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LARGE-SCALE ANALYSIS, MANAGEMENT, AND RETRIEVAL OF 
BIOLOGICAL AND MEDICAL IMAGES 

JING HAN 

Dr. Chi-Ren Shyu, Dissertation Supervisor 

ABSTRACT 

Biomedical image data have been growing quickly in volume, speed, and 

complexity, and there is an increasing reliance on the analysis of these data. 

Biomedical scientists are in need of efficient and accurate analyses of large-scale 

imaging data, as well as innovative retrieval methods for visually similar imagery 

across a large-scale data collection to assist complex study in biological and 

medical applications. Moreover, biomedical images rely on increased resolution 

to capture subtle phenotypes of diseases, but this poses a challenge for clinicians 

to sift through haystacks of visual cues to make informative diagnoses.  To tackle 

these challenges, we developed computational methods for large-scale analysis of 

biological and medical imaging data using simulated annealing to improve the 

quality of image feature extraction. Furthermore, we designed a Big Data 

infrastructure for the large-scale image analysis and retrieval of digital pathology 

images and conducted a longitudinal study of clinician’s usage patterns of an 

image database management system (MDID) to shed light on the potential 

adoption of new informatics tools. This research also resulted in image analysis, 

management, and retrieval applications relevant to dermatology, radiology, 

pathology, life sciences, and palynology disciplines. These tools provide the 

potential to answer research questions that would not be answerable without our 

novel innovations that take advantage of Big Data technologies.  
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CHAPTER ONE  

1. INTRODUCTION 

In the realm of scientific studies where observers rely heavily on their 

visual perception of the subjects of interest to make discoveries and conclusions, 

the nature of the world at large is presented with and thus perceived by their 

visually salient features, such as colors, shapes, textures, spatial 

placement/displacement, as well as the changes in these aforementioned aspects. 

The imagery of a subject is captured either directly by eyes (the biological 

sensors) or indirectly via digitally captured media (the digital sensors) such as 

images and videos. Subsequently, the content of imagery can be examined, 

manipulated, compared, and archived for further study. It is argued that 

perception, especially vision, is not purely a passive receipt of external signals, 

but rather a rational process that “requires intelligent problem-solving based on 

knowledge” [1].   

Many disciplines, including biology and medicine, require accurate 

characterization of visual patterns and rich content in imagery in order to make 

discoveries and diagnoses. In the biology disciplines, the study of biological 

components and their morphology can lead to discoveries of distortions or 

changes that contribute to functional abnormalities. For example, the dynamics 

of mitochondria in Drosophila segmental nerves have essential impacts on the 

functions of neurons. Their defects are strongly associated with many 

neurodegenerative diseases [2]. In medical disciplines (e.g. radiology, 

dermatology, and pathology) the study of patient images (e.g. CT’s of lungs, 
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images of skin lesions, or microscopic slides of tumor biopsy) includes the 

examination of gross appearance as well as detailed morphology of individual 

organelles, cells, and tissue. The diagnosis is made with extensive reasoning that 

requires years of professional training and experience in each medical specialty. 

For example, a hematologist examines a glass slide of patient’s bone marrow 

biopsy under a microscope, identifies frequent occurrences of centroblasts, a type 

of white blood cell, based on the perception of cell morphology (including but not 

limited to enlarged cell size, moderate to scant cytoplasm, and non-cleaved 

nucleus), and subsequently make a diagnosis of the patient with a specific type of 

blood disorder, such as diffuse large B-cell lymphoma (DLBCL). 

Even with intensive training and accumulative experience, the judgment 

and characterization of visual patterns and rich content residing in the images 

can still be subjective, implicit, indirect, and oftentimes inconsistent between 

observers and among different observations from the same professional. This is 

where computer vision, image processing algorithms, and machine learning 

techniques play their roles in performing more sensitive and accurate 

measurements and analyses. They provide useful means for researchers to detect 

subtle changes or easily overlooked patterns by human observers. Additionally, 

computational methods also enable high-throughput analysis of large-scale 

datasets where pure human examination may reach its physical limits. The 

severity of such phenomena only increases with the volume, variety, veracity, and 

velocity of data being generated electronically by modern technologies. 

Researchers are in need of not only accurate and quick analyses of large-scale 

data but also advanced and smart retrieval of visually similar imagery across 
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large collections of data to assist complex studies in their domains. An automatic 

retrieval system would need to extract useful and representative features from 

the images themselves, learn from domain experts’ advanced reasoning to 

analyze image content, make numerical measurements and comparisons across 

the entire collection, and eventually return a limited set of images that best 

qualify researchers’ request of informational image query. Such systems need to 

be efficient, accurate, adaptable, and able to handle large-scale data processing. 

1.1 Problem Statement 

Due to the reliance on imaging to capture visual pattern and rich content 

of subjects of interest and the ever-growing scale of data collection, methods and 

applications are needed to assist large-scale computational processing and 

analysis of image data. In this dissertation, methods are developed to address 

several common issues in multiple medical and biological imaging domains, such 

as radiology, dermatology, pathology, life sciences, and palynology. With limited 

adjustment, these methods and techniques can be adapted to other domains that 

share similar reliance on imagery and visual content analyses. 

A reliable image analysis system requires the following abilities: (1) 

meaningful objects of interest can be identified; (2) selected visual features are 

indeed sufficient to characterize the various appearances in the image dataset; 

and (3) feature values are properly extracted and accurately represent the true 

patterns residing in the images. These requirements sound fairly basic and 

intuitive, but are difficult to ensure at all times in practice. A significant amount 

of this difficulty lies in adjusting and adapting all of the various parameters used 



 

4 
 

in the object segmentation and feature extraction algorithms. This problem is 

common to most of the applications in image processing, analysis, and retrieval 

and is therefore a very valuable issue to be addressed. 

The overwhelming amount of image data being captured daily in various 

research domains demands the development of matching computational skills. 

This is especially true in biomedical imaging research, as it is virtually impossible 

to acquire enough time, money, and personnel to manually annotate all images, 

with consistency and efficiency both ensured. Therefore, computer-assisted 

annotation and analysis tools would be valuable to achieve the required 

consistency and efficiency in image analysis and retrieval, making use of the 

content of images themselves, machine learning techniques, and modern 

applications, such as databases, data indexing, web servers, and the Big Data 

ecosystem. 

To fulfill the usefulness of image analysis and retrieval systems and to 

achieve successful adoption in real-world practices, the usability of such systems 

needs to be seriously considered. Unfortunately, this aspect is often overlooked in 

the scientific domains, especially the life sciences and medical professions, as 

compared to social sciences. 

1.2 Dissertation Organization 

The rest of this dissertation is organized into the following chapters. 

Chapter 2 gives a broad introduction of basic concepts and common practices 

involved in imaging informatics, particularly for medical and biological domains. 

These items are revisited multiple times in subsequent chapters and thus deserve 
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a formal statement at the beginning. Chapter 3 presents research works related to 

image management, especially web-based applications for biological and clinical 

images. System usability and user behavioral patterns are also studied and 

presented in this chapter to demonstrate the importance of developing user-

friendly systems for a successful adoption and positive contribution to domain-

specific imaging informatics needs. The topics proceed in chapter 4 to the 

extraction of visual content in images from various research domains. Special 

attention was made to showcase our automatic parameter tuning approach that 

improves the quality of image segmentation and feature extraction. Although it 

was applied originally for radiology images, it has a wide range of potential 

applications in the general fields of imaging informatics. Chapter 5 demonstrates 

our work on content-based image retrieval in the medical and biological domains. 

First of all, multiple perceptual categories that radiologists utilize during 

examination and diagnosis are studied and formulated as computational modules 

targeting specific disease patterns. Using these modules, we developed an 

entropy-based multi-module content-based image retrieval (CBIR) system for 

HRCT images of lung. Furthermore, we constructed a relational database of 

Neotropical pollen and spore grains and their visual content. As one of the 

aspects of image content, grain morphology was emphasized in this CBIR system 

for microscopic images of fossil grains. Attention is then turned to the domain of 

digital pathology in Chapter 6 where the challenges of analyzing various visual 

patterns in microscopic virtual slides were addressed with methods in image 

processing and realized with modern techniques in Big Data ecosystem. The 
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dissertation then ends with conclusions and discussions of continuous works in 

the future in Chapter 7. 

In summary, this dissertation’s contributions are both, (1) developing 

applications in large-scale medical and biological image analysis and retrieval 

across multiple research domains, and (2) evaluating efficiency and usability of 

developed systems in the real-world practices.   
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CHAPTER TWO 

2. BASIC CONCEPTS AND COMMON PRACTICES IN 
IMAGING INFORMATICS 

Generally speaking, several aspects of imaging informatics are repeatedly 

referenced across multiple chapters in this dissertation. It is therefore worth the 

effort to introduce basic concepts, definitions and common practices that this 

dissertation relies upon. This chapter is by no means a comprehensive 

introduction of image processing, but rather a brief coverage of a select collection 

of topics under the umbrella of imaging informatics for biological and medical 

domains.       

2.1 Basic Concepts 

2.1.1 Digital Images 

A digital image can be considered as a 2-dimensional matrix of pixels or a 

function of values, f (x, y), where the values at each spatial location, depicted by 

its x- and y-coordinates, are scalars with one or multiple channels defined by 

chosen color systems. To simplify, the pixel value of a monochrome image at 

location (x, y) ranges between [Lmin, Lmax], which is called grayscale. 

Commonly, Lmin is set to be 0 representing pure black and Lmax is set to be l 

representing pure white. The value of l is determined based on data structure that 

stores grayscale values. For example, an 8-bit data structure has the maximal 

grayscale value of 255 for pure white, while a 16-bit data structure represents 

pure white with a value of 65535. For color images, a single pixel is formed with 

multiple values from predefined color channels. Each channel represents the 

intensity from corresponding color component. For example, the most common 
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color system is the Red, Green, and Blue (RGB) system. A pixel with value (R, G, 

B) = (255, 255, 0) is of color yellow as a combination of pure red and pure green. 

2.1.2 Image Processing, Image Analysis, and Computer Vision 

As suggested by Gonzalez and Woods, there is no clear boundary in the 

definitions of image processing, image analysis, and computer vision [3]. 

Computer vision, as a sub-discipline of artificial intelligence (AI), is designed to 

ultimately emulate human vision by collecting visual input, making inference, 

and performing actions as if it were a human being. Image analysis, or image 

understanding, is somewhere in between image processing and computer vision. 

2.1.3 Regions and Objects of Interest 

The definition of a region of interest (ROI) varies among disciplines. In 

image processing, we generally define it as a group of pixels that are clustered 

together, forming a region bearing meaningful concepts in specific domains. 

There can be multiple ROIs in an image with various arrangements, spatially 

and/or hierarchically. For example, a CT image of lung usually contains a general 

ROI of body (separated from air around the body region), which is further 

recognized to include two lung ROIs (in most cases) that themselves may contain 

detailed ROIs representing anatomically meaningful structures, such as trachea, 

bronchi, bronchioles, pulmonary arteries and veins, etc. 

In the domain of image processing, the term “object of interest” is also 

frequently used to describe the domain specific regions that usually are the 

targeted subject of said research. For example, centroblasts (one type of white 

blood cells) are the objects of interest in the biopsied nodule tissue, which itself is 
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also a ROI on the virtual slide. The usage of regions and objects of interest is 

interchangeable most of the times in literature references and practices. 

2.1.4 Visual Features and Image Content 

As explained in Chapter 1, the visual perception of an image requires past 

knowledge, learning, memory, etc. In biomedical imaging informatics, this 

requirement translates loosely to the perception of visual characteristics of 

objects of interest, in terms of their color intensities, morphological patterns, 

special placement and/or displacement, textures, etc. Visual features of regions 

and/or objects of interest numerically represent these characteristics. For 

example, we use a set of measurements introduced in [4] to represent the textural 

patterns inside images. As another example, the morphology of an object can be 

described using several visual features such as size (the number of pixels that 

compose an object of interest), perimeter, aspect ratio, elongation, form factor, 

etc. For a complete list of commonly used visual features, please refer to Table 2.1 

and Table 2.2. 

The content of an image is essentially the information that an image 

contains or otherwise is perceived by observers (human or computer). For 

example, an image of a beach is typically recognized based on its key content i.e. 

some blue skies, ocean, sand, and possibly some palm trees. In this section, we 

are not trying to formally define what the image content is but rather informally 

acknowledge that in imaging informatics, we are not analyzing any annotated text 

about an image. Instead, analyzing, understanding, and utilizing the image 

content itself is the ultimate goal.   



 

10 
 

2.2 Common Practices 

Even though we develop customized image processing and analysis 

pipelines for each study, as can be seen in the following chapters, there are a few 

fundamental components that occur repeatedly in various applications. In this 

section, we selectively discuss some of the common practices before introducing 

specific case studies.  

2.2.1 Image Segmentation 

Image segmentation, sometimes referred to as object segmentation, is a 

collection of digital image operations that partition an image into disjoint 

“segments” as regions and/or objects that are homogeneous inside and more 

dissimilar between individual regions [5]. Autonomous and robust image 

segmentation would generally lead to more successful recognition of individual 

objects and thus lead to more accurate measurements. At the same time, it is 

considered to be the most difficult step in the image processing pipeline. Partly 

because it is one of the early stages in the image processing pipeline, right after 

preprocessing steps such as image enhancement, and restoration [3], image 

segmentation largely determines the performance of the end results of image 

processing [6]. 

The classic image segmentation algorithms can be grouped into two 

categories: (1) those that divide regions based on the sudden discontinuity (edge-

based) and (2) those that build up the coverage of regions by including 

neighboring pixels that are similar in characteristics (region-based). There is a 

wide collection of image segmentation methods. The most frequently used 
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methods are edge detection, thresholding, watersheding, and morphological 

operations (erosion, dilation, opening, closing, top-hat, black hat, etc.). Although 

these algorithms oftentimes operate on monochrome images, their extensions 

and variations are also developed to allow the processing of multi-channel color 

images [7].  

Thresholding is one of the most popular algorithms for image 

segmentation. The algorithm assumes that objects are formed with similar pixel 

intensities within them in an image. It utilized gray-level histograms constructed 

from raw image/region pixels. A single threshold is selected to separate objects of 

interest in the image (global thresholding) or in local regions (adaptive 

thresholding). The threshold values can be empirically determined based on the 

developer’s understanding of the nature of image collections in hand; may be 

computed from pre-segmented images as training samples; or may be 

determined solely on the pixel information contained in the image. In most cases, 

the last approach (unsupervised thresholding) is utilized since it is not always 

easy to have training samples, and empirically determined values could easily be 

biased with limited a priori knowledge. In our experience, the Otsu threshold [8] 

often works well in simple scenarios where there is a relatively clear separation 

observed in image pixel histogram. However, its effectiveness of separating 

foreground objects from background pixels diminishes as the content of the 

image gets more complex and the intensities of similar objects do not necessarily 

share similar ranges. That is where adaptive thresholding [9] plays its role in 

segmenting objects based on local surroundings. 
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Based on the assumption that regions tend to have sudden and local 

discontinuity of pixel values on their boundaries, another set of image 

segmentation algorithms operate on images by identifying such abrupt changes. 

Edge detection algorithms work well when there is a clear boundary present that 

separates regions from background. In practice, this assumption does not always 

hold, as boundaries in natural scene image as well as domain-specific images 

tend to be blurred and noisy to certain degrees. To overcome such ambiguity, 

different kernels can be utilized to model a ramp of pixel changes instead of a 

step edge. The steeper the ramp slope is, the clearer the edge appears. The 

common edge detection kernels include Sobel, Prewitt, and Laplacian operators 

[3].  

Aside from these aforementioned common image segmentation 

algorithms, there is another set of operations that is also useful in finding the 

correct division between objects and background. They are called morphological 

image processing algorithms. This is a big family of algorithms stemming from 

the fundamental operations of erosion and dilation. Simply put, erosion is an 

operation that “shrinks” brighter objects by applying a small image (so-called 

structuring element, SE) over the target image, anchoring on each pixel, and 

making decisions whether certain criteria are met in order to mark a pixel to be 

kept as an object pixel or treated as a background pixel. The dilation operation is 

considered as the dual of erosion. This duality is also true for other advanced 

morphological operations that are often defined in duels, for example 

morphological opening (the dilation of an eroded image) is a duel of 

morphological closing (the erosion of an dilated image) [3, 10]. Once defined in 
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grayscale images, these algorithms can be extended to handle images with 

arbitrary dimensions and channels. 

Furthermore, grayscale morphological reconstruction is developed on top 

of classic grayscale image morphological operations, yet it is considered to be one 

of the geodesic operations [11, 12]. The reconstruction is essentially the 

recovering of objects in the target image (so-called mask image) that are 

“marked” by another image (so-called marker image) and discarding those 

unmarked ones. However, when the target image and/or marker image are of 

grayscale pixel values, the operation will be more complex than simply picking 

marked connected components in mask image. First of all, a structuring element 

(SE) needs to be defined in the form of grayscale values. Then the geodesic 

distance is determined based on the connectivity in image grid system. The 

grayscale reconstruction by dilation of a grayscale mask image, g, by a grayscale 

marker image, f, is the iterative geodesic dilation of f  with respect to g until 

stability is reached [11, 10]. The morphological reconstruction of a grayscale 

image by erosion can be easily defined by duality as mentioned in the previous 

paragraph. Similarly, there is a family of such geodesic operations on grayscale 

images for reconstruction. Their usage is best demonstrated by finding 

appropriate markers for Watersheding algorithms. Therefore, a robust grayscale 

image reconstruction algorithm can be beneficial to successful image 

segmentation due to its ability to separate overlapping objects while preserving as 

much of the original morphology as possible. We will discuss the details of this 

family of operations and their utilization in cell segmentation in Chapter 6. 
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2.2.2 Feature Extraction 

Feature extraction involves the selection of a set of visual features that best 

describe the visual patterns of objects of interest. As a common subsequent step 

following image segmentation, the description of a segmented object is the 

quantitative representation that a computer can process. As introduced in section 

2.1.4, there are two ways to describe object appearance: (1) its external 

characteristics (boundaries) and (2) its internal characteristics (pixels within). 

Each representation is materialized by numeric measurements that are carefully 

designed to truly extract the underlying features of objects. Regional features best 

describe the internal characteristics of an object, such as color and texture, while 

boundary representation focuses on the external shape, such as smoothness and 

convexity. It is, however, difficult to determine the suitable set of features that 

truly represent the complete and relevant information that humans usually find 

in the image and sometimes non-detectable by human eyes but salient to 

computer processing. The intuitive selection of features makes an attempt to 

reproduce the same patterns that a human would observe. For example, the basic 

statistics of pixel values (raw image) are considered low-level features. However, 

it is usually the set of high-level features that are derived from low-level features 

that play the determinative roles in object recognition, machine learning, and 

information retrieval [13]. With computational techniques, we are able to extract 

groups of high-level visual features in the following general types. 

 In the domain of digital image analysis, color is one of the most common 

types of feature extracted from images. Their values are invariant to translation 

and rotation and are usually insensitive to scale and occlusion changes [14]. 
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Moreover, color is a rich representation of objects in a scene and humans can 

differentiate thousands of color shades, as opposed to relatively few grayscale 

shades. Colors are represented in the realm of digital image processing with 

different special color systems. The most common color system is the Red, Green, 

and Blue (RGB) color system in which each pixel comprises three values 

signifying the intensities captured by each color channel. This model seems to be 

non-intuitive for humans, but it originated from experimental evidence of the 

biology of how human eyes capture and divide colors. There are over 6 to 7 

million cones in the human eye to sense color by measuring these three primary 

colors [3]. In practice, there are alternative color modeling systems that are 

proven to be as useful as, if not superior than, the RGB system. The most popular 

color systems are: HSV/I (Hue, Saturation, Value/Intensity), CMY (Cyan, 

Magenta, Yellow), and CIE L*a*b (Lightness, red minus green, green minus 

blue). Particularly, we have success in practice with the HSV color system due to 

its close mimicry of how humans perceive and describe a color object, namely by 

its hue, saturation, and brightness. Hue represents the base attribute in the form 

of pure colors (red, yellow, purple, etc.); saturation provides a measurement of 

how much this pure color is being diluted by white light; and value/intensity is 

the amount of light (total darkness to total brightness) that a pixel appears to be 

reflecting. This representation is more intuitive than the RGB system and 

particularly useful when designing color-decoupling algorithms to resemble how 

humans observe, perceive, and describe the color aspect of objects. 
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Table 2.1 Haralick texture features 

Entropy 
 

𝑃!,!(− ln𝑃!,!)
!!!

!,!!!

