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ANALYSIS OF PERFORMANCE/ACCURACY TRADEOFFS FOR  

FLOATING POINT APPLICATIONS ON GPUS 

Huyen Nguyen 

Dr. Michela Becchi, Thesis Supervisor 

ABSTRACT 

Floating-point computations produce approximate results, which can lead to inaccuracy 

problems. Existing work addresses two issues: first, the design of high precision floating-

point representations; second, the study of methods to trade-off accuracy and 

performance of serial CPU applications. However, a comprehensive study of the trade-off 

between accuracy and performance for multithreaded applications is missing. In my 

thesis, I study this trade-off on GPU. In particular, my study covers the use of different 

floating-point precisions (i.e., single and double floating-point precision in IEEE 754 

standard, GNU Multiple Precision, and composite floating-point precision) on a variety 

of real-world and synthetic benchmark applications. I explore how the use of 

multithreading and instruction-level parallelism on GPU can allow the use of higher 

precision arithmetic to improve accuracy without paying in terms of execution time. As a 

result of my analysis, I provide insights to guide users to the selection of the arithmetic 

precision leading to a good performance/accuracy tradeoff depending on the arithmetic 

operations used in their program (addition, multiplication, division), the degree of 

multithreading of their program, and its arithmetic intensity. 

 

Keywords – floating-point arithmetic; parallel computing; multithreading. 
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Chapter 1 Introduction 

Applications relying on floating-point arithmetic are common in various fields such as 

graphics, finance, engineering and science. Floating-point numbers are an approximation 

of real numbers, and therefore their use can lead to inaccuracy problems, which are often 

ignored by programmers. The following simple example illustrates an inaccuracy 

problem due to the use of floating-point arithmetic. Let us consider a large array of 

floating-point numbers with two properties: (i) the accurate summation of all values in 

the array is zero; and (ii) the absolute value of the elements in the array belongs either to 

a subset of very small numbers, or to a subset of very large numbers. In other words, the 

elements in the array may have substantially different orders of magnitude. Table 1 

shows the results obtained by summing all elements of 8M-element array with these 

properties using single and double floating-point precision on CPU in a sequential 

fashion. In different columns we shows the result for arrays constructed using different 

intervals.  

Table 1: The accuracy of the global summation on CPU 

Precision Intervals: 
(10-3, 10-2) & (102, 103). 

Intervals: 
(10-4, 10-3) & (103, 104). 

Intervals: 
(10-6, 10-5) & (105, 106). 

Single (32 bits) -3.57E+01 -2.49E+02 -3.77E+03 
Double (64 bits) 1.52E-08 -2.89E-06 -4.26E-05 

 

As can be seen, in all cases the result computed is inaccurate (i.e., it is different from 

zero). Further, the accuracy of the computation decreases as the difference in order of 

magnitude of the elements increases. While the use of higher arithmetic precision can 

improve accuracy, it may lead to degraded performance. For some applications (such as 

medical studies, climate modeling, quantum theory) result accuracy is paramount; others 
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can tolerate a moderate loss of accuracy, especially if better accuracy comes at a cost of 

degraded performance. While there have been studies addressing this problem for 

sequential CPU computation [8][9], very little work has considered the effect of 

multithreading on the performance/accuracy tradeoff. The goal of this thesis work is to 

provide insights into performance/accuracy tradeoffs on GPU. In particular, we consider 

different floating-point precisions, including: single and double floating-point precision 

in IEEE 754 standard, GNU Multiple Precision (GMP), and composite floating-point 

precision defined by M. Taufer et al. [1]. Our study focuses on NVIDIA devices and uses 

NVIDIA CUDA as GPU programming language. However, our results can be 

generalized to other parallel architectures using the IEEE 754 floating point standard, as 

well as different parallel programming models. 

Our study shows that on GPU higher precision may lead to a better tradeoff between 

execution time and accuracy, and provides directions on the selection of the arithmetic 

precision that optimizes this tradeoff. Our study covers real-world benchmark 

applications with different computational characteristics. As a side result, our analysis of 

these benchmark applications led us to the identifications of inaccuracy problems due to 

the use of the composite precision library designed by M. Taufer et al. [1]. To 

complement our analysis, we construct two micro-benchmarks: the first aims to provide 

better insights and a deeper examination of the effect of the arithmetic intensity and the 

degree of multithreading on the performance/accuracy tradeoffs, and the second aims to 

analyze the behavior of the multiplication and division operations using different 

arithmetic precisions, with a focus on composite precision. 
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1.1 Contributions 

In this thesis we make the following contributions: 

• A detailed investigation of the performance/accuracy tradeoff for different 

floating-point precisions – single precision (float), double precision (double), 

composite precision (float2 based on float, and double2 based on double), and 

multiple precision (GMP) [7] using global summation in [1] and two benchmark 

applications from the Rodinia Benchmark Suite [2]. We modified these 

applications to use all types of precisions above and run on NVIDIA GPUs. 

• Micro-benchmarks to: (1) analyze the effect of arithmetic intensity on the 

performance/accuracy tradeoff on GPU, and (2) explain the behavior of 

composite precision multiplication and division. 

• Insights to guide users to the selection of the arithmetic precision leading to a 

good performance/accuracy tradeoff depending on the arithmetic operations used 

in their program (addition, multiplication, division), the degree of multithreading 

of their program, and its arithmetic intensity.  

1.2 Organization 

The remainder of the thesis is organized into nine chapters. In Chapter 2 we provide 

background information. In Chapter 3 we discuss our research questions and 

methodology. In Chapter 4 we discuss the related work. In Chapters 5 we present and 

discuss results on global summation program. Chapter 6 describes the compute-intensive 

micro-benchmark we designed to provide an in-depth discussion of the effect of the 

arithmetic intensity and multithreading on the performance/accuracy tradeoff and the 
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results obtained by this analysis. In Chapter 7 we study the LU decomposition and 

Gaussian Elimination benchmarks In Chapter 8 we describe the multiplication and do-

undo micro-benchmarks designed to study different types of multiplications and divisions 

on GPUs, and discuss the results of this analysis. In Chapter 9 we conclude and discuss 

future research directions. 
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Chapter 2 Background 

This chapter provides background information on floating-point arithmetic and on the 

GPU architecture. Section 2.1 provides a definition of floating-point arithmetic, and 

describes its notation and the IEEE 754 standard. In addition, it provides a discussion of 

the sources of floating-point inaccuracy. Section 2.2 introduces the composite floating-

point precision library. Section 2.3 describes the GNU Multiple Precision library (GMP) 

and the CUDA Multiple precision (CUMP) libraries. Section 2.4 introduces NVIDIA 

GPUs including their hardware and software architecture and their floating-point support. 

2.1 Floating Point Arithmetic 

2.1.1 Floating Point Definition and Notation 

Definition: According to Wikipedia, “in computing, ‘floating-point’ is the formulaic 

representation that approximates a real number in computer language so as to support a 

trade-off between range and precision” [15]. The floating-point arithmetic can be less or 

more accurate depending on the computer hardware and configuration.  

Floating-point notation: Floating-point notation is a representation of real numbers using 

a scientific notation [6] that allows handling very small and very large numbers. 

Generally, a floating-point number is composed of three parts: a sign that indicates 

whether the number is positive or negative, a significand (aka mantissa) that contains 

significant digits, and an exponent that indicates the position of the radix point (decimal 

point in base 10 or binary point in base 2). The scientific notation of a number is as 

indicated in formula (1) below. 

𝑛𝑢𝑚𝑏𝑒𝑟 = −1!"#$ ∗ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 ∗ 𝑏𝑎𝑠𝑒!"#$%!%& (1) 
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The base is the base of the number system in use. The floating point number for base two 

is called “binary floating-point”, for base ten it is called “decimal floating-point.” For 

instance, 12.5 could be represented in “decimal floating-point” notation as significand 

1.25 with an exponent of 1 and a sign of 0, and in “binary floating point” notation as 

significand  1.1001 with an exponent of 3 and a sign of 0.  

The floating-point notation has two advantages over integer data-types. First, real values 

between integers (real numbers) can be represented. Second, a floating-point number can 

represent a very large range of values because of the scaling factor (or the sliding window 

technique). Using sliding windows of precision, some of the less important digits can be 

sacrificed to let the machine represent a very large number. For example, the number 

123,456,321,123 cannot be represented using the integer data-type, but it can be 

represented in “decimal floating-point” as a significand 1.2345632 (the window slides to 

the left) with an exponent of 11 and a sign of zero; the machine only needs to store 

1.2345632, 11 and 0. The same rule applies to very small numbers; in this case, the 

window is slid to the right. For example, the number 0.00000001234 can be stored as a 

significand 1.234 with an exponent of -8 and a sign of zero. 

A disadvantage of the floating-point representation in binary machines is that some 

numbers do not have an exact binary representation. Although a many numbers have a 

compact and exact decimal representation, they have very long or infinite expansion in 

binary. As a result, many decimal numbers cannot be represented exactly in binary 

format, and they have to be stored as approximated binary floating-point numbers in the 

machine. For example, there is no exact value of decimal 0.1 which has the 32-bit binary 
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representation	 as	0 01111011 10011001100110011001101 with the exponent 01111011 

(123 in decimal) and infinite digits of significand 1001 1001 1001 1001 1001 … 

The advantage of the sliding window technique is also a disadvantage of the floating-

point representation, since it causes the truncation of some of the least significant bits. 

The number 123,456,321,123 is represented by 1.2345632 x 1011, and the last digits 

“1123” are lost. 

2.1.2 IEEE 754 standard for Floating Point Numbers 

IEEE 754 is the IEEE standard for binary floating-point arithmetic established in 1985, 

and commonly used in most of modern hardware and programming languages. According 

to the IEEE 754 standard, a floating-point number is encoded into 3 components:  

• A one-bit sign field: this leftmost bit indicates whether the number is positive (sign 

bit = 0) or negative (sign bit = 1). 

• An exponent field: the exponent can be negative as well as positive (signed). To store 

the exponent as an unsigned integer, the technique “biasing” is used and the stored 

exponent is called “biased exponent”. In this technique, before storing into a floating-

point format, a positive bias number (127 for single, 1023 for double or 2!!! − 1 for 

n-bit exponent) is added to the real exponent. For instance, if the exponent is 3, the 

stored exponent field is 130 for single, and 1026 for double. 

• A significand field: these bits combined with the implicit leading significant bit with 

value 1 except for subnormal numbers and zero give the true significand. 

The distributions of these fields for 32-bit single precision (float type in C) and 64-bit 

double precision (double type in C) are indicated in Table 2. 
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Table 2: Format of single and double precisions in IEEE 754 standard 

Format Total bits Sign Exponent Significand Smallest Largest 

Single precision 32 1 8 23 ~1.2 ∗ 10!!" ~3.4 ∗ 10!" 

Double Precision 64 1 11 52 ~2.23 ∗ 10!!"# ~1.8 ∗ 10!"# 

 

The floating-point notation has a specific representation for the following special 

numbers: zero is represented with exponent 0 and significand 0; infinity is represented 

with exponent 255 and significand 0; NaN (not-a-number) is represented with stored 255 

and non-zero significand. 

The value of an IEEE floating point number is computed using formula (2) below, in 

which m is the number of significant bits, and e is the stored exponent. 

−1 !"#$ ∗ (1+ 𝑏!!!!
!!! 2!!) ∗ 2(!!!"#$ !"#$%&)  (2) 

For example: 

0 01111100 0100000000000000000000 = 1 * (1+ 2-2)*2(124-127) = 0.15625 

2.1.3 Sources of Numerical Errors 

Numerical errors happening during the computations are the combined effect of two 

types of errors: round-off errors (due to limited precision of representation) and 

truncation errors (limited time of computation). 

2.1.3.1 Round-off errors 

Round-off errors occur because it is impossible to represent exactly all real numbers in 

binary format. Each machine-hardware uses a finite number of precision bits (n bits) to 

store and manipulate (finite or infinite) real numbers that require more than n bits, 

leading to an approximation.  
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Although the round-off error can be small for a given numerical step, it can be 

accumulated and become significant after a number of iterations. Our research focuses on 

this kind of error. 

2.1.3.2 Truncation errors 

A truncation error corresponds to the fact that a process is terminated, or a mathematical 

procedure is approximated after a certain finite number of steps, and the approximation 

result differs from the mathematical result. 

For example, when using logarithms, exponentials, trigonometric functions, hyperbolic 

functions, the infinite term ∞ is replaced with a finite term n ( 𝑎!𝑥! →  𝑎!𝑥!)!
!!!

!
!!! . 

The truncation error is 𝑎!𝑥!!
!!!!! . 

2.2 Composite floating point number library 

Because of the hardware limitation, traditional floating-point numbers cause numerical 

errors that cannot be accepted in many applications requiring high accuracy. To improve 

the accuracy of applications, many scientists have explored techniques to extend the 

available precision in software. In 1971, Dekker [3] introduced a technique for expressing 

multi-length floating-point arithmetic in terms of single-length floating-point arithmetic. 

