme cases of the 
                                                 

2 The average word accuracy is already weighted by the word counts for each doctor’s data set shown in the first 

row of Table 4.4. 
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EPDT models are smaller than the baseline model. This is due to the increased effect of 

phoneme data sharing in EPDT. The 6-Tree model has a smaller size than the 3-tree 

model, although the 3-tree model is supposed to have more data sharing. This might be 

explained by the greedy process of the decision tree construction. In the 3-tree model, the 

root node has a large data diversity due to the full set of phonemes, and therefore the 

phonetic questions according to the center phone properties have better chances to be 

selected. The result is that some of the phoneme data sharing occurred in the 6-tree model 

did not happen in the 3-tree model because the phonemes were separated early at the top 

levels of the 3 trees. 

 

4.3 Experimental results for multiple acoustic models based on EPDT 
 

We combined the baseline model with the model from the 3 Single-Consonant-

Trees plus 3 Single-Vowel-Trees (6-Tree model), so that each triphone state will be tied 

to two models. The results for five doctors are shown in table 4.5. Here average and max 

are two strategies in model combining that are discussed in chapter 3. 

Table 4.5 Word accuracy obtained from combining the Baseline and the 6-Tree models  

 Dr.1 

(3248) 

Dr.2 

(5085) 

Dr.3 

(3988) 

Dr.4 

(2759) 

Dr.5 

(6421) 

Average 

Baseline 77.43% 81.26% 82.57% 74.01% 78.71% 79.23% 

2 Models Average 77.56% 81.79% 83.63% 75.39% 79.66% 80.03% 

2 Models Max 77.80% 81.95% 83.63% 75.50% 79.69% 80.13% 
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Comparing with solely using 6-tree model, this approach gives us a fairly good 

result.  The speed of the decoding engine is slightly decreased due to the increase in score 

computation time.  

 

Table 4.6 Word accuracy obtained from combining the Baseline model and the  

3-Tree model and the 6-Tree model 

 Dr.1 

(3248) 

Dr.2 

(5085) 

Dr.3 

(3988) 

Dr.4 

(2759) 

Dr.5 

(6421) 

Average 

Baseline 77.43% 81.26% 82.57% 74.01% 78.71% 79.23% 

3 Models Average 77.92% 82.22% 84.80% 75.75% 79.61% 80.44% 

3 Models Max 78.02% 82.40% 84.83% 76.08% 79.69% 80.57% 

 

We obtained absolute word accuracy gains of approximately 1.3%, and this time 

the average accuracy gain is even higher than the 2 model ensemble results of table 4.5. It 

is believed that combining hierarchical tying models that introduce different scales of 

confusions will benefit system performance, and this is what we observed here in this 

experiment. 

 

4.4 Experimental results for Cross Validation sampling  
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In this experiment we apply Cross Validation (CV) based sampling method for 

acoustic modeling and use the models in the current telehealth recognition test with the 

Tiger decoding engine, which is described in chapter 3.  

 

 

 

Table 4.7 Word accuracy obtained from the Cross Validation based ensemble acoustic 

model, Fold size = 10 

10 CV Model Dr.1 

(3248) 

Dr.2 

(5085) 

Dr.3 

(3988) 

Dr.4 

(2759) 

Dr.5 

(6421) 

Average 

 

Baseline 3
 76.69% 81.18% 83.05% 74.48% 78.74% 79.26% 

Baseline 77.43% 81.26% 82.57% 74.01% 78.71% 79.23% 

Average 79.37% 83.15% 85.26% 76.62% 81.11% 81.52% 

Max 79.37% 82.93% 85.32% 76.15% 80.94% 79.67% 

n-Best (n=5)  79.34% 83.17% 84.95% 76.44% 81.05% 81.42% 

 

 

In this experiment we obtained 2.3% absolute word accuracy gain in using the 

average combining method. This is a significant improvement in the telehealth captioning 

task. For detailed accounts on the significance test on this task, please see [27].  