 

Contrast 
 

𝑃!,!(𝑖 − 𝑗)!
!!!

!,!!!

 

Dissimilarity 
 

𝑃!,! 𝑖 − 𝑗
!!!

!,!!!

 

Homogeneity 
 

𝑃!,!
1+ (𝑖 − 𝑗)!

!!!

!,!!!

 

Uniformity 
 

𝑃!,!!
!!!

!,!!!

 

Energy 

 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = 𝑃!,!!

!!!

!,!!!

 

  
Compared to color and texture, which are used to describe the internal 

attributes, object shape is described using external characteristics (boundaries 

and their numeric measurements). This is a big family of descriptors that ranges 

from basic measurements (e.g. curvature, diameter), to statistical moments (e.g. 

Hu moments [15]), to advanced transformations (e.g. Fourier descriptors [16]). 

Table 2.2 Common shape descriptors used for visual feature extraction 

Roundness 
𝑎𝑟𝑒𝑎

𝜋 𝑑 2 ! 

Circularity 
4 ∗ 𝜋 ∗ 𝑎𝑟𝑒𝑎

𝑝!  

Solidity 
𝑎𝑟𝑒𝑎

𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎 
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Convexity 
𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝑝  

Compactness 
4 ∗ 𝑎𝑟𝑒𝑎/𝜋

𝑑  

Form Factor 
4 ∗ 𝜋 ∗ 𝑎𝑟𝑒𝑎

𝑝  

Aspect Ratio 
max (𝑏𝑜𝑥𝐻𝑒𝑖𝑔ℎ𝑡, 𝑏𝑜𝑥𝑊𝑖𝑑𝑡ℎ)
min (𝑏𝑜𝑥𝐻𝑒𝑖𝑔ℎ𝑡, 𝑏𝑜𝑥𝑊𝑖𝑑𝑡ℎ) 

 

The textural features within an image or a region are also a common 

feature group in image processing and retrieval. Its approaches are generally 

grouped into three categories: (1) statistical, (2) structural, and (3) spectral [3]. 

They each specialize in a subdomain of quantitative description and 

determination of the subtle yet complex patterns of pixel arrangement inside an 

image. Haralick proposed the most popular statistical texture features in the 

early 1970s [4] as a set of second order statistics of gray-level co-occurrence 

matrix (GLCM), which is the representation of frequencies of co-occurring pixel 

pairs with specific position relationship as well as their pixel values. The relative 

position relationships are determined both by direction and distance. In order to 

make these texture features rotation invariant, the average values from all 

directions are calculated. The structural approach represents complex patterns 

with a combination of texture primitives. The spectral approach, mostly notable 

for its Fourier spectrum representation [17] as well as Gabor [18] and Wavelet 

transforms [19], addresses texture feature extraction by treating images as a 2D 

signal and transforming it to another coordinate system where certain 
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information is revealed and manipulated. This is not only useful in texture 

feature extraction, but also contributes to image filtering. 

2.2.3 Content-Based Image Retrieval 

As opposed to concept-based image retrieval, which takes as input the 

text-based information about images, content-based image retrieval analyzes the 

image content itself and/or the visual features derived from the content, rather 

than keywords, captions, tags, etc. It is especially useful when the textual 

information is not available or insufficient [20]. While the earliest application of 

content-based image retrieval (CBIR) can be dated back in the early 1980s [21], 

the fields entered its active phase in the 1990s [22] and slowly but steadily 

advances for the past 20 years. 

The basic components of a typical CBIR system include: feature extraction, 

image storage and retrieval, similarity measurements, and graphical user 

interface (GUI). These components are designed and developed to interact with 

each other in order to achieve the successful content-based image retrieval. 

2.2.4 Machine Learning Techniques 

Inevitably, machine learning techniques would be utilized in the process of 

imaging informatics. Machine learning, a subdomain of artificial intelligence 

(AI), takes as input empirical data and learns the underlying patterns to build a 

modeled system that does not strictly process data with explicit rules but rather 

with induced knowledge to make predictions on provided data [23]. The model is 

“learned” using training data, which are explicitly labeled/annotated with 

predefined finite collection of categories (labels). The patterns of the underlying 



 

19 
 

mechanisms are induced based on labeled data. Such data-driven models will 

then be evaluated using test data sets that are also labeled but are treated as if 

their labels are unknown to the model. The accuracy of model prediction 

indicates the usefulness of learned model. Machine learning algorithms can be 

categorized based on different criteria. They are commonly grouped into two 

categories, supervised learning and unsupervised learning. The most typical 

supervised learning is a group of algorithms called classification. The 

unsupervised learning mostly involves the discipline of data clustering. 

2.3 Summary 

This chapter introduced a selective set of topics that are frequently 

referred to and seen applied in the domain of biomedical imaging informatics, or 

generally in imaging informatics. We will revisit their details in subsequent 

chapters when we discuss specific applications.   
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CHAPTER THREE 

3. WEB-BASED BIOLOGICAL AND CLINICAL IMAGE 
MANAGEMENT 

Starting from this chapter, we will present a series of case studies in 

multiple research domains under the umbrella of biomedical imaging 

informatics. First, we showcase several web-based image management systems 

that were designed and developed for biological and medical domains. For each 

application, we also demonstrate our approaches to handle both generic and 

domain-specific challenges in the perspective of managing biomedical images. 

3.1 Problems and Challenges 

With the advances in high-throughput imaging, biologists are gathering an 

ever-growing amount of high quality, high resolution, and high volume imagery 

data. However, the analytic tools to handle such large-scale image data are still 

trying to catch up with the rapid pace of data generation. To ensure the quality of 

image analysis and retrieval, a set of ground-truth data need to be constructed by 

manual annotations from domain experts. This is particularly painstaking for 

biological image data due to the nature of imagery media and subjects of interest. 

Thus, an efficient yet reliable annotation strategy needs to be developed to 

accommodate the fast pace of image analysis. Furthermore, lacking a systematic 

and collaborating system to study and test biological hypotheses that rely on the 

biological morphologies is in need of improvement.   

Dermatology is one of the most visually oriented fields in medicine. 

Dermatologists rely heavily on clinical images to diagnose and treat patients, 

conduct research, and instruct residents and fellows. Moreover, clinical images 
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are the primary media for dermatology professionals to exchange knowledge and 

experience with peers and to teach residents and students. Dermatologists 

learned to individually manage their image collections over the years to 

accommodate their clinic works, research activities, and education duties. Yet, as 

the number of years of experience grew, so did the volume, complexity, and 

variety of medical images. Managing the ever-growing image collection became 

complicated and time-consuming for an individual to handle, let alone making it 

accessible within an entire practice.    

Accessing to medical specialists is not always a convenient choice for 

patients and their families who live in rural areas and under-developed countries 

where medical conditions are limited. The store-and-forward telemedicine 

(SAFT) systems provide a time-saving and money-saving way to connect patients 

to specialists for consultation. Dermatology is one of the medical domains that 

adopt tele-consultation in their clinical practices. Most existing store-and-

forward teledermatology (SAFT) advisory systems use primitive Internet 

technology, such as e-mails or simply websites to handle case submission and 

communications among medical experts. However, it is not a secure choice when 

considering patient confidentiality and expert comfort assurance. Thus, it is 

imperative to design and develop secure and easy-to-use SAFT systems to 

improve the quality and efficiency of tele-consultation, in not only dermatology 

but also other medical professional subdomains that frequently need 

examinations of images and videos of patients. 

In the eye of producing a new health IT application, a successful adoption 

is the overall goal. However, it is equally essential to study the process of 
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adoption and to understand users’ interactions with the application, finding both 

common and different usage patterns. The studies of human-computer 

interactions in health care settings [24, 25, 26] greatly suggest the importance of 

understanding user behaviors and their feedback on the merits and limitations of 

the current design, resulting in improvements and suggestions to achieve a 

successful health IT implementation. Moreover, a useful, efficient, and 

convenient medical image management system by the side of medical 

professionals would impact not only the quality of clinical care, wound 

management and patient outcomes, but also the depth and breadth of medical 

research and education. The better users’ usage behavior patterns are studied, the 

greater the understanding of the essential driving force of a successful health IT 

application, achieving an increased aforementioned positive impact and influence 

in the field. 

To address the aforementioned challenges, we present our 

accomplishments in designing and developing image management systems for 

biologists and medical professionals. First we introduce BioShapes.org – a web 

platform for researchers from diverse domains to collaborate on a common 

interest – biological shapes. Particularly, a close collaboration among scientists in 

analyzing mitochondria dynamics is presented, emphasizing image management 

and annotation strategy for large-scale biological image data. Next, we present 

two web-based systems that are designed for dermatology professional for online 

consultation (a store-and-forward teledermatology system) and for clinical image 

management and annotation. To understand the workflow and usability of such 

systems, we also conducted quantitative analyses on domain expert 
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communication patterns and user behavior patterns while interacting with the 

system. 

3.2 BioShapes.org and Biological Image Annotation 

BioShapes.org was conceived and developed to be a web platform for a 

multi-institute collaboration of scientists, biologists, and mathematicians from 

diverse research domains. Although seemingly distinct if not remote from each 

other, these domain experts share a common interest in the biological shapes and 

their contribution in understanding the underlying mechanisms that drive their 

research forward.	The subjects of interests include: tropical pollen and spores, 

bat ears and noses, embryonic hearts in chickens, and mitochondrial shapes and 

dynamics. The leading quest of this collaboration is to answer the following 

questions with computational approaches: 

• Are current qualitative morphological categories (e.g., taxonomic, 

developmental) real and consistent?  

• How does biological form relate to function?  

• Can we predict physiological function, phylogenetic relationships, or 

ecological role through shape? 

Based on these questions, four working groups are formed from an NSF 

funded project involving eight institutions: Mathematical methods and 

computational tools (MCT), Biological case studies (BCS), Visualization and data 

management (VDM), and Dissemination, education, and outreach (DEO). My 

involvement was primarily designated for VDM (developed and maintained 

BioShapes.org website where the goals and the results of the BioShapes group are 
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publicized, and sample datasets and metrics are available for download) and BCS 

(collaborated in mitochondrial dynamics study and Neotropical pollen and spores 

shape study). In this section, we will emphasize one of our close collaborations 

with fellow scientist on mitochondrial dynamics. 

3.2.1 Background on Mitochondria Dynamics 

Mitochondria are essential membrane-bound organelles found in most 

eukaryotic cells. A key mechanism of mitochondrial shape change is through 

their fusion and fission. Mitochondrial dynamics is essential to the spatial and 

temporal control of their functions in response to changing needs of dynamic 

cellular processes. In particular, it is critical to neurons because of their highly 

polarized structure. Defects of mitochondrial dynamics have been strongly 

implicated in many neurodegenerative diseases including Charcot-Marie-Tooth 

disease, Parkinson’s disease, and Alzheimer’s disease [2]. Overall, however, how 

mitochondrial dynamics and mitochondrial function are connected at the 

molecular mechanism level remains largely unknown. In a step towards 

answering this question, this collaboration has developed computational 

techniques for quantitative characterization of shape and motion dynamics of 

mitochondria. We used these techniques to analyze mitochondria dynamics in 

axons of normal as well as degenerative neurons from third instar larvae of 

Drosophila - an organism commonly used to genetically model human 

neurodegenerative diseases. 

To capture the mitochondrial dynamics, axonal transport of fluorescently 

labeled mitochondria were imaged in axons within segmental nerves of dissected 
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Drosophila 3rd instar larvae with microscopic camera in the form of videos (time 

lapse sequences of images), lasting 60 seconds at a 3 second interval (Figure 

3.1A). Next, individual frames are processed to identify mitochondria objects that 

are then tracked using a kymograph-based single particle tracking algorithm 

(Figure 3.1B) that was initially developed for tracking vesicles [27]. Each object is 

then labeled across all frames in a movie. 

Figure 3.1 Imaging mitochondrial transport in segmental nerves of Drosophila 
3rd instar larvae. (A) Four regions on a larva model (top) were imaged as videos 
in which each frame (middle) captures mitochondria objects within a 
highlighted (bottom) axon band where vesicle transport takes place. (B) 
Kymograph is generated by combining all frames vertically (left) and then 
recovered mitochondrial transport trajectories are artificially colored for later 
analyses. 

A set of visual features are calculated to represent object morphology: 

area, orientation, extent, perimeter, convex hull area, solidity, eccentricity, major 

axis length, minor axis length, and equivalent diameter. Using these low-level 

visual features, different mitochondrial shapes are classified into 8 categories 

(examples are shown in Figure 3.2). 
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Bead: shapes that are approximately circular. Small mitochondria with 

size close to the diffraction limit are generally classified into this category. 

Beadstring: shapes similar to a string of beads. 

Rod: shapes with approximately uniform width and a high ratio of length 

versus width. 

Pear: shapes with one round end and one tapering end.  

Horseshoe: round shapes with a notch on one side.  

Symmetric Oval: shapes that are close to ellipse with smooth ends. 

Asymmetric Oval: shapes that are close to ellipse but with less even ends. 

Irregular: shapes that do not belong to any groups above. 

 
Figure 3.2 Examples of mitochondria shape categories 

With each mitochondria (object) being detected and measured, 

trajectories of the mitochondria were reconstructed across the whole frames. 

Depending on the number of trajectories and number of actual frames that 

contains detected regions, the total number of regions in one movie range from 

248 to 2425 in our dataset. Since it is virtually impossible to assign shape 

categories to individual regions, an efficient and user-friendly web interface is 
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designed to carry out the semi-automatic, bottom-up and rank-based region 

grouping process followed by manual labeling to produce training data for the 

subsequent data analysis steps. 

3.2.2 Region Grouping 

The detected regions on frames of each trajectory are extracted and saved 

as individual images. The regions in each trajectory are clustered and sampled 

through an automatic clustering step followed by three manual grouping stages 

to create a training set for all movies.   

Clustering – Within each trajectory, regions are clustered into indefinite 

number of groups using DBScan with calculated visual features [28].   

Stage I – As shown in Figure 3.3, clustered regions are displayed in groups 

with a few left ungrouped for user to assign to a group. In addition, user can 

create new groups if the clustering results are not satisfying.  

Stage II – After all the regions are assigned to specific groups, users will be 

prompted to stage II where regions are sampled from each groups from all 

trajectories within a movie. As shown in Figure 3.4, the sampled regions will be 

grouped further into groups according to users’ preference on morphological 

characteristics. 

Stage III – After all movies are processed, the grouped stage II regions will 

be sampled on stage III and selected to be labeled in the labeling step. 
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Figure 3.3 Step I of region grouping. In the shown page of a movie, there are 
25 trajectories with 1785 regions extracted. Regions in trajectory #04 are 
clustered into four groups automatically based on their visual features. 

 
Figure 3.4 Step II of region grouping. Regions are randomly sampled from 
groups created on Stage I (one per group) and listed on the left panel for 
experts to drag-and-drop to the groups on the right panel. Sample list can be 
regenerated until experts are satisfied with the results. 

3.2.3 Region Labeling 

After previous three stages of grouping, at least one region will be selected 

from each group onto labeling step. Selected regions from stage III are listed on 
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the labeling website (Figure 3.5) for users to review and assign predefined 

semantic labels. In this study, we provide 8 shape labels and 3 size labels (small, 

medium and large). Consensus labels are used to label the rest of the training 

data. 

 
Figure 3.5 Region labeling webpage. Users use rating bars to assign labels to 
each region with three options (Yes, No, and Not Rated). Only one shape label 
and one size label are assigned to each region. 

3.2.4 Semantic Labeling 

For semantic modeling we generate associations between feature 

subspaces and domain semantic of interest. For example, in our experiments, we 

determined that 90.5% images that have the measurement in the feature 

subspace formed by 

 [ ] [ ]08.17,09.137749.0,053.06 ∈∧∈ FF  

were labeled “Bead”. Due to this high density we can create predictive association 

 [ ] [ ]{ }""08.17,09.137749.0,053.06 beadFF →∈∧∈   

that can be used to predict the relevance of new, not evaluated images to the 

semantic “bead”. In our experiments we generated relevant subspaces using the 
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Apriori algorithm. To further refine the semantic assignment, the discovered 

associations semantic modeling (SM) is reduced to improve mean average 

precision (MAP) score of ranking. (Figure 3.6) After reduction, the SM model is 

used for prediction. For example, the semantic model for the semantic “beads” 

contains 18 association rules that segment the feature space using between one 

and three features. For details of this subsection, please refer to previous works in 

[29]. 

Figure 3.6 shows the results of ranking images by semantics using 9 

semantics of interest (six from Figure 3.2 and three size-related categories). The 

dataset contained also four images labeled “horseshoe” that were used in data 

mining. However, a semantic model was not generated for this semantic due to 

lack of sufficient data. For this experiment, we have mined associations using the 

following Apriori parameters: minimum support 0.75% and minimum 

confidence 60%. As seen in Figure 3.6, these semantics return good MAP scores, 

demonstrating potential for predicting new semantic assignments. 

 
Figure 3.6 Results ranking images by semantics using MAP scores. 

Data analytics for complex biological data require new ways of reasoning 

of the low-level features so that they can be associated with high-level biological 

meanings for better understanding of underlying mechanisms for scientific 
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discoveries.  In this study, computational methods have been developed to mine 

the patterns of shapes of biological objects, automatically annotate the biological 

semantics of objects, present object dynamics in a computational way, and make 

the information searchable for in-depth studies.  The success of the work will 

bring new informatics tools for the life sciences community to look into the 

dynamics of biological objects in a systematic and analyzable means. 

Another close collaboration with palynologists on searching Neotropical 

fossil pollen and spores images based on shape characteristics will be highlighted 

in Chapter 5. Next, we will introduce two web-based applications in the medical 

domain, specifically, dermatology and teledermatology. However, we argue that 

our system and approach of handling clinical image and data management can be 

further adapted into other similar medical domains that, like dermatology, rely 

heavily on clinical images. 

3.3 SAFT for Dermatologists and Patients  

3.3.1 Background on SAFT and Ichthyosis 

In the domain of dermatology consultation, the most traditional fashion is, 

as the majority of other medical specialties, relying on face-to-face encountering 

where dermatologists would both visually and physically examine patient’s skin 

lesions. However, due to the limitation of money, traveling, accessibility, and 

resource allocations, not all patients have the convenience to receive a 

dermatological consultation when they most need it in a timely fashion and their 

primary care doctors do not have the specialty to diagnose and treat the disease. 

This is when telemedicine, specifically teledermatology, fills the gap in medical 
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services. Telemedicine, as defined by American Telemedicine Association [30], 

“is the use of medical information exchanged from one site to another via 

electronic communications to improve patients’ health status”. It can be utilized 

as a bridge between primary care doctors and experts with specific medical 

knowledge and experience, allowing evaluation and treatment of difficult medical 

cases through telecommunication technology. In dermatology, telemedicine has 

already played a crucial component in delivering efficient service of diagnosis and 

management of dermatologic diseases for patients and also providing advisories 

for physicians in primary care settings. In the United States, teledermatology has 

been used to improve access to care in rural and medically underserved areas 

[31]. 

There are two general types of telemedicine in the field of dermatology: (1) 

real-time tele-consultation between patients, accompanied by their primary care 

providers, and a dermatologist located afar; and (2) store-and-forward 

teledermatology (SAFT) system where medical cases are submitted by primary 

care providers into a central system and later attended by distant experts when 

they are most available. During the telemedicine process, communication 

happens over the web or via email asynchronously. Moreover, it makes it possible 

to take advantage of remote experts who will have time to carefully study difficult 

cases before making a medical decision. Most existing SAFT advisory systems use 

primitive Internet technology, such as e-mails or simply websites to handle case 

submission and communications among medical experts. However, it is not a 

secure choice when considering patient confidentiality and expert comfort 

assurance. 
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Ichthyosis refers to a group of inherited skin diseases characterized by dry, 

thickened, scaling of the skin.  Affected patients often report difficulty in finding 

physicians who are knowledgeable about their conditions and their treatment. 

F.I.R.S.T. [32] is a support organization for Ichthyosis patients and their families 

that have pursued the use of store-and-forward teledermatology to facilitate 

communication between physicians caring for patients with Ichthyosis and 

experts in these rare diseases. Since 2009, we have been providing a web-based 

tele-consultation platform for primary doctors, Ichthyosis experts, and patients 

as well as their families this community. With steady growth and improvement 

over the years (Figure 3.7), it has become well accepted by not only primary 

doctors but also patients who suffer from this rare skin disease from around the 

world. There have been over 120 medical cases submitted by primary care 

doctors and social workers, that were then reviewed by over 30 specialists. The 

general purpose for this system is to provide a secure and easy consultation 

environment for experts to discuss dermatological cases submitted worldwide. 