In particular, he illustrated a method to split a floating-point number into two half-length 

floating-point numbers. 

The pseudo-code of the splitting method is below: 

Error-free split of a floating-point into two parts 

[hx, tx] split (float x) { 

    c = fl(2!! + 1); // t1 = 12 for single or t1 = 27 for double 

    p = fl(x X c) 
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    hx = fl(p – (p – x)); 

    tx = fl(x – hx); 

} 

Dekker’s splitting method has been used in several studies, including Thall’s work on the 

use of extended-precision floating-point numbers for GPU computation [4]. More 

recently, Taufer et al. [1] have redefined the extended-precision arithmetic described in 

[4] and introduced the composite floating-point arithmetic library that we use in this 

thesis.   

The single composite floating-point precision representation (float2) proposed in [1] is a 

data structure consisting of two single floating-point numbers: a value component and an 

error component. The single precision value of a composite precision number is the 

addition of its value and error components.  

Similarly, the double composite floating-point precision (double2) uses two double 

floating-point numbers to represent a number. The data structures of single and double 

composite floating-point numbers are presented in Table 3. 

Table 3: Data structure for single and double precision composite arithmetic. 

struct  float2{ 
         float x; // x2.value 
         float y; //x2.error 
} x2; 
float x2 = x2.x + x2.y; // x2.value + 
x2.error; 

struct  double2{ 
         double x; // x2.value 
         double y; //x2.error 
} x2; 
double x2 = x2.x + x2.y; // x2.value + 
x2.error; 

In the composite precision library in [1], multiple single precision additions, subtractions, 

multiplications, as well as reciprocal are used to perform single composite precision 

addition, subtraction, multiplication, and division. Not only do the composite precision 

algorithms perform the calculation, but they also keep track of the error. Table 4 shows 

that single composite precision addition and subtraction require four single precision 

additions and four single precision subtractions; single composite multiplication requires 
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four single precision multiplications and two single precision additions; single composite 

division needs a single floating-point reciprocal, four single precision multiplications, one 

single precision addition, and one single precision subtraction. These algorithms 

obviously slow down the performance because of the extra operations. 

Table 4: Algorithms for the single composite floating-point arithmetic 

Addition 
Pseudo Code 
float2 x2,y2,z2 
z2 = x2 + y2 

Implementation 
float2 x2,y2,z2 
float t 
z2.value= x2.value + y2.value 
t = z2.value – x2.value 
z2.error = x2.value 
         - (z2.value –t) 
         + (y2.value –t) 
         + x2.error 
         + y2.value 

 

Subtraction 
Pseudo Code 
float2 x2,y2,z2 
z2 = x2 + y2 

Implementation 
float2 x2,y2,z2 
float t 
z2.value= x2.value + y2.value 
t = z2.value – x2.value 
z2.error = x2.value 
         - (z2.value –t) 
         + (y2.value –t) 
         + x2.error 
         + y2.value 

 

Multiplication 
Pseudo Code 
float2 x2,y2,z2 
z2 = x2 * y2 

Implementation 
float2 x2,y2,z2 
float t 
z2.value= x2.value * y2.value 
z2.error= x2.value * y2.error 
        + x2.error * y2.value 
        + x2.error * y2.error 

 

Division 
Pseudo Code 
float2 x2,y2,z2 
z2 = x2 / y2 

Implementation 
float2 x2,y2,z2 
float t, s, diff 
t = (1/y2.value) 
s = t * x2.value 
diff = x2.value 
     - (s * y2.value) 
z2.value = s + t * diff 
z2.error = t * diff 

                   
 

 

2.3 GNU Multiple Precision (GMP) and CUMP 

2.3.1 GMP – The GNU Multiple Precision Arithmetic Library 

GMP [7] is a free library for arbitrary-precision arithmetic, operating on integers, 

rational numbers, and floating-point numbers. Arbitrary-precision arithmetic, also called 

big-num arithmetic, multiple precision arithmetic, or sometimes infinite-precision 

arithmetic, indicates that calculations are performed on numbers whose digits of precision 

are limited by the available memory of the host system. In principle, arbitrary-precision 

arithmetic should be able to allocate additional space dynamically whenever the accurate 

representation of a variable requires it. However, the current version of the GMP library 
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(GMP 6.0.0) supports the automatic expansion of the precision only of integer and 

rational numbers. The precision of floating point numbers in GMP has to be chosen 

statically, and the size of the variables doesn’t change after initialization. 

GMP floating-point numbers are stored in objects of type mpf_t and functions operating 

on them have the mpf_ prefix. The GMP floating-point representation is illustrated in 

Figure 1. 

 

Figure 1: GMP floating point number representation	

The GMP floating-point representation is based on the following definitions: 
	

• limb: the part of a multi-precision number that fits in a single word. Normally a 

limb contains 32 or 64 bits. The C type of limb is mp_limb_t. 

• _mp_size: the number of current limbs used to represent a number, or the negative 

of that if the represented number is negative. If the number is zero: _mp_size and 

_mp_exp are zero, _mp_d is unused. 

• _mp_prec: the precision of the mantissa, in limbs. At initialization, given number 

of precision bits, GMP library computes mp_prec, and (mp_prec  + 1) limbs are 

allocated to _mp_d. If there is a carry while implementing GMP floating point 

operations, the carry value is stored in the extra limb.  _mp_size can be smaller 

than _mp_prec, if a represented number need less limbs; _mp_size can be larger 

than __mp_prec when we use all (mp_prec  + 1) allocated limbs. 
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• _mp_d: A pointer to the array of limbs, which is the absolute value of the 

mantissa. _mp_d[0] points to the least significant limb and 

_mp_d[ABS(_mp_size)-1] points to the most significant. 

• _mp_exp: The exponent, in limbs, decides the position of the implied radix point. 

If _mp_exp is zero, the radix point is just above the most significant limb. If 

_mp_exp is positive, the radix point offset is between the most significant limbs 

and the least significant limbs. Negative exponents shows that a radix point is 

further above the highest limb. 

2.3.2 CUMP 

The CUDA Multiple Precision Arithmetic Library (CUMP) [10] is a free library for 

arbitrary precision arithmetic on CUDA, operating on floating point numbers. It is based 

on the GNU MP library (GMP). CUMP provides functions for host and device codes, the 

former operating on CPU and the latter operating on GPU. 

CUMP supports only a restricted amount of the functionality of the original GMP library. 

Specifically, in the current version CUMP only supports three arithmetic operations: 

addition, subtraction, and multiplication.  

2.4 Introductions to GPUs  

Graphic Processing Units (GPUs) were originally designed for graphics processing. 

Nowadays, modern GPUs are not only a very powerful computer-graphics and image-

processing engine, but also an efficient accelerator for parallel computing and data 

intensive applications. Thanks to the rapid increase in their computational power and 

programmability (through the advent of the CUDA programming model), more and more 
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scientists have progressively accelerated their applications on GPUs. In this section, we 

give a brief introduction to NVIDIA GPUs that we use in our research. 

2.4.1 NVIDIA GPU Architecture 

Modern NVIDIA GPUs are composed of multiple highly threaded Streaming Processors 

(SMs). Figure 2 shows the architecture of a Fermi GPU that consists of 16 SMs. 

	

Figure 2: NVIDIA Fermi Architecture 

The general architecture of a single SM contains: 

• Several Streaming Processors (SPs) (also called single-precision CUDA cores), 

• Double-precision units (DFUs), 

• Special function units (SFUs),  

• Load/store units (LD/ST), 

• A register file, 

• A shared memory/cache. 

Figure 3 shows the design of a SM in the Fermi architecture. 
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Figure 3: NVIDIA Fermi Streaming Multiprocessor 

Table 5 provides a brief comparison between the NVIDIA Fermi and Kepler GPU 

architectures. From Fermi to Kepler, the number of CUDA cores has increased by a 

factor 6.42 (from 448 to 2880 cores). Higher clock rates allow faster instruction 

execution by each core, but lead to higher power consumption. To limit the power 

consumption, the clock frequency has been slightly reduced moving from Fermi to 

Kepler GPUs.  
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Table 5: Fermi vs. Kepler features 

 Fermi GF100 [11][13] 
(Tesla C2070)  

Kepler GK110 [12][14] 
(Tesla K40c) 

Number of SMs 14 15 
SPs per SM  32 192 
DFUs per SM 16 64 
SFUs per SM 4 32 
LD/STs per SM 16 32 
Registers per block 32768 65536 
Shared memory per block 49152 bytes 49152 bytes 
GPU max clock rate 1147 MHz (1.15 GHz) 745 MHz (0.75 GHz) 
Peak double-precision floating point performance  515 GFLOPS 1.43 TFLOPS 
Peak single-precision floating point performance 1 TFLOPS 4.29 TFLOPS 
Warp Schedulers per SM 2 4 
Dispatch unit per SM 2 8 
Max of active threads per SM 1536 2048 
Max of threads per block 1024 1024 
Max of active blocks per SM 8  16 

  

2.4.2 CUDA programming model 

For both Kepler and Fermi GPUs, a CUDA application generally spawns hundreds to 

thousands of threads to populate the SM and hide memory accesses/computation pipeline 

latency. From the programmer’s perspective, the work is partitions across threads, the 

threads are grouped into thread blocks, and the thread blocks are grouped into grids.  

Each block is mapped to one SM at execution time, and threads within a block are split 

into warps. The warp is the basic scheduling unit of NVIDIA GPUs, and contains 32 

threads. Because the scheduler issues instructions in warps, the block-size (number of 

threads per block) should be a multiple of the warp-size (32 threads) to avoid wasting 

threads. For example, if the kernel configuration has a block-size 16 threads, the 

instruction is still issued to 32 cores, and 16 cores are wasted. The grid-size can be 

assigned based on the number of active threads and blocks on a SM.  

In addition, when considering occupancy and massive parallelism, the registers and 

shared memory resource are also significant. If a kernel requires too many registers, it 

limits the number of active threads. This limitation will be explored in Chapter 5. 



17 
 

2.4.3 Floating point for NVIDIA GPUs 

The capabilities of NVIDIA GPUs have been expanded in each hardware generation from 

only supporting single precision in early NVIDIA architectures, to fully supporting IEEE 

single, double precision, and including FMA (Fused-Multiply-Add) operations in modern 

generations such as Fermi and Kepler GPUs. CUDA classifies different GPU generations 

using the compute-capability number [16]; the compute capability of a GPU device can 

be queried by a specific CUDA function call. Below, we detail the GPU support provided 

in GPU with different compute capabilities. 

• Compute capability 1.2 and below only support single precision floating point 

arithmetic. Moreover, on these GPU devices not all single precision operations 

are IEEE compliant, possibly leading to high level of inaccuracy. 

• Compute capability 1.3 supports both single and double precision arithmetic, and 

offers double-precision FMA operations. Single precision in these devices keeps 

unchanged from previous compute capabilities. Double precision in compute 

capability 1.3 devices is IEEE compliant. Double-precision FMA operations 

combine a multiply and an addition with only one rounding step; the resulting 

operation is faster and more accurate than separate multiply and addition. 

Compute capability 1.3 does not support single precision FMA. 

• Compute capability 2.0 and above fully support IEEE compliant single and 

double precision arithmetic, and include both single and double FMA operations. 

The experiments in this thesis are performed on Tesla C2050/C2070 (Fermi GPU with 

compute capability 2.0) and Tesla K40C (Kepler GPU with compute capability 3.5), both 

supporting IEEE-compliant single and double precision arithmetic. The newest NVIDIA 
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GPU architecture – called Maxwell – also supports 16-bit precision, but we will not focus 

on this device.  Table 5 shows additional features related to floating-point support on 

Fermi and Kepler architectures; namely: the number of single/double precision units 

(SPs/DFUs) per SM (SPs/DFUs in Fermi is 32/16, in Kepler is 192/64), and the peak 

performance of floating-point operations.   

Table 6 reports the latencies of 32-bit floating-point operations over Fermi and Kepler 

NVIDIA GPUs based on the research in [17]. 

Table 6: Latencies (clock cycles) of math data-path 32-bit floating-point operations over Fermi and Kepler 
NVIDIA GPUs 

Operation Fermi GF106 Kepler GK104 
ADD, SUB 16 9 
MAX, MIN 20 9 
MAD 18 9 
MUL 16 9 
DIV 1038 758 
__fadd_*() 16 9 
__fmul_*() 16 9 
__fdivdef() 95 41 
__sinf(), __cosf() 42 18 
__tanf() 124 58 
__exp2f() 98 49 
__expf(), __exp10f() 114 58 
__log2f() 46 22 
__logf(), __log10f() 94 49 
__powf() 143 62 
sqrt() 216 181 
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Chapter 3 Research Questions and Methodology 

3.1 Research questions 

In this thesis, we focus on answering the following questions: 

• How GPU multithreading affects the tradeoff between accuracy and performance? 