                                                 

3 This is the baseline that was used in [27]. The difference in baselines may be due to different parameter settings 

used in decoding stage. 
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Several issues should be addressed. First is the baseline classifier performance as 

we discussed in chapter 3. The results for the individual 10 CV acoustic models are 

obtained from the test on Dr.2, shown in Table 4.8. 

 

 

 

Table 4.8 The effectiveness of 10-fold CV base classifiers on recognition performance  

Dr.2’s data (5085 words) Accuracy 

Baseline 81.26% 

Model 1 80.77% 

Model 2 81.00% 

Model 3 79.82% 

Model 4 80.69% 

Model 5 81.40% 

Model 6 81.08% 

Model 7 80.93% 

Model 8 81.04% 

Model 9 80.81% 

Model 10 80.96% 

10 Model Average 80.85% 

10 Model Standard Deviation 0.004119 
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Here we can observe that the performances of most of the base classifiers are lower 

than the baseline. It indicates that the training data size and coverage is one of the key 

factors in recognition accuracy. However, ensemble classifier also benefited from the 

diversity that sampling the training data have generated.   

 

 

Table 4.9 The effectiveness of different fold sizes on recognition performance 

Dr.2’s data (5085 words) 

combination method: Average 

Word Accuracy 

5 folds 82.97% 

10 folds 83.15% 

15 folds 83.09% 

20 folds 83.37% 

    

We further investigated the relationship between different fold sizes and word 

accuracy. It is believed that a larger fold size produce weaker diversity and stability, 

while small fold size has the opposite effect. However, the performance of single 

classifier produced by small fold size suffers because of a small training data set. This 

could explain why the 5 folds CV ensemble model has the lowest word accuracy.  
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Table 4.10 The effectiveness of Different mixture sizes on word accuracy performance 

Dr.2 ’s Data (5085 words) 

combination method:  

Average  

Single model 

Baseline 

10 CV 

model 

8 Mixture Models 79.80% 82.22% 

16 Mixture Models 81.26% 83.15% 

20 Mixture Models 81.20% 83.37% 

24 Mixture Models 80.12% 83.64% 

 

 

Figure 4.2 The effect of different mixture sizes on word accuracy 
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Here we can observe that mixture size affects the word accuracy differently for the 

baseline and the ensemble models. For the baseline model, the accuracy reaches the 

highest when the mixture size is equal to 16. It is because low mixture model is not 

accurate while high mixture model requires more data to train. For the proposed 10 fold 

CV model, we can observe that our approach is superior to the best baseline model, and it 

has the property that larger mixture model yields better results. This could be explained 

by the variance reduction effect of ensemble models that avoids overfitting.  

 

 

 

 

 

 

4.5 Experimental results for Random Sampling 
 

In this experiment we randomly sample the training data without replacement, 

which is described in chapter 3. Here we obtained 4 ensemble classifiers with different 

number of models and the results are shown in Table 4.11.  
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Table 4.11 Word accuracy obtained from the ensemble models  

that are generated through Random Sampling without replacement 

Dr.1 Data (2630 words)4 Average Max  

Baseline  78.37% 78.37% 

10 models 79.06% 79.02% 

20 models 79.55% 79.48% 

30 models 80.08% 79.86% 

50 models 79.89% 79.25% 

  

We can observe that this method also produced a 1.7% absolute increase in word 

accuracy over the baseline, when the ensemble size is 30. However, the performance gain 

is inferior to the proposed CV based sampling. As we have analyzed, this difference 

might be due to the bias in the sampled training data distribution introduced by the 

random sampling. The bias should be smaller when the subsets are many, when random 

sampling is used to produce infinite number of subsets, the bias will disappear.  

                                                 

4 This dataset is a subset of the Dr.1’s dataset, where the full set has 3248 words. 
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4.6 Experimental results for combining methods  
 

In this experiment we tested several combining methods that are discussed in 

chapter 3. Here 10-fold CV was used, and the mixture size was fixed to be 16 per GMD.  