The research team here at the University of Missouri conducted an 

analysis on Ichthyosis experts’ activities across two years of consulting 

teledermatology cases on this platform to discover behavioral patterns, which 

could be used to provide feedback to users for future involvement and improve 

the development of new features and workflows for existing system and other 

similar tele-consultation systems. 
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Figure 3.7 Two generations of F.I.R.S.T. Tele-Ichthyosis websites. 

3.3.2  System Structure 

In our system, the teledermatology process has been broken down into 

several distinct modules. From the system architecture shown in Figure 3.8, the 

primary modules for case consultation include submission, discussion, final 

report, voting, and feedback. 

 
Figure 3.8 Tele-Ichthyosis system structure. 

Case Submission: During submission, the case author is required to 

provide crucial information related to the patient’s condition, including brief 

description of medical history, past treatment, symptoms and medication, etc. 

Clinical images may be uploaded allowing participating experts to view pertinent 
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findings. After creating the medical case, the author submits the case for approval 

by one of the system administrators, who are the moderators responsible for the 

daily functioning of the SAFT system. If the administrator considers the case 

description insufficient, the author will be asked to provide additional 

information or make modifications.  

Case Discussion: Once the case is suitable for discussion, it is assigned to 

an expert and he/she will select several other experts for case discussion. Each 

expert submits comments to the forum until a satisfactory decision can be 

reached. If it is determined that more information is required, the leader will 

correspond with the author to provide additional details. Because all 

correspondence with the author goes through the case leader, we protect the 

identities of contributing experts so that they will feel more comfortable 

providing feedback in the forum setting. 

Case Report: Once the case leader determines that the discussion is 

complete, he/she will compose a final report to summarize the main points 

including disease concept explanation, diagnosis (if reached), and treatment 

suggestions to be sent to the case author. 

Case Voting: Before sending out the case report, all of the participating 

experts will be asked to approve the summary through a voting system.  The 

confidential voting results will be sent out along with the final report to the 

author. 

Case Feedback: As the last stage of the teledermatology process, the case 

leader will close the case, compile the final report and voting results, and provide 

the feedback to the case author. The final report will be sent to the case author 
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without leaking the identities of participating experts and the closed case can be 

shared within the system to fulfill the education purpose. 

3.3.3 Case Variables 

Each case consultation involves a case author, a case leader, and several 

participating experts. The number of participants, comments, additional pictures 

and case request types vary among cases existing in the system collection. The 

request type for a submitted case can be asking for differential diagnosis, 

treatment and management, or a general purpose of discussion for an interesting 

case. We use those basic variables as observational evidence to extract common 

patterns across the whole collection of cases. 

3.3.4 Comment Linearity 

It is not uncommon to see that in any forum-style discussion some 

comments are a direct response to a previous comment. The interactions between 

participants in commenting are grouped into two levels – comments with direct-

responded targets are level 2 while those that simply introduce new inputs are 

level 1. A measurement of these leveled comments is defined as comment 

linearity L – the ratio of level 1 comments and total comments, 𝐿 ∈ (0,1].  

 ( )
commentsall

commentslinearlevelL
#
1#

=  (3.1) 

A case with only level 1 comments (L = 1) is considered a linear discussion case 

while the one with level 2 comments will have smaller L value indicating a less 

linear discussion. 
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Figure 3.9 Comment linearity examples. Left:  a case with L= 1 and no image; 
Right: a case with L = 0.67 and 10 images. 

3.3.5 Communication Modeling 

The interaction between experts and cases is modeled using the concept of 

social networking, which can systematically identify central users as well as those 

who remain isolated by constructing a graph (Figure 3.10). In such a network 

graph, composed of nodes and edges, a node represent a participating expert and 

an edge represents an instance of communication between experts. 

Consequently, we can observe the density of a node by counting the number of 

connections. This gives us a sense of the level of interaction for participating 

experts. 

Expert nodes have various numbers of connections (in red), reflecting the 

number of cases to which each expert contributed. Expert 23, the central node in 

Figure 3.10 has the largest number of collaborations, and acts as the hub of the 

social network. Other experts are associated with expert 23 through case 

collaborations. A hub node has an important role in a social network, as it 

frequently serves as an intermediary between unconnected nodes. As we examine 

expert nodes, we noticed nodes 43 and 4 that have only a single link. Similarly, 

case nodes 45 and 47 also have one edge indicating a singular collaboration with 

an expert. Such aspects provide a valuable insight into potential reasons why 

either experts or cases are isolated. The case leader plays a critical role in a 
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fruitful and ultimately successful discussion. A successful leader requires good 

understanding of his/her obligation, familiarity of key functions of the system, 

and proactive leadership qualities for moderating the consultation process. The 

final feedback is composed by the case leader collecting key points from all the 

comments and is sent to the case author. Case authors benefit most from 

responses that contain insights based on the collective experience of the experts 

and rich medical analysis and explanation. Sometimes the inquiry problems are 

not fully addressed in the final responses because of lack of consensus form all 

participants. Those responses are considered as weak responses. There are 42% 

of cases concluded with weak final responses. However, the most active leader 

participated in seven cases with only two weak responses. 

 
Figure 3.10 Communication networking around a core expert (hub). 
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Based on our analysis of cases in our teledermatology system, we have 

arrived at the following suggestions for the design of telemedicine systems and 

potential improvements of our existing system:  

1) Certain types of cases would benefit from a customized workflow, such 

as simplified process for cases that can be answered by a single expert.   

2) Users can be identified and targeted for notifications or particular cases 

through social networking tools.  

3) Users can be asked to categorize their own cases for more specialized 

workflows for more suitable discussion group selection to lead to a better and 

faster discussion.  

4) Users should have a mechanism to provide a follow-up and feedback 

about the usefulness of expert’s suggestions and system usability.  

5) Experts should be strongly encouraged to communicate within the 

system. 

6) Social network graphs can identify critical experts and ensure robust 

and healthy communication in the event of an experts’ absence. 

3.4 Clinical Image Management and Usability Study 

3.4.1 Background 

The current electronic solutions to manage clinical images can be loosely 

categorized into three types: customized modules for commercialized EMR/EHR 

systems, stand-alone software applications for desktop computers, and web-

based applications or resources. Each type has their own strength to support 

health care professionals. While each has characteristic merits on providing 
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services to medical professionals, there are also some inherent aspects. For 

example, modules from EMR vendors or a separate product can be relatively 

expensive and rigid in customization; stand-alone applications may require 

certain operation system configurations; and free third-party software are 

conceived and developed with the purpose of serving general image management 

(for example, Picasa, iPhoto) in the core design concept. However, web-based 

applications or resources are designed for multiple professional users from the 

entire department or private practice in a secured environment. With a secure 

Internet connection, there is no limitation of user location or choice of web 

browsers. Furthermore, there is no software installation needed on any desktop 

computers. Table 3.1 lists some well-known web-based resources for 

dermatology, including our own MDID system. 

Table 3.1 Web-based dermatology image resources. 

 EMR 
Assoc. 

Image 
Browse 

Simple 
Search 

Multiple 
Search 

Additional 
Info. 

Personal 
Collection 

DermNet.com ✗ ✓ ✓ ✗ ✗ ✗ 

DermNetNZ.org ✗ ✓ ✓ ✗ ✓ ✗ 

DermQuest.com ✗ ✓ ✓ ✗ ✓ ✓ 

DermAtlas.org ✗ ✓ ✓ ✓ ✓ ✗ 

DermAtlas.net ✗ ✗ ✗ ✓ ✓ ✗ 

DermIS.net ✗ ✓ ✓ ✗ ✓ ✗ 

Dεrmo-Image ✓ ✓ ✓ ✓ ✓ ✗ 

DermaShare ✓ ✓ ✓ ✓ ✓ ✓ 

MDID ✓ ✓ ✓ ✓ ✓ ✓ 

 

Mizzou Dermatology Image Database (MDID) is designed as a web-based, 

database-driven clinical image management system for dermatology 

professionals at Department of Dermatology, University of Missouri and its 
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affiliated clinics. This system has also been perceived as a generic model for any 

dermatology practice and some other image-intensive subspecialties. MDID 

provides daily image-involved routines, such as upload, view, organization, 

sharing. All of which take place in doctor’s offices, patient rooms, and nurse’s 

workstations. The main purpose of MDID system is to serve as an easy-to-use, 

secure and efficient interacting media between human (dermatology 

professionals) and machine (web and database servers). Instead of directly 

managing image files on the file server, users would access the designed MDID 

interface components to achieve clinic image management tasks (Figure 3.11). 

 
Figure 3.11 System structure of MDID. 

With MDID, digital images are transferred to and stored on a web server, 

while all relationships among patients, images, and dermatologists, etc. are 
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stored and managed in a separate database server. Instead of letting users 

directly manipulate images on the file server, MDID provides all the necessary 

functionalities through its web interface, where images are handled with 

designed standard procedures. The merits of separating users from direct data 

access are to protect data integrity, to prevent image duplication and accidental 

deletion, and to monitor image access. 

The core entities are associated around clinic visits. In other words, one 

specific clinic visit, taking place at a clinic, involves a patient, one or more 

dermatologists (physician), and possibly some images. Each image can be 

annotated by a DermLexTM concept as its diagnosis and multiple free-text tags. 

Another convenient function that MDID provides is folders. Images can be put 

into multiple folders stored only in the database according to user’s preference 

just as what they may prefer in their conventional organization of images. In this 

case, managing images is still customized but images are not duplicated in 

multiples physical file instances all across the disk space. MDID records all web 

usage activities in its log system for application usage analysis and data recovery. 

The rich log data are intensively analyzed in our study to discover and 

understand how dermatology professionals utilize MDID into their clinic routines 

on a day-to-day basis. 

Beyond the implementation of a useful web-based application for clinic 

image management, another goal of this work was to study the process of 

adopting a new health IT application in a health care specialty and to discover 

interesting user behaviors throughout the adoption for their professional 

training, diagnostic activities, and academic research. In the next section, we will 



 

43 
 

emphasize our longitudinal study of system usability and usage behavior patterns 

with MDID as a general model for other similar systems. 

3.4.2 Data Collection 

All professionals in the Department of Dermatology and its clinics, who 

work closely with clinic image management, are the targeted subjects. For 

example, nurses and technicians would upload images to MDID; dermatologists 

would search for patients and images; and any approved employee associated 

with the department is able to retrieve images. Our longitudinal study is designed 

to utilize several research instruments.  

• Online surveys were distributed three times: a pre-launch survey to 

collect participants’ perception and attitude toward their image-related 

routines before MDID implementation and two periodic user feedback 

surveys amid and at the end of the study period.  

• Interviews were conducted twice at around the same time with the 

two periodic surveys to catch participant’s verbal description of their 

experience with MDID.  

• Field Observations: The department holds weekly research sessions 

to exchange clinical experience, case progress, and discoveries. The 

research team attended these sessions as sit-in audience members and 

took notes of any activities that involved medical image management.  

• User Activity Logging: To avoid disrupting the user’s experience, a 

built-in logging module of MDID was used to capture the application 

access activities. Unlike the typical web log analysis that uses server 
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logs, MDID’s log module records not only standard web page access 

information, but also user-specific information related to MDID’s 

functionalities. 

3.4.3 Usage Log Data Analysis with Sequence Mining 

Log data are recorded as time sequences of events triggered by user 

actions and web application functions. Therefore the analysis of log data is a 

study of discovering salient sequential patterns. The raw log data records 

generated by the MDID log system store necessary information in regards to 

individual actions triggered by mouse clicks. A session on MDID consists of a 

series of mouse-clicks, with each mouse click producing a list of ordered 

elemental actions with the data structure shown in Table 3.2. A single action 

example shown in Table 3.2 tells us that on date ‘2013-07-26’ at time ’16:39:20’, 

after viewing a record page of patient with medical record number (MRN) ’99-99-

99-99-9’, user ‘jsmith’ chose to see all visits pertaining to this patient. This single 

action is coded with i10 and is uniquely identified with Log ID 371611. Additional 

information of this page access shows that this patient has an ID of 4 and 

attended 2 clinic visits where 12 images were captured. 

Every page loading is triggered by a mouse-click that subsequently 

initiates a series of elemental actions to complete a specific task. Different 

combination of such elemental actions can form different tasks. We were 

interested in how the tasks were performed with what kinds of patterns. 

Therefore, two rounds of necessary mappings of the raw log records were 

conducted. The first round of mapping assigns a unique code to each type of 
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elemental actions, followed by the second round of mapping assigning unique 

tasks that are composed of such actions. The coded series of tasks after the 

second mapping are eventually used for sequential pattern mining introduced in 

the following section.  

Table 3.2 Essential attributes of log data structure in this study. 

Attribute Description Example 

Log ID Unique identifier of the log instance 371611 

Timestamp Time at which the instance happened 2013-07-26 16:39:20 
User ID User who made the action jsmith 

Action ID Functions or Page Access  i10 

URI Current accessed page Images/patient/99-99-99-99-9 

Referrer Page that precedes current URI patients/show/99-99-99-99-9 

Note Additional action-specific information [patient_id]=>'4';[date count]=>'2'; 

[image count]=>'12'; 

3.4.3.1 Sequential Pattern Mining 

Sequential pattern mining, or sequence mining, is a data mining technique 

that discovers sequentially interesting information with statistical significance.  It 

is a popular choice of many applications to gain knowledge of research fields, 

such as consumer behavior, biological sequence analyses, and web usage analysis. 

Agrawal and Skikant [33] first defined the method in year 1993 as one to find all 

frequent subsequences, in a set of sequences, with occurrence frequency no less 

than user provided minimum support threshold. In most scenarios, the problems 

are described symbolically; that is, a set of items are defined to form sets of 

events that are then sequentially ordered into sequences. A sequence database 

consists of a set of sequences uniquely identified by their IDs. The sequences 

whose support values are no less than the minimum threshold are considered to 

frequently represent interesting sequential patterns in the database. The MDID 
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log system records every action initiated by users’ mouse clicks. To understand 

how its users interacted with different functionalities and how often various 

usage patterns occur at different periods of time, a sequential pattern-mining 

algorithm, SPADE (Sequential PAttern Discovery using Equivalence classes) [34], 

was utilized on collected historical user log data over the course of this study. 

 

   

Figure 3.12 Frequent usage patterns discovered over time windows for each 
user group. 

3.4.3.2 Recommendations 

Once users’ usage patterns are discovered, a better understanding of users’ 

needs are revealed. Consequently, a planned strategy can be suggested to further 

improve user experience, system efficiency and effectiveness. 

• The most frequently used functions should be made most easily 

accessible and tailored to different groups of users. For example, a 
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user’s role is recognized as soon as they log in and a customized 

dashboard is constructed to display those most accessed functions. 

• There could be two strategies to deal with those functions that are less 

likely to be used by certain groups of users. 

o Place them in a less distractive location on the application interface, 

so that users can focus on what are most useful to them. 

o Meanwhile, periodically prompt users with those less often used 

functions and encourage them to try out. 

• Introducing a new health IT application to a well-established workflow 

needs not only one but several tutorials and assistance along the 

adoption process. A close collaboration between developers and end 

users will encourage better and faster adoption. 

Although at this point, MDID is designed only for dermatologists from one 

department, its design concept, data structure and functionalities all make it 

possible to be adopted into other clinical domains. Furthermore, patients are not 

left out of the picture. Doctors have shared their experiences that at the clinic, 

patients welcomed the in-time observation of their historical images and they 

gained better understanding of their disease situation and the importance of 

careful management. It is obvious that users usually have a targeted patient in 

mind before they initiate the searches for either images or patients. This 

discovery coincides with MDID’s designed purpose. 
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3.5 Summary 

In this chapter, three web-based image management systems were 

developed for biologists and dermatologists for a broad usage: image storage, 

annotation, tele-consultation, clinical case studies, educations, and more. We 

demonstrated our approaches to handle large-scale biological image organization 

and annotation with efficiency (hierarchical grouping) and meaningfulness 

(semantics discovery). This can be extended many other applications in the fields 

of biological image analysis where large collections of similar images can be 

grouped and then annotated both automatically and manually. 

We also demonstrate that a useful web-based resource system would assist 

medical professionals to perform tele-consultation around the global providing 

most-needed medical advisories and to manage day-to-day clinical images with 

security and efficiency. 

Another related research work was also conducted on a mobile extension 

of MDID system. We studied the adoption process of mobile MDID on iPads that 

functions as a complimentary method for tele-conference consultation sessions 

between dermatologists at University of Missouri Health Center and local doctors 

and their patients in rural mid-Missouri.  
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CHAPTER FOUR 

4. VISUAL CONTENT EXTRACTION  

 
In this chapter, we shift our focus from the front-end of image 

management to the backstage where advanced image processing and analysis 

approaches play their roles in extracting visually meaningful content from 

biological and medical images.   

4.1 Problems and Challenges 

Scientists and researchers who work closely with digital images obtain 

high-level and domain-specific knowledge through extensive training and years 

of experience in the related fields. They make discoveries by visually examining 

the content of images. As the volume and speed of digital image generation 

increase, so does the need to develop accommodating computer programs to 

process and analyze images with both quality and efficiency. One of the toughest 

jobs is to program computers to examine images as human. In order to do so, we 

first have to understand the reasoning that leads to knowledge discoveries. Next, 

we will need to expressively design computer programs to automate such 

reasoning process. Therefore, it is imperative to develop smart visual content 

extraction approaches.   

In digital image processing and analysis, a series of processes need to be 

designed and developed to work together and eventually extract the visual 

content residing inside images. They usually involve image pre-processing, object 

segmentation and identification, and visual feature extraction. Domain-specific 

knowledge drives the design logic of actual computer vision programs for 
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automatic image processing and analysis. Therefore, a comprehensive 

understanding of research domains is crucial to provide helpful analysis tools for 

researchers. In the following sections, we will introduce several biomedical 

imaging fields and their specific needs for automatic image processing and 

analysis followed by our approaches to address such needs. 

4.2 Grain Shapes of Neotropical Pollen and Spores 

4.2.1 Background on Palynology and Grain Shapes 

Palynologists use the morphological characteristics of pollen and spore 

grains to identify, classify, count, compare and log plant diversity within geologic 

samples from different geographical locations and ages. These data are used to 

address research questions in areas such as biostratigraphy, paleoecology, 

biodiversity, climate change, taxonomy, evolution, and are even increasingly 

employed in forensics. The potential sample size represented by a fossil pollen 

sample can be very large, since hundreds to thousands of grains can be preserved 

in a drop of pollen residue extracted from a geological sample (rock or sediment); 

but, the classification of samples is still primarily qualitative and manual, based 

on the visual identification of key morphological features, and requires 

significant experience and expertise [35, 36]. 

This manual, intuitive approach to classification [37] potentially results in 

discrepancies in taxonomic identifications due to individual differences in 

analysts’ interpretation of morphological details, familiarity or experience with a 

given suite of taxa, fatigue, and preservation of fossil pollen material. 

Morphological similarity among related taxa may also decrease the taxonomic 
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precision of identifications, due to the inability to observe or to define 

morphological differences [38]. Moreover, the intrinsic morphological variability 

found within pollen grains from even the same species makes it difficult to assess 

the morphological boundaries of any given fossil species. There are few published 

studies of how much morphological difference can be consistently recognized 

among analysts [39]. As a result, the recognition and formal naming of new 

morphotypes relies on a certain degree of consensus from a community of 

experts. However, with advanced imaging technology, digital microscopic pollen 

images are being generated with increasing speed and volume, producing 

opportunities to improve upon the traditional manual identification and sorting 

of grains and to produce higher throughput approaches to pollen analysis. 

There are prominent databases and software applications in literature 

developed to assist palynologists in their identifications. For example, Bush and 

Weng [40] designed a downloadable Neotropical pollen database as a freeware 

for Neotropical palynology researchers. It provides multiple-access keys to query 

the database with flexibility and tolerance in missing data attributes. The 

collection contains pollen images, primarily taken with transmitted light 

microscopes, from more than 1000 Neotropical species. Morphological features, 

such as pollen shape, pore shape, reticulum shape, and  pollen size, can be used 

to query the database. A second pollen image database, PalDat [41], has a similar 

query structure and web-based interface and includes both transmitted light 

images and scanning electron micrographs (SEM) from ~2200 modern species 

and 32 fossil ones. Neotoma Paleoecology Database [42] is another example that 

provides complex information for Pliocene through Holocene mammals and 
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fossil-pollen data from published literature and collaborating individuals from 

multiple institutions. Its main purpose is to map spatiotemporal taxa distribution 

[43]. Classfynder developed at Massey University is a stand-alone system that 

provides a framework for image acquisition and classification of modern pollen 

materials [44]. Its experiments suggested that computer performance in pollen 

identification and classification was comparable to human experts, but with 

better consistency. This work can be further extended to image search using 

extracted visual features of identified grains in both modern and extinct species.  