• How the arithmetic intensity of a program affects the performance/accuracy 

tradeoff on GPU? 

• How the kind of floating-point operation executed in a program affects the 

accuracy? 

• Why and when one precision should be replaced by another precision?  

• How the use of division in CUDA programming affects the accuracy and 

performance of the program? 

3.2 Methodology 

To answer the above questions, it is important to thoughtfully select appropriate 

benchmark applications. Naturally, the combination of these benchmarks should reflect 

all angles of our research. We selected the following benchmark applications. 

• Global summation [1]: this numerical benchmark performs the summation of an 

array of values whose “accurate” sum is known to be equal to zero. Our goal is to 

observe the accuracy of different precisions, and this benchmark gives us a good 

reference – the zero “correct” sum. We modified the global summation 

benchmark described in [1] to use single precision, double precision, composite 

precision and GMP for both original single-block version and modified multi-
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block version. Overall, this benchmark allows answering most of the questions 

related to addition and subtraction operations. 

• LU Decomposition (LUD) and Gaussian Elimination benchmarks from the 

Rodinia benchmark suite [2]: the Rodinia benchmark suite is very popular in high 

performance computing. LUD and Gaussian Elimination are two applications that 

use floating-point numbers. These applications use the combination of different 

operations (addition, subtraction, multiplication, division), and allow us to 

evaluate the general accuracy/performance tradeoff of the different floating-point 

precisions in consideration. These applications have multi-block configurations 

that we can directly use to analyze the performance of the programs at different 

degrees of multithreading. We modified these applications to use different 

floating-point precisions. Besides using the input matrices publicly available for 

these benchmarks, we generate random matrices that include elements with 

various orders of magnitude so as to study their effect on the accuracy of the 

results. 

• Do/undo benchmark [1]: this application performs a combination of 

multiplication and division operations. Specifically, a reference x variable is 

repeatedly multiplied and divided by a sequence of y variables. The expected 

result of the computation is the original x. This do/undo benchmark enables us to 

analyze the effect of different types of division on accuracy. 

After modifying the benchmark applications above to use the considered floating-point 

precisions and datasets, we analyze their register and memory requirements and, with the 

aid of the CUDA occupancy calculator, we determine degrees of multithreading that 
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should be considered in the analysis. In addition, we profile the applications and study 

their PTX assembly code to determine the arithmetic intensity of each application and the 

number and kind of instructions it performs. 

For applications for which the accurate results are not known a priori, we use the result of 

the GMP library as a reference. 

The benchmark applications above are only the starting point of our analysis. To be able 

to generalize our analysis and findings, and to better understand our observations, we 

constructed two micro-benchmarks: 

• Micro-benchmark for analyzing the affect of arithmetic intensity on the 

performance/accuracy tradeoff on GPU. 

• Micro-benchmark for explaining the behavior of composite precision multiplication 

and division. 

  



22 
 

Chapter 4 Related work 

We first explored the single floating-point composite precision library [1]. As explained 

in Chapter 2, a single floating-point composite number is composed of two single 

precision floating-point numbers, the value and the error. The composite number value, 

n, is the sum of two single floating-point numbers as in formula (1). 

𝑛 =  𝑛!"#$% + 𝑛!""#" (1) 

The approximation error of the arithmetic operation such as the sum or the product of two 

numbers is stored in nerror. Our thought was that we could monitor the change of nerror and 

decided to increase the precision when the error reached a threshold level.  The idea was 

more stable when we implemented a floating-point program using GNU multiple 

precision library (GMP). This arbitrary precision arithmetic library provided us an 

unlimited precision bits to represent a real number, and so gave the accurate results. In 

theory, GMP library should automatically change the precision when needed, but the 

truth was that GMP only supported the dynamic change precision bits for integer data-

types. For floating-point numbers, we had to declare the number of necessary precision 

bits. Because of that reason we thought about a library that could change the precision of 

floating-point numbers dynamically (the precision we chose included single floating-

point (float), double floating-point (double), composite number (float2, double2)). We 

then began to study the necessary materials and tools to support our ideas. During this 

period of the research, we have learned and practiced the function of extracting floating-

point numbers into three components: sign, exponent and mantissa; we have also learned 

the techniques to split a floating-point number into two floating-point numbers [3][4][5].  
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Beside of those papers mentioned in this section, the dynamic tool – PRECIMONIOUS 

[8] – is one of my motivations to think about the idea of dynamic library. This tool has 

four main components to assist users for tuning the precision of floating-point numbers. 

In the first component, the search file is created based on the input program in LLVM 

bitcode format and the number of floating-point types, and this search file contains all 

variables needed to be tuned. In the second component, all valid type configurations are 

found using the authors’ LCCSearch algorithm. In the third component, all program 

versions corresponding to all valid configurations are generated in the LLVM bitcode 

format. In the last component, results produced by all new program versions are 

compared with the result of original version, and the running times of all versions are 

computed and compared with the running time of original version. After checking and 

comparing, the PRECIMONIOUS give proposed configuration that can give the correct 

answer with appropriated performance. However, this tool is only used on CPU, and has 

many limitations including modifying at source code level, lack of communication 

between variable etc. The idea about dynamically changing precision that can be used on 

GPUs is formed. 

Unfortunately, from the basic functions we started to monitor the error and built our 

dynamic library, but we received unexpected results. Figure 4 show that the nerror in 

composite library was unpredictable because it could be both negative and positive 

number, thus the error could not increase gradually. After a period of time trying many 

ways to have better control on nerror and getting disappointed results, we had to change 

our direction and start our new idea that is to make a study considering accuracy and 
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runtime for multithreaded applications with different size of dataset. This is the basic idea 

for this thesis. 

	

Figure 4: Error value propagation in Global summation 
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Chapter 5 Global Summation 

This chapter presents an analysis of numerical accuracy and performance issues found in 

the global summation benchmark described by Taufer et al. [1] due to the use of floating 

point arithmetic. We analyze the global summation benchmark not only using single 

precision floating-point (float) and single composite precision (float2) arithmetic as in 

[1], but also using multiple precision (GMP mpf_t), double precision floating-point 

(double), and double composite precision (double2) arithmetic. First, we modify the 

global summation program to use multiple-precision arithmetic: namely, the GMP library 

on CPU, and the CUMP library on GPU. On GPU, we extend the single thread-block 

GPU kernel proposed in [1] so as to allow also experiments with multiple thread-blocks. 

Then, we extend the global summation kernel to use double and double2 (beside float and 

float2) arithmetic. Our goal is to study the performance-accuracy tradeoff of global 

summation at different degrees of multithreading. 

5.1 Global summation with GMP and CUMP 

The global summation program was introduced to evaluate the composite precision 

library described in [1]. This program calculates the summation of an array of floating 

point values on CPU and GPU. The input array can be configured to contain numbers of 

various orders of magnitude; the content of the array is automatically generated so as to 

have a known accurate sum of zero. When using floating-point arithmetic, the sum of a 

very large and a very small number may lead to the small term to be neglected 

(cancellation). This, in turn, may lead to inaccuracy problems in the global summation of 
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sets of numbers with different orders of magnitude. The resulting inaccuracy depends on 

the arithmetic precision and the order of magnitude of the elements in the array.  

Because of the two properties: (1) the array contains a subset of very small numbers and a 

subset of very large numbers, and the magnitude of small and large numbers can be 

configured; (2) the correct summation of the array is zero, we choose this program to start 

our study.  

To learn how multiple precision numbers can improve the accuracy and study their effect 

on the performance, we first analyze the GMP – CUMP version of the global summation 

when increasing the number of precision bits, and for different gaps between the small 

and large numbers. Specifically, we observe the program on both CPU and GPU with 

four GMP configurations: 32-bit (2x64-bit limbs), 64-bit (2x64-bit limbs), 128-bit (3x64-

bit limbs), and 256-bit (5x64-bit limbs). In addition an, we consider five ranges of input 

intervals as below: 

• Range 1: Small number (10-01, 10+00) and Large number (10+00, 10+01) 

• Range 2: Small number (10-04, 10-03) and Large number (10+03, 10+04) 

• Range 3: Small number (10-13, 10-12) and Large number (10+12, 10+13) 

• Range 4: Small number (10-19, 10-18) and Large number (10+18, 10+19) 

• Range 5: Small number (10-37, 10-36) and Large number (10+36, 10+37) 
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Table 7: Accuracy of global summation using GMP and CUMP. Device = Tesla C2075 

Array Size = 1024 element 

Sequential (CPU)         

Format: mpf_t 64 mpf_t 32 mpf_t 128 mpf_t 256 

Range 1: (10-01, 10+00) & (10+00, 10+01) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Range 2: (10-04, 10-03) & (10+03, 10+04) 4.07E-19 0.00E+00 0.00E+00 0.00E+00 

Range 3: (10-13, 10-12) & (10+12, 10+13) 6.44E-18 2.01E-18 0.00E+00 0.00E+00 

Range 4: (10-19, 10-18) & (10+18, 10+19) 9.60E+01 9.60E+01 6.51E-18 0.00E+00 

Range 5: (10-37, 10-36) & (10+36, 10+37) 0.00E+00 0.00E+00 5.34E-18 0.00E+00 

Parallel (GPU)         

Format: cump 64 cump_32 cump_128 cump_256 

Range 1: (10-01, 10+00) & (10+00, 10+01) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Range 2: (10-04, 10-03) & (10+03, 10+04) 2.67E-19 0.00E+00 0.00E+00 0.00E+00 

Range 3: (10-13, 10-12) & (10+12, 10+13) 3.18E-18 1.06E-18 0.00E+00 0.00E+00 

Range 4: (10-19, 10-18) & (10+18, 10+19) 5.98E+01 5.98E+01 3.77E-18 0.00E+00 

Range 5: (10-37, 10-36) & (10+36, 10+37) 0.00E+00 0.00E+00 2.89E-18 0.00E+00 

Array Size = 1,048,576 elements 

Sequential (CPU)         

Format: mpf_t 64 mpf_t 32 mpf_t 128 mpf_t 256 

Range 1: (10-01, 10+00) & (10+00, 10+01) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Range 2: (10-04, 10-03) & (10+03, 10+04) 1.58E-16 0.00E+00 0.00E+00 0.00E+00 

Range 3: (10-13, 10-12) & (10+12, 10+13) 2.62E-15 6.77E-16 0.00E+00 0.00E+00 

Range 4: (10-19, 10-18) & (10+18, 10+19) 3.85E+04 3.85E+04 2.61E-15 0.00E+00 

Range 5: (10-37, 10-36) & (10+36, 10+37) 0.00E+00 0.00E+00 7.95E+01 1.48E-34 

Parallel (GPU)         

Format: cump 64 cump_32 cump_128 cump_256 

Range 1: (10-01, 10+00) & (10+00, 10+01) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Range 2: (10-04, 10-03) & (10+03, 10+04) 3.53E-17 0.00E+00 0.00E+00 0.00E+00 

Range 3: (10-13, 10-12) & (10+12, 10+13) 5.61E-16 1.45E-16 0.00E+00 0.00E+00 

Range 4: (10-19, 10-18) & (10+18, 10+19) 8.20E+03 8.20E+03 5.64E-16 0.00E+00 

Range 5: (10-37, 10-36) & (10+36, 10+37) 0.00E+00 0.00E+00 6.94E+01 3.89E-35 

 

From Table 7 we can observe that, on the 1024-element array in Range 1, the program 

gives accurate results in all cases. The global summation program starts to provide 
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inaccurate results when the input sequence is created in Range 2. While the 32-bit and 

64-bit GMP precisions have the same number of limbs (2 limbs),  we find that 64-bit 

results are less accurate than 32-bit results. This is explained as follow: in our program, 

we generate 32-bit GMP arrays from float arrays, and 64-bit GMP arrays from double 

arrays. A single precision number has fewer significant digits after the radix point than a 

double number; for example: compare 1.12340808090000000 float with 

1.123408080808700800788652001 double. The non-zero digits after the radix point in 

the 64-bit GMP array contribute to the inaccuracy of the result. 

Next, we progressively increase the (positive and negative) order of magnitude of the 

intervals. Our data show that 32-bit GMP precision leads to inaccurate results when the 

input sequence is in Range 3, and 128-bit GMP precision causes error when the input 

sequence is in Range 4. 

In the case of 1024-element arrays, when increasing the gap between the intervals from 

minimum value of float to maximum value of float, 256-bit GMP precision still produces 

the correct sum. Therefore, to illustrate the inaccuracy problem when using 256-bit GMP, 

we have to use larger inputs. For example, 256-bit GMP produces inaccuracy when the 

array size is 1,048,576 elements (1020 elements), and the values of elements are in Range 

5. 

