MAP-GUIDED HYPERSPECTRAL IMAGE SUPERPIXEL SEGMENTATION
USING SEMI-SUPERVISED PARTIAL MEMBERSHIP
LATENT DIRICHLET ALLOCATION

A Thesis presented to
the Faculty of the Graduate School
at the University of Missouri

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
HAO SUN
Dr. Alina Zare, Thesis Advisor
December 2016
The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled:

MAP-GUIDED HYPERSPECTRAL IMAGE SUPERPIXEL SEGMENTATION USING SEMI-SUPERVISED PARTIAL MEMBERSHIP LATENT DIRICHLET ALLOCATION

presented by Hao Sun,
a candidate for the degree of Master of Science and hereby certify that, in their opinion, it is worthy of acceptance.

__
Dr. Alina Zare

__
Dr. Zhihai He

__
Dr. Junwu Tu
ACKNOWLEDGMENTS

I sincerely want to thank Dr. Alina Zare as my advisor, for her patient guidance and full support during my master research. I also want to thank my master thesis committee Dr. Zhihai He and Dr. Junwu Tu for all their good suggestions during the defense.

I also really appreciate the patient discussions and suggestions from my lab-mates especially Changzhe Jiao, Chao Chen and Sheng Zou.

My biggest motivation to finish my graduate studies is from my parents and girlfriend. They deserve the most sincere thanks.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii
LIST OF TABLES .. v
LIST OF FIGURES .. vi
ABSTRACT ... viii

CHAPTER

1 Introduction ... 1
 1.1 Hyperspectral Imaging ... 1
 1.2 Problem Statement .. 4
2 Literature Review .. 7
 2.1 Hyperspectral Unmixing Algorithms 7
 2.1.1 Pure Pixel-Based Endmember Extraction Method 8
 2.1.2 Minimum Volume-Based Spectral Unmixing Method 9
 2.1.3 Sparse Endmember Estimation Method 11
 2.1.4 Semi-Supervised Partial Membership Latent Dirichlet Allocation 13
 2.2 Hyperspectral Image Segmentation Algorithms 17
 2.2.1 Working in the spatial domain 17
 2.2.2 Working in the spectral domain 20
 2.2.3 Combining spatial-based and spectral-based segmentation 24
 2.3 Cluster Validity .. 32
2.3.1 The Dunn and Dunn-like Indices ... 32
2.3.2 Davies-Bouldin Index ... 33
2.3.3 Silhouette Index ... 35

3 Proposed Methods ... 37
 3.1 Methodology ... 37
 3.2 Initial Superpixel Segmentation Based On Map-Guided Hyperspectral SLIC 38
 3.3 Hyperspectral Unmixin Based On Semi-Supervised PM-LDA 44
 3.4 Superpixel Segmentation Based On Proportion Maps 46
 3.5 Evaluation ... 47

4 Experiment ... 50
 4.1 HySens Pavia University Data ... 50
 4.1.1 Data Set Description .. 50
 4.1.2 Superpixel Segmentation Results 51
 4.2 MUUFL Gulfport Hyperspectral Data 65
 4.2.1 Data Set Description .. 65
 4.2.2 Superpixel Segmentation Results 66

5 Conclusion and Future Work ... 77

BIBLIOGRAPHY ... 79
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Pavia University</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Modified Dunn, Davies-Bouldin indices on Pavia University</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Pavia University when change parameter k</td>
<td>57</td>
</tr>
<tr>
<td>4.4 Modified Dunn, Davies-Bouldin indices on Pavia University and standard deviation on Pavia University when change parameter k</td>
<td>58</td>
</tr>
<tr>
<td>4.5 Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Gulfport</td>
<td>70</td>
</tr>
<tr>
<td>4.6 Modified Dunn, Davies-Bouldin indices and standard deviation on Gulfport</td>
<td>70</td>
</tr>
<tr>
<td>4.7 Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Gulfport when change parameter k</td>
<td>72</td>
</tr>
<tr>
<td>4.8 Modified Dunn, Davies-Bouldin indices and standard deviation on Gulfport when change parameter k</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Pavia University data set [3] (left: RGB images; right: reflectance from all wavelengths)</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Graphical model of PM-LDA</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>The Flowchart of Proposed Method</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>OpenStreetMap on Pavia University</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Nodes and Ways from OpenStreetMap on Pavia University</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Overlap OpenStreetMap information with the image of Pavia University</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>RGB Image of Pavia University</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Superpixels on Pavia University</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Estimated proportion maps using semi-supervised PM-LDA on Pavia University</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Superpixel Segmentation results on Pavia University</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Zoom in to painted metal sheets area on superpixel segmentation results</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Zoom in to grey building area on superpixel segmentation results</td>
<td>63</td>
</tr>
</tbody>
</table>
4.7 Superpixel segmentation results on Pavia University when change parameter k 64
4.8 RGB Image of Gulfport Data .. 65
4.9 Superpixels on Gulfport ... 66
4.10 Estimated proportion maps for semi-supervised PM-LDA on Gulfport . . . 67
4.11 Superpixel Segmentation on Gulfport with 6 algorithms 73
4.12 Zoom in to the red roof building area on superpixel segmentation results . 74
4.13 Zoom in to another red roof building area on superpixel segmentation results 75
4.14 Superpixel segmentation results on Gulfport when change parameter k . . . 76
ABSTRACT

Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these regular superpixel segmentation algorithms often do not perform well in hyperspectral imagery. Although there are some authors who have modified some regular superpixel segmentation algorithms to fit the hyperspectral image, many still underperform on complex data.

In this thesis, to solve this problem, we introduce a hyperspectral unmixing based superpixel segmentation that leverages map information. We call this approach map-guided semi-supervised PM-LDA superpixel segmentation. The approach uses auxiliary map information to guide segmentation. The approach also leverages spectral unmixing results to provide improved results compared with segmentation based on raw data.

We test our proposed method on two real hyperspectral data, University of Pavia and MUUFL Gulfport Hyperspectral Data. In these experiments, our proposed method achieves better results compared to other state-of-the-art algorithms. We also develop new cluster validity metrics to evaluate the results.
Chapter 1

Introduction

Many machine learning algorithms have been proposed and applied to hyperspectral imagery. In this thesis, hyperspectral image superpixel segmentation problems are developed. Superpixel segmentation is often used as a preprocessing step for machine learning method.

1.1 Hyperspectral Imaging

Spectral imaging belongs to a domain of spectroscopy and photography, which refers to collecting and processing spectral information over a range of the electromagnetic spectrum. In conventional photography, an image is captured by measuring reflectance on three wavelengths, which are red, green and blue. In spectral imagery, each pixel has its reflectance captured on hundreds of narrow contiguous wavelengths bands. The information from all wavelengths bands can be used to do analysis tasks on the scene, which may be capable with the human eyes or standard RGB imagery.

Hyperspectral and multispectral are two categories in spectral imaging. Hyperspectral
images (HSI) have more bands (often, hundreds) and a higher spectral resolution when compared to multispectral images. Hyperspectral images are often captured by imaging spectrometers, such as HYDICE (Hyperspectral Digital Imagery Collection Experiment) [1] and NASA JPL’s AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) [2].

In HSI, hyperspectral sensors collect radiance values from a scene across many wavelengths of the electromagnetic spectrum, and these values are organized into planes forming a three dimensional data cube. Every element in this cube represents the reflectance or radiance values at a particular wavelength at a pixel location. Each spectral vector corresponds to the reflectance value at a particular pixel across all spectral wavelengths. Fig 1.1 illustrates the concept of hyperspectral imaging.

![Figure 1.1: Pavia University data set [3] (left: RGB images; right: reflectance from all wavelengths)](image)
HSI has been used for applications as varied as space exploration [4, 5], geology and medical image analysis [6, 7], archeology [8, 9].

The analysis of hyperspectral images often consists of endmember estimation and hyperspectral unmixing [10]. Endmember estimation aims at estimating the pure spectral signatures of materials, which are also called endmembers in the image [11]. It is assumed that each pixel in the hyperspectral image is combined by the spectral signatures of different endmembers weighted by corresponding abundances (also called proportions). With this assumption, hyperspectral unmixing here aims at estimation the proportion of each endmember for each pixel.

Hyperspectral unmixing depends on the assumption of a mixing model which can be categorized into two ways [12, 13]: linear mixing model and non-linear mixing model.

Singer first applied the linear mixing model (LMM) when the scale of mixing is macroscopic and the incident light only interacts with one material [14]. Assuming the scattering of light between different endmembers can be ignored, the reflectance value captured by the sensor is the linear combination of the spectral signature of every endmember with its corresponding proportion values respectively. This means each pixel value in the hyperspectral image is the convex combination of endmembers and proportions. LMM model can be presented mathematically as:

\[x_i = \sum_{k=1}^{M} p_{ik} e_k + \epsilon_i, \quad i = 1, \ldots, N, \]

(1.1)

where \(x_i \) is the spectral measurement at pixel \(i \), \(N \) is the total number of pixels, \(M \) is the number of endmembers in the image, \(p_{ik} \) is the proportion of endmember \(k \) at pixel \(i \), \(e_k \) is the \(k^{th} \) endmember and \(\epsilon_i \) is the error term for pixel \(i \). Under this model, two constraints (non-negative and sum-to-one) for the proportion are assumed:
\[p_{ik} \geq 0, k = 1, \ldots, M \] (1.2)

\[\sum_{k=1}^{M} p_{ik} = 1. \] (1.3)

The LMM assumes that all pixels in the image are included in the convex hull. There are many unmixing methods in the literature, including geometrical, statistical, sparse regression-based and spatial-spectral contextual information-based approaches which were reviewed for hyperspectral endmember extraction and unmixing under the linear mixing model [13, 15].

In a more realistic situation, uneven scattering of light between different materials could be captured by the sensor. In this case, non-linear mixing models are more appropriate. The non-linear interaction occurs between multiple layers which the radiation light will be reflected from different materials bouncing from to another materials before it is received by the sensor. On the other hand, there can be intimate interactions when the surface is mixed homogeneously and the interactions of light will be reflected at a molecular level [15].

The work proposed here assumes the LMM.

1.2 Problem Statement

Image segmentation is a computer vision task which aims at partitioning an image into homogenous regions or semantically meaningful regions without crossing edges or sharp contours in the image. There are many state-of-the-art image segmentation algorithms.
Most of them have been developed for and only applied to gray scale or RGB images.

A huge amount of hyperspectral data will be collected by the new generation of hyperspectral sensors. Many fields of knowledge will benefit the potential applications of hyperspectral imagery. Applying most traditional image processing method to HSI will be a big challenge due to the increased dimensionality of the data.

Often, to perform the segmentation of a hyperspectral image, dimension reduction is applied, both for reducing the influence of noise and accelerating the segmentation algorithm. Principal component analysis (PCA) based methods have been proposed and widely applied in hyperspectral image segmentation algorithms [16]. The components with significant variance are selected as the features during the segmentation process. However, there are two problems for a PCA-based approach. The first one is determining the number of components is not easy. The reason for this is the variance of the useful components could be similar with the variance of the noise. Another problem is that the components obtained by PCA do not necessarily correspond to any physical meaning. The components returned by PCA could be noisy. An alternative approach to reduce the dimensionality is to use the proportion maps (also called abundance maps). The proportion maps, which are obtained from hyperspectral unmixing, contain the chemical species present in the image [17].

Many unsupervised unmixing algorithms, like vertex component analysis (VCA) [18] and Sparsity Promoting Iterative Constraint Endmembers (SPICE) [19], can be applied to obtain the abundance maps. Also, many state-of-the-art supervised hyperspectral unmixing methods reviewed in [20] rely on the prior knowledge for endmember signatures, either from spectral library or an endmember extraction algorithm. In this case, the hyperspectral unmixing performance is highly impacted by the spectral library or endmember extraction
method selected. However, the amount of reference information is generally limited in practice.

In this thesis, we propose to use a hyperspectral unmixing algorithm called Semi-supervised PM-LDA to obtain the proportion maps of endmembers. A few limited tags extracted from the crowd-sourced media OpenStreetMap can help us to guide the unmixing process and improve results. Using the proportion maps as a reduced dimensionality representation of the imagery, we then perform superpixel segmentation. The details will be discussed in Chapter 3.
Chapter 2

Literature Review

This chapter provides a review of some existing hyperspectral unmixing methods and hyperspectral image segmentation algorithms.