While these image databases and software applications serve as valuable 

resources for pollen identification, having to manually label and compare 

morphology is both time-consuming and subject to the idiosyncrasies of 

individual analysts. Automated visual content extraction allows analyses to be 

kept more consistent across multiple sites, and is especially useful when there is 

an unknown sample with new morphotypes that needs to be compared against 

existing collections. Previous applications of machine-based classifications for 

pollen identification have focused on the accuracy of the end classification [45] 

and generally do not provide a mechanism for establishing the community-level 

consensus of identifications that is required when working with extinct species. 

Developing a broader platform for capturing and sharing expert knowledge 

builds on previous machine learning and image database efforts and provides a 

pathway for making these tools widely accessible.  

The ultimate goal of this research is to use informatics tools to assist 

palynology study in form of increases in speed, efficiency and reduces in inter- 

and intra-observer inconsistency and labor intensity and eventually to determine 
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species of new samples. In the steps toward this goal, we have developed a 

database-driven application that integrates the analysis of image content, grain 

object morphology, morphology semantic modeling and annotation, and user-

computer interaction through web pages for multi-modal information 

integration. To our knowledge, our work is the first attempt to develop a unique 

search engine to utilize image-based morphological content for grain image 

retrievals in palynology. In this chapter, we will be emphasizing on the image 

processing and analysis components of the project while leaving its content-

based image retrieval aspect presented in the next chapter. 

4.2.2 Data Collection 

In this study, 525 images from Miocene-aged pollen and spore material 

were taken from a stratigraphic section of Falcon basin in Venezuela [46, 47]. 

These images represent the 15 pollen taxa and 5 spore taxa listed in Table 4.1. 

Morphological information for each of the taxa was collected from the 

Smithsonian Tropical Research Institute (STRI) palynological database [48], 

which contains the morphological descriptions of ~2700 species of Neotropical 

fossil pollen and spores. Images were taken using a Zeiss AxioImager microscope, 

Plan-Apochromat SF25 (63×, 1.4NA, oil immersion) lens and a Zeiss AxioCam 

ICc 3 digital microscope camera. This subset of taxa was selected based on its 

morphological diversity and sample availability at the time of study. Since 

overlapping of grains and debris is not uncommon in prepared microscopic 

slides, each sample image was cropped roughly at the center of a grain without 

intentionally avoiding debris. 
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Table 4.1 Dataset details of Neotropical pollen and spore samples. 

 ID Taxon # Grains # Images 
(mean) 

P
ol

le
n

s 
1014 Clavainaperturites microclavatus 6 24 (4.0) 
148 Clavainaperturites clavatus 7 22 (3.1) 
246 Echiperiporites estelae 5 18 (3.6) 
1430 Echiperiporites scabrannulatus 7 24 (3.4) 
365 Grimsdalea magnaclavata 5 21 (4.2) 
254 Malvacipolloides maristellae 7 25 (3.6) 
450 Mauritiidites franciscoi var. franciscoi 9 46 (5.1) 
451 Mauritiidites franciscoi var. minutus 7 34 (4.9) 
511 Perisyncolporites pokornyi 7 18 (2.6) 
552 Proxapertites psilatus 7 29 (4.1) 
570 Psilamonocolpites medius 7 35 (5.0) 
571 Psilaperiporites minimus 5 19 (3.8) 
688 Retitrescolpites? irregularis 9 32 (3.6) 
722 Retitricolpites simplex 7 24 (3.4) 
767 Rhoipites guianensis 7 26 (3.7) 

Sp
or

es
 

43 Echinatisporis muelleri 7 28 (4.0) 
45 Magnastriatites grandiosus 7 24 (3.4) 

282 Kuylisporites waterbolkii 7 25 (3.6) 
44 Crassoretitriletes vanraadshooveni 6 28 (4.7) 
46 Polypodiisporites usmensis 5 23 (4.6) 

 

4.2.3 Grain Segmentation 

There are multiple options of image analysis toolkits [49, 50, 51] to 

roughly segment a centrally placed object from a field of view [3, 52, 53, 54]. We 

used several of these methods to extract grains from the image background. More 

refined methods were then conducted to extract morphological features. We 

detail the process below. 

The cropped images of individual grains are RGB color images. However, 

in computational analysis and machine vision research, this color system is not 
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always the best configuration to represent how human observers perceive content 

and pattern. Therefore, we converted and separated the original RGB images into 

three single channel images using the HSV (hue, saturation, and value) color 

system [3]. In each image channel, pixel values not only represent part of the 

color space, but also contribute to segmentation of objects [55] and calculations, 

representations of advanced visual constructs, such as textural content and shape 

characteristics. Using only gray scale images limits the ability to segment objects 

of interest efficiently or extract underlying visual patterns that comprise the 

image content. While value images provided the viewer with detailed texture of 

the grain, hue and saturation images allowed us to discriminate between 

foreground objects and background. Since our goal in grain segmentation was to 

find reasonable contrast in order to recognize the grain contour, we merged the 

hue and saturation images to reconstruct an intermediate image that displayed 

better separation of grains from background using the following equation. 

 𝑝! =
𝑝!
180 ∗ 𝑤! + 1−

𝑝!
255 ∗ 𝑤! ∗ 255,           0 ≤ 𝑝! ≤ 255 (4.1) 

The merged image pixel value, 𝑝!, is a weighted combination of pixel 

values from hue pH and saturation 𝑝! images at the same pixel location. For 

example, Figure 4.1A is an image of a pollen grain (Clavainaperturites 

microclavatus) that is converted and separated into three single channel images 

(Figure 4.1B-D) using the HSV color system. The hue image (Figure 4.1B) and 

saturation image (Figure 4.1C) are then merged with weights 𝑤! and 𝑤! to 

produce an intermediate image (Figure 4.1E). We tested a sizable sample of 
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images using various weight combinations and observed an influence of weight 

choices on segmentation performance (Figure 4.2).  

 
Figure 4.1 An example pollen grain (Clavainaperturites microclavatus) image 
segmentation process. The original RGB image (A) is converted from a single 
RGB image to three single-channel images—hue (B), saturation (C), and value 
(D). (B) and (C) are then merged using selected weights on pixel values (Eq. 
4.1) to generate an intermediate image (E) for thresholding, morphology 
operation, watersheding, and connected component operations. This 
ultimately segments the main grain object (F) from the rest of the image, 
including background pixels, trivial particles, and debris. 

The bigger 𝑤!, the more the hue value was emphasized; therefore, image 

pixels were separated based heavily on hue, leading to the inclusion of pixels of 

debris and artifacts. As the 𝑤! increased, the more detailed apertures on the grain 

surface were lost since they were lighter in saturation. Based on expert 

experience, weight values were heuristically chosen as 0.4 for 𝑤! and 0.6 for 𝑤! 

in order to produce the most consistent segmentation. To automate the selection 

of channel-merging weights, a training dataset of images with user-defined 

segmentation is needed to tune these two parameters. A simulated annealing 
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(SA) algorithm [56] can be implemented for automatic parameter selection [57]. 

This was not done in this study due to limited sample size, but could be 

implemented with a larger image training dataset. 

 
Figure 4.2 Weight configuration examples using two pollen grain images (row 
1, ID = 86p; row 2, ID = 25p) and two spore grain images (row 3, ID = 412s; 
row 4. ID = 440s). Three segmentation results (highlighted red contours 
superposed on original grain images) are shown per each image example using 
different weight configurations for hue (wH ) and saturation (wS ) channels. 

Next, the intermediate image was binarized using Otsu thresholding, 

which automatically selected a threshold value for binarization [8]. 

Morphological operations (non-linear operations related to the shape or 

morphology characteristics in an image) such as erosion, dilation, opening, and 

closing [3] were performed to separate the main body of the grains from any 
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debris or trivial particles that were not of interest in the analysis. Connected 

components [3] were identified to represent object candidates and only the 

largest one (presumably the grain) was kept. Finally, a Watersheding algorithm 

[58] was used to separate any remaining particles that were still connected to the 

main body of the grain. It is also possible to separate the grain from debris using 

the combination of weights described in the previous paragraph when there was a 

distinct boundary between grain and overlapped debris based on differences in 

pixel value of saturation, hue, and intensity or in surface texture. Segmentation is 

still a largely unresolved problem in image analysis research. It is widely 

recognized in image segmentation that when target objects overlap with debris, 

their boundary is blurred and undistinguishable, and segmentation performance 

has less consistency and accuracy. Human delineation may ultimately be needed 

to construct a reliable training set for our computer vision program to learn to 

separate objects from background. However, most of the grain samples in this 

study minimally overlapped with debris and efforts were made to confirm 

accurate segmentation. 

4.2.4 Visual Feature Extraction 

Once the pollen or spore grain is segmented, 69 visual features related to 

global visual characteristics (such as color, pixel value histograms, and textural 

patterns, listed in Table 4.2) and object morphology (such as convexity of convex 

hull, curvature of contour, and aspect ratio of bounding box, illustrated in Figure 

4.3) are extracted from each of the four channels representing the original image: 
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hue, saturation, value, and gray scale. This produced a 276-dimension feature 

space in which individual images were placed. 

Table 4.2 Visual features extracted from four single channel images. 

Name Description #Features Index 
Threshold OTSU threshold 1 color 
Mean Mean pixel value 1 color 
STD Standard deviation of pixel value 1 color 
Histogram 1-dimensional histogram with 16 bins 16 color 
Size Grain object size 1 shape 
HU HU shape descriptors [15] 7 shape 
Aspect ratio Ratio of long edge to short edge of 

bounding box (Figure 4.3C) 
1 shape 

Compactness see Appendix 1 shape 
Convexity see Appendix 1 shape 
Form factor see Appendix 1 shape 
Roundness see Appendix 1 shape 
Solidity see Appendix 1 shape 
Perimeter see Appendix 1 shape 
Texture Seven Haralick textures with five step 

sizes [4] 
35 texture 

  Total = 69  

Note: the numbers in the last column indicates the value per single channel image. All features 
are calculated within segmented grain objects only. Refer to Appendix for detailed calculation. 

 
Figure 4.3 Image examples of selected features listed in Table 2. A: original 
image, B: Convex hull that encloses binarized pollen grain, C: Bounding box 
that encloses binarized pollen grain, and D: Contour that traces along the 
boundary of binarized pollen grain. 

4.2.5 Morphology Content and Semantic Modeling 

Palynologists use common qualitative terminology to describe and 

compare the morphology of pollen and spores [59]. However, complex 
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morphological features that are relatively easy for human experts to detect and 

describe linguistically are much more challenging for the computer to recognize 

numerically. To mimic the complex human process of identifying visual patterns, 

low-level visual features were extracted to represent the visual content in images. 

Examples of low-level features include: single channel histograms (Figure 4.4) 

Hu shape momentum descriptors [15], texture [4], etc.  

 
Figure 4.4 Example histogram of an example image in four individual 

channels: grayscale, hue, saturation, and value. 

In some image analysis research domains, such visual patterns are 

interpreted using high-level abstractions, called semantics. The extracted 

features can describe, to a limited extent, the visual content of grains, but are still 

not easily interpreted by the human analyst. This is known as the semantic gap 

[20]. To minimize the semantic gap, mathematical models are constructed using 

low-level features to map images to high-level trait semantics based on degrees of 

relevance. Using the mathematical formulas detailed in [29] and [60], each 

semantic representation is constructed as an association model using the concept 

of Possibilistic C-Means Algorithm [61] based on low-level visual features. This 

process is called Semantic Modeling (SM). 
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In this study, there are three morphology semantic categories for pollen 

images and three for spores, each of which consists of several exclusive semantic 

labels (Table 4.3). Using semantic modeling, each semantic label was represented 

as a semantic model of low-level visual features. Semantic model 𝑀!is trained 

based on a training dataset of images all labeled with semantic 𝜁. A trained 

semantic model 𝑀!  returns a relevance score for each database image for this 

specific semantic label. To reduce over fitting issues during semantic modeling 

and to estimate how well these trained models handle images that lack certain 

semantic labels, 10-fold cross-validation [62] was conducted in this study. In our 

study, an image was first represented by a multi-dimensional feature vector, 

which was then fed into each semantic model to calculate its relevance scores. 

These relevance scores were then used for automatic semantic annotation and 

semantic-based image retrieval. 

Within each category, the higher the relevance score, the larger the 

possibility that an image has this particular morphology semantic. The model 

that produces the highest score in each semantic category determines the 

assignment of semantic label to an image. In this study, a grain image can be 

annotated with three semantic labels, each from a different category. For 

example, the relevance scores for a spore image are {(pyramidal =0.661, plane-

convex=0.506, reniform=0.333) lateral view shape, (elliptic=0.333, circular= 0.921) 

polar view, (radial=0.921, bilateral=0.333) symmetry}.  
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Table 4.3 Semantic labels used to describe morphology of pollen and spore 
grains. 

 Semantic Category Semantic Label # images 

P
ol

le
n

 
Equatorial view 

Prolate 50 
Spherical 138 
Oblate 25 
Unlabeled 184 

Polar view 
Elliptic 137 
Circular 140 
Unlabeled 120 

Symmetry 
Radial 172 
Bilateral 136 
Unlabeled 89 

Sp
or

e 

Lateral view 

Pyramidal 52 
Plane-convex 28 
Reniform 23 
Unlabeled 25 

Polar view 
Elliptic 23 
Circular 80 
Unlabeled 25 

Symmetry 
Radial 80 
Bilateral 23 
Unlabeled 25 

 

In Category “lateral view shape”, pyramidal has the highest score 

compared to plane-convex and reniform. Therefore this image can be annotated 

as having a pyramidal shape in lateral view. With the same strategy, this image 

can also be labeled as circular in Category “polar view” and radial in Category 

“symmetry”. In general, newly acquired images are not labeled. Relevance scores 

provided by semantic models will be useful for automatic annotation of images 

with undetermined semantics. Once the models are trained, no human 

intervention is needed for model selection and image annotation. Confusion 

matrices were used to visualize annotation performance for individual semantic 

labels. Average accuracy were calculated for pollen and spore samples in this 

study. 
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When trained semantic models are used for automatic semantic 

annotation, they are evaluated by annotation accuracy. After 10-fold cross-

validation, the annotation accuracy is shown in the form of confusion matrix for 

pollen and spore morphology semantics (Table 4.4 and Table 4.5). In a confusion 

matrix, the value x in a cell (𝜁, 𝜏) means that x images with human-annotated 

semantic label 𝜁 are annotated by computer with semantic label 𝜏. Cell values are 

meaningful only when 𝜁 and 𝜏 are from the same category. In an ideal scenario, 

we expect all images be annotated with correct semantic labels in each category. 

Therefore the confusion matrix should only have non-zero values in cells on the 

diagonal where row label (human-annotated semantic) and column label 

(computer-annotated semantic) are the same. In reality, errors cannot be 

completely eliminated in automatic annotation. For example in Table 4.4, among 

the 25 images that were labeled as spherical in equatorial view shape category, 

18 images were annotated by computer correctly while the other 7 images were 

annotated as prolate. Then the accuracy of annotation for semantic label oblate is 

18/25 = 72.0%. The average accuracy is 83.9% for pollen semantic annotation 

and 98.6% for spores. 

Table 4.4 Confusion matrix of pollen image trait semantic assignment. 

 p s o e c r b Accuracy (%) 
p 50 0 0     100 
s 45 90 3     65.2 
o 7 0 18     72.0 
e    133 4   97.1 
c    23 117   83.6 
r      129 43 75.0 
b      8 128 94.1 

p=prolate, s=spherical, o=oblate, e=elliptic, c=circular, r=radial, b=bilateral 
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Table 4.5 Confusion matrix of spore image trait semantic assignment. 

 p v r e c r b Accuracy (%) 
p 47 5 0     90.4 
v 0 28 0     100 
r 0 0 23     100 
e    23 0   100 
c    0 80   100 
r      80 0 100 
b      0 23 100 

p=pyramidal, v=plane-convex, r=reniform, e=elliptic, c=circular, r=radial, b=bilateral 

Queries using pollen images had an average MAP score of 0.81/1.00 and 

queries using spore images had an average MAP score of 0.93/1.00 (Table 4.6). 

The average search time for pollen and spore images was less than 0.2 second 

and as short as 65 milliseconds. 

Table 4.6 MAP scores for semantic models trained over 10-folder cross-
validation. 

 Semantic Category Semantic Label MAP 

P
ol

le
n

 Equatorial view 
Prolate 0.86 
Spherical 0.88 
Oblate 0.73 

Polar view Elliptic 0.83 
Circular 0.70 

Symmetry Radial 0.86 
Bilateral 0.79 

Sp
or

e 

Lateral view 
Pyramidal 0.98 
Plane-convex 0.84 
Reniform 0.94 

Polar view Elliptic 0.88 
Circular 1.00 

Symmetry Radial 1.00 
Bilateral 0.88 

4.3 Hierarchical Structure in Whole-Slide Pathology Images 

4.3.1 Background 

The cognitive burden of analyzing various types of histopathological 

patterns is rapidly increasing due to the application of an ever-expanding number 
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of new immunohistochemical biomarkers, which can shed light on the molecular 

machinery of underlying biological processes in a diseased tissue. It is likely that 

some subtle, or even obvious, visual patterns can be overlooked during 

evaluation. However, it is expected that the acceptance of Whole Slide Imaging 

(WSI) technology in routine pathology practice will allow a computerized analysis 

of tissue sections for diagnostic purposes. Computer vision techniques may help 

to reduce the chances of overlooking visual patterns. Several studies [63, 64] on 

automating histopathological image analysis focus mainly on identifying 

pathological objects that are relevant for diagnosis with certain degrees of 

success.  Yet, there is additional rich diagnostic information, such as anatomical 

structures, their spatial relationships, and finer pattern underlying those 

structures, which also need more attention and extensive studies.  However, due 

to the huge file size associated with WSI, it is not trivial to develop algorithms to 

support such studies. To address these issues, we have developed a 

computational approach to detect follicles, one type of anatomical structure, in 

immunohistochemical (IHC) stained slides and then further measure protein 

expression, geometry, and spatial information to support diagnosis in a ‘coarse-

to-fine’, multi-resolution fashion. This is expected to reduce the consumption of 

processing time and potentially reduce inter- and intra-pathologist variability in 

diagnosis. 

4.3.2 Follicle Detection 

We have collected whole slide IHC images of FL cases and reactive 

hyperplasia cases using an Aperio® ScanScope® CS digital scanner [65]. 
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Pathologists diagnosed all the images. The images are organized into multi-

resolution Gaussian pyramids which can represent visual patterns of objects at 

different scales, i.e. from coarse to fine layers are tissues, follicles, follicular 

structures, cells and sub cellular structures. As resolution gets higher, richer pixel 

information will be retained and image size gets bigger at the same time that will 

result in the cost of a much longer time for image processing. 

To take the advantage of the characteristics of Gaussian pyramid structure 

in our image analysis processes, we focus on specific image analysis at each layer 

and narrow down the processing tasks as we go down to higher resolution layers. 

At each layer, images are further divided into small tiles from which visual 

features are extracted to represent informational content of individual tiles. 

Various types of visual features can be extracted based on the tasks pursued on 

specific layers. Features include pixel values, grayscale histogram, and co-

occurrence textures [4]. As regard to pixel values, we first convert the image from 

RGB (red, green, and blue) color space into HSV (hue, saturation, and value) 

color space, which is expected to be capable of separating the color information 

from intensity and is more practical for human interpretation [3]. In our 

collection of slides, pixels from different anatomical structures, such follicles and 

inter-follicular regions, have different hue ranges, i.e. follicles, including germinal 

centers and mantle zones, have brown hue values while pixels in inter-follicular 

regions have blue hue values (Figure 4.5). Next, we applied Gaussian filters to 

each channel image to blur out potential noises. In order to keep critical pixel 

information while eliminating noise, we empirically designed our filters window 

sizes according to the layer resolutions, i.e. the window size is 3x3 on layer with 
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down sample size of 32 (7.936 microns per pixel) and it is enlarged to 15x15 on 

layer with down sample size of 4 (0.992 microns per pixel). 

 
Figure 4.5 An IHC-stained whole-slide image (CD23) diagnosed as reactive 
hyperplasia. 

Tiles on the top layer are grouped, using K-Means clustering algorithm (K 

= 3), into regions that correspond to three anatomical structures: germinal 

centers, mantle zone and inter-follicular regions. Then the clustering result is 

mapped onto finer layers that will provide detailed patterns, such as color 

intensity, shape, and texture, for each of the three anatomical structures. 