All of the above results demonstrate that we can use GMP and CUMP libraries with 

appropriate precision bits to increase accuracy for applications involving floating-point 

numbers. However, we do not choose to use these libraries for all applications because of 

the trade-off between accuracy and performance. To learn more about this issue, we 

monitor the execution time of the program and report the results in Table 8. 
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Table 8: Execution time of GMP and CUMP vs. double precision. 

Array size = 1024 

Sequential (CPU) 

  mpf32 mpf64 mpf128 mpf256 double Execution time of gmp / double 
32 bit 64 bit 128 bit 256 bit 

  0.0562 0.0563 0.0583 0.0623 0.0049 11.4 11.4 11.8 12.7 

Parallel (GPU) 

# of 
threads cump32 cump64 cump128 cump256 double Execution time of cump / double 

32 bit 64 bit 128 bit 256 bit 
1 4.7144 4.7408 5.3914 5.7841 0.1499 31.5 31.6 36.0 38.6 

32 0.7185 0.7357 0.8867 0.9298 0.0740 9.7 9.9 12.0 12.6 

512 0.0183 0.0305 0.0211 0.0226 0.0410 0.4 0.7 0.5 0.6 

Array size = 1048576 

Sequential (CPU) 

  mpft32 mpft64 mpft128 mpft256 double Execution time of gmp / double 
32 bit 64 bit 128 bit 256 bit 

  69.3969 69.8896 69.1415 70.2967 3.9748 17.5 17.6 17.4 17.7 

Parallel (GPU) 

# of 
threads cump32 cump64 cump128 cump256 double Execution time of cump / double 

32 bit 64 bit 128 bit 256 bit 
1 4925.7116 4947.8438 5522.3788 6067.5971 130.1221 37.9 38.0 42.4 46.6 

32 912.3816 915.9377 1054.0357 1150.5203 58.8911 15.5 15.6 17.9 19.5 

512 99.7857 100.5909 117.0254 130.4637 7.4749 13.3 13.5 15.7 17.5 

 

Table 8 shows that, for sequential summation, the performance of GMP is lower than that 

of double precision arithmetic by a factor 12-18x. It also shows that, for parallel 

summation, the performance of CUMP is lower than that of double precision arithmetic 

by a factor 47x. This proves that the use of GMP and CUMP is suitable only when an 

application really needs very high accuracy, and significant execution time degradations 

are not an important issue. 

In addition, during the study of the CUMP library, we observed that CUMP kernels use 

many registers (Table 9). The maximum number of registers per block is 65,536 on the 

Kepler K40C GPU and 32,768 on the Fermi C2075 GPU used in this study. The register 

requirement limits the size of the thread-block that can be configured for the summation 

kernel to 65,536/71 ~ 923 for Kepler K40C and 32,768/63 ~ 520 for Fermi C2075.  



30 
 

  Table 9: Number of registers using by kernels 

 CUMP Kernel Float2 Kernel Double2 Kernel Float kernel Double kernel 
Sm_20 63 14 21 9 12 
Sm-35 71 15 28 10 12 

 

Since the considered global summation kernel uses only a single thread-block, this block-

size limitation does not allow fully utilizing the GPU hardware, leading to performance 

limitations. To solve this problem, we modify the global summation program to allow a 

multi-block kernel configuration. As shown in Table 10, the multi-block program can 

improve our performance by hiding latency, and we can get the best performance at grid-

size = 64 and block-size = 32. 

Table 10: Execution time (in seconds) of global summation using CUMP with various kernel 
configurations. Array size = 1,048,576. Device = Tesla C2075 

# of blocks # of threads/block cump_32 cump_64 cump_128 cump_256 

1 1 5583.4224 5571.0618 5898.5952 5900.0278 

1 32 1093.5682 1000.4324 1316.6489 1315.535 

1 512 115.7171 112.3185 131.2939 131.3426 

32 64 24.0186 22.9559 28.7283 28.7056 

64 32 23.5261 22.6891 28.1209 28.0694 

128 16 32.6578 30.9646 38.4514 38.3379 

256 8 34.9698 33.3845 41.5386 41.2134 

512 4 37.9684 36.5593 43.0963 43.0193 

5.2 Global summation with single/double floating point and composite 

precision numbers 

In this section, we aim to evaluate global summation on GPU with floating-point 

representations that use lower number of precision bits than multiple-precision 

arithmetic, namely float, double, float2, and double2. As done for multiple-precision 

arithmetic, we study the effect of the arithmetic precision on accuracy and performance.  
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First, we observe the change in accuracy on 8M-element arrays when varying the 

absolute order of magnitude of the input intervals (Table 11). We recall that the expected 

result of the global summation is zero. However, all precisions but 256-bit CUMP 

produce non-zero results. The results of the summation correspond to the cumulative 

error of the program, and these errors become larger when increasing the range of 

intervals. We can arrange precisions in ascending order of accuracy as follows: float 

(average error: 10+01), float2 (average error: 10-03), double (average error: 10-08), double2 

(average error: 10-16), and 256-bit CUMP (average error: 0). 

Table 11: Accuracy of global summation using various precisions and five input ranges. 

Interval range Float Double Float2 Double2 
256 bit 
CUMP  

Range 1: (10-2, 10-1) & (10+1, 10+2)  1.38E-01 3.18E-10 1.17E-05 0.00E+00 0.00E+00 

Range 2: (10-3, 10-2) & (10+2, 10+3) 1.51E+00 2.75E-09 9.84E-05 3.78E-18 0.00E+00 

Range 3: (10-4, 10-3) & (10+3, 10+4) 1.43E+01 2.57E-08 1.38E-03 1.44E-16 0.00E+00 

Range 4: (10-5, 10-4) & (10+4, 10+5) 1.10E+02 2.51E-07 1.53E-02 2.01E-15 0.00E+00 

Range 5: (10-6, 10-5) & (10+5, 10+6) 1.21E+03 3.64E-06 6.06E-03 1.08E-14 0.00E+00 

 

Figure 5 provides a graphical illustration of the error in logarithmic scale. In this and the 

other figures in this thesis, for the purpose of drawing the chart in logarithmic scale, the 

accurate sum (zero) is represented by 10-25 rather than by 10-∞. Each group of bars in 

Figure 5 represents the errors generated using the five considered arithmetic precisions in 

the same range of intervals. From the left to the right of Figure 5, the gap between the 

small and large input intervals increases. As can be seen, the accuracy of the results 

increases moving from float, to float2, to double, to double2, to CUMP. In addition, a 

large gap between the input intervals leads to worse accuracy for all precisions but 

CUMP, which always provides accurate results. 
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Figure 5: Accuracy of global summation 

In order to evaluate performance, we start with the one-block kernel and increase the 

number of threads so as to determine the optimal block-size. Then, we fix the block-size, 

and increase the number of blocks (grid-size) so as to fully populate our GPUs. Table 12 

shows the execution times reported on an 8M-element array (the order of magnitude of 

the elements in the array is irrelevant to performance). As can be seen, a block-size of 32 

(equal to the warp-size) is in all cases optimal for performance. In addition, increasing the 

number of blocks up to 64 leads to performance improvements. However, since 64 blocks 

allow good GPU utilization and memory latency hiding, no performance improvements 

are observed when further increasing the number of blocks. 
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Table 12: Execution time of 8M-array global summation using various precisions and different kernel 
configuration, intervals: (10-6, 10-5) & (10+5, 10+6), device = Tesla C2070. 

# of blocks 
# of 

threads 
/block 

float double float2 double2 (D-F)/F (F2-F)/F (D2-F)/F 

1 1 1518.6588 1721.518 2479.5372 2946.7413 0.13 0.63 0.94 

1 32 160.0303 165.8942 189.0708 200.9911 0.04 0.18 0.26 

1 64 79.5287 82.9776 94.8857 101.3879 0.04 0.19 0.27 

1 128 39.927 41.7331 47.7054 51.8449 0.05 0.19 0.3 

1 1024 5.3105 5.8793 6.8778 10.0757 0.11 0.3 0.9 

16 32 10.1154 10.5467 12.08 13.0258 0.04 0.19 0.29 

32 32 5.1069 5.3986 6.1285 6.8715 0.06 0.2 0.35 

64 32 2.6152 2.9384 3.2512 3.9833 0.12 0.24 0.52 

128 32 2.6544 3.0005 3.326 4.1112 0.13 0.25 0.55 

 

Figure 6 summarizes the execution time (in seconds) of the different implementations 

when increasing the number of 32-thread-blocks from 1 to 128. We make the following 

observations. First, multithreading improves performance for all arithmetic precisions. 

Second, 256-bit CUMP reports far worse performance than all other precisions (note that 

the y-axis is in logarithmic scale). Third, double reports only a slight performance 

degradation compared to float, and composite precision reports only a slight performance 

degradation compared to float and double.  Finally, as explained above, the last two 

groups of bars show that no performance improvements are observe beyond 128 thread-

blocks. 
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Figure 6: Execution time (seconds) of 8M-array global summation using various precisions and different 
kernel configurations. 

Let us now analyze the results reported using composite arithmetic precision in more 

depth. Composite precision addition requires eight single/double precision 

additions/subtractions, and therefore the expected running time of composite precision 

addition should be eight times larger than the running time of regular floating point 

arithmetic. However, in the worst case (block-size = 1 and grid-size = 1) that reflects 

sequential computation, the running time of single composite precision is 1.63 times that 

of single floating point; the running time of double composite precision is around 1.94 

times that of single floating point; and the running time of single and double floating 

point precisions are almost the same. In order to understand these observations, we 

should answer two questions: 

(1) Why is standard single precision only slightly slower than standard double 

precision arithmetic? 
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(2) Why is the running time of composite precisions (float2/double2) not eight times 

larger than that of standard floating point (float/double)? 

To answer these questions, we generate the PTX assembly codes of four global 

summation kernels as below: 

Single floating-point kernel 

BB39_2: 

        mov.u32         %r1, %r9; 

        cvt.s64.s32     %rd8, %r1; 

        add.s64         %rd9, %rd8, %rd2; 

        shl.b64         %rd10, %rd9, 2; 

        add.s64         %rd11, %rd1, %rd10; 

        ld.global.f32   %f4, [%rd11]; 

        add.f32         %f5, %f4, %f5; 

        st.global.f32   [%rd3], %f5; 

        add.s32         %r2, %r1, %r4; 

        setp.lt.s32     %p2, %r2, %r3; 

        mov.u32         %r9, %r2; 

        @%p2 bra        BB39_2; 

 

Double floating-point kernel 

BB37_2: 

        mov.u32         %r1, %r9; 

        cvt.s64.s32     %rd8, %r1; 

        add.s64         %rd9, %rd8, %rd2; 

        shl.b64         %rd10, %rd9, 3; 

        add.s64         %rd11, %rd1, %rd10; 

        ld.global.f64   %fd4, [%rd11]; 



36 
 

        add.f64         %fd5, %fd4, %fd5; 

        st.global.f64   [%rd3], %fd5; 

        add.s32         %r2, %r1, %r4; 

        setp.lt.s32     %p2, %r2, %r3; 

        mov.u32         %r9, %r2; 

        @%p2 bra        BB37_2; 

 

Single composite number kernel 

BB41_2: 

        mov.u32         %r1, %r9; 

        mov.f32         %f3, %f19; 

        cvt.s64.s32     %rd8, %r1; 

        add.s64         %rd9, %rd8, %rd2; 

        shl.b64         %rd10, %rd9, 3; 

        add.s64         %rd11, %rd1, %rd10; 

        ld.global.v2.f32        {%f9, %f10}, [%rd11]; 

        add.f32         %f19, %f3, %f9; 

        sub.f32         %f13, %f19, %f3; 

        sub.f32         %f14, %f19, %f13; 

        sub.f32         %f15, %f3, %f14; 

        sub.f32         %f16, %f9, %f13; 

        add.f32         %f17, %f16, %f15; 

        add.f32         %f18, %f20, %f17; 

        add.f32         %f20, %f10, %f18; 

        st.global.v2.f32        [%rd3], {%f19, %f20}; 

        add.s32         %r2, %r1, %r4; 

        setp.lt.s32     %p2, %r2, %r3; 

        mov.u32         %r9, %r2; 
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        @%p2 bra        BB41_2; 

 

Double composite number kernel 

BB43_2: 

        mov.u32         %r1, %r9; 

        mov.f64         %fd3, %fd19; 

        cvt.s64.s32     %rd8, %r1; 

        add.s64         %rd9, %rd8, %rd2; 

        shl.b64         %rd10, %rd9, 4; 

        add.s64         %rd11, %rd1, %rd10; 

        ld.global.v2.f64        {%fd9, %fd10}, [%rd11]; 

        add.f64         %fd19, %fd3, %fd9; 

        sub.f64         %fd13, %fd19, %fd3; 

        sub.f64         %fd14, %fd19, %fd13; 

        sub.f64         %fd15, %fd3, %fd14; 

        sub.f64         %fd16, %fd9, %fd13; 

        add.f64         %fd17, %fd16, %fd15; 

        add.f64         %fd18, %fd20, %fd17; 

        add.f64         %fd20, %fd10, %fd18; 

        st.global.v2.f64        [%rd3], {%fd19, %fd20}; 

        add.s32         %r2, %r1, %r4; 

        setp.lt.s32     %p2, %r2, %r3; 

        mov.u32         %r9, %r2; 

        @%p2 bra        BB43_2; 

 

Each iteration needs to access global memory by using one LOAD instruction at 

beginning and one STORE instruction at the end in all four kernels. LOAD/STORE 
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instructions usually cost from 400 to 800 clock cycles while arithmetic latency is only 16-

22 clock cycles. Thus, the execution time of the global summation kernel is dominated by 

the latency of the memory operations (in other words, the kernel has low arithmetic 

intensity). Additionally, in modern devices, double floating-point arithmetic can be as 

fast as single floating-point arithmetic. These facts answer the first question. 