2.1 Hyperspectral Unmixing Algorithms

This section briefly reviews some existing hyperspectral unmixing methods. The aim of unmixing is to estimate the pure spectral signature of every endmember and the proportion values for each pixel. To achieve this, there are generally three categories methods: pure pixel-based endmember extraction methods, minimum volume-based spectral unmixing methods and sparse endmember estimation methods. A representative unmixing algorithm for each method will be discussed in this section. We also will discuss a hyperspectral unmixing algorithm called Partial membership latent Dirichlet allocation (PM-LDA) [21]. We will make a use of extension of this algorithm in Chapter 3 for our proposed method to perform unmixing.
2.1.1 Pure Pixel-Based Endmember Extraction Method

Pure pixel-based endmember extraction methods assume that at least one pixel existing in the image is a pure example of each endmember. Algorithms of this type rely on the fact that endmembers in the hyperspectral image can be detected without performing spectral unmixing. Some representative algorithms following the assumption include Pixel Purity Index (PPT)[22], Iterative Error Analysis (IEA)[23], N-FINDR [24] and Vertex Component Analysis (VCA) [18]. VCA is a very widely used approach and have been applied to perform unmixing for hyperspectral images. It is reviewed in this section as a representative algorithm.

VCA assumes the existence of pure pixels for every endmember in the hyperspectral images. This algorithm exploits two facts. The first one is the endmembers are presented as the vertices of a simplex. The second one is the affine transformation of a simplex is still a simplex.

Assuming the linear mixing model for a hyperspectral image, the hyperspectral data is modeled by a convex cone. The projective projection of the convex cone onto a properly chosen hyperplane is a simplex with vertices [18]. Each pixel in the image is projected onto the plane on random direction. In the first iteration, the pixel with the biggest projection is chosen as the first endmember. After identifying the first one, the remaining endmembers are identified by iteratively projecting the data onto a direction orthogonal to the subspace spanned by the endmember determined in the last iteration [25].

The new endmember is identified as the pixel which corresponds to the extreme of the projection. VCA algorithm will iterate until the number of endmembers is exhausted [18]. After all endmembers’ signatures are obtained, least squares optimization [26] can be applied to estimate the proportion maps for all endmembers.
2.1.2 Minimum Volume-Based Spectral Unmixing Method

Other methods to achieve the unmixing process are the minimum volume-based spectral unmixing methods. They assume the endmember matrix with the enclosed volume is minimized based on the non-negative and sum-to-one proportion constraints mentioned in Chapter 1.

Minimum volume-based spectral unmixing methods do not assume the existence of pure pixels in the image, and they are performed based on optimization. Iterated constraint endmembers (ICE) is a well established approach of this type. ICE is an optimization-based method that tries to minimize the objective function in order to estimate the signatures of endmembers and the corresponding proportion maps [27].

The ICE algorithm optimizes of the Residual Sum of Squared (RSS), which is a measure of discrepancy between the input data and the estimated signatures of the endmembers and the corresponding proportions based on the linear mixing model. It is given below:

\[
RSS = \sum_{i=1}^{N} (x_i - \sum_{k=1}^{M} p_{ik} e_k)^T (x_i - \sum_{k=1}^{M} p_{ik} e_k). \tag{2.1}
\]

Here \(x\) is the pixel value in the image, \(N\) is the number of total data points, \(M\) is the number of the endmembers and \(p_{ik}\) is the proportion of the \(k^{th}\) endmember \(e_k\) at \(i^{th}\) pixel [28].

The sum of squared distance (SSD) term is used in the ICE’s objective function to constrain the size of the simplex.

\[
SSD = \sum_{k=1}^{M-1} \sum_{l=k+1}^{M} (e_k - e_l)^T (e_k - e_l). \tag{2.2}
\]

After the combination of RSS and SSD, the objective function for ICE algorithm is represented as:
\[RSS_{\text{reg}} = (1 - \mu) \frac{RSS}{N} + \mu V, \]

(2.3)

where \(\mu \) is a regularization parameter which trades off the above two terms in the equations and the \(V \) here is the sum of variance across the bands of the endmember vertices which can be represented as:

\[V = \frac{SSD}{M} (M - 1). \]

(2.4)

The range of the regularization parameter \(\mu \) is between 0 and 1; it has a significant influence on the estimation. When \(\mu = 0 \), the optimization problem is ill-defined, and when \(\mu = 1 \), all estimated endmembers collapse to a single point close to the mean of the data.

The ICE algorithm performs an iterative process for minimizing both endmembers and the proportions for all pixels in the image. Endmembers are selected randomly in the image in the first iteration. A separate minimization of all \(N \) terms is used to estimate the proportion maps. Each minimization is a quadratic programming problem. Endmembers are estimated after solving the proportion estimation by the equations given below:

\[e_t = (P^T P + \lambda (I_M - \frac{1 \times 1^T}{M}))^{-1} P^T x_t, \]

(2.5)

where \(e_t \) is the signature of the endmember vector values in the \(t^{th} \) band, \(P \) is the proportion matrix with the size as \(N \times M \), \(I_M \) is the \(M \times M \) identity matrix, \(1 \) is the one-vector with size as \(M \), and \(x_t \) is the pixel value in the image data [19]. Here \(\lambda \) is given by

\[\lambda = \frac{N \mu}{(M-1)(1-\mu)}. \]
2.1.3 Sparse Endmember Estimation Method

Many hyperspectral unmixing methods require a number of endmembers in the image as the input. However, it is a big challenge to estimate or choose the number of endmembers for hyperspectral images. If the number of endmembers is set to a value smaller than the true value, then some signatures we learn will be mixed together or some endmembers will be missed. If the number is set to a value bigger than the true number, then the endmember estimation algorithm may return unnecessary signatures that do not correspond to any physically relevant materials. Sparse endmember estimation methods have been developed to attempt to address these situations.

One algorithm that belongs to this area is the sparsity promoting iterative constrained endmembers (SPICE) algorithm proposed by Zare et al [19]. The SPICE algorithm is an extension of ICE algorithm we mentioned before. Based on the objective function proposed in ICE algorithm, a sparsity promoting term is added to help prune the unnecessary endmembers [19]. The sparsity promoting term (SPT) is represented as:

\[
SPT = \sum_{k=1}^{M} \gamma_k \sum_{i=1}^{N} p_{ik},
\]

(2.6)

where \(\gamma_k\) is given by:

\[
\gamma_k = \frac{\Gamma}{\sum_{i=1}^{N} p_{ik}^{old}},
\]

(2.7)

where \(N\) is the number of total data points, \(M\) is the number of the endmembers, \(p_{ik}\) is the proportion of the \(k^{th}\) endmember \(e_k\) at \(i^{th}\) pixel, \(p_{ik}^{old}\) is the proportion value in last iteration and \(\Gamma\) is a constant parameter which determines the degree of which the proportions are driven to 0. The proportion values of unnecessary endmembers are driven to 0 due to the
sparsity term. Thus, the the endmembers with the corresponding proportion values are 0 will be pruned, then the sparse set of endmember is formed.

The objective function is combined by the SPT term and the objective function from ICE algorithm which is given by:

\[RSS_{reg} = (1 - \mu) \frac{RSS}{N} + \mu V + SPT. \]

The same iterative processes are applied in the SPICE algorithm to estimate the endmembers and the corresponding proportion values. After the signatures of endmembers are estimated, the proportion maps can be achieved by the least squares optimization by using the quadratic programming method.

Another representative method is Sparse Endmember Extraction and Demixing which was proposed in [29]. Each data point \(x_i \) is assigned a weight, and the data points with higher weights are chosen as the potential endmembers. The optimization function is given as:

\[w_i = \arg \min_{\tilde{w}} \|x_i - \sum_{j=1}^{n} \tilde{w}_j x_j \|^2_2 + \gamma_i \|\tilde{w}\|_0, \]

subject to the constraints as:

\[\tilde{w}_j \geq 0, \tilde{w}_i = 0. \]

Here \(w_{ij} \) represents the weight for the corresponding pixel, \(n \) is the number of data points. The first term in the objective function refers to the reconstruction error term, and the second one is the sparse penalty term. \(\gamma_i \) is the parameter weights these two terms. Higher value of \(\gamma_i \) will result in more sparse solution [30].

Data points with weights as zero are pruned, and the remaining points are sorted based
on the relation \preceq_0, \preceq_2. $x_i \preceq_0 x_j$ is given when $\|w_{.,i}\|_{l_0} \leq \|w_{.,j}\|_{l_0}$ and $x_i \preceq_2 x_j$ is given when $\|w_{.,i}\|_{l_0} \leq \|w_{.,i}\|_{l_0}$.

Two new indices r^0_i, r^2_i will be created by these two relations. The r^0_i index ranks the pixel vector based on the number of times a particular vector is represented by the remaining element of x_i. The r^2_i index indicates the importance of x_i in the representation. Thus, the final list is created and the endmember set is given by the highest rankings [30]. The proportion matrix α_i is estimated by:

$$\alpha_{i,..} = \arg\min_{\alpha} \|x_i - \sum_{j=1}^{s} \tilde{\alpha}_j e_j\|_{l_2}^2 + \beta\|\tilde{\alpha}\|_{l_1},$$

(2.11)

where e_j is the signature of j-th endmember, s is the number of endmembers, β_i is the trade-off parameter and the equation subjects to the constraints as:

$$\tilde{\alpha}_j \geq 0, \sum_{j=1}^{s} \tilde{\alpha}_i \approx 1.$$

(2.12)

2.1.4 Semi-Supervised Partial Membership Latent Dirichlet Allocation

In this work, we use Partial Membership Latent Dirichlet Allocation (PM-LDA) [21] to unmix our HSI data. An overview of PM-LDA is provided in this section.

PM-LDA is an extension of Latent Dirichlet Allocation (LDA) modeling in which the words have partial membership in all available topics [31]. The PM-LDA model is a hierarchical Bayesian model in which data is organized at two levels: the word level and the document level, which is illustrated in Fig 2.1.

In PM-LDA model, the random variable associated with a data point is assumed to be
distributed according to several topics with a continuous partial membership in each topic. Mathematically, PM-LDA model can be represented as:

\[
p(\pi^d, s^d, z^d_n, x^d_n | \alpha, \beta) = p(\pi^d | \alpha)p(s^d | \lambda)p(z^d_n | \pi^d, s^d)\prod_{k=1}^{K} p_k(x^d_n | \beta_k)z^d_{nk}^{x^d_n}
\]

(2.13)

where \(x^d_n\) is the \(n\)-th word in document \(d\), \(z^d_n\) is the partial membership vector of \(x^d_n\), \(\pi^d \sim \text{Dir}(\alpha)\) and \(s^d \sim \exp(\lambda)\) are the topic proportion and the level of topic mixing in document \(d\), respectively. The parameter \(\alpha\) gives the topic mixing across a document, and the parameter \(\lambda\) controls how similar the partial membership vector of each word is expected to be the topic distribution of a document.

Given hyperparameters \(\Psi = \{\alpha, \lambda\}\) and the data set (which has been partitioned into
documents), $X = \{X^1, X^2, \ldots, X^D\}$, the goal of parameter estimation is to estimate the topic proportion of each document, π^d, the topic mixing level in each document, s^d, the partial memberships of each word in each topic, z_{dn}^d, and the parameters defining the probability distribution of each topic, β_k. This is done using an MCMC sampler [32].

The specific distribution forms chosen in PM-LDA model are:

\[
p(\pi^d|\alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} (\pi_{dk})^{(\alpha_k-1)} \tag{2.14}
\]

\[
p(s^d|\lambda) = \lambda e^{-\lambda s^d} \tag{2.15}
\]

\[
p(z_{dn}^d|\pi^d, s^d) = \frac{\Gamma\left(\sum_{k=1}^{K} s_{dn}\pi_{dk}\right)}{\prod_{k=1}^{K} \Gamma(s_{dn}\pi_{dk})} \prod_{k=1}^{K} (z_{dnk})^{(s_{dn}\pi_{dk}-1)} \tag{2.16}
\]

An extension to PM-LDA, the semi-supervised PM-LDA has been proposed in [33]. For semi-supervised PM-LDA, the topic proportion for each document is drawn from a Dirichlet distribution with hyperparameter α. To impose supervision, the author proposes to draw topic proportion from the product of original distribution and a binary endmember label vector, followed by normalization for each pixel [33]. By applying the label vector, the candidate topic proportion vector is restricted to have nonzero entries on the supervised endmembers. The change of target proportion impacts the candidate topic membership (proportions) for each pixel because topic membership is drawn from the Dirichlet distribution of which parameter is the product of scaling factor and topic proportion. Therefore, the topic membership is also confined within supervised endmembers for which the superpixel belongs.