Table 4.12: m-best performance 

Dr.2 Data (5085 words) Word Accuracy 

10-best (Average) 83.15% 

7-best 83.17% 

5-best 83.17% 

3-best 83.28% 

1-best (Max) 82.93% 

 

Here, in this test we can see that m = 3 may be a good choice. 

Table 4.13: m-Trimmed average performance 

10CV Model 10-Trimmed 

Average 

8-Trimmed 

Average 

6-Trimmed 

Average 

4-Trimmed 

Average 

2-Trimmed 

Average 

Dr.2 Data  

(5085 words) 

83.15% 83.21% 82.36% 82.40% 81.95% 

 

In Trimmed average test, 8 trimmed average has the best word accuracy while, 2-

Trimmed average has the lowest word accuracy.  
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Table 4.14: Maximum Likelihood Estimation performance 

Dr.2 (5085 words) MLE Average 

10CV Models 83.15% 83.15% 

3SingleTrees model + 

6SingleTrees model + 

Baseline model 

81.87% 82.22% 

 

 

It seems that MLE method didn’t perform very well in our proposed data sampling 

ensemble classifier.  The weights generated by the MLE are almost uniform. This 

suggests that the CV sampled models are equally effective.  

To summarize, the average method is the simplest combining method and it is 

robust enough to generate very good results in our data sampled acoustic model ensemble. 

 

 

4.7 Experimental results for different mixture size based ensemble 
method 

 

We trained 10 GMD acoustic models from mixture sizes 6, 8, 10, 12, 14, 16, 18, 20, 

22, to mixture size 24. The combining method includes the average as well as the MLE 

method that discussed in chapter 3.  
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Table 4.15 Hierarchical ensemble acoustic model based on 10 models from mixture 

size 6 to mixture size 24 on word accuracy test 

Dr.2’s data 

(5085 words) 

Word Accuracy 

Baseline 81.26% 

Hierarchical ensemble model, Average  82.22% 

Hierarchical ensemble model, MLE 82.24% 

 

We obtained an approximately 1% absolute word accuracy improvement 

comparing to the baseline. In MLE method, we observed that the weight of a small 

mixture sized model is always bigger than the weight of a large mixture sized model. 

This indicated that a small mixture sized model has a higher average likelihood score 

than a large mixture sized model. It is believed a large mixture sized model is usually 

more accurate than small mixture sized model. This indicated that the likelihood score 

and the classification accuracy are mismatched. Therefore, confidence measurement 

should be considered in the future implementation.  
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Chapter 5 

Conclusion 
 

In this thesis, several ensemble methods have been proposed and investigated for 

our task of telemedicine large vocabulary conversational speech recognition. The main 

contributions of this work include the following two aspects. 

1.  Explicit Decision Tree tying — by clustering center phone training data based 

on linguistic knowledge, we have obtained improved word accuracy in some cases. We 

further combined the extreme case of explicit decision tree models with the baseline 

model and the word accuracy has been improved notably. 

2. Applying data sampling method to obtain an ensemble acoustic model — a 

Cross Validation based data sampling method is used which significantly improved the 

word accuracy over the baseline model. 

Ensemble modeling is a very promising direction in ASR area. Potential future 

extensions to this work are the following: 

1. Ensemble classifier compromises the speed of decoding search. One possible 

way to address this problem is to perform model reduction by performing clustering on 

base classifiers, which has been shown effective in [27]. We can also apply parallel 

computing in the decoding engine to compute the scores simultaneously from different 

models. Or we can integrate a second pass rescoring by using the ensemble classifier with 

the first pass decoding by using the simple baseline classifier to decrease the computation 

load in the first pass. 
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2.  Ensemble acoustic models in general generates a higher average acoustic score 

per speech frame, since it matches better to input data and is more stable. Therefore the 

parameters of language model scale and word penalty that are tuned to balance language 

model and acoustic model scores should be retuned. How to successfully retune the 

parameters automatically based on the new ensemble classifier is worth investigating. 

3.  There are still many data sampling approaches, such as bootstrapping, over 

sampling, as well as discriminative boosting or ada-boosting methods that are worth 

investigating on our task as well as on other ASR tasks. 
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