Clustering process is again applied on a finer layer with the a priori identification 

of structures so that finer segmentation adjustment is expected. By collecting the 

evidence of spatial relationships of follicular structures among these three 

anatomical structures, it becomes possible to compute measurements of pixel 

density and texture in germinal centers and mantle zones, ellipse fitness (ratio of 
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unfit are to fitted area), follicle size, and distribution of follicles in the tissue, as 

well as to measure the intensity of IHC staining of surface biomarkers. 

4.3.3 Results 

We selected two IHC-stained slides for our preliminary study. One slide is 

CD20-stained, Grade II follicular lymphoma and the other is CD23-stained, 

reactive hyperplasia. The preliminary results show that all the manually 

identified follicles were detected by automatic computer vision program. 

Moreover, we also measured the segmentation accuracy according to the 

similarity index defined in [66] as 

 𝑆 = 2𝑛{𝐷 ∩𝑀} (𝑛 𝐷 + 𝑛{𝑀}) (4.2) 

where D and M are objects of interest that were automatically detected by our 

algorithms and manually by the pathologist, respectively, and n{·} means the 

area, or number of pixels, of each object. The average segmentation accuracy 

achieves 83.09±6.25%. Figure 4.6 shows an example of the detection of 

anatomical structures, follicles in this case. 

Detection of anatomical structures from multiple layers of resolution has a 

‘coarse-to-fine’ process that utilizes the information given on each layer so that 

general structures are identified first as regions of interest and then finer objects 

of interest can be found within the segmented regions. This process will reduce 

the consumption of processing time at an early stage and dedicate more on finer 

processes. Automatic detection and measurement of follicles provide an easier 

and potentially more reliable way for pathologists to analyze WS IHC images and 

provide support for their diagnoses based on quantitative visual information 
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extracted from images. Moreover, it has great potential to reduce inter- and intra-

pathologist variability in diagnosis. Furthermore, image analysis performed in a 

hierarchical fashion to identify macro and micro visual object patterns can 

significantly reduce the processing time and allow pathologists to concentrate 

their attention on more complex tasks in histopathological studies. With proper 

extension and improvement, we believe that our method can be instrumental in 

diagnosis of malignancies related to follicular structures. 

 
Figure 4.6 Detection of anatomical structure. Follicles  (left, green lines) that 
are manually identified by pathologists are detected automatically by 
computer vision algorithms (right, dark brown germinal centers and light 
brown mantle zones). 

4.4 Pathology-Bearing Regions in HRCT Images of Lung 

4.4.1 Background 

Domain experts, such as physicians and experienced users, always look for 

some distinct visual patterns appearing in the images that represent certain 

disease characteristics. These visual patterns can be generally put into groups and 

we refer to them as perceptual categories (PC) [67]. In this study, there are five 

perceptual categories represented in the image collection: emphysema (EMP), 



 

70 
 

cysts (CYS), ground-glass opacities (GGO), honeycombing (HON), and bronchial 

structures (BRO). Because it is not uncommon to observe different visual 

patterns, belonging to different PCs, in the left and right lungs (Figure 4.7) the 

two lungs are analyzed separately.   

 
Figure 4.7 A HRCT lung image with a PC of ground-glass opacity (GGO) in the 
right lung (the left side) and an emphysema (EMP) perceptual category in the 
left lung (the right side). 

As part of a CBIR system development for HRCT images of lung, we need 

to extract visual patterns that are relevant to these aforementioned PCs. From 

our experience, to build a successful CBIR system with medical imagery, the 

following assumptions must hold: (1) medically meaningful objects of interest 

can be identified; (2) the selected features are indeed sufficient to characterize 

the various appearances in the image set; and (3) feature values are properly 

extracted and accurately represent the true patterns residing in the images. These 
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sound fairly basic, but are difficult to ensure all the time in practice. A significant 

amount of this difficulty lies in adjusting and adapting all the various parameters 

used in the object segmentation and feature extraction algorithms. This problem 

is common to most of the applications using CBIR technique and is therefore a 

very valuable issue to be studied. The approach presented in this section makes 

parameter tuning automatic according to provided medical images instead of the 

developer’s empirical settings. 

4.4.2 Modularized PC Recognizers 

After segmenting the right and left lungs from the background of the 

image, we can analyze each lung independently for various patterns using 

customized algorithms called modularized PC recognizers, or modules in short. 

In each module, different image processing algorithms and filtering criteria, such 

as grey scale thresholding, connected components, topological characteristics, 

spatial relationship information, etc., are designed to filter out artifacts and at the 

end of each module objects of interest representing this PC’s patterns are left to 

calculate low-level features.  

Each step in each module utilizes thresholds, decision criteria, or some 

other logic to make decisions about whether segmented objects are indeed useful 

or merely represent artifacts. All these steps ultimately work together and 

collectively lead to a final image segmentation result, the quality of which can 

drastically affect feature accuracy. Usually assigning parameter values will greatly 

rely on domain experts’ knowledge as well as researchers’ accumulated 

experience through the development of the system. The selection of the 
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configuration of various parameters can be considered as a combinatorial 

problem. Because a change in the value of one parameter will likely affect the 

results of other steps in the algorithm, it is almost impossible to configure the 

entire array of parameters manually.  

As an example, the cystic structure (CYS) module contains seven 

parameters that need to be computationally optimized. Ideally, an image with 

cystic structures that is analyzed by the CYS module should be segmented into as 

many cysts as possible, while an image with only emphysema that passes through 

the CYS module should result in no segmented objects. If the parameters in the 

CYS module are not properly set, using empirically configured default values for 

example, then it is quite likely that some low attenuation regions may also be 

extracted incorrectly and using features calculated from them the image may be 

considered as CYS. The hope is that by tuning parameters, this insufficiency can 

be greatly reduced.  

Figure 4.8 demonstrates comparisons of each module’s resulting images 

when applying ideally best parameter configurations; default configurations 

based on empirical experience; and computationally optimized configurations 

using simulated annealing. In the next section, we will explain our novel methods 

to automate the selection of crucial parameters and ultimately improve visual 

content and image retrieval of HRCT images of lung. 
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Figure 4.8 Modularized PC Recognizers and extracted results from various 
parameter settings. 

4.4.3 Improve Visual Content Extraction with Automatic Parameter Tuning 

Simulated annealing [56] is one of the global search methods used for 

optimization problems. It is useful to deal with combinatorial problems with 

finite but relative large feasible sets for parameters [68]. Random trials of 

possible values are tried, and the performance of each trial is evaluated using a 

customized cost function. A probability of accepting a “worse move” is used to 
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give the trial a chance of “climbing out of local minima” while searching the 

entire feasible set. In our study, we extend the method of simulated annealing to 

accommodate the needs to adjust parameters from each module. Parameters in 

each module are computationally optimized one by one in an order based on (1) 

their positions in the module as well as (2) their perceived influence on the final 

results. For the sake of reasonable computing time, we optimize the parameters 

one at a time. The configuration is updated after finishing each parameter’s SA 

tuning procedure. Empirically derived values are used if the parameters have not 

been optimized. Secondly, after optimizing one parameter, the temperature is 

“reheated” to the initial temperature 𝑇!. This gives the next parameter tuning step 

an equal chance to move around and escape the local minima obtained from 

previous parameters’ SA results. 

4.4.3.1 Overall Process of Automatic Parameter Tuning 

The system operates as follows (Figure 4.9):  

• Initial Settings: Specify working module, order of parameters to be tuned, 

initial temperature 𝑇! and stopping criteria which include maximum 

iteration number, frozen temperature 𝑇!, control value 𝑐 of exponential 

cooling schedule11 and target minimum cost value12.  

• Select Parameter: In the module’s configuration parameter list, pick one 

parameter according to predefined order. 

• Simulated Annealing: Use simulated annealing to find the optimal value 

of picked parameter. 



 

75 
 

• Update Parameter: Set the value of this parameter to the optimal value 

found in the SA step and proceed to tuning the next parameter. 

• Final Configuration: All the tuned parameters together form the final 

configuration for the working module.  Once these are all determined, 

proceed to the next module 

 

Figure 4.9 Overall process of automatic parameter tuning with SA. 

4.4.3.2 The Simulated Annealing Step 

The procedure for performing simulated annealing, shown in the big 

dashed box on the right side of Figure 3, for one parameter in a module includes 

the following steps: 

• Random Walk: Adjust the value of the parameter by one small step. Step 

size and valid walking range are predetermined for each parameter using 

empirical knowledge. Use this new value keeping other parameters fixed to 

form a new configuration. 
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• Feature Extraction: Use this new configuration to segment out objects 

of interest and extract low-level features for all images. 

• Retrieval: At each annealing step randomly select a set of images that are 

labeled as the current module’s PC to search against remaining images and 

retrieve top ranked results. This random selection of query images helps to 

limit the effect of over-fitting. In our study, we query 10 times and pick top 

30 results for each query.  

• Cost Evaluation: Cost functions are derived using two methods, average 

precision at seen relevant documents and 𝐹! measure. Images with same 

labels as query image are considered as relevant results. Averaged cost 

over all random query evaluations are used as each annealing step’s cost 

value. 
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• SA Decision: Make a decision on whether to accept the new move. If the 

cost from the new configuration is less than the current best configuration, 

set this configuration as the new current best. If not, calculate the 

probability of accepting a “worse step” and accept it if this probability is 

greater than a uniform random number; otherwise we retain the current 

best configuration.  

• Cool Down: Reduce the probability of accepting a worse step by cooling 

down the system temperature. The SA step stops when one of the 

following three stopping criteria occurs: steps reach the maximum, 

temperature drops to a frozen state, or cost reaches to the predetermined 

low value. 

In order to perform annealing in a controlled manner, a cooling schedule 

and other stopping criteria are set. Raittinen & Kaski suggest that the initial and 

frozen temperatures can be the maximum and minimum cost differences, 

respectively [69]. Since the cost function in our study ranges in [0, 1], the initial 

temperature is set to be 1 and the frozen temperature is set as 0.001. The control 

value of exponential cooling schedule is 0.98 and target low cost is 0.05 or 

equivalent to say the target precision of retrieval is 95% for the method of average 

precision at seen relevant documents or the target 𝐹! score is 0.95 for the method 

of 𝐹! measure. The maximum number of iterations for each SA step is set at 300 

in order to make the computing time reasonable.  



 

78 
 

 
Figure 4.10 Precision of each step’s saved best configuration for parameter #3 
in CYS module over 300 trials. 

Figure 4.10 shows an example of optimizing CYS module’s third 

parameter. The 𝐹! measure with 𝛽 = 0.33 increases gradually as temperature 

drops down and becomes stable around 85% after 300 trials. We use 𝛽 = 0.33 to 

emphasize 3 times more of precision than recall due to the intension that users 

would pay more attention to see top ranked results to be as many relevant results 

as possible rather than browse all possible results. 

4.4.3.3 Parameter Tuning Performance 

We selected 303 HRCT lung images, in which a total of 394 left or right 

lungs are labeled individually and with a consensus of two radiologists according 

to their visual patterns with five perceptual categories. Images are all gray scale 

images with dimensions of 512 x 512 pixels. 

In our study, each module has its own parameters that control 

performance quality, and the scenarios for these modules are different due to 

varying characteristics of each perceptual category’s visual patterns. Therefore, 

we apply a “divide-and-conquer” approach to optimize parameter configurations 
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for each module. Details regarding the distribution of perceptual categories, 

parameters and low-level features extracted from images are listed in Table 4.7. 

Table 4.7 Distribution of images, parameters, and features. There are 47 global 
features including statistics of overall gray scale (12) and textural 
measurements (35). 

Module Lung No. Parameter No. Feature No. 
BRO 62 5 7 
CYS 52 7 8 
EMP 121 6 6 
GGO 106 6 6 
HON 53 5 5 
Total 394 29 69 

 

Using simulated annealing to find the computationally optimal 

configuration shows improvement of retrieval’s effectiveness for all modules 

using both cost evaluation methods (Figure 4.11). The average retrieval precision 

improves from 79.49% to 93.73% which is a relative 18.021% increase using 

average precision at seen relevant documents, and it increased relatively 28.93% 

which is from 53.52% to 68.85% using 𝐹!measure. One-tailed student’s t-tests are 

used to determine the statistical significance of improvement (Table 4.8). The 

null hypothesis is “mean effectiveness (precision or 𝐹! score) is not different after 

SA optimization” and the alternative is “SA optimization improves the mean 

effectiveness”. The p-values using two methods are 0.55±0.001 (precision only) 

and 0.058±0.001 (𝐹!). 
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Figure 4.11 Effectiveness increase before and after optimization using average 
precision at seen relevant documents (top) and 𝐹!  measure (bottom). 

Table 4.8 Comparison of mean and variance of precision/𝐹! measure before 
and after SA for all five modules. 

 BRO CYS EMP GGO HON 
Pre Before 0.81±0.069 0.82±0.099 0.81±0.037 0.75±0.069 0.79±0.049 

After 0.92±0.002 0.98±0.001 0.93±0.005 0.95±0.005 0.92±0.002 
𝑭𝜷 Before 0.53±0.077 0.56±0.114 0.50±0.029 0.63±0.025 0.45±0.076 

After 0.70±0.054 0.81±0.010 0.62±0.023 0.73±0.006 0.58±0.005 

4.5 Summary 

In this chapter, we demonstrate our research works on visual content 

extraction for biological and medical images. Particularly, the visual categories 

that describe the morphology characteristics of Neotropical pollen and spore 
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grains were discovered using low-level visual features as well as high-level 

semantic modeling, preparing us for content-based image retrieval of grain 

images with query image examples (Chapter 5).  Follicles in whole-slide IHC 

images were identified using hierarchical “top-down” method, preparing the 

processed image for extracting pathological meaningful content and eventual 

help us for visual category discovery and computer-assisted diagnoses (Chapter 

6). 

When a group of computer vision algorithms are used to identify objects of 

interest in an image, parameters in these algorithms need to be treated carefully. 

Empirically derived values may be insufficient for identifying objects and 

therefore hurt the quality of features. The customized version of simulated 

annealing was adopted in our research works for HRCT image of lung and helps 

to improve the retrieval precision for all modules. This approach can be applied 

to other image and information retrieval problems that need to deal with 

combinatorial problems and do not have a direct and analytic cost measurement. 

In the next chapter, we will emphasize how these extracted visual content 

benefit the performance of content-based image retrieval.  
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CHAPTER FIVE 

5. CONTENT-BASED MEDICAL AND BIOLOGICAL IMAGE 
RETRIEVAL 

In previous chapters, we have introduced (1) several web-based image 

management systems for biological and medical images and (2) various 

applications on visual content extraction. They can be regarded as a front-end 

interacting with users and a back-end mechanism for translating raw images into 

computer-understandable visual features. In this chapter, we will present the last 

aspect that bridges these two ends together, delivering a functioning content-

based image retrieval system. 

5.1 Introduction 

Content-based image retrieval (CBIR) is a technique for retrieving images 

based on image content using extracted features, such as color, texture, and 

shape [70]. When textual descriptions and annotations are limited or not 

available and needs more understanding and development, analyzing the content 

of images becomes more powerful. Moreover, patterns that are not easy for 

humans to pick up on can be detected automatically by computer vision 

techniques, and this information can contribute to even better accuracy in 

capturing critical patterns for diagnoses. The typical steps to performing CBIR 

include identifying the important characteristics in a set of images, designing 

computer algorithms to directly or indirectly measure these features, and finally 

utilizing existing or developed indexing structures for fast and efficient retrieval 

of visually similar images. This technique first appeared in the mid 1990s with 

the development of systems like QBIC [71], PhotoBook [72], and VisualSEEK 
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[73].  Over the past decade, the field has steadily grown and matured, and these 

techniques have since been applied to a wide variety of applications, including 

geospatial intelligence [74], astronomy [75], and protein structure comparison 

[76]. Another relevant collection of CBIR applications have been in the field of 

medical informatics [22]. 

5.2 Multi-Module CBIR System of HRCT Images of Lung 

Medical images play a critical role in many aspects of clinical routines such 

as radiology, neurology, pathology, endoscopy, cardiology, dermatology, etc. 

Clinical professionals refer to medical images to examine diseases and make 

diagnoses according to the visual patterns observed in the images in conjunction 

with other medical data and observations. This results in a huge amount of 

medical imagery from various modalities being generated daily and needing to be 

reviewed, compared for diagnoses, and then archived in systems like picture 

archiving and communication system (PACS) for future reference and also for 

medical training purposes. According to [77], an estimated 62 million scans were 

collected in 2006 in the United States alone, compared to about 3 million scans 

in 1980. Thus, it is almost not feasible for radiologists to go through all the scans 

and potentially dig out previous similar cases. Therefore, turning to modern 

technologies, such as computer vision, database management, and information 

retrieval, is promising to ease this burden and may even improve diagnoses by 

backing up the findings with previously diagnosed similar cases. 

Unlike images in general purpose CBIR systems, medical images usually 

do not have rich color information, and users primarily pay attention to 
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pathology-bearing regions, which can be difficult to extract as they are oftentimes 

not that distinguishable from the surrounding context. From our experience, to 

build a successful CBIR system with medical imagery, the following assumptions 

must hold: (1) medically meaningful objects of interest can be identified; (2) the 

selected features are indeed sufficient to characterize the various appearances in 

the image set; and (3) feature values are properly extracted and accurately 

represent the true patterns residing in the images. These sound fairly basic, but 

are difficult to ensure all the time in practice. A significant amount of this 

difficulty lies in adjusting and adapting all the various parameters used in the 

object segmentation and feature extraction algorithms. In section 4.4 we have 

introduced our research works in building modularized perceptual category 

recognizers for extracting visual content from HRCT images of lung. With a novel 

approach to automatically adjust multiple parameters in these modules, we are 

able to provide an improved CBIR system for radiologists to search for HRCT 

images that bear similar perceptual categories. 

Figure 5.1 depicts a retrieval result using a Google-like query by image 

example method. The query image (top) is the left lung of an HRCT lung image 

that has bronchial structure patterns, which are dark lumen surrounded by thick 

walls. Using the features extracted from the query image, most similar images are 

retrieved and ranked based on overall similarity in the ranked order from top-left 

to bottom-right. We can see these images come from different patients with 

certain variation in appearance but all share similar visual pattern, BRO. 
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Figure 5.1 Results from the CBIR system for HRCT images of lung. 

An accurate retrieval system in medical databases that archives medical 

images, clinical reports, laboratory data and other related information can help 

health care professionals and medical students search for similar medical cases 

and assist them in diagnoses. For example, pulling out top ranked CT scans that 

have most similar disease patterns will provide radiologists a means for 

differential diagnosis. Moreover, combining images with other clinical 

information and observations can provide necessary information for more 

accurate and efficient diagnoses. 
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For this CBIR system for images bearing multiple PCs, in order to examine 

all possible patterns, the retrieval results from each module need to be 

aggregated in a proper fashion, usually by treating features equally. However, this 

may not be the optimal solution for the reason that subsets of features may 

contribute more than others in the performance of retrieval. Therefore, we 

analyze the retrieval results in each module and generate a weighing scheme to 

make retrieval customized to individual search activity. 

The procedure of multi-module retrieval involves two steps. First, visual 

features extracted from one module are used to retrieve top most similar images. 

These images may include images having patterns from same perceptual 

categories as the query image or from other perceptual categories. The entropy of 

each module’s top 20 images is calculated as follows. 

 𝑒! = − 𝑝!"𝑙𝑜𝑔𝑝!"!
!!!  where 𝑝!" =

#!"!"
#!"#$%!

 (5.1) 

 𝑤! = 1− 𝑒! ,     𝑖, 𝑗 = 1,2,… ,𝑛 (5.2) 

 𝑊 = [𝑤! 𝑤!…  𝑤!]! (5.3) 

Percentages of result images that belong to each PC are calculated to get 

the entropy of results. A more homogeneous result will result in a higher value of 

weight for that module in the weight vector. Next, the entire search results from 

all modules are unioned by applying the weight vector into a single pool of 

images. New similarity of each image in each module is calculated as 

 
𝑠𝑖𝑚!" =

𝑑!" −min {𝑑!"}
max 𝑑!" −min 𝑑!"

∗ 𝑤! 
(5.4) 

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,… , 5;𝑎𝑛𝑑 𝑘 = 1,2,… ,𝑛!  
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The normalized Euclidean distance between the feature vectors of k-th 

image in results from module I and the query image is multiplied by the weight 

factor obtained from previous step. Top ranked images from this pool using new 

similarity scores will be the final retrieval results. 