Algorithm 1 summarizes a Metropolis-within-Gibbs sampler to perform parameter estimation for semi-supervised PM-LDA [33].
Algorithm 1 Semi-Supervised PM-LDA [33]

Input: A corpus D, the number of topics K, hyperparameters $\Psi = \{\alpha, \lambda\}$, and the number of iterations T

Output: Collection of all samples: topic proportions $\Pi(t)$, scaling factors $S(t)$, membership vectors $M(t)$, topic component parameters $\beta(t)$

1: for $t = 1 : T$ do
2: Generate topic prior τ: The size of τ is K by D, τ_{kd} is labeled as 1 if topic k is found in document d; otherwise, it is labeled as 0.
3: for $d = 1 : D$ do
4: Sample π^d: Draw candidate: $\pi^\dagger \sim \tau^d \text{Dir}(\alpha)$
 Accept candidate with probability:
 $$a_\pi = \min \left\{ 1, \frac{p(\pi^\dagger, s(t-1), Z(t-1), X|\Psi)p(\pi(t-1)|\alpha)}{p(\pi(t-1), s(t-1), Z(t-1), X|\Psi)p(\pi(t-1)|\alpha)} \right\}$$
5: Sample s^d: Draw candidate: $s^\dagger \sim \exp(\lambda)$
 Accept candidate with probability:
 $$a_s = \min \left\{ 1, \frac{p(\pi(t-1), s^\dagger, Z^{(t-1)}, X|\Psi)p(s(t-1)|\lambda)}{p(\pi(t-1), s(t-1), Z^{(t-1)}, X|\Psi)p(s(t-1)|\lambda)} \right\}$$
6: for $n = 1 : N^d$ do
7: Sample z^d_n: Draw candidate: $z^\dagger_n \sim \text{Dir}(1_K)$
 Accept candidate with probability:
 $$a_z = \min \left\{ 1, \frac{p(\pi(t), s^\dagger_n, Z_n^{(t)}, X_n|\Psi)}{p(\pi(t), s(t), Z_n^{(t)}, X_n|\Psi)} \right\}$$
8: end for
9: end for
10: for $k = 1 : K$ do
11: Sample μ_k: Draw proposal: $\mu^\dagger_k \sim \mathcal{N}(\cdot|\mu_D, \Sigma_D)$
 μ_D and Σ_D are mean and covariance of the data
 Accept candidate with probability:
 $$a_k = \min \left\{ 1, \frac{p(\Pi(t), S(t), M(t), D|\mu^\dagger_k)}{p(\Pi(t), S(t), M(t), D|\mu_k(t-1))} \mathcal{N}(\mu_k(t-1)|\mu_D, \Sigma_D) \right\}$$
12: end for
13: Sample covariance matrices $\Sigma = \sigma^2 I$:
 Draw candidate from: $\sigma^2 \sim \text{Unif}(0, u)$
 with $u = \frac{1}{2} \left\{ \max_{x_n} d^2(x_n - \mu_D) - \min_{x_n} d^2(x_n - \mu_D) \right\}$
 Accept candidate with probability:
 $$a_\Sigma = \min \left\{ 1, \frac{p(\Pi(t), S(t), M(t), D|\Sigma \dagger)}{p(\Pi(t), S(t), M(t), D|\Sigma(t-1))} \right\}.$$
14: end for
2.2 Hyperspectral Image Segmentation Algorithms

The statistical analysis of hyperspectral image normally starts with taking measures on each pixel independently or large segmented areas that associated with one scene feature. For pixel level process, the results are sensitive to the instrument noise and the variability within class. For the segment level process, image segmentation can help reduce the noise and variability. However, the segmentation is difficult to perform automatically. In this section, we will summary a few existing hyperspectral image segmentation algorithms, and these techniques can be grouped into three ways: segmentation working in the spatial domain, segmentation working in the spectral domain and combining spatial-based and spectral-based segmentation [34].

2.2.1 Working in the spatial domain

The algorithms working in this domain try to identify spatially connected pixel sets or regions. Some methods like watershed transformation [35] are extended into hyperspectral area.

Segmentation of hyperspectral images based on watershed transformation

The watershed segmentation was first introduced in 1979 by Beucher and Lantuejoul [36] which has been widely used for color images [37]. The image is treated as a topographic relief and divided into several catchment basins in which each is associated with a minimum in the image. The transformation normally starts with the gradient function of the image, and the gradient values on the edge between the objects and the minimum will be higher. Then we can use the edges to partition the whole image into different “homo-
geneous” regions. The results returned by the watershed algorithm are normally several oversegmentation regions and watershed pixels, which are located on the edges between each region. Some post-processing can be used to generate the fine partition, like merging the neighboring regions.

This method is hard to perform on hyperspectral images that are composed of hundreds of spectral channels. Watershed transformation needs an input of the gradient that has to be a scalar function. When we try to perform this on hyperspectral images, information from all bands should be considered. One scheme of performing watershed transformation on hyperspectral images is proposed in [38].

The general steps to process the watershed transformation on hyperspectral images are: (1) feature extractions; (2) computing the gradient; (3) going through the regular watershed to return a segmentation map.

Let us assume a hyperspectral image have B bands, and is composed of n pixel vectors $\mathbf{x} = \mathbf{x}_j \in \mathbb{R}^B$, $j = 1, 2, ..., n$. The B bands can be denoted by \mathbf{x}_λ, $\lambda = 1, 2, ..., B$.

Before computing the gradient, feature extraction is performed on the original image. This process can be done by one of the transformation like the principal component analysis (PCA) [39], independent component analysis (ICA) [40]. The aim of this step is to reduce the dimensionality that converts the original image into a one-band image and keeps most information to partition the image.

If the result of the dimensionality reduction can obtain a good distinguishing ability, then we can perform the regular watershed algorithm to get the segmentation. However, keeping more bands can carry more information to help the partition. We can still have a multi-band image after the feature extraction step. To process the multi-band image, there are several different methods, which can be grouped into the following ways.
1. The first way is to compute a vectorial gradient. Vectorial gradients measure the distance between pixel vectors, and can convert the hyperspectral image into a one-band gradient. There are several vectorial gradients, like metric-based gradient [41], color morphological gradient [42] and robust color morphological gradient [42] have been proposed.

For a pixel vector \(x_i \), denote \(\psi = [x^1_i, x^2_i, ..., x^j_i] \) as a set of \(j \) vectors which are the neighbors of \(x_i \) (assume \(\psi \) does not contain \(x_i \)). The metric-based gradient is defined as:

\[
\nabla_{MB}^{\psi,d}(x_i) = \sup_{a \in \psi} d(x_i, x^a_i) - \inf_{b \in \psi} d(x_i, x^b_i).
\]

(2.17)

Here the function \(d \) represent the distance between two vectors. Euclidean distance is one of the most widely used distances. \(x^a_i \) and \(x^b_i \) are two neighboring pixel vectors of \(x_i \).

For a pixel vector \(x_i \), denote \(X = [x^1_i, x^2_i, ..., x^j_i] \) as a set of \(j \) vectors within a structure element \(E \). The color morphological gradient (CMG) \(\nabla^{CM}_{\psi,d} \) is defined as:

\[
\nabla^{CM}_{\psi,d}(x_i) = \max_{a,b \in X} d(x^a_i, x^b_i).
\]

(2.18)

The above equation can be rewritten if \(d \) is the Euclidean distance as:

\[
\nabla^{CM}_{\psi,d}(x_i) = \max_{a,b \in X} \| d(x^a_i, x^b_i) \|_2.
\]

(2.19)

The drawback is CMG is very sensitive to outliers. To fix this problem, robust color morphological gradient (RCMG) is introduced. The difference of RCMG is removing two pixels that are furthest and computing the CMG of the remaining pixels, then repeat this process several time to make the CMG robust. By using the Euclidean distance, RCMG denoted as \(\nabla^{RCM}_{\psi,d} \) can be defined as:
\[\nabla_{\psi,d}^{RCM}(x_i) = \max_{a,b \in [X-REM_r]} \|d(x_i^a, x_i^b)\|_2, \]

(2.20)

where \(RCM_r \) is the set of \(r \) pairs of pixels removed, \(r \) is a parameter determined by the amount of noise present in the image.

After computing the vectorial gradient by either way above, watershed segmentation can be used on the gradient to get the segmentation map.

2). The second way is to compute a multidimension gradient. Consider the \(B \)-band image is composed of a set of one-band images. Each band can be computed to get a gradient by using one of the above vectorial gradient methods, such as RCMG. All \(B \) gradients are combined together into one by a linear or non-linear operator. Watershed segmentation can be performed on the combined gradient.

3) The third way is to combine watershed segmentation maps. For this method, each gradient is computed, watershed algorithm is applied to each gradient to obtain a segmentation map. These \(B \) segmentation maps will be combined into one final segmentation map.

2.2.2 Working in the spectral domain

Three image segmentation methods, including edge-based, region-based and feature clustering, are identified in [34]. The first two methods work in the spatial domain to search the discontinuities in the image and measure the similarities between different regions. The cluster-based method which works in the spectral domain aims at partitioning the input image into homogeneous sets of pixels. This method was applied to hyperspectral image segmentation in [43].
Segmentation of hyperspectral images based on partitional clustering techniques

ISODATA (Iterative Self-Organizing Data Analysis Technique Algorithm) [44] and Expectation Maximization (EM) algorithm [45] are two widely used algorithms to perform a single partition of the image data. General steps of clustering algorithms are feature extraction, similarity measure and grouping.

Feature extraction uses some transformation methods to obtain new effective features, which can be used for clustering. For a hyperspectral image, it is composed of hundreds of spectral bands, which contain much useful information. The feature extraction step here is often used to reduce the dimension of the data. Principal component analysis (PCA) [39] and independent component analysis (ICA) [40] are two of the most common used methods for dimensionality reduction.

Similarity measurement is used to qualify the similarity between pixels. To group a set of pixels into a same cluster, we assume pixels within the cluster should have similar spectral information. Several methods to perform similarity measure are introduced in [46]. One of the most common used methods is Euclidean distance between pixel pairs’ spectral values.

In the grouping step, a clustering criterion is iterative optimized based on the result of similarity measure.

Denote a hyperspectral image as n pixel vectors $X = x_i \in \mathbb{R}^B, i = 1, 2, ..., n$, here the number of spectral bands is B. On each optimization iteration j, a obtained partition is denoted as $Q_1^j, Q_2^j, ..., Q_C^j$, where a cluster c is defined as $Q^j_c = \{x^j_{i,c} \in \mathbb{R}^B, i = 1, 2, ..., m^j_c\}$. m^j_c is the number of pixels in this cluster.

1) Clustering can be performed by ISODATA algorithm. ISODATA was first introduced by Ball and Hall in [44]. It firstly randomly partitions pixel vectors into several clusters as
initialization. Then at each iteration, it reassigns pixel vectors to clusters, which make the clustering criterion reduced. The process is performed until it converges [39]. The most common used criterion is the squared-error criterion which is defined as:

$$ e^2(X, \gamma) = \sum_{c=1}^{C} \sum_{i=1}^{m_c} \| x_{i,c} - \mu_c \|^2. \quad (2.21) $$

Here a clustering γ of X into C clusters is computed and μ_c is the centroid of the cluster c [43].

When ISODATA is applied for hyperspectral images, the feature vector is represented by the spectral vector. It has been used in classifying hyperspectral images in [47, 48].

2) Clustering also can be performed by the EM algorithm. EM algorithm was first introduced in [45] which assumes a statistical model to characterize the data. The aim is to estimate the parameters of the distribution that data is drawn from. Multivariate Gaussian probability distribution is most often used, which the pixel can be modeled as:

$$ p(x) = \sum_{c=1}^{C} \omega_c \phi_c(x; \mu_c, \Sigma_c). \quad (2.22) $$

Here $\omega_c \in [0, 1]$ is the mixing weight with the constraint as $\sum_{c=1}^{C} \omega_c = 1$. $\phi(\mu, \Sigma)$ is the multivariate Gaussian density with mean as μ and covariance matrix as Σ which is defined as:

$$ \phi(\mu, \sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp\left(-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c)\right). \quad (2.23) $$

EM algorithm is performed to estimate parameters $\Psi = C, \omega_c, \mu_c, \Sigma_c; c = 1, \ldots, C$ [49]. The requirement of EM algorithm is feature vectors X after dimension reduction and an upper bound cluster numbers C_{max}.
To perform the initialization, set \(C = C_{\text{max}} \), determine the first partition \(Q_0^c, c = 1, 2, ..., C \). Randomly choose \(C \) pixel as cluster centers and assign the rest to the clusters based on the smallest Euclidean distance to the cluster center.