As confirmed by the PTX assembly codes above, single and double composite precision 

kernels have seven additional floating-point operations between the LOAD and STORE 

instructions. However, some of these operations can be issued in parallel to different 

functional units. Moreover, the considered GPUs have a 128-byte cache line. As a 

consequence, in float, double and float2 kernels, LOAD instructions can save memory 

access time by hitting L1/L2 caches. These facts answer the second question. 

Finally, in Figure 7, 8, 9, 10, and 11 we study the performance-accuracy tradeoff. These 

Figures show that curves of accuracy vs. running time tend to go upward because the 

accuracy of the program worsened when we increase gaps between small and large 

elements in input array. For example, in Figure 7, accuracy vs. running time curve of 

double is a parallel line to the horizontal axis at x-coordinate (-25) pointing out double2 

precision provides accurate results; Then, we increase the gaps, this curves is going up to 

x-coordinate (-18) in Figure 8, x-coordinate (-16) in Figure 9, x-coordinate (-15) in Figure 

10, x-coordinate (-14) in Figure 11. On each curve, there are six points that represent six 

sizes of inputs: 210 (1K), 217 (100K), 218
 (200K), 220 (1M), 221 (2M), and 223 (8M) 

elements. We can observe points in the same position on curves to learn the running time 

of each precision for the same input; such as in Figure 7, last points of four curves show 
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that for an 8M-element input, the increasing order in running time is arranged as follow: 

float (the fastest), float2, double, and double2 (the slowest). 

	

  Figure 7: Accuracy vs. Execution time with intervals: (10-2, 10-1) & (10+1, 10+2) 

	

	

Figure 8: Accuracy vs. Execution time with intervals: (10-3, 10-2) & (10+2, 10+3) 
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 Figure 9: Accuracy vs. Execution time with intervals: (10-4, 10-3) & (10+3, 10+4) 

	

	

  Figure 10: Accuracy vs. Execution time with intervals: (10-5, 10-4) & (10+4, 10+5) 
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  Figure 11: Accuracy vs. Execution time with intervals: (10-6, 10-5) & (10+5, 10+6)	

After the analysis in Chapter 5, we can conclude some important points: 

• Higher precision arithmetic generally leads to higher accuracy (as expected). 

• Composite precision arithmetic can improve the accuracy of programs containing 

only additions/subtractions arithmetic operations. 

• Multithreading can help hiding arithmetic latency. In the global summation case, 

the best launch configuration is block-size = 32 (warp-size) and grid-size = 64. 

• In global summation, it is never beneficial to use single composite precision 

arithmetic because it provides less accuracy than standard double precision, and 

its execution time is higher than double precision’s execution time. Double 

composite precision arithmetic can be beneficial if the application requires high 

accuracy and can tolerate a slight increase of execution time. 
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• Compared to single precision, double precision arithmetic can lead to significant 

improvement in accuracy at a very low runtime overhead.  

• Global summation is a low compute-intensive program. This leads to the 

following question: is multithreading beneficial for high compute-intensive 

applications? This question leads us to build the micro-benchmark discussed in 

Chapter 6. 
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Chapter 6: Micro-benchmark for analyzing the effect of 

arithmetic intensity on the performance/accuracy tradeoff on 

GPU  

Arithmetic (or compute) intensity of a program is the ratio between the number of 

floating-point operations and the number of memory operations performed by the 

program. In this chapter, we propose a micro-benchmark to study the effect of arithmetic 

intensity on the performance/accuracy tradeoff on GPU. Specifically, we propose a 

workload generator that produces GPU kernels with a variable number of arithmetic 

operations and a fixed number of memory operations, leading to GPU kernels with 

variable arithmetic intensity. We then invoke the automatically generated kernels from a 

test program using different kernel launch configurations (leading to different degrees of 

multithreading), so as to study how the arithmetic intensity affects the 

performance/accuracy tradeoff at different degrees of multithreading. 

In order to write a synthetic kernel generator, we should note the following points. (i) The 

nvcc compiler will automatically remove from kernels the instructions that do not have 

side effects. To avoid these simplifications, we need to insert global memory accesses 

both at the beginning and at the end of the generated kernel. (ii) We want to limit the 

global memory accesses to the ones strictly necessary and make sure that they are 

coalesced. (iii) We want to make sure that all variables have side effects and limit the 

data dependencies to keep functional units busy. 

Our workload generator produces kernels that contain sequences of addition or 

multiplication operations and do not contain any branch operations. The number of 
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arithmetic operations in each kernel is controlled through the command line “Number of 

iterations” parameter. We generate kernels that use different arithmetic precisions (float, 

double, float2 and double2). 

The pseudo code of the CUDA kernel generator based on addition operations and float 

arithmetic is below. 

void sum_f(int iters){ 

 print to file (file name of float addition kernel); 

 print to file (load GMEM to the first x0 variable as a float); 

 for i=1 to i=15 

print to file (declare xi  as a float); 

print to file (xi = xi-1 + 1.0);//these xi are different. 

 while (count < iters){ 

for i=0 to i=15 

 if (count <16)} 

print to file (declare yi as a float); 

print to file (initialize yi =0.0); 

   } 

print to file(perform an addition of two float: 

yi = yi + xi); 

   count++; 

 } 

 print to file(store sum of yi to GMEM); 

} 

 

The pseudo-code for double/float2/double2 addition and multiplication kernels is similar 

to that of the float addition kernel. The variable declarations and operations performed 
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depend on the arithmetic operation used. To observations (i), (ii), (iii)  above are reflected 

in the following aspects of the program. 

• The number of yi (and xi) variables should be large enough to allow data 

independence between the addition/multiplication operations in the sequence. The 

use of a single y variable would lead to two subsequent update operations to be 

data dependent. 

• The initial value of variable x0 is read from global memory.  The other variables 

are initialized as xi = xi-1 + 1.0 for addition and xi = xi-1 *2.0 for multiplication. 

These initializations are performed so to prevent the nvcc compiler from 

simplifying away variables. While these initializations introduce data 

dependencies, they are done only once at the beginning of the kernel. 

• The final result of variable yi should be stored back to global memory, again to 

prevent the nvcc compiler from simplifying away operations on these variables.  

The main program invokes addition and multiplication kernels using different arithmetic 

precisions and a given setting for the number of compute iterations. The program is 

structured as follows: 

For the given number of compute iterations n: 

 Call sum_f(n); //create float addition kernels 

 Call sum_d(n); //create double addition kernels 

 Call sum_f2(n); //create float2 addition kernels 

 Call sum_d2(n); //create double2 addition kernels 

 Call mul_f(n); //create float multiplication kernels 

 Call mul_d(n); //create double multiplication kernels 

 Call mul_f2(n); //create float2 multiplication kernels 

Call mul_d2(n); //create double2 multiplication kernels 
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After generating all kernels, we build a test program to launch various compute-intensive 

kernels, and collect execution times in two steps: 

• Step 1: Use block-size = 1 and grid-size = 1 as kernel launch configuration 

(sequential execution); launch addition/multiplication kernels with a different 

number of compute iterations. The results are shown in Table 14. 

•  Step 2: Keep grid-size = 1 and increase block-size, so to progressively populate 

the floating-point functional units. The results are shown in Table 15 and Table 

16. 

In all cases, we show both the running time of the kernels and the increase/decrease in 

running time over using single precision float arithmetic. To explain the results in Table 

14, Table 15 and Table 16, we look into the PTX assembly codes of the 1000-iteration 

kernels and analyze the instructions generated. First, for addition operations, the PTX 

code of the float kernel contains more than 900 lines of 32-bit additions; the PTX code of 

the double kernel contains more than 900 lines of 64-bit additions; the PTX code of the 

float2 kernel contains more than 8,000 lines of 32-bit addition/subtraction; and the PTX 

code of the double2 kernel contains more than 8,000 lines of 64-bit addition/subtraction. 

Second, for multiplication operations, the PTX code of the float kernel contains 16 lines 

of 32-bit additions, 847 lines of 32-bit multiplications, and 14 lines of 32-bit FMA 

(fused-multiply-add) operations; the PTX code of the double kernel contains 16 lines of 

64-bit additions, 847 lines of 64-bit multiplications, and 14 lines of 64-bit FMA (fused-

multiply-add) operations; the PTX code of the float2 kernel contains 152 lines of 32-bit 

additions/subtractions, 1,968 lines of 32-bit multiplications, and 2,000 lines of 32-bit 

FMA operations; the PTX code of double2 kernel contains contains 152 lines of 64-bit 
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additions/subtractions, 1,968 lines of 64-bit multiplications, and 2000 lines of 64-bit 

FMA operations. 

Table 13: Execution time (in milliseconds) of compute-intensive benchmark with a varying number of 
computational iterations. Kernel configuration: block-size=1, grid-size=1, device = Tesla C2070 

# blocks # iters Float Double Float2 Double2 (D-F)/F (F2-F)/F (D2-F)/F 

Addition 

1 1 0.0073 0.0073 0.0074 0.0073 -0.01 0.0027 -0.0053 

1 20 0.0074 0.0075 0.0097 0.0104 0.0192 0.3132 0.4074 

1 50 0.0075 0.0076 0.0115 0.0121 0.0084 0.5273 0.6091 

1 100 0.0077 0.0078 0.0146 0.0168 0.0152 0.8906 1.1784 

1 500 0.0098 0.0103 0.0427 0.0437 0.0502 3.3484 3.4498 

1 1000 0.0124 0.0134 0.0761 0.0782 0.0776 5.1418 5.3045 

1 5000 0.0446 0.045 0.3442 0.3499 0.01 6.7209 6.8496 

1 10000 0.0815 0.0826 0.679 0.712 0.0135 7.3317 7.7358 
Multiplication 

1 m1 0.0073 0.0071 0.0074 0.0072 -0.0249 0.0161 -0.0108 

1 m20 0.0077 0.0074 0.0087 0.0085 -0.0413 0.131 0.1119 

1 m50 0.0076 0.0074 0.0095 0.0104 -0.0161 0.2545 0.376 

1 m100 0.0078 0.0077 0.0114 0.013 -0.0131 0.4576 0.6617 

1 m500 0.0098 0.0107 0.0413 0.1272 0.0877 3.2098 11.9776 

1 m1000 0.0122 0.0142 0.078 0.2477 0.1564 5.3722 19.2349 

1 m5000 0.0445 0.0473 0.3707 1.4152 0.0634 7.3295 30.8009 

1 m10000 0.0808 0.087 1.0078 2.409 0.0766 11.4734 28.8156 

 

In general, the running time includes global memory access time and computation time. 

Let us first consider Table 14 (grid-size=1 and block-size=1). At 1 iteration, the global 

memory access time dominates and the computation time is almost negligible. The results 

at 1 iteration reflect our observation in Chapter 5: for low arithmetic intensity, the float, 

double, float2, and double2 kernels have almost the same performance. As we increase 

the number of iterations, the computation time becomes increasingly significant. The 

observed results for the addition kernels at 10,000 iterations show that the relative 

increase in running time over float is 7.3 for float2 and 7.7 for double2; this is consistent 

with the ratio between float2/double2 PTX code lines and float/double PTX code lines 
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(ratio = 8000/900 ~ 8.89). For multiplication kernels, at 500 iterations, the relative 

increase in running time of double2 over float is significantly higher than the relative 

increase observed in case of addition operations. This is due to limited hardware 

resources. Each SM in Fermi GPUs has 32 single-precision units (SPUs) and 16 double-

precision units (DFUs). Moreover, the performance of double-precision FMA operations 

is half of the performance of single-precision FMA operations. Double precision 

composite kernels run a set of 64-bit multiplications and double-precision FMA 

operations simultaneously. Therefore, if the number of concurrent operations exceeds the 

available hardware resources, these operations are enqueued, causing an execution slow-

down.  