Aggregating search results from different modules based on particular 

perceptual categories’ visual patterns based on search results’ entropy helps to 

rearrange the similar cases. The preliminary study shows an increase of average 

precision from 69.5% using multi-module method to 76.6% be retrieval without 

weighing scheme. 

5.3 Finding Similar Grains in Neotropical Pollen and Spore Images 

As introduced in sections 3.2 and 4.2, I have participated in a long-term 

collaboration among palynologists, computer scientists and informaticians in an 

attempt to develop computational and informatic solutions to streamline the 

process of palynology analysis for efficient and reliable data management, 

analysis, and retrieval. To our knowledge, our work is the first attempt to develop 

a unique search engine that utilizes image-based morphological content for grain 

image retrievals in palynology. We report the following approaches. 

First, we applied and extended a suite of image analysis algorithms and 

toolkits to automate the process of detecting grains from artifacts (debris and 

organic matter other than pollen and spores, common to fossil palynological 

slides) and calculated morphological features based on shape and texture. Next, 

association rule mining [78] was integrated into our methods to assist experts in 

trait annotation based on extracted features and a continuously updated expert 
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knowledge base. We then utilized information retrieval methods [79] to provide 

fast and accurate data management and image retrieval. The morphological 

features identified by our automated analysis were used to determine image 

semantics (abstract presentations of morphology) that formed the basis of novel 

tools for automatic semantic annotation, semantic-based image search, and 

content-based image retrieval by image examples. 

5.3.1 Database Design for Multi-modal Information Integration 

For an image database to be effectively used in taxonomic classification 

and customized image retrieval, accurate metadata are as important as novel 

search algorithms. Our database structure was designed to be flexible for 

database management across geographically remote sites and allows for 

sustainable growth over the time with the incorporation of new palynological 

images and the participation of new analysts. Instead of storing data in single 

files such as spreadsheets or printed catalogs, images and their metadata are 

stored in a relational database where the shared data structure and data 

relationships are carefully designed and maintained to avoid duplication or 

accidental modification. The entity relationship diagram (ERD) illustrates the 

database structure and its tables with relationships that ensure data integrity and 

handle dynamic data changes such as insertion, deletion, and update (Figure 

5.2).  
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Figure 5.2 Entity Relation Diagram (ERD) of database design. Entities and 
their relationships are represented as tables with attributes and connected 
using crow’s feet annotation. For example, the relationship between pollen and 
pollen_images is a one-to-many identifying relationship. Specifically, one 
pollen taxon can have multiple images and each record in pollen_images must 
reference to only one and only one record in pollen. There are four pollen-
related tables on the right-hand side and four spore-related tables on the left-
hand side. Tables from both sides share similar structure and reference to two 
common tables - users and sources. Note: There are 76 tables and over 
200,000 records in the database. There are 49 attributes in table 
pollen_sources and 39 in table spore_sources. For simplicity, some auxiliary 
tables and secondary fields are omitted in this figure. Only the most relevant 
tables and fields are shown. 

In the ERD, tables on the left sides are designed for spore taxa and pollen-

related tables are on the right sides with same table structures. In addition, to 
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link multiple research groups for cross-site research, the miocene_sources table 

and the miocene_users table store information of research teams and 

palynologists who collected the images. With two relationship tables, 

miocene_pollen_sources and miocene_spore_sources, two sides are linked 

together to enforce relationship dependencies. With this database as the backend, 

a web-based system was built for palynologists to interact with stored data and 

search for grain images. The system provides not only text-based species search 

(Figure 5.3), but also image searches based on trait semantics (Figure 5.6) and 

visual content (Figure 5.8 and Figure 5.9) with personalized search criteria. 

 
Figure 5.3 Searching for pollen taxa by name. All existing taxa in the database 
are listed on the webpages ordered by taxon ID. User can choose to search taxa 
by their scientific names by typing in the text field. Auto-complete hints help 
users to quickly narrow down the list. 
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5.3.2 Image Search using Semantic Models 

The relevance scores provided by trained semantic models can be used to 

search images based on their semantic assignment. Consider ranking images 

based on their relevance scores of semantic label ζ to be a single-semantic image 

retrieval, its performance can be evaluated using precision and recall [79] 

concepts. 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}

{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}
 

(5.5) 

and 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}

{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}
 

(5.6) 

In our case, they are defined similarly as 

 𝑃 =
𝑛
𝑁 (5.7) 

and 

 
𝑅 =

𝑛
𝜄!

 (5.8) 

, where n is the number of images labeled with semantic 𝜁 in a list 𝑇!  of top N 

ranked images and 𝜄! ≤ 𝐼  is the total number of images labeled with semantic 𝜁 

in database I. An image is considered relevant if it is labeled with query semantic 

𝜁. Precision is the fraction of relevant images in result list 𝑇!. Recall is the ratio of 

retrieved relevant images to the total number of relevant images in the database. 

When an image database contains hundreds of thousands images, one 

wants to see a list of most relevant images instead of going through the entire 

collection. The more relevant images at the top positions in the list, the better the 
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retrieval. Precision-recall curve, which represents precision as a function of recall 

rate, can demonstrate how relevant images are distributed in a ranked list. 

Another evaluation measurement is mean average precision (MAP) score over 10 

folds of experiment (eq. 5.9). The higher the MAP score, the more relevant 

images are retrieved at the top positions in the list.  

 
𝐴𝑃! =

1
𝜄!

𝑃(𝑇!(𝐼, 𝑘))
!

!!!
 (5.9) 

Specifically, all database images are first ranked using relevance scores 

calculated by 𝑀!. At each position k in the ranked list 𝑇!, precision is calculated 

using eq. 5.7 where N = k and n is the number of relevant images counted until 

cutoff k. When the k-th image is not relevant, P=0. The precisions at each 

position are then averaged to yield an AP score for semantic 𝜁. In this fold of 

modeling of 𝑀!, an AP score is generated. Finally, the mean of AP scores for 

semantic 𝜁 over 10 folds of modeling is calculated. 

This semantic-based image search was then extended to include multiple 

semantic labels. The relevance scores for each semantic were used to calculate an 

overall relevance score as regard to a set Q of semantics selected by a user. Once 

the semantic models were trained, database images could be searched based on 

their relevance scores of multiple morphology semantics. For example, a set Q of 

query semantics is selected out of all N available semantics to query the database. 

Each image’s overall relevance to this query is calculated using eq. 5.10. All 

database images are then ranked based on such relevance score. Top k most 

relevant images are eventually returned to the user (Figure 5.2). 
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 𝑠 =
𝑠!"# ∗ 𝑠!""

𝑝 ∗ 𝑠!"# + 1− 𝑝 ∗ 𝑠!""
 (5.10) 

 
𝑠!"# =

1
𝑄 𝑟!

!

!!!
!∈!

 (5.11) 

 𝑠!"" = 1−max
!∉!

𝑟! (5.12) 

Specifically, the overall relevance score, s, is a weighted combination of 

average relevance score, 𝑠!"#, and the irrelevance score, 𝑠!"". To calculate the 

average relevance score, 𝑠!"#, of an image, its relevance scores, 𝑟!, for each of 

selected semantic in Q are averaged. The irrelevance score, 𝑠!"", is the opposite of 

the maximal relevance score calculated for those semantics that are not in Q. In 

eq. 5.10, p is a system adjustment penalty to balance the scores of relevant and 

non-relevant semantics. It is heuristically set to be 0.002 in this study. 

 
Figure 5.4 Precision-recall curves of morphology semantics for pollen images. 
As number of images retrieved increase, recall values gradually approach 
100% while precision values gradually decreases since some non-relevant 
images are being retrieved. 

The performance of the semantic-based image retrieval was evaluated 

using precision-recall curves and MAP scores. Figure 5.4 and Figure 5.5 are 
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precision-recall curves for morphology semantics of pollen and spores, 

respectively. In Figure 5.5 average precisions calculated from 10 folds of 

experiments were plotted as functions of recall for all 7 semantic models from 3 

categories for spores. Precisions of all semantics maintained above 80% at 60% 

recall rate. For pollen images (Figure 5.4), even though precision-recall curves 

drop steeper, all precisions still maintained above 60% until recall rate of 60%. It 

is understandable that since pollen image samples in this study are distributed in 

15 distinct taxa, it is more challenging for semantic models to find association 

rules of feature sub spaces that are generalized for image from all available 

species. 

 
Figure 5.5 Precision-recall curves of morphology semantics for spore images. 

Queries using pollen images had an average MAP score of 0.81/1.00 and 

queries using spore images had an average MAP score of 0.93/1.00 (Table 5.1). 

The average search time for pollen and spore images was less than 0.2 second 

and as short as 65 milliseconds. 
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Figure 5.6 Searching for pollen images by morphology semantics. Top row: 
(left) Morphology semantics selected by user and (right) distribution of 
semantics in result images. Center row: (left) first image in ranked list, 
(middle) relevance scores calculated by trained semantic models and (right) 
additional information about this image, including taxon name, its overall 
relevance score as regard to user-selected semantics, its actual semantics 
annotated and stored in database. Comparing the actual semantics to 
relevance score chart, we can see that spherical has the higher relevance than 
prolate and oblate for equatorial shape semantic, circular is more relevance 
than elliptic for polar shape semantic, and radial is more relevant than 
bilateral for symmetry semantic. Bottom row: ranked result image list with 
their overall relevance score calculated using eq. 5.10 as regard to user-
selected morphology semantics. 
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Figure 5.6 demonstrates the result page of searching pollen images using 

multiple morphology semantics. The semantic-based image search engine 

calculates overall relevance scores using eq. 5.10 based on each image’s three 

relevance scores provided by semantic models for spherical equatorial view 

shape, circular polar view shape, and radial symmetry. The database images are 

ranked based on their calculated overall relevance scores and the top 10 most 

similar images are displayed. It is not required that retrieved images must have 

had all three morphology labeled. As long as their relevance scores are 

significant, the overall relevance still satisfied the search criteria. 

5.3.3 Image Search using Image Examples 

The semantic modeling additionally provides a basis for the query of 

images within the database and the retrieval of the most visually similar pollen 

grain images. In this way, a newly acquired image can be uploaded into the 

search engine to find similar types from the database. This allows for the 

comparison of morphotypes across analysts, potentially improving classification 

consistency among multiple experts.  

The 276-dimensional features used in the initial morphological feature 

extraction formed a visual content space. These features were used to index the 

image database for fast retrievals. For simplicity, only three dimensions are 

depicted in Figure 5.7 to demonstrate the concept of content-based image 

retrieval from a multi-dimensional feature space.  
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Figure 5.7 Hypothetical query by image example in a multiple-dimensional 
feature space (illustrated here in three dimensions). Each black dot represents 
a multi-dimensional feature vector that represents a database grain image. A 
query image is mapped into the same feature space (red dot). The nearest 
neighbors are selected and ranked with their corresponding images displayed 
to the user. 

Each data point is a multi-dimensional vector representing an image in the 

database. The distance between a query point and a data point defines the 

similarity between the query image and a database image. In other words, the 

closer two data points are in the feature space, the more visually similar these two 

images are. With this defined similarity measure, images can then be ranked 

based on their similarity (distance) scores. For a large-scale image database 

(millions of grains), instead of exhaustively computing distances between the 

query image and all database images, customized database indexing structures, 

such as M-Tree [80] or EBS kd-tree [81], can drastically improve the efficiency of 

retrieval by strategically organizing the indexes of data in a high-dimensional 
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space. In our implementation, we created three M-Tree indexes by grouping the 

276 visual features into colors, shapes, and textures. 

Our system provides users with customized weighing options to search 

grain images. For example, one user may want to see images that are most 

similar to each other on shape features with less emphasis on color and texture 

variances. Color, in particular, is a highly variable characteristic as it is mainly 

controlled by the thermal maturation of the organic matter. Pollen grains are 

light yellow when thermal maturation is low but change to darker colors as rock 

maturation increases, reaching a fully black when organic matter is over-

matured. In this scenario, users can customize their queries with a minimal 

weight on color index while emphasizing more on other two indexes. 

In this study, content-based image retrieval was evaluated using precision 

in the top ranked images [79]. It is defined as the ratio of number of relevant 

images in top k ranked images (k = 10 in this study). A result image is relevant 

when it belongs to the same species as the query image example. Since the 

contribution of indexes to retrieval performance is not and should not be 

universally fixed across all species, we simulated possible combinations of 

weights, 𝑤, for color (𝑤!), shape (𝑤!), and texture (𝑤!) with an increment of 0.2 

using labeled images in our database as training set. 

In order to find the most suitable weight combinations, a series step was 

performed using permutated experiment results for each species in current 

dataset. 

 𝑤 ≝ 𝑤! ,𝑤!,𝑤!  ∈  0,0,0 , (1,1,1)  (5.13) 
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1. Each image 𝜄!  from species 𝜃 was used as a query image for 215 

(= 6! − 1) times to search against the entire database. Precision 

𝑝!! (1 ≤ 𝑖 ≤ 215) were calculated for each query. 

2. The weight combinations 𝑤!!  that produced the highest precision 

𝑝!"#!  were identified for each query image, composing a set of 

candidates 𝑊! = 𝑤!! 𝑝!! = 𝑝!"#! }. 

3.  For all images from the same species 𝜃, their sets of weight 

combinations identified in step 2 were joined and the most 

frequently occurred combinations were considered candidates for 

most suitable weight choices. If there were multiple candidates with 

same number of occurrence, the one that yielded the highest 

average precision across all images in this species was considered 

the top choice. 

The most suitable weight combinations were identified based on our 

current database image collection. Their values determined the retrieval 

precision of each query. Once the most suitable weight combinations were 

identified for each species, they were presented to users as the initial weights 

upon which emphases can be adjusted based on users’ search preferences. As our 

database collection grows bigger to include more species and variety in 

morphology, new weight combinations can be learned to produce better retrieval 

results based on newly populated database. 

On the content-based image retrieval interface (Figure 5.8), a user first 

picks an image as example and then adjusts emphasis on three trait semantic 
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categories using sliding bars. On the search result page (Figure 5.9), a list of top 

ranked database images that are most similar to image example is displayed. 

 

Figure 5.8 Searching for pollen images by query image example. Query 
example image is selected from example list and query weights on three 
indexes (color, shape, and texture) can be adjusted to user’s preference. The 
weight values range from 0 (left end on the bar, representing no weight) to 100 
(right end on the bar, representing the highest amount of emphasis). 

CBIR is a much more complex image retrieval method than those by 

keywords and semantic labels. It is worth mentioning that species-level 

classification is the most challenging classification task in palynology [82] and 

images that are visually similar based on their content do not necessarily belong 

to the same taxon. As a result, even though a list of visually most similar images 

are ranked and returned, the precision value calculated by judging the variation 

of species can be much lower if multiple species are presented in the result list. 
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Figure 5.9 Search by pollen image example result page. Top row: (left) search 
example and (right) the fifth result in the ranked list. Center row: distribution 
of taxa count from results. Bottom row: ranked result image list with their 
similarity measures against the query image example (top-left). The bar chart 
in center row indicates that there is a mixture of taxa in the result images. 

Table 5.1 lists the top 10 best-performing universal weight combinations 

that yielded average retrieval precisions of 57.8% and 72.3% for pollens and 

spores, respectively. This means that without treating species differently, using a 

one-fit-for-all weight combination is able to retrieve a list of pollen images in the 

database with 57.8% of them having the same species as the query image. The 
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retrieval precision using such universal weight combinations for spore images in 

the database is 72.3% on average. 

Table 5.1 Top 10 best-performing weight combinations sharing similar 
retrieval performance for all pollen and spore species in the database. 

Top 10 
Performance 
with universal 
weight 
combinations 

Pollen Spore 

Weights 
(color_shape_texture) 

Average 
Precision 

Weights 
(color_shape_texture) 

Average 
Precision 

1 0.4_0.6_0.6 57.9% 0.2_1.0_0.0 72.4% 
2 0.8_1.0_0.8 57.9% 0.0_0.2_0.0 72.3% 
3 0.6_1.0_0.8 57.9% 0.0_0.4_0.0 72.3% 
4 0.6_0.6_0.8 57.8% 0.0_0.6_0.0 72.3% 
5 0.2_0.2_0.2 57.8% 0.0_0.8_0.0 72.3% 
6 0.4_0.4_0.4 57.8% 0.0_1.0_0.0 72.3% 
7 0.6_0.6_0.6 57.8% 0.2_1.0_0.4 72.2% 
8 0.8_0.8_0.8 57.8% 0.4_1.0_0.4 72.2% 
9 1.0_1.0_1.0 57.8% 0.2_0.8_0.0 72.0% 

10 0.2_0.4_0.4 57.8% 0.2_0.8_0.4 72.0% 

 

Instead of choosing universal weight combinations for all images, choices 

were made for individual species. Table 5.2 shows the top choices of weight 

combinations for individual species and their average retrieval precisions. For 

images of some taxa, selected weights on trait semantics could be drastically 

different from others. For example, in order to get an average precision of 77.1% 

for all Clavainaperturites microclavatus (ID=1014) images, it is best to 

emphasize heavily on shape and reduce weights on color and texture. It is the 

most suitable weight combination choice to distinguish them from images of 

other taxa. For some species, one or two traits are ignored completely (weight is 

set to zero) to produce good retrieval results. This customized weight selections 
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become handy if the user has a small number of targeting species in mind during 

the search. 

Table 5.2 Best-performing weight combinations for each taxon and their 
average retrieval precisions. Use taxon Retitricolpites simplex (ID = 722) as 
example. Every of its 24 images were used as query images and search against 
the database and retrieved back top 10 most similar images in feature space. 
All 215 weight combinations were used for each image yielding a total of 
215*24 = 5160 queries. For each image as a query image, maximal precision 
was identified. There could be multiple weight combination (n/215) that 
produced same maximal precision for the same query image. All of these 
weight combinations were considered candidates. The candidates that 
occurred most frequently were final candidates. In this example, there were 4 
(#Candidates) candidate weight combinations that were identified to produce 
maximal precisions in 9 (#Occurrence) query occasions, individually. The 
average precisions using each of 4 candidates across all 24 images were 
calculated and the candidate with the highest average precision was the top 
choice. 

 ID #Candidate #Occurrence Top choice Ave. Precision 

P
ol

le
n

 

722 4 9 0.8_0.2_0.0 50.8% 
767 2 17 0.4_0.6_0.2 73.1% 
688 7 6 0.0_0.4_0.2 63.4% 
570 2 24 0.0_0.6_0.2 59.1% 
571 21 10 1.0_0.6_0.2 74.7% 
552 1 16 0.2_0.8_1.0 73.1% 
451 8 14 0.2_0.0_0.0 61.2% 
511 1 9 0.2_0.0_1.0 68.9% 
450 1 20 1.0_0.4_0.8 67.2% 
254 5 16 0.2_0.0_0.0 49.6% 

1430 13 13 0.4_0.2_0.2 62.1% 
365 2 10 0.0_0.2_0.6 49.5% 
148 2 8 0.8_0.2_0.6 40.5% 
246 14 15 0.4_0.2_0.2 38.9% 
1014 3 11 0.2_1.0_0.2 77.1% 

Sp
or

e 

46 3 15 0.2_0.6_0.0 89.1% 
44 6 11 0.2_1.0_.00 65.0% 

282 2 12 0.2_0.2_0.4 78.4% 
45 9 8 0.2_0.4_0.2 58.3% 
43 5 24 0.0_0.2_0.0 91.1% 
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CHAPTER SIX 

6. UTILIZATION OF BIG DATA TECHNOLOGIES IN 
PATHOLOGY INFORMATICS 

In this chapter, we present our research in the field of pathology 

informatics, beginning at image processing and analysis, and ending with 

content-based image retrieval. We will also showcase the potentials of Big Data 

technologies that would improve the quality and capabilities of handling large-

scale biomedical imagery.   

6.1 Problems and Challenges 

In the past decades, major advances in computer hardware as well as 

software technologies have helped numerous researchers and scientists to greatly 

improve their fields of expertise. This is also true in pathology. The examination 

of histopathological biopsy samples under microscopes is a crucial step in disease 

diagnosis. Conventionally, the characteristics of both cellular and gross 

phenotypic appearance of biopsied tissue samples are examined and summarized 

qualitatively by experts in their fields. This is also true for biologists who work 

closely with microscopic images of samples, such as the previously presented 

researches in mitochondria dynamics and pollen and spore grains from fossil 

samples.  