For each optimization iteration \(j \), \(\mu_c \) and \(\Sigma_c \) for \(c = 1, 2, ..., C \) are estimated by component-wise Maximum Likelihood estimates which is defined as:

\[
\mu^j_c = \frac{1}{m^j_c} \sum_{i=1}^{m^j_c-1} x^j_{i,c} \tag{2.24}
\]

\[
\Sigma^j_c = \frac{1}{m^j_c} \sum_{i=1}^{m^j_c-1} (x^j_{i,c} - \mu^j_{i,c})(x^j_{i,c} - \mu^j_{i,c})^T \tag{2.25}
\]

\[
\omega^j_c = \frac{m^j_c-1}{n}. \tag{2.26}
\]

After the parameters are estimated, assign each pixel in \(X \) to one cluster according to the maximum a posterior probability criteria which is defined as:

\[
x_i \in Q_j^c : Pr(c|x_i) = \max_l Pr(l|x_i) \tag{2.27}
\]

where

\[
Pr(c|x_i) = \frac{\omega^j_c \phi_c(x_i; \mu^j_c, \Sigma^j_c)}{\sum_{c=1}^{C} \omega^j_c \phi_c(x_i; \mu^j_c, \Sigma^j_c)}. \tag{2.28}
\]

An elimination step can be performed. When \(m^j_c \) is less than the dimensionality of pixels, eliminate the cluster \(c \). The pixels assigned to the eliminated cluster will be reassign to another one in next iteration. Then continue the parameter estimation, cluster assignment and elimination until convergence criterion is achieved.
When the convergence criterion is achieved, each pixel has a label corresponding to
the cluster it is assigned. But a drawback is obvious. Because no spatial information is
used, pixels from a same cluster may not be connected. Some authors [43] have performed
a connected component algorithm [50] to the partition result. Then a good segmentation
map can be obtained.

Many other authors have also applied the partition clustering algorithm to hyperspectral
images which have been proposed in [51, 52].

2.2.3 Combining spatial-based and spectral-based segmentation

For hyperspectral image segmentation, both spectral and spatial information are very im-
portant. Many authors have proposed to combine these information together on segmenta-
tion process to improve the result [17, 38, 53, 54, 54–66].

Segmentation of hyperspectral image based on FH algorithm

The FH algorithm was first introduced by Felzenszwalb and Huttenlocher in [67]. In this
approach, RGB or grayscale images with \(n \) pixels are considered as 8-connected graph
\(G(V, E) \), where \(V = v_i^n = 1 \) represents each pixel and \(E = (v_i, v_j) \) are the edges between
each pixel and its neighbors. A weight is carried by each edge which is defined as a diver-
gence function \(d(v_i, v_j) \). The divergence function like Euclidean distance usually measures
the distance between feature vectors extracted from the original image.

FH algorithm has been extended to hyperspectral images by Thompson in [57]. They
use the spectral information to represent the feature vectors, then use Euclidean distance \(d_e \)
or spectral angle divergence(SAD) \(d_{sa} \) as divergence function which are defined as below:
\[
 d_e(v_i, v_j) = \sqrt{\sum_{\lambda} (\rho_{i\lambda} - \rho_{i\lambda})}
\]

(2.29)

\[
 d_{sa}(v_i, v_j) = \sum_{\lambda} \frac{\rho_{i\lambda} \rho_{j\lambda}}{|\rho_{i\lambda}| |\rho_{j\lambda}|}
\]

(2.30)

where \(\lambda \) is the total wavelengths, \(v_i \) and \(v_j \) are two pixels and \(\rho_{i\lambda} \) is the value of \(i \)-th spectrum at wavelength \(\lambda \).

An agglomerative clustering algorithm is used to partition the hyperspectral image into segments \(S \). Segmentation starts with each pixel represents a segment by itself, then merges neighboring segments if no boundary between them. The boundary evidence is determined in [57] which is the smallest connecting edge weight is smaller than the largest edge weight in the minimum spanning tree (MST) of either segment[58].

The maximum internal difference inside a segment \(S \) is denoted by \(Int(S) \), which is defined as:

\[
 Int(S) = \max d(v_i, v_j)
\]

\(\forall v_i \in S, v_j \in S, (v_i, v_j) \in MST(S) \),

(2.31)

where \(MST(S) \) is the minimum spanning tree of segment \(S \).

For any neighboring segments \(S_a \) and \(S_b \), \(E \) represents all connected edges, the smallest connecting edge weight is defined as:

\[
 Diff(S_a, S_b) = \min d(v_i, v_j),
\]

\(\forall v_i \in S_a, v_j \in S_b, (v_i, v_j) \in E \).

(2.32)

Two neighboring segments will not be merged when the smallest connecting weight
\(\text{Dif} \) is smaller than the minimum of either maximum internal weight. The threshold is defined below which is biased by a constant \(k \) and the inversely proportional to the segment size[58].

\[
\text{Dif}(S_a, S_b) < \min(\text{Int}(S_a) + \frac{k}{|S_a|}, \text{Int}(S_b) + \frac{k}{|S_b|}),
\]

where parameter \(k \) is used to control the smaller returned segment’s size.

Due to the instrument noise and atmospheric distortions, there are some pixels forming a few small isolated segments in the segmentation map. To overcome this problem, the final operation called “clean-up” which is merging all segments if the area is smaller than a certain threshold is applied. The segmentation map is then obtained.

Segmentation of hyperspectral image based on ultrametric contour map

Ultrametric contour map (UCM) is widely used in superpixel estimation for RGB or grayscale images [68]. Brightness, color and texture cues are extracted and used to estimate the probability of the existence of a boundary between each pixel in the image [63, 64].

The UCM algorithm have been extended to hyperspectral images and very high resolution (VHR) remote sensing images by authors in [63, 64]. Principal component analysis (PCA) is used to reduce the dimensionality and represent the hyperspectral image in a compact form, then superpixel estimation is followed.

The first step is feature extraction using oriented Gaussian derivative filters at multiple scales through all wavelength \(\lambda \):

\[
I_{local}(x, \theta) = \sum_{\lambda} \sum_{s(\lambda)} \sum_{i(\lambda)} \omega_{i(\lambda), s(\lambda)} G(x, \theta; \sigma(i(\lambda), s(\lambda))),
\]

(2.34)
where function G is the Gaussian filter, θ is the oriented angle and $\omega_{i(\lambda),s(\lambda)}$ is the weights depend on the channels and scales. With this process, local features at different orientations which integrate features from all bands are obtained [63, 64].

The second step is weighted graph construction by connecting pixels within a certain distance by the weighted edge, which was defined as:

$$W(x, y) = \exp[-\alpha \max_{z(x,y)} \max_{\theta} I_{local}(z(x,y), \theta)],$$

(2.35)

where α here is a constant and $z(x, y)$ represents any pixels lying on the line segments connecting x and y.

The third step is eigenvector computation. The top K eigenvectors $e_k(x)$ are computed based on the spectral clustering strategy.

The fourth step is gradient computation on the eigenvectors. The process is combining all information from each PCA channel into one, which is defined as:

$$I_{spectral}(x, \theta) = \sum_k \nabla_\theta(e_k(x)).$$

(2.36)

The fifth step is the linear combination of information in step 1 and step 3.

The last step is performing oriented watershed transform [63]. The image can be segmented into superpixels.

Segmentation of hyperspectral image based on the normalized cut algorithm

Many existing spectral graph algorithms have been used to segment the RGB or grayscale imagery. One of the most commonly used methods is normalized cuts algorithm, which was introduced by Shi and Malik [69]. It uses contour and texture cues to partition the
given graph recursively while minimizing the cost of the cut at the partition boundaries.

Gillis and Bowles have proposed using a joint model to combine the spectral and spatial information based on normalized cuts to perform hyperspectral images segmentation in [65].

The image is represented by a graph $G = (V, E)$ where vertices are denoted as $V = (v_1, \ldots, v_n)$ and edges are denoted as $E = e_{i,j}$ which represent the connections between vertices. All graphs are assumed to be undirected and weighted. The weight on each edge is used to measure the similarity of pixels, which is defined as:

$$
\omega_{i,j} = e^{-\omega(\rho_i, \rho_j)} \begin{cases}
e^{-\frac{d(\rho_i, \rho_j)}{\sigma}}, & d(\rho_i, \rho_j) < r \\ 0, & else \end{cases}
$$

(2.37)

where $\omega(\rho_i, \rho_j)$ is the spectral distance which is measured by the spectral angle while $d(\rho_i, \rho_j)$ is the spatial distance between pixel ρ_i and ρ_j. They are defined as:

$$
\omega(\rho_i, \rho_j) = \cos^{-1}\left(\frac{\langle \rho_i, \rho_j \rangle}{\|\rho_i\|\|\rho_j\|}\right)
$$

(2.38)

$$
d(\rho_i, \rho_j) = (i_1 - j_1)^2 + (i_2 - j_2)^2.
$$

(2.39)

where i_1, i_2 and j_1, j_2 are the coordinates of pixel ρ_i and ρ_j in the image. r and σ are user defined parameters.

The goal of the segmentation is to partition all pixels of the image into two clusters. This algorithm performs a “top-down” partition recursively until it converges. To partition a graph into two subgraphs, any edges that connect nodes in different cluster will be removed. Minimization the weights of the removed edges is used to optimize the partition. Let us
denote the two subgraphs as \(A \) and \(B \). cut is defined as the sum of all weights:

\[
cut(A, B) = \sum_{i \in A, j \in B} \omega_{i,j}. \quad (2.40)
\]

Here \(A \cup B = V \) and \(A \cap B = \emptyset \) are assumed.

To avoid the outliers, a normalization cut operation has been proposed by Shi and Malik [69] which is given as:

\[
Ncut(A, B) = \frac{\cut(A, B)}{\assoc(A)} + \frac{\cut(A, B)}{\assoc(B)},
\quad (2.41)
\]

where \(\assoc(A) \) is defined as:

\[
\assoc(A) = \cut(A, V) = \sum_{i \in A, v \in V} \omega_{i,v}. \quad (2.42)
\]

The minimization problem can be changed into solving the eigen-decomposition problem which is denoted as:

\[
Lv = \lambda Dv, \quad (2.43)
\]

where \(v \in \mathbb{R}^n \) is an indicator vector whose entries are either \(-k\) with \(k\) as a constant or 0 and subject to \(vD1 = 0 \) where \(1 \) is the n-dimensional vector with all elements as 1. \(L \) is the Laplacian matrix and \(D \) is the degree matrix. The degree of a node is defined as:

\[
deg(v_i) = \sum_j \omega_{i,j} \quad (2.44)
\]

The degree matrix \(D \) is a diagonal matrix with entries as \(d_{i,j} = deg(v_i) \) when \(i = j \) and all other parts as zero.
The Laplacian matrix is defined as:

\[L = D - A, \quad \text{(2.45)} \]

where \(A \) here is the adjacency matrix with entries as \(a_{i,j} = \omega_{i,j} \).

When we transfer the problem to the generalized eigenvalue problem \(Lv = \lambda Dv \), the eigenvector corresponding to the smallest nonzero eigenvalue can be used to partition the graph by choosing an appropriate threshold. All pixels in the image are partitioned into two clusters. Recursively partition is performed on the largest one among all segments until some stopping criterion is reached. Finally, the image is segmented.

Segmentation of hyperspectral image based on k-means algorithm

\(K \)-means clustering is a very common used method with the iterative process. Firstly, select \(k \) points as centroids for initialization, calculate the distance between each point and each centroid and assign the point to the closest centroid. Then reassign the centroid by calculating the mean in each cluster until the centroids do not change any more.

Authors in [15] have applied \(K \)-means in the hyperspectral images by combining the spectral distance and spatial distance together. Let us denote a hyperspectral image as \(n \) pixel vectors \(X = x_i \in \mathbb{R}^B, i = 1, 2, \ldots, n \), here the number of spectral bands is \(B \). The spectral distance of two pixels is defined as:

\[d_{\text{spectral}} = \sum_{\lambda=1}^{B} \| x_i(\lambda) - x_j(\lambda) \|_2^2. \quad \text{(2.46)} \]

If the \((a_i, b_i)\) and \((a_j, b_j)\) are the spatial coordinates for \(x_i \) and \(x_j \). The spatial distance of these two pixels is defined as:
\[d_{\text{spatial}} = \sqrt{(a_i - a_j)^2 + (b_i - b_j)^2}. \]

(2.47)

The combination function of these two distances is defined as:

\[d_{i,j} = d_{\text{spectral}} + md_{\text{spatial}}, \]

(2.48)

where \(m \) is the scaling factor which is used to control the importance of spatial distance.