Figure 12 shows a graphical illustration of the percentage increase in execution time over 

float. As can be seen, the bars that represent the percentage change in execution time 

between the double and float kernels are nearly at zero level proving that the performance 

of float and double addition is almost the same; the bars that represent the percentage 

change in execution time between the float2 and float kernel (or double2 and float kernel) 

heighten with the increase in compute-intensity. The figure also shows that float2 

computation is as slow as double2 computation. At 10,000 iterations, the global memory 

access time becomes negligible, so float2/double2 computation is 8 times slower than 

float/double. 
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Figure 12: Percentage increase/decrease in running time for addition kernels of compute-intensive micro-
benchmark with block-size = 1, grid-size = 1. 

Table 14 and 15 show that, as we increase the block-size, the functional units become 

quickly populated. For example, in Table 15, the running time of the double2 addition 

kernel increases significantly at 1,000 iterations since the DFUs are fully occupied, and it 

is twice the running time of the float2 addition kernel. For multiplication kernels, the 

DFUs and FMA operations are filled faster, so the relative performance of the double2 

multiplication kernel worsens already at 500 iterations.  

Figure 13 provides a graphical illustration of the percentage change of running time over 

the float kernel for block-size=256 and grid-size = 1. In this figure, the gaps between the 

percentage change of the float2 and double2 kernels increase from left to right. At high 

arithmetic intensity, the performance of the double2 addition kernel is worse than that of 

the float2 addition kernel because of the limit in the number of DFUs. 
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Table 14:  Execution time (in milliseconds) of compute-intensive benchmark with a varying number of 
computational iterations: grid-size=1, block-size=256, device = Tesla C2070. 

# blocks # iters Float Double Float2 Double2 (D-F)/F (F2-F)/F (D2-F)/F 

Addition 

256 1 0.0074 0.0075 0.0075 0.0076 0.0185 0.0158 0.029 

256 20 0.0075 0.008 0.0104 0.0129 0.0716 0.3913 0.7253 

256 50 0.0076 0.0084 0.0124 0.0179 0.1148 0.637 1.3611 

256 100 0.008 0.0089 0.0158 0.0236 0.1138 0.975 1.9422 

256 500 0.0105 0.0139 0.0438 0.0686 0.3254 3.1881 5.5626 

256 1000 0.0138 0.02 0.078 0.125 0.4488 4.6431 8.0459 

256 5000 0.0452 0.0693 0.352 0.5767 0.531 6.7799 11.7473 

256 10000 0.0829 0.1308 0.6945 1.1644 0.5774 7.3785 13.0464 
Multiplication 

256 m1 0.0073 0.0074 0.0076 0.0076 0.006 0.0379 0.0386 

256 m20 0.0079 0.0075 0.0091 0.0108 -0.0504 0.1464 0.3647 

256 m50 0.0076 0.008 0.0105 0.0173 0.0547 0.3844 1.2788 

256 m100 0.008 0.0086 0.0129 0.0236 0.0676 0.6066 1.944 

256 m500 0.0105 0.0133 0.0391 0.3013 0.2622 2.7118 27.6357 

256 m1000 0.0138 0.0194 0.0714 0.6515 0.4023 4.1635 46.1339 

256 m5000 0.0452 0.0687 0.3298 3.3636 0.5188 6.2924 73.3839 

256 m10000 0.0825 0.13 0.6594 6.5767 0.5752 6.9915 78.7037 

  

	

Figure 13: Percentage increase/decrease in running time for the addition kernel in the compute-intensive 
micro-benchmark with grid-size = 1, block-size = 256. 
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Table 15 shows that float2 multiplication kernels start to occupy all SPUs at 5,000 

iterations while double2 multiplication and addition kernels fill the DFUs already at 500 

iterations. 

Table 15: Execution time of compute-intensive benchmark with different computational iterations. Kernel 
configuration: grid-size=1, block-size=512, device = Tesla C2070 

# blocks # iters Float Double Float2 Double2 (D-F)/F (F2-F)/F (D2-F)/F 

Addition 

512 1 0.0076 0.0076 0.0079 0.0082 -0.0006 0.0366 0.0816 

512 20 0.0081 0.0086 0.0129 0.0185 0.0727 0.6055 1.2964 

512 50 0.0084 0.0096 0.0163 0.0282 0.1457 0.9429 2.3631 

512 100 0.009 0.0104 0.0222 0.0394 0.1514 1.4628 3.3738 

512 500 0.0138 0.0203 0.067 0.1289 0.47 3.8419 8.3116 

512 1000 0.0201 0.0328 0.123 0.2419 0.6314 5.1238 11.046 

512 5000 0.0692 0.1307 0.57 1.1425 0.8893 7.2423 15.5214 

512 10000 0.1303 0.2527 1.129 2.2929 0.9389 7.6633 16.5939 
Multiplication 

512 m1 0.0074 0.0074 0.0077 0.008 0.002 0.0483 0.0807 

512 m20 0.008 0.0081 0.0109 0.0143 0.0153 0.3651 0.7857 

512 m50 0.008 0.0086 0.0134 0.0254 0.0725 0.6711 2.1687 

512 m100 0.0087 0.0095 0.0176 0.0366 0.0993 1.0333 3.2256 

512 m500 0.0136 0.0193 0.0607 0.3757 0.4238 3.4782 26.7058 

512 m1000 0.0198 0.0318 0.1252 0.7888 0.6111 5.3338 38.9165 

512 m5000 0.0688 0.1297 0.6772 3.994 0.8838 8.8376 57.0207 

512 m10000 0.1299 0.2517 1.461 7.9606 0.9377 10.2485 60.2908 

 

The data of Figure 14  (block-size= 512) are similar to those of Figure 13 since the 

functional units are already fully utilized with 512 threads. 
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Figure 14: Percentage increase/decrease in running time for addition kernel of compute-intensive micro-
benchmark with grid-size = 1, block-size = 512.	

The main lessons learned from the study presented in this chapter are the following. 

• We have confirmed some observations made in Chapter 5: on modern GPUs 

(compute capability 2 and above) and for kernels with low arithmetic intensity, 

float and double precision experience the same or similar performance; float2 

precision reports worse performance and accuracy than double, and should 

therefore not be used. 

• Multi-threading can conceal the latency of the arithmetic operations up to the 

point where the functional units are fully utilized. 

• The arithmetic intensity influences the runtime/accuracy tradeoff. For low 

arithmetic intensity, the use of higher precision (double2) can provide better 

accuracy without significantly sacrificing the execution time.  However, as the 

arithmetic intensity grows and the available functional units become fully utilized, 
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lower precision (e.g. double) can become preferable to composite precision 

arithmetic (e.g. double2). 

 

In the remainder of this thesis, we will focus on multiplication and division.  
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Chapter 7 Gaussian Elimination and LU Decomposition (LUD) 

Benchmarks 

 

In this chapter, we analyze two benchmark applications that use floating-point division 

and multiplication: Gaussian Elimination and LU Decomposition. We first describe the 

Gaussian Elimination and the LU Decomposition algorithms. We then study the Gaussian 

Elimination and LU Decomposition benchmarks proposed in [2] and analyze how the use 

of floating-point multiplication/division with different arithmetic precisions affects the 

performance/accuracy tradeoff. 

7.1 Introduction to Gaussian Elimination and LU Decomposition 

7.1.1 Gaussian Elimination 

Gaussian Elimination (GE) is a method of solving a system of linear equations Ax = b. 

This method first reduces the system into an upper triangular form, and then solves it by 

applying back substitution. 

 

The algorithm of Gaussian Elimination is as below: 

Given a coefficient matrix A size nxn 

for j = 1 to (n – 1) 

 for i = j + 1 to n  // n: size of coefficient matrix A 

  mij = aij/ajj   // ajj ≠ 0, find multiplier mij 

for k = j + 1 to n 

   aik = aik - mijajk //eliminating lower elements of A 

bi = bi - mijbj   //updating vector b 
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This forward elimination algorithm requires !
!
n3 arithmetic operations [18]. 

 

After the upper triangular form of A is computed, the system is solved by the back-

substitution algorithm below, which requires O(n2) arithmetic operations: 

for i = n to 1 

 xi = bi 

 for j = (i + 1) to n 

  xi = xi - aijxj //aij: element (i,j) of upper triangular 

matrix 

 xi = xi/aii	

7.1.2 LU Decomposition 	

LU Decomposition (LUD) is a factorization technique for transforming a square matrix A 

into a product of a lower triangular matrix L and an upper triangular matrix U. A lower 

triangular matrix is a matrix whose elements above the diagonal equal to zero; an upper 

triangular matrix is a matrix whose elements below the diagonal equal to zero.  

LU Decomposition can be considered as a matrix form of Gaussian Elimination used to 

solve a system of linear algebraic equations Ax=b where A is a nxn coefficient matrix, b 

is a given n-vector, and x is a unknown solution n-vector that needs to be computed. We 

first decompose A into L and U, so a system Ax = b becomes LUx = b. Next, we solve a 

lower triangular system Ly = b using forward substitution to obtain y. Finally we solve an 

upper triangular system Ux = y using backward substitution to obtain solution x.  

The upper triangular matrix U is the updated triangular form of A after the process of 

Gaussian Elimination. The lower triangular matrix L is given by: 
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𝐿 =  
1 0
𝑚!" ……

… 0
… 0… ……

𝑚!! 𝑚!!

… …
… 1

 

Where mij are the recorded multipliers mentioned in section 7.1.1. 

We can store upper and lower triangular matrices L and U in the original matrix A. 

Gaussian Elimination algorithm in 7.1.1 is rewritten to implement LU Decomposition as 

below: 

Given a coefficient matrix A size nxn 

for j = 1 to (n – 1) 

 for i = j + 1 to n  // n: size of coefficient matrix A 

  aij = aij/ajj   // updating lower triangular matrix L 

 for i = j + 1 to n // split loops for parallel computation 

for k = j + 1 to n 

   aik = aik - aijajk //updating upper triangular matrix U 

The complexity of factorizing the matrix A into LU is also O(n3). Once we have LU, we 

can solve Ly=b in O (n2), then solve Ux = y also in O (n2). 

Considering the case that vector b of the system can be changed, we have r vectors b. 

Now we can take the advantage of LU decomposition because we do not need to 

recomputed LU matrix. Therefore, we can solve (r-1) cases of vector b using O (n2) 

operations while if we do standard GE separately for each vector b, the total cost scales to 

O (rn3). This is the reason scientists refer to use LU decomposition instead of solving 

systems using GE independently.  
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7.2 Gaussian Elimination Benchmark 

The Gaussian Elimination (GE) Benchmark proposed in [2] performs GE in parallel. In 

this implementation, the forward elimination phase includes two parallel kernels: a Fan1 

1D kernel that performs division operations to find multiplier factors (matrix M), and a 

Fan2 2D kernel that performs the multiplications and subtractions required to transform 

coefficient matrix A into upper triangular matrix and update vector b.  

Inputs of GE benchmark: The original version of the benchmark contains a tool to 

generate the GE inputs, including matrix A, vector b, and a pre-computed solution vector 

x, and save them into file for later use. However, these inputs are not suitable for 

analyzing the accuracy/performance using different floating-point precisions. We 

modified the benchmark so to generate a random matrix A and a random vector b with 

elements belonging to specified intervals. This allows us to evaluate the accuracy of GE 

when the input coefficients have different magnitudes.  

Outputs of GE benchmark: We computed the solution vector x using the float, double, 

float2, double2 and GMP precisions. We measured the accuracy of each solution in terms 

of the average absolute error between the reference 256-bit GMP solution x and the 

solution obtained using the other considered arithmetic precisions. 

Evaluation: We run GE with seven input sizes and configuring the Fan2 kernel with two 

block sizes. The elements of matrix A and vector b were randomly drawn from intervals 

(10-2, 10-1) & (10+1, 10+2). Figure 15 shows the accuracy results; the size of the matrix A 

(n) is increased along the x-axis. As can be seen, the double kernel is the most accurate, 

followed by the double2, the float, and the float2 kernel. These results suggest that, in the 
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presence of multiplication and division operations, composite precision arithmetic may 

not be advantageous even in terms of accuracy. 

 

	 	
  Figure 15: Average absolute error of GE benchmark.  

	
Table 16 shows the performance results of GE reported by configuring the Fan2 kernel 

with two block sizes: 4x4 and 8x8. When the block size is 4x4, the number of threads in 

one block is not high enough to form a warp, leading to low performance. In Figure 16, 

we show the speedup of the 8x8 block configuration over the 4x4 block configuration. As 

can be seen, the speedup is up to ~2.88x for float precision, ~2.2x for double and float2 

precision, and ~1.67x for double2 precision.  
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Table 16: Running time (in seconds) of GE benchmark when the size of matrix A varies from 16x16 to 
8,192x8,192. 