During observation and diagnosis, pathologists examine an image slide 

from multiple levels of magnification, for example 2x, 8x, 20x, and 40x. On 

different levels of magnification, certain pathological patterns would be revealed 

on regions/objects of interest. On a coarse level, the dominant regions of 

interests are related to tissue-level structures, e.g. lymph node and its 
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components (capsules, primary and secondary follicles, sinus, etc.). On a finer 

level, follicular structures become more obvious, e.g. follicular center, mantle 

zones, marginal zones, inter-follicular regions, etc. On the finest level, individual 

cells and sub-cellular structures (chromatin pattern, nuclei, nucleoli, and various 

cytoplasmic changes) are the objects of interests. Their morphologies, textural 

patterns, as well as distribution and coverage are closely examined. The diagnosis 

is reached by examining the whole slide on multiple levels of magnification and a 

consensus of discoveries on these levels all contribute to the conclusion made by 

pathologists. The complex pathological content in digital slides and high-level 

reasoning process that pathologist utilize to reach diagnostic conclusions require 

years of professional experience and intensive training. 

Such examination routines have potential limitations and pitfalls as this 

qualitatively visual examination may have inter- and intra-observer variability 

due to inconsistency of viewing environment, equipment adjustment, experience, 

fatigue induced from long hours, and extraneous external distractions, as well as 

the amount of data presented through microscopic examination. Poor 

reproducibility is not uncommon, and this may lead to inconsistency and 

difficulty in reaching conclusions for diagnosis and biological discoveries. The 

advance in human reasoning may be shadowed by the capability of memorizing 

huge amount of information observed and/or over-looked on the entire slide. 

This may potentially lead to unreliable diagnoses resulting in under- or over-

treatment for patients and adverse consequences in quality of patient care and 

waste of money and resources. Therefore, a reliable, consistent, smart, and 
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efficient computer vision system may be appreciated for pathology studies as well 

as other fields that rely heavily on visual examination of images. 

Thanks to the advances in computing hardware and software development 

in the field of computer vision, successful stories of computer-aided analysis have 

been presented in various biological and medical domains. However, as the 

imaging technologies advance, so does the volume and resolution of digitally 

scanned microscopic slides. An uncompressed virtual slide can reach several, if 

not dozens, of gigabytes in raw pixels. This puts a lot of pressure on the efficiency 

of image processing without losing the quality of the analysis results. Scientists 

and computer vision specialists are constantly searching for better ways to push 

the boundary of computational approaches, one of which is the Big Data analytics 

technologies.  

The adaptation of Big Data framework into image analysis is, surprisingly, 

not as straightforward as one may envision based on the success stories in other 

research domains, such as health care [83, 84], business analytics [85], 

recommendation system [86], social networks [87], etc. Image analysis itself 

requires high-level domain knowledge that defines the underlying content of 

images and guides researchers to design computer-understandable programs to 

extract such content. The content of images captured is all stored hiding inside 

pixels. However, translating pixel data back from the other direction takes extra 

effort to achieve. For example, a market crowd is captured in a digital picture, 

and a computer vision program is designed to recognize human faces and flag 

salient subjects. The intelligence of facial recognition is only one of many 

examples that image analysis techniques can contribute to real-world problems. 
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As for medical image analysis, there is another realm of research topics that focus 

on tackling medical problems with computational strengths. The complexity and 

depth of image content is even higher in medical and biological fields. Rather 

than recognizing and comparing human faces, researchers are looking to discover 

biological objects, anatomical structures that bear pathologically meaningful 

visual patterns that eventually lead to diagnosis. 

6.2 System Overview 

There are multiple components in the complete pipeline of whole-slide 

image analysis and retrieval with Big Data infrastructure. In this section, we will 

briefly introduce the overall structure and its components. 

Tile Extraction and Filtering: The original slide is first divided into 

individual non-overlapping tiles and saved for later analysis. This helps to reduce 

the total size of files to be examined, discarding non-meaningful regions on the 

glass slide. 

Stain Un-mixing and Slide Normalization: To re-balance the color 

components across the entire slide collection, we utilize stain un-mixing methods 

introduced by [88] and [89] to first separate Hematoxylin- and Eosin-stains and 

then recombine them to result in a normalized color profile. This step not only 

minimizes the color bias from individual slides, it also provides us the single E-

stain color channel that bears the major information this analysis is focusing on.  

Multi-Scale Cell Identification: Image segmentation is one of the most 

difficult steps in the whole analysis process. In this particular study scenario, cell 

segmentation and identification is not an exception. We utilize a multi-scale 
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object segmentation method called differential morphological profile, DMP, with 

a customized post-segmentation consolidation to successfully identify cells with 

moderate overlapping and blurriness. 

Rule-Based Cell Filtering and Refinement: Once preliminary 

segmentation is accomplished, we implement an extra step in an effort to 

maximize the quality of cell identification and the preservation of cell 

morphology. A set of domain-specific rules are constructed to filter unfit cell 

object candidates and to correct over- and under-segmented cell candidates at 

the same time. 

Feature Extraction for Cells: A set of visual features are extracted for 

individual cell objects in this step to prepare for future reasoning based on 

cellular level information of which cell morphology is specially treated and 

extracted. 

Profile Construction for Tiles: The content on individual tiles is also 

extracted by constructing a visual content profile using not only the low-level 

pixel information but also the special arrangement information of cells inside 

each tile. Treated as a non-directed graph, a group of properties are calculated to 

represent the organization pattern from the entire tile. The tile visual content 

profiles are used to perform high-level reasoning and knowledge discovery in the 

following steps. 

Visual Category Discovery: Visual content is summarized into several 

categories based purely on the tile content represented by their profiles. The 

resolution of such categories can be adjusted as a parameter in tile clustering 

algorithms based on pathologists’ preference. 
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In the next section, we will introduce each aforementioned component in 

our pipeline in details along with their preliminary results with explanations with 

domain-specific knowledge. 

6.3 Component Details and Results 

6.3.1 Tile Extraction and Filtering 

The compressed whole-slide images in our collection are generated using 

Aperio® ImageScope® in TIFF format. Once uncompressed, the raw image pixels 

can reach several billions, some of which do not bear useful information. For 

example, a sliced and chemically treated thin tissue layer only convers a portion 

of the glass slide leaving the rest to be almost transparent which result in pixels 

that are close to white. 

Additionally, due to the depth of image content and the complexity of 

subsequent image analysis methods, we choose to deploy a “divide-and-conquer” 

strategy to handle these large whole-slide images. This can be easily extended to 

other similar image modalities, for example, remote-sensing satellite imagery 

and space star atlas.  

We choose to divide whole slide images into tiles of size 1000 by 1000 

pixels based on the observation that when examining on the finest level of 

magnification, the viewing window, for example using Aperio® ImageScope®, on 

a computer monitor is roughly a rectangle with 1000+ pixels in both height and 

width. We mimic this practice and simplify the tiles as squares with 1000 pixels 

in each dimension. The Aperio® ScanScope® produces compressed digital whole 

slide images using TIFF standard. Our tile extraction program utilizes OpenSlide 
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library to extract individual tiles from such TIFF formatted slides without 

opening and decompressing the entire image. The following figures give us a 

rough concept on the scale of file size and pixel amount in WSI collections, using 

The Cancer Genome Atlas (TCGA) data set in our study.  

 
Figure 6.1 Tile sizes for each WSI images in TCGA data set. 

 
Figure 6.2 Total pixel count for each WSI images in TCGA data set. 
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6.3.1.1 Tile Extraction Efficiency and Scalability 

Since we deploy a “divide-and-conquer” strategy to extract individual tiles, 

it is straightforward to parallelize such a process in a computer cluster. Using 

Apache Spark as the backbone and its pipe() function, we are able to initiate 

multiple instances of tile extraction program, written in C++, OpenCV, and 

OpenSlide, as an external program across multiple compute nodes with multiple 

CPUs (cores). To minimize the data traffic from worker nodes to driver node, we 

pass only calculated tile information to each workers where raw tiles are 

extracted and saved to hard disk directly. This method not only makes sense in 

the current step, it is mostly useful when we execute subsequent steps with much 

more complex analyses. The efficiency of this step is studied with different cluster 

configurations for a customized Spark program processing the TCGA data set. 

The tile size is predefined by a list of values, ranging from 1000 to 10000 pixels in 

both height and width. The program runtime is recorded using wall-time in 

seconds and illustrated in Figure 6.3. Although a more precise evaluation is to 

use actual program runtime instead of wall-time, it is not straightforward to 

obtain such runtime in a cluster environment with shared resources and complex 

scheduling mechanism. We argue that wall-time provides a close estimation of 

the actual execution time to explore the scalability scope.  

A median-sized whole slide image can be divided into more than 2000 

tiles. Using 10 compute nodes with 18 cores each, we can setup a Spark cluster 

with 1 driver node and 9 worker nodes. Consequently, we are able distribute 

2000+ tile extraction instances across 162 cores (9*18=162). With such a 

configuration, a queue of tiles are extracted sequentially on each core and at the 
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peak performance, 162 tiles are being extracted simultaneously. As one can 

predict, the degree of parallelism would influence the overall performance of a 

Spark distributed computing job. The contributing factors include, but not 

limited to, the following list: 

• Number of worker nodes 

• Number of CPUs/cores per worker node 

• Memory allocated on each node 

• CPU frequency, e.g. 1.2 GHz in our current cluster 

• External program runtime, especially the longest runtime on worker cores 

• Distribution of tasks across the cores 

 In general, as the pixel count increases, so does the runtime. This trend is 

also observed as tile size increases. For some individual executions, the runtime 

increases more quickly. When the tile size exceeds 5000*5000, the runtime 

increases more drastically in general. This is due to longer runtime for individual 

external tile extraction program. However, we also observe a few decreasing cases 

for bigger tile sizes. This is due to two competing factors: external program 

runtime and number of active cores. Specifically, when tile size increases the total 

number of tiles decreases. In such situation, although it may take longer to run 

each tile extraction, the task queues distributed across cores may become shorter 

and some cores may be idle with no task queue assigned to them. In addition to 

Spark’s own task scheduling mechanism that tries its best to balance the 

distribution of tasks, we also utilize data repartitioning to mitigate such effect.  
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Figure 6.3 Scalability tests for tile extraction on TCGA data set. (top: slides #1 
to #15; bottom: slides #16 to #30) 

The scalability can also be shown in the following quartile box chart as 

compared to the pixel count tread shown in Figure 6.2. As the pixel count 

increases close to a 5 times difference (1.8 billion to 8.8 billion), the median 

runtime only increases 2.2 times (235.9 s to 514.9 s). 
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Figure 6.4 Tile execution runtime statistics for individual slides. 

6.3.2 Stain Un-mixing and Slide Color Normalization 

The raw whole slide images are captured in the RGB color space as for 

most of common image capturing devices. In image processing, several color 

systems can be used to represent different color components (Figure 6.5), for 

example RGB, CIE L*a*b, and HSV. However, the RGB color system is not the 

most suitable color space that reveals the true visual patterns residing in the 

imagery. After preliminary experiments, we chose to use the methods presented 

in [88] and [89] to separate stains in H&E virtual slides. The assumption on 

which this strategy is based is that the Hematoxylin (blue) and Eosin (pink) 

stains can be independently captured and thus are separable The details of this 

method are beyond the scope of this project. We will briefly explain the basic 

concepts here. For in-depth discussion, please refer to [88]. The color-unmixing 

method was implemented in Matlab and provided by authors of  [90].  
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Figure 6.5 Demonstrate different color spaces. Original image (a), H-stain (b), 
and E-stain (c); R (d), G (e), and B (f) channels; L (g), *a (h), and *b (i) 
channels; and c: H (j), S (k), and V (l) channels. 

Similar to tile extraction, stain un-mixing can also be performed in 

parallel. In practice, we use a Job Array provided by SLURM (Simple Linux Utility 

for Resource Management) [91] to deploy multiple Matlab instances independently. 

It is important to point out that this stain un-mixing does not always produce an 

actual separation due to constrains in mathematical calculation, such as singular 

value decomposition (SVD) and matrix operations. The most common reason is 

that the raw tile images are from the regions that are not stained (transparent in 

light, appearing in pseudo-white in digital images). In this situation, the model 

assumption that pixels are comprised with H-stain and E-stain related color 

components is not satisfied. This in fact helps us to trim down the overall number 

of tiles to be analyzed in the subsequent steps. 
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The subsequent analysis steps use the separated H-stain image to identify 

cells and extract tile content profiles. The reason behind this choice as explained 

in [89] is that 1) Hematoxylin stain primarily highlights the chromatin and 

chromosomes and it in turn brings out the morphology of nuclei and 2) 

pathologists closely examine the morphology of nuclei, predominantly, with some 

exceptions such as for nuclear/cytoplasmic ratio analysis. 

Another merit of stain un-mixing is that the recombined H- and E-stains 

result in a normalized image. In common practice, pathologists examine digital 

slides one at a time. In other words, the discrepancies between slides are not 

crucial for patient-based diagnosis. With professional training and clinical 

practice, such discrepancies do not influence the overall observation and the 

reasoning to backup final diagnosis. However, such a scenario changes once the 

computational component has joined the diagnostic process. High-throughput 

computation technology provides the ability to batch-process a collection of 

digital slides. At this point, the visual difference would introduce bias in image 

analysis. Therefore, it is crucial to normalize the appearance across the entire 

collection of slides, eliminating the skewed values from one slide to another. 

Figure 6.6 gives an example on how a raw H&E image tile can be separated into 

Hematoxylin- and Eosin-stain images and then recombined to a normalized 

result. 
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Figure 6.6 stain un-mixing. The (a) raw image was first split into two stain 
color channels: (b) H-stain and (c) E-stain and then recombined to obtain a 
normalized image (d). 

In another angle of explanation, one would prematurely reason that we are 

leaving out the whole color spectrum in the slides, such as luminance and color 

saturation. As it turns out,  the saturation does not reflect the “degree of reaction” 

between color-labeled antibodies and their targeted antigens in cells. The degree 

of saturation of stained cellular structures does not linearly indicate the amount 
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of interaction between color-labeled antibodies and their targeted antigens to 

highlight the cellular structures. 

In this study, we are focusing on identification of cells (mostly cell nuclei) 

for positive detection of abnormalities reflecting the presence of certain diseases. 

Therefore, our priority drives us to choose H-stain for further analysis. Yet, we do 

not eliminate the contribution of E-stain as well as other components from 

different color spaces. 

6.3.3 Cell Identification using cDMP 

As explained in the background section, differential morphology profiles 

(DMP) has its advantage on smartly revealing objects of interest and reflecting 

both their morphology (size and shape mainly) and intensity on the spectrum 

(single channel mainly). We implemented the hybrid version of DMP adapted 

from [11] and previous works in [92]. After one initial morphological operation to 

build mask image, and two raster scans, one forward and on backward order, to 

perform morphological reconstruction, a result image is obtained using a fixed-

size structuring element (SE) that is defined in both size and shape. In order to 

capture signatures from multiple scales, a list of SE’s are selected and therefore 

produce a stack of reconstructed images. 

Following the morphological reconstruction, the pairwise differences on 

pixels values between any two adjacent scales – the derivative or difference (the 

D in DMP) – are calculated. This difference exposes the peak response of 

reconstruction, which is considered the characteristics of object that this 

particular pixel resides in. The farther this peak is on the spectrum indicates that 
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the object this pixel belongs to has a relatively larger size. In addition, the side on 

which this peak is at on the profile scale also indicates the intensity of the object 

this pixel belongs to. One side is for “darker” objects (resulted from closing by 

morphological reconstruction) and the other is for “brighter” objects (resulted 

from opening by morphological reconstruction). 

There are different strategies to consolidate the stack of reconstructed 

images in the literature [92, 93, 94, 95]. Most of the time, the explanations are 

relatively brief. In general, they either examine overlapping objects identified 

from different scales and eliminate reoccurrence [92], or treat the objects 

separately and use customized filtering to make selection [89]. In our empirical 

observations, the effect from different SE sizes introduces incremental results in 

the reconstructed image rather than a clear differentiation on the object 

boundaries. We lean toward keeping most influential information from each scale 

and consolidate them into a single image. That being the characteristic (peak 

response from DMP operation) of each pixel – we call it the consolidated DMP 

image (or cDMP image). 

Once the cDMP image is constructed, an image binarization needs to be 

completed in order to reveal the boundaries of objects. The first choice to binarize 

a grayscale image is to use Otsu thresholding. However, the boundaries of cell 

nuclei in a cDMP image are in fact gradually easing into the background instead 

of a clear-cut differentiation. Additionally, a simple experiment reveals that the 

pixel value distribution does not fit the strong assumption that Otsu uses – pixels 

distributed generally into two peaks in grayscale histogram. Instead of Otsu [8], 

we use the Adaptive Thresholding [96] to differentiate foreground (cell nuclei) 
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from background (bright light) while preserving the morphology as much as 

possible. The comparison of two thresholding methods on a H-stain image with a 

prominent single-peak histogram is presented in Figure 6.7. 

 
Figure 6.7 Comparison of two thresholding methods. (a) H-stain image, (b) 
histogram of (a), (c) result image by Otsu thresholding, and (d) result image by 
Adaptive Thresholding. Note: grayscale histogram only show pixel value bins 
from 1 to 182. Bin 0 value is 132711 and bins from 183 to 255 are all zeros. 

After the binarization of cDMP image, some cell nuclei can still be 

touching/overlapping. We address this issue with marker-guided watersheding. 

There are numerous applications that discuss the utilization and variation of 

watersheding method. Despite the variations, researchers agree that roughly 
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defined markers would greatly improve the segmentation results. In this study, 

we define markers using lightly thresholded geodesic transform. 

6.3.4 Rule-Based Cell Filtering and Refinement 

Sometimes, Watersheding still couldn’t segment closely clustered irregular 

objects. We then convey high-level concepts into median-level morphology-based 

rules to iteratively break down cell clusters. The set of rules can be adjusted for 

different use cases. In our study, cell nuclei are relatively round, from circle to 

ellipse with some exceptions that show “twisted” or “elongated” contour.  

 
Figure 6.8 Iterative cell filtering and refinement. (Left: identified cell 
candidates, blue: positive, green: minor distortion, red: uncertain, cyan: 
discard, and yellow: clustered; Right: final segmentation results, white: 
positive, and gray: minor uncertainty). 

We used the following rules to make decision on whether a candidate is 1) 

truly a nucleus with higher confidence, or 2) a cluster of a few nuclei that are 

separable with further watersheding, or 3) irregular objects that are hardly 

possible nuclei. This process is performed in iteration until 1) all objects are 

determined to be either nuclei or artifact and/or 2) iterations reach an upper 

limit – when further watersheding is of minimal influence in overall 
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segmentation results. Figure 6.8 shows results of iterative cell filtering and 

refinement. 

6.3.5 Cell Feature Extraction 

To describe the morphological patterns of cell nuclei, we need to extract 

numerical features from identified nuclei. There are a wide variety of features 

choices. The selection of features varies from application to application. As stated 

in a previous section, the stain concentration (a.k.a darkness) does not linearly 

reflect the degree of staining. Therefore, we treat the isolated H-stain images as 

grey scale images of interest. Moreover, morphological characteristics are used to 

describe cell nuclei instead of color information, especially in our study. On the 

other hand, this does not hinder us from developing a useful pipeline of 

algorithms from identifying cell nuclei to visual feature extraction, from tile 

clustering to slide retrieval. With domain experts’ insights, we can also weight 

differently the subset of features based on their contribution to diagnosis. 

With this point addressed, we are looking at what features would best 

describe the morphological characteristics of cell nuclei that we have discovered 

in previous steps. The pixel intensity features are chosen to be: Otsu threshold, 

mean and standard deviation, and binned histogram. The gray level co-

occurrence matrix (GLCM) is used to calculate a set of textural features averaged 

over different direction [4]. Shape-related features include: Hu moments, aspect 

ratio, compactness, convexity, form factor, roundness, solidity, perimeter, and 

mass center. 
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6.3.6 Tile Content Profile Construction 

Similar to the feature extraction step for cell nuclei, we also select a 

collection of features that best describe the visual patterns in image tiles. First of 

all, the same set of features is calculated to describe the global tile content from 

pixel values, for example, mean and standard deviation, histogram, and GLCM 

textures. Secondly, instead of morphological features, as for cell nuclei, we 

calculate graph-based properties from the network of cells inside the tile.  

The distribution of cells is another checkpoint that pathologists refer to 

when analyzing the virtual slides. In order to represent such distribution, we use 

the mass centers of cell nuclei, which were calculated in the previous step, to 

construct a network of cells. Two widely used graph structures are constructed, 

namely the Delaunay Triangulation and the Voronoi Diagrams. Figure 6.9 

demonstrates the visual differences between two tiles; one is showing generally 

even distribution of cells while the other tile has cells that are lined up in sheets. 