After the distance function of two pixels is defined, segmentation result is obtained by simply going through the \(K \)-means algorithm. The detail of \(K \)-means algorithm is presented in Algorithm 2.

Algorithm 2 \(K \)-Means Algorithm

Input: data points, number of clusters\((k)\)

Output: centroids, centroid membership

1. if centroids are not initialized then
2. Randomly select \(k \) points as centroids
3. end if
4. for each cluster center do
5. Calculate the distance from each centroid to each data point
6. Assign each data point to the closest centroid
7. Recalculate centroid by calculating the mean of a cluster
8. if centroids do not change and each data point maintains centroid classification then
9. end for
10. else
11. Continue loop
12. end if
13. end for

31
2.3 Cluster Validity

After clustering or segmentation, methods used to quantitatively evaluate the result is a necessary task, and generally, it is known as cluster validity. In this section, we will discuss three well-known cluster indices to evaluate the hard clustering results from different algorithms [70].

2.3.1 The Dunn and Dunn-like Indices

Dunn index was introduced in [71]. In the Dunn index, the dissimilarity function of two different clusters C_i and C_j is defined as:

$$d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y),$$ \hspace{2cm} (2.49)

where x and y are the pixel vectors.

The diameter of the cluster C is defined as:

$$diam(C) = \max_{x, y \in C} d(x, y).$$ \hspace{2cm} (2.50)

Here the diameter is used to represent the distance between two farthest data points within the cluster C, and that is, the dispersion of this cluster.

The Dunn index with m clusters is defined as:

$$D_m = \min_{i=1,\ldots,m} \left\{ \min_{j=i+1,\ldots,m} \frac{d(C_i, C_j)}{\max_{k=1,\ldots,m} diam(C_k)} \right\}.$$ \hspace{2cm} (2.51)

From the definition, if the returned clusters are well-separated, the Dunn index should be large because the diameter of the cluster should be small and the dissimilarity of the
clusters should be large. Therefore, larger Dunn index value indicates better separated clustering results.

Another thing to notice is the Dunn index does not exhibit any trend with respect to the number of clusters. The reason for this is the maximum operation is taken with respect to the number of cluster and the maximum of D_m can be used to indicate the best partition results.

When the Dunn index is used to evaluate the clustering results, due to the high dimension of the data, the calculation is very time consuming. Also, the index value is also sensitive to noise, since outliers will significantly increase the diameter of a cluster.

There are also many Dunn-like indices that have been proposed and used to evaluate the clustering results [72, 73]. The difference between them is that they have different definitions of dissimilarity and diameter.

2.3.2 Davies-Bouldin Index

Davies-Bouldin index was proposed in [74]. Denote R_{ij} as the similarity measurement of cluster C_i and C_j, s_i as the dispersion of the cluster C_i and d_{ij} as the dissimilarity of these two clusters.

The similarity R_{ij} is required to satisfy the following conditions [74]:

1) $R_{ij} \geq 0$.
2) $R_{ij} = R_{ji}$.
3) If $s_i = 0$ and $s_j = 0$, then $R_{ij} = 0$.
4) If $s_j > s_k$ and $d_{ij} = d_{ik}$, then $R_{ij} > R_{ik}$.
5) If $s_j = s_k$ and $d_{ij} < d_{ik}$, then $R_{ij} > R_{ik}$.

We can indicate that the similarity is symmetric and nonnegative from these conditions.
The similarity function R_{ij} is defined as:

$$R_{ij} = \frac{s_i + s_j}{d_{ij}},$$ \hspace{1cm} (2.52)

while in [74], the dissimilarity function is defined as:

$$d_{ij} = \|w_i - w_j\|_2^2,$$ \hspace{1cm} (2.53)

where w_i and w_j is the representations of these two clusters, usually, mean vector is used.

The dispersion s_i is defined as:

$$s_i = \left(\frac{1}{n_i} \sum_{x \in C_i} \|x - w_i\|^2\right)^{\frac{1}{2}},$$ \hspace{1cm} (2.54)

where n_i is the number of data points in cluster C_i.

Given the above equations, the Davies-Bouldin index with respect to the cluster number m is defined as

$$DB_m = \frac{1}{m} \sum_{i=1}^{m} R_i,$$ \hspace{1cm} (2.55)

where R_i is defined as:

$$R_i = \max_{j=1, \ldots, m, j \neq i} R_{ij}, i = 1, \ldots, m.$$ \hspace{1cm} (2.56)

Based on these definitions, the Davies-Bouldin index indicates the average similarity between clusters, and the smaller value will indicate the better clustering results.

Evaluating clustering results by Davies-Bouldin index does not depend on any particular clustering algorithms. Actually, it can be used to evaluate regardless to how the
clustering algorithms work and how many clusters they generate [74].

2.3.3 Silhouette Index

The Silhouette index was proposed in [75]. Denote C_i as the cluster and x_i as the data points. For each x_i in the cluster C_i, the average distance a_i, which is the average distance between x_i and the other data points in this cluster, is defined as:

$$a_i = d_{\text{avg}}^{ps}(x_i, C_i - x_i),$$

where the function d_{avg}^{ps} is the average distance function between a data point and a cluster.

Denote b_i as the average distance between x_i and its closest neighboring cluster, b_i is defined as:

$$b_i = \min_{k=1,...,m,k \neq C_i} d_{\text{avg}}^{ps}(x_i, C_k),$$

Denote s_i as the silhouette width of a data point x_i, and s_i is defined as:

$$s_i = \frac{b_i - a_i}{\max(b_i - a_i)}.$$

It is clear that the range of s_i is $[-1, 1]$. When it is close to 1, we can indicate that b_i is much bigger than a_i, it means x_i is much closer to the cluster it belongs than its neighboring cluster. x_i is well assigned.

With the above equations, the silhouette index of a cluster is defined as:

$$S_j = \frac{1}{n_j} \sum_{i: x_i \in C_j} s_i, j = 1, ..., m,$$
where n_j is the number of data points in C_j.

Based all definitions, the global silhouette index is defined as:

$$S_m = \frac{1}{m} \sum_{j=1}^{m} S_j.$$ \hspace{1cm} (2.61)

Based on the definitions, we can indicate that the larger silhouette index value, the better the clustering result. The global silhouette shows no trends with respect to the number of clusters.
Chapter 3

Proposed Methods

In this chapter, we will introduce our proposed method for hyperspectral image superpixel segmentation. Each step of process will be discussed in detail.

3.1 Methodology

In this thesis, we proposed a map-guided hyperspectral unmixing-based superpixel segmentation algorithm. The method starts with an initialized superpixel segmentation result obtained using a modified SLIC algorithm, then using the initial superpixels, hyperspectral unmixing is performed by semi-supervised Partial Membership Latent Dirichlet Allocation (PM-LDA). Using the unmixing results, a K-means based superpixel segmentation method is proposed to generate the final superpixel segmentation. The process of the proposed method is summarized in Fig 3.1. The red parts are the initial superpixel segmentation, the green parts are unmixing process and the blue parts are the final superpixel generation process. The details will be discussed in the following sections.
3.2 Initial Superpixel Segmentation Based On Map-Guided Hyperspectral SLIC

To perform the initial superpixel segmentation, a well known superpixel algorithm Simple Linear Iterative Clustering (SLIC) [76] has been extended to work on hyperspectral images. The SLIC algorithm has been widely used in RGB or grayscale images, and it generates superpixels based on the color similarity and proximity in the image plane. SLIC performs a local clustering of pixels in 5-D space with features as L,a,b value and the coordinates
of the pixel. A Lab color space is a color-opponent space with dimensions L for lightness and a and b for the color-opponent dimensions, based on nonlinearly compressed (e.g. CIE XYZ) coordinates [77].

Some authors have proposed to use SLIC on hyperspectral images by performing dimensionality reduction of the original data in [78]. In this thesis, we also extend SLIC to hyperspectral images for superpixel segmentation. However, the difference in our method is that we use all spectral information without dimensionality reduction and combine them with the spatial information as features. The Lab features are replaced by the all bands information. Let us denote a hyperspectral image as N pixel vectors $X = x_i \in \mathbb{R}^B, i = 1, 2, ..., N$, here the number of spectral bands is B. One input for the algorithm is the desired number of superpixels K. SLIC enforces that the expected superpixel’s size and their spatial extent are approximately equal, so the approximately size of each superpixel is N/K and at every grid interval S there can be a cluster center.

The K cluster center is defined as $c_k = [x_k(1), x_k(2), ..., x_k(B), a_k, b_k]$, where (a_k, b_k) is the spatial location of pixel k. Because the approximate area of a superpixel is S^2, the search area for the pixels nearest to each cluster center can be safely assumed as $2S \times 2S$.

Our hyperspectral SLIC approach starts with sampling K cluster centers with regular space and moving them to find the lowest gradient position. Image gradients are defined as:

$$G(a, b) = \|x(a + 1, b) - x(a - 1, b + 1)\|^2 + \|x(a, b + 1) - x(a, b - 1)\|^2, \quad (3.1)$$

where $x(a, b)$ is the spectral vector corresponding to the pixel at position (a, b).

Each pixel is assigned to a nearest cluster center. After all pixels are assigned, we use the average feature vector of all pixels within the cluster to represent the new cluster.
centers. Then this process will be iteratively repeated until the convergence.

A post-process based on OpenStreetMap (OSM) [79] is performed on the segmentation map returned by hyperspectral SLIC to help us get the initial segmentation result.

OpenStreetMap is a collaborative project to create a free editable map of the world. Here we use Pavia University area as an example to show how OSM looks like in Fig 3.2.

![OpenStreetMap on Pavia University](image)

Figure 3.2: OpenStreetMap on Pavia University

From the database of OSM, we can extract a “.osm” data. After parsing the “.osm” data, we can get the information for that area like node, way, relation and tag. Here the node represents a specific point on the earth’s surface defined by its latitude and longitude and each node comprised of at least a pair of coordinates. The way here refers to an ordered list of nodes that define polylines. The ways are used to represent linear features such as buildings and roads. The relation here represents a multi-purpose data structure that documents a relationship between two or more data elements (nodes and ways). The tag here describes the meaning of the particular region. Fig 3.3 shows the nodes and ways from OSM.
With information from all these nodes and ways, objects in an area can be represented as a polygon or a line by connecting each node corresponding to that object. Since all latitude and longitude coordinates are given, affine transformation can be performed to match the latitude and longitude of the nodes with the coordinate location in the image. A few points in Fig 3.3 are manually chosen, also points with the same location in the RGB figure of Pavia are manually chosen. With these two groups of points which contain the geographical
locations and the coordinates’ information in the image, a transformation matrix can be constructed. Then all points with geographical information can be transformed into pixels with coordinates in the image. Buildings represented by polygons and roads represented by lines are constructed by the transformed coordinates. Then the image is overlapped by these polygons and lines. Fig 3.4 shows the result of this process.

Each polygon from OSM is treated as a superpixel which represents a specific region with a label. To guide the initial superpixel segmentation process, superpixels from hyperspectral SLIC which overlap with polygons from OSM are merged as one superpixel. In this thesis, we use the polygons which are labeled as buildings.

The map-guided hyperspectral SLIC is summarized in Algorithm 3
Figure 3.4: Overlap OpenStreetMap information with the image of Pavia University
Algorithm 3: Hyperspectral SLIC superpixel segmentation

Input: original hyperspectral data, desired number of clusters (superpixels) K, scaling factor m

Output: superpixels

1. Initialize cluster centers c_k by sampling pixels at regular grid steps S.
2. Perturb cluster centers in an $n \times n$ neighborhood, to the lowest gradient position.
3. repeat
4. for each cluster center c_k do
5. Calculate the spectral distance of pixel x_i and c_k over all bands λ:
 $d_{\text{spectral}} = \sum_{\lambda=1}^{B} \| x_i(\lambda) - c_k(\lambda) \|^2$
6. Calculate the spatial distance of pixel x_i and c_k:
 $d_{\text{spatial}} = \sqrt{(a x_i - a c_k)^2 + (b x_i - b c_k)^2}$ (a, b are the coordinates)
7. Assign the best matching pixels from a $2S \times 2S$ square neighborhood around the cluster center according to the spectral and spatial combination distance function:
 $d_{x_i, c_k} = d_{\text{spectral}} + m S d_{\text{spatial}}$
8. end for
9. Compute new cluster centers by taking mean operation
10. Until stopping criterion reaches.
11. Extract and parse data from OpenStreetMap
12. Use affine transformation to generate coordinates from latitude and longitude and Construct polygons and lines based these coordinates
13. for each polygon do
14. if superpixels returned from hyperspectral SLIC have overlap with this polygon then
15. Merge these superpixels into one
16. end if
17. end for

3.3 Hyperspectral Unmixing Based On Semi-Supervised PM-LDA

In this thesis, a hyperspectral image is first over-segmented into spatially-contiguous superpixels. Then hyperspectral unmixing process is followed and performed by semi-supervised PM-LDA [33].