 

 

 

	

Figure 16: Speedup of GE benchmark as we increase the block-size of the Fan2 kernel from 4x4 to 8x8 
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Fan1 block-size = 512, Fan2 block-size= 4 X 4 

Size float Double float2 double2 

16x16 0.00040 0.00038 0.00038 0.00038 

64x64 0.0017 0.0016 0.0017 0.0017 

256x256 0.0119 0.0120 0.0124 0.0137 

512x512 0.0628 0.0659 0.0682 0.0775 

1024x1024 0.4312 0.4456 0.4634 0.5379 

2048x2048 3.2387 3.4272 3.5761 4.2160 

4096x4096 26.4912 28.6380 29.7799 36.1070 

8192x8192 226.4626 250.3975 257.9343 290.4082 

Fan1  block-size = 512, Fan2 block-size= 8 X 8 

Size float double float2 double2 

16x16 0.00036 0.00036 0.00034 0.00035 

64x64 0.0017 0.0016 0.0016 0.0017 

256x256 0.0083 0.0088 0.0089 0.0111 

512x512 0.0284 0.0341 0.0395 0.0510 

1024x1024 0.1607 0.2017 0.2032 0.3209 

2048x2048 1.1214 1.5074 1.5323 2.6307 

4096x4096 9.1784 13.6071 13.8189 24.5510 

8192x8192 82.1154 131.7608 132.7769 192.8968 



60 
 

 

In Figure 17 we correlate the performance and accuracy results presented above using an 

8x8 block-size configuration for the Fan2 kernel. Note that the x- and y-axes are in 

logarithmic scale. On each curve, the data points from left to right are obtained by 

varying the size of matrix A from 16x16 to 8,192 x 8.192. As can be seen, the float and 

float2 curves have similar trends and partially overlap: float and float2 provide almost 

equivalent accuracy and performance (the execution time of float2 is slightly higher than 

the execution time of float). The same observation can be made for double and double2. 

In summary, for this benchmark application composite precision is not helpful. This 

behavior may be due to the composite precision implementation of multiplication and 

division operations. To confirm this speculation, we continue our study on LU 

Decomposition, another benchmark including multiplication and division operations.	

	

  Figure 17: Accuracy vs. Execution time of GE benchmark 
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particular, the parallel version splits the computation into three kernels: a lud_diagonal 

kernel working on sub-matrices on the diagonal line, a lud_perimeter kernel working on 

sub-matrices along the edges (rows and columns), and a lud_internal kernel working on 

sub-matrices inside matrix A but not including diagonal elements.   

Inputs of LUD benchmark: Although Rodinia Benchmark Suite includes some sample 

matrices, these matrices could not meet our requirements to analyze the accuracy of the 

LUD benchmark with different magnitudes of elements in the coefficient matrix A. 

Therefore, we generated a set of random matrices with elements in three intervals, as 

shown in Table 18. For each interval, we created matrices with 4 dimensions: 64x64, 

256x256, 512x512, and 2048x2048. 

Outputs of LUD benchmark: We generate LU matrices using float, double, float2, and 

double2 precisions on GPU, and GMP precision on CPU. 

Evaluation:   

We use two methods to evaluate the accuracy of the LUD benchmark. In the first method, 

we first split the solution matrix LU into matrices L and U, we then compute the product 

of L and U, and we finally compare this product with input matrix A. We report the 

number of mismatches between the elements of the product of L*U and the input matrix 

A using tolerance threshold = 0.0001. This number was always equal to zero when using 

GMP precision, confirming the high accuracy of this representation. Table 17 reports the 

number and percentage of mismatches when using float, float2, double and double2 

precision. As can be seen, float2 precision provides the worst results and reports a huge 

number of miss-matches even in the case of small gaps between large and small input 
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elements. In general, composite precision does not help accuracy even when based on 

double precision arithmetic. 

Table 17: Number and percentage of mismatches between original matrix A and the product of L*U for 
float/float2/double2 precisions 

Matrix Dim Float Double Float2 Double2 

Interval: (10-1, 10+0) & (10+0, 10+1) 

  # of miss % of miss # of miss % of miss # of miss % of miss # of miss % of miss 

64 204 4.9805 0 0 2571 62.7686 0 0 

256 39419 60.1486 0 0 54433 83.0582 0 0 

512 205141 78.2551 0 0 230510 87.9326 0 0 

2048 4002671 95.4311 0 0 4097534 97.6928 0 0 

Interval: (10-2, 10-1) & (10+1, 10+2) 

64 3116 76.0742 0 0 3625 88.5010 0 0.0000 

256 60669 92.5735 0 0 63227 96.4767 0 0.0000 

512 254578 97.1138 0 0 258498 98.6092 85 0.0324 

2048 4154682 99.0553 0 0 4176226 99.5690 120 0.0029 

Interval: (10-3, 10-2) & (10+2, 10+3) 

64 3534 86.2793 0 0 3824 93.3594 1 0.0244 

256 63112 96.3013 0 0 64512 98.4375 381 0.5814 

512 256954 98.0202 0 0 259804 99.1074 3615 1.3790 

2048 4172933 99.4905 0 0 4185760 99.7963 72324 1.7243 

Interval: (10-4, 10-3) & (10+3, 10+4) 

64 3630 88.6230 0 0.0000 3855 94.1162 977 23.8525 

256 63408 96.7529 0 0.0000 64625 98.6099 15075 23.0026 

512 257943 98.3974 0 0.0000 259996 99.1806 87048 33.2062 

2048 4175069 99.5414 3 0.0001 4186261 99.8082 1422031 33.9039 

Interval: (10-5, 10-4) & (10+4, 10+5) 

64 3467 84.6436 2098 51.2207 3751 91.5771 2689 65.6494 

256 62519 95.3964 15961 24.3546 64212 97.9797 36051 55.0095 

512 257566 98.2536 161445 61.5864 259222 98.8853 206318 78.7041 

2048 4166277 99.3318 973696 23.2147 4175825 99.5594 2582436 61.5701 

 

In our second method, we define accuracy in terms of average absolute error between the 

GMP results and the results obtained using other arithmetic precisions. Figure 18, 19, and 

20 show the results reported using this method. As can be seen, the average absolute error 

increases significantly with the gap between small and large input elements, showing that 
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LUD is very sensitive to the difference in magnitude among the elements of the input 

matrix. These figures also confirm that double2 precision is not better than double 

precision, and float2 precision is not better than float precision.  

 

	 	

Figure 18: Average absolute error of LUD benchmark when the elements in the input matrix are randomly 
drawn from intervals (10-1, 10+0) & (10+0, 10+1) 

	

	 	

Figure 19: Average absolute error of LUD benchmark when the elements in the input matrix are randomly 
drawn from intervals  (10-3, 10-2) & (10+2, 10+3) 

1,00E-11 

1,00E-09 

1,00E-07 

1,00E-05 

1,00E-03 

1,00E-01 

1,00E+01 

1,00E+03 

64 256 512 2048 

Av
er

ag
e 

ab
so

lu
te

 e
rr

or
 

Input size 

Float Double 
Float2 Double2 

1,00E-04 

1,00E-03 

1,00E-02 

1,00E-01 

1,00E+00 

1,00E+01 

1,00E+02 

1,00E+03 

1,00E+04 

1,00E+05 

1,00E+06 

1,00E+07 

64 256 512 2048 Av
er

ag
e 

ab
so

lu
te

 e
rr

or
 

Input size 

Float 
Double 
Float2 



64 
 

	

	

Figure 20: Average absolute error of LUD benchmark when the elements in the input matrix are randomly 
drawn from intervals (10-5, 10-4) & (10+4, 10+5) 

 

In Table 18 and 19 we show the running time (in milliseconds) reported by LUD on CPU 

and GPU, respectively. As can be seen, the GPU version reports a speedup up to ~300x 

for float/double, and up to ~1500x for float2/double2 over the CPU version. 

Table 18: LUD running time (milliseconds) on CPU 

Matrix dim Float Double Float2 Double2 GMP 

64 0.98 0.59 6.73 5.04 19.34 

256 37.76 44.87 348.54 291.96 1133.34 

512 310.58 326.31 2757.17 2344.05 11266.33 

2048 21410.89 42018.54 208913.45 304839.82 905661.23 

 

From Table 19 we can also see that the best performance is achieved when the block size 

is equal to 16x16. Due to the shared memory requirements of the GPU kernels, we could 

not use block configurations beyond 32x32. 
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Table 19: LUD running time (milliseconds) in GPU 

BLOCK-SIZE Matrix size Float Double Float2 Double2 

4x4 64 0.32 0.37 0.40 0.48 

  256 2.15 2.84 2.97 4.24 

  512 11.07 14.57 15.71 21.68 

  2048 619.62 720.36 801.51 1077.20 

8x8 64 0.30 0.41 0.49 0.65 

  256 1.37 2.04 2.43 4.09 

  512 4.28 6.42 7.49 12.45 

  2048 114.02 150.06 188.21 354.68 

16x16 64 0.54 0.89 1.12 1.14 

  256 2.38 4.33 5.32 6.34 

  512 5.89 10.97 13.3 17.01 

  2048 66.71 133.21 180.62 330.51 

32x32 64 1.86 1.45 1.75 1.80 

  256 10.40 7.71 9.23 9.78 

  512 22.95 17.44 21.05 24.79 

  2048 113.80 174.52 230.97 387.47 

64x64 64 2.57 out of resources out of resources out of resources 

  256 22.00 out of resources out of resources out of resources 

 512 48.64 out of resources out of resources out of resources 

 2048 295.02 out of resources out of resources out of resources 

Figure 21 correlates the accuracy and performance time of LUD. Again, the x- and y-axes 

are in logarithmic scale. On each curve, the data points from left to right correspond to 

experiments performed varying the block size from 4x4 to 32x32. As in the GE case, we 

can observe that the use of composite precision arithmetic does not improve the accuracy. 

We believe that this may be due to the presence of multiplication and division operations 

in this application. This speculation will be confirmed in the following chapter. 

We note that the accuracy can change with the block size because it is affected by the 

order of arithmetic operators. However, in this study, this change of accuracy is not 
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important as when we change the magnitudes of elements in co-efficient matrices. Thus, 

we focus on observing only the accuracy with different magnitudes and sizes of inputs. 

	

  Figure 21: Accuracy vs. Execution time of LUD benchmark 
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Chapter 8 Micro-benchmarks for analyzing the behavior of 

composite precision multiplication and division. 

In this chapter we use two micro-benchmarks to study the accuracy of the multiplication 

and division operations in the composite precision library: the first benchmark uses only 

multiplications, while the latter (do-undo) combines multiplications and divisions. 

 

8.1 Multiplication micro-benchmark 

The multiplication micro-benchmark is a simple program that implements a sequence of 

multiplications using float, double, float2, and double2 precisions, and then computes the 

difference between these results and GMP reference results.  

Inputs of this micro-benchmark are randomly generated arrays with elements of different 

magnitudes. Figure 22 and 23 report the results of the multiplication micro-benchmark 

using two sets of input intervals. Absolute errors in the figures represent the absolute 

difference between the results of float/double/float2/double2 precision and the result of 

GMP precision after n multiplications. In both cases, float2/double2 results are worse 

than float/double results, respectively. In order to explain this result, we consider the 

pseudo-code of composite precision multiplication. The error component is computed 

using the formula: z2.error= x2.value * y2.error + x2.error * y2.value + x2.error * 

y2.error. This formula is prone to error propagation. In particular, after a few 

multiplications the last term of the error component will tend to underflow.   

To verify this speculation, we performed another set of experiments. Specifically, before 

executing each multiplication, we normalize the composite precision representation of the 
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intermediate result. In other words, we convert the float2/double2 result to float/double 

and then convert the value back to composite precision float2/double2. This allows 

intermediate results to maintain the error-free representation of Dekker’s splitting 

method. We observed that the introduction of this intermediate conversion step leads to 

more accurate results. We conclude that the composite arithmetic library is not effective 

for multiplications. 

 

	

Figure 22: Absolute error of multiplication micro-benchmark when the input elements are drawn from 
intervals (0.1; 1.0)&(1.0; 6.0) 
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Figure 23: Absolute error of multiplication micro-benchmark when the input elements are drawn from 
intervals (0.1; 1.0)&(1.0; 10.0)	
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On devices with compute capability 1.x the division operator ‘/’ always maps to 

approximate division.  

In both cases, the __fdiv_rn(x,y) intrinsic function allows IEEE round-to-nearest-even 

division, but it is a slow function. 

CUDA Math API introduces intrinsic functions that can be only used in device code.  

Among these intrinsic functions are the less accurate, but faster versions of some standard 

functions. The use of the --use_fast_math compiler option forces some functions to 

compile to their intrinsic functions. For example, it causes the division operator ‘x/y’ to 

compile into the __fdividef(x,y) intrinsic – the fast approximate division function. 