As presented in the Delaunay triangulations, pairwise distances (triangle edges) 

are short in the first tile as compared to the second tile with bigger distances 

between cells from different sheets. Since Voronoi diagram is derived from 

Delaunay triangles, we also observe the differences in polygon sizes and 

distribution. 
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Figure 6.9 Examples of Delaunay and Voronoi structures of tiles with distinct 
patterns. 

To quantitatively describe the distribution pattern using these two graphs, 

a set of properties are calculated (Table 6.1). The differences between the two 

example tile patterns are shown again in Figure 6.10 and Figure 6.11 with 

histogram representations of Delaunay triangle edge sizes and Voronoi polygon 

area sizes.  
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Table 6.1 Graph properties and their calculations for both graphs. 

Delaunay Triangulation Voronoi Diagram 

Mean and standard deviation of pairwise 

distances between cell nuclei 

Mean and standard deviation of cell-centered 

polygons 

Ratio of min and max pairwise distance Ratio of min and max polygon sizes 

Binned histogram of pairwise distances Binned histogram of polygon sizes 

 

We can see that, in Figure 6.10 for evenly distributed cells in tile a, the 

triangle edge size distribution is close to a normal distribution with a slightly 

longer “tail” on the upper end. This reflects the homogeneous pairwise distances 

with slightly bigger gaps for those cells that are clustered as circles, leaving some 

spaces inside. On the other hand, sheets pattern results in a “two-peak” 

phenomenon showing a relatively large portion of cell pairs that are far from each 

other. Similar conclusions can be drawn from Voronoi polygons size distributions 

in Figure 6.11. 

 
Figure 6.10 Edge length distribution from Delaunay triangulation graphs in 
two types of tile patterns. 
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Figure 6.11 Polygon size (in pixels) from Voronoi diagram in two types of tile 
patterns.  

Here again, we test the scalability of Spark tile profile construction. 

Specifically, six WSI examples are selected from TCGA data set: two smaller 

slides (#1 and #2), two median-sized slides (#15 and #16), and two larger slides 

(#29, #30). With total number of cores set to be 32, 64, and 128. We arranged 

different configurations with number of nodes in the cluster and number of cores 

per node.  

Instead of tile extraction, we tested the configurations using tile profile 

construction for this set of experiments. The execution wall-time is used for all 

six configurations shown in Figure 6.12. In general, the more the total cores the 

shorter the runtime, and the smaller the file size the quicker the program finishes 

its execution. With a fixed number of total cores, Spark cluster favors a bigger 

number of cores per node due to less inter-node communications. On the other 

hand, this observation weakens when total core count reached 64. This indicates 

that the inter-node communication cost is counter-balanced by the cost of longer 
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task queues on each node. As the number of total cores multiplied 4 times from 

32 to 128, the execution time shortens as big as 6 times (slide #15). Based on 

these observations, we can make the following suggestions on Spark cluster 

configurations for image processing. 

• When resources are sufficient, allocate as many computing cores as 

possible. 

• When resources are constrained, limit the number of nodes while 

maximizing number of cores per node may improve the runtime 

performance. 

 

Figure 6.12 Scalability test on node-core configurations. 

6.3.7 Visual Category Discovery 

Clustering is one of the most widely used machine learning techniques. It 

groups data points into clusters based on different criteria trying to minimize 

intra-cluster difference while maximizing inter-cluster differences. The 

difference, sometimes called distance, is defined slightly differently from one 
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variation to another. The most commonly used distance calculations are, but not 

limited to, Euclidean distance, Hamming distance, Lp-norm, etc. Clustering is 

also considered as an unsupervised machine learning techniques. It does not 

require data points being labeled with predefined categories. However, in most of 

the variations, it requires a predefined number (K) of clusters with some 

exceptions, such as MeanShift [97]. When a research domain has a clearly 

targeted number of clusters, it is relatively easy to determine the K value. On the 

other hand, as suggested by [98], the choices of an optimal K value can 

sometimes be loosened to more than one candidate, representing the resolution 

of clusters in a hierarchical relationship. 

Apache Spark has its own machine learning library, MLlib, which provides 

readily available packages of machine learning algorithms that are mostly 

published variations suitable for parallel computation. Our application in this 

step is looking for clusters that represent visual patterns, in groups, from tiles 

within and across individual whole-slide images. The value of K is difficult to 

determine. On the other hand, the number of different patterns is usually limited 

based on our observations. The choice of K can be determined by a combination 

of consulting domain experts and experiments. Keep in mind that, we are looking 

for clusters of closely similar tiles in the goal of finding a finite and limited 

number of representative tiles to describe the overall patterns inside a WSI. In 

other words, the major contribution of tile clustering is to drastically reduce the 

number of tiles to be closely examined by domain experts without losing crucial 

patterns that are rather not dominant nor salient and therefore easy to be 

overlooked by human observation. 
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In this study, we use the Apache Spark MLlib’s K-means package that is 

developed based on the work [99] of K-means|| (“ || “ is pronounced as pipe). 

The value of K is initially determined to be 6, empirically.  

Each tile is represented as a high-dimensional feature vector using 

features introduced in previous step. K-Means|| analyzes thousands of tile 

feature vectors and produces K cluster centroids with the same dimension as tile 

feature vectors. However, they may not necessarily be an actual data point. 

Therefore, we need to further determine for each data point where they belong to 

by comparing their distance to each of K centroids. The centroid that is the 

closest is the where this data point should be grouped into. 

Table 6.2 Follicular Lymphoma data set grades. 

Image ID FL Grade Image ID FL Grade Image ID FL Grade 

1 III-A 5 I 9 I-II 
2 III-A 6 I 10 I-II 
3 III-B 7 I 11 I-II 
4 III-B 8 I   

 

Once all the tiles are assigned with a cluster label, the whole slide images 

are represented with tiles falling under K visual categories, proportionally. 

Figures 6.13 and 6.14 display the cluster distribution percentage within each slide 

with representative tiles from each cluster, K=6 and K=4 respectively. The 

dataset used in this experiment is a collection of 11 whole-slide images from 

patients with Follicular Lymphoma. The only information we have other than the 

images themselves are the final diagnosis with a WHO grade. Case diagnoses are 

summarized in Table 6.2. Three slides (#3, #4, and #5) were subsequently 
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removed from this dataset according to pathologist’s suggestion. From Figure 

6.13, we have drawn the following observational points. 

• Clusters 2 and 6 show similar pattern that is described with term 

“starry sky” by some pathologists for diagnosis. However, the pattern is 

more obvious in cluster 2 than cluster 6, in which normal lymphocytes 

are the majority leaving fewer hollow areas. 

• Grade I slides (#6, #7, and #8) show almost exclusive occurrence of 

tiles from cluster 4, which demonstrate a mixture of fibrous tissue and 

small centrocytes. 

• Grade I-II slides are represented with distinguishable cluster 

percentage pattern – dominating number of tiles from cluster 6. 

• Slide #9 also has a great portion of tiles from cluster 2. This gives us 

the indication that we should take a closer look at all three slides to see 

whether slides #9 should be assigned with Grade II since it has a large 

portion of tiles (cluster 2) with more advanced “starry sky” pattern as 

compared to cluster 6. 

• Slide #1, although assigned with Grade IIIA, has a similarity in tile 

cluster distribution to slides #9 and #10. This intrigues us to question 

whether it is a case being over-diagnosed. In other words, slides #1 and 

#9 should be further examined side-by-side to see what common 

pattern they share and what set them apart. 

• Cluster 3 shows a much higher percentage in slide #6 (Grade I) as 

compared slides #7 and #8. This observation would warn us that there 
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might be an uncertainty on the diagnosis of slide #6 that needs a 

second opinion.  

 
Figure 6.13 Cluster distribution (as percentage) per slide, K=6. 

With the same strategy, we can examine the cluster distribution patterns 

revealed in Figure 6.14. However, with K=4, it is more difficult to differentiate 

slides between grades. One explanation is that four clusters of tile pattern are not 

specific enough to cover major variations among tiles and some subtle differences 

are now grouped together and are therefore overshadowed by prominent visual 

pattern categories.  
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Figure 6.14 Cluster distribution percentage (%) per slide, K = 4. 

As shown in Figure 6.15, as K value increases, clusters are further divided. 

When K increases from 4 to 6, clusters 2 and 3 (K=4) are now represented with 

three clusters (clusters 2, 4, and 6, K=6). When K increases from 6 to 8, six tile 

clusters now represent previously discovered four visual categories. The 

overlapping clusters indicate that finer details (appearance of fiber cells) are 

considered when differentiating between clusters. These observations point out 

the suggestion that choosing a single K is not always the ultimate goal. Instead, 

we should provide flexible options for end-users, in our case pathologists, to 

make judgments. They are the ultimate decision makers who control the 

resolution of cluster details. Choosing multiple K values could also provide a 

continuous discovering path for analyzing dynamic changes in visual differences. 
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Figure 6.15 Visual categories discovered using different K values. 

6.3.8 CBIR for Tiles 

In addition to discovering visual categories, high-dimensional feature 

vectors can also help research to compare and retrieve tiles in a CBIR system. 

Figure 6.16 shows four CBIR cases using query tile images. With one query tile 

image, a list of tiles that are ranked based on their content similarity with the 

query image is presented.  

• Query tile q1 contains a mixture of lymphocytes and fatty tissue (white 

regions). From it retrieval list, r1 and r2 present similar pattern as q1, in 

the meantime, as similarity decreases, r3 to r5 show not only lymphocytes 

and fatty tissue regions but also glands that are also appearing to be white 

regions.  

• Query tile q2 and its retrieval result have the most consistent performance. 

All five tiles are representing dominant visual pattern of “starry sky”. 
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• Query tile q3 retrieves a list of tiles that present both lymphocytes and 

fiber tissue regions.  

• Query tile q4 has a less advanced “starry sky” pattern. As returned from 

the retrieval, 4 out of 5 top-ranked tiles show similar visual pattern with an 

exception of r4 that contains majority normal lymphocytes and less 

macrophages. 

 

Figure 6.16 Content-based retrieval using tile samples. Results are ranked 
based on feature vector distances between query image and database images. 

From this retrieval experiment, we demonstrate the capability of finding 

most visually similar tile images from a large collection of heterogeneous tiles. 

With this method, pathologists can submit a limited set of tiles of interest and ask 

the CBIR system to automatically retrieve a list of top-ranked most similar tiles 

based solely on their visual content. Accompanied with the discovered visual 

categories, we present a computer-assisted approach to study the gross visual 

patterns residing inside raw whole-slide images in for digital pathology domain 

experts. 



 

135 
 

6.4 Discussion 

In this chapter, we presented our research works in pathology informatics 

using Big Data infrastructure. Particularly, we have processed and analyzed 

whole-slide images from patients with Follicular Lymphoma and Diffuse Large B-

Cell Lymphoma with developed computer vision methods and constructed and 

executed with Big Data technologies, such as Hadoop, HDFS, and Apache Spark. 

We demonstrated the challenges in processing large-scale image as well as the 

complex content residing inside medical images. Our approaches have the 

following strengths in advancing large-scale microscopic image analysis. Whole-

slide images are large in size and bear complex pathological content. We first 

divide them into smaller tiles based on the observation that conventional 

examinations of high power fields are done within a smaller window of viewing 

field. The localized visual patterns are comprised with rich pixel information and 

are extracted using a series of computer vision methods. Individual cells (cell 

nuclei) are identified with maximal preservation in morphology and used to 

construct cell graph as part of the process to extract visual content of tile images. 

The tiles, represented by a multi-dimensional feature vectors are studied to 

discover categories of visual patterns that are distributed throughout the whole 

slide images. The whole process was structured under the Big Data 

infrastructure. Specifically, we utilize Apache Spark as the main package 

handling distributed computing and the Hadoop Distributed File System (HDFS) 

to store data files across the cluster. Our scalability experiment shows that the 

Big Data setup has its merits in scalability especially for processing large-scale 

images, sometime billions of data instances, with efficiency and fault tolerance. 
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With that being said, the Big Data technologies bear some limitations and 

controversies as well [100, 101]. In the field of computer vision, images are often 

considered as a special case of data matrices. In some of the cases, image 

processing is performed as variations of matrix operation, such as image 

smoothing, convolution, and Fourier transformation. However, some of the 

advanced processing procedures do not necessarily fall under matrix operation. 

In our study, we use DMP operations to segment cells with moderate overlapping 

and blurriness. This operation has a great success in object segmentation, 

however, it was first developed as a recursive and therefore its execution time is 

not as efficient as some other approaches. Although in the following years since 

its first introduction, some variations were presented with improvement in 

computation efficiency [92, 95]. The parallelizable version of DMP operation was 

developed for execution on share-memory super computers with MPI 

mechanism. On the other hand, Spark, and Big Data technologies in general, 

work in a distributed computational structure where workers execute programs 

independently without messaging and communication among each other, except 

communication with the master node for overall process coordination. This 

difference hinders us from direct adoption of DMP and its parallel version into 

Big Data ecosystem. 

In this work we demonstrate that, with moderate variations, distributed 

image processing can be achieved by shipping heavily specialized and complex 

image processing programs to individual workers for execution. Furthermore, the 

traffic of shipping data from master node to workers nodes is another aspect that 

needs to be carefully examined and treated. For digital pathology images, billions 
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of pixels are stored and are potentially useful for extracting image content. The 

intuition of distributing pixels onto workers nodes for in-memory computing is in 

fact impractical. That is the other reason that we only deliver necessary meta data 

information to workers and let them run heavy-duty image processing on their 

CPUs and save result imaged directly on to distributed file systems without 

shipping them back to the master node (driver program). The stress that is put on 

the driver program to gather all processed image data and save them to disk can 

be reaching over the limit as the driver program only runs on a single node. 

In all, we recommend distributed image processing to be executed directly 

on workers nodes and leaving the coordination of different image patches (in our 

case the tiles) to be handled by driver program. Taking advantage of the ability of 

Big Data technologies to handle large-scale computation with distributed 

mechanism does not mean that every type of computation and data processing is 

necessarily in-memory and across the cluster. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND FUTURE WORK 

In this chapter, we will review the major contributions presented in this 

dissertation as well as discuss some directions for future research based on the 

developed methods.   

7.1 Conclusions 

This dissertation centers around the development of a series of 

computational and informatics methods designed to assist large-scale image 

analysis, management, and retrieval, with an emphasis placed on biological and 

medical images.  A summary of these contributions follows:  

The aspect of web-based image management is first addressed in this 

dissertation by showcasing three real-world applications for domain experts. 

Specifically, a web platform (BioShapes.org) was developed as part of the multi-

institute and multi-disciplinary collaboration project among biologists, computer 

scientists, mathematicians, and informaticians based on their common interest in 

understanding how biological shapes contribute to biological functionalities in a 

diverse selection of organisms. As part of the BioShapes web site, we developed a 

hierarchical image annotation and labeling tool for domain experts to quickly and 

accurately group and annotate large collection of mitochondria images based on 

their shape characteristics. This web-based tool has its back-end engine to first 

cluster visually similar mitochondria images using extracted visual features. 

Next, pre-clustered images are presented for manual review and adjustment. 

Visually similar images that are assigned in the same cluster can be presumably 
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annotated with the same label as their cluster example. Therefore, only a limited 

number of images need manual annotation. Once images are reliably annotated, 

they are again examined and assigned with multiple classes of morphological 

characteristics in shapes and sizes. This method is proven to be both efficient and 

accurate and helped biologists to reduce laborious examination so they can 

concentrate on the details analysis on a limited set of representative images. Such 

application can be easily adapted into other similar biological image analysis 

practices. For example, the Neotropical pollen and spore image database can also 

be benefited from efficient morphology annotation to improve the quality of 

taxonomy study. This research work points out the challenges as well as our 

solutions on complex annotation of biological images. A computational approach 

could ease the burden of what used to be laborious and potentially bias processes. 

Two web-based dermatology image management and consultation systems 

were also introduced. FIRST Tele-Ichthyosis has been helping the global 

community of patients and dermatologists who are interested in the treatment 

and management of Ichthyosis (a rare skin disease) using our web-based tele-

consultation system where medical cases along with patient images are uploaded 

to a secure webserver for domain experts to do online consultation and 

communication between experts and with case doctors. A study was conducted to 

understand the communication complexity and how online interactions between 

doctors and cases are constructed. 

Mizzou Dermatology Image Database (MDID) is a web-based clinical 

image management and annotation system for the dermatology professionals at 

the University of Missouri Dermatology Department. We not only provided an 
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alternative image management application for better security and efficiency, but 

also went further to study the usability of such web-based image management 

system and how its users interact with it with salient usage patterns. System 

usage log data was first summarized using 2-round of mapping to transfer raw 

web browsing actions to meaningful tasks. Then sequences of tasks were studied 

using sequential pattern mining technique, SPADE, to discover usage pattern. A 

few recommendations for developing a better health IT system with high quality 

in usability and high adoption rate are presented. These two research works in 

dermatology domain can be extended into other medical domains that rely 

heavily on medical images. Our works demonstrate the importance of studying 

communications, interactions (both between human experts and between human 

users and health IT systems), adoptions of health IT applications in the real-

world settings. Data mining techniques (i.e. social networking construction and 

sequential pattern mining) strengthened the studies by providing computational 

evidence to support our findings and in turn help us make recommendations for 

future health IT adoption practices. 

Next, we presented the research works in visual content extraction in the 

fields of radiology, pathology, and palynology. Novel approaches were developed 

to handle object segmentation such as a multi-level follicle identification in 

whole-slide IHC images of follicular lymphoma cases; pathology-bearing regions 

in HRCT images of lung were analyzed and identified using modularized PC 

recognizers for different categories. We demonstrate how automatic parameter 

tuning would improve the overall quality of image analysis and retrieval. This not 
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only benefits the radiology domain but also is a generic approach for visual 

content extraction tasks for other imaging informatics domain. 

Following visual content extraction, we then presented our works in 

content-based image retrieval for biological and medical images. To 

accommodate multi-class CBIR for HRCT images of lung, we developed a novel 

approach using the entropy of retrieval result to re-weight and re-rank the image 

to present a consolidated retrieval results. We also developed a web-based image 

retrieval system for Neotropical pollen and spore images. Both semantic-based 

and content-based image retrieval were provided using extracted morphological 

characteristics. These research works demonstrate that visual content extracted 

from raw images provides an alternative solution to traditional analyses of 

biological and medical images with capability of handling large-scale and 

complex image collections with efficiency and accuracy. 

We conclude the presentation of our research works with a pathology 

image analysis system utilizing Big Data technologies. Due the large-scale image 

size and complexity, we first developed as series of image analysis method, 

including cDMP, to smartly identify cell nuclei from isolated H-stain images. 

Then we execute these heavy-duty computer vision programs under the Apache 

Spark computing cluster infrastructure. The efficiency, scalability, as well as 

performance in discovering pathologically meaningful visual categories were 

conducted and presented. We demonstrate the capability of analyzing raw 

medical images with billions of raw pixels bearing complex and high-level 

domain-specific knowledge, discovering underlying visual patterns, and assisting 
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pathologists to answer medically meaningful questions such as disease grading in 

our case study.  

7.2 Future Work  

7.2.1 Development of Methods for Other Imaging Domains 

In both biology and medicine, there are likely a large number of visual 

characteristics that domain expert use in their daily practices to study various 

species, disease, morphologies, etc. A set of novel computer vision methods 

would facilitate the ever-increasing needs in high-throughput and large-scale 

analyses.  The challenges are to collaborate with domain experts and understand 

the true nature of their “perceptual categories” and translate their needs and 

knowledge into useful computer vision tools.   

7.2.2 In-Depth and Large-Scale Evaluations on Developed Methods 

We acknowledge the limitations on some of our works in both the 

scalability and flexibility in handling biological and medical imaging data. We 

would like to dedicate great efforts on working with domain experts to validate 

our approaches on large-scale and more diverse collections of imaging data. An 

easy-to-use web-based application should be developed to facilitate expert 

labeling and validation processes to obtain high quality and possibly bigger 

volume of ground truth dataset. 

7.2.3 Multi-Source Data Analytics Tools for Biomedical Imaging Informatics 

For the current works, we are mainly dealing with a single source of data; 

whether they are images or text data. In the era of Big Data and ever-expanding 

Internet of things, we would expect various sources of related data to be collected 



 

143 
 

and waiting to be analyzed to make sense of scientific questions. One area is of 

particular interest. That is merging genetic, medical, social, and image 

information into a health informatics analysis system that would be able to 

handle biomedical Big Data and answer health-related question that may benefit 

a large population of patients as well as general society. 
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