Each superpixel in the hyperspectral image is assumed to be a document. Each end-member is treated as a topic. We assume that the topic distributions are Gaussian, then
the K topic distributions with parameters $\beta_k = \{\mu_k, \Sigma_k\}$ correspond to the K Gaussian endmember distributions. The partial membership vector for data point n in document d, z^d_n, is the proportion vector associated with the n^{th} data point in the d^{th} superpixel. The topic proportion vectors for a document, π^d, correspond to the average proportion vector for a superpixel with the mixing level s^d corresponding to how much each proportion vector in the document is likely to vary from the average proportion vector. Thus, an entire hyperspectral scene is modeled as a corpus in PM-LDA.

Given the initial superpixel segmentation, supervision is imposed by assigning an end-member label τ_j to each superpixel j. To be specific, we assume there is a probability (including zero) that superpixel j contains endmember i if $\tau_{ij} = 1$, while superpixel j does not contain endmember i if $\tau_{ij} = 0$ (with probability 1). For example, in University of Pavia dataset, we set 6 as the number of endmembers and name them as $e_1, e_2, e_3, e_4, e_5, e_6$. Endmembers are selected to be supervised if some superpixels contain these endmembers. For example, the endmember e_1 is a painted metal sheets material, it is easy to label the superpixels containing e_1 as $\tau_{1j} = 1$ and all other superpixels as $\tau_{1j} = 0$. Meanwhile, endmembers are treated as unsupervised if the pixels containing them are widely distributed over a large number of superpixels. Consider the extreme case, if the endmember prior matrix $\tau_{ij} = 1$ for all superpixels, the semi-supervised PM-LDA degraded to standard PM-LDA.

The details of semi-supervised PM-LDA are summarized in Algorithm 1 which is mentioned in Chapter 2.
3.4 Superpixel Segmentation Based On Proportion Maps

After the proportion maps are obtained using semi-supervised PM-LDA, the proportion vectors are used as the features to perform the segmentation. The K-means algorithm is a well-known clustering algorithm which was first proposed in [80]. It aims to partition several observations into K clusters in which each observation is assigned to a cluster with the nearest distance. Thus, K-means can successfully obtain the useful information from the observation and perform the segmentation on hyperspectral images. The details of K-means algorithm are explained in Algorithm 2. We apply K-means clustering to the proportion vectors obtained using semi-supervised PM-LDA.

To generate the superpixels, we propose to use connected components algorithm [81] to relabel each component as a superpixel. Here a connected component represents as a set of pixels in which each pixels is connected to all other pixels. The connected components algorithm aims to find all connected components in the image and assigns a unique label to all points in the same component. In our case, for each cluster returned by K-means algorithm, connected components algorithm is applied to relabel each connected component and produce superpixels.

However, a problem is that the results returned are not continuous. A few pixels in the vicinity of a large superpixel have the same label but are not connected to it. To enforce the connectivity, we propose to set a threshold to find the small disjoint segments and assign them with the labels of the biggest neighboring superpixel. The details of this process are summarized in Algorithm 4.
Algorithm 4 Superpixel Generation and Connectivity Enforcement Algorithm

Input: clustering results $C_1, C_2, ..., C_n$, threshold ϵ

Output: superpixels

1: for each cluster C_i do
2: Assign 1 to the pixels which are in cluster C_i, assign 0 to others
3: Use connected component algorithms to generate components
4: Assign unique labels to each components to make them superpixels
5: for each superpixel do
6: if the size of superpixel is smaller than ϵ then
7: assign it with the label of the biggest neighboring superpixel
8: end if
9: end for
10: end for

3.5 Evaluation

To evaluate the superpixel segmentation result, cluster validity is used to quantitatively show the performance of the segmentation. Three widely used cluster validity indices are reviewed in Chapter 2. We use this to quantitatively evaluate the results. However, these indices are not a perfect fit for our situation. In order to consider the superpixel case, a few changes are made based on the original Dunn index and Davies-Bouldin (DB) index. With these changes, only the dissimilarity of the neighboring superpixels is emphasized and the calculations are less time consuming.

Each superpixel obtained from our method has a major endmember in that area, while the neighboring superpixel is represented by another endmember. However, one endmember can exist in several superpixels which are not spatially connected, so the dissimilarities of these superpixel should not be enforced.

In the original Dunn index, when we calculate the dissimilarity from different clusters, we consider each pair of clusters. Assuming each superpixel as a cluster, in the modified Dunn index, the superpixel and its neighboring superpixels are only considered and
calculated. The modified Dunn index with \(m \) clusters is defined in equation 3.2.

\[
Dunn_m^{\text{modified}} = \min_{i=1,\ldots,m} \{ \min_{j=\text{neighboring}(i)} \frac{d(C_i, C_j)}{\max_{k=1,\ldots,m} \text{diam}(C_k)} \}.
\] (3.2)

Here the dissimilarity \(d(C_i, C_j) \) of two different clusters \(C_i \) and \(C_j \) and the diameter \(\text{diam}(C) \) of the cluster \(C \) are defined in equation 2.49 and equation 2.50.

The details of how to compute modified Dunn index are presented in Algorithm 5.

Algorithm 5 Modified Dunn index

Input: superpixels (clusters) \(C_1, C_2, \ldots, C_m \)

Output: modified Dunn index

1. **for** each superpixel \(C_i \) **do**
 2. Calculate diameter \(\text{diam}(C_i) \) of the superpixel \(C_i \):
 \[\text{diam}(C_i) = \max_{x,y \in C_i} d(x,y) \]
 3. Find all neighboring superpixels \(C_j \) of \(C_i \), \(j = 1, \ldots, n \)
 4. **for** each superpixel \(C_j \) **do**
 5. Calculate dissimilarity \(d(C_i, C_j) \) of two different superpixels \(C_i \) and \(C_j \):
 \[d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x,y) \]
 6. **end for**
 7. Calculate modified Dunn index:
 \[Dunn_m^{\text{modified}} = \min_{i=1,\ldots,m} \{ \min_{j=1,\ldots,n} \frac{d(C_i, C_j)}{\max_{k=1,\ldots,m} \text{diam}(C_k)} \} \]
 8. **end for**

Since the change of our modified Dunn index is considering the neighboring superpixels for each superpixel when the dissimilarity is calculated, the result can be affected by the superpixel numbers. If the image is oversegmented, the neighboring superpixels will be similar to the current one, so the dissimilarity will be small and the modified Dunn index will be small too. It means the partition result is not good.

As long as the image is not oversegmented, our modified Dunn index can evaluate the superpixel segmentation result. The larger modified Dunn index indicates that the dissimilarity between superpixels is big and the diameter within each superpixel is small, so the
result with a larger modified Dunn index has a well-separated partition.

In the original Davies-Bouldin (DB) index, when the similarity of two clusters is calculated, each pair is considered. In the modified DB index, we calculate the similarity between the cluster and its neighboring clusters.

The details of how to compute modified DB index are presented in Algorithm 6.

Algorithm 6 Modified Davies-Bouldin index

Input: superpixels (clusters) $C_1, C_2, ..., C_m$

Output: modified DB index

1: for each superpixel C_i do
2: Calculate dispersion s_i of the superpixel C_i:
 $$s_i = \left(\frac{1}{n_i} \sum_{x \in C_i} \| x - w_i \|^2 \right)^{\frac{1}{2}},$$
 where w_i is the mean vector of superpixel C_i, n_i is the number of data points in cluster C_i
3: end for

4: for each superpixel C_j do
5: Calculate dispersion s_j of the superpixel C_j
6: Calculate dissimilarity d_{ij} of two superpixels C_i and C_j:
 $$d_{ij} = \| w_i - w_j \|^2,$$
 where w_j is the mean vector of superpixel C_j
7: Calculate similarity R_{ij} of two superpixels C_i and C_j:
 $$R_{ij} = \frac{s_i + s_j}{d_{ij}}$$
8: end for
9: for each superpixel C_i do
10: Calculate similarity R_i of superpixel C_i:
 $$R_i = \max_{j=1,...,m, j \neq i} R_{ij}, \quad i = 1, ..., m$$
11: end for

12: Calculate modified DB index:
 $$DB^{modified}_m = \frac{1}{m} \sum_{i=1}^{m} R_i$$

Just as the modified Dunn index, the modified Davies-Bouldin index is sensitive to the oversegmented partition. It will be very large if the image is oversegmented. Otherwise, it can be used to evaluate the segmentation results. The smaller modified Davies-Bouldin index indicates a better segmentation result, since the similarity of each superpixel is small and dissimilarity between superpixels is big.
Chapter 4

Experiment

In this chapter, we will perform our proposed superpixel segmentation method on two hyperspectral data sets. The superpixel results and the evaluation results will be included and discussed.

4.1 HySens Pavia University Data

The experiment is first performed on the Pavia University data[3]. This image contains several materials such as asphalt, painted metal sheets, vegetation, red roof, bare soil and shadow. The superpixels are generated based on these materials.

4.1.1 Data Set Description

The Pavia University data set was collected by the Reflective Optics System Imaging Spectrometer (RODIS) at University of Pavia, Italy in July 2002. Deutsches Zentrum operated
the flight for Luftund Raumfahrt (DLR, the German Aerospace Agency) in the framework of the HySens project, managed and sponsored by the European Union [3]. The ROSIS generates 115 bands cover 430 to 860 nm with 4nm bandwidth. The image contains 340×610 pixels and consists of 103 bands with 12 noisiest bands removed. The spatial resolution is 1.3 m [82]. Fig 4.1 shows the RGB image of Pavia University data.

4.1.2 Superpixel Segmentation Results

First, an initial map-guided hyperspectral SLIC is performed on the Pavia data. The parameter setting for hyperspectral SLIC is the desired superpixel numbers $K = 500$ and the scaling factor $m = 20$. Fig 4.2 shows the result returned from hyperspectral SLIC, the extracted data from OSM and the final segmentation result.

After the initial superpixels are obtained, the unmixing process is performed by semi-supervised PM-LDA. For Pavia data, the number of endmembers is set as 6. As a pre-processing step, all the pixel signatures in the data set are normalized to have unit length as the input for all methods. Superpixels with endmembers of blue roof building and red roof building are selected to be supervised in this study. The parameters setting which we choose by manual trial and error for semi-supervised PM-LDA: $K = 6$, $\lambda = 1$, $\alpha = 0.3$, $\epsilon = 5\%$ and $T = 200$.

The unmixing results are presented in Fig 4.3.

After the proportion maps are obtained, K-means algorithm is used to perform the clustering. The “clean-up” process based on connected component is followed to construct the superpixels and enforce the connectivity. The parameter k as the number of clusters sets to be 6 as same as the number of endmembers in the unmixing process.

We compare our result with 5 other algorithms, which are SLIC, SLIC combines with
Figure 4.1: RGB Image of Pavia University
OpenStreetMap (SLIC+OSM), hyperspectral normalized cuts (HNC) [65], hyperspectral ultra contour map (HUCM)[64] and PM-LDA based superpixel segmentation.

SLIC and SLIC combines with OpenStreetMap (SLIC+OSM) are the initial superpixel segmentation methods in the first step of our proposed method. Comparing these two will help us to ensure our process is effective. The parameter settings for all methods are selected as follows to yield the best performance from trial and error: for SLIC and SLIC+OSM, the desired number of superpixels as $K = 500$ and the weighting parameter between spectral and spatial difference as $m = 20$.

Normalized Cuts (NC) and Ultra Contour Map (UCM) are two widely used superpixel segmentation algorithms for regular color images. They are modified to extend to working on hyperspectral images in [64, 65]. The parameters setting for these are selected from the proposed paper [64, 65] as follows to yield the best performance: for HNC, the ratio of largest segment over all pixels as $r = 0.01$ and the scale for spatial and spectral distance as $\sigma = 50$; for HUCM, the scale for the boundaries $k = 0.3$.

PM-LDA based superpixel segmentation shares almost same process as our proposed method. The only difference between these two is the map guidance from social media. By comparing these two algorithms, we can ensure whether the map guidance matters. The parameters setting are the same as our proposed method: $K = 6$, $\lambda = 1$, $\alpha = 0.3$, $\epsilon = 5\%$ and $T = 200$.

The superpixel segmentation results for the comparison algorithms are presented in Fig 4.4. From Fig 4.4, we can see that the result returned by SLIC is oversegmented, and the result returned by SLIC+OSM is also oversegmented but it can draw most building area as a superpixel. While for result obtained from HNC and HUCM, the superpixels are bigger than SLIC but it somehow clusters different materials into a superpixel incorrectly.
For result obtained from PM-LDA based superpixel segmentation, many superpixels are included a lot of noises. However, the result obtained from our proposed algorithm can segment the image into several superpixels based on the materials in that area.

We also zoom in results to compare the details of the superpixels. Using painted metal sheets as an example, the images are presented in Fig 4.5. From Fig 4.5, in the SLIC result, it partitions the painted metal sheets part into several superpixels and it also excludes some areas; in the SLIC+OSM result, it includes the whole area into a superpixel but it also contains some vegetation and asphalt; in the HNC and HUCM results, both results cannot get the pure painted metal sheet area; in PM-LDA result, it can get some vegetation and shadow superpixels but it includes some asphalt into the painted metal sheet superpixel. While in the result from our proposed method, it can partition the vegetation, shadow and painted metal sheets correctly.

Another example is presented in Fig 4.6. From Fig 4.6, in the SLIC and SLIC+OSM result, they partition the grey part into several superpixels and they also exclude some areas; in the HNC result, it segments the whole grey building into a single superpixel but also includes some shadows; in PM-LDA result, it can include most part of grey building but also includes noise. While in the result from our proposed method, it can partition the shadow and grey building correctly.

To quantitatively evaluate the superpixel segmentation results, we use the Dunn, DB and Silhouette indices and the modified Dunn and DB indices to measure the performance.

The results of the original Dunn, DB and Silhouette indices are presented in Table 4.1. From Table 4.1, we can notice that validity indices returned from our method have better performance than the others. For Dunn index, our proposed method achieves the maximum value. This means our segmentation result has a smaller diameter within a superpixel and
a bigger dissimilarity between superpixels based on Equation 2.51. For Davies-Bouldin index, the minimum DB index indicates the smaller similarity and larger dissimilarity based on the definition. For Silhouette index, the maximum value indicates that the average distance from a pixel to the superpixel it belongs are much smaller than the distance to its neighboring superpixel. All these validity indices represent the same thing as the superpixel segmentation results in Fig 4.4. Superpixels obtained from our proposed method are more uniform and distinguished than superpixels from other algorithms.

<table>
<thead>
<tr>
<th></th>
<th>Dunn</th>
<th>Davies-Bouldin</th>
<th>Silhouette</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIC</td>
<td>0.0334 ± 0.0058</td>
<td>16.5688 ± 0.6134</td>
<td>-0.8355 ± 0.0288</td>
</tr>
<tr>
<td>SLIC+OSM</td>
<td>0.0398 ± 0.0047</td>
<td>16.1190 ± 0.7945</td>
<td>-0.7950 ± 0.0304</td>
</tr>
<tr>
<td>HNC</td>
<td>0.0486 ± 0.0152</td>
<td>11.4451 ± 0.6579</td>
<td>-0.7244 ± 0.0478</td>
</tr>
<tr>
<td>HUCM</td>
<td>0.0377 ± 0.0134</td>
<td>19.2957 ± 0.9425</td>
<td>-0.7502 ± 0.0312</td>
</tr>
<tr>
<td>PM-LDA</td>
<td>0.0607 ± 0.0143</td>
<td>10.9946 ± 0.8253</td>
<td>-0.7059 ± 0.0484</td>
</tr>
<tr>
<td>Proposed method</td>
<td>0.0950 ± 0.0134</td>
<td>8.7118 ± 0.7336</td>
<td>-0.5606 ± 0.0502</td>
</tr>
</tbody>
</table>

Table 4.1: Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Pavia University

Another thing we need to mention is when we incorporate information from crowdsourced maps, the validity indices improve. It can be verified by comparing the results of SLIC to SLIC+OSM and PM-LDA to our proposed algorithm. So map-guided superpixel segmentation algorithm often improves the performance due to the additional supervision. Since there are often some shift when we transform the geographical information to coordinates in the image, map-guided algorithms do not perform well in every situation, such as when it was incorporated into the normalized cuts algorithm.

We also modify the original Dunn and DB indices to be more suitable to the superpixel results by considering the neighboring cluster during the calculation. Table 4.2 shows the results of modified validity indices. From Table 4.2, we can see that our proposed algorithm also has the best performance when just considering the neighboring superpixels. In the
results of modified Dunn index, our proposed method can achieve the maximum value which indicates that the smaller diameter within the superpixel and the larger dissimilarity with the neighboring superpixels. In modified Davies-Bouldin index, the value returned by our proposed method is the smallest.

<table>
<thead>
<tr>
<th>Method</th>
<th>Modified Dunn</th>
<th>Modified Davies-Bouldin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIC</td>
<td>0.0334 ± 0.0042</td>
<td>5621.6830 ± 38.3245</td>
</tr>
<tr>
<td>SLIC+OSM</td>
<td>0.0388 ± 0.0035</td>
<td>4390.3406 ± 38.4685</td>
</tr>
<tr>
<td>HNC</td>
<td>0.0486 ± 0.0034</td>
<td>879.7921 ± 58.3872</td>
</tr>
<tr>
<td>HUCM</td>
<td>0.0377 ± 0.0031</td>
<td>863.0718 ± 43.4423</td>
</tr>
<tr>
<td>PM-LDA</td>
<td>0.1180 ± 0.0245</td>
<td>732.0209 ± 52.3542</td>
</tr>
<tr>
<td>Proposed method</td>
<td>0.3489 ± 0.0672</td>
<td>250.0514 ± 42.8685</td>
</tr>
</tbody>
</table>

Table 4.2: Modified Dunn, Davies-Bouldin indices on Pavia University

The most influential parameters for our proposed method are the desired number of end-members for semi-supervised PM-LDA, and the desired number of clusters for K-means algorithm. If an inappropriate number is chosen, the results of superpixel segmentation degrade. To investigate this, we vary the parameter k from 3 to 20, and report some representative results in Fig 4.7.

It is clear that when the parameter k changes, the superpixel segmentation result change significantly from Fig 4.7. When $k = 3$, the results can identify most asphalt and building superpixels, but it misclassifies many other materials like vegetation, bare soil, shadow into same superpixels. The reason for this is the clusters returned from K-means algorithm are smaller than the existing materials in the image. Also, when we set k as 5, the result is fairly good, but it cannot identify some superpixels with material as shadow and cannot distinguish some small regions surrounded by some larger regions like a vegetation region surrounding by bare soil. Meanwhile, when we tune k to be big, like 10 or 20, it obviously generates oversegmentation by separating smaller one superpixel into several ones. In our
experience, the trick to choosing the suitable number for parameter k is set to it around the number of endmembers. For Pavia University data, $k = 7$ is recommended by manual trial and error.

In order to evaluate our suggestion for choosing parameter k, we use cluster validity indices to measure the performance with different parameter settings. The results of Dunn, DB and Silhouette indices are presented in Table 4.3. From Table 4.3, Dunn and Silhouette indices achieve the maximum value and Davies-Bouldin index achieves minimum value when $k = 7$. This indicates that when $k = 7$ the proposed method has the best performance in this experiment since the results have smaller similarity within each superpixel and larger dissimilarity between superpixels. The number of endmembers in Pavia data is 6, so the result with $k = 5$ also have good validity values.

<table>
<thead>
<tr>
<th></th>
<th>Dunn</th>
<th>Davies-Bouldin</th>
<th>Silhouette</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td>0.0523 ± 0.0125</td>
<td>12.6930 ± 0.8315</td>
<td>-0.8109 ± 0.0418</td>
</tr>
<tr>
<td>$k = 5$</td>
<td>0.0812 ± 0.0152</td>
<td>9.4327 ± 0.8122</td>
<td>-0.6212 ± 0.0485</td>
</tr>
<tr>
<td>$k = 7$</td>
<td>0.0950 \pm 0.0134</td>
<td>8.7118 \pm 0.7336</td>
<td>-0.5606 \pm 0.0502</td>
</tr>
<tr>
<td>$k = 10$</td>
<td>0.0597 ± 0.0141</td>
<td>10.2736 ± 0.9125</td>
<td>-0.7352 ± 0.0424</td>
</tr>
<tr>
<td>$k = 20$</td>
<td>0.0375 ± 0.0112</td>
<td>15.3341 ± 0.9678</td>
<td>-0.9095 ± 0.0611</td>
</tr>
</tbody>
</table>

Table 4.3: Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Pavia University when change parameter k

We also evaluate the results with different parameter k by our proposed modified Dunn and Davies-Bouldin indices. The validity values and standard deviations are presented in Table 4.4. From Table 4.4, when $k = 7$, modified Dunn index has largest value and modified Davies-Bouldin index has smallest value. This indicates that the difference between the neighboring superpixels is big and the similarity within each superpixel is small based on the definition of the modified indices. The validity values of result with $k = 5$ are close with the values with $k = 7$. This indicates $k = 7$ is a proper underlying number of clusters.
in the Pavia data which proves that the best choice of parameter k is around the number of endmembers in the data.

\begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\text{ } & \text{Modified Dunn} & \text{Modified Davies-Bouldin} \\
\hline
\text{$k = 3$} & 0.0398 \pm 0.0037 & 1409.0450 \pm 37.4435 \\
\text{$k = 5$} & 0.3421 \pm 0.0055 & 273.7531 \pm 40.8521 \\
\text{$k = 7$} & \textbf{0.3489 \pm 0.0672} & \textbf{250.0514 \pm 42.8685} \\
\text{$k = 10$} & 0.0760 \pm 0.0014 & 756.8493 \pm 48.5622 \\
\text{$k = 20$} & 0.00398 \pm 0.0011 & 2126.8493 \pm 43.4159 \\
\hline
\end{tabular}
\end{center}
\caption{Modified Dunn, Davies-Bouldin indices on Pavia University and standard deviation on Pavia University when change parameter k}
\end{table}
Figure 4.2: Superpixels on Pavia University

(a) Superpixels from SLIC
(b) Buildings extracted from OpenStreetMap
(c) Superpixels by map-guided hyperspectral SLIC
Figure 4.3: Estimated proportion maps using semi-supervised PM-LDA on Pavia University

(a) Painted metal sheets (b) Red roof (c) Bare soil

(d) Asphalt (e) Shadow (f) Vegetation
Figure 4.4: Superpixel Segmentation results on Pavia University
Figure 4.5: Zoom in to painted metal sheets area on superpixel segmentation results
Figure 4.6: Zoom in to grey building area on superpixel segmentation results
Figure 4.7: Superpixel segmentation results on Pavia University when change parameter k.

(a) $k = 3$
(b) $k = 5$
(c) $k = 7$
(d) $k = 10$
(e) $k = 20$
4.2 MUUFL Gulfport Hyperspectral Data

The second experiment is performed on MUUFL Gulfport hyperspectral data[83].

4.2.1 Data Set Description

MUUFL Gulfport hyperspectral data was collected by the CASI-1500 hyperspectral imager over the campus of the University of Southern Mississippi-Gulfpark in Long Beach, Mississippi in November 2010. The image is consisting of 72 bands with the wavelength range of 375 to 1050 nm and contains 325×337 pixels in total [82]. The RGB image of MUUFL Gulfport data set is presented in Fig 4.8.

Figure 4.8: RGB Image of Gulfport Data
4.2.2 Superpixel Segmentation Results

First, an initial map-guided hyperspectral SLIC is performed on Gulfport data. The parameters for hyperspectral SLIC are the desired number of superpixels $k = 500$ and the weighting parameter between spectral and spatial difference $m = 20$. The results of this process are presented in Fig 4.9.

![Superpixels by SLIC](image)

![Buildings extracted from OpenStreetMap](image)

![Superpixels by map-guided hyperspectral SLIC](image)

Figure 4.9: Superpixels on Gulfport

For the hyperspectral unmixing process, the number of endmembers is set as 7. The desired endmembers are red roof, soil, light grey roof, shadow, asphalt, beach sand and vegetation. As a pre-processing step, all the pixel signatures in the data set are normalized.
to have unit length as the input for all methods. The parameter setting for semi-supervised PM-LDA is $K = 7$, $\lambda = 1$, $\alpha = 0.3$, $\epsilon = 10\%$ and $T = 200$.

![Image of estimated proportion maps](image)

(a) Red roof
(b) Soil
(c) Light grey roof
(d) Shadow
(e) Asphalt
(f) Beach sand
(g) Vegetation

Figure 4.10: Estimated proportion maps for semi-supervised PM-LDA on Gulfport

After the proportion maps are obtained, K-means algorithm is used to perform the clustering and the “clean-up” process based on connected component algorithm is followed to construct the superpixels and enforce the connectivity. The parameter k as the number
of clusters for K-means algorithm is set to be 7 as same as the number of endmembers in the unmixing process.

5 other algorithms, which are SLIC, SLIC combines with OpenStreetMap (SLIC+OSM), hyperspectral normalize cut (HNC) [65], hyperspectral ultra contour map (HUCM) [64] and PM-LDA based superpixel segmentation are used to compare with our proposed method.

The parameter settings for all methods are selected as follows to yield the best performance by trial and error or from the propose paper: for SLIC and SLIC+OSM, the desired number of superpixels as $K = 500$ and the weighting parameter between spectral and spatial difference as $m = 20$; for HNC, the ratio of largest segment over all pixels as $r = 0.01$ and the scale for spatial and spectral distance as $\sigma = 50$; for HUCM, the scale for the boundaries $k = 0.1$; for PM-LDA, the parameter setting is same as supervised PM-LDA $K = 7$, $\lambda = 1$, $\alpha = 0.3$ and $T = 200$.

The superpixel segmentation results for the comparison algorithms are presented in Fig 4.11. From Fig 4.11, we can see that the result returned by SLIC is oversegmented, and the result returned by SLIC+OSM is also oversegmented but can draw most building area as a superpixel. While for result obtained from HNC and HUCM, the superpixels are bigger than SLIC but it somehow clusters different materials into a superpixel incorrectly. For result obtained from PM-LDA based superpixel segmentation, many superpixels are noisy. However, the result obtained from our proposed algorithm almost can find every target material and segment the image into several superpixels based on the materials in that area.

We also can zoom in on the results to compare the details of the obtained superpixels. Using the red roof building in the bottom left corner as an example, the images are presented in Fig 4.12. From Fig 4.12, in the SLIC result, the result is fairly good, but it includes some shadow parts into the red roof building superpixels; in the SLIC+OSM result,
the superpixel is kind of large, it though includes all red roof building parts but also in-
cudes some shadow and vegetation parts; in the HNC, HUCM and PM-LDA results, all of
them partition the red roof building part into several superpixels and the segmentation re-
sults are very noisy. While for the result from our proposed method, it can segment the red
roof building part into a superpixel correctly and also segment the shadow and vegetation
parts into different superpixels.

We also zoom in another area which is the red building in the top middle of the image.
The results obtained from different algorithms are shown in Fig 4.13. In the experiment,
we treat the yellow and red building as a same material due to the similarity of these two
endmembers. From Fig 4.13, in the SLIC result, it partition this building into several su-
perpixels, so it is oversegmented; in the SLIC+OSM result, with the guidance from OSM,
it can cover all building part, but it also includes some shadow into the building’s super-
ixel; in the HNC and HUCM results, they both can identify some building parts but not
all of them; and in the PM-LDA result, it can cover most building parts, but it is noisy. It
separates the building and includes some vegetation parts into the superpixels. While in
result from our proposed method, it can perfectly identify the building and include them in
a superpixel correctly.

Quantitative evaluation is also performed to compare the performances of different al-
gorithms on Gulfport data. Firstly, we use the original cluster validity which includes Dunn,
DB and Silhouette indices to evaluate the segmentation results. Table 4.5 shows the validity
values.

From Table 4.5, our proposed method performs best among these 6 algorithms with the
maximum Dunn index, minimum Davies-Bouldin index and maximum Silhouette index.
Based on the definition of these cluster validity indices, a small similarity within a super-
Table 4.5: Dunn, Davies-Bouldin, Silhouette indices and standard deviation on Gulfport

<table>
<thead>
<tr>
<th>Method</th>
<th>Dunn</th>
<th>Davies-Bouldin</th>
<th>Silhouette</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIC</td>
<td>$8.2197 \times 10^{-4} \pm 0.000035$</td>
<td>12.7719 ± 0.0843</td>
<td>-0.9059 ± 0.0288</td>
</tr>
<tr>
<td>SLIC+OSM</td>
<td>$9.0419 \times 10^{-4} \pm 0.000041$</td>
<td>12.6382 ± 0.0756</td>
<td>-0.8824 ± 0.0217</td>
</tr>
<tr>
<td>HNC</td>
<td>0.0136 ± 0.0082</td>
<td>12.5697 ± 0.0942</td>
<td>-0.7950 ± 0.0318</td>
</tr>
<tr>
<td>HUCM</td>
<td>0.0399 ± 0.0076</td>
<td>9.3895 ± 0.0432</td>
<td>-0.6591 ± 0.0282</td>
</tr>
<tr>
<td>PM-LDA</td>
<td>0.0666 ± 0.0125</td>
<td>8.0485 ± 0.0541</td>
<td>-0.5461 ± 0.0342</td>
</tr>
<tr>
<td>Proposed method</td>
<td>0.0776 ± 0.0158</td>
<td>8.0345 ± 0.0480</td>
<td>-0.5149 ± 0.0279</td>
</tr>
</tbody>
</table>

Table 4.6: Modified Dunn, Davies-Bouldin indices and standard deviation on Gulfport

<table>
<thead>
<tr>
<th>Method</th>
<th>Modified Dunn</th>
<th>Modified Davies-Bouldin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIC</td>
<td>$2.2661 \times 10^{-15} \pm 0.0$</td>
<td>2293.18959 ± 51.3345</td>
</tr>
<tr>
<td>SLIC+OSM</td>
<td>$2.6411 \times 10^{-15} \pm 0.0$</td>
<td>2004.9428 ± 48.4523</td>
</tr>
<tr>
<td>HNC</td>
<td>0.0114 ± 0.0026</td>
<td>1785.3369 ± 32.6512</td>
</tr>
<tr>
<td>HUCM</td>
<td>0.0430 ± 0.0022</td>
<td>1289.3697 ± 43.8725</td>
</tr>
<tr>
<td>PM-LDA</td>
<td>0.1033 ± 0.0437</td>
<td>429.2411 ± 39.3742</td>
</tr>
<tr>
<td>Proposed method</td>
<td>0.2601 ± 0.0352</td>
<td>192.1993 ± 38.4756</td>
</tr>
</tbody>
</table>

From Table 4.6, it is clear that our proposed method still outperforms others. The biggest modified Dunn index and the smallest modified Davies-Bouldin index can be used to indicate that our superpixel segmentation result has a small similarity within each superpixel and a large dissimilarity between neighboring superpixels. From the results from
SLIC and SLIC+OSM, we still can find that map guidance improves the performance overall. This point is also proved when comparing the results from PM-LDA based segmentation with our proposed method.

We also test our proposed method on Gulfport data with different parameter setting for k which is the desired number of endmembers for semi-supervised PM-LDA, also the desired number of clusters for K-means.

It is clear from Fig 4.14 that when the parameter k is chosen around 7 which the number of endmembers, the results are obviously better. When $k = 3$, we can see it misclassifies many materials into a superpixel. While k is large like 10 or 20, the image is oversegmented.

In order to evaluate our suggestion to choose parameter k, we use cluster validity indices to measure the performance with different parameter setting. The results of Dunn, Davies-Bouldin and Silhouette indices are presented in Table 4.3. From Table 4.7, Dunn and silhouette indices achieve the maximum value and Davies-Bouldin index achieves minimum value when $k = 7$. This indicates that when $k = 7$ the superpixel segmentation from our proposed method has a small similarity for each superpixel and a large dissimilarity between superpixels. These are also proved in Fig 4.14. When $k = 7$, the superpixels are uniform and very distinguished from others. It almost can group a major material into one superpixel.

We also evaluate the results with different parameter k by our proposed modified Dunn and Davies-Bouldin indices. The validity values and standard deviations are presented in Table 4.8.

From Table 4.4, when $k = 7$, modified Dunn index has largest value and modified Davies-Bouldin index has smallest value. This indicates $k = 7$ is a proper underlying
number of clusters in the Gulfport data. Based on the definitions of the modified indices, a smaller similarity within each superpixel and a larger dissimilarity between the neighboring superpixel will give a larger modified Dunn index and a smaller modified Davies-Bouldin index. This means the returned superpixels can partition the image well by grouping one material into one superpixel.
Figure 4.11: Superpixel Segmentation on Gulfport with 6 algorithms
Figure 4.12: Zoom in to the red roof building area on superpixel segmentation results
Figure 4.13: Zoom in to another red roof building area on superpixel segmentation results
Figure 4.14: Superpixel segmentation results on Gulfport when change parameter k
Chapter 5

Conclusion and Future Work

The focus of this thesis is to solve the problem of hyperspectral image superpixel segmentation. In chapter 2, some existing hyperspectral image segmentation algorithms are reviewed. Most algorithms start with a dimension reduction process, usually performed by PCA. The essential process of these methods is partitioning the data by comparing the spectral and spatial distances between each segment. The proposed method is based on the hyperspectral unmixing with the map guidance, then segmenting the proportion maps based on the K-means algorithm. Simply speaking, we are doing dimension reduction by unmixing which has more physical meaning than PCA.

The proposed method starts with an initial superpixel segmentation by map-guided hyperspectral SLIC. The map information extracted from social media like OpenStreetMap can supply useful labels for some areas like some buildings in the image. Given a few labeled superpixels, semi-supervised PM-LDA is used to perform the hyperspectral unmixing. Then we use K-means algorithm to segment the proportion maps and incorporate a “clean-up” process by assigning the small unconnected segments to the largest neighbor-
ing superpixels. The combination of these steps result in an approach for HSI.

Our proposed method maintains a very good performance in two real hyperspectral data of University of Pavia and MUUFL Gulfport. In the visualization superpixel segmentation results, it is clear that our result has more accurate segmentation and better performance in the detail area compared with another 5 different algorithms. We also evaluate the results by the cluster validity such as Dunn, Davies-Bouldin (DB) and Silhouette indices. Based on these values, our proposed method also has a better performance than others. To make the cluster validity more suitable with superpixel case, we modify the Dunn and DB indices by just considering the neighboring superpixels when the dissimilarities between different segments are calculated. The returned results still prove our advancement compared with the other 5 algorithms.

There are much future works to be done. Most importantly, speeding up the algorithm is an important area of study. The proposed algorithm is time consuming during the hyperspectral unmixing. One approach may be to leverage GPUs.
Bibliography

[13] José M Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente, Qian Du, Paul Gader, and Jocelyn Chanussot. Hyperspectral unmixing overview: Geometrical,

[27] Mark Berman, Harri Kiiveri, Ryan Lagerstrom, Andreas Ernst, Rob Dunne, and Jonathan F Huntington. Ice: A statistical approach to identifying endmembers

83

[52] Nicola Acito, Giancarlo Corsini, and Mario Diani. An unsupervised algorithm for
hyperspectral image segmentation based on the gaussian mixture model. In Geo-

Marker-based hierarchical segmentation and classification approach for hyperspectral
imagery. In 2011 IEEE International Conference on Acoustics, Speech and Signal

[54] Antonio J Plaza and James C Tilton. Automated selection of results in hierarchi-
cal segmentations of remotely sensed hyperspectral images. Technical report, DTIC

images using hierarchical optimization. In 2011 3rd Workshop on Hyperspectral Im-
IEEE, 2011.

[56] Kevin Bernard, Yuliya Tarabalka, Jesus Angulo, Jocelyn Chanussot, and Jón Atli
Benediktsson. Spectral–spatial classification of hyperspectral data based on a stochas-
tic minimum spanning forest approach. IEEE Transactions on Image Processing,

[57] David R Thompson, Lukas Mandrake, Martha S Gilmore, and Rebecca Castaño. Su-
perpixel endmember detection. IEEE Transactions on Geoscience and Remote Sens-

[64] Manu Sethi, Yupeng Yan, Anand Rangarajan, Ranga Raju Vatsavai, and Sanjay