8.2.1.2 Double precision division 

Double precision floating-point support has been added to CUDA starting from devices 

with compute capability 1.3. For all devices that support double precision, the division 

operator ‘/’ always maps to IEEE round-to-nearest-even division. 

8.2.1.3 PTX codes related to division 

In order to better understand the use of the division on GPU, we analyzed the PTX 

assembly codes to crosscheck the division operator used. The following division 

instructions can be found in PTX assembly code: 

- div.approx.f32 is the fast approximate division with restricted range using 

reciprocal, and corresponds to the use of the __fdividef() intrinsic. 

- div.full.f32: is a fast full range approximate division that scales values to achieve 

better accuracy, but is not fully IEEE 754 compliant. 

- div.rn.f32 is the IEEE compliant division  
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8.2.2 Do-undo benchmark 

Given a random number x and a random array y, the do-undo benchmark that we 

developed based on do/undo program in [1] performs a sequence of operations based on 

the formula (x*yi)/yi using float and float2 on CPU and GPU. The accurate result of every 

iteration would be the value of x. As a consequence, when using this benchmark we can 

measure accuracy in terms of the absolute difference between x and the value (x*yi)/yi. If 

we use the same floating-point standard, the CPU and GPU implementations provide 

exactly the same results. In this thesis, we focus on the GPU implementation and study 

the impact of different kinds of divisions provided by CUDA on accuracy and 

performance.  

The GPU version of the do-undo benchmark includes two user-defined options for single 

floating-point division. The first option uses the division operator ‘/’ for float division; as 

explained above, this operator will be mapped to approximate division if the –

use_fast_math compilation option is enabled. The second option uses the intrinsic 

function __fdiv_rn()for float division, leading to the use of the IEEE round-to-nearest-

even standard division. The PTX assembly code generated in all cases is reported below. 

Case 1: PTX code when using the first user-defined option and –use_fast_math option 

(float division is approximate division)  

 BB23_1: 

 mov.u64  %rd8, %rd20; 

 mov.u64  %rd7, %rd19; 

 mov.u64  %rd6, %rd18; 

 mov.u64  %rd5, %rd17; 

 add.s64  %rd17, %rd5, 4; 

 ld.global.f32  %f16, [%rd5+4]; 
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 ld.global.f32  %f17, [%rd7]; 

 mul.rn.ftz.f32  %f18, %f17, %f16; 

 div.approx.ftz.f32  %f19, %f18, %f16;// user-defined option 1 

 add.s64  %rd19, %rd7, 4; 

 st.global.f32  [%rd7+4], %f19; 

 add.s64  %rd18, %rd6, 8; 

 ld.global.f32  %f20, [%rd6+8]; 

 ld.global.f32  %f21, [%rd8]; 

 mul.rn.ftz.f32  %f22, %f21, %f20; 

 div.rn.ftz.f32  %f24, %f8, %f20; //my_lib.cu using __fdiv_rn() 

 mul.rn.ftz.f32  %f25, %f22, %f24; 

 mul.rn.ftz.f32  %f26, %f20, %f25; 

 neg.ftz.f32  %f27, %f26; 

 add.rn.ftz.f32  %f28, %f22, %f27; 

 add.s64  %rd20, %rd8, 8; 

 mul.rn.ftz.f32  %f29, %f24, %f28; 

 add.rn.ftz.f32  %f30, %f25, %f29; 

 st.global.v2.f32  [%rd8+8], {%f30, %f29}; 

 add.s32  %r5, %r5, 1; 

 setp.lt.u32 %p2, %r5, %r3; 

 @%p2 bra  BB23_1; 

 

Case 2: PTX code when using the second user-defined option and –use_fast_math 

option (float division is IEEE-compliant division). 

BB23_1: 

        mov.u64         %rd8, %rd20; 

        mov.u64         %rd7, %rd19; 

        mov.u64         %rd6, %rd18; 

        mov.u64         %rd5, %rd17; 
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        add.s64         %rd17, %rd5, 4; 

        ld.global.f32   %f16, [%rd5+4]; 

        ld.global.f32   %f17, [%rd7]; 

        mul.rn.ftz.f32  %f18, %f17, %f16; 

        div.rn.ftz.f32  %f19, %f18, %f16;// user-defined option 2 

        add.s64         %rd19, %rd7, 4; 

        st.global.f32   [%rd7+4], %f19; 

        add.s64         %rd18, %rd6, 8; 

        ld.global.f32   %f20, [%rd6+8]; 

        ld.global.f32   %f21, [%rd8]; 

        mul.rn.ftz.f32  %f22, %f21, %f20; 

        div.rn.ftz.f32  %f24, %f8, %f20; //my_lib.cu using __fdiv_rn() 

        mul.rn.ftz.f32  %f25, %f22, %f24; 

        mul.rn.ftz.f32  %f26, %f20, %f25; 

        neg.ftz.f32     %f27, %f26; 

        add.rn.ftz.f32  %f28, %f22, %f27; 

        add.s64         %rd20, %rd8, 8; 

        mul.rn.ftz.f32  %f29, %f24, %f28; 

        add.rn.ftz.f32  %f30, %f25, %f29; 

        st.global.v2.f32        [%rd8+8], {%f30, %f29}; 

        add.s32         %r5, %r5, 1; 

        setp.lt.u32     %p2, %r5, %r3; 

        @%p2 bra        BB23_1; 

 

Case 3: PTX code when using the first user-defined option and compiling without –

use_fast_math option (float division maps to IEEE-compliant division) 

BB23_1: 

        mov.u64         %rd8, %rd20; 

        mov.u64         %rd7, %rd19; 
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        mov.u64         %rd6, %rd18; 

        mov.u64         %rd5, %rd17; 

        add.s64         %rd17, %rd5, 4; 

        ld.global.f32   %f16, [%rd5+4]; 

        ld.global.f32   %f17, [%rd7]; 

        mul.rn.f32      %f18, %f17, %f16; 

        div.rn.f32      %f19, %f18, %f16; // ‘/’ maps to IEEE-div by 

default 

        add.s64         %rd19, %rd7, 4; 

        st.global.f32   [%rd7+4], %f19; 

        add.s64         %rd18, %rd6, 8; 

        ld.global.f32   %f20, [%rd6+8]; 

        ld.global.f32   %f21, [%rd8]; 

        mul.rn.f32      %f22, %f21, %f20; 

        div.rn.f32      %f24, %f8, %f20; 

        mul.rn.f32      %f25, %f22, %f24; 

        mul.rn.f32      %f26, %f20, %f25; 

        neg.f32         %f27, %f26; 

        add.rn.f32      %f28, %f22, %f27; 

        add.s64         %rd20, %rd8, 8; 

        mul.rn.f32      %f29, %f24, %f28; 

        add.rn.f32      %f30, %f25, %f29; 

        st.global.v2.f32        [%rd8+8], {%f30, %f29}; 

        add.s32         %r5, %r5, 1; 

        setp.lt.u32     %p2, %r5, %r3; 

        @%p2 bra        BB23_1; 

 

In these three cases, case 1 maps ‘/’ to __fdividef() approximate division, so it is the 

fastest but least accurate option. This is suitable for applications that are not sensitive to 
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the accuracy. Case 2 maps to the IEEE round-to-nearest-even function __fdiv_rn(); Case 

3 is the default option that will map ‘/’ into IEEE round-to-nearest-even on architecture 

2.x and higher. Thus, case 2 and case 3 provide the same results. __fdividef() division 

needs 20 clock cycles while __fdiv_ functions take 36 clock cycles. This may lead to the 

performance of case 1 better than case 2 and 3.  

 

	

Figure 24: float vs. float2 absolute error of do-undo micro-benchmark with --use-fast-math option enabled 

 

Figure 24 (a) shows that with 106 iterations and x, y in range (0.0, 10.0), the results using 

single floating point with approximate division is less accurate than using composite 

floating point.  

However, Figure 24 (b) shows that with 106 iterations and x, y in range (0.0, 10.0), the 

results using single floating point with IEEE-compliant division is more accurate than 

using composite floating point.  

Next we will explore the accuracy of the do-undo micro-benchmark when varying the 

magnitude of the inputs and the size of the y array.   
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With 107 iterations, if both x and y are in interval (0.0, 10.0), the absolute errors of the 

results are shown in Figure 25; if x and y are in interval (10+5, 10+6), absolute errors of 

the results are shown in Figure 26; if x and y have different magnitudes, absolute errors of 

the results are shown in Figure 27. 

	

Figure 25: the absolute error of do-undo micro-benchmark with –use-fast-math option for 10M iterations 
with x small and y small   

	

Figure 26: the absolute error of do-undo micro-benchmark with –use-fast-math option for 10M iterations 
with x large and y large   
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Figure 27: the absolute error of do-undo micro-benchmark with –use-fast-math option for 10M iterations 
with different magnitudes of x and y 

In Figure 25(b), Figure 26(b) and Figure 27 (a)(b), division used for float is IEEE-

compliant division. These four cases show that the error of float is lower than the error of 

float2 numbers. We recognize that the absolute error of float2 precision seems to stay 

around a horizontal line.  Figure 28 below illustrates some more results. 
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Figure 28: the absolute error of do-undo micro-benchmark with –use-fast-math option for 1M iterations 
with different magnitudes of x and y 

	
Figure 28(a)(b) and 27(a) show the different trend of error rate when x small, y large. 

Figure 28(c)(d) and 27(b) show that when x is large and y is small, the accuracy of do-

undo micro-benchmark gets worse.  
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Figure 29: the absolute error of do-undo micro-benchmark with –use-fast-math option for 1M iterations 
with the same magnitude of x and y	

Figure 29 show that when x and y are large, the accuracy of do-undo micro-benchmark 

also give large inaccurate results. 

In the last part of this chapter, we try to explain why composite multiplication/division 

provides inaccurate result.  

Table 20: Gap between (x*y) and y in (x*y)/y the small value is in (0.0; 10.0); and the large value is bigger 
than 104. 

x value y value Gap between (x*y) and y in (x*y)/y 
Small Large Small 
Small Small Small  
Large  Small Large 
Large Large Large 

 

The inaccuracy of (x*y)/y consists of the errors of multiplication and the errors of 

division. First, for multiplication, if x is large and y is small, composite multiplication 

produces errors as explained in section 8.1. Second, for division, on one hand, the 

pseudo-code shows that error components of both x and y do not contribute the result (“x 

large and y large” case has largest lost of error component); on the other hand, the large 

gap between (x*y) and y produces a larger error component that would be neglected in 

the next step. Therefore, as x large, we get the worst absolute errors.  

After exploring do-undo micro-benchmark we can confirm that: 
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- Composite division/multiplication is not better than standard floating-point 

division/multiplication as expected. 

- Composite division/multiplication is very sensitive to the magnitude of the inputs. 

- CUDA supports various types of division. Depending on users’ desire, they can 

choose the less accurate, but fast division, or the high accurate, but slow division. 
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Chapter 9 Conclusion 

Our analysis on the tradeoff between the performance and accuracy on GPU has brought 

some advantages for GPU programmers. By understanding the differences of floating-

point precisions, and their impact on applications’ performance, programmers can ensure 

the accuracy of their applications while maintaining acceptable performance. In general, 

the performance can be improved using multi-threading. From our study, we can advise 

users that double precision is the best choice in general if there is no specific requirement 

for accuracy and performance; if the program requires very high accuracy, they can use 

CUMP with paying high cost of performance; if the program contains only 

subtraction/addition, double2 precision can be used to improve performance with 

acceptable performance.  

Compute-intensive micro-benchmark provides CUDA developers statistical data on 

execution time of addition/subtraction or multiplication kernels corresponding to 

different level of compute-intensive. Accuracy of addition/subtraction kernels keeps the 

same, but for high compute intensive kernels, the performance of float2/double2 becomes 

worse. Therefore, if the accuracy of double is acceptable, then double is the best choice 

for kernels using addition/subtraction operations with high compute-intensive level. 

Collected running time while studying this micro-benchmark also give CUDA developers 

a guidance to select optimized CUDA kernel configuration.  

The observation of multiplication micro-benchmark shows that float2/double2 

multiplications are worse than float/double multiplications respectively. Combined with 

the performance of multiplication kernels provided by compute-intensive micro-
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benchmark, we can conclude that it is not worth to use float2/double2 precisions for 

multiplication operations.  

The study of different types of divisions on GPUs in do-undo micro-benchmark shows 

that users can modify their codes to make sure that it uses only IEEE-compliant 

operations to improve accuracy. Although the requirement of clock cycles for IEEE-

compliant instructions is almost 2x times approximate instructions, this slow-down in 

performance can be easily hidden by multi-threading. The do-undo micro-benchmark 

confirms that float2/double2 divisions are slower and less accurate than float/double 

divisions with IEEE-compliant. 

Finally, through this thesis, we also learn extra knowledge related to some factors that 

affect the performance of applications on GPUs such as registers, shared memory, 

number of floating-point function units. 